WO2023188603A1 - 情報処理装置、露光装置、及び物品の製造方法 - Google Patents

情報処理装置、露光装置、及び物品の製造方法 Download PDF

Info

Publication number
WO2023188603A1
WO2023188603A1 PCT/JP2022/046803 JP2022046803W WO2023188603A1 WO 2023188603 A1 WO2023188603 A1 WO 2023188603A1 JP 2022046803 W JP2022046803 W JP 2022046803W WO 2023188603 A1 WO2023188603 A1 WO 2023188603A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
exposure
chamber
target
information processing
Prior art date
Application number
PCT/JP2022/046803
Other languages
English (en)
French (fr)
Inventor
純 北川
紘祥 白尾
慎吾 米田
渉 木島
雄大 高井
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023188603A1 publication Critical patent/WO2023188603A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an information processing device, and particularly to an information processing device that predicts the amount of change in optical characteristics of an optical system provided in an exposure device.
  • Patent Document 1 uses a temperature measuring element provided in a predetermined optical element in the projection optical system to measure the temperature distribution in the optical element, and determines the optical characteristics of the projection optical system based on the measured temperature distribution. An exposure apparatus that calculates the amount of change in is disclosed.
  • control may be performed to suppress temperature changes in the optical system by, for example, supplying temperature-adjusted gas toward the optical system.
  • control for suppressing the temperature change of the optical system will also contribute to the change in the optical characteristics of the optical system.
  • an object of the present invention is to provide an information processing apparatus that is capable of acquiring the amount of change in the optical characteristics of an optical system provided in an exposure apparatus while taking into account control for suppressing temperature changes in the optical system. do.
  • the information processing apparatus is characterized in that the amount of change in the optical characteristics of the optical system is predicted by inputting the target temperature of the optical system provided in the exposure apparatus into a learning model.
  • an information processing device that is capable of acquiring the amount of change in the optical characteristics of an optical system provided in an exposure apparatus while taking into account control for suppressing temperature changes in the optical system.
  • FIG. 1 is a block diagram of an exposure apparatus including an information processing apparatus according to a first embodiment.
  • 7 is a flowchart showing a process of correcting the amount of change in optical characteristics of the projection optical system using the information processing apparatus according to the first embodiment.
  • 5 is a flowchart showing a process of creating an optical property prediction model using the information processing device according to the first embodiment.
  • 7 is a flowchart showing a process of correcting the amount of change in optical characteristics of the projection optical system using the information processing apparatus according to the second embodiment.
  • a method is known in which the line width of a circuit pattern formed on a substrate that has been exposed and developed is measured, and the amount of change in the optical characteristics of a projection optical system is measured from the measurement results. Furthermore, a method is known in which the amount of light of an exposure image on the imaging plane of the projection optical system is measured using a photoelectric sensor, and the amount of change in the optical characteristics of the projection optical system is measured from the measurement result. Then, in the exposure apparatus, the optical characteristics of the projection optical system are adjusted by adjusting the imaging position of the projection optical system based on the amount of change in the optical characteristics of the projection optical system measured using such a method. Corrected.
  • the amount of change in the optical characteristics of the projection optical system due to temperature changes due to absorption of exposure energy in the projection optical system is calculated from temperature information and temperature gradient information obtained from a thermometer attached to the projection optical system.
  • a method of correcting based on the calculation result is known. That is, this method directly detects changes in the optical characteristics of the projection optical system regardless of the exposure state.
  • the amount of change in the optical characteristics of the projection optical system is calculated from multiple measurement results including the atmospheric pressure, temperature, and humidity surrounding the exposure device and the exposure image on the imaging surface, and if the amount of change in the optical characteristics is large, the amount of change in the optical characteristics is determined.
  • a method is known in which the amount of change in the optical characteristic is corrected at the determined timing.
  • the optical characteristics of the projection optical system change, specifically, for example, a focus shift occurs.
  • the focus shift amount is calculated from the measurement result of the amount of light received by a photoelectric sensor provided on the substrate stage and the position of the substrate stage.
  • a photoelectric sensor provided on the substrate stage
  • the position of the substrate stage it is not possible to irradiate exposure light onto the substrate placed on the substrate stage, so increasing the number of measurements leads to a decrease in productivity in the exposure apparatus.
  • high accuracy is required in the prediction.
  • thermometer when calculating the amount of change in the optical characteristics of the projection optical system from a thermometer attached to the projection optical system, due to the durability of the thermometer, it is necessary to use the exposure light that affects the accuracy of the exposure image. It is difficult to place the thermometer on the optical path. Therefore, it is difficult to calculate with high precision the amount of change in the optical characteristics of the projection optical system from a thermometer attached to the projection optical system.
  • the optical system in addition to the temperature information of the optical system installed in the exposure apparatus, the optical system is Provided is an information processing device capable of predicting and correcting the amount of change in optical characteristics with high accuracy.
  • FIG. 1 shows a block diagram of an exposure apparatus 100 including an information processing apparatus according to the first embodiment.
  • a direction perpendicular to the substrate surface of the substrate 16 is defined as a Z direction
  • two directions perpendicular to each other in a plane parallel to the substrate surface are defined as an X direction and a Y direction, respectively.
  • the exposure apparatus 100 includes an exposure light source 11 housed in a chamber 10, an illumination optical system 12 (optical system), a mask stage 14 (original stage), a projection optical system 15 (optical system), and a substrate stage 17. .
  • the exposure apparatus 100 also includes a projection optical system adjustment section 20, a chamber adjustment section 30, a fluctuation measurement section 40 (measurement section), a control section 60, an information storage section 110 (storage section), and a calculation processing section 200 (information processing device).
  • a projection optical system adjustment section 20 a chamber adjustment section 30, a fluctuation measurement section 40 (measurement section), a control section 60, an information storage section 110 (storage section), and a calculation processing section 200 (information processing device).
  • the projection optical system 15 is housed in a housing, and the space in the housing is isolated from the space in the chamber 10 so that gas does not flow in or out.
  • the temperature and pressure of the projection optical system 15 refer to the temperature and pressure of the space within the housing in which the projection optical system 15 is housed.
  • exposure light emitted from an exposure light source 11 is shaped by an illumination optical system 12 and then irradiated (guided) onto a mask 13 placed on a mask stage 14 .
  • the exposure light that has passed through the transmitting portion of the mask 13 that forms the exposure pattern is focused (guided) onto the substrate 16 placed on the substrate stage 17 by the projection optical system 15 .
  • the exposure pattern formed (drawn) on the mask 13 is projected (transferred) onto the substrate 16.
  • the projection optical system adjustment unit 20 adjusts the temperature and pressure of the projection optical system 15 by measuring the temperature and pressure of the projection optical system 15 using a thermometer and a pressure gauge (not shown) mounted on the projection optical system 15. control to keep it constant. Specifically, the projection optical system adjustment unit 20 supplies a gas whose temperature has been adjusted (hereinafter referred to as temperature adjustment gas) toward the projection optical system 15 based on the measurement results of the temperature and pressure of the projection optical system 15. supply
  • temperature adjustment gas a gas whose temperature has been adjusted
  • the chamber adjustment unit 30 measures the temperature, humidity, and pressure inside the chamber 10 using an environmental meter (not shown) installed in the chamber 10, so as to keep the temperature, humidity, and pressure inside the chamber 10 constant. to control. Specifically, the chamber adjustment unit 30 supplies temperature-adjusted gas into the chamber 10 based on the measurement results of the temperature, humidity, and pressure inside the chamber 10 .
  • the fluctuation measurement unit 40 determines the optical characteristics of the projection optical system 15 based on the amount of light measured by an optical sensor 18 mounted on the substrate stage 17 for measuring the light collected by the projection optical system 15. Measure the amount of change. Specifically, the variation measurement unit 40 measures the amount of change in focus and distortion of the projection optical system 15 as the amount of change in the optical characteristics of the projection optical system 15. Note that the optical system of the projection optical system 15 is not limited to the above, by measuring the exposure pattern transferred to the substrate 16 using a line width measuring device or length measuring device (not shown) provided outside the exposure apparatus 100. It is also possible to measure the amount of change in characteristics.
  • the control unit 60 controls the output of the exposure light source 11, the position of the illumination optical system 12, and the position of the projection optical system 15 when performing exposure in the exposure apparatus 100, specifically, controls (not shown) provided in the projection optical system 15. control the position of the correction mechanism. Further, the control unit 60 adjusts the relative position of the substrate 16 with respect to the mask 13 by controlling the positions of the mask stage 14 and the substrate stage 17 in the X direction, Y direction, and Z direction, respectively. Further, the control unit 60 controls the output and position of each unit by referring to the correction amount of each unit in the exposure apparatus 100 calculated by the calculation processing unit 200 as described later.
  • the information storage unit 110 records operating information and status information of the exposure apparatus 100.
  • the operation information of the exposure apparatus 100 includes control data of the projection optical system adjustment section 20, control data of the chamber adjustment section 30, and measurement results of the optical characteristics of the projection optical system 15 measured by the fluctuation measurement section 40. included.
  • the operation information of the exposure apparatus 100 also includes control data regarding mechanical operations such as movement of each unit including the illumination optical system 12, mask stage 14, projection optical system 15, and substrate stage 17, which are controlled by the control unit 60. included.
  • the operating information of the exposure apparatus 100 also includes parameters necessary for exposure, such as the target illuminance of the exposure light source 11 during exposure, the transmittance and pattern information (type) of the mask 13, and the moving speed of the substrate stage 17. , that is, the exposure parameters are included.
  • the status information of the exposure apparatus 100 includes measurement results of the temperature and pressure of the projection optical system 15 using a thermometer and a pressure gauge mounted on the projection optical system 15. Further, the status information of the exposure apparatus 100 includes measurement results of the temperature, humidity, and pressure inside the chamber 10 by an environmental meter installed in the chamber 10.
  • Table 1 shows a list of sensors arranged to measure status information of the exposure apparatus 100.
  • a pressure gauge and a thermometer are provided inside and around the projection optical system 15, so that the relative relationship between the inside of the projection optical system 15 and the surroundings is can measure pressure and temperature differences.
  • a pressure gauge, a thermometer, and a hygrometer inside the chamber 10 and the surroundings, it is possible to compare the relative pressure difference, temperature difference, and humidity difference between the inside of the chamber 10 and the surroundings. can be measured.
  • the temperature control output meter provided inside each of the projection optical system adjustment section 20 and the chamber adjustment section 30 shown in Table 1 measures the magnitude of the output of the temperature control gas when supplied from each. measure.
  • the liquid-cooled flowmeters provided inside each of the projection optical system adjustment section 20 and the chamber adjustment section 30 shown in Table 1 are temperature controlled by the temperature control gas supply source provided inside each. Measures the flow rate of fluid used to cool gas.
  • a hygrometer is provided inside the projection optical system 15 and the projection optical system adjustment section 20.
  • the present invention is not limited to this, and a hygrometer may be provided inside the projection optical system 15 and the projection optical system adjustment section 20.
  • each sensor shown in Table 1 it is effective to provide each sensor shown in Table 1 at a plurality of locations, since it is possible to suppress variations in measured values and to obtain distribution information.
  • the information storage unit 110 records the measurement results of each sensor shown in Table 1 by acquiring them at an arbitrary timing or at regular intervals.
  • the calculation processing unit 200 obtains the amount of change in the optical characteristics of the projection optical system 15 using the measurement results of each sensor recorded in the information storage unit 110. Then, the calculation processing unit 200 calculates the amount of correction in each unit in the exposure apparatus 100 for correcting the amount of change in the acquired optical characteristics of the projection optical system 15.
  • the information storage section 110 and the calculation processing section 200 are installed in the exposure apparatus 100, but the invention is not limited to this. Good too.
  • FIG. 2A is a flowchart showing the process of correcting the amount of change in the optical characteristics of the projection optical system 15 in the calculation processing unit 200.
  • input data acquisition processing is performed to convert each data recorded in the information storage unit 110 into input data (step S201).
  • step S201 the measurement results of the temperature and pressure of the projection optical system 15 by the thermometer and pressure gauge installed in the projection optical system 15, and the target temperature and pressure of the projection optical system 15 by the projection optical system adjustment section 20 are determined.
  • the target pressure is acquired from the information storage section 110.
  • the information storage section stores the measurement results of the temperature, humidity, and pressure inside the chamber 10 by the environmental meter installed in the chamber 10, and the target temperature, target humidity, and target pressure inside the chamber 10 by the chamber adjustment section 30. 110.
  • the target positions of each unit in the exposure apparatus 100 including the illumination optical system 12, mask stage 14, projection optical system 15, and substrate stage 17, which are controlled by the control unit 60, are acquired from the information storage unit 110. .
  • step S201 exposure parameters such as the configuration of the illumination optical system 12, the target illuminance of the exposure light source 11 during exposure, the transmittance and pattern information (type) of the mask 13, and the moving speed of the substrate stage 17 are stored in the information storage section. 110.
  • each data acquired from the information storage section 110 is converted into input data.
  • the measurement results obtained from the information storage unit 110 are subjected to predetermined processing depending on the characteristics. Specifically, averaging processing is performed for measured values that have a relatively large distribution (dispersion) in space, such as the temperature of the projection optical system 15 or the temperature inside the chamber 10, for example.
  • step S202 by inputting the input data acquired in step S201 to the optical property prediction model 204 (learning model), an optical property change amount acquisition process is performed to obtain the amount of change in the optical property of the projection optical system 15 (step S202).
  • the optical property prediction model 204 used in step S202 is a mathematical model that outputs the amount of change in the optical property of the projection optical system 15 as output data from the input data acquired in step S201. Specifically, the amount of change in the optical characteristics of the projection optical system 15 output from the optical property prediction model 204 is the amount of change in focus or distortion of the projection optical system 15.
  • a correction amount calculation process is performed to calculate the amount of correction of the output and position of each unit in the exposure apparatus 100 in order to correct the amount of change in the optical characteristics of the projection optical system 15 acquired in step S202. ).
  • step S203 for example, when correcting the amount of change in the focus of the projection optical system 15 among the amount of change in the optical characteristics of the projection optical system 15, the position of the substrate stage 17 in the Z direction at the time of exposure is calculated. do.
  • the position of the mask stage 14 and substrate stage 17 in the XY plane during exposure and the projection The position of a distortion correction mechanism (not shown) of the optical system 15 is calculated. Note that the process of correcting the amount of change in the optical characteristics of the projection optical system 15 in steps S201 to S203 shown above may be performed each time the substrate 16 is exposed, and the On the other hand, it may be performed every time exposure is completed.
  • FIG. 2B is a flowchart showing the process of creating the optical property prediction model 204 in the calculation processing unit 200.
  • data acquisition processing is performed to acquire each data recorded in the information storage unit 110 (step S301).
  • step S301 the measurement results of the temperature and pressure of the projection optical system 15 by the thermometer and pressure gauge installed in the projection optical system 15, and the target temperature and pressure of the projection optical system 15 by the projection optical system adjustment section 20 are determined.
  • the target pressure is acquired from the information storage section 110.
  • the information storage section stores the measurement results of the temperature, humidity, and pressure inside the chamber 10 by the environmental meter installed in the chamber 10, and the target temperature, target humidity, and target pressure inside the chamber 10 by the chamber adjustment section 30. 110.
  • step S ⁇ b>301 the measurement result of the amount of change in the optical characteristics of the projection optical system 15 by the variation measurement unit 40 is acquired from the information storage unit 110 .
  • step S301 information is accumulated on exposure parameters such as the configuration of the illumination optical system 12, the target illuminance of the exposure light source 11 during exposure, the transmittance and pattern information (type) of the mask 13, and the moving speed of the substrate stage 17. 110.
  • step S301 target positions of each unit in the exposure apparatus 100, including the illumination optical system 12, mask stage 14, projection optical system 15, and substrate stage 17, which are controlled by the control unit 60, are acquired from the information storage unit 110. .
  • step S302 data determination processing is performed to classify each data acquired in step S301 into input data and correct data for creating the optical property prediction model 204 (step S302).
  • step S302 among the data acquired in step S301, data indicating the cause of a change in the optical characteristics of the projection optical system 15 is input data, and data indicating a change in the optical characteristics of the projection optical system 15 is determined as correct data. Classify into. More specifically, in step S302, among the data acquired in step S301, the measurement results of the amount of change in the optical characteristics of the projection optical system 15 by the variation measurement unit 40 are classified as correct data, and the other data are classified as input data. .
  • a model generation process is performed to create an optical property prediction model 204 using the input data and correct data acquired in step S302 (step S303).
  • step S303 the optical property prediction model 204 is created by performing supervised learning using the correct data acquired in step S302 as teacher data.
  • the creation of the optical property prediction model 204 in step S303 may be performed using data recorded in the information storage unit 110 during a predetermined period, and each time new data is recorded in the information storage unit 110, the optical property prediction model 204 is created. May be repeated.
  • the temperature of the optical members and the optical path space changes due to thermal energy generated when the exposure light passes through.
  • the optical member deforms or the refractive index of the air in the optical path space changes, so that the exposure light by the projection optical system 15 changes.
  • the focus position changes.
  • the line width of the pattern of the mask 13 formed on the substrate 16 changes as the position at which the exposure light is focused by the projection optical system 15 changes.
  • the substrate stage 17 is first driven so that the optical sensor 18 mounted on the substrate stage 17 is aligned with the position of the imaging plane of the projection optical system 15. Then, the amount of change in the Z direction of the imaging plane of the projection optical system 15 (hereinafter referred to as the amount of focus change) is measured from the change in the amount of exposure light input to the optical sensor 18.
  • the amount of focus change is measured based on instructions from software included in the variation measurement unit 40. Thereafter, when performing exposure, the control unit 60 controls the position of the substrate stage 17 in the Z direction and the position of the correction mechanism of the projection optical system 15 based on the measured focus change amount, thereby adjusting the focus change amount. Corrected.
  • the exposure apparatus 100 since measurement of such a focus change amount needs to be performed at a timing different from exposure, if the focus change amount is frequently measured, the productivity of the exposure apparatus 100 will decrease. Therefore, in order to suppress a decrease in productivity, the exposure apparatus 100 does not measure the amount of focus change every time the substrate 16 is exposed, and instead measures the amount of change in focus after a predetermined period that is sufficiently longer than the exposure processing time. Implemented on occasion. On the other hand, if a long measurement interval is set in measuring the amount of change in focus, when exposure is performed on the substrate 16 without sufficiently correcting the amount of change in focus due to temperature changes in the projection optical system 15, The exposure performance of the exposure apparatus 100 will deteriorate.
  • the optical The focus change amount is predicted by creating a characteristic prediction model 204.
  • the process moves to an operation phase in which the amount of change in focus is predicted using the created optical property prediction model 204.
  • the variation measurement unit 40 measures the amount of focus change, for example, once every four hours for three months, and the information storage unit 110 records the focus change. Accumulate the measurement results. Further, in parallel with the accumulation of the measurement results of the amount of focus change, the operation information and status information of the exposure apparatus 100 are accumulated in the information accumulation section 110 at a frequency of, for example, once a minute.
  • the optical property prediction model 204 is created by performing the processes in steps S301 to S303 above using the measurement results of the amount of focus change accumulated in the information accumulation unit 110 and the operating information and status information of the exposure apparatus 100. do.
  • a known machine learning algorithm such as a neural network is used, for example.
  • the operation information and status information of the exposure apparatus 100 are transmitted at a frequency of, for example, once a minute, similar to the learning phase described above.
  • the information is stored in the information storage section 110.
  • the above steps S201 to S203 are performed using the operating information and status information of the exposure apparatus 100 stored in the information storage unit 110 and the optical property prediction model 204 created in the learning phase.
  • the correction amount of each unit in the exposure apparatus 100 for correcting the focus change amount is calculated.
  • each unit in the exposure apparatus 100 is controlled by the control section 60 based on the calculated correction amount for each unit.
  • the variation measurement unit 40 measures the amount of change in focus, for example, once a day. Then, the optical property prediction model 204 is evaluated by comparing the result of the focus change amount measurement carried out with the focus change amount predicted from the optical property prediction model 204.
  • the focus The measurement results of the amount of change are stored in the information storage section 110.
  • the difference is large, specifically larger than a predetermined threshold, the measurement result of the focus change amount is stored in the information storage unit 110, and the optical property prediction model 204 is updated (recreated).
  • the configuration within the exposure apparatus 100 is updated, such as by replacing the illumination optical system 12, the difference between the measurement result of the focus change amount and the focus change amount predicted from the optical property prediction model 204. is likely to become large.
  • the optical property prediction model 204 is updated by performing steps S301 to S303 above using the measurement results of the focus change amount accumulated in the information storage unit 110 in the operation phase and the operation information and status information of the exposure apparatus 100. Implement by doing. Here, if the number of measurement results of the amount of focus change accumulated in the information storage section 110 in the operation phase is small, the measurement results of the amount of focus change accumulated in the information storage section 110 in the learning phase may be used. . Furthermore, the optical property prediction model 204 may be updated not only when the optical property prediction model 204 described above is evaluated, but may be updated at any timing, such as once every six months.
  • the optical characteristic prediction model 204 is created using the measurement results of the focus change amount and the operating information and status information of the exposure apparatus 100. By predicting the amount of change in focus using the created optical property prediction model 204, it is no longer necessary to stop exposure to measure the amount of focus change, thereby suppressing a decrease in productivity and improving exposure performance. can be maintained with high precision.
  • the calculation processing unit 200 in the exposure apparatus 100 acquires each data and creates the optical property prediction model 204 in the learning phase, and also predicts the amount of focus change using the optical property prediction model 204 in the operation phase.
  • the calculation processing unit 200 in the exposure apparatus 100 acquires each data and creates the optical property prediction model 204 in the learning phase, and also predicts the amount of focus change using the optical property prediction model 204 in the operation phase.
  • the optical characteristic prediction model 204 may be created from the measurement results of the amount of focus change in exposure apparatus A different from exposure apparatus 100 and the operation information and status information of exposure apparatus 100. Further, the optical property prediction model 204 created in this way is installed in the exposure apparatus 100 and the calculation processing unit 200 in the exposure apparatus B, which is different from the exposure apparatus A, and the optical property prediction model 204 is loaded in the exposure apparatus 100 and the calculation processing unit 200 in the exposure apparatus B, which is different from the exposure apparatus A, and the optical property prediction model 204 is loaded in the exposure apparatus 100 and the calculation processing unit 200 in the exposure apparatus B, which is different from the exposure apparatus A. 204 may be used to predict the focus change amount. Furthermore, it is also possible to create the optical property prediction model 204 using data acquired by each of a plurality of exposure apparatuses.
  • sensors other than those shown in Table 1 can be used, and the information acquired by the sensor is used as training data for creating the optical property prediction model 204. It is also possible to do so.
  • a plurality of parameters of operation information and status information of the exposure apparatus 100 are used as input data, but at least the target temperature of the projection optical system 15 by the projection optical system adjustment section 20 is input. If used for data, the effects of this embodiment can be obtained.
  • the amount of change in focus for the projection optical system 15 is predicted, but the amount of change in optical characteristics of other optical systems such as the illumination optical system 12 is predicted. It's okay to make predictions.
  • the information processing apparatus according to the present embodiment is installed in the exposure apparatus 100, the information processing apparatus is not limited to this, and can also be installed in other types of exposure apparatuses or pattern forming apparatuses.
  • FIG. 3 is a flowchart showing a process of correcting the amount of change in the optical characteristics of the projection optical system 15 in the calculation processing unit 200 as an information processing apparatus according to the second embodiment. Note that since the exposure apparatus in which the information processing apparatus according to the present embodiment is mounted has the same configuration as the exposure apparatus 100, the same members are given the same reference numerals and the description thereof will be omitted.
  • the information processing apparatus of this embodiment creates a target temperature prediction model 404 that predicts the target temperature of each of the projection optical system adjustment section 20 and the chamber adjustment section 30, and uses the target temperature prediction model 404 to predict the target temperature. This is different from the information processing apparatus of the first embodiment in that the information processing apparatus of the first embodiment is different from the information processing apparatus of the first embodiment.
  • each data recorded in the information storage unit 110 is acquired by first performing step S301 similarly to the information processing apparatus according to the first embodiment. Furthermore, by performing step S302 in the same manner as the information processing apparatus according to the first embodiment, the target temperatures of the projection optical system adjustment section 20 and the chamber adjustment section 30 are set as the correct data and the target temperatures of the projection optical system adjustment section 20 and the chamber adjustment section 30 among the respective data acquired in step S301. Classify other data as input data.
  • a target temperature prediction model 404 is created using the input data and correct data acquired in step S302. Specifically, in step S303, a target temperature prediction model 404 is created by performing supervised learning using the correct data acquired in step S302 as teacher data.
  • an input data acquisition process is performed to convert each data recorded in the information storage unit 110 into input data (step S401).
  • step S401 the measurement results of the temperature and pressure of the projection optical system 15 by the thermometer and pressure gauge installed in the projection optical system 15, and the target pressure of the projection optical system 15 by the projection optical system adjustment section 20 are calculated. Obtained from the information storage unit 110. Further, in step S401, at least at a predetermined timing, for example, the most recent measurement result of the amount of change in the optical characteristics of the projection optical system 15 by the variation measurement unit 40 is acquired from the information storage unit 110. Further, in step S401, the measurement results of the temperature, humidity, and pressure in the chamber 10 by the environmental meter installed in the chamber 10, and the target humidity and target pressure in the chamber 10 by the chamber adjustment unit 30 are acquired from the information storage unit 110. do.
  • step S401 the target positions of each unit in the exposure apparatus 100, including the illumination optical system 12, mask stage 14, projection optical system 15, and substrate stage 17, which are controlled by the control unit 60, are acquired from the information storage unit 110. . Further, in step S401, the configuration of the illumination optical system 12, the target illuminance of the exposure light source 11 when performing exposure, the transmittance and pattern information (type) of the mask 13, the movement speed of the substrate stage 17 when performing exposure, etc. The exposure parameters of are acquired from the information storage unit 110.
  • the targets of the projection optical system adjustment section 20 and the chamber adjustment section 30 for suppressing changes in the optical characteristics of the projection optical system 15 are set.
  • a target temperature acquisition process is performed to acquire the temperature (step S402).
  • the target temperature prediction model 404 used in step S402 is a mathematical model that outputs the target temperatures of the projection optical system adjustment section 20 and the chamber adjustment section 30 as output data from the input data acquired in step S401.
  • control amounts of the projection optical system adjustment section 20 and the chamber adjustment section 30 are calculated for setting the respective target temperatures of the projection optical system adjustment section 20 and the chamber adjustment section 30 obtained in step S402 (step S403). .
  • the respective target temperatures for the projection optical system adjustment section 20 and the chamber adjustment section 30 can be corrected.
  • the target temperature prediction model 404 is created using the measurement results of the optical characteristics of the projection optical system 15 and the operating information and status information of the exposure apparatus 100. Then, using the created target temperature prediction model 404, the target temperatures of the projection optical system adjustment section 20 and the chamber adjustment section 30 are predicted, and the projection optical system adjustment section 20 and the chamber adjustment section are adjusted to set the target temperatures. The control amount of each section 30 is calculated. This eliminates the need to stop exposure to measure the amount of change in focus, thereby suppressing a decrease in productivity and maintaining high precision exposure performance.
  • the process of correcting the amount of change in the optical characteristics of the projection optical system 15 in steps S401 to S403 shown above may be performed each time the substrate 16 is exposed, and the On the other hand, it may be performed every time exposure is completed. Further, the process of correcting the amount of change in the optical characteristics of the projection optical system 15 may be performed each time a parameter other than the target temperature of the projection optical system adjustment section 20 and the chamber adjustment section 30 changes. It may be implemented by predicting parameters other than temperature.
  • the article manufacturing method according to the present embodiment is suitable for manufacturing articles such as semiconductor devices, liquid crystal display elements, flat panel displays, microelectromechanical systems (MEMS), and the like.
  • MEMS microelectromechanical systems
  • the method for manufacturing an article according to the present embodiment includes a step of exposing the photosensitive agent on the substrate coated with the photosensitive agent using the exposure apparatus 100 equipped with the information processing apparatus according to the present embodiment described above; and a step of developing the photosensitizer exposed by the exposing step.
  • a circuit pattern is formed on the substrate by performing an etching process, an ion implantation process, etc. on the substrate using the developed photosensitive material pattern as a mask. By repeating these steps of exposure, development, etching, etc., a circuit pattern consisting of a plurality of layers is formed on the substrate.
  • dicing processing
  • mounting, bonding, and inspection steps of the formed chips are performed.
  • the method of manufacturing the article according to the present embodiment may include other well-known processing steps (oxidation, film formation, vapor deposition, doping, planarization, photosensitive agent stripping, etc.).
  • the method for manufacturing an article according to the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article compared to the conventional method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

露光装置に設けられている光学系の温度変化を抑制する制御を考慮して当該光学系の光学特性の変化量を取得することができる情報処理装置を提供するために、本発明に係る情報処理装置は、露光装置に設けられている光学系の目標温度を学習モデルに入力することで、光学系の光学特性の変化量を予測することを特徴とする。

Description

情報処理装置、露光装置、及び物品の製造方法
 本発明は、情報処理装置に関し、特に露光装置に設けられている光学系の光学特性の変化量を予測する情報処理装置に関する。
 露光装置においては、光学系が露光光のエネルギーを吸収することによって当該光学系の温度が変化することで、当該光学系の光学特性が変化することが知られている。
 特許文献1は、投影光学系内の所定の光学要素に設けられた測温素子を用いて当該光学要素における温度分布を計測し、当該計測された温度分布に基づいて当該投影光学系の光学特性の変化量を算出する露光装置を開示している。
特開平5-78008号公報
 露光装置においては、例えば温度が調整された気体を光学系に向けて供給することで、当該光学系の温度変化を抑制する制御が行われる場合がある。
 そのような場合、光学系の温度変化に加えて、当該光学系の温度変化を抑制する制御も当該光学系の光学特性の変化に寄与することになる。
 そこで本発明は、露光装置に設けられている光学系の温度変化を抑制する制御を考慮して当該光学系の光学特性の変化量を取得することができる情報処理装置を提供することを目的とする。
 本発明に係る情報処理装置は、露光装置に設けられている光学系の目標温度を学習モデルに入力することで、光学系の光学特性の変化量を予測することを特徴とする。
 本発明によれば、露光装置に設けられている光学系の温度変化を抑制する制御を考慮して当該光学系の光学特性の変化量を取得することができる情報処理装置を提供することができる。
第一実施形態に係る情報処理装置を備える露光装置のブロック図。 第一実施形態に係る情報処理装置を用いて投影光学系の光学特性の変化量を補正する処理を示すフローチャート。 第一実施形態に係る情報処理装置を用いて光学特性予測モデルを作成する処理を示すフローチャート。 第二実施形態に係る情報処理装置を用いて投影光学系の光学特性の変化量を補正する処理を示すフローチャート。
 以下に、本実施形態に係る情報処理装置を添付の図面に基づいて詳細に説明する。なお以下に示す図面は、本実施形態を容易に理解できるようにするために、実際とは異なる縮尺で描かれている。
 [第一実施形態]
 露光装置においては、投影光学系が露光光のエネルギーを吸収することによって当該投影光学系の温度が変化することで、当該投影光学系の光学特性が変化することが知られている。
 そして、露光装置に設けられている投影光学系の光学特性の変化を計測する方法がいくつか知られている。
 例えば、露光及び現像が行われた基板上に形成されている回路パターンの線幅を計測し、当該計測結果から投影光学系の光学特性の変化量を計測する方法が知られている。
 また、投影光学系の結像面における露光像の光量を光電センサを用いて計測し、当該計測結果から当該投影光学系の光学特性の変化量を計測する方法が知られている。
 そして露光装置では、そのような方法を用いて計測された投影光学系の光学特性の変化量に基づいて当該投影光学系の結像位置を調整することで、当該投影光学系の当該光学特性が補正される。
 また、投影光学系における露光エネルギーの吸収による温度変化に伴った当該投影光学系の光学特性の変化量を、当該投影光学系に取り付けられた温度計から得られる温度情報及び温度勾配情報から算出し、当該算出結果に基づいて補正する方法が知られている。
 すなわち、当該方法は露光状態にかかわらず直接的に投影光学系の光学特性の変化を検出している。
 また、露光装置の周囲の気圧、温度及び湿度や結像面での露光像を含む複数の計測結果から当該投影光学系の光学特性の変化量を算出し、当該光学特性の変化量が大きいと判断されたタイミングで、当該光学特性の変化量を補正する方法が知られている。
 上記のように、露光装置に設けられている投影光学系の温度が変化することで、当該投影光学系の光学特性が変化する、具体的には例えばフォーカスのシフトが発生する。
 その場合、マスクに形成されているパターンを基板上に精度良く、すなわち高コントラストで転写するためには、当該基板を投影光学系の焦点位置に合わせるフォーカス調整が必要となる。
 露光装置においてフォーカスのシフト量は、基板ステージ上に設けられている光電センサが受光した光量と当該基板ステージの位置との計測結果から算出される。
 しかしながら、そのような計測を行う際には基板ステージ上に配置されている基板上に露光光を照射することができないため、当該計測の回数を増やすことは露光装置における生産性の低下に繋がる。
 また、露光装置における生産性の低下を抑制するために、フォーカスのシフト量を計測せずに予測するためには、当該予測において高い精度が求められる。
 また、投影光学系に取り付けられた温度計から当該投影光学系の光学特性の変化量を算出する際には、当該温度計の耐久性の問題から、露光像の精度に影響を与える露光光の光路上に当該温度計を配置することは困難である。
 そのため、投影光学系に取り付けられた温度計から当該投影光学系の光学特性の変化量を高精度に算出することは困難である。
 そこで本実施形態は、露光装置に設けられている光学系の温度情報に加え、当該露光装置に設けられている各ユニットの温度調整の履歴や当該露光装置の構成情報及び稼働情報から当該光学系の光学特性の変化量を高精度で予測し補正できる情報処理装置を提供する。
 図1は、第一実施形態に係る情報処理装置を備える露光装置100のブロック図を示している。
 なお以下では、基板16の基板面に垂直な方向をZ方向、当該基板面に平行な平面内において互いに直交する二つの方向をそれぞれX方向及びY方向と定義する。
 露光装置100は、チャンバ10内に収納されている露光光源11、照明光学系12(光学系)、マスクステージ14(原版ステージ)、投影光学系15(光学系)及び基板ステージ17を備えている。
 また露光装置100は、投影光学系調整部20、チャンバ調整部30、変動計測部40(計測部)、制御部60、情報蓄積部110(記憶部)及び計算処理部200(情報処理装置)を備えている。
 なお露光装置100では、投影光学系15は、ハウジング内に収納されており、当該ハウジング内の空間は、チャンバ10内の空間との間で気体が流出入しないように隔離されている。
 以下では、投影光学系15の温度及び圧力とは、投影光学系15が収納されているハウジング内の空間の温度及び圧力の事を指す。
 露光装置100では、露光光源11から射出された露光光が照明光学系12によって整形された後、マスクステージ14上に載置されているマスク13に照射(導光)される。
 そして、マスク13の露光パターンを形成する透過部を通過した露光光は、投影光学系15によって基板ステージ17上に載置されている基板16上に集光(導光)される。
 これにより、マスク13に形成(描画)されている露光パターンが基板16上に投影(転写)される。
 投影光学系調整部20は、投影光学系15に搭載されている不図示の温度計及び圧力計を用いて投影光学系15の温度及び圧力を計測することで、投影光学系15の温度及び圧力を一定に保つように制御する。
 具体的に投影光学系調整部20は、投影光学系15の温度及び圧力の計測結果に基づいて、投影光学系15に向けて温度が調整された気体(以下、温調気体と称する。)を供給する。
 チャンバ調整部30は、チャンバ10に搭載されている不図示の環境計を用いてチャンバ10内の温度、湿度及び圧力を計測することで、チャンバ10内の温度、湿度及び圧力を一定に保つように制御する。
 具体的にチャンバ調整部30は、チャンバ10内の温度、湿度及び圧力の計測結果に基づいて、チャンバ10内に温調気体を供給する。
 変動計測部40は、基板ステージ17上に搭載されている、投影光学系15によって集光された光を計測するための光学センサ18によって計測された当該光の光量から投影光学系15の光学特性の変化量を計測する。
 具体的に変動計測部40は、投影光学系15の光学特性の変化量として、投影光学系15のフォーカスやディストーションの変化量を計測する。
 なお上記に限らず、基板16に転写された露光パターンを露光装置100の外部に設けられた不図示の線幅測定器や長寸法測定器を用いて計測することで、投影光学系15の光学特性の変化量を計測しても構わない。
 制御部60は、露光装置100において露光を行う際の露光光源11の出力、照明光学系12の位置、及び投影光学系15の位置、具体的には投影光学系15に設けられている不図示の補正機構の位置を制御する。
 また制御部60は、マスクステージ14及び基板ステージ17それぞれのX方向、Y方向及びZ方向それぞれにおける位置を制御することで、マスク13に対する基板16の相対的な位置を調整する。
 また制御部60は、後述するように計算処理部200によって算出された露光装置100内の各ユニットの補正量を参照することで、各ユニットの出力及び位置を制御する。
 情報蓄積部110は、露光装置100の稼働情報及び状態情報を記録する。
 具体的に露光装置100の稼働情報には、投影光学系調整部20の制御データ、チャンバ調整部30の制御データ、及び変動計測部40によって計測された投影光学系15の光学特性の計測結果が含まれる。
 また露光装置100の稼働情報には、制御部60によって制御される照明光学系12、マスクステージ14、投影光学系15及び基板ステージ17を含む各ユニットの移動等の機械的な動作に関する制御データが含まれる。
 また露光装置100の稼働情報には、露光の際の露光光源11の目標照度、マスク13の透過率やパターン情報(種類)、及び基板ステージ17の移動速度等、露光の際に必要となるパラメータ、すなわち露光パラメータが含まれる。
 また具体的に露光装置100の状態情報には、投影光学系15に搭載されている温度計及び圧力計による投影光学系15の温度及び圧力の計測結果が含まれる。
 また露光装置100の状態情報には、チャンバ10に搭載されている環境計によるチャンバ10内の温度、湿度及び圧力の計測結果が含まれる。
 具体的に、露光装置100の状態情報を計測するために配置されるセンサの一覧を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されているように、露光装置100では、投影光学系15の内部と周囲とのそれぞれに圧力計及び温度計を設けることで、投影光学系15の内部と周囲との間の相対的な圧力差及び温度差を計測することができる。
 また露光装置100では、チャンバ10の内部と周囲とのそれぞれに圧力計、温度計及び湿度計を設けることで、チャンバ10の内部と周囲との間の相対的な圧力差、温度差及び湿度差を計測することができる。
 また、表1に示されている投影光学系調整部20及びチャンバ調整部30それぞれの内部に設けられている温調出力計は、それぞれから供給される際の温調気体の出力の大きさを計測する。
 また、表1に示されている投影光学系調整部20及びチャンバ調整部30それぞれの内部に設けられている液冷流量計は、それぞれの内部に設けられている温調気体供給源において温調気体を冷却するための流体の流量を計測する。
 なお露光装置100では、温調気体として温度が調整された乾燥空気を投影光学系15に向けて供給しているため、投影光学系15及び投影光学系調整部20の内部には湿度計を設けていない。
 しかしながらこれに限らず、投影光学系15及び投影光学系調整部20の内部に湿度計を設けても構わない。
 また露光装置100では、表1に示されている各センサを複数箇所に設けることで、計測値のばらつきを抑制すると共に、分布情報を取得することが可能となるため効果的である。
 そして情報蓄積部110は、表1に示されている各センサの計測結果を任意のタイミング、若しくは一定間隔で取得することで記録する。
 計算処理部200は、情報蓄積部110に記録された各センサの計測結果を用いて投影光学系15の光学特性の変化量を取得する。
 そして計算処理部200は、取得された投影光学系15の光学特性の変化量を補正するための露光装置100内の各ユニットにおける補正量を算出する。
 なお本実施形態では、情報蓄積部110及び計算処理部200は露光装置100内に搭載されているが、これに限らず、露光装置100の外部に情報蓄積部110及び計算処理部200を設けてもよい。
 次に、本実施形態に係る情報処理装置を用いて投影光学系15の光学特性の変化量を補正する方法について説明する。
 図2Aは、計算処理部200における投影光学系15の光学特性の変化量を補正する処理を示すフローチャートである。
 まず、情報蓄積部110に記録された各データを入力データに変換する入力データ取得処理を行う(ステップS201)。
 具体的にステップS201では、投影光学系15に搭載されている温度計及び圧力計による投影光学系15の温度及び圧力の計測結果、及び投影光学系調整部20による投影光学系15の目標温度及び目標圧力を情報蓄積部110から取得する。
 またステップS201では、チャンバ10に搭載されている環境計によるチャンバ10内の温度、湿度及び圧力の計測結果、及びチャンバ調整部30によるチャンバ10内の目標温度、目標湿度及び目標圧力を情報蓄積部110から取得する。
 またステップS201では、制御部60によって制御される、露光装置100内の照明光学系12、マスクステージ14、投影光学系15及び基板ステージ17を含む各ユニットの目標位置を情報蓄積部110から取得する。
 またステップS201では、照明光学系12の構成、露光の際の露光光源11の目標照度、マスク13の透過率やパターン情報(種類)、及び基板ステージ17の移動速度等の露光パラメータを情報蓄積部110から取得する。
 そしてステップS201では、情報蓄積部110から取得された各データを入力データに変換する。
 なお、情報蓄積部110から取得した計測結果に対しては特性に応じた所定の処理が行われる。
 具体的には、例えば投影光学系15の温度やチャンバ10内の温度等、空間内における分布(ばらつき)が比較的大きい計測値に対しては平均化処理を実施する。
 次に、ステップS201で取得された入力データを光学特性予測モデル204(学習モデル)に入力することで、投影光学系15の光学特性の変化量を取得する光学特性変化量取得処理を行う(ステップS202)。
 ステップS202で用いられる光学特性予測モデル204は、ステップS201で取得された入力データから出力データとして投影光学系15の光学特性の変化量を出力する数理モデルである。
 そして、具体的に光学特性予測モデル204から出力される投影光学系15の光学特性の変化量は、投影光学系15のフォーカスやディストーションの変化量である。
 次に、ステップS202で取得された投影光学系15の光学特性の変化量を補正するための露光装置100内の各ユニットの出力及び位置の補正量を算出する補正量算出処理を行う(ステップS203)。
 具体的にステップS203では、例えば投影光学系15の光学特性の変化量のうち投影光学系15のフォーカスの変化量を補正する場合には、露光の際の基板ステージ17のZ方向における位置を算出する。
 また、投影光学系15の光学特性の変化量のうち投影光学系15のディストーションの変化量を補正する場合には、露光の際のマスクステージ14及び基板ステージ17のXY平面内での位置や投影光学系15の不図示のディストーション補正機構の位置を算出する。
 なお、上記で示したステップS201乃至S203による投影光学系15の光学特性の変化量を補正する処理は、基板16に対して露光を行う度に実施してもよく、所定の枚数の基板16に対して露光が終了する度に実施してもよい。
 次に、本実施形態に係る情報処理装置において光学特性予測モデル204を作成する方法について説明する。
 図2Bは、計算処理部200における光学特性予測モデル204を作成する処理を示すフローチャートである。
 まず、情報蓄積部110に記録されている各データを取得するデータ取得処理を行う(ステップS301)。
 具体的にステップS301では、投影光学系15に搭載されている温度計及び圧力計による投影光学系15の温度及び圧力の計測結果、及び投影光学系調整部20による投影光学系15の目標温度及び目標圧力を情報蓄積部110から取得する。
 またステップS301では、チャンバ10に搭載されている環境計によるチャンバ10内の温度、湿度及び圧力の計測結果、及びチャンバ調整部30によるチャンバ10内の目標温度、目標湿度及び目標圧力を情報蓄積部110から取得する。
 またステップS301では、変動計測部40による投影光学系15の光学特性の変化量の計測結果を情報蓄積部110から取得する。
 またステップS301では、照明光学系12の構成や、露光の際の露光光源11の目標照度、マスク13の透過率やパターン情報(種類)、及び基板ステージ17の移動速度等の露光パラメータを情報蓄積部110から取得する。
 またステップS301では、制御部60によって制御される、露光装置100内の照明光学系12、マスクステージ14、投影光学系15及び基板ステージ17を含む各ユニットの目標位置を情報蓄積部110から取得する。
 次に、ステップS301で取得された各データを光学特性予測モデル204を作成するための入力データと正解データとに分類するデータ決定処理を行う(ステップS302)。
 具体的にステップS302では、ステップS301で取得された各データのうち投影光学系15の光学特性の変化の要因を示すデータを入力データ、投影光学系15の光学特性の変化を示すデータを正解データに分類する。
 より具体的にステップS302では、ステップS301で取得された各データのうち変動計測部40による投影光学系15の光学特性の変化量の計測結果を正解データ、それ以外のデータを入力データに分類する。
 次に、ステップS302で取得された入力データ及び正解データを用いて光学特性予測モデル204を作成するモデル生成処理を行う(ステップS303)。
 具体的にステップS303では、ステップS302で取得された正解データを教師データとする教師有り学習を行うことで光学特性予測モデル204を作成する。
 なお、ステップS303における光学特性予測モデル204の作成は、情報蓄積部110に所定の期間の間に記録されたデータを用いて行ってもよく、情報蓄積部110に新しいデータが記録される度に繰り返し行ってもよい。
 次に、本実施形態に係る情報処理装置の具体的な実施例について説明する。
 露光装置100の投影光学系15では、露光光が通過することで発生する熱エネルギーによって光学部材や光路空間の温度が変化する。
 また、投影光学系15内の光学部材や光路空間の温度が変化することによって当該光学部材が変形したり当該光路空間内の空気の屈折率が変化することで、投影光学系15による露光光の集光位置が変化する。
 そして、投影光学系15による露光光の集光位置が変化することで基板16に形成されるマスク13のパターンの線幅が変化する。
 そこで露光装置100では、まず基板ステージ17に搭載されている光学センサ18を投影光学系15の結像面の位置に合わせるように基板ステージ17を駆動させる。
 そして、光学センサ18に入力される露光光の光量の変化から投影光学系15の結像面のZ方向における変化量(以降、フォーカス変化量と称する)を計測する。
 具体的には、変動計測部40に含まれるソフトウェアの指示に基づいてフォーカス変化量が計測される。
 その後、露光を行う際に、制御部60が当該計測されたフォーカス変化量に基づいて基板ステージ17のZ方向における位置や投影光学系15の補正機構の位置を制御することで、フォーカス変化量が補正される。
 ここで、そのようなフォーカス変化量の計測は露光とは別のタイミングで実施する必要があるため、フォーカス変化量の計測を頻繁に実施すると露光装置100の生産性が低下することになる。
 従って露光装置100では、生産性の低下を抑制するために、フォーカス変化量の計測を基板16に対して露光を行う度に実施せず、露光の処理時間より十分に長い所定の期間が経過した際に実施する。
 一方、そのようにフォーカス変化量の計測において長い計測間隔を設定すると、投影光学系15の温度変化によるフォーカス変化量が十分に補正されていない状態で基板16に対して露光が行われる際に、露光装置100における露光性能が低下してしまう。
 そこで本実施形態に係る情報処理装置では、フォーカス変化量の計測間隔を十分に長くしても基板16に対して露光を行う際にフォーカス変化量を高精度に補正することができるように、光学特性予測モデル204を作成することでフォーカス変化量の予測を行う。
 具体的に、本実施形態に係る情報処理装置においてフォーカス変化量の予測を実施するためには、まず光学特性予測モデル204を作成するための学習フェイズを実施する必要がある。
 その後、作成された光学特性予測モデル204を用いてフォーカス変化量を予測する運用フェイズに移行する。
 光学特性予測モデル204を作成するための学習フェイズでは、まず変動計測部40によってフォーカス変化量の計測を例えば四時間に一回の頻度で三ヶ月間実施することで、情報蓄積部110にフォーカス変化量の計測結果を蓄積する。
 また、上記のフォーカス変化量の計測結果の蓄積と並行して、露光装置100の稼働情報及び状態情報を例えば一分に一回の頻度で情報蓄積部110に蓄積する。
 そして、情報蓄積部110に蓄積されたフォーカス変化量の計測結果と露光装置100の稼働情報及び状態情報とを用いて上記のステップS301乃至S303の処理を行うことで、光学特性予測モデル204を作成する。
 なお、ステップS303において光学特性予測モデル204を作成する際には、例えばニューラルネットワーク等の公知の機械学習アルゴリズムを用いる。
 次に、作成された光学特性予測モデル204を用いてフォーカス変化量を予測する運用フェイズでは、上記の学習フェイズと同様に、露光装置100の稼働情報及び状態情報を例えば一分に一回の頻度で情報蓄積部110に蓄積する。
 その後、情報蓄積部110に蓄積された露光装置100の稼働情報及び状態情報と学習フェイズで作成された光学特性予測モデル204とを用いて、上記のステップS201乃至S203を行う。これにより、フォーカス変化量を補正するための露光装置100内の各ユニットの補正量が算出される。
 そして、基板16に対して露光を行う際に、算出された各ユニットの補正量に基づいて制御部60によって露光装置100内の各ユニットが制御される。
 また運用フェイズでは、変動計測部40によってフォーカス変化量の計測を例えば一日に一回の頻度で実施する。
 そして、実施されたフォーカス変化量の計測結果と光学特性予測モデル204から予測されたフォーカス変化量とを互いに比較することで、光学特性予測モデル204の評価を行う。
 もし上記比較を行った結果、フォーカス変化量の計測結果と光学特性予測モデル204から予測されたフォーカス変化量との間の差が小さい、具体的には所定の閾値より小さい場合には、当該フォーカス変化量の計測結果を情報蓄積部110に蓄積する。
 一方、当該差が大きい、具体的には所定の閾値より大きい場合には、当該フォーカス変化量の計測結果を情報蓄積部110に蓄積すると共に、光学特性予測モデル204の更新(再作成)を行う。
 例えば、照明光学系12の交換等、露光装置100内の構成が更新された場合に、そのようにフォーカス変化量の計測結果と光学特性予測モデル204から予測されたフォーカス変化量との間の差が大きくなることが考えられる。
 なお、光学特性予測モデル204の更新は、運用フェイズにおいて情報蓄積部110に蓄積されたフォーカス変化量の計測結果と露光装置100の稼働情報及び状態情報とを用いて、上記のステップS301乃至S303を行うことで実施する。
 ここで、運用フェイズにおいて情報蓄積部110に蓄積されたフォーカス変化量の計測結果の数が少ない場合には、学習フェイズにおいて情報蓄積部110に蓄積されたフォーカス変化量の計測結果を用いてもよい。
 また、光学特性予測モデル204の更新は、上述の光学特性予測モデル204の評価を行った際に限らず、例えば六ヶ月に一回の頻度等、任意のタイミングで実施してもよい。
 以上のように本実施形態に係る情報処理装置では、フォーカス変化量の計測結果と露光装置100の稼働情報及び状態情報とを用いて、光学特性予測モデル204を作成する。
 そして、作成された光学特性予測モデル204を用いてフォーカス変化量を予測することで、フォーカス変化量を計測するために露光を停止する必要が無くなることで生産性の低下を抑制すると共に、露光性能を高精度に維持することができる。
 なお上記では、露光装置100内の計算処理部200が、学習フェイズにおいて各データを取得し光学特性予測モデル204を作成すると共に、運用フェイズにおいて光学特性予測モデル204を用いてフォーカス変化量を予測していたが、これに限られない。
 例えば学習フェイズにおいて、露光装置100とは異なる露光装置Aにおけるフォーカス変化量の計測結果と、露光装置100の稼働情報及び状態情報とから光学特性予測モデル204を作成してもよい。
 また、そのように作成された光学特性予測モデル204を露光装置100と露光装置Aとは異なる露光装置B内の計算処理部200に搭載し、露光装置B内の運用フェイズにおいて当該光学特性予測モデル204を用いてフォーカス変化量を予測してもよい。
 また、複数の露光装置それぞれにおいて取得されたデータを用いて光学特性予測モデル204を作成することも可能である。
 また本実施形態に係る情報処理装置では、表1に示されているセンサ以外のセンサを用いることもでき、当該センサによって取得される情報を光学特性予測モデル204を作成するための教師データとして使用することも可能である。
 また本実施形態に係る情報処理装置では、露光装置100の稼働情報及び状態情報の複数のパラメータを入力データに用いているが、少なくとも投影光学系調整部20による投影光学系15の目標温度を入力データに用いれば、本実施形態の効果が得られる。
 また本実施形態に係る情報処理装置では、投影光学系15についてのフォーカス変化量を予測しているが、これに限らず、照明光学系12等、他の光学系についての光学特性の変化量を予測しても構わない。
 また上記では、本実施形態に係る情報処理装置を露光装置100に搭載した例を示したが、これに限らず、他の形態の露光装置やパターン形成装置にも搭載することが可能である。
 [第二実施形態]
 図3は、第二実施形態に係る情報処理装置としての計算処理部200における投影光学系15の光学特性の変化量を補正する処理を示すフローチャートである。
 なお本実施形態に係る情報処理装置が搭載される露光装置は、露光装置100と同一の構成を有しているため、同一の部材には同一の符番を付して説明を省略する。
 本実施形態の情報処理装置は、投影光学系調整部20及びチャンバ調整部30それぞれの目標温度を予測する目標温度予測モデル404を作成すると共に、目標温度予測モデル404を用いて当該目標温度を予測する点で、第一実施形態の情報処理装置とは異なる。
 具体的に本実施形態に係る情報処理装置では、まず第一実施形態に係る情報処理装置と同様にステップS301を実施することで、情報蓄積部110に記録されている各データを取得する。
 また第一実施形態に係る情報処理装置と同様にステップS302を実施することで、ステップS301で取得された各データのうち投影光学系調整部20及びチャンバ調整部30それぞれの目標温度を正解データ、それ以外のデータを入力データに分類する。
 そして第一実施形態に係る情報処理装置と同様にステップS303を実施することで、ステップS302で取得された入力データ及び正解データを用いて目標温度予測モデル404を作成する。
 具体的にステップS303では、ステップS302で取得された正解データを教師データとする教師有り学習を行うことで目標温度予測モデル404を作成する。
 次に本実施形態に係る情報処理装置では、図3に示されているように、情報蓄積部110に記録された各データを入力データに変換する入力データ取得処理を行う(ステップS401)。
 具体的にステップS401では、投影光学系15に搭載されている温度計及び圧力計による投影光学系15の温度及び圧力の計測結果、及び投影光学系調整部20による投影光学系15の目標圧力を情報蓄積部110から取得する。
 またステップS401では、少なくとも所定のタイミング、例えば変動計測部40による投影光学系15の光学特性の変化量の直近の計測結果を情報蓄積部110から取得する。
 またステップS401では、チャンバ10に搭載されている環境計によるチャンバ10内の温度、湿度及び圧力の計測結果、及びチャンバ調整部30によるチャンバ10内の目標湿度及び目標圧力を情報蓄積部110から取得する。
 またステップS401では、制御部60によって制御される、露光装置100内の照明光学系12、マスクステージ14、投影光学系15及び基板ステージ17を含む各ユニットの目標位置を情報蓄積部110から取得する。
 またステップS401では、照明光学系12の構成や、露光を行う際の露光光源11の目標照度、マスク13の透過率やパターン情報(種類)、及び露光を行う際の基板ステージ17の移動速度等の露光パラメータを情報蓄積部110から取得する。
 次に、ステップS401で取得された入力データを目標温度予測モデル404に入力することで、投影光学系15の光学特性の変化を抑制するための投影光学系調整部20及びチャンバ調整部30の目標温度を取得する目標温度取得処理を行う(ステップS402)。
 ステップS402で用いられる目標温度予測モデル404は、ステップS401で取得された入力データから投影光学系調整部20及びチャンバ調整部30それぞれの目標温度を出力データとして出力する数理モデルである。
 そして、ステップS402で取得された投影光学系調整部20及びチャンバ調整部30それぞれの目標温度を設定するための投影光学系調整部20及びチャンバ調整部30それぞれの制御量を算出する(ステップS403)。
 このように投影光学系調整部20及びチャンバ調整部30それぞれの目標温度を設定することで、投影光学系15の光学特性の変化量を補正することができる。
 以上のように本実施形態に係る情報処理装置では、投影光学系15の光学特性の計測結果と露光装置100の稼働情報及び状態情報とを用いて、目標温度予測モデル404を作成する。
 そして、作成された目標温度予測モデル404を用いて投影光学系調整部20及びチャンバ調整部30それぞれの目標温度を予測すると共に、当該目標温度を設定するための投影光学系調整部20及びチャンバ調整部30それぞれの制御量を算出する。
 これにより、フォーカス変化量を計測するために露光を停止する必要が無くなることで生産性の低下を抑制すると共に、露光性能を高精度に維持することができる。
 なお、上記で示したステップS401乃至S403による投影光学系15の光学特性の変化量を補正する処理は、基板16に対して露光を行う度に実施してもよく、所定の枚数の基板16に対して露光が終了する度に実施してもよい。
 また、当該投影光学系15の光学特性の変化量を補正する処理は、投影光学系調整部20及びチャンバ調整部30それぞれの目標温度以外のパラメータが変化する度に実施してもよく、当該目標温度以外のパラメータを予測することで実施してもよい。
 以上、好ましい実施形態について説明したが、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
 また、上記では本実施形態に係る情報処理装置について説明したが、上記に示した情報処理方法、該方法を実施(実行)するためのプログラム、及び該プログラムが記録されたコンピュータが読み取り可能な記録媒体も本実施形態の範囲に含まれる。
 [物品の製造方法]
 本実施形態に係る物品の製造方法は、例えば半導体デバイス、液晶表示素子、フラットパネルディスプレイや微小電気機械システム(MEMS)等の物品の製造において好適である。
 具体的に本実施形態に係る物品の製造方法は、上述した本実施形態に係る情報処理装置を備える露光装置100を用いて感光剤が塗布された基板上の当該感光剤を露光する工程と、当該露光する工程によって露光された当該感光剤を現像する工程とを含む。
 次に、現像された感光剤のパターンをマスクとして基板に対してエッチング工程やイオン注入工程等を行うことで、当該基板上に回路パターンが形成される。
 そして、これらの露光、現像及びエッチング等の工程を繰り返し行うことで、基板上に複数の層からなる回路パターンが形成される。
 次に後工程として、回路パターンが形成された基板に対してダイシング(加工)が行われ、形成されたチップのマウンティング、ボンディングや検査工程が行われる。
 また、本実施形態に係る物品の製造方法は、他の周知の加工工程(酸化、成膜、蒸着、ドーピング、平坦化及び感光剤剥離等)を含みうる。
 本実施形態に係る物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも一つにおいて有利である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2022年3月28日提出の日本国特許出願特願2022-051084を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
15 投影光学系(光学系)
100 露光装置
200 計算処理部(情報処理装置)
204 光学特性予測モデル(学習モデル)

Claims (16)

  1.  露光装置に設けられている光学系の目標温度を学習モデルに入力することで、該光学系の光学特性の変化量を予測することを特徴とする情報処理装置。
  2.  前記学習モデルは、機械学習によって取得される学習モデルであることを特徴とする請求項1に記載の情報処理装置。
  3.  前記情報処理装置は、前記光学系の温度の計測結果、前記光学系の圧力の計測結果、前記光学系の目標圧力、前記露光装置の露光光源、原版ステージ、前記光学系及び基板ステージが収納されているチャンバ内の温度の計測結果、該チャンバ内の湿度の計測結果、該チャンバ内の圧力の計測結果、該チャンバ内の目標温度、該チャンバ内の目標湿度、該チャンバ内の目標圧力、前記原版ステージの目標位置、前記光学系の目標位置、前記基板ステージの目標位置、前記光学系の構成、露光を行う際の前記露光光源の目標照度、露光を行う際に用いられる原版の種類、及び露光を行う際の前記基板ステージの移動速度の少なくとも一つを前記学習モデルに更に入力することで、前記光学系の前記光学特性の前記変化量を予測することを特徴とする請求項1または2に記載の情報処理装置。
  4.  前記学習モデルの入力データは、前記光学系の目標温度、前記光学系の温度の計測結果、前記光学系の圧力の計測結果、前記光学系の目標圧力、前記露光装置の露光光源、原版ステージ、前記光学系及び基板ステージが収納されているチャンバ内の温度の計測結果、該チャンバ内の湿度の計測結果、該チャンバ内の圧力の計測結果、該チャンバ内の目標温度、該チャンバ内の目標湿度、該チャンバ内の目標圧力、前記原版ステージの目標位置、前記光学系の目標位置、前記基板ステージの目標位置、前記光学系の構成、露光を行う際の前記露光光源の目標照度、露光を行う際に用いられる原版の種類、及び露光を行う際の前記基板ステージの移動速度の少なくとも一つから作成されることを特徴とする請求項1乃至3のいずれか一項に記載の情報処理装置。
  5.  前記学習モデルの正解データは、前記光学系の前記光学特性の前記変化量の計測結果から作成されることを特徴とする請求項1乃至4のいずれか一項に記載の情報処理装置。
  6.  前記情報処理装置は、
     前記光学系の目標温度、前記光学系の温度の計測結果、前記光学系の圧力の計測結果、前記光学系の目標圧力、前記露光装置の露光光源、原版ステージ、前記光学系及び基板ステージが収納されているチャンバ内の温度の計測結果、該チャンバ内の湿度の計測結果、該チャンバ内の圧力の計測結果、該チャンバ内の目標温度、該チャンバ内の目標湿度、該チャンバ内の目標圧力、前記原版ステージの目標位置、前記光学系の目標位置、前記基板ステージの目標位置、前記光学系の構成、露光を行う際の前記露光光源の目標照度、露光を行う際に用いられる原版の種類、及び露光を行う際の前記基板ステージの移動速度の少なくとも一つから入力データを作成し、
     前記光学系の前記光学特性の前記変化量の計測結果から正解データを作成し、
     該作成された入力データ及び正解データに基づいて機械学習を行うことで前記学習モデルを作成することを特徴とする請求項1乃至5のいずれか一項に記載の情報処理装置。
  7.  前記情報処理装置は、前記学習モデルから予測される前記光学系の前記光学特性の前記変化量と前記光学系の前記光学特性の前記変化量の計測結果との間の差が所定の閾値より大きい場合に、前記学習モデルの更新を行うことを特徴とする請求項6に記載の情報処理装置。
  8.  前記情報処理装置は、
     複数の露光装置において前記入力データ及び前記正解データを作成し、
     該作成された入力データ及び正解データに基づいて機械学習を行うことで前記学習モデルを作成することを特徴とする請求項6または7に記載の情報処理装置。
  9.  前記光学系の前記光学特性は、前記光学系のフォーカス及びディストーションの少なくとも一方を含むことを特徴とする請求項1乃至8のいずれか一項に記載の情報処理装置。
  10.  原版に描画されているパターンを基板に転写するように前記基板を露光する露光装置であって、
     前記原版を通過した露光光を前記基板に導光する投影光学系と、
     該投影光学系の温度を制御する投影光学系調整部と、
     該投影光学系の光学特性の変化量を予測する請求項1乃至9のいずれか一項に記載の情報処理装置と、
     該情報処理装置によって予測された前記投影光学系の前記光学特性の前記変化量に基づいて前記投影光学系の位置を制御する制御部と、
    を備えることを特徴とする露光装置。
  11.  前記露光装置は、
     前記露光光を射出する露光光源と、
     前記露光光源からの前記露光光を前記原版に導光する照明光学系と、
     前記原版が載置される原版ステージと、
     前記基板が載置される基板ステージと、
     前記露光光源、前記照明光学系、前記原版ステージ、前記投影光学系及び前記基板ステージが収納されるチャンバと、
     前記投影光学系の圧力を制御する前記投影光学系調整部と、
     前記チャンバ内の温度、湿度及び圧力を制御するチャンバ調整部と、
     前記照明光学系の位置、前記原版ステージの位置、前記基板ステージの位置、及び前記露光光源の照度を制御する前記制御部と、
     前記投影光学系の前記光学特性の前記変化量を計測する計測部と、
    を備えることを特徴とする請求項10に記載の露光装置。
  12.  前記露光装置は、前記投影光学系の目標温度、前記投影光学系の温度の計測結果、前記投影光学系の圧力の計測結果、前記投影光学系の目標圧力、前記チャンバ内の温度の計測結果、前記チャンバ内の湿度の計測結果、前記チャンバ内の圧力の計測結果、前記チャンバ内の目標温度、前記チャンバ内の目標湿度、前記チャンバ内の目標圧力、前記照明光学系の目標位置、前記原版ステージの目標位置、前記投影光学系の目標位置、前記基板ステージの目標位置、前記照明光学系の構成、露光を行う際の前記露光光源の目標照度、前記原版の種類、及び露光を行う際の前記基板ステージの移動速度の少なくとも一つを記憶する記憶部を備えることを特徴とする請求項11に記載の露光装置。
  13.  請求項10乃至12のいずれか一項に記載の露光装置を用いて前記基板を露光する工程と、
     露光された前記基板を現像する工程と、
     現像された前記基板から物品を製造する工程と、
    を含むことを特徴とする物品の製造方法。
  14.  露光装置に設けられている光学系の目標温度を学習モデルに入力することで、該光学系の光学特性の変化量を予測する工程を含むことを特徴とする情報処理方法。
  15.  コンピュータに情報処理を行わせるプログラムが記録されたコンピュータが読み取り可能な記録媒体であって、
     露光装置に設けられている光学系の目標温度を学習モデルに入力することで、該光学系の光学特性の変化量を予測する工程をコンピュータに実行させることを特徴とするプログラムが記録されたコンピュータが読み取り可能な記録媒体。
  16.  露光装置に設けられている光学系の光学特性の変化量を学習モデルに入力することで、該光学系の目標温度を予測することを特徴とする情報処理装置。
PCT/JP2022/046803 2022-03-28 2022-12-20 情報処理装置、露光装置、及び物品の製造方法 WO2023188603A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051084 2022-03-28
JP2022051084A JP2023144214A (ja) 2022-03-28 2022-03-28 情報処理装置、露光装置、及び物品の製造方法

Publications (1)

Publication Number Publication Date
WO2023188603A1 true WO2023188603A1 (ja) 2023-10-05

Family

ID=88200040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046803 WO2023188603A1 (ja) 2022-03-28 2022-12-20 情報処理装置、露光装置、及び物品の製造方法

Country Status (3)

Country Link
JP (1) JP2023144214A (ja)
TW (1) TW202338516A (ja)
WO (1) WO2023188603A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185016A (ja) * 1989-01-12 1990-07-19 Nikon Corp 投影光学装置
JPH09232213A (ja) * 1996-02-26 1997-09-05 Nikon Corp 投影露光装置
JP2007328887A (ja) * 2006-06-09 2007-12-20 Konica Minolta Opto Inc 光ピックアップ装置及び光情報記録媒体記録再生装置
JP2012244015A (ja) * 2011-05-20 2012-12-10 Canon Inc 露光装置およびデバイス製造方法
JP2019133089A (ja) * 2018-02-02 2019-08-08 キヤノン株式会社 撮像装置、その方法およびプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185016A (ja) * 1989-01-12 1990-07-19 Nikon Corp 投影光学装置
JPH09232213A (ja) * 1996-02-26 1997-09-05 Nikon Corp 投影露光装置
JP2007328887A (ja) * 2006-06-09 2007-12-20 Konica Minolta Opto Inc 光ピックアップ装置及び光情報記録媒体記録再生装置
JP2012244015A (ja) * 2011-05-20 2012-12-10 Canon Inc 露光装置およびデバイス製造方法
JP2019133089A (ja) * 2018-02-02 2019-08-08 キヤノン株式会社 撮像装置、その方法およびプログラム

Also Published As

Publication number Publication date
JP2023144214A (ja) 2023-10-11
TW202338516A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
JP5406437B2 (ja) 露光装置及びデバイス製造方法
TWI512406B (zh) 微影裝置,元件製造方法及相關資料處理裝置及電腦程式產品
JP5815987B2 (ja) 露光装置およびデバイス製造方法
KR101823725B1 (ko) 노광 장치 및 디바이스의 제조 방법
WO2005106932A1 (ja) 解析方法、露光装置及び露光装置システム
KR20210127089A (ko) 정보 처리 장치, 검출 방법, 프로그램, 기판 처리 시스템, 및 물품의 제조 방법
KR102516180B1 (ko) 정보 처리 장치, 판정 방법, 프로그램, 리소그래피 시스템 및 물품의 제조 방법
WO2007052699A1 (ja) 解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム
US20230273529A1 (en) Method for adjusting a patterning process
JP4947483B2 (ja) デバイス製造処理方法、デバイス製造処理システム、プログラム及び記憶媒体
KR101290365B1 (ko) 노광 장치 및 디바이스 제조 방법
JP2013247258A (ja) アライメント方法、露光方法、及びデバイス製造方法、並びにデバイス製造システム
KR102396135B1 (ko) 계산 방법, 노광 방법, 기억 매체, 노광 장치 및 물품 제조 방법
WO2023188603A1 (ja) 情報処理装置、露光装置、及び物品の製造方法
JP5152612B2 (ja) 情報管理方法、情報管理システム、プログラム、記録媒体、パターン検査装置及び基板検査装置
TWI675259B (zh) 微影系統、模擬裝置、及圖案形成方法
JP6245838B2 (ja) リソグラフィ装置、リソグラフィ方法、および物品の製造方法
US20080144042A1 (en) Stage apparatus, control system, exposure apparatus, and device manufacturing method
WO2021177176A1 (ja) 情報処理装置、監視方法、プログラムおよび物品製造方法
TW202221427A (zh) 微影製程之子場控制及相關聯裝置
JP2017040821A (ja) 決定方法、露光装置、プログラム、および物品の製造方法
CN112015055B (zh) 曝光装置和物品制造方法
EP3944020A1 (en) Method for adjusting a patterning process
KR20230022237A (ko) 인공 신경망을 이용한 동작 제어
JP2005353818A (ja) 解析方法、露光装置及び露光装置システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935730

Country of ref document: EP

Kind code of ref document: A1