WO2023188641A1 - タイヤ部材の製造方法およびシステム - Google Patents

タイヤ部材の製造方法およびシステム Download PDF

Info

Publication number
WO2023188641A1
WO2023188641A1 PCT/JP2022/047663 JP2022047663W WO2023188641A1 WO 2023188641 A1 WO2023188641 A1 WO 2023188641A1 JP 2022047663 W JP2022047663 W JP 2022047663W WO 2023188641 A1 WO2023188641 A1 WO 2023188641A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire member
longitudinal direction
image data
tire
variation
Prior art date
Application number
PCT/JP2022/047663
Other languages
English (en)
French (fr)
Inventor
三雄 辻
雄一郎 久田
智 小野寺
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to KR1020247013185A priority Critical patent/KR20240057446A/ko
Publication of WO2023188641A1 publication Critical patent/WO2023188641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C48/0014Extrusion moulding in several steps, i.e. components merging outside the die producing flat articles having components brought in contact outside the extrusion die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/304Extrusion nozzles or dies specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/35Extrusion nozzles or dies with rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • B29C2037/906Measuring, controlling or regulating using visualisation means or linked accessories, e.g. screens, printers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Definitions

  • the present invention relates to a method and system for manufacturing a tire member, and more particularly, the present invention relates to a method and system for manufacturing a tire member, and more particularly, it is possible to reduce variation in predetermined quality in the longitudinal direction of a long tire member formed by joining a plurality of types of component members, thereby improving productivity.
  • the present invention relates to a method and system for manufacturing tire members that can be manufactured.
  • Tires are manufactured using various long tire members. Some of these tire members are formed by joining together multiple types of constituent members, such as different types (mixtures) of rubber and reinforcing materials. On a tire manufacturing line, various inspections are performed to determine the quality of these tire components.
  • a manufacturing method has been proposed in which appropriate extrusion conditions are reset by feeding back to the extruder of the component (see Patent Document 1).
  • a buffer means for accumulating tire members is placed on a conveyance route equipped with a transfer device such as a belt conveyor for conveying tire members, and a CT scanner is placed downstream of the buffer means (festoon mechanism). has been done. While the inside of the tire member is being inspected by the CT scanner, transportation of the portion of the tire member corresponding to the inspection range is temporarily stopped.
  • the extruder disposed upstream of the buffer means continues extruding tire members, and the extruded tire members are temporarily stored by the buffer means. In this way, even while the tire member is inspected by the CT scanner on the transport route, the extrusion of the tire member by the extruder is not interrupted, and the production line is prevented from stopping.
  • the method for manufacturing a tire member of the present invention involves forming a long tire member by bonding a plurality of types of constituent members made of unvulcanized rubber extruded by a plurality of extruders, respectively, by ascertaining a predetermined quality.
  • X-rays are irradiated over a predetermined length range from the front side of the tire member, and the X-rays are transmitted through the predetermined length range.
  • Continuously performing the step of acquiring image data based on the degree acquires the image data of the predetermined length range that is continuous without any gaps in the longitudinal direction, and determines the shading in each of the acquired image data.
  • the magnitude of variation in the longitudinal direction of the tire member of the predetermined quality is determined, and based on the determined magnitude of the variation, internal control is performed in at least one of the plurality of extruders. It is characterized in that the variation is corrected by controlling the rotational speed of the provided screw.
  • the tire member manufacturing system of the present invention includes a plurality of extruders that extrude constituent members made of different types of unvulcanized rubber, and a long length formed by joining the plurality of types of constituent members.
  • a transport device that transports the tire member in the longitudinal direction, and a transport device that transports the tire member in the longitudinal direction, and a method that includes: a transport device that transports the tire member in a longitudinal direction; an X-ray inspection device that irradiates a predetermined length range with X-rays to obtain image data based on the X-ray transparency of the predetermined length range; an arithmetic device into which the image data is input; and a control device that controls the rotation of a screw installed in the extruder, and the step of acquiring the image data is continuously performed, and the predetermined length is continuous in the longitudinal direction without any gaps.
  • the image data in the range is acquired, and the amount of variation in the tire member longitudinal direction of the predetermined quality is calculated by the arithmetic device based on the shading in each of the acquired image data, Based on the calculated magnitude of the variation, the rotation speed of the screw installed in at least one extruder is controlled by the control device, so that the variation is corrected. It is characterized by
  • the image data obtained by irradiating X-rays over a predetermined length range from the front side of the tire member while transporting the tire member in the longitudinal direction is used, so that the predetermined quality is achieved. There is no need to stop the conveyance of the tire member in order to grasp this. Then, the image data of the predetermined length range that is continuous without gaps in the longitudinal direction is acquired, and the predetermined quality can be accurately grasped based on the shading of each of the acquired image data. Therefore, it is advantageous to quickly and accurately grasp the magnitude of the variation in the predetermined quality in the longitudinal direction of the tire member.
  • the rotation speed of the screw installed in at least one of the plurality of extruders is controlled to reduce the variation in the longitudinal direction of the predetermined quality. Correct. Therefore, it is advantageous to reduce variations in the predetermined quality in the longitudinal direction of the tire member and to manufacture the tire member with high productivity.
  • FIG. 1 is an explanatory diagram illustrating an embodiment of a tire member manufacturing system in a side view.
  • FIG. 2 is an explanatory diagram illustrating an enlarged view of the terahertz wave measuring device and the profile sensor of FIG. 1.
  • FIG. 3 is an explanatory diagram illustrating the range illustrated in FIG. 2 in a plan view.
  • FIG. 4 is an explanatory diagram illustrating the vicinity of the X-ray inspection apparatus of FIG. 1 in an enlarged manner.
  • FIG. 5 is an explanatory diagram illustrating the range illustrated in FIG. 4 in a plan view.
  • FIG. 6 is an explanatory diagram illustrating a tire member in a cross-sectional view.
  • FIG. 7 is an explanatory diagram illustrating a part of the tire member of FIG.
  • FIG. 8 is an explanatory diagram illustrating the distribution of cross-sectional areas of the constituent members and tire members in the longitudinal direction.
  • FIG. 9 is an explanatory diagram illustrating image data acquired by the X-ray inspection apparatus of FIG. 1.
  • FIG. 10 is a graph diagram illustrating the amount of transmitted X-rays at the position in the width direction of the tire member shown in FIG.
  • FIG. 11 is a graph diagram illustrating the distribution of the widthwise dimension of the component M1 in the longitudinal direction.
  • FIG. 12 is a graph diagram illustrating the distribution of the mass of the tire member in the longitudinal direction.
  • FIG. 13 is an explanatory diagram illustrating another embodiment of the tire member manufacturing system in a side view.
  • the tire member R formed by joining a plurality of types of component members M1 to M5 is manufactured while grasping a predetermined quality.
  • Arrows L and W in the figure indicate the longitudinal direction and width direction of the tire member R, respectively.
  • a long tire member R is manufactured by joining a plurality of types of component members M (M1 to M5) as illustrated in FIGS. 6 and 7.
  • the tire member R is a tread rubber in which a plurality of types of component members M1 to M5 made of unvulcanized rubber extruded by a plurality of extruders 8 (8a to 8e) are joined together.
  • the tire member R to be manufactured is not limited to tread rubber, but may be various known members such as side rubber, which are mainly made of rubber and used in the manufacture of tires.
  • Each of the constituent members M1 to M5 is a different type of unvulcanized rubber.
  • the same compounding agents are mixed in different amounts into the same type of raw material rubber. This applies to cases where different types of raw rubber are mixed with different compounding agents, cases where different types of raw rubber are compounded with the same compounding agent in different amounts, etc.
  • the number of types of constituent members M is not limited to five as long as they are plural, but is, for example, about 2 to 8 types.
  • the size of the tire member R is not particularly limited, but the length is, for example, several meters or more and several hundred meters or less, the width is, for example, 10 mm or more and 2000 mm or less, and the thickness (maximum thickness) is, for example, 0.3 mm or more and 100 mm or less. .
  • sheet-like constituent members M2 and M3 are stacked vertically, and a constituent member M4 is stacked thereon, and the constituent members M2 and M3 are stacked at both widthwise ends.
  • Constituent members M5 are laminated to cover both ends in the width direction.
  • the component M1 passes through the tire member R vertically (in the thickness direction).
  • the constituent members M1, M4, and M5 are exposed on the front surface of the tire member R, and the constituent members M1, M2, and M5 are exposed on the back surface, and this back surface abuts on the conveying device 2 and the tire member R is transferred to the conveying device. It is placed on 2.
  • each of the constituent members M1 to M5 has a cross-sectional shape roughly illustrated in FIG. 6 and extends over the entire length in the longitudinal direction L.
  • the boundaries between the constituent members M are shown by broken lines.
  • Component M1 is earth tread rubber containing a large amount of carbon black and no silica.
  • the component M1 has a generally rectangular cross section, is the thickest among the components M, has the highest carbon black content (weight ratio), and has the lowest specific gravity (density) among the components M.
  • the width direction dimension of the component M1 is, for example, 0.5 mm or more and 50 mm or less.
  • the component M2 is an adhesive rubber containing carbon black, no silica, or a small amount of silica, and is the thinnest sheet-like member among the components M.
  • the component M3 is an undertread rubber containing carbon black, no silica, or a small amount of silica, and is a sheet-like member that is thicker than the component M2.
  • Component M4 is a cap rubber containing no carbon black or a small amount of silica in place of carbon black.
  • the structural member M4 is the second thickest member after the structural member M1 among the structural members M, and has a concave portion and a convex portion extending in the longitudinal direction L on its surface, and the thickness varies depending on the position in the width direction. are different.
  • Component M5 is an end rubber containing carbon black and no silica. The component M5 forms an inclined surface of the end face in the width direction of the tire member R, and has a thickness that differs depending on the position in the width direction.
  • each of the constituent members M1 to M5 has a different specific gravity (density), and each specific gravity (average value) is known in advance.
  • the constituent member M4 which contains the largest amount of silica, has a higher specific gravity than the other constituent members M1, M2, M3, and M5.
  • each component M contains other known components depending on the required performance.
  • the above-mentioned "not blended” does not mean only the case where the component is not blended at all, but also includes the case where the component is contained in an extremely small amount.
  • This manufacturing system 1 includes a plurality of extruders 8 (8a to 8e), a transport device 2, an X-ray inspection device 3, a calculation device 4, and a control device 9.
  • the manufacturing system 1 further includes a terahertz wave measuring device 6, a profile sensor 7, a winding machine 10, a cutting machine 11, a sorting conveyor 12, and a discharge conveyor 13, but these may be optionally provided. I can do it.
  • a monitor 5 is communicably connected to the arithmetic device 4.
  • An extruder 8 is disposed on the upstream side of the conveying device 2 in the conveying direction, and a winding machine 10 and a discharge conveyor 13 are arranged side by side on the downstream side of the conveying direction via a sorting conveyor 12.
  • the terahertz wave measurement device 6, the profile sensor 7, and the X-ray inspection device 3 are arranged in the order of the conveyance path by the conveyance device 2 from the upstream side to the downstream side in the conveyance direction, but the arrangement is not limited to this. can be changed as appropriate.
  • a cutting machine 11 is disposed above the transport device 2 on the downstream side of the transport path from the X-ray inspection device 3 in the transport direction.
  • the conveying device 2 conveys the tire member R in the longitudinal direction L.
  • various known specifications such as a belt conveyor device or a roller conveyor device in which a large number of rotating rollers are arranged can be adopted.
  • the X-ray inspection device 3 has an irradiating section 3a and a light receiving section 3b.
  • the irradiating section 3a is arranged above the tire member R placed on the transport device 2, and the light receiving section 3b is arranged below this tire member R. Therefore, the tire member R being transported by the transport device 2 passes between the upper and lower portions of the irradiating section 3a and the light receiving section 3b.
  • the irradiation unit 3a From the surface side (in the figure, the upper side) of the tire member R being transported by the transport device 2, the irradiation unit 3a emits X-rays to a predetermined length range C of the tire member R so as to cover the entire width of the tire member R. irradiate.
  • the X-rays transmitted through the tire member R are received by the light receiving section 3b.
  • image data D based on the X-ray transmittance of a predetermined length range C of the tire member R irradiated with X-rays is acquired by the X-ray inspection device 3.
  • X-ray inspection apparatuses 3 having various known specifications can be employed.
  • the irradiation unit 3a irradiates X-rays continuously or intermittently, and acquires image data D of each continuous predetermined length range C in the longitudinal direction L.
  • Predetermined length ranges C that are adjacent to each other in the longitudinal direction L may overlap each other to some extent in the longitudinal direction L, but are not spaced apart in the longitudinal direction L.
  • the size (length) of the predetermined length range C and the transport speed by the transport device 2 can be set arbitrarily, the size of the predetermined length range C is, for example, about 50 mm (5 mm or more and 1000 mm or less). Further, the conveying speed by the conveying device 2 is, for example, about 50 mm/s or more and 1000 mm/s or less.
  • the X-ray irradiation intensity (voltage and current of the X-ray tube) is set in a range that allows clearer image data D to be obtained according to the specifications of the tire member R to be inspected, through preliminary tests. .
  • Image data D acquired by the X-ray inspection device 3 is sequentially input to the arithmetic device 4.
  • Various other data are also input to the arithmetic unit 4, and various arithmetic processes are performed using installed programs.
  • the arithmetic device 4 a known computer can be used.
  • the arithmetic device 4 may be provided separately from the X-ray inspection device 3, or may be incorporated as a part of the X-ray inspection device 3.
  • image data D acquired by the X-ray inspection device 3 and data (image data, etc.) processed by the calculation device 4 are displayed.
  • various known specifications may be adopted.
  • the terahertz wave measurement device 6 includes a transmitting section 6a that transmits electromagnetic waves (radio waves) at a terahertz frequency (substantially 0.1 THz to 10 THz), and a detection section that detects reflected waves that enter the inside of the tire member R and are reflected. 6b.
  • the transmitting section 6a and the detecting section 6b are arranged on the back side (lower side in the figure) of the tire member R placed on the conveying device 2.
  • the electromagnetic waves transmitted from the transmitter 6a enter the inside of the tire member R and are reflected at the boundaries of the constituent members M.
  • the reflected wave reflected at the boundary is detected by the detection section 6b.
  • the terahertz wave measuring device 6 detects at least one component M unevenly distributed on the back surface side of the tire member R based on the reflection angle of the reflected wave (refraction angle at the boundary) and the time from emission to detection of the electromagnetic wave. Calculate the cross-sectional area (cross-sectional shape) of If the boundary of the component M varies greatly (has large irregularities), the reflected waves will be diffused, making it impossible to accurately calculate the cross-sectional area (cross-sectional shape) of the component M. Therefore, in this embodiment, the cross-sectional area (cross-sectional shape) of the flat sheet-like structural members M2 and M3 is calculated by the terahertz wave measuring device 6.
  • the terahertz wave measuring device 6 can be one having known specifications.
  • the profile sensor 7 has an irradiating section 7a that irradiates laser light, and a light receiving section 7b that receives reflected light reflected from the outer surface of the tire member R.
  • a set of the irradiating section 7a and the light receiving section 7b is arranged on the front side (upper side in the figure) and the back side (lower side in the figure) of the tire member R placed on the conveyance device 2. ing.
  • the laser light irradiated from each irradiation part 7a is reflected on the outer surface (outer surface) of the tire member R. This reflected light is received by the paired light receiving section 7b.
  • the profile sensor 7 calculates the cross-sectional area (cross-sectional shape) of the tire member R based on the reflection angle of the reflected light and the time from irradiation to reception of the laser light.
  • the profile sensor 7 can be of known specifications.
  • the extruder 8 (8a to 8e) has a cylinder in which a rotatably driven screw 8s is installed, and rotates the screw 8s to feed unvulcanized rubber in which raw rubber and various compounding agents are kneaded. While adjusting the viscosity to an appropriate level, it is sent forward and extruded from the extrusion head 8H.
  • Extruders 8 having various known specifications can be employed. In this embodiment, since the tire member R is formed by joining five types of component members M1 to M5, five extruders 8a to 8e are used. Each extruder 8a, 8b, 8c, 8d, 8e extrudes a different type of unvulcanized rubber forming the corresponding component M1, M2, M3, M4, M5. Each of the unvulcanized rubbers extruded by the extruders 8a to 8e passes through the extrusion head 8H, and is then joined and extruded from the extrusion head 8H as an integrated tire member R.
  • the control device 9 controls the rotation of the screw 8s of each extruder 8.
  • the control device 9 is communicably connected to the arithmetic device 4, and receives various data from the arithmetic device 4.
  • the control device 9 controls the rotation speed of the screw 8s of each extruder 8 based on various input data.
  • a known computer can be used as the control device 9, a known computer can be used.
  • the winding machine 10 winds up the tire member R transported by the transport device 2 and temporarily stocks it.
  • the winding machine 10 has a winding drum that winds up the tire member R together with the liner.
  • the winder 10 is not necessary in a line directly connected to extrusion/molding where the manufactured tire member R is immediately used in the next process.
  • the cutting machine 11 cuts across the tire member R placed on the transport device 2.
  • a known cutter such as a rotary round blade is employed.
  • the sorting conveyor 12 rotates vertically around one end (the upstream end in the conveyance direction).
  • the tire member R transported by the transport device 2 is guided to the winder 10 when the other end of the sorting conveyor 12 turns downward, and is guided to the discharge conveyor 13 when it turns upward.
  • the tire member R extruded from the extruder 8 through the extrusion head 8H is placed on the conveying device 2 disposed in front and conveyed in the longitudinal direction L.
  • the quality of the tire member R is inspected using the terahertz wave measuring device 6 and the profile sensor 7.
  • the terahertz wave measuring device 6 electromagnetic waves of terahertz frequency are continuously transmitted from the back side of the tire member R being conveyed in the longitudinal direction L toward the tire member R by the transmitter 6a. A reflected wave that enters the tire member R and is reflected is detected by the detection unit 6b. Thereby, the terahertz wave measuring device 6 can grasp the cross-sectional shapes (cross-sectional areas) of the constituent members M2 and M3. Therefore, as illustrated in FIG. 8, the distribution of the cross-sectional areas of the constituent members M2 and M3 in the longitudinal direction L can be grasped. Since the specific gravity of each of the constituent members M2 and M3 is known, the distribution of the mass of the constituent members M2 and M3 in the longitudinal direction L is also known.
  • the irradiation unit 7a continuously irradiates laser light toward the tire member R being conveyed in the longitudinal direction L.
  • the reflected light of the laser light reflected on the outer surface of the tire member R is received by the light receiving section 7b.
  • the profile sensor 7 grasps the cross-sectional shape (cross-sectional area) of the tire member R. Therefore, as illustrated in FIG. 8, the distribution of the cross-sectional area of the tire member R in the longitudinal direction L can be grasped.
  • the irradiation unit 3a irradiates X-rays over a predetermined length range C from the front side of the tire member R being transported.
  • the X-rays that have passed through the predetermined length range C of the tire member R are sequentially received by the light receiving section 3b.
  • the image data D illustrated in FIG. 9 based on the X-ray transmittance of the predetermined length range C is acquired by the X-ray inspection apparatus 3.
  • image data D of a predetermined length range C that is continuous in the longitudinal direction L without any gaps is acquired.
  • Each acquired image data D is sequentially input to the arithmetic device 4, where it is arithmetic processed and analyzed.
  • the calculation device 4 calculates the amount of variation (degree of variation) in the longitudinal direction L of the width direction dimension of the component M1 based on the shading in the image data D. The calculation process by this calculation device 4 will be described in detail below.
  • the X-rays emitted from the irradiation section 3a pass through the tire member R and are received by the light receiving section 3b.
  • the attenuation of X-rays in the tire member R becomes greater (the amount of absorption increases), and therefore the amount of X-rays received by the light receiving section 3b (transmission dose) decreases.
  • the tire member R contains a large amount of a component (having a large atomic number and density) that tends to attenuate X-rays, the amount of X-rays (transmitted radiation) received by the light receiving portion 3b decreases. Accordingly, the obtained image data D becomes closer to black and becomes darker.
  • the attenuation of the X-rays in the tire member R becomes smaller (the amount of absorption decreases), so the amount of X-rays received by the light receiving section 3b (transmission dose) increases.
  • the content of the component that tends to attenuate X-rays in the tire member R is small, the amount of X-rays (transmitted radiation amount) received by the light receiving section 3b increases. Accordingly, the obtained image data D becomes closer to white and becomes lighter.
  • Silica is a component that attenuates (absorbs) X-rays more significantly than carbon black. Therefore, the component M that contains silica or has a high silica content has more image data D than the component M that contains carbon black instead of silica or has a high carbon black content. becomes darker and closer to black. In this way, the shading in the image data D depends on the thickness of the tire member R at the position through which the X-rays pass and the contained components.
  • the X-ray transmission dose Z of this tire member R changes in the width direction W.
  • a cross-sectional view of the tire member R is shown below the graph.
  • This transmitted dose Z indicates the amount of X-rays received on the back side when X-rays are irradiated from the front side of the tire member R.
  • This transmitted dose Z can be calculated based on the thickness, specific gravity, and attenuation coefficient of the tire member R at the position through which the X-rays pass. The larger the transmitted dose Z is at the width direction position, the darker the color becomes in the image data D.
  • the color is the darkest at the thickest position of the component M4, and the color is light at the thinnest position.
  • the constituent member M1 is the thickest member, since it is the member with the smallest specific gravity, the color of the image data D is light at the position where the constituent member M1 is arranged.
  • the color of the image data D becomes lighter toward the widthwise end of the tire member R.
  • the arrangement pitch of the diagonal lines is changed according to the darkness of the color, and the arrangement pitch of the diagonal lines is reduced in areas where the color is relatively dark, and the lines are written densely.
  • the image data D in FIG. 9 has a dark part and a light part, and the light part is present in multiple places (the thinnest position of the component M4, the position of the component M1, the position of the component M5). ) exists in Therefore, it is difficult to identify which light portion is the position where the constituent member M1 is present only by simple shading in the image data D.
  • the thickness of unvulcanized rubber of the same type changes, the change in the transmitted dose Z gradually changes similarly to the change in thickness, so the change in density in the image data D becomes gradual.
  • the transmitted radiation dose Z changes greatly due to the difference in the contained components, so that the change in density in the image data D becomes abrupt.
  • the amount of transmitted radiation Z in the width direction W of the tire member R illustrated in FIG. 10 is ascertained, and the magnitude of the difference in the amount of transmitted radiation Z is utilized. That is, the transmitted dose Z of each constituent member M is known in advance, and the difference in the transmitted dose Z between the constituent members M at the boundary between the constituent members M adjacent in the width direction W is calculated as illustrated in FIG. Set the standard size range. That is, if the change in the transmitted dose Z in the width direction W is within the reference range, the reference range is set so that it can be substantially guaranteed that the constituent members M1 and M4 are adjacent to each other in the width direction W.
  • the range of differences in shading of the image data D corresponding to the set reference range is stored in the arithmetic unit 4 as a determination criterion.
  • the arithmetic unit 4 calculates the magnitude of the difference in shading in the width direction W for each image data D, and when it detects a position where the difference falls within the determination criteria, the detected width direction position is It is determined that this is the boundary between component members M1 and M4. If one constituent member M1 of the tire member R extends in the longitudinal direction L, the boundaries between the constituent members M1 and M4 are detected at two locations spaced apart in the width direction W, and the boundaries are The interval in the width direction W is calculated as the width direction dimension of the component M1.
  • the magnitude of the variation in the widthwise dimension of the component M1 in the tire member R in the longitudinal direction L is calculated.
  • Mc on the vertical axis in FIG. 11 indicates the design value of the widthwise dimension of the component M1, and how much the widthwise dimension of the component M1 fluctuates in the longitudinal direction L in the manufactured tire member R. can be understood.
  • the width direction dimension when the width direction dimension is zero, it means that the component M1 is interrupted in the middle of the longitudinal direction L. Therefore, according to the data in FIG. 11, it is possible to grasp the continuity of the component M1 in the longitudinal direction L.
  • X-rays are irradiated from the irradiation unit 3a to a predetermined length range C of the tire member R so as to cover the entire width of the tire member R.
  • the positions in the width direction where they are arranged are known in advance. Therefore, the widthwise range over which the X-rays are irradiated can be set to a narrower range that includes the widthwise position where the component M1 is known in advance.
  • the corresponding predetermined length range C is determined to be a non-defective part. Then, the non-defective parts of the tire member R transported by the transport device 2 are guided to a winder 10 by a sorting conveyor 12 and wound up. In the case of a line directly connected to extrusion and molding, the non-defective parts of the tire member R are conveyed as they are to the next process.
  • the corresponding predetermined length range C (defective portion) is cut on the conveyor 2 and cut by the cutting machine 11. disconnected by. Then, when the cut predetermined length range C (defective portion) is conveyed to the downstream end in the conveyance direction of the conveyance device 2, the sorting conveyor 12 turns toward the discharge conveyor 13 side. As a result, the cut predetermined length range C (defective portion) is placed on the discharge conveyor 13, transported, and removed from the production line.
  • the control device 9 is installed in at least one of the plurality of extruders 8 based on the magnitude of the variation in the widthwise dimension of the component M1 calculated and understood as described above.
  • the rotation speed of the screw 8s is controlled. For example, by controlling the rotation speed of the screw 8s of the extruder 8a that extrudes the unvulcanized rubber forming the component M1, the variation in the width direction dimension is corrected and brought closer to the design value Mc.
  • width direction dimension of the component M1 is too small compared to the design value Mc, increase the rotation speed of the screw 8s of the extruder 8a, and if the width direction dimension is too large compared to the design value Mc, increase the rotation speed of the screw 8s. lower. It is preferable to control the rotational speed of the screw 8s not only in the extruder 8a but also in the extruder 8 which is largely affected by the variation in the widthwise dimension of the component M1.
  • the structure There is no need to stop conveyance of the tire member R in order to grasp the width direction dimension of the member M1.
  • Image data D of a predetermined length range C that is continuous in the longitudinal direction L without any gaps is acquired, and based on the shading in each image data D, the arithmetic unit 4 calculates the width direction dimension of the component M1 with high precision. can be grasped. Therefore, it is advantageous to quickly and accurately grasp the variation in the width direction dimension of the component M1 in the longitudinal direction L (that is, the continuity of the component M1 in the longitudinal direction L).
  • the rotational speed of the screw 8s as described above based on the accurately grasped size of variation in the widthwise dimension of the component M1, the variation is reduced and the tire member R is made more productive. It is advantageous to manufacture well.
  • the distribution in the longitudinal direction of the component M1 made of unvulcanized rubber has a higher content of carbon black as a specific component than the unvulcanized rubber forming the other components M.
  • This specific component is not limited to carbon black, and other components can be used depending on the purpose.
  • the specific member to be inspected is not limited to the component M1, but may be another component M.
  • the image data D described above for a large number of samples of tire members R is acquired under the same conditions. Additionally, mass data per unit length of each sample is obtained. By performing machine learning using these image data D and mass data as training data, the mass per unit length of a predetermined length range C corresponding to the image data D is estimated from the image data D acquired as the inspection target. A prediction model (computer program) is generated and stored in the arithmetic unit 4.
  • the shading in the image data D changes depending on the thickness and the contained components of the tire member R, so the distribution of the shading is based on the portion of the tire member R corresponding to the image data D (a predetermined length).
  • An estimated model is generated by obtaining the relationships through machine learning.
  • a machine learning method various known methods such as deep learning using a neural network can be used.
  • the image data D sequentially acquired by the X-ray inspection device 3 is input into the estimation model and is subjected to calculation processing by the calculation device 4. do. Thereby, the mass of each predetermined length range C is estimated and calculated.
  • the magnitude of variation in the mass (mass per unit length) of the tire member R in the longitudinal direction L is calculated.
  • Ra on the vertical axis in FIG. 12 indicates the allowable range of the mass (mass per unit length) of the tire member R, and according to FIG. 12, in the manufactured tire member R, the mass in the longitudinal direction L You can see how much it is changing.
  • the corresponding predetermined length range C is determined to be a non-defective part, and if it is outside the tolerance range Ra, the corresponding predetermined length range C is determined to be a defective part.
  • the predetermined length range C corresponding to the non-defective portion is guided to the winder 7 by the sorting conveyor 9.
  • a predetermined length range C corresponding to the defective portion is cut by a cutter 8 on the conveyor 2, guided to a discharge conveyor 10 by a sorting conveyor 9, and removed from the production line.
  • control device 9 controls the screw 8s installed in at least one of the plurality of extruders 8 based on the magnitude of the variation in mass of the tire member R calculated and grasped as described above. control the rotation speed. By performing this control, variations in the mass of the tire member R in the longitudinal direction L are corrected, and the mass is maintained within the allowable range Ra.
  • the X-ray inspection device 3 grasps the width direction position and width direction dimension of the component M1, and the profile sensor 7 grasps the cross-sectional shape of the tire member R. Therefore, the cross-sectional area of the component M1, Mass can also be determined. Further, the terahertz wave measurement device 6 determines the cross-sectional area and mass of the constituent members M2 and M3. Therefore, by subtracting the cross-sectional area (mass) of the constituent members M1, M2, and M3 from the determined cross-sectional area (mass) of the tire member R, the total cross-sectional area (mass) of the constituent members M4 and M5 is determined.
  • the cross-sectional area (mass) of the component M5 is much smaller than that of the component M4, the cross-sectional area (mass) of the component M4 can also be roughly grasped. Therefore, based on the determined variation in the cross-sectional area (mass) of each of the component members M2, M3, and M4 in the longitudinal direction L, similar to the correction of the variation in the width direction dimension of the component M1 described above, By controlling the rotation speed of the screw 8s installed in at least one of the plurality of extruders 8 by the control device 9, it is possible to correct variations in the cross-sectional area (mass) of each extruder. As a result, variations in mass of the tire member R in the longitudinal direction L are corrected.
  • a group of the terahertz wave measurement device 6, the profile sensor 7, and the X-ray inspection device 3 are arranged at two locations spaced apart in the longitudinal direction L of the transport device 2. That is, in this embodiment, a group of terahertz wave measuring device 6, profile sensor 7, and X-ray inspection device 3 are added to the manufacturing system 1 illustrated in FIG. 1 on the downstream side of the conveying direction of the conveying device 2. There is.
  • a group of the terahertz wave measuring device 6, profile sensor 7, and X-ray inspection device 3 arranged on the upstream side of the transporting direction of the transporting device 2 functions in the same manner as in the previous embodiment. That is, this group inspects the quality of the tire member R, and feeds back the inspection results for the control device 9 to control the rotation speed of the screw 8s.
  • the group disposed on the downstream side in the conveyance direction has a function of inspecting the quality of the tire member R and simply determining whether the inspection result satisfies the allowable range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Tyre Moulding (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

複数種類の構成部材を接合して形成した長尺のタイヤ部材を、長手方向での所定の品質のバラつきを小さくして生産性よく製造できる方法及びシステムを提供する。搬送装置2を用いてタイヤ部材Rを長手方向Lに搬送しながら、タイヤ部材Rの表面側からX線検査装置3により、所定長さ範囲Cに対してX線を照射してX線透過度に基づく画像データDを取得する工程を連続的に継続して行い、長手方向Lに隙間なく連続した所定長さ範囲Cの画像データDを取得して、各画像データDでの濃淡に基づいて、演算装置4によりタイヤ部材Rの質量や特定成分の含有率がより大きい未加硫ゴムで形成された構成部材M1の分布の長手方向Lでのバラつきの大きさを算出し、このバラつきの大きさに基づいて、少なくとも1台の押出機8に内設されたスクリュー8sの回転数を制御装置9により制御してこのバラつきを是正する。

Description

タイヤ部材の製造方法およびシステム
 本発明はタイヤ部材の製造方法およびシステムに関し、さらに詳しくは、複数種類の構成部材を接合した形成した長尺のタイヤ部材を、長手方向での所定の品質のバラつきを小さくして、生産性よく製造できるタイヤ部材の製造方法およびシステムに関するものである。
 タイヤは、様々な長尺のタイヤ部材が使用されて製造されている。これらタイヤ部材には、種類(配合)の異なるゴムや補強材など、複数種類の構成部材が接合されて形成されているものがある。タイヤの製造ラインでは、これらのタイヤ部材の品質を把握するために種々の検査が行われる。
 従来、タイヤ部材の品質を検査しつつ製造する方法として、タイヤ部材の横断面での個々の構成部材の形状や寸法などを、製造ラインを止めることなく把握する測定して、その測定結果をタイヤ部材の押出機にフィードバックして適正な押出条件を再設定する製造方法が提案されている(特許文献1参照)。この提案されている製造方法では、タイヤ部材を搬送するベルトコンベヤなどの移送装置を備えた搬送経路に、タイヤ部材を蓄積するバッファ手段(フェスツーン機構)が配置され、その下流側にCTスキャナが配置されている。そして、タイヤ部材の内部をCTスキャナによって検査している間は、タイヤ部材の検査範囲に該当する部分は搬送が一時的に停止される。一方で、バッファ手段の上流側に配置された押出機はタイヤ部材の押出を継続し、押出されたタイヤ部材はバッファ手段によって一時的に蓄積される。このようにして、搬送経路でタイヤ部材をCTスキャナで検査している間も、押出機によるタイヤ部材の押出を中断させずに製造ラインが止まることを回避する。
日本国特開平8-86635号公報
 特許文献1で提案されている製造方法では、タイヤ部材の長手方向での所定の品質のバラつきの大きさを精度よく把握するには、タイヤ部材を長手方向に多数の区間に隙間なく細分化し、細分化されたそれぞれの区間に対して搬送を一時的に停止してCTスキャナによる検査を行う必要がある。したがって、検査されたタイヤ部材を、搬送経路を経て次工程に搬送するには、相当の時間を要し生産性を向上させるには不利になる。一方で、生産性を向上させるために、CTスキャナによる検査に伴ってCTスキャナよりも下流側へのタイヤ部材の搬送を一時的に停止する回数を減らすために、検査を行う区間を間引きすると、タイヤ部材の長手方向での所定の品質のバラつきの大きさを精度よく把握することができない。これに伴い、タイヤ部材の長手方向での所定の品質のバラつきを小さくするには不利になる。それ故、タイヤ部材を、長手方向での所定の品質のバラつきを小さくして生産性よく製造するには改善の余地がある。
 本発明のタイヤ部材の製造方法は、複数台の押出機によりそれぞれ押出された未加硫ゴムからなる複数種類の構成部材を接合して形成した長尺のタイヤ部材を、所定の品質を把握しつつ製造するタイヤ部材の方法において、前記タイヤ部材を長手方向に搬送しながら、前記タイヤ部材の表面側から所定長さ範囲に対してX線を照射して、前記所定長さ範囲のX線透過度に基づく画像データを取得する工程を連続的に継続して行って、前記長手方向に隙間なく連続した前記所定長さ範囲の前記画像データを取得し、取得したそれぞれの前記画像データでの濃淡に基づいて、前記所定の品質の前記タイヤ部材の前記長手方向でのバラつきの大きさを把握し、把握した前記バラつきの大きさに基づいて、複数の前記押出機のうちの少なくとも1台に内設されているスクリューの回転数を制御することにより、前記バラつきを是正することを特徴とする。
 本発明のタイヤ部材の製造システムは、種類の異なる未加硫ゴムからなる構成部材を押出す複数台の押出機を有し、これら複数種類の前記構成部材が接合されて形成されている長尺のタイヤ部材が、所定の品質が把握されつつ製造されるタイヤ部材の製造システムにおいて、前記タイヤ部材を長手方向に搬送する搬送装置と、前記搬送装置により搬送されている前記タイヤ部材の表面側から所定長さ範囲に対してX線を照射して前記所定長さ範囲のX線透過度に基づく画像データを取得するX線検査装置と、前記画像データが入力される演算装置と、それぞれの前記押出機に内設されているスクリューの回転を制御する制御装置とを有し、前記画像データを取得する工程が連続的に継続して行われて、前記長手方向に隙間なく連続した前記所定長さ範囲の前記画像データが取得されて、取得されたそれぞれの前記画像データでの濃淡に基づいて、前記演算装置により前記所定の品質の前記タイヤ部材長手方向でのバラつきの大きさが算出され、算出された前記バラつきの大きさに基づいて、少なくとも1台の前記押出機に内設されている前記スクリューの回転数が前記制御装置により制御されることで、前記バラつきが是正される構成にしたことを特徴とする。
 本発明によれば、前記タイヤ部材を長手方向に搬送しながら、前記タイヤ部材の表面側から所定長さ範囲に対してX線を照射して取得した前記画像データを用いるので、前記所定の品質の把握のために前記タイヤ部材の搬送を停止させる必要がない。そして、前記長手方向に隙間なく連続した前記所定長さ範囲の前記画像データを取得し、取得したそれぞれの前記画像データでの濃淡に基づいて前記所定の品質を精度よく把握できる。それ故、前記タイヤ部材の長手方向での前記所定の品質のバラつきの大きさを、迅速に精度よく把握するには有利になる。この精度良く把握したバラつきの大きさに基づいて、複数の前記押出機のうちの少なくとも1台に内設されている前記スクリューの回転数を制御して前記所定の品質の前記長手方向でのバラつきを是正する。そのため、前記タイヤ部材の長手方向での前記所定の品質のバラつきを小さくして、前記タイヤ部材を生産性よく製造するには有利になる。
図1はタイヤ部材の製造システムの実施形態を側面視で例示する説明図である。 図2は図1のテラヘルツ波測定装置およびプロファイルセンサの周辺を拡大して例示する説明図である。 図3は図2に例示する範囲を平面視で例示する説明図である。 図4は図1のX線検査装置の周辺を拡大して例示する説明図である。 図5は図4に例示する範囲を平面視で例示する説明図である。 図6はタイヤ部材を横断面視で例示する説明図である。 図7は図6のタイヤ部材の一部を切り欠いて平面視で例示する説明図である。 図8は構成部材、タイヤ部材の断面積の長手方向での分布を例示する説明図である。 図9は図1のX線検査装置により取得された画像データを例示する説明図である。 図10は図6のタイヤ部材の幅方向位置でのX線の透過線量を例示するグラフ図である。 図11は構成部材M1の幅方向寸法の長手方向での分布を例示するグラフ図である。 図12はタイヤ部材の質量の長手方向での分布を例示するグラフ図である。 図13はタイヤ部材の製造システムの別の実施形態を側面視で例示する説明図である。
 以下、本発明のタイヤ部材の製造方法および製造システムを、図に示した実施形態に基づいて説明する。
 図1~図5に例示するタイヤ部材の製造システム1の実施形態は、複数種類の構成部材M1~M5を接合することで形成されるタイヤ部材Rの所定の品質を把握しつつ製造する。図中の矢印L、矢印Wはそれぞれ、タイヤ部材Rの長手方向、幅方向を示している。
 この実施形態では、図6、図7に例示するような複数種類の構成部材M(M1~M5)が接合されて形成された長尺のタイヤ部材Rが製造される。タイヤ部材Rは、複数台の押出機8(8a~8e)によりそれぞれ押出された未加硫ゴムからなる複数種類の構成部材M1~M5が接合されたトレッドゴムである。製造されるタイヤ部材Rはトレッドゴムに限定されず、サイドゴムなど、ゴムを主材料にしていてタイヤの製造に用いられる公知の種々の部材である。
 それぞれの構成部材M1~M5は、種類が異なる未加硫ゴムであり、例えば、同種の原料ゴムに異なる配合剤が配合されている場合、同種の原料ゴムに同じ配合剤が異なる配合量で配合されている場合、異種の原料ゴムに異なる配合剤が配合されている場合、異種の原料ゴムに同じ配合剤が異なる配合量で配合されている場合などが該当する。
 構成部材Mの種類は複数であればよく5種類に限定されないが、例えば2種類以上8種類以下程度である。タイヤ部材Rのサイズは特に限定されないが、長さは例えば数m以上数百m以下であり、幅は例えば10mm以上2000mm以下、厚さ(最大厚さ)は例えば0.3mm以上100mm以下である。
 図6、図7に例示するタイヤ部材Rでは、シート状の構成部材M2、M3が上下に積層され、その上に構成部材M4が積層され、幅方向両端部には、構成部材M2およびM3の幅方向両端部を覆う構成部材M5が積層されている。そして、タイヤ部材Rの幅方向中央部では構成部材M1が、タイヤ部材Rを上下に(厚さ方向に)貫通している。タイヤ部材Rの表面には構成部材M1、M4、M5が露出し、裏面には構成部材M1、M2、M5が露出していて、この裏面が搬送装置2に当接してタイヤ部材Rが搬送装置2に載置される。タイヤ部材Rが良品であれば、それぞれの構成部材M1~M5は、概ね図6に例示する横断面形状で長手方向Lの全長に延在している。尚、図面では構成部材Mどうしの境界を破線で示している。
 構成部材M1は、カーボンブラックが多量に配合されていてシリカ無配合のアーストレッドゴムである。構成部材M1は、断面が概ね矩形状で構成部材Mの中で最も厚く、カーボンブラックの含有率(重量割合)が構成部材Mの中で最も高くて比重(密度)が最も小さい部材である。構成部材M1の幅方向寸法は例えば0.5mm以上50mm以下である。
 構成部材M2は、カーボンブラック配合、シリカ無配合もしくは少量配合の接着用ゴムであり、構成部材Mの中で最も薄いシート状の部材である。構成部材M3は、カーボンブラック配合、シリカ無配合もしくは少量配合のアンダートレッドゴムであり、構成部材M2よりも厚いシート状の部材である。
 構成部材M4は、カーボンブラックに代えてシリカが多量に配合されているカーボンブラック無配合もしくは少量配合のキャップゴムである。構成部材M4は、構成部材Mの中で構成部材M1に次いで厚い部材であり、その表面には長手方向Lに延在する凹部および凸部を有していて、幅方向位置に応じて厚さが異なっている。構成部材M5は、カーボンブラック配合、シリカ無配合の端部ゴムである。構成部材M5は、タイヤ部材Rの幅方向端面の傾斜面を形成していて、幅方向位置に応じて厚さが異なっている。
 それぞれの構成部材M1~M5は比重(密度)が異なっていて、それぞれの比重(平均値)は予め把握されている。構成部材Mの中でシリカが最も多く顕著に配合されている構成部材M4は、他の構成部材M1、M2、M3、M5に比して比重が大きい。尚、それぞれの構成部材Mには要求性能に応じて、その他の公知の成分が含有される。また、上述した無配合とは、その成分の配合が皆無の場合だけを意味するのではなく、極微小量が含有される場合も含む。
 この製造システム1は、複数台の押出機8(8a~8e)と、搬送装置2と、X線検査装置3と、演算装置4と、制御装置9とを有している。この実施形態では、製造システム1はさらに、テラヘルツ波測定装置6、プロファイルセンサ7、巻取り機10、切断機11、振り分けコンベヤ12、排出コンベヤ13を有しているが、これらは任意で備えることができる。
 演算装置4にはモニタ5が通信可能に接続されている。搬送装置2の搬送方向上流側には押出機8が配置され、搬送方向下流側には、振り分けコンベヤ12を介して、巻取り機10と排出コンベヤ13とが並置されている。搬送装置2による搬送経路には、搬送方向上流側から下流側に向かって、テラヘルツ波測定装置6、プロファイルセンサ7、X線検査装置3の順に配列されているが、配列はこれに限定されずに適宜変更できる。搬送経路のX線検査装置3よりも搬送方向下流側では、搬送装置2の上方に切断機11が配置されている。
 搬送装置2は、タイヤ部材Rを長手方向Lに搬送する。搬送装置2としては、ベルトコンベヤ装置や多数の回転ローラが配列されたローラコンベヤ装置などの公知の種々の仕様を採用することができる。
 X線検査装置3は、照射部3aと受光部3bとを有している。照射部3aは搬送装置2に載置されているタイヤ部材Rの上方に配置され、受光部3bはこのタイヤ部材Rの下方に配置されている。したがって、搬送装置2によって搬送されているタイヤ部材Rは、照射部3aと受光部3bとの上下間を通過する。
 搬送装置2により搬送されているタイヤ部材Rの表面側(図では上側)から、照射部3aはタイヤ部材Rの所定長さ範囲Cに対して、タイヤ部材Rの全幅を網羅するようにX線を照射する。タイヤ部材Rを透過したX線は受光部3bに受光される。そして、X線が照射されたタイヤ部材Rの所定長さ範囲CのX線透過度に基づく画像データDがX線検査装置3により取得される。公知の種々の仕様のX線検査装置3を採用することができる。
 照射部3aは連続して、或いは、断続的にX線を照射し、長手方向Lに連続する所定長さ範囲Cのそれぞれの画像データDを取得する。長手方向Lに隣接する所定長さ範囲Cどうしは、長手方向Lに多少重複してもよいが、長手方向Lには離間しないようにする。X線を断続的に照射する際には、搬送装置2によるタイヤ部材Rの搬送速度が速くなる程、或いは、所定長さ範囲Cが小さい程、インターバルが短くなって頻繁にX線を照射することになる。換言すると、搬送装置2による搬送速度が遅くなる程、或いは、所定長さ範囲Cが大きい程、X線を断続的に照射する際のインターバルが長くなる。
 所定長さ範囲Cの大きさ(長さ)や搬送装置2による搬送速度は任意に設定することができるが、所定長さ範囲Cの大きさは例えば50mm(5mm以上1000mm以下)程度である。また、搬送装置2による搬送速度は例えば50mm/s以上1000mm/s以下程度である。また、X線の照射強度(X線管の電圧および電流)は、事前テストなどを行って、検査対象のタイヤ部材Rの仕様に応じて、より鮮明な画像データDを取得できる範囲に設定する。
 演算装置4には、X線検査装置3により取得された画像データDが逐次、入力される。演算装置4にはその他に種々のデータが入力され、インストールされているプログラムを用いて種々の演算処理が行われる。演算装置4としては、公知のコンピュータを用いることができる。演算装置4は、X線検査装置3とは独立別個に備えてもよく、X線検査装置3の一部として組み込まれた仕様でもよい。
 モニタ5には、X線検査装置3により取得された画像データD、演算装置4により演算処理されたデータ(画像データなど)が表示される。モニタ5としては、公知の種々の仕様を採用すればよい。
 テラヘルツ波測定装置6は、テラヘルツ周波数(実質的には0.1THz~10THz)の電磁波(電波)を発信する発信部6aと、タイヤ部材Rの内部に進入して反射した反射波を検出する検出部6bとを有している。この実施形態では、発信部6aおよび検出部6bは、搬送装置2に載置されているタイヤ部材Rの裏面側(図では下側)に配置されている。
 発信部6aから発信された電磁波は、タイヤ部材Rの内部に進入して、構成部材Mの境界で反射する。境界で反射した反射波は検出部6bにより検出される。テラヘルツ波測定装置6は、反射波の反射角(境界での屈折角)、電磁波の発信から検出までの時間に基づいて、タイヤ部材Rの裏面側に偏在している少なくとも1種類の構成部材Mの横断面積(横断面形状)を算出する。構成部材Mの境界が大きく変動している(凹凸具合が大きい)と反射波が拡散して精度よく構成部材Mの横断面積(横断面形状)を算出できない。そのため、この実施形態では、平坦なシート状の構成部材M2、M3の横断面積(横断面形状)をテラヘルツ波測定装置6により算出にする。テラヘルツ波測定装置6は、公知の仕様のものを採用することができる。
 プロファイルセンサ7は、レーザ光を照射する照射部7aと、タイヤ部材Rの外表面で反射した反射光を受光する受光部7bとを有している。この実施形態では、照射部7aと受光部7bとの組が、搬送装置2に載置されているタイヤ部材Rの表面側(図では上側)と裏面側(図では下側)とに配置されている。
 それぞれの照射部7aから照射されたレーザ光は、タイヤ部材Rの外表面(外郭表面)で反射する。この反射した反射光は、組となる受光部7bにより受光される。プロファイルセンサ7は、反射光の反射角、レーザ光の照射から受光までの時間に基づいて、タイヤ部材Rの横断面積(横断面形状)を算出する。プロファイルセンサ7は、公知の仕様のものを採用することができる。
 押出機8(8a~8e)は、回転駆動されるスクリュー8sが内設されたシリンダを有し、原料ゴムと各種の配合剤とが混練された未加硫ゴムを、スクリュー8sを回転させて適度な粘度にしつつ前方に送って押出ヘッド8Hから押出す。公知の種々の仕様の押出機8を採用することができる。この実施形態では、タイヤ部材Rが5種類の構成部材M1~M5を接合して形成されているので、5台の押出機8a~8eが使用されている。それぞれの押出機8a、8b、8c、8d、8eからはそれぞれ、対応する構成部材M1、M2、M3、M4、M5を形成する異なる種類の未加硫ゴムが押出される。押出機8a~8eにより押出されたそれぞれの未加硫ゴムは、押出ヘッド8Hを通過することで接合されて一体化したタイヤ部材Rとして押出ヘッド8Hから押出される。
 制御装置9は、それぞれの押出機8のスクリュー8sの回転を制御する。制御装置9は演算装置4と通信可能に接続されていて、演算装置4から様々なデータが入力される。制御装置9は、入力された様々なデータを用いてに基づいてそれぞれの押出機8のスクリュー8sの回転数を制御する。制御装置9としては、公知のコンピュータを用いることができる。
 巻取り機10は、搬送装置2により搬送されたタイヤ部材Rを巻き取って一時的にストックする。巻取り機10は、タイヤ部材Rをライナとともに巻き取る巻取りドラムを有している。製造されたタイヤ部材Rが次工程で直ちに使用される押出・成形直結ラインなどでは巻取り機10は不要になる。
 切断機11は、搬送装置2に載置されているタイヤ部材Rを横断して切断する。切断機11としては回転丸刃など公知のカッタが採用される。
 振り分けコンベヤ12は、一方端部(搬送方向上流側端部)を中心にして上下に旋回する。搬送装置2により搬送されたタイヤ部材Rは、振り分けコンベヤ12の他方端部が下方に旋回すると巻取り機10に導かれ、上方に旋回すると排出コンベヤ13に導かれる。
 以下、本発明を適用して、タイヤ部材Rの所定の品質の長手方向Lでのバラつきの大きさを把握しつつタイヤ部材Rを製造する手順の一例を説明する。まず、所定の品質として、特定成分(カーボンブラック)の含有率が他の構成部材M2~M5よりも高い未加硫ゴムにより形成されている構成部材M1の幅方向寸法の長手方向Lでの分布を把握する場合を説明する。
 図1に例示するように、押出機8から押出ヘッド8Hを経て押出されたタイヤ部材Rを、前方に配置されている搬送装置2に載置して長手方向Lに搬送する。この搬送過程では、図2、図3に例示するように、タイヤ部材Rを長手方向Lに搬送しながら、テラヘルツ波測定装置6、プロファイルセンサ7を用いて、タイヤ部材Rの品質検査を行う。
 テラヘルツ波測定装置6では、長手方向Lに搬送されているタイヤ部材Rの裏面側から発信部6aによってタイヤ部材Rに向かって連続的にテラヘルツ周波数の電磁波を発信する。タイヤ部材Rに進入して反射した反射波を検出部6bにより検出する。これにより、テラヘルツ波測定装置6では、構成部材M2、M3の横断面形状(横断面積)が把握される。それ故、図8に例示するように、構成部材M2、M3の横断面積の長手方向Lでの分布が把握される。それぞれの構成部材M2、M3の比重は既知なので、構成部材M2、M3の質量の長手方向Lでの分布も把握されることになる。
 プロファイルセンサ7では、長手方向Lに搬送されているタイヤ部材Rに向かって照射部7aによってレーザ光を連続的に照射する。タイヤ部材Rの外表面で反射したレーザ光の反射光を受光部7bにより受光する。これにより、プロファイルセンサ7では、タイヤ部材Rの横断面形状(横断面積)が把握される。それ故、図8に例示するように、タイヤ部材Rの横断面積の長手方向Lでの分布が把握される。
 その後引き続き、図4、図5に例示するように、タイヤ部材Rを長手方向Lに搬送しながら、X線検査装置3を用いて構成部材M1の幅方向寸法の長手方向Lでの分布を把握する。そこで、搬送されているタイヤ部材Rの表面側から所定長さ範囲Cに対して、照射部3aによりX線が照射される。タイヤ部材Rの所定長さ範囲Cを透過したX線は、受光部3bに逐次受光される。
 これにより、X線検査装置3によって、所定長さ範囲CのX線透過度に基づく図9に例示する画像データDが取得される。このように画像データDを取得する工程を連続的に継続して行うことにより、長手方向Lに隙間なく連続した所定長さ範囲Cの画像データDが取得される。取得したそれぞれの画像データDは、演算装置4に逐次入力され、演算処理されて解析される。演算装置4では、画像データDでの濃淡に基づいて、構成部材M1の幅方向寸法の長手方向Lでのバラつきの大きさ(バラつき具合)が算出される。この演算装置4による算出工程について以下、詳述する。
 照射部3aから照射されたX線は、タイヤ部材Rを透過して受光部3bにより受光される。タイヤ部材Rが厚くなる程、タイヤ部材RでのX線の減衰がより大きくなる(吸収量が多くなる)ため受光部3bにより受光されるX線量(透過線量)が減少する。また、タイヤ部材RにX線を減衰させ易い成分(原子番号と密度が大きい)の含有量が多いと、受光部3bにより受光されるX線量(透過線量)が減少する。これに伴い、得られる画像データDはより黒色に近くなって濃くなる。一方、タイヤ部材Rが薄くなる程、タイヤ部材RでのX線の減衰がより小さくなる(吸収量が少なくなる)ため受光部3bにより受光されるX線量(透過線量)が増加する。また、タイヤ部材RにX線を減衰させ易い成分の含有量が少なければ、受光部3bにより受光されるX線量(透過線量)が増加する。これに伴い、得られる画像データDはより白色に近くなって淡くなる。
 シリカはカーボンブラックに比して、X線を顕著に減衰させる(吸収する)成分である。したがって、シリカが含有されている、或いはシリカの含有量が多い構成部材Mは、シリカに代えてカーボンブラックが含有されている、或いはカーボンブラックの含有量が多い構成部材Mよりも、画像データDは黒色に近くなって濃くなる。このように画像データDでの濃淡は、X線が透過する位置でのタイヤ部材Rの厚さおよび含有成分に依存する。
 図10で一点鎖線Zによって例示するように、このタイヤ部材RのX線の透過線量Zは幅方向Wで変化する。尚、図10ではタイヤ部材Rの幅方向位置を理解し易くするため、タイヤ部材Rの横断面図がグラフの下方に記載されている。この透過線量Zは、X線をタイヤ部材Rの表面側から照射した場合に裏面側で受光されるX線量を示している。この透過線量Zは、X線が透過する位置のタイヤ部材Rの厚さ、比重および減弱係数に基づいて算出することができる。透過線量Zがより大きい幅方向位置になる程、画像データDでは色が濃くなる。
 それ故、図9に例示する画像データDでは、構成部材M4の最も厚い位置では色が最も濃く、最も薄い位置では色が淡くなっている。構成部材M1は最も厚い部材ではあるが、比重が最も小さい部材であるため、構成部材M1が配置されている位置では画像データDの色は淡くなっている。構成部材M5が配置されている位置では、タイヤ部材Rの幅方向端に向かって画像データDの色は淡くなっている。図9では、色の濃さに応じて斜線の配置ピッチを変化させていて、相対的に色が濃い部分では斜線の配置ピッチを小さくして密に記載している。
 したがって、図9の画像データDには色が濃い部分と淡い部分が存在していて、色の淡い部分は複数箇所(構成部材M4の最も薄い位置、構成部材M1の位置、構成部材M5の位置)に存在している。したがって、画像データDでの単純な濃淡だけでは、いずれの淡い部分が構成部材M1の存在している位置であるのか識別し難い。ただし、同じ種類の未加硫ゴムで厚さが変化する場合は、透過線量Zの変化は厚さの変化と同様に徐々に変化するので画像データDでの濃淡の変化が緩やかになる。一方、異なる種類の未加硫ゴムでは、含有成分の違いに起因して透過線量Zが大きく変化するので画像データDでの濃淡の変化が急激になる。
 そこで、この実施形態では、図10に例示するタイヤ部材Rの幅方向Wでの透過線量Zを把握しておき、透過線量Zの差異の大きさを利用する。即ち、それぞれの構成部材Mの透過線量Zを予め把握しておき、図9に例示するように幅方向Wに隣り合う構成部材Mの境界でのその構成部材Mどうしの透過線量Zの差異の大きさの基準範囲を設定する。つまり、幅方向Wでの透過線量Zの変化が基準範囲であれば、構成部材M1とM4とが幅方向Wに隣り合っていることが実質的に保証できるように基準範囲を設定する。
 そして、設定した基準範囲に対応する画像データDの濃淡の差異の範囲を判定基準として演算装置4に記憶する。演算装置4は、それぞれの画像データDに対して幅方向Wでの濃淡の差異の大きさを算出して、その差異が判定基準に入っている位置を検出すると、その検出した幅方向位置が構成部材M1とM4との境界であると判断する。タイヤ部材Rに1本の構成部材M1が長手方向Lに延在しているのであれば、構成部材M1とM4との境界が幅方向Wに間隔をあけた2箇所で検出され、その境界どうしの幅方向Wの間隔が構成部材M1の幅方向寸法として算出される。
 その結果、図11に例示するように、タイヤ部材Rでの構成部材M1の幅方向寸法の長手方向Lでのバラつきの大きさが算出される。図11の縦軸のMcは、構成部材M1の幅方向寸法の設計値を示していて、製造されたタイヤ部材Rでは構成部材M1の幅方向寸法が、長手方向Lでどの程度変動しているかを把握できる。図11において幅方向寸法がゼロになっている場合は、構成部材M1が長手方向Lの途中で途切れていることを意味する。したがって、図11のデータによれば、構成部材M1の長手方向Lに対する連続性を把握することができる。
 この実施形態では、照射部3aからタイヤ部材Rの所定長さ範囲Cに対して、タイヤ部材Rの全幅を網羅するようにX線が照射されているが、タイヤ部材Rでの構成部材M1が配置されている幅方向位置は予め把握されている。したがって、X線を照射する幅方向範囲は、構成部材M1が配置されているとして予め把握されている幅方向位置を含む、より狭い範囲に設定することもできる。
 算出された構成部材M1の幅方向寸法の長手方向Lでのバラつきの大きさが、予め設定された許容範囲内であれば、該当する所定長さ範囲Cは良品部分と判断される。そして、搬送装置2により搬送されたタイヤ部材Rの良品部分は、振り分けコンベヤ12により、巻取り機10に導かれて巻き取られる。押出・成形直結ラインなどの場合は、タイヤ部材Rの良品部分はそのまま次工程に搬送される。
 算出された構成部材M1の幅方向寸法の長手方向Lでのバラつきの大きさが許容範囲外の場合は、該当する所定長さ範囲C(不良部分)は搬送装置2の上で、切断機11により切断される。そして、その切断された所定長さ範囲C(不良部分)が搬送装置2の搬送方向下流端部まで搬送されると、振り分けコンベヤ12は排出コンベヤ13側に旋回する。これにより、切断された所定長さ範囲C(不良部分)は排出コンベヤ13に載置されて搬送されて、製造ラインから除外される。
 構成部材M1の幅方向寸法の長手方向Lでのバラつきが過大になると、許容範囲外になる可能性が高くなる。そこで、制御装置9は、上述したように算出されて把握された構成部材M1の幅方向寸法のバラつきの大きさに基づいて、複数の押出機8のうちの少なくとも1台に内設されているスクリュー8sの回転数を制御する。例えば、構成部材M1を形成する未加硫ゴムを押出す押出機8aのスクリュー8sの回転数を制御して、この幅方向寸法のバラつきを是正して設計値Mcにより近づける。構成部材M1の幅方向寸法が設計値Mcに対して過小であれば押出機8aのスクリュー8sの回転数を上げ、幅方向寸法が設計値Mcに対して過大であれば、スクリュー8sの回転数を下げる。押出機8aに限らず、構成部材M1の幅方向寸法の変動により大きく影響する押出機8を優先してそのスクリュー8sの回転数を制御するとよい。
 上述したように、搬送装置2によって長手方向Lに搬送されている状態のタイヤ部材Rの表面側から所定長さ範囲Cに対してX線を照射して取得した画像データDを用いるので、構成部材M1の幅方向寸法を把握するためにタイヤ部材Rの搬送を停止させる必要はない。そして、長手方向Lに隙間なく連続した所定長さ範囲Cの画像データDを取得して、それぞれの画像データDでの濃淡に基づいて演算装置4により、構成部材M1の幅方向寸法を精度よく把握することができる。したがって、それ故、長手方向Lでの構成部材M1の幅方向寸法のバラつき(即ち、構成部材M1の長手方向Lの連続性)を、迅速に精度よく把握するには有利になる。さらに、精度良く把握した構成部材M1の幅方向寸法のバラつきの大きさに基づいて、上述したようにスクリュー8sの回転数を制御することで、そのバラつきを小さくして、タイヤ部材Rを生産性よく製造するには有利になる。
 上述の実施形態では、特定成分としてカーボンブラックの含有率が他の構成部材Mを形成している未加硫ゴムよりも高い未加硫ゴムにより形成されている構成部材M1の長手方向での分布を把握する場合を例にしている。この特定成分はカーボンブラックに限らず、目的に応じてその他の成分にすることもできる。また、検査対象とする特定部材は、構成部材M1に限らず、他の構成部材Mにすることもできる。
 次に、X線検査装置3により検査を行う所定の品質として、タイヤ部材Rの質量の長手方向Lでの分布を把握する場合を説明する。尚、この分布は、上述した構成部材M1の幅方向寸法の長手方向Lでのバラつきの大きさに代えて、或いは、加えて、把握することができる。
 事前に、多数のタイヤ部材Rのサンプルについて上述した画像データDを同条件下で取得する。また、それぞれのサンプルの単位長さ当たりの質量データを取得する。これらの画像データDおよび質量データを教師データとして機械学習させることにより、検査対象として取得した画像データDから、その画像データDに対応する所定長さ範囲Cの単位長さ当たりの質量を推定する予測モデル(コンピュータプログラム)を生成して、演算装置4に記憶する。
 画像データDでの濃淡は、上述したようにタイヤ部材Rの厚さおよび含有成分に依存して変化するので、その濃淡の分布はその画像データDに対応するタイヤ部材Rの部分(所定の長さ範囲C)の単位長さ当たりの質量と相関関係がある。そこで、例えば画像データDを多数の微小領域に細分化して、それぞれの微小領域の濃淡の程度およびそれぞれの微小領域の位置などと、その画像データDに対応する単位長さ当たりの質量との相関関係を機械学習させて得ることで推定モデルを生成する。機械学習の手法としては、ニューラルネットワークを用いたディープラーニングなど公知の種々の手法を用いることができる。
 搬送されているタイヤ部材Rのそれぞれの所定長さ範囲Cの質量を推定する際には、X線検査装置3により逐次取得された画像データDを推定モデルに入力して演算装置4により演算処理する。これにより、それぞれの所定長さ範囲Cの質量が推定、算出される。
 その結果、図12に例示するように、タイヤ部材Rの質量(単位長さ当たりの質量)の長手方向Lでのバラつきの大きさが算出される。図12の縦軸のRaは、タイヤ部材Rの質量(単位長さ当たりの質量)の許容範囲を示していて、図12によれば、製造されたタイヤ部材Rでは、その質量が長手方向Lでどの程度変動しているかを把握できる。図12において質量が許容範囲Ra内の場合は、該当する所定長さ範囲Cは良品部分として判断され、許容範囲Ra外になった場合は、該当する所定長さ範囲Cは不良部分として判断される。
 この実施形態でも先の実施形態と同様に、良品部分に該当する所定長さ範囲Cは振り分けコンベヤ9により巻取り機7に導かれる。不良部分に該当する所定長さ範囲Cは搬送装置2の上で、切断機8により切断されて、振り分けコンベヤ9により排出コンベヤ10に導かれて製造ラインから除外される。
 タイヤ部材Rの質量の長手方向Lでのバラつきが過大になると、許容範囲Ra外になる可能性が高くなる。そこで、制御装置9は、上述したように算出されて把握されたタイヤ部材Rの質量のバラつきの大きさに基づいて、複数の押出機8のうちの少なくとも1台に内設されているスクリュー8sの回転数を制御する。この制御を行うことで、タイヤ部材Rの質量の長手方向Lでのバラつきを是正して、質量を許容範囲Raに維持する。
 この実施形態では、X線検査装置3によって構成部材M1の幅方向位置および幅方向寸法が把握され、プロファイルセンサ7によってタイヤ部材Rの横断面形状が把握されるので、構成部材M1の横断面積、質量も把握できる。また、テラヘルツ波測定装置6によって構成部材M2、M3の横断面積、質量が把握される。したがって、把握されるタイヤ部材Rの横断面積(質量)から構成部材M1、M2、M3の横断面積(質量)を差し引くと、構成部材M4とM5を合計した横断面積(質量)が判明する。構成部材M5の横断面積(質量)は構成部材M4に対して非常に小さいので、構成部材M4の横断面積(質量)も概ね把握できる。そこで、把握された構成部材M2、M3、M4のそれぞれの横断面積(質量)の長手方向Lでのバラつきの大きさに基づいて、上述した構成部材M1の幅方向寸法のバラつきの是正と同様に、複数の押出機8のうちの少なくとも1台に内設されているスクリュー8sの回転数を制御装置9により制御して、それぞれの横断面積(質量)のバラつきを是正することができる。その結果、タイヤ部材Rの質量の長手方向Lでのバラつきが是正される。
 図13に例示する製造システム1の実施形態は、搬送装置2の長手方向Lに離間した2箇所に、テラヘルツ波測定装置6、プロファイルセンサ7、X線検査装置3の一群が配置されている。即ち、この実施形態では、図1に例示する製造システム1に対して、搬送装置2の搬送方向下流側に、テラヘルツ波測定装置6、プロファイルセンサ7、X線検査装置3の一群が追加されている。
 搬送装置2の搬送方向上流側に配置されているテラヘルツ波測定装置6、プロファイルセンサ7、X線検査装置3の一群は、先の実施形態と同様に機能する。即ち、この一群はタイヤ部材Rの品質を検査し、その検査結果を制御装置9によるスクリュー8sの回転数の制御のためにフィードバックする。一方、搬送方向下流側に配置されている一群は、タイヤ部材Rの品質を検査して、検査結果が許容範囲を満たすか否かを単純に判定する機能を有する。
1 製造システム
2 搬送装置
3 X線検査装置
3a 照射部
3b 受光部
4 演算装置
5 モニタ
6 テラヘルツ波測定装置
6a 発信部
6b 検出部
7 プロファイルセンサ
7a 照射部
7b 受光部
8(8a~8e) 押出機
8s スクリュー
8H 押出ヘッド
9 制御装置
10 巻取り機
11 切断機
12 振り分けコンベヤ
13 排出コンベヤ
R タイヤ部材
M1、M2、M3、M4、M5 構成部材
C 所定長さ範囲
D 画像データ

Claims (7)

  1.  複数台の押出機によりそれぞれ押出された未加硫ゴムからなる複数種類の構成部材を接合して形成した長尺のタイヤ部材を、所定の品質を把握しつつ製造するタイヤ部材の方法において、
     前記タイヤ部材を長手方向に搬送しながら、前記タイヤ部材の表面側から前記タイヤ部材の所定長さ範囲に対してX線を照射して、前記所定長さ範囲のX線透過度に基づく画像データを取得する工程を連続的に継続して行って、前記長手方向に隙間なく連続した前記所定長さ範囲の前記画像データを取得し、取得したそれぞれの前記画像データでの濃淡に基づいて、前記所定の品質の前記タイヤ部材の前記長手方向でのバラつきの大きさを把握し、把握した前記バラつきの大きさに基づいて、複数の前記押出機のうちの少なくとも1台に内設されているスクリューの回転数を制御することにより、前記バラつきを是正するタイヤ部材の製造方法。
  2.  前記所定の品質として、特定成分の含有率が他の前記構成部材を形成している未加硫ゴムよりも高い未加硫ゴムにより形成されている特定の前記構成部材の幅方向寸法の前記長手方向での分布を把握する請求項1に記載のタイヤ部材の製造方法。
  3.  前記特定成分がカーボンブラックである請求項2に記載のタイヤ部材の製造方法。
  4.  前記所定の品質として、前記タイヤ部材の質量の前記長手方向での分布を把握する請求項1~3のいずれかに記載のタイヤ部材の製造方法。
  5.  前記長手方向に搬送されている前記タイヤ部材に向かってレーザ光を照射して前記タイヤ部材の外表面で反射した反射光を受光することにより、前記タイヤ部材の横断面積の前記長手方向での分布を把握する請求項1~4のいずれかに記載のタイヤ部材の製造方法。
  6.  前記長手方向に搬送されている前記タイヤ部材の裏面側から前記タイヤ部材に向かってテラヘルツ周波数の電磁波を発信して、前記タイヤ部材に進入して反射した反射波を検出することにより、前記タイヤ部材の裏面側に偏在している少なくとも1種類の前記構成部材の横断面積の前記長手方向での分布を把握する請求項1~5のいずれかに記載のタイヤ部材の製造方法。
  7.  種類の異なる未加硫ゴムからなる構成部材を押出す複数台の押出機を有し、これら複数種類の前記構成部材が接合されて形成されている長尺のタイヤ部材が、所定の品質が把握されつつ製造されるタイヤ部材の製造システムにおいて、
     前記タイヤ部材を長手方向に搬送する搬送装置と、前記搬送装置により搬送されている前記タイヤ部材の表面側から前記タイヤ部材の所定長さ範囲に対してX線を照射して前記所定長さ範囲のX線透過度に基づく画像データを取得するX線検査装置と、前記画像データが入力される演算装置と、それぞれの前記押出機に内設されているスクリューの回転を制御する制御装置とを有し、
     前記画像データを取得する工程が連続的に継続して行われて、前記長手方向に隙間なく連続した前記所定長さ範囲の前記画像データが取得されて、取得されたそれぞれの前記画像データでの濃淡に基づいて、前記演算装置により前記所定の品質の前記タイヤ部材長手方向でのバラつきの大きさが算出され、算出された前記バラつきの大きさに基づいて、少なくとも1台の前記押出機に内設されている前記スクリューの回転数が前記制御装置により制御されることで、前記バラつきが是正される構成にしたタイヤ部材の製造システム。
PCT/JP2022/047663 2022-03-31 2022-12-23 タイヤ部材の製造方法およびシステム WO2023188641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247013185A KR20240057446A (ko) 2022-03-31 2022-12-23 타이어 부재의 제조 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059708A JP7406134B2 (ja) 2022-03-31 2022-03-31 タイヤ部材の製造方法およびシステム
JP2022-059708 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188641A1 true WO2023188641A1 (ja) 2023-10-05

Family

ID=88200089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047663 WO2023188641A1 (ja) 2022-03-31 2022-12-23 タイヤ部材の製造方法およびシステム

Country Status (3)

Country Link
JP (1) JP7406134B2 (ja)
KR (1) KR20240057446A (ja)
WO (1) WO2023188641A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886635A (ja) * 1994-09-14 1996-04-02 Bridgestone Corp タイヤ用帯状未加硫複合部材の断面図形測定装置
JP2017081545A (ja) * 2015-10-27 2017-05-18 住友ゴム工業株式会社 空気入りタイヤおよび架橋ゴム組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886635A (ja) * 1994-09-14 1996-04-02 Bridgestone Corp タイヤ用帯状未加硫複合部材の断面図形測定装置
JP2017081545A (ja) * 2015-10-27 2017-05-18 住友ゴム工業株式会社 空気入りタイヤおよび架橋ゴム組成物

Also Published As

Publication number Publication date
JP2023150551A (ja) 2023-10-16
KR20240057446A (ko) 2024-05-02
JP7406134B2 (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
US7980760B2 (en) X-ray inspection apparatus and X-ray inspection program
US9146092B2 (en) Measurement of industrial products manufactured by extrusion techniques
EP2655048B1 (en) A method and an apparatus for controlling production and feeding of semifinished products in a tyre building process
US7477726B2 (en) X-ray inspection apparatus
US20110046768A1 (en) Determining Characteristics of Electric Cables Using Terahertz Radiation
JP7406134B2 (ja) タイヤ部材の製造方法およびシステム
US10309911B2 (en) Device and method for radioscopic examination of a strip-shaped material having a substantial component of rubber or plastics
JP2002148214A (ja) X線検査装置
WO2023188646A1 (ja) タイヤ部材の品質検査方法およびシステム
JP2015203574A (ja) X線検査装置及びx線感度補正方法
JPH0453255B2 (ja)
KR20240095373A (ko) 타이어 부재의 품질 검사 방법 및 시스템
JP7199697B2 (ja) 検査装置、検査方法、プログラム、記録媒体および粉体成形物製造装置
JP2007132796A (ja) X線検査装置およびx線検査プログラム
CN111717440B (zh) 检查装置、ptp包装机和ptp片的制造方法
US11946862B2 (en) Method for in-line analysis of a composite product in a machine for the production of absorbent sanitary articles
JP4951390B2 (ja) 押出成形品の検査方法と装置、及び製造方法と装置
JP3910609B2 (ja) 被検査物のならし装置、被検査物のならし方法およびx線異物検出システム
JP2002168604A (ja) シート材の傾斜端面検知方法及びシート材の長さ測定方法並びにその装置
JPH11160151A (ja) 測色計を用いた膜質評価方法及び装置
JP2007232742A (ja) 対象物内部品質測定装置および測定方法
JPH06347315A (ja) ウエブ材料の重量決定装置
CN111336925A (zh) 复合帘布层材料的检查方法
EP4196774A1 (en) Method and device for inspecting tubular elements, in particular multi-layer tubular elements
JP2006017687A (ja) X線異物検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013185

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020247013185

Country of ref document: KR