WO2007052699A1 - 解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム - Google Patents

解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム Download PDF

Info

Publication number
WO2007052699A1
WO2007052699A1 PCT/JP2006/321858 JP2006321858W WO2007052699A1 WO 2007052699 A1 WO2007052699 A1 WO 2007052699A1 JP 2006321858 W JP2006321858 W JP 2006321858W WO 2007052699 A1 WO2007052699 A1 WO 2007052699A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
pattern
size
information
program
Prior art date
Application number
PCT/JP2006/321858
Other languages
English (en)
French (fr)
Inventor
Shinichi Okita
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007542782A priority Critical patent/JP5035685B2/ja
Publication of WO2007052699A1 publication Critical patent/WO2007052699A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70533Controlling abnormal operating mode, e.g. taking account of waiting time, decision to rework or rework flow
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption

Definitions

  • Analysis device processing device, measurement device, exposure device, substrate processing system, analysis method and program
  • the present invention relates to an analysis apparatus, a processing apparatus, a measurement apparatus, an exposure apparatus, a substrate processing system, an analysis method, and a program. More specifically, a device pattern is formed on an object provided for device manufacture.
  • An analysis apparatus that analyzes information related to a series of processes for forming a substrate, a processing apparatus that includes the analysis apparatus, a measurement apparatus and an exposure apparatus, a substrate processing system that includes the various apparatuses, and an analysis that performs analysis using the analysis apparatus
  • the present invention relates to a method and a program for causing a computer to analyze information related to a series of processes for forming a device pattern on an object provided for device manufacture.
  • lines such as circuit patterns formed on a sensitive substrate such as a semiconductor substrate (wafer) or a liquid crystal display substrate (glass plate).
  • the exposure conditions that have a large effect on the line width in the exposure system, for example, focus (positional relationship between the image plane of the projection optical system and the sensitive substrate surface with respect to the optical axis direction of the projection optical system) ) And the exposure amount, the test exposure is sequentially performed, and the optimum focus and exposure amount are obtained from the exposure result.
  • the exposure pattern is changed stepwise within a predetermined range at each step, and the test pattern is sequentially transferred to different areas on the sensitive substrate.
  • a plurality of test pattern transfer images transferred on the sensitive substrate under conditions in which at least one of the focus and the exposure amount is different are formed. Then, for example, based on the result of rearranging the detection results of a plurality of transfer images in a matrix on a two-dimensional coordinate system having the focus and exposure amount as coordinate axes, the optimum focus and exposure amount are obtained.
  • the pattern line width is regarded as a continuous function of force and exposure dose, and the criticality of each exposure field by test exposure is determined.
  • the continuous function is created by the analysis software based on the measurement results of various line widths.
  • the so-called process window which is the area of focus and exposure that gives an acceptable line width, is determined and The focus and exposure settings in the overlap area of the process' window acquired for each dot pattern are selected as the actual exposure settings.
  • the method as described above it is possible to determine in advance the focus and exposure amount for realizing a good pattern line width.
  • the analysis of the line width variation factor is to be optimized during the process execution, the parameters related to the line width are analyzed and optimized from the viewpoint of throughput. It is required to shorten the time required for In fact, the variation factors of the pattern line width are not limited to the focus and the exposure amount, and therefore, it is required that more variation factors can be analyzed.
  • the first aspect of the present invention is an analyzer that analyzes information related to a series of processes for forming a device pattern on an object provided for device manufacture.
  • a processing device that executes at least a part of the series of processes, and an acquisition device that acquires information about processing contents performed during the execution of the series of processes, the information acquired by the acquisition device;
  • This is an analysis device that analyzes the causal relationship between the two based on the information about the size of the pattern formed on the object.
  • a processing apparatus that executes at least a part of a series of processes for forming a device pattern on a plurality of objects provided for device manufacture, A processing apparatus that outputs information on processing contents related to the size of the pattern during the sequential execution of at least a part of the series of processes on the plurality of objects.
  • the measuring device that measures the size of the pattern formed on the object
  • information on the measurement condition of the pattern size and information on the measurement state can be output.
  • information relating to the measurement condition of the pattern size and information relating to the measurement state can be output during execution of the series of processes.
  • the information on the processing content when the pattern is formed on the object is obtained.
  • the object In the measuring device for measuring the size of the pattern formed on the measuring device, information regarding processing contents when the pattern is formed on the object is requested outside the device during execution of the series of processes.
  • the measuring device for measuring the size of the pattern formed on the measuring device.
  • the present invention relates to a measurement apparatus that measures the size of a pattern formed on an object, and relates to processing contents when the pattern is formed on the object. It is a measuring device having a receiving unit that receives information from outside the device.
  • the present invention in an exposure apparatus that transfers a pattern onto an object, relates to information relating to a transfer condition of the pattern onto the object, and a transfer state of the pattern onto the object.
  • An exposure apparatus capable of outputting information.
  • the present invention also relates to a transfer condition of the pattern onto the object, in addition to an exposure apparatus that transfers a device pattern onto a plurality of objects provided for device manufacture, in addition to the tenth viewpoint power.
  • An exposure that can output information and information related to a transfer state of the pattern onto the object while the transfer is sequentially performed on the plurality of objects.
  • each of the plurality of processing apparatuses that perform the series of processes has the pattern.
  • a substrate processing system having a data management unit that manages and manages information related to processing contents that affect the size of the substrate.
  • the present invention is a program for causing a computer to analyze information related to a series of processes for forming a device pattern on an object to be used for device manufacture. Information regarding processing contents performed during the execution of the series of processes by the processing device that executes at least a part of the series of processes, and information regarding the size of the pattern formed on the measured object.
  • This is a program that causes a computer to execute a procedure for analyzing the causal relationship between the two.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a table.
  • FIG. 3 is a flowchart showing a processing flow of the substrate processing system.
  • FIG. 4 Data flow of the substrate processing system.
  • FIG. 5 is a flowchart showing processing of the analysis apparatus.
  • the exposure apparatus 100 and the track 300 are in-line connected to each other.
  • the in-line connection here means that the apparatuses and the processing units in each apparatus are connected via a transfer device that automatically transfers a wafer such as a robot arm and a slider.
  • the combination of the exposure apparatus 100 and the track 300 can be regarded as one substrate processing apparatus.
  • FIG. 1 only one substrate processing apparatus (100, 300) is shown for the sake of space, but actually, the substrate processing system 101 has a plurality of substrate processing apparatuses installed therein. Yes. That is, in the substrate processing system 101, a plurality of exposure apparatuses 100 and tracks 300 are provided.
  • Each substrate processing apparatus (100, 300) and device forming apparatus group 900 is installed in a clean room in which temperature and humidity are controlled.
  • data communication can be performed between devices via a predetermined communication network (for example, LAN: Local Area Network).
  • a plurality of wafers (for example, 25 or 50) are processed as one unit (referred to as a lot).
  • wafers are processed as a basic unit and commercialized.
  • Exposure apparatus 100 holds an illumination system that emits exposure illumination light, a stage that holds a reticle on which a circuit pattern or the like illuminated by the illumination light is formed, a projection optical system, and a wafer to be exposed. It is equipped with a stage and its control system.
  • the exposure apparatus 100 drives each of the above stages with respect to the illumination light for exposure and repeats the synchronous scanning of the reticle and the wafer and the stepping of the wafer, thereby changing the reticle circuit pattern into a plurality of patterns on the wafer. Transferred to a different shot area. That is, the exposure apparatus 100 is a running exposure type exposure apparatus.
  • an exposure control system that controls the intensity (exposure) of illumination light, synchronous control of both stages, and autofocus Z leveling control that matches the wafer surface within the depth of focus of the projection optical system
  • a stage control system has been built that simply performs focus control.
  • the exposure amount control system is based on the detection values of various exposure amount sensors that can measure the exposure amount so that the exposure amount matches the target value.
  • the stage control system realizes synchronous control of both stages by performing feedback control based on the measurement value of the interferometer that measures the position of the stage.
  • the exposure apparatus loo is provided with a multi-point AF (autofocus) sensor having a plurality of detection points for detecting a focus Z leveling shift on the wafer surface.
  • the stage control system is configured so that the wafer surface near the exposure area detected at, for example, nine detection points (9 channels) among the plurality of detection points of the multipoint AF sensor matches the image plane of the projection optical system. Focus control is realized by performing proper feedback control.
  • the two-dimensional coordinate system related to the synchronous control of both stages is the XY coordinate system (the synchronous scanning direction is the Y axis), and the coordinate axis parallel to the optical axis of the projection optical system is Z.
  • the stage is controlled under the XYZ coordinate system.
  • the stage control system will be described separately for a synchronous control system and a focus control system.
  • control parameters for determining the operation of each control system can be set.
  • Such control parameters require adjustment parameters that require adjustment of the equipment by stopping and stopping the process in order to obtain the optimum values when changing the set values. It is roughly divided into unadjusted parameters.
  • the adjustment parameter of the exposure amount sensor that detects the exposure amount
  • the illuminance measurement sensor that measures the intensity of the illumination light on the wafer surface
  • the adjustment parameter of the sensor etc.
  • the coefficient value of the correction function for correcting the moving mirror bending provided on the stage that holds the wafer reticle to reflect the laser beam of the interferometer force used to measure the stage position etc. Parameters, feedback control position loop gain, velocity loop gain, integration time constant, etc.
  • the focus offset which is the offset adjustment value for focus control when matching the wafer surface during exposure with the projection lens image surface, and the wafer surface during exposure coincide with the projection lens image surface (parallel).
  • Leveling adjustment parameters linearity of position detection element (PSD) that is the sensor of each detection point of multi-point AF sensor, offset between sensors, detection reproducibility of each sensor, offset between channels, onto wafer.
  • PSD position detection element
  • typical examples of the non-adjustment system parameters include, for example, parameters relating to selection of ND filters in the illumination system and exposure amount target values in relation to the exposure amount control system.
  • the synchronous control system for example, there is a scanning speed.
  • the focus control system for example, there are focus sensor selection statuses for 9 channels, parameters related to the focus step correction map described later, fine adjustment amount of focus offset, scan direction in edge shot of wafer outer edge, etc. .
  • the setting values of these parameters are parameters that can be changed without calibrating the apparatus, and are often specified by the exposure recipe.
  • the exposure apparatus 100 is provided with two stages for holding a wafer. Subsequent wafers to be processed are alternately loaded on both stages and sequentially exposed. In this way, while performing exposure on a wafer held on one stage, it is possible to load the wafer on the other stage and perform alignment, etc. In this way, throughput is improved compared to repeated wafer exchange ⁇ alignment ⁇ exposure.
  • processing unit 1 a portion that performs scanning exposure on a wafer held on one stage
  • processing unit 2 a portion that performs scanning exposure on a wafer held on the other stage. Show.
  • the track 300 includes a coater 'developer (CZD) 310 that performs resist coating and development, and each A measuring device 800 for performing seed measurement is provided.
  • the CZD 310 and the measuring instrument 800 are also provided with processing units 1 and 2, and the processing time is shortened.
  • the analysis apparatus 600 estimates the line width of the pattern transferred and formed at that point. Can do.
  • the memory (not shown) of the analysis apparatus 600 stores a table group indicating the relationship between the pattern line width and the exposure amount, synchronization accuracy, and focus control errors.
  • FIG. 2 schematically shows an example of this table group. As shown in FIG. 2, this table group includes an index table 51 and n table groups 52.
  • the index table 51 It consists of 1 to 52 and n.
  • Omj / cm 2 are designated as representative values of the exposure control error (exposure dose error), and the synchronization accuracy is controlled.
  • Four representative values of 0.00-0.30 m are specified as representative values of control error (synchronization accuracy error).
  • the moving average within the specified period is used as the synchronization accuracy error. In both cases, statistical values having a high influence on the line width are adopted.
  • the predetermined period is a period from the time when the slit-like exposure area force reaches a certain point on the wafer W by the relative scanning of both stages and the force is released.
  • Each table group 52 includes a plurality of tables showing the relationship between the Z-average offset Z and the Z movement standard deviation Z as statistical values of the focus control error and the line width value.
  • Z is a foreword within the predetermined period (exposure slit passage period).
  • the difference Z is the device SD on the wafer surface while the exposure slit passes through the part of the pattern.
  • the analysis apparatus 600 controls each control error at a certain point (sample point) on the wafer W based on the exposure amount trace data, the synchronization accuracy trace data, and the focus trace data acquired from the exposure apparatus 100. The statistical value of is calculated. Then, the analysis apparatus 600 refers to the index table 51, and based on the exposure amount error and the synchronization accuracy error, the table group corresponding to the representative values close to these values is stored in the table groups 52 to 52 (table name T
  • the exposure error is 0.7 and the synchronization accuracy error is 0.00.
  • the four tape memory groups 52, 52, 52, 52 (table names ⁇ , ⁇ , ⁇ , ⁇ ) registered in the cell corresponding to the combination of representative values in the vicinity of the value are selected.
  • a method of calculating the CD value when four table groups are selected will be described.
  • the smaller one of the representative values of exposure error corresponding to the selected table group is exposed.
  • the light amount error minimum value is called, and the larger one is called the exposure amount error maximum value.
  • the smaller one is called the synchronization accuracy error best value, and the larger one is called the synchronization accuracy error worst value.
  • the analyzer 600 selects the image height f (k from the four selected table groups corresponding to the X coordinate in the shot of the alignment mark.
  • k 0 means that the image height is 0, that is, on the optical axis.
  • the analysis apparatus 600 refers to Tables 1 and 2 and calculates the CD values corresponding to Z and Z.
  • the linear interpolation based on the internal division ratio of the synchronization accuracy error that internally divides between the worst value of the synchronization accuracy error and the best value of the synchronization accuracy error.
  • the CD value corresponding to the synchronization accuracy error is calculated. More specifically, two CD values read from two tables 1 and 2 in the two-dimensional plane with CD and synchronization accuracy error as coordinate axes, and points corresponding to the two CD values. Find the intercept and slope of the straight line with at both ends (that is, the straight line equation), and obtain the CD value of the point on the straight line corresponding to the synchronization accuracy error as the CD value corresponding to the synchronization accuracy error. Similarly, with reference to Tables 3 and 4, the CD values corresponding to Z and Z are read. And the synchronization accuracy error worst
  • CD value corresponding to is calculated.
  • the calculated two CD values are subjected to exposure by linear interpolation based on the internal ratio of the exposure error value that internally divides between the minimum exposure error value and the maximum exposure error value.
  • This CD value is CD value at the sampling point.
  • the above interpolation is also applied when two tables are selected instead of the four tables in which either the exposure error or the synchronization accuracy error is equal to the representative value.
  • the exposure apparatus 100 performs scanning exposure with a predetermined exposure condition set, transfers a test pattern onto a test wafer, and obtains exposure amount trace data, synchronization accuracy trace data, and focus trace data at that time. Then, the test wafer to which the test pattern is transferred is developed on CZD310, and the measuring instrument 800 measures the line width of the test pattern. Then, the various trace data, the data relating to the set exposure conditions, and the measurement result of the line width are transferred to the analysis apparatus 600.
  • the analysis device 600 calculates statistical values of exposure amount, synchronization accuracy, and focus control error at the sample point where the test pattern whose line width is measured is transferred. .
  • the analysis apparatus 600 divides the measurement results into each predetermined range (that is, cells in the table) based on representative values of various control errors set in the table.
  • the average value of the line width measurement results belonging to the same group is registered in the table as the CD value of that cell.
  • the registered CD value may not be based on the measurement result of the measuring instrument 800, but may be based on a value measured by the SEM or a value measured by the OCD method or the like.
  • a spatial image sensor that measures the aerial image of the test pattern may be installed instead, and the calculated value of the aerial image simulation obtained from the aerial image of the test pattern measured by the aerial image sensor may be used.
  • Exposure conditions include exposure wavelength, projection optical system NA, illumination NA, illumination ⁇ , illumination type, depth of focus, etc.
  • Pattern design conditions include design line width (eg 130 nm), pattern type ( Isolated lines and line-and-space-patterns). The relationship between the exposure conditions, the pattern design conditions, the pattern line width, and the method for setting various conditions such as the image height in the table are disclosed in detail, for example, in JP-A-2001-338870. Yes.
  • the management controller 500 controls and manages the exposure process performed by the exposure apparatus 100, and manages the scheduling of the exposure apparatus 100.
  • the host system 700 manages and manages the entire substrate processing system 101.
  • a film forming equipment (CVD (Chemical Vapor Deposition) equipment) 910 that produces a thin film on a wafer
  • an etching equipment 920 that performs etching, and chemical mechanical polishing are performed to flatten the wafer.
  • the CVD apparatus 910, the etching apparatus 920, the CMP apparatus 930, and the oxidation ion implantation apparatus 940 are also provided with two processing units (processing units 1 and 2) to improve throughput. Also, a plurality of CVD apparatuses 910, etching apparatuses 920, CMP apparatuses 930, and oxidation ion implantation apparatuses 940 are provided in the same manner as the exposure apparatus 100, etc., so that wafers can be transferred between each other. A route is provided.
  • the device forming apparatus group 900 includes apparatuses that perform wafer probing processing, repair processing, dicing processing, packaging processing, and bonding processing.
  • FIG. 3 shows a flowchart of this process
  • FIG. 4 shows a wafer flow and a data flow of a portion related to the repetitive steps in this series of processes.
  • a series of processes of the substrate processing system 101 is scheduled and managed by the host system 700 and the management controller 500.
  • wafers are processed in lot units.
  • Figures 3 and 4 are both a series of processes for a single wafer. In practice, the processing shown in Figs. 3 and 4 is repeated for each wafer in lot units.
  • a film is formed on the wafer in the CVD apparatus 910 ( In step 201), the wafer is transferred to the C / D 310, and a resist is applied on the wafer in the C / D 310 (step 202).
  • the wafer is transported to measuring instrument 800, and in measuring instrument 800, a shot area selected as a measurement target (hereinafter referred to as a measurement shot) among a plurality of shot areas of the previous layer already formed on the wafer.
  • Measure the shot flatness (focus step in the shot area) (step 203).
  • the number and arrangement of these measurement shots can be any force. For example, as shown in Fig. 4, it can be 8 shots on the outer periphery of the wafer.
  • the measurement result of the measuring instrument 800 (that is, the shot flatness of the measurement shot) is sent to the exposure apparatus 100. This measurement result is used for focus control during scanning exposure in the exposure apparatus 100.
  • the wafer is transferred to the exposure apparatus 100, and the circuit pattern on the reticle is transferred onto the wafer by the exposure apparatus 100 (step 205).
  • the exposure apparatus 100 monitors the exposure amount, synchronization accuracy, and focus trace data during measurement shot exposure and stores them in an internal memory.
  • the wafer is transferred to CZD and developed with CZD310 (step 207).
  • the line width of the resist image is measured by the measuring instrument 800 (step 209).
  • the measurement result (line width data) of the measuring instrument 800 is sent to the analysis device 600.
  • the analysis apparatus 600 performs analysis relating to the line width based on information from the exposure apparatus 100 or the measuring instrument 800 (step 211). As shown in Fig.
  • the analysis device 600 issues various data transfer requests to the measuring instrument 800 and the exposure device 100 as needed during the course of the analysis, and analyzes each device according to the analysis results. Emits information. The details of the analysis processing and data flow in the analysis apparatus 600 will be described later. Further, after the analysis apparatus 600 acquires various data, the exposure apparatus 100 may quickly delete the trace data stored therein.
  • the wafer is transferred from the measuring instrument 800 to the etching apparatus 920 included in the device forming apparatus group 900, and is etched in the etching apparatus 920 to perform impurity diffusion, aluminum vapor deposition wiring processing, and the CVD apparatus 910.
  • Film formation, planarization with a CMP apparatus 930, ion implantation with an oxidation ion implantation apparatus 94, and the like are performed as necessary (step 213).
  • the host system 700 determines whether or not the process is complete and all the patterns are formed on the wafer (step 215). If this judgment is denied, the process returns to step 201, If yes, go to step 217. In this way, a series of processes such as film formation 'resist application to etching, etc. are repeatedly executed for the number of steps, whereby circuit patterns are stacked on the wafer and a semiconductor device is formed.
  • the probing process (step 217) and the repair process (step 219) are executed in the device forming apparatus group 900.
  • step 219 when a memory failure is detected, for example, a replacement process with a redundant circuit is performed.
  • the analysis device 600 can also send information such as the detected location of the line width abnormality to a device that performs probing processing and repair processing.
  • a portion where a line width abnormality has occurred on a wafer can be excluded from processing targets for probing processing and repair processing on a chip basis.
  • dicing processing (step 221), packaging processing, and bonding processing (step 223) are executed, and a product chip is finally completed.
  • the post-measurement process in step 209 may be performed after the etching in step 213. In this case, line width measurement is performed on the etching image of the wafer.
  • FIG. 5 shows a flowchart of analysis processing in the analysis apparatus 600.
  • the line width data at each sample point of the measurement shot already sent from the measuring instrument 800 is read (step 301), and it is determined whether or not the line width is abnormal. (Step 303). This determination is performed, for example, by comparing the difference between the actually measured line width and the design value with a predetermined threshold value.
  • Step 305 focus trace data, synchronization accuracy trace data, exposure amount trace data, wafer flatness data, and control parameter settings are loaded from the exposure apparatus 100, and focus control is performed based on these data.
  • Z is the error statistic
  • the estimated value of is calculated.
  • the process proceeds to step 309 and a process stop request is sent as analysis information (see FIG. 4) to each device of the CZD 310 and the device forming device group 900 to stop the operation of various devices. Is ready to check other devices.
  • the operator inspects equipment other than the exposure equipment 100 and investigates the cause of the line width abnormality. On the other hand, if the actually measured value and the estimated value almost coincide with each other in Step 307 and the determination is affirmed, it is determined that the cause of the line width abnormality is the exposure apparatus 100 and the process proceeds to Step 311.
  • step 311 it is determined whether each control error of the focus Z synchronization accuracy Z exposure amount calculated in step 305 and the device step are out of specification.
  • the statistical value concerning the focus is out of the standard, it is determined that the focus control or the shot flatness is included as a factor of the line width abnormality. If the statistical value related to the synchronization error is outside the standard, it is determined that the synchronization error is included as the cause of the line width abnormality. If the statistical value related to the exposure amount is out of the standard, it is determined that the exposure amount error is included as a factor of the line width abnormality. If at least one of these statistical values is out of the standard (exposure apparatus spec), the determination is affirmed and the process proceeds to step 315. In step 315, the adjustment system parameters and control system parameters related to the control error identified as the cause of the line width abnormality are selected, and the selected parameters are optimized.
  • control parameters may be adjusted so that each control error approaches 0. Since the relationship between each control parameter and each control error of the focus Z exposure amount Z synchronization accuracy is known in advance, the set value of the control parameter for bringing the control error close to 0 can be calculated.
  • step 311 determines whether or not to optimize the control parameter even if the statistical value of each control error is within the standard. If this determination is denied, the analysis process is terminated, and if affirmed, the process proceeds to step 317.
  • step 317 only non-adjustment parameters among the control parameters are optimized (adjusted). even here, As in step 315 above, adjust the control parameters (but only the non-adjustment system parameters) so that each control error approaches 0. In this way, the pattern line width can be adjusted without stopping the exposure process in the exposure apparatus 100.
  • the optimized control parameter data is sent to the exposure apparatus 100 as analysis information (see FIG. 4) (Step 319).
  • the set value of the control parameter is updated to the value of the transmitted data, and in the future, the exposure process will continue under that control parameter.
  • the analysis process is terminated.
  • the analysis apparatus 600 in a series of processes for manufacturing a device on a wafer, data on the line width of a pattern formed on the wafer and Data related to the processing contents of the exposure equipment, that is, processing conditions such as exposure conditions and pattern design information, exposure amount, synchronization accuracy, and focus control errors are automatically analyzed during the execution of a series of processes. It becomes possible to do. This eliminates the need to perform test processing and eliminates the need to limit the parameters to be adjusted to the exposure amount and focus.
  • the analysis apparatus 600 performs the analysis only when the line width abnormality is confirmed, so that unnecessary analysis processing can be prevented from being performed.
  • the line width is abnormal if the difference between the measured line width at each sample point of the measurement shot and the design value exceeds the threshold even at one location. In this way, strict line width abnormality detection within the measurement shot becomes possible.
  • a statistical value related to the actual measurement value of the line width in the measurement shot is calculated, and the calculated statistical value is compared with a threshold value to detect the line width abnormality. You can rub it out. In this case, the influence of the measurement error included in the actual measurement value is reduced, and more accurate line width abnormality detection becomes possible.
  • an average value of the line width may be employed, or an index value indicating the variation in the line width (for example, standard deviation, so-called 3 ⁇ that is three times the standard deviation, variance, etc.) is employed. May be. It is also possible to adopt the sum of the average value and the index value indicating the variation (for example, the average value of the line width + 3 ⁇ , etc.).
  • a line width abnormality when a line width abnormality is detected, some measures are taken for a wafer in which a force line width abnormality is detected by optimizing the control parameters of the exposure apparatus 100. Is required. For example, for a wafer that has been confirmed to have a line width abnormality in most of the measurement shots, it is highly possible that a line width abnormality will occur even in the shot area, not in the measurement shot. It can be rejected and excluded from further processing. In addition, for a wafer with about one measurement shot that has been confirmed to have an abnormal line width,
  • a line width abnormality since it is considered that a line width abnormality has occurred locally, only the portion around the pattern where the line width is abnormal, for example, only the measurement shot, can be designated as a shot area to be excluded from the subsequent processing target.
  • the chip area including the circuit pattern can be excluded from subsequent processing in units of chips. Examples of such subsequent processing targets include probing processing and repair processing. In this way, it is possible to improve the processing efficiency by omitting those processes for the part where the problem has occurred.
  • wafers are processed in units of lots and a large number of line width anomalies occur continuously in a plurality of wafers, all the wafers in the lots may be rejected.
  • the processing states of various devices there is one determination level (threshold value) for line width abnormality, but it is also possible to provide a plurality of determination levels. In this way, it becomes possible to change the processing states of various devices to be executed thereafter according to the respective determination levels. For example, if two threshold values are set, and the deviation between the measured line width and the design value is in the middle of the two threshold values, only the control parameters of the exposure apparatus 100 are optimized and the pattern reject is performed. If the deviation between the measured line width and the design value exceeds a high threshold, both optimization of the control parameter and pattern rejection can be performed. In addition to this, it is possible to adjust the processing contents of the exposure apparatus 100, the CZD 310, the measuring instrument 800, and various devices of the device forming apparatus group 900 in stages.
  • the measuring instrument 800 pre-selects a measurement show pre-selected for each wafer.
  • the force used to measure the line width of only the line width The frequency of line width measurement may be increased or decreased according to the frequency of occurrence of abnormalities, and the distribution of line width measurement positions according to the distribution of abnormalities. May be changed (measurement of abnormalities is focused). For example, when the number of measurement shots where line width abnormality is confirmed increases, the number of measurement shots in the wafer can be increased, and when the number of measurement shots where line width abnormality is confirmed decreases. It is also possible to reduce the number of measurement shots.
  • the measurement of the line width abnormality may not be performed for every wafer, but may be performed every few sheets.
  • the line width measurement is performed every three wafers, and if there is no line width abnormality after that, the number of line width measurements is measured. It is also possible to measure every 10 wafers and measure the line width only for the wafer at the beginning of the lot. Of course, if a new line width abnormality occurs, it is of course necessary to increase the line width measurement frequency.
  • the analysis device 600 may notify the various processing devices of this as analysis information.
  • the force for optimizing the control parameter only when a no-turn abnormality is detected is not limited to this, and the control parameter is always optimized every several wafers. You may do it.
  • step 303 (FIG. 5) it is determined whether or not the force is the wafer to be optimized. Also in this case, as described above,
  • the number of wafers to be optimized can be increased or decreased according to the detection frequency of the pattern that is determined to have an abnormal line width.
  • the causal relationship between the processing content of the exposure apparatus 100 and the pattern line width on the wafer is mainly analyzed.
  • the exposure apparatus is not the only processing apparatus that affects the pattern line width.
  • uneven application of the resist applied on the wafer in CZD310 greatly affects the line width of the pattern to be formed. Therefore, it is possible to analyze the causal relationship between the pattern line width and other processing apparatuses other than just the exposure apparatus, and to identify whether the fluctuation factors of the line width are in the exposure apparatus or in other processing apparatuses. Is more desirable.
  • the variation factor of the size of the circuit pattern on the wafer is based on the degree of coincidence between the estimated value of the circuit pattern line width estimated from the processing state of the exposure apparatus and the measured value of the line width. Determine whether the exposure device is If it is determined that it is not a device, other processing devices are checked. This estimated value is estimated based on a table group (see FIG. 2) showing the relationship between the processing contents of the exposure apparatus 100 obtained in the past and the line width of the circuit pattern. This increases the reliability of the estimated line width.
  • the processing contents of the exposure apparatus include processing conditions (control errors in focus, exposure amount, and synchronization accuracy during scanning exposure) in addition to processing conditions such as exposure conditions and pattern design information. It is included.
  • a table showing the relationship between the processing state of the exposure apparatus and the line width of the circuit pattern is provided for each of a plurality of different set values of the processing. In this table, only sample values of the relationship between the processing content of the exposure apparatus and the line width of the circuit pattern are registered, but whatever value the processing content of the exposure apparatus takes, it is calculated by interpolation. An estimated value of the line width corresponding to the processing content can be calculated. In this way, the capacity of the memory for storing the table can be reduced, and the time required to obtain the estimated value of the pattern line width can be shortened compared to searching for a table having a large number of cells. Become. That is, table management becomes easy.
  • this table group may be provided not only for each exposure condition in the exposure apparatus but also for each processing result of another processing apparatus in addition to the exposure condition.
  • the film thickness of the resist applied by C / D 310 can be added as processing conditions similar to the exposure conditions.
  • the processing apparatus corresponding to such processing conditions is mainly a preprocessing apparatus that performs pre-exposure processing.
  • the pre-processing apparatus include a C ZD310 for applying a resist on a wafer and a measuring instrument 800 for measuring shot flatness.
  • the processing contents of the measuring device 800 include an error value included in the processing result.
  • the processing conditions of the post-processing apparatus that performs post-exposure processing can be added as processing conditions in the table.
  • measurement errors in the measuring instrument 800, PEB processing conditions (temperature uniformity, etc.) and development processing conditions in the CZD310 can be added as processing conditions, and the measuring object in the measuring instrument 800 is not a resist image but an etching image.
  • the processing result of the etching apparatus can be added as a processing condition.
  • the variation factor of the line width of the circuit pattern is specified from among them.
  • the statistical value of the control error which is a candidate for the variation factor during the transfer of the trace data force calculated, is compared with the specified value of the control error. It is specified as a variation factor of the line width.
  • moving average values and moving standard deviations of control errors can be adopted, but with regard to synchronization accuracy, the moving standard deviation representing the variation is more line width than the moving average value.
  • the moving standard deviation is adopted because the influence on the image is directly expressed.
  • a moving average may be adopted for the synchronization accuracy, and both the moving average and the moving standard deviation may be adopted for the synchronization accuracy and the exposure amount as well as the focus.
  • the statistical values of focus control error are Z average offset (moving average) and Z moving standard deviation, but SFQR and SFQD can also be used.
  • force by which measuring instrument 800 measures the shot flatness of the wafer before exposure is not limited to this.
  • the stage holding the wafer is kept horizontal (that is, without performing focus control), and is synchronously scanned in the same manner as scanning exposure, and then observed by the focus control system.
  • the shot flatness may be measured based on wafer surface fluctuations, and the gradient obtained by subtracting the wafer stage Z position and tilt amount from the focus trace during the previous scanning exposure is shot. You may make it measure as flatness data. Note that such a method for measuring shot flatness data is disclosed in detail in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2001-338870.
  • the Z average offset and Z movement standard deviation which are statistical values of the focus control error, are based on the shot flatness (device topography) standard.
  • the present invention is not limited to this. When calculating the control error, do not consider shot flatness.
  • the optimum value of the control parameter is calculated as adjustment information for adjusting the processing content specified as the variation factor of the nonturn size.
  • the relationship between the statistical value of the processing contents in the exposure tool and the line width of the pattern is shown.
  • various control parameters are adjusted so that the statistics of focus, exposure amount, and synchronization accuracy are close to 0.
  • the control parameter may be adjusted so that the influence on the line width of the pattern with respect to the processing content specified as is offset.
  • the above table group can be used to adjust the control parameters. That is, various statistics are not 0
  • the substrate processing system 101 is an analysis apparatus.
  • the analysis device 600 is used to analyze the processing contents of various processing devices that execute at least part of a series of processes on the wafer. Specifically, an abnormality detection of the pattern line width formed on the wafer, The device that causes the line width abnormality is identified, and the processing content that caused the line width abnormality is identified. For this reason, it is possible to improve throughput by omitting complicated processes such as sequentially setting each of a plurality of different processing conditions in the exposure apparatus, and performing test exposure each time, and adjusting line width fluctuations that can be adjusted. Since there is no limit on the number of factors, it is possible to make fine device adjustments so that more parameters can be adjusted, and the pattern line width accuracy is improved. As a result, rapid response to line width anomalies, etc. enables rapid parameter optimization and improves device manufacturing yield.
  • each processing apparatus such as the exposure apparatus 100 and the measuring instrument 800 may send the processing contents to the analysis apparatus 600.
  • the exposure apparatus 100 can output not only information related to the processing results but also information related to the processing conditions and the state during the processing to the outside of the apparatus.
  • each device of the measuring instrument 800, C / D 310, and device forming device group 900 can output not only their processing results but also information on processing conditions and processing states to the analysis device 600. It may be as follows.
  • the measuring instrument 800 can output data related to measurement conditions for pattern line width (illumination conditions, illumination wavelength, etc.) and data related to measurement conditions (for example, data related to measurement error bias and variation).
  • these processing conditions and processing states can be output during the period during which a series of processes are being executed. Analysis using this data can be performed quickly, and prompt response to line width anomalies, etc. becomes possible.
  • the analysis result of the analysis apparatus 600 is the analysis information as the analysis information even during the execution of a series of processes, including the exposure apparatus 100, the C / D 310, the measuring instrument 800, and the device forming apparatus group. Sent to 900.
  • Each device includes a receiving unit that receives the analysis information.
  • These pieces of analysis information include control parameter adjustment information for each device, and each device changes its control parameter setting value based on this adjustment information. In this way, it is possible to adjust the equipment even during the execution of a series of processes, and it is possible to respond quickly to line width deterioration.
  • the control parameters in the measuring instrument 800 include, for example, selection of a wafer to be measured and selection of a measurement shot. For example, in FIG. 4, eight shot areas on the outer edge of the wafer are selected as measurement shots. However, if it is determined that these shot areas are not suitable as measurement shots due to uneven application of resist, etc. The measurement shot can be changed. In a sense, it can be said that the frequency adjustment of the line width measurement described above is also a parameter adjustment of the measuring instrument 800.
  • the control parameters in CZD310 As for the data, for example, there is a parameter related to uneven application of resist on the wafer. For example, there are the rotation speed of the wafer, the dropping amount and dropping interval of the resist.
  • the analysis apparatus 600 may be incorporated in the measuring instrument 800, the exposure apparatus 100, or another processing apparatus.
  • the exposure apparatus 100, or another processing apparatus in which the analysis apparatus is incorporated as with the analysis apparatus 600, a series of processes are performed. Therefore, a transmission / reception interface for transmitting / receiving data to / from other devices is required.
  • the substrate processing system 101 is a system that appropriately performs line width management in the exposure apparatus 100 by cooperation between the exposure apparatus 100 and the measuring instrument 800 via the analysis apparatus 600. It was. Since they are connected in-line, the processes such as resist coating, pre-measurement, exposure, post-measurement, and development are performed in a short period of time, and the measurement results are presented and the analysis results are sent to each process. Since it can be reflected quickly, efficient line width management becomes possible.
  • the force for sending the set value data of the control parameters together with the various trace data from the exposure apparatus 100 to the analysis apparatus 600 does not need to be sent.
  • the analysis apparatus 600 calculates a change in the set value of the control parameter and sends it to the exposure apparatus 100, and the exposure apparatus 100 may change the set value of the control parameter by the change.
  • the trace data sent from the exposure apparatus 100 to the analysis apparatus 600 may be at least one of focus, synchronization accuracy, and exposure amount.
  • the trace data is not limited to the focus, the exposure amount, and the synchronization accuracy, and any processing data can be adopted as long as the processing state is related to the pattern line width.
  • the exposure conditions are not limited to the above, and any exposure conditions that affect the line width, pattern design conditions, synchronous control control conditions, and processing results of other processing devices can be specified. can do.
  • the statistical value of each control error is calculated by the force exposure apparatus 100 using the data acquired from the exposure apparatus 100 as each control trace data of the exposure amount Z synchronization accuracy Z focus.
  • the statistical value may be sent to the analysis device 600. In this case, it is not necessary to send the trace data to the analyzer 600.
  • a table is created for each process such as resist processing, development processing, and etching processing. If each processing condition is notified to the analyzer, more optimal line width management can be realized. In other words, it is possible to manage a table indicating the relationship between the processing state of various apparatuses other than the exposure apparatus and the line width, and analyze the line width using that table!
  • the analysis device 600 obtains information obtained from various processing devices regarding the processing contents that affect the line width, and controls the information so that the line width of the pattern is as designed. It can be regarded as a data management unit to be managed. That is, the substrate processing system 101 can be regarded as a system having a data management unit that shares and manages data of each device related to the line width. By managing data related to such comprehensive line widths, it is possible to make system adjustments with good balance across various devices when manufacturing devices.
  • the measuring instrument 800 is connected inline with the exposure apparatus 100 or the like.
  • the force measuring instrument is an offline measuring instrument that is not connected inline with the exposure apparatus 100 or the track 300. May be.
  • the pre-measurement device and the post-measurement device may be provided separately, or one of them may be off-line instead of the S-line.
  • the power of the exposure apparatus 100 as a step-and-scan type exposure apparatus is not limited to this, and a step-and-repeat type exposure apparatus or another type of exposure apparatus may be used.
  • the various apparatuses are not limited to those types.
  • the present invention is not limited to a semiconductor manufacturing process, and can be applied to a manufacturing process of a display including a liquid crystal display element.
  • the present invention can be applied to line width management.
  • the line width is not a line pattern such as a force box mark in which the line width of the line pattern is a management target.
  • the management target is the size of the pattern.
  • the analysis apparatus 600 is, for example, a PC. That is, the analysis processing in the analysis device 600 is realized by being executed by the analysis program power PC.
  • This analysis program can be installed on a PC via media as described above. You can download it to your PC via the Internet!
  • the analyzer 600 may be configured by hardware.
  • the analysis apparatus, processing apparatus, measurement apparatus, exposure apparatus, substrate processing system, analysis method, and program of the present invention are suitable for use in the device manufacturing process.

Abstract

 露光装置で露光され現像された基板上のパターンの線幅は、測定器で測定される。解析装置は、その線幅が異常であると判定した場合(ステップ303)には、その線幅の実測値とシミュレーション値との一致度に基づく線幅変動要因の装置の特定(ステップ307)、統計値に基づく線幅変動要因の特定(ステップ311)、パラメータの最適化(ステップ315、317)などを行う。これにより、デバイス製造工程において、その歩留まりが向上する。

Description

明 細 書
解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方 法及びプログラム
技術分野
[0001] 本発明は、解析装置、処理装置、測定装置、露光装置、基板処理システム、解析 方法及びプログラムに係り、さら〖こ詳しくは、デバイス製造のために供される物体上に 、デバイスパターンを形成するための一連のプロセスに関する情報を解析する解析 装置、該解析装置を備える処理装置、測定装置及び露光装置、前記各種装置を備 える基板処理システム、前記解析装置を用いて解析を行う解析方法、並びにデバイ ス製造のために供される物体上に、デバイスパターンを形成するための一連のプロ セスに関する情報をコンピュータに解析させるためのプログラムに関する。
背景技術
[0002] 従来より、半導体素子、液晶表示素子等の電子デバイスの製造工程においては、 半導体基板 (ウェハ)あるいは液晶表示基板 (ガラスプレート)などの感応基板上に形 成される回路パターン等の線幅が設計値力 ずれすぎないように、露光装置におい て線幅に大きな影響を及ぼす露光条件、例えばフォーカス (投影光学系の光軸方向 に関する投影光学系の像面と感応基板表面との位置関係)と、露光量とを変更しつ つ順次テスト露光を行 、、その露光結果から最適なフォーカス及び露光量を求めて いる。具体的には、フォーカスを所定ステップピッチで変更させつつ、各ステップで露 光量を所定範囲内で段階的に変化させて、感応基板上の異なる領域にテストパター ンを順次転写する。これにより、感応基板上には、フォーカスと露光量との少なくとも 一方が異なる条件下で転写された複数のテストパターンの転写像が形成される。そし て、例えば複数の転写像の検出結果を、フォーカスと露光量とを座標軸とする 2次元 座標系上にマトリクス状に並べ替えた結果に基づいて、最適なフォーカス及び露光 量を求める。
[0003] 例えば、従来の CD (Critical Dimension)管理にお 、ては、パターン線幅をフォー力 スと露光量の連続関数として捉え、テスト露光による各露光フィールドのクリティカル な線幅の測定結果に基づいてその連続関数を解析ソフトにより作成している。そして
、フォーカスと露光量とを座標軸とする 2次元座標平面内における連続関数から、許 容できる線幅となるフォーカス及び露光量の領域である 、わゆるプロセス ·ウィンドウ を確定し、パターン領域内の各地点のパターンごとに取得されるプロセス 'ウィンドウ の重複領域内のフォーカスと露光量の設定値を、実際の露光の際の設定値として選 択している。
[0004] 上述のような方法を用いれば、良好なパターン線幅を実現するフォーカスと露光量 を予め決めておくことはできる。し力しながら、プロセス実行中に、線幅変動要因の解 析ゃ線幅に関連するパラメータの最適化を行おうとする場合には、スループットの観 点からすれば、従来よりも解析及び最適化に要する時間を短くすることが求められる 。また、実際には、パターン線幅の変動要因は、フォーカスや露光量には限られない ため、より多くの変動要因を解析可能であることも求められる。
発明の開示
課題を解決するための手段
[0005] 本発明は、第 1の観点力もすると、デバイス製造のために供される物体上に、デバイ スパターンを形成するための、一連のプロセスに関する情報を解析する解析装置で あって、前記一連のプロセスの少なくとも一部を実行する処理装置により、前記一連 のプロセス実行中に行われる処理内容に関する情報を取得する取得装置を備え、前 記取得装置により取得される情報と、実測された前記物体上に形成されたパターン のサイズに関する情報とに基づいて、両者の因果関係を解析する解析装置である。
[0006] 本発明は、第 2の観点力 すると、デバイス製造のために供される複数の物体上に デバイスパターンを形成するための、一連のプロセスの少なくとも一部を実行する処 理装置において、前記一連のプロセスの少なくとも一部を、前記複数の物体上に順 次実行している途中で、前記パターンのサイズに関連する処理内容に関する情報を 出力する処理装置である。
[0007] 本発明は、第 3の観点力 すると、物体上に形成されたパターンのサイズを測定す る測定装置において、前記パターンのサイズの測定条件に関する情報と、その測定 状態に関する情報を出力可能である測定装置である。 [0008] 本発明は、第 4の観点力 すると、デバイス製造のために供される物体上にデバィ スパターンを形成するための、一連のプロセスが実行されている期間の途中で、前記 物体上に形成されたパターンのサイズを測定する測定装置において、前記パターン のサイズの測定条件に関する情報と、その測定状態に関する情報とを、前記一連の プロセスの実行中に出力可能である測定装置である。
[0009] 本発明は、第 5の観点力 すると、物体上に形成されたパターンのサイズを測定す る測定装置において、前記物体上に前記パターンが形成されたときの処理内容に関 する情報を、装置外部に要求する測定装置である。
[0010] 本発明は、第 6の観点力 すると、デバイス製造のために供される複数の物体上に 、デバイスパターンを形成するための一連のプロセスが実行されている期間の途中 で、前記物体上に形成されたパターンのサイズを測定する測定装置において、前記 物体上に前記パターンが形成されたときの処理内容に関する情報を、前記一連のプ 口セスの実行中に、装置外部に要求する測定装置である。
[0011] 本発明は、第 7の観点力 すると、物体上に形成されたパターンのサイズを測定す る測定装置であって、前記物体上に前記パターンが形成されたときの処理内容に関 する情報を、装置外部から受信する受信部を有する測定装置である。
[0012] 本発明は、第 8の観点力 すると、デバイス製造のために供される複数の物体上に デバイスパターンを形成するための、一連のプロセスが実行されている期間の途中 で、前記物体上に形成されたパターンのサイズを測定する測定装置であって、前記 物体上に前記パターンが形成されたときの処理内容に関する情報を、前記一連のプ 口セスの実行中に、装置外部から受信する受信部を有する測定装置である。
[0013] 本発明は、第 9の観点力 すると、物体上にパターンを転写する露光装置において 、前記物体上への前記パターンの転写条件に関する情報と、前記物体上への前記 パターンの転写状態に関する情報とを出力可能である露光装置である。
[0014] 本発明は、第 10の観点力もすると、デバイス製造のために供される複数の物体上 にデバイスパターンを転写する露光装置にぉ 、て、前記物体上への前記パターンの 転写条件に関する情報と、前記物体上への前記パターンの転写状態に関する情報 とを、前記複数の物体上に前記転写を順次実行している途中で出力可能である露光 装置である。
[0015] 本発明は、第 11の観点力 すると、物体上にパターンを形成する一連のプロセスを 実行する基板処理システムにお ヽて、前記一連のプロセスを行う複数の処理装置各 々において前記パターンのサイズに影響を与える処理内容に関する情報を統括管 理するデータ管理部を有することを特徴とする基板処理システムである。
[0016] 本発明は、第 12の観点力もすると、デバイス製造のために供される物体上にデバイ スパターンを形成するための、一連のプロセスに関する情報をコンピュータに解析さ せるためのプログラムであって、前記一連のプロセスの少なくとも一部を実行する処 理装置により、前記一連のプロセス実行中に行われる処理内容に関する情報と、実 測された前記物体上に形成されたパターンのサイズに関する情報とに基づいて、両 者の因果関係を解析する手順をコンピュータに実行させるプログラムである。
[0017] これらによれば、一連のプロセスにおいて、パターンのサイズに関する情報と処理 装置の処理内容に関する情報との因果関係を、一連のプロセスの実行中に自動的 に解析することが可能となるので、複数枚のウェハの露光処理中に露光パターンの 線幅精度が悪化しても、迅速に要因分析、対処ができ、生産効率を落とさずに良品 率を上げることができる。また、必ずしもテスト処理を行う必要がなくなるうえ、調整さ れるパラメータを限定する必要がなくなる。
図面の簡単な説明
[0018] [図 1]本発明の一実施形態に係る基板処理システムの概略的な構成を示す図である [図 2]テーブルの一例を示す図である。
[図 3]基板処理システムの処理の流れを示すフローチャートである。
[図 4]基板処理システムのデータフローである。
[図 5]解析装置の処理を示すフローチャートである。
発明を実施するための最良の形態
[0019] 以下、本発明の一実施形態を図 1〜図 5に基づいて説明する。図 1には、本発明の 一実施形態に係る基板処理システムの概略的な構成が示されて 、る。この基板処理 システム 101は、半導体ウェハを処理し、マイクロデバイスを製造するシステムである 。図 1に示されるように、この基板処理システム 101は、露光装置 100と、その露光装 置 100に隣接して配置されたトラック 300と、管理コントローラ 500と、解析装置 600と 、ホストシステム 700と、デバイス形成装置群 900とを備えている。
[0020] 露光装置 100、トラック 300は、相互にインライン接続されている。ここでのインライ ン接続とは、装置間及び各装置内の処理ユニット間を、ロボットアームゃスライダ等の ウェハを自動搬送する搬送装置を介して接続することを意味する。このインライン接 続により、露光装置 100、トラック 300の組合せを 1つの基板処理装置とみなすことも できる。なお、図 1では、紙面の都合上、基板処理装置(100、 300)が 1つだけしか 図示されていないが、実際には、基板処理システム 101には、複数の基板処理装置 が設置されている。すなわち、基板処理システム 101においては、露光装置 100とト ラック 300とが複数台設けられている。各基板処理装置(100、 300)、デバイス形成 装置群 900は、温度及び湿度が管理されたクリーンルーム内に設置されている。また 、各装置の間では、所定の通信ネットワーク(例えば LAN : Local Area Network)を 介して、データ通信を行うことができるようになって!/、る。
[0021] 基板処理装置(100、 300)においては、ウェハは複数枚 (例えば 25枚又は 50枚) を 1単位(ロットという)として処理される。基板処理システム 101においては、ウェハは 1ロットを基本単位として処理され製品化されている。
[0022] 露光装置 100は、露光用照明光を射出する照明系、その照明光により照明される 回路パターン等が形成されたレチクルを保持するステージ、投影光学系、露光対象 となるウェハを保持するステージ及びこれらの制御系等を備えて 、る。この露光装置 100は、露光用照明光に対し、上記各ステージを駆動してレチクルとウェハとを相対 同期走査と、ウェハのステッピングを繰り返すことにより、レチクルの回路パターンをゥ ェハ上の複数の異なるショット領域に転写している。すなわち、露光装置 100は、走 查露光型の露光装置である。露光装置 100では、照明光の強度 (露光量)を制御す る露光量制御系と、両ステージの同期制御、投影光学系の焦点深度内にウェハ面を 一致させるオートフォーカス Zレべリング制御(以下、単に、フォーカス制御という)な どを行うステージ制御系が構築されている。露光量制御系は、露光量を計測可能な 各種露光量センサの検出値に基づいて、露光量がその目標値に一致するようなフィ ードバック制御を行っている。ステージ制御系は、ステージの位置を計測する干渉計 の計測値に基づいてフィードバック制御を行うことにより、両ステージの同期制御を実 現している。露光装置 looには、ウェハ面のフォーカス Zレべリングずれを検出する 複数検出点を有する多点 AF (オートフォーカス)センサが設けられて 、る。ステージ 制御系は、この多点 AFセンサの複数検出点のうち、例えば 9個の検出点(9チャンネ ル)で検出された露光領域付近のウェハ面を、投影光学系の像面に一致させるよう なフィードバック制御を行うことにより、フォーカス制御を実現している。なお、露光装 置 100においては、両ステージの同期制御に関連する 2次元座標系を XY座標系( 同期走査方向を Y軸としている)とし、投影光学系の光軸と平行な座標軸を Zとして、 XYZ座標系の下でステージ制御を行っている。以下では、ステージ制御系を、同期 制御系とフォーカス制御系とに分けて説明する。
[0023] 露光装置 100では、上記各制御系の動作を決定するための制御パラメータが設定 可能となっている。このような制御パラメータは、その設定値を変更する際に、その最 適値を求めるためにプロセスをー且停止して装置の調整が必要となる調整系パラメ ータと、装置調整を必要としない非調整系パラメータとに大別される。
[0024] 調整系パラメータの代表例としては、露光量制御系関連では、露光量を検出する 露光量センサの調整パラメータや、ウェハ面上の照明光の強度を計測する照度計測 センサの調整パラメータなどがある。また、同期制御系関連では、ステージの位置測 定用の干渉計力 のレーザービームを反射するためにウェハゃレチクルを保持する ステージ上に設けられた移動鏡曲がり補正用の補正関数の係数値などのパラメータ や、フィードバック制御の位置ループゲイン、速度ループゲイン、積分時定数などが ある。また、フォーカス制御系関連では、露光時のウェハ面と投影レンズ像面とを一 致させる際のフォーカス制御のオフセット調整値であるフォーカスオフセット、露光時 のウェハ面が投影レンズ像面と一致 (平行)させるためのレべリング調整パラメータ、 多点 AFセンサの個々の検出点のセンサである位置検出素子(PSD)のリニアリティ、 センサ間オフセット、各センサの検出再現性、チャンネル間オフセット、ウェハ上への AFビーム照射位置 (すなわち検出点)、その他 AF面補正などに関連するパラメータ などがある。これらのパラメータの値は、いずれも装置のキャリブレーションや試運転 によって調整する必要があるものである。
[0025] 一方、非調整系パラメータの代表例としては、露光量制御系関連では、例えば、照 明系における NDフィルタの選択に関するパラメータや、露光量目標値がある。また、 同期制御系関連では、例えば、走査 (スキャン)速度などがある。また、フォーカス制 御系関連では、例えば、 9チャンネル分のフォーカスセンサの選択状態、後述するフ オーカス段差補正マップ関連のパラメータ、フォーカスオフセットの微調整量、ウェハ 外縁のエッジショットにおけるスキャン方向などがある。これらのパラメータの設定値 は、 、ずれも装置のキャリブレーションを行わずに値を変更することが可能なパラメ一 タであり、露光レシピによって指定されているものが多い。なお、 NDフィルタについて は、あるウェハに対する露光開始時に、露光量目標値を適当に(例えば最小に)設 定した状態で 1回だけ行われる平均パワーチェックの結果により選択される。また、こ の NDフィルタの選択によっては、スキャン速度もある程度微調整される。
[0026] ウェハ上に転写形成される回路パターンの線幅は、露光量、同期精度、フォーカス の各制御誤差により設計値からずれる。そこで、露光装置 100では、露光量制御系 力 得られる露光量誤差に関連する制御量の時系列データ (露光量トレースデータ) 、同期制御系から得られる同期精度誤差に関連する制御量の時系列データ(同期精 度トレースデータ)、フォーカス制御系から得られるフォーカス誤差に関連する制御量 の時系列データ(フォーカストレースデータ)を口ギングしている。これらのトレースデ ータは、後述する解析装置 600での解析に利用される。
[0027] なお、露光装置 100には、ウェハを保持するステージが 2台設けられて 、る。続け て処理されるウェハは、両ステージに交互にロードされて順次露光される。このように すれば、一方のステージに保持されたウェハに対する露光を行っている最中に、他 方のステージ上にウェハをロードし、ァライメントなどを行っておくことができるので、 1 台のステージでウェハ交換→ァライメント→露光を繰り返し行うよりもスループットが向 上する。図 1では、一方のステージに保持されたウェハに対し走査露光を行う部分を 、処理部 1として示しており、他方のステージに保持されたウェハに対し走査露光を 行う部分を、処理部 2として示している。
[0028] トラック 300には、レジスト塗布及び現像を行うコータ 'デベロツバ(CZD) 310と各 種測定を行う測定器 800とが設けられている。この CZD310及び測定器 800におい ても処理部 1、 2が設けられており、処理時間の短縮が実現されている。
[0029] 測定器 800は、露光装置 100でのウェハの露光前後(すなわち、事前、事後)にお いて、そのウェハに対する所定の測定を行う。測定器 800は、露光前 (事前)のゥェ ハ上の前層の各ショット領域に形成された回路パターン等によって生じた個々のゥェ ハ面の表面形状(凹凸)であるいわゆるショットフラットネス (デバイストポグラフィ、フォ 一カス段差ともいう)を測定する。測定器 800には、例えば、露光装置 100とマツチン グのとれた AFセンサが設けられており、これにより、ショットフラットネスが測定される。 また、測定器 800は、露光装置 100で転写され CZD310で現像された露光後(事後 )のウェハ上の回路パターン等の線幅も測定可能となって 、る。
[0030] 解析装置 600は、露光装置 100、トラック 300とは独立して動作する装置である。解 析装置 600は、各種装置力も各種データ (例えばその装置の処理内容)を収集し、ゥ ェハに対する一連のプロセスに関するデータの解析を行う。このような解析装置 600 を実現するハードウェアとしては、例えばパーソナルコンピュータ(以下、「PC」と略述 する)を採用することができる。この場合、解析処理は、解析装置 600の CPU (不図 示)で実行される解析プログラムの実行により実現される。この解析プログラムは、 CD ROMなどのメディア(情報記録媒体)により供給され、 PCにインストールされた状 態で実行される。
[0031] 解析装置 600は、ウェハ上のある地点にパターンが転写された際の露光量、同期 精度、フォーカスの制御誤差に基づいて、その地点に転写形成されたパターンの線 幅を推定することができる。解析装置 600のメモリ(不図示)には、パターンの線幅と、 露光量、同期精度、フォーカスの各制御誤差との関係を示すテーブル群が格納され ている。図 2には、このテーブル群の一例が模式的に示されている。図 2に示されるよ うに、このテーブル群は、インデックステーブル 51と、 n個のテーブル群 52
1〜52とか n ら成る。インデックステーブル 51には、露光量の制御誤差 (露光量誤差)の代表値と して—1. 0〜1. Omj/cm2のうちの 5つの代表値が指定されており、同期精度の制 御誤差(同期精度誤差)の代表値として 0. 00-0. 30 mのうちの 4つの代表値が 指定されている。図 2のインデックステーブル 51では、露光量誤差としては所定期間 内の移動平均が採用され、同期精度誤差としては所定期間内の移動標準偏差が採 用されている。いずれも線幅への影響度が高い統計値が採用されている。ここで、所 定期間とは、両ステージの相対走査によりスリット状の露光領域力 ウェハ W上のある 地点に到達して力 抜けるまでの期間である。
[0032] インデックステーブル 51の各セルには、各代表値の組合せに対応するテーブル群 52 (i= l〜n、nは例えば 20)のテーブル名(T 〜T )のいずれかが登録されている i 11 54
。各テーブル群 52には、それぞれフォーカスの制御誤差の統計値としての Z平均ォ フセット Z 、 Z移動標準偏差 Z と、線幅値との関係を示す複数のテーブルが用
MEAN SD
意されている。ここで、 Z とは、上記所定期間(露光スリット通過期間)内のフォー
MEAN
カスの制御誤差の移動平均値であり、 Z とは、上記所定期間内のフォーカスの制
SD
御誤差の移動標準偏差である。より厳密には、 Z平均オフセット Z 、 Z移動標準偏
MEAN
差 Z は、露光スリットがそのパターンの部分を通過する間の、ウェハ面のデバイスト SD
ポグラフィを基準とするフォーカス目標位置力 のウェハ面の z方向及び傾斜方向の ずれ、すなわちそれらの方向の総合的なフォーカス制御誤差の移動平均及び移動 標準偏差である。なお、同じ Z 、 Z
MEAN MSDであってもそのときの線幅値 (CD値)は、像 高(走査方向に直交する座標軸方向)ごとに異なるため、各テーブル群 52では、像 高の幾つかの代表値 (f〜f )ごとにテーブルが用意されている。
0
[0033] 解析装置 600は、露光装置 100から取得される露光量トレースデータ、同期精度ト レースデータ、フォーカストレースデータに基づいて、ウェハ W上のある地点(サンプ ル地点)でのそれぞれの制御誤差の統計値を算出する。そして、解析装置 600は、 インデックステーブル 51を参照し、露光量誤差及び同期精度誤差に基づいて、それ らの値に近い代表値に対応するテーブル群を、テーブル群 52〜52 (テーブル名 T
1 n 1
〜T )の中から選択する。例えば、露光量誤差が 0. 7で、同期精度誤差が 0. 00
1 54
5であったとすると、その値の近傍の代表値の組合せに対応するセルに登録された 4 つのテープノレ群 52、 52、 52、 52 (テーブル名 Τ 、 Τ 、 Τ 、 Τ )カ選択されるよう
1 2 5 6 11 12 21 22
になる。
[0034] 4つのテーブル群が選択された場合の CD値の算出方法について説明する。前提 として、選択されたテーブル群に対応する露光量誤差の代表値のうち、小さい方を露 光量誤差最小値と呼び、大きい方を露光量誤差最大値と呼ぶ。また、選択されたテ 一ブル群に対応する同期精度誤差の代表値のうち、小さい方を同期精度誤差最良 値と呼び、大きい方を同期精度誤差最悪値と呼ぶ。解析装置 600は、選択された 4 つのテーブル群の中から、ァライメントマークのショット内 X座標に対応する像高 f (k
k
= 0〜M)のテーブルを参照し、以下に示される 4つのテーブルを読み出す。ここで、 k=0は像高 0、すなわち光軸上であることを意味する。
(1)露光量誤差最小値と同期精度誤差最良値でのテーブル群の像高 f
kのテーブル
(2)露光量誤差最小値と同期精度誤差最悪値でのテーブル群の像高 fのテーブル
k
2
(3)露光量誤差最大値と同期精度誤差最良値でのテーブル群の像高 fのテーブル
k
3
(4)露光量誤差最大値と同期精度誤差最悪値でのテーブル群の像高 f
kのテーブル
4
まず、解析装置 600は、テーブル 1、 2を参照して、 Z 、 Z に対応する CD値を
MEAN SD
読み出す。そして、同期精度誤差最悪値と同期精度誤差最良値との間を内分する同 期精度誤差の、その内分比に基づく 1次補間により、テーブル 1、 2から読み出された CD値から、その同期精度誤差に対応する CD値を算出する。より具体的には、 CDと 同期精度誤差とを各座標軸とする 2次元面内における 2つのテーブル 1、 2からそれ ぞれ読み出された 2つの CD値、その 2つの CD値に対応する点を両端とする直線の 切片と傾き (すなわち、直線の式)を求め、同期精度誤差に対応するその直線上の点 の CD値を、その同期精度誤差に対応する CD値として求める。同様に、テーブル 3、 4を参照して、 Z 、 Z に対応する CD値を読み出す。そして、同期精度誤差最悪
MEAN MSD
値と同期精度誤差最良値との間を内分する同期精度誤差の値のその内分比に基づ く 1次補間により、テーブル 3、 4から読み出された CD値から、その同期精度誤差に 対応する CD値を算出する。続いて、算出された 2つの CD値を、露光量誤差最小値 と露光量誤差最大値との間を内分する露光量誤差の値の、その内分比に基づく 1次 補間により、その露光量の制御誤差に対応する CD値を算出する。この CD値が、こ のサンプル地点における CD値となる。上記補間は、露光量誤差又は同期精度誤差 のいずれか一方の値が代表値に等しぐ 4つのテーブルでなく 2つのテーブルが選 択された場合にも適用されるのは勿論である。
[0036] ところで、このテーブルを用いた線幅の推定に先立って、テーブルに CD値を予め 登録しておく必要がある。この CD値は、一連のプロセスの実行前に、露光装置 100 及び測定器 800から得られる情報に基づいて登録される。まず、露光装置 100に、 所定の露光条件を設定した状態で走査露光を行ってテストウェハにテストパターンを 転写させ、そのときの露光量トレースデータ、同期精度トレースデータ、フォーカストレ ースデータを取得させる。そして、テストパターンが転写されたテストウェハを CZD3 10に現像させ、測定器 800にテストパターンの線幅を測定させる。そして、各種トレ ースデータ及び設定されている露光条件に関するデータと、線幅の測定結果とを、 解析装置 600に転送させる。
[0037] 解析装置 600は、各種トレースデータに基づ 、て、線幅が測定されたテストパター ンが転写されたサンプル点での露光量、同期精度、フォーカスの制御誤差の統計値 を算出する。次に、解析装置 600は、テーブルに設定されている各種制御誤差の代 表値を基準とする所定の範囲(すなわちテーブル内のセル)毎に、測定結果をダル ープ分けする。そして、同じグループに属する線幅の測定結果の平均値を、そのセ ルの CD値としてテーブルに登録する。なお、登録される CD値は、測定器 800の測 定結果に基づくものでなぐ SEMによる測定された値又は OCD法等により測定され た値に基づくものであってもよいし、実際にテストウェハを用いず、テストパターンの 空間像を計測する空間像センサを代わりに設置し、その空間像センサによって計測 されるテストパターンの空間像から求められた空間像シミュレーションの算出値であつ てもよい。
[0038] なお、露光量誤差、同期精度誤差、フォーカス誤差が全く同じであっても、 CD値は 、露光装置 100の露光条件、転写されるパターンの設計条件によって異なるようにな る。そのため、テーブル群は、露光条件、パターン設計条件ごとに用意される。このよ うに、テーブル群については、露光条件、パターン設計条件、露光量誤差、同期精 度誤差、フォーカス誤差をキーとして、 CD値の推定値を探索できるようにデータべ一 ス化しておく必要がある。なお、露光条件としては、露光波長、投影光学系 NA、照 明 NA、照明 σ、照明種類、焦点深度などがあり、パターンの設計条件としては、設 計線幅(例えば 130nm)、パターン種類 (孤立線やライン ·アンド ·スペース ·パターン )などがある。これらの露光条件、パターン設計条件と、パターン線幅との関係や、テ 一ブルにおける像高などの諸条件の設定方法については、例えば特開 2001— 338 870号公報などに詳細に開示されている。
[0039] 管理コントローラ 500は、露光装置 100で行われる露光工程を制御.管理しており、 露光装置 100のスケジューリングを管理している。また、ホストシステム 700は、基板 処理システム 101全体を統括管理する。デバイス形成装置群 900には、ウェハ上に 薄膜の生成を行う成膜装置(CVD (Chemical Vapor Deposition)装置) 910、エッチ ングを行うエッチング装置 920、化学的機械的研磨を行 、ウェハを平坦化する処理 を行う CMP (Chemical Mechanical Polishing)装置 930、及びウェハを酸化させたりィ オン (不純物)を注入したりする酸化'イオン注入装置 940などが含まれる。 CVD装 置 910、エッチング装置 920、 CMP装置 930及び酸化'イオン注入装置 940にも、 2 つの処理部(処理部 1、 2)が設けられており、スループットの向上が図られている。ま た、 CVD装置 910、エッチング装置 920、 CMP装置 930及び酸化'イオン注入装置 940も、露光装置 100などと同様に複数台設けられており、相互間でウェハを搬送可 能とするための搬送経路が設けられている。デバイス形成装置群 900には、この他、 ウェハのプロ一ビング処理、リペア処理、ダイシング処理、パッケージング処理、ボン デイング処理などを行う装置も含まれて 、る。
[0040] 次に、基板処理システム 101における一連のプロセスの流れについて説明する。図 3には、このプロセスのフローチャートが示され、図 4には、この一連のプロセスにおけ る繰り返し工程に係る部分のウェハの流れとデータの流れが示されて 、る。この基板 処理システム 101の一連のプロセスは、ホストシステム 700及び管理コントローラ 500 によってスケジューリングされ管理されている。上述したようにウェハはロット単位で処 理される力 図 3、図 4はともに、 1枚のウェハに対する一連の処理となっている。実際 には、ロット単位で、ウェハ毎に、図 3、図 4に示される処理が繰り返されることになる。
[0041] 図 3、図 4に示されるように、まず、 CVD装置 910においてウェハ上に膜を生成し( ステップ 201)、そのウェハを C/D310に搬送し、 C/D310においてそのウェハ上 にレジストを塗布する (ステップ 202)。次に、ウェハを、測定器 800に搬送し、測定器 800において、ウェハ上に、既に形成された前層の複数のショット領域のうち、計測 対象として選択されたショット領域 (以下、計測ショットとする)について、ショットフラッ トネス(ショット領域のフォーカス段差)を測定する(ステップ 203)。この計測ショットの 数及び配置は、任意のものとすることができる力 例えば、図 4に示されるように、ゥェ ハ外周部の 8ショットとすることができる。測定器 800の測定結果 (すなわち計測ショッ トのショットフラットネス)は、露光装置 100に送られる。この測定結果は、露光装置 10 0における走査露光時のフォーカス制御に用いられる。
[0042] 続いて、ウェハを露光装置 100に搬送し、露光装置 100にてレチクル上の回路パタ ーンをウェハ上に転写する (ステップ 205)。このとき、露光装置 100では、計測ショッ ト露光中の上記露光量、同期精度、フォーカストレースデータをモニタリングし、内部 のメモリに記憶しておく。次に、ウェハを CZDに搬送して、 CZD310にて現像を行う (ステップ 207)。このレジスト像の線幅は、測定器 800で測定される (ステップ 209)。 測定器 800の測定結果 (線幅データ)は、解析装置 600に送られる。解析装置 600 は、露光装置 100又は測定器 800からの情報に基づいて線幅に関する解析を行う( ステップ 211)。図 4に示されるように、解析装置 600は、解析の経過、必要に応じて、 測定器 800や露光装置 100に対し、各種データの転送要求を発したり、解析結果に 応じて各装置に解析情報を発する。なお、この解析装置 600における解析処理及び データの流れの詳細については後述する。また、解析装置 600が各種データを取得 後、露光装置 100は、内部に記憶しているトレースデータ等を速やかに削除するよう にしてもよい。
[0043] 一方、ウェハは、測定器 800からデバイス形成装置群 900に含まれるエッチング装 置 920に搬送され、エッチング装置 920においてエッチングを行い、不純物拡散、ァ ルミ蒸着配線処理、 CVD装置 910にて成膜、 CMP装置 930にて平坦化、酸化'ィ オン注入装置 94でのイオン注入などを必要に応じて行う(ステップ 213)。そして、全 工程が完了し、ウェハ上にすべてのパターンが形成された力否かを、ホストシステム 7 00において判断する(ステップ 215)。この判断が否定されればステップ 201に戻り、 肯定されればステップ 217に進む。このように、成膜'レジスト塗布〜エッチング等と いう一連のプロセスが工程数分繰り返し実行されることにより、ウェハ上に回路パター ンが積層されていき、半導体デバイスが形成される。
[0044] 繰り返し工程完了後、プロ一ビング処理 (ステップ 217)、リペア処理 (ステップ 219) 力 デバイス形成装置群 900において実行される。このステップ 219において、メモリ 不良検出時は、例えば、冗長回路へ置換する処理が行われる。解析装置 600は、検 出した線幅の異常が発生した箇所などの情報を、プロ一ビング処理、リペア処理を行 う装置に送るようにすることもできる。不図示の検査装置では、ウェハ上の線幅異常 が発生した箇所については、チップ単位で、プロ一ビング処理、リペア処理の処理対 象から除外することができる。その後、ダイシング処理 (ステップ 221)、パッケージン グ処理、ボンディング処理 (ステップ 223)が実行され、最終的に製品チップが完成す る。なお、ステップ 209の事後測定処理は、ステップ 213のエッチング後に行うように してもよい。この場合、ウェハのエッチング像に対し線幅測定が行われる。
[0045] 次に、ステップ 211における解析処理について詳細に説明する。図 5には、解析装 置 600における解析処理のフローチャートが示されている。図 5に示されるように、ま ず、測定器 800から既に送られて 、る計測ショットの各サンプル点における線幅デー タを読み込み (ステップ 301)、線幅が異常であるか否かを判定する (ステップ 303)。 この判定は、例えば実測線幅と設計値との差を、予め定められた閾値と比較すること によって行われる。ここで、線幅が正常であると判定された場合には、解析処理をそ のまま終了し、線幅が異常であると判定された場合にはステップ 305に進む。ステツ プ 305では、フォーカストレースデータ、同期精度トレースデータ、露光量トレースデ ータ、及びウェハのフラットネスデータ、制御パラメータの設定値を露光装置 100から ロードし、それらのデータに基づいて、フォーカスの制御誤差の統計値である Z
MEAN、 z 、同期精度誤差 (移動標準偏差)、露光量誤差 (移動平均)を算出し、前述した SD
テーブル群を参照し、同期精度誤差及び露光量誤差、 Z
MEAN、 Z とに対応する線幅 MSD
の推定値を算出する。次に、線幅の推定値と実測値の傾向が一致するかを判定し、 それらの整合性をチェックする (ステップ 307)。一致しない場合は、露光処理以外( 成膜 'レジスト処理、事前測定処理、現像処理、事後測定処理など)に線幅異常の要 因があるとみなすことができる。この場合には、ステップ 309に進んで、 CZD310、 デバイス形成装置群 900の各装置などに解析情報(図 4参照)としてプロセスの停止 要求を送って、各種装置の運用をー且停止させ、オペレータが他の装置のチェック を行える状態とする。オペレータは、露光装置 100以外の装置の点検を行い、線幅 異常の要因を調査する。一方、ステップ 307において、実測値と推定値とがほぼ一致 し、判断が肯定された場合には、線幅異常の原因が露光装置 100であるものと判断 して、ステップ 311に進む。
[0046] ステップ 311では、上記ステップ 305で算出したフォーカス Z同期精度 Z露光量の 各制御誤差、デバイス段差が規格外であるかを判定する。ここで、例えばフォーカス に関する統計値が規格をはずれている場合には、線幅異常の要因としてフォーカス 制御又はショットフラットネスが含まれていると判定する。また、同期誤差に関する統 計値が規格外である場合には、線幅異常の要因として同期誤差が含まれていると判 定する。また、露光量に関する統計値が規格外である場合には、線幅異常の要因と して露光量誤差が含まれていると判定する。これらのうち少なくとも 1つの統計値が規 格 (露光装置のスペック)外である場合には、判断は肯定され、ステップ 315に進む。 ステップ 315では、線幅異常の要因として特定された制御誤差に関連する調整系パ ラメータ及び制御系パラメータを選定し、選定されたパラメータの最適化を行う。
[0047] このパラメータの最適化にぉ 、ては、図 2に示されるテーブルを参照し、 V、ろ 、ろな フォーカス Z露光量 Z同期精度の各制御誤差の組合せで、シミュレーションを実行 することにより、各制御誤差を 0に近づけるように制御パラメータを調整すればよい。 各制御パラメータが、フォーカス Z露光量 Z同期精度の各制御誤差との関係は予め 既知であるので、各制御誤差を 0に近づけるための制御パラメータの設定値を割り出 すことができる。
[0048] 一方、ステップ 311で、各制御誤差の統計値がすべて規格内である場合には、判 定は否定され、ステップ 313に進む。ステップ 313では、各制御誤差の統計値が規 格内であっても、制御パラメータの最適化を行うか否かを判定する。この判定が否定 されれば解析処理を終了し、肯定されればステップ 317に進む。ステップ 317では、 制御パラメータのうち非調整系のパラメータのみを最適化する(調整する)。ここでも、 上記ステップ 315と同様にして、各制御誤差を 0に近づけるように制御パラメータ (た だし、非調整系パラメータのみ)を調整する。このようにすれば、露光装置 100におけ る露光処理を停止せずにパターン線幅の調整が可能となる。
[0049] ステップ 315、 317実行後、最適化された制御パラメータのデータを、解析情報(図 4参照)として、露光装置 100に送る (ステップ 319)。露光装置 100では、制御パラメ ータの設定値力 送られたデータの値に更新され、今後は、その制御パラメータの下 で露光処理が続行されることになる。ステップ 319実行後は、解析処理を終了する。
[0050] 以上詳細に述べたように、本実施形態に係る解析装置 600によれば、ウェハ上に デバイスを製造するための一連のプロセスにおいて、ウェハ上に形成されるパターン の線幅に関するデータと露光装置の処理内容に関するデータ、すなわち露光条件 やパターン設計情報などの処理条件、露光量、同期精度、フォーカスの各制御誤差 などとの因果関係を、一連のプロセスの実行中に、自動的に解析することが可能とな る。これにより、テスト処理を行う必要がなくなるうえ、調整するパラメータを、露光量や フォーカスなどに限定する必要がなくなる。
[0051] また、本実施形態によれば、解析装置 600では、線幅異常が確認された場合にの み解析を行うので、不必要な解析処理を行わないようにすることができる。本実施形 態では、計測ショットの各サンプル地点での線幅実測値と設計値との差が 1箇所でも 閾値を超えれば、線幅異常であるとした。このようにすれば、計測ショット内における 厳格な線幅異常検出が可能となる。
[0052] し力しながら、線幅異常検出においては、計測ショットにおける線幅の実測値に関 する統計値を算出し、算出された統計値を閾値と比較することにより、線幅異常を検 出するよう〖こしてもよい。この場合には、実測値に含まれる測定誤差の影響が低減さ れ、より的確な線幅異常検出が可能となる。このような統計値としては、線幅の平均値 を採用してもよいし、線幅のばらつきを示す指標値 (例えば標準偏差、標準偏差の 3 倍のいわゆる 3 σ、分散など)を採用しても良い。また、平均値とばらつきを示す指標 値との和(例えば線幅の平均値 + 3 σなど)を採用してもよ!/、。
[0053] また、本実施形態によれば、線幅異常が検出された場合には、露光装置 100の制 御パラメータを最適化した力 線幅異常が検出されたウェハに対しても何らかの措置 が必要となる。例えば、計測ショットのほとんどに線幅異常が確認されたウェハについ ては、計測ショットでな 、ショット領域にっ 、ても線幅異常が発生して 、る可能性が高 いので、ウェハそのものをリジェクトし、その後の処理対象から除外することができる。 また、線幅異常が確認された計測ショットが例えば 1つ程度であるウェハについては
、局所的に線幅異常が発生したものと考えられるので、線幅異常となったパターン周 辺の部分、例えばその計測ショットのみ、その後の処理対象から除外するショット領域 として指定することもできる。また、 1つのショット領域内に複数のチップ領域が含まれ ている場合には、その回路パターンを含むチップ領域を、チップ単位で、その後の処 理対象から除外することができる。このようなその後の処理対象としては、例えば、プ ロービング処理、リペア処理などがある。このようにすれば、不具合が発生した部分に 対してそれらの処理を省略して、処理効率を向上させることができる。なお、ウェハを ロット単位で処理して 、く中で、線幅異常が複数のウェハで連続して多数発生した場 合には、そのロットのウェハをすベてリジェクトするようにしてもよい。このように、線幅 異常が検出された回路パターンが含まれるチップ領域、ショット領域、ウェハ、ロットな どを、その後の処理から除外することにより、その処理の効率を向上させることができ る。なお、このようなリジェクトに関する情報も図 4に示される解析情報として、各装置 に送られる。各装置はその情報に基づいて、除外対象のチップ領域、ショット領域、 ウェハ、ロットなどに対する処理を行わな 、ようにする。
[0054] また、本実施形態では、線幅異常の判定レベル(閾値)は 1つであつたが、判定レ ベルを複数段階設けることも可能である。このようにすれば、それぞれの判定レベル に応じて、その後に実行される各種装置の処理状態を変更することが可能となる。例 えば、閾値を高低 2つ設定し、実測線幅と設計値とのずれが 2つの閾値の中間にあ つた場合には、露光装置 100の制御パラメータの最適化のみを行って、パターンリジ ェクトは行わないようにし、実測線幅と設計値とのずれが高い閾値をも超えた場合に は、制御パラメータの最適化とパターンリジェクトとの両方を行うようにすることができる 。また、これに限らず、露光装置 100の他、 CZD310、測定器 800、各種デバイス形 成装置群 900の各装置などの処理内容を段階的に調整することが可能となる。
[0055] また、本実施形態では、測定器 800にお 、て、ウェハ毎に予め選択された計測ショ ットのみについて線幅の測定を行った力 異常の発生頻度に応じて、線幅測定の頻 度を増減させるようにしてもょ 、し、異常の発生分布に応じて線幅測定位置の分布を 変化 (異常発生箇所を重点的に測定)させてもよい。例えば、線幅異常が確認される 計測ショットの数が増加した場合には、ウェハ内の計測ショットの数を増やすことがで き、線幅異常が確認される計測ショットの数が減少した場合には、計測ショット数を減 らしていくことも可能である。また、線幅異常の測定は、全てのウェハで行わなくてもよ ぐ数枚置きであってもよい。例えば、線幅の異常が、所定枚数連続して発生しなけ れば、線幅測定をウェハ 3枚置きとし、その後も連続して線幅の異常が発生しなけれ ば、線幅測定回数をウェハ 10枚置きとし、最終的にはロット先頭のウェハのみ線幅を 測定することとしてもよい。もっとも、線幅の異常が新たに発生した場合には、線幅の 測定頻度を増やすようにする必要があるのは勿論である。
[0056] なお、解析装置 600は、線幅の異常を確認した場合には、その旨を、解析情報とし て、各種処理装置に通知するようにしてもよい。
[0057] なお、本実施形態では、ノターンの異常を検出した場合にのみ制御パラメータの 最適化を行った力 これには限らず、ウェハ数枚置きに、必ず、制御パラメータの最 適化を行うようにしてもよい。この場合、ステップ 303 (図 5)では、最適化の対象となつ ているウェハである力否かを判断することになる。また、この場合にも、上述したように
、線幅が異常であると判断されたパターンの検出頻度に応じて、最適化の対象となる ウェハの数を増減させることができる。
[0058] なお、本実施形態では、露光装置 100の処理内容とウェハ上のパターン線幅との 因果関係を主として解析した。し力しながら、パターン線幅に影響を与える処理装置 は露光装置だけではない。例えば、 CZD310においてウェハ上に塗布されるレジス トの塗布むらなどは、形成されるパターンの線幅に多大な影響を与える。したがって、 露光装置だけでなぐ他の処理装置とパターン線幅との因果関係を解析可能とし、線 幅の変動要因が露光装置にあるの力、他の処理装置にあるのか特定できるようにす るのがより望ましい。そこで、本実施形態では、露光装置の処理状態から推定される 回路パターンの線幅の推定値と、その線幅の実測値との一致度に基づいて、ウェハ 上の回路パターンのサイズの変動要因が露光装置にあるの力否かを判定し、露光装 置でないと判定されれば、他の処理装置のチェックを行うようにしている。この推定値 は、過去に得られた露光装置 100の処理内容と、回路パターンの線幅との関係が示 されたテーブル群(図 2参照)に基づいて推定される。これにより、線幅の推定値の信 頼性が増す。
[0059] 本実施形態では、露光装置の処理内容には、露光条件やパターンの設計情報等 の処理条件に加え、その処理状態(走査露光中のフォーカス、露光量、同期精度の 各制御誤差)が含まれている。露光装置の処理状態と回路パターンの線幅との関係 を示すテーブルは、処理の複数の異なる設定値ごとに備えられている。このテーブル においては、露光装置の処理内容と回路パターンの線幅との関係のサンプル値しか 登録されていないが、露光装置の処理内容がどのような値をとつたとしても、補間演 算により、その処理内容に対応する線幅の推定値を算出することができる。このように すれば、テーブルを格納するメモリの容量を少なくできるうえ、セル数が膨大であるテ 一ブルを探索するよりもパターン線幅の推定値を求めるのに要する時間が短縮され るようになる。すなわち、テーブル管理が容易となる。
[0060] なお、このテーブル群は、露光装置における露光条件ごとのみならず、その露光条 件に加え他の処理装置の処理結果ごとに設けるようにしてもよい。例えば、 C/D31 0によって塗布されたレジストの膜厚を、露光条件等と同様の処理条件として加えるこ とができる。このような処理条件に対応する処理装置は、主に、露光前の処理を行う 前処理装置である。前処理装置としては、例えば、ウェハ上にレジストを塗布する C ZD310と、ショットフラットネスを測定する測定器 800とがある。測定装置 800の処理 内容としては、その処理結果に含まれる誤差値などがある。また、露光後の処理を行 う後処理装置の処理条件であっても、テーブルにおける処理条件として加えることが できる。例えば、測定器 800における測定誤差も、 CZD310における PEB処理条件 (温度均一性など)や現像処理条件も、処理条件として付加しうるし、測定器 800に おける測定対象が、レジスト像でなくエッチング像である場合には、エッチング装置の 処理結果も処理条件として付加しうる。このようにすれば、露光装置のみならず、各 種処理装置の処理内容を考慮した線幅異常検出、線幅変動要因の装置特定、線幅 変動要因特定が可能となる。 [0061] また、本実施形態によれば、露光装置のフォーカス、露光量、同期精度の各トレー スデータに基づいて、それらの中から、回路パターンの線幅の変動要因を特定する。 その特定方法としては、各種トレースデータ力 算出されるそのパターンが転写され る間の変動要因の候補となる制御誤差の統計値と、その制御誤差の規定値とを比較 し、規格外のものを線幅の変動要因として特定している。このような統計値としては、 制御誤差の移動平均値、移動標準偏差などを採用することができるが、同期精度に ついては、移動平均値よりも、そのばらつきを表す移動標準偏差の方が線幅への影 響を直接表すようになるので、本実施形態では、移動標準偏差を採用した。しかしな がら、同期精度について移動平均を採用してもよいのは勿論であり、同期精度、露光 量についても、フォーカスと同様に、移動平均、移動標準偏差の両方を採用してもよ い。また、フォーカスの制御誤差の統計値を、 Z平均オフセット (移動平均)と、 Z移動 標準偏差としたが、この他、 SFQR、 SFQDを採用することもできる。
[0062] また、本実施形態では、測定器 800にお 、て、露光前のウェハのショットフラットネ スを測定した力 本発明はこれには限られない。例えば、露光装置にウェハをロード した後に、ウェハを保持するステージを水平に保ったまま (すなわちフォーカス制御を 行わずに)走査露光と同様に同期走査し、そのときにフォーカス制御系で観測される ウェハ面の変動に基づ 、てショットフラットネスを測定するようにしてもょ 、し、前回の 走査露光中におけるフォーカストレースから、ウェハステージの Z位置や傾斜量を差 し引いた勾配を、ショットフラットネスデータとして測定するようにしてもよい。なお、こ のようなショットフラットネスデータの測定方法にっ 、ては、例えば前述した特開 200 1— 338870号公報などに詳細に開示されている。
[0063] なお、本実施形態では、フォーカスの制御誤差の統計値である Z平均オフセット、 Z 移動標準偏差は、ショットフラットネス (デバイストポグラフィ)基準であつたが、これに は限られず、フォーカスの制御誤差の算出に際しては、ショットフラットネスを考慮しな くてちょい。
[0064] また、本実施形態によれば、ノターンのサイズの変動要因として特定された処理内 容を調整する調整情報として、制御パラメータの最適値を算出する。この場合には、 原則として、露光装置における処理内容の統計値と、パターンの線幅との関係を示 すテーブルを参照し、フォーカス、露光量、同期精度の統計値が 0に近づくように、各 種制御パラメータを調整することとなるが、そのような調整が困難である場合には、変 動要因として特定された処理内容に対するパターンの線幅への影響が相殺されるよ うに、制御パラメータを調整するようにしてもよい。この場合にも、制御パラメータの調 整に上記テーブル群を利用することができる。すなわち、各種統計値が 0ではないが
、線幅が設計値どおりとなっているセルを探索し、統計値がその値となるように制御パ ラメータを調整することができる。また、このテーブルを参照すれば、線幅に特に影響 を与えて!/ヽる処理内容を特定することができるので、調整する制御パラメータを特定 された処理内容に関連するものに絞り込むことができる。これにより、調整する制御パ ラメータの数を少なくすることができるようになり、その調整効率を向上させることも可 能である。また、フォーカス、同期精度、露光量の調整だけで制御パラメータの調整 が困難である場合などでは、露光条件、ノターンの設計条件を変更することも可能で ある。この場合、 CZD310により塗布されるレジストの膜厚や PEB温度制御など、他 の処理装置の処理条件を変更するようにしてもょ 、。
[0065] また、本実施形態では、露光量 Z同期精度 Zフォーカスが規格外でなくても制御 パラメータの最適化を行おうとする場合には、調整系のパラメータでなぐ非調整系の ノ ラメータのみを調整対象としている。このようにすれば、装置の稼動を停止させる必 要がなくなるので、スループットが向上する。
[0066] 本実施形態に係る基板処理システム 101は、これまで述べてきたように、解析装置
600を備え、解析装置 600を用いて、ウェハに対する一連のプロセスの少なくとも一 部を実行する各種処理装置の処理内容を解析、具体的には、ウェハ上に形成され たパターン線幅の異常検出、線幅異常の要因となる装置の特定、線幅異常の要因と なった処理内容の特定を行っている。このため、複数の異なる処理条件各々を露光 装置に順次設定してその度にテスト露光を行うなどの煩雑な工程を省略してスルー プットの向上が可能になるうえ、調整可能な線幅の変動要因の数に制限がなくなるの で、より多くのパラメータを調整することができるようになつてきめ細かな装置調整が可 能となり、パターン線幅精度が向上する。この結果、線幅の異常等に対する迅速な対 応ゃ、パラメータの速やかな最適化が可能となり、デバイス製造の歩留まりが向上す る。
[0067] 本実施形態に係る基板処理システム 101においては、解析装置 600における解析 処理において、露光装置 100、及び測定器 800などの各処理装置が、それぞれの 処理内容を解析装置 600に送ることができる。例えば露光装置 100では、それらの 処理結果に関する情報のみならず、その処理条件や、処理の途中の状態などに関 する情報を装置外部に出力することができる。なお、測定器 800、 C/D310,及び デバイス形成装置群 900の各装置なども、同様に、それらの処理結果のみならず、 処理条件、処理状態に関する情報を解析装置 600に出力することができるようになつ ていてもよい。例えば、測定器 800については、パターンの線幅の測定条件に関す るデータ (照明条件、照明波長など)や、測定状態に関するデータ (例えば、測定誤 差の偏りやばらつきに関するデータ)などを出力可能とするようにしてもよい。この場 合、本実施形態に係る露光装置 100や測定器 800と同様に、これらの処理条件、処 理状態は、一連のプロセスが実行されている期間の途中にも出力可能とすれば、そ のデータを用いた解析を速やかに行い、線幅異常等に対する迅速な対応が可能と なる。
[0068] また、本実施形態では、解析装置 600の解析結果は、解析情報として、一連のプロ セス実行中にも、露光装置 100をはじめ、 C/D310,測定器 800、デバイス形成装 置群 900に送られる。各装置は、この解析情報を受信する受信部を備えている。これ らの解析情報には、各装置の制御パラメータの調整情報を含んでおり、各装置は、こ の調整情報に基づいて、自身の制御パラメータの設定値を変更する。このようにすれ ば、一連のプロセス実行中にも、装置調整を行うことができるようになり、線幅悪化に 対する迅速な対応が可能となる。
[0069] 例えば、測定器 800における制御パラメータにつ 、ては、例えば、計測対象となる ウェハの選定や、計測ショットの選択などがある。例えば、図 4においては、ウェハ外 縁の 8つのショット領域が計測ショットとして選択されて 、るが、これらのショット領域が 、レジストの塗布むらなどにより、計測ショットとして適切でないと判断した場合には、 計測ショットを変更することができる。ある意味では、上述した線幅測定の頻度調整も 、測定器 800のパラメータ調整であるといえる。また、 CZD310における制御パラメ ータについては、例えば、ウェハ上のレジストの塗布むらに関連するパラメータがある 。例えば、ウェハの回転速度、レジストの滴下量や滴下間隔などがある。
[0070] なお、解析装置 600は、測定器 800、露光装置 100又は他の処理装置の中に組み 込まれていてもよい。この場合には、解析装置が組み込まれた測定器 800、露光装 置 100又は他の処理装置で線幅に関する解析を行う必要があるため、解析装置 600 と同様に、一連のプロセスの実行中に、他の装置とのデータの送受信を行う送受信ィ ンターフェイスが必要となる。
[0071] また、本実施形態に係る基板処理システム 101は、解析装置 600を介した露光装 置 100と測定器 800との連携により、露光装置 100における線幅管理を適切に行うシ ステムであった。それらはインラインに接続されているので、レジスト塗布、事前測定、 露光、事後測定、現像などの工程を短期間のうちに行って、それらの測定結果を解 祈し、その解析結果を各工程に迅速に反映することができるので、効率的な線幅管 理が可能となる。
[0072] また、露光装置 100から解析装置 600へ、各種トレースデータとともに制御パラメ一 タの設定値データを送った力 これらのデータを送らなくてもよい。解析装置 600で は、制御パラメータの設定値の変化分を算出し、それを露光装置 100に送るようにし 、露光装置 100側で、その変化分だけ制御パラメータの設定値を変更すればよい。 また、露光装置 100から解析装置 600に送られるトレースデータは、フォーカス、同 期精度、露光量の少なくとも 1種類であればよい。トレースデータとしては、フォーカス 、露光量、同期精度には限られず、パターン線幅に関連する処理状態であれば、任 意のものを採用することができる。また、露光条件も上記のものには限られず、線幅 に影響を与える露光条件、パターンの設計条件、同期制御の制御条件、他の処理装 置の処理結果であれば、任意のものを指定することができる。
[0073] また、本実施形態では、露光装置 100から取得するデータを、露光量 Z同期精度 Zフォーカスの各制御トレースデータとした力 露光装置 100で、各制御誤差の統計 値を算出しておき、その統計値を解析装置 600に送るようにしてもよい。この場合、ト レースデータを解析装置 600に送る必要はな 、。
[0074] なお、レジスト処理、現像処理、エッチング処理などのプロセスごとにテーブルを作 成し、各処理条件を解析装置に通知するようにすれば、より最適な線幅管理が実現 される。すなわち、露光装置以外の各種装置の処理状態と線幅との関係を示すテー ブルを管理し、そのテーブルを用いて線幅の解析を行うようにしてもよ!、。
[0075] 観点を変えると、解析装置 600は、線幅に影響を与える処理内容に関する得られる 情報を各種処理装置から得て、パターンの線幅が設計値どおりとなるようにそれらの 情報を統括管理するデータ管理部であるとみなすことができる。すなわち、基板処理 システム 101は、線幅に関連する各装置のデータを共有管理するデータ管理部を有 するシステムであるとみなすことができる。このような統括的な線幅に関連するデータ の管理を行えば、デバイスを製造するにあたって、各種装置にまたがったバランスの 良 、システム調整が可能となる。
[0076] 本実施形態では、測定器 800を露光装置 100等とインラインに接続するものとした 力 測定器は、露光装置 100やトラック 300とはインラインに接続されていないオフラ インの測定器であってもよい。また、事前測定器と事後測定器とは、別々に設けられ ていてもよぐどちらか一方力 Sインラインでなくオフラインであってもよい。
[0077] 本実施形態では、露光装置 100を、ステップ'アンド'スキャン方式の露光装置とし た力 これに限らず、ステップ ·アンド'リピート方式や他の方式の露光装置であっても よい。これに代表されるように、各種装置についても、その種類には限定されない。ま た、本発明は、半導体製造工程に限らず、液晶表示素子などを含むディスプレイの 製造工程にも適用可能である。また、デバイスパターンをガラスプレート上に転写す る工程、薄膜磁気ヘッドの製造工程、及び撮像素子 (CCDなど)、マイクロマシン、有 機 EL、 DNAチップなどの製造工程の他、すべてのデバイス製造工程における線幅 管理に本発明を適用することができるのは勿論である。
[0078] また、上記実施形態では、管理対象をラインパターンの線幅とした力 ボックスマー クなどのラインパターンでな 、パターンの幅などであってもよ 、ことは勿論である。す なわち、管理対象はパターンのサイズであればょ 、。
[0079] また、上記実施形態では、解析装置 600を、例えば PCとした。すなわち解析装置 6 00における解析処理は、解析プログラム力 PCで実行されることにより実現されてい る。この解析プログラムは、上述したようにメディアを介して PCにインストール可能とな つて 、てもよ 、し、インターネットなどを通じて PCにダウンロード可能となって!/、てもよ い。また、解析装置 600がハードウェアで構成されていても構わないのは勿論である 産業上の利用可能性
以上説明したように、本発明の解析装置、処理装置、測定装置、露光装置、基板 処理システム、解析方法及びプログラムは、デバイス製造工程に用いられるのに適し ている。

Claims

請求の範囲
[1] デバイス製造のために供される物体上にデバイスパターンを形成するための、一連 のプロセスに関する情報を解析する解析装置であって、
前記一連のプロセスの少なくとも一部を実行する処理装置により、前記一連のプロ セス実行中に行われる処理内容に関する情報を取得する取得装置を備え、 前記取得装置により取得される情報と、実測された前記物体上に形成されたパター ンのサイズに関する情報とに基づいて、両者の因果関係を解析する解析装置。
[2] 請求項 1に記載の解析装置にぉ 、て、
前記パターンのサイズの実測値に基づいて、前記パターンのサイズの異常を検出 し、
異常が検出された場合に、前記因果関係を解析する解析装置。
[3] 請求項 2に記載の解析装置において、
前記パターンのサイズの実測値に関する統計値に基づいて、前記パターンのサイ ズの異常を検出する解析装置。
[4] 請求項 3に記載の解析装置において、
前記統計値は、前記パターンのサイズの平均値、ばらつき、平均値とばらつきとの 和の少なくとも 1つである解析装置。
[5] 請求項 2に記載の解析装置において、
サイズが異常であると判断されたパターンを、その後の処理対象から除外するバタ ーンとして指定する解析装置。
[6] 請求項 5に記載の解析装置において、
前記物体は、半導体基板であり、
サイズが異常であると判断されたパターンを含むチップを、チップ単位で、処理対 象から除外する解析装置。
[7] 請求項 2に記載の解析装置において、
前記パターンのサイズの異常の判定レベルを複数段階設け、
判定レベル毎に、その判定レベルに応じて、その後に実行される処理装置の処理 内容を指定する解析装置。
[8] 請求項 2に記載の解析装置において、
複数の物体各々に対し前記一連のプロセスを順番に実行する場合に、 サイズが異常であると判断されたパターンの検出頻度、又は検出分布に応じて、前 記パターンのサイズを測定する物体の選択数を増減、又は測定する物体の位置を変 化させる解析装置。
[9] 請求項 2に記載の解析装置において、
前記パターンのサイズの異常が検出されたことを、前記処理装置に通知する解析 装置。
[10] 請求項 1に記載の解析装置において、
複数の物体各々に対し前記一連のプロセスを順番に実行する場合に、 前記複数の物体のうち、選択された物体のみについて、前記因果関係を解析する 解析装置。
[11] 請求項 10に記載の解析装置において、
サイズが異常であると判断されたパターンの検出頻度、又は検出分布に応じて、前 記パターンのサイズを測定する物体の選択数を増減又は、測定する物体の位置を変 化させる解析装置。
[12] 請求項 1に記載の解析装置において、
前記一連のプロセスの少なくとも一部は、該プロセスの一部をそれぞれ実行する複 数の処理装置によって実行され、該複数の処理装置間における、前記パターンのサ ィズに関連する処理内容の因果関係を解析する解析装置。
[13] 請求項 12に記載の解析装置において、
前記因果関係の解析結果に基づいて、前記パターンのサイズの変動要因となった 少なくとも 1つの処理装置を特定する解析装置。
[14] 請求項 13に記載の解析装置において、
前記パターンのサイズに関する情報は、前記パターンのサイズの実測値であり、 前記各処理装置の処理内容に関する情報から推定される前記パターンのサイズの 推定値と前記実測値との一致度に基づいて、前記パターンのサイズの変動要因とな る少なくとも 1つの処理装置を特定する解析装置。
[15] 請求項 14に記載の解析装置において、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報に基づ 、て、前記パターンのサイズを推定する解析装置。
[16] 請求項 15に記載の解析装置において、
前記各処理装置の処理内容に関する情報は、前記物体に対する処理条件と処理 状態とに関する情報を含み、
前記各処理装置の処理内容と前記パターンのサイズとの関係に関する情報として、 前記各処理装置の処理状態と前記パターンのサイズとの関係に関する情報を、前記 処理条件の複数の異なる設定値ごとに有する解析装置。
[17] 請求項 16に記載の解析装置において、
前記各処理装置の処理内容に関する情報は、前記物体に対する処理結果をさら に含み、
前記各処理装置の処理内容と前記パターンのサイズとの関係に関する情報として、 前記各処理装置の処理状態と前記パターンのサイズとの関係に関する情報を、前記 処理条件の複数の異なる設定値毎、他の処理装置の処理結果毎に有する解析装置
[18] 請求項 1に記載の解析装置において、
前記一連のプロセスの少なくとも一部は、前記物体上にパターンを転写する少なく とも 1つの露光装置と、前記パターンの転写前のプロセスを実行する少なくとも 1つの 前処理装置と、前記パターンの転写後のプロセスを実行する少なくとも 1つの後処理 装置との少なくとも 1つを含む、少なくとも 1つの処理装置によって実行される解析装 置。
[19] 請求項 18に記載の解析装置において、
前記前処理装置には、前記物体上に感光剤を塗布する塗布装置と、前記物体の 状態を測定する事前測定装置との少なくとも 1つが含まれ、
前記後処理装置には、前記物体上に転写形成されたパターンを現像する現像装 置と、前記パターンに従った前記物体のエッチングを行うエッチング装置と、前記パ ターンのサイズを測定する事後測定装置と、前記パターンの検査装置との少なくとも 1つが含まれる解析装置。
[20] 請求項 1に記載の解析装置において、
前記一連のプロセスの少なくとも一部は、該プロセスの一部をそれぞれ実行する複 数の処理装置によって実行され、
前記各処理装置の処理内容に関する情報に基づ!、て、該各処理装置における前 記パターンのサイズの変動要因となった少なくとも 1つの処理内容を特定する解析装 置。
[21] 請求項 20に記載の解析装置において、
前記各処理装置の処理内容の統計値と、その処理内容の規定値との比較結果に 基づいて、該各処理装置における前記パターンのサイズの変動要因となった少なくと も 1つの処理内容を特定する解析装置。
[22] 請求項 21に記載の解析装置において、
前記各処理装置の処理内容の統計値は、前記物体上に前記パターンが形成され る間の処理状態に関する情報の移動平均値、移動標準偏差の少なくとも 1つである 解析装置。
[23] 請求項 20に記載の解析装置において、
前記パターンのサイズの変動要因として特定された処理内容を調整する調整情報 を算出する解析装置。
[24] 請求項 23に記載の解析装置において、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報に基づいて、前記調整情報を算出する解析装置。
[25] 請求項 24に記載の解析装置において、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報を参照して、前記変動要因として特定された処理内容の前記パターンの サイズへの影響が相殺されるように、前記調整情報を算出する解析装置。
[26] 請求項 24に記載の解析装置において、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報を参照して、前記パターンのサイズを変更するのに有効な処理内容に絞 つて、それらの調整情報を算出する解析装置。
[27] 請求項 24に記載の解析装置において、
前記各処理装置の処理内容と前記パターンのサイズとの関係に関する情報として、 前記処理装置の処理状態と前記パターンのサイズとの関係に関する情報を、前記各 処理装置の処理条件の複数の異なる設定値毎に有している場合に、
前記処理条件を変更した方が前記パターンのサイズの修正について有効である場 合には、前記処理条件の設定値を調整する調整情報を算出する解析装置。
[28] 請求項 23に記載の解析装置において、
前記パターンのサイズの異常が検出されていない場合には、調整する処理内容を 、変更しても前記物体に対する処理を続行することができる処理内容に限定する解 析装置。
[29] 請求項 23に記載の解析装置において、
前記複数の処理装置には、前記露光装置が含まれ、
前記露光装置の処理内容に関する情報には、前記物体上におけるパターンの像 の結像状態に関する情報と、前記パターンの像に対する前記物体の相対位置ずれ に関する情報と、前記物体上にパターンの像の転写するためのエネルギービームの エネルギーに関する情報とのうちの少なくとも 1つが含まれ、
前記処理条件には、
前記パターンを転写するための露光条件、前記パターンの設計条件、前記パター ンと前記物体との相対位置の制御条件、及び前記パターンの転写前の処理を行う他 の処理装置の処理結果に関する条件のうちの少なくとも 1つが含まれる解析装置。
[30] 請求項 29に記載の解析装置において、
前記物体上における前記パターンの像の結像状態に関する情報は、前記物体の 面形状基準の情報である解析装置。
[31] 請求項 23に記載の解析装置において、
算出した調整情報を、該調整情報に対応する前記処理装置に通知する解析装置
[32] 物体上にパターンを形成する一連のプロセスの少なくとも一部を実行する処理装置 であって、
請求項 1〜31のいずれか一項に記載の解析装置を備える処理装置。
[33] 物体上に形成されたパターンのサイズを測定する測定装置であって、
請求項 1〜31のいずれか一項に記載の解析装置を備える測定装置。
[34] 物体上にパターンを転写する露光装置であって、
請求項 1〜31のいずれか一項に記載の解析装置を備える露光装置。
[35] 物体上にパターンを形成する一連のプロセスに関する情報を解析する解析方法で あって、
請求項 1〜31のいずれか一項に記載の解析装置を用いて、前記一連のプロセス の少なくとも一部を実行する処理装置の処理内容を解析する工程を含む解析方法。
[36] デバイス製造のために供される複数の物体上にデバイスパターンを形成するため の、一連のプロセスの少なくとも一部を実行する処理装置において、
前記一連のプロセスの少なくとも一部を、前記複数の物体上に順次実行して 、る途 中で、前記パターンのサイズに関連する処理内容に関する情報を出力する処理装置
[37] 請求項 36に記載の処理装置において、
前記処理内容は、
前記処理装置における前記物体に対する処理条件と処理状態と処理結果との少 なくとも 1つを含む処理装置。
[38] 請求項 36に記載の処理装置において、
前記一連のプロセスの少なくとも一部は、
前記物体上に感光剤を塗布する塗布処理と、前記物体の状態を測定する事前測 定処理と、前記物体上に転写形成されたパターンを現像する現像処理と、前記バタ ーンに従った前記物体のエッチングを行うエッチング処理と、前記パターンのサイズ を測定する事後測定処理と、前記パターンの検査処理とのうちの 、ずれかを含む処 理装置。
[39] 物体上に形成されたパターンのサイズを測定する測定装置において、
前記パターンのサイズの測定条件に関する情報と、その測定状態に関する情報を 出力可能である測定装置。
[40] 請求項 39に記載の測定装置において、
前記測定状態に関する情報は、
前記パターンのサイズの測定誤差に関する情報を含む測定装置。
[41] デバイス製造のために供される物体上にデバイスパターンを形成するための、一連 のプロセスが実行されている期間の途中で、前記物体上に形成されたパターンのサ ィズを測定する測定装置にお 、て、
前記パターンのサイズの測定条件に関する情報と、その測定状態に関する情報と を、前記一連のプロセスの実行中に出力可能である測定装置。
[42] 物体上に形成されたパターンのサイズを測定する測定装置において、
前記物体上に前記パターンが形成されたときの処理内容に関する情報を、装置外 部に要求する測定装置。
[43] デバイス製造のために供される複数の物体上にデバイスパターンを形成するため の、一連のプロセスが実行されている期間の途中で、前記物体上に形成されたパタ ーンのサイズを測定する測定装置にお 、て、
前記物体上に前記パターンが形成されたときの処理内容に関する情報を、前記一 連のプロセスの実行中に、装置外部に要求する測定装置。
[44] 物体上に形成されたパターンのサイズを測定する測定装置であって、
前記物体上に前記パターンが形成されたときの処理内容に関する情報を、装置外 部から受信する受信部を有する測定装置。
[45] デバイス製造のために供される複数の物体上にデバイスパターンを形成するため の、一連のプロセスが実行されている期間の途中で、前記物体上に形成されたパタ ーンのサイズを測定する測定装置であって、
前記物体上に前記パターンが形成されたときの処理内容に関する情報を、前記一 連のプロセスの実行中に、装置外部力 受信する受信部を有する測定装置。
[46] 物体上にパターンを転写する露光装置にお!ヽて、
前記物体上への前記パターンの転写条件に関する情報と、前記物体上への前記 パターンの転写状態に関する情報とを出力可能である露光装置。
[47] デバイス製造のために供される複数の物体上にデバイスパターンを転写する露光 装置において、
前記物体上への前記パターンの転写条件に関する情報と、前記物体上への前記 パターンの転写状態に関する情報とを、前記複数の物体上に前記転写を順次実行 している途中で出力可能である露光装置。
[48] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 1〜31のいずれか一項に記載の解析装置を備える基板処理システム。
[49] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 36に記載の処理装置を備える基板処理システム。
[50] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 39に記載の測定装置を備える基板処理システム。
[51] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 41に記載の測定装置を備える基板処理システム。
[52] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 42に記載の測定装置を備える基板処理システム。
[53] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 43に記載の測定装置を備える基板処理システム。
[54] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 44に記載の測定装置を備える基板処理システム。
[55] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、 請求項 45に記載の測定装置を備える基板処理システム。
[56] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 46に記載の露光装置を備える基板処理システム。
[57] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
請求項 47に記載の露光装置を備える基板処理システム。
[58] 物体上にパターンを形成する一連のプロセスを実行する基板処理システムであつ て、
前記一連のプロセスを行う複数の処理装置各々にお 、て前記パターンのサイズに 影響を与える処理内容に関する情報を統括管理するデータ管理部を備える基板処 理システム。
[59] デバイス製造のために供される物体上にデバイスパターンを形成するための、一連 のプロセスに関する情報をコンピュータに解析させるためのプログラムであって、 前記一連のプロセスの少なくとも一部を実行する処理装置により、前記一連のプロ セス実行中に行われる処理内容に関する情報と、実測された前記物体上に形成され たパターンのサイズに関する情報とに基づいて、両者の因果関係を解析する手順を コンピュータに実行させるプログラム。
[60] 請求項 59に記載のプログラムにおいて、
前記パターンのサイズの実測値に基づいて、前記パターンのサイズの異常を検出 する手順を前記コンピュータにさらに実行させ、
異常が検出された場合に、前記因果関係を解析する手順を前記コンピュータに実 行させるプログラム。
[61] 請求項 60に記載のプログラムにおいて、
前記パターンのサイズの異常を検出する手順を、前記パターンのサイズの実測値 に関する統計値に基づいて、前記コンピュータに実行させるプログラム。
[62] 請求項 60に記載のプログラムにおいて、
サイズが異常であると判断されたパターンを、その後の処理対象から除外するバタ ーンとして指定する手順を、前記コンピュータにさらに実行させるプログラム。
[63] 請求項 62に記載のプログラムにおいて、
前記物体は、半導体基板であり、
処理対象から除外するパターンとして指定する手順として、サイズが異常であると判 断されたパターンを含むチップを、チップ単位で、プロセスの処理対象から除外する 手順を、前記コンピュータに実行させるプログラム。
[64] 請求項 60に記載のプログラムにお 、て、
前記パターンのサイズの異常の判定レベルを複数段階で設け、
前記複数段階の判定レベルで判定される前記パターンのサイズの異常度のレベル に応じて、その後に実行される処理装置の処理内容を指定する手順を、前記コンビ ユータに実行させるプログラム。
[65] 請求項 60に記載のプログラムにおいて、
複数の物体各々に対し前記一連のプロセスを順番に実行する場合に、 サイズが異常であると判断されたパターンの検出頻度、又は、検出分布に応じて、 前記パターンのサイズを測定する物体の選択数を増減、又は、測定する物体の位置 を変化させる手順を、前記コンピュータにさらに実行させるプログラム。
[66] 請求項 60〜65のいずれか一項に記載のプログラムにおいて、
前記パターンのサイズの異常が検出されたことを、前記処理装置に通知する手順 を、前記コンピュータにさらに実行させるプログラム。
[67] 請求項 59に記載のプログラムにおいて、
複数の物体に対し前記一連のプロセスを順番に実行する場合に、
前記複数の物体のうち、選択された物体のみについて、前記因果関係を解析する 手順を、前記コンピュータに実行させるプログラム。
[68] 請求項 67に記載のプログラムにおいて、
サイズが異常であると判断されたパターンの検出頻度、又は、検出分布に応じて、 前記パターンのサイズを測定する物体の選択数を増減、又は、測定する物体の位置 を変化させる手順を、前記コンピュータにさらに実行させるプログラム。
[69] 請求項 59に記載のプログラムにおいて、 前記一連のプロセスの少なくとも一部は、該プロセスの一部をそれぞれ実行する複 数の処理装置によって実行され、該複数の処理装置間における、前記パターンのサ ィズに関連する処理内容の因果関係を解析する手順を、前記コンピュータに実行さ ·¾:るプログラム。
[70] 請求項 69に記載のプログラムにおいて、
前記因果関係の解析結果に基づいて、前記パターンのサイズの変動要因となった 少なくとも 1つの処理装置を特定する手順を、前記コンピュータにさらに実行させるプ ログラム。
[71] 請求項 70に記載のプログラムにおいて、
前記パターンのサイズに関する情報は、前記パターンのサイズの実測値であり、 前記各処理装置の処理内容に関する情報から推定される前記パターンのサイズの 推定値と前記実測値との一致度に基づいて、前記パターンのサイズの変動要因とな る少なくとも 1つの処理装置を特定する手順を、前記コンピュータに実行させるプログ ラム。
[72] 請求項 71に記載のプログラムにお ヽて、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報に基づいて、前記パターンのサイズを推定する手順を、前記コンピュータ に実行させるプログラム。
[73] 請求項 72に記載のプログラムにおいて、
前記各処理装置の処理内容に関する情報は、前記物体に対する処理条件と処理 状態とに関する情報を含み、
前記各処理装置の処理内容と前記パターンのサイズとの関係に関する情報として、 前記各処理装置の処理状態と前記パターンのサイズとの関係に関する情報を、前記 処理条件の複数の異なる設定値ごとに有するプログラム。
[74] 請求項 73に記載のプログラムにおいて、
前記各処理装置の処理内容に関する情報は、前記物体に対する処理結果をさら に含み、
前記各処理装置の処理内容と前記パターンのサイズとの関係に関する情報として、 前記各処理装置の処理状態と前記パターンのサイズとの関係に関する情報を、前記 処理条件の複数の異なる設定値毎、他の処理装置の処理結果毎に有するプロダラ ム。
[75] 請求項 74に記載のプログラムにおいて、
前記各処理装置の処理内容に関する情報に基づ!、て、該各処理装置における前 記パターンのサイズの変動要因となった少なくとも 1つの処理内容を特定する手順を 、前記コンピュータにさらに実行させるプログラム。
[76] 請求項 75に記載のプログラムにおいて、
前記各処理装置の処理内容の統計値と、その処理内容の規定値との比較結果に 基づいて、該各処理装置における前記パターンのサイズの変動要因となった少なくと も 1つの処理内容を特定する手順を、前記コンピュータに実行させるプログラム。
[77] 請求項 76に記載のプログラムにおいて、
前記パターンのサイズの変動要因として特定された処理内容を調整する調整情報 を算出する手順を、前記コンピュータにさらに実行させるプログラム。
[78] 請求項 77に記載のプログラムにおいて、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報に基づいて、前記調整情報を算出する手順を、前記コンピュータに実行 させるプログラム。
[79] 請求項 78に記載のプログラムにおいて、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報を参照して、前記変動要因として特定された処理内容による前記パター ンのサイズへの影響が相殺されるように、前記調整情報を算出する手順を、前記コン ピュータに実行させるプログラム。
[80] 請求項 78に記載のプログラムにおいて、
過去に得られた、前記各処理装置の処理内容と前記パターンのサイズとの関係に 関する情報を参照して、前記パターンのサイズを変更するのに有効な処理内容に絞 つて、それらの調整情報を算出する手順を、前記コンピュータに実行させるプロダラ ム。
[81] 請求項 77に記載のプログラムにおいて、
前記各処理装置の処理内容と前記パターンのサイズとの関係に関する情報として、 前記各処理装置の処理状態と前記パターンのサイズとの関係に関する情報を、前記 処理装置の処理条件の複数の異なる設定値毎に有している場合に、
前記処理条件を変更した方が前記パターンのサイズの修正について有効である場 合には、前記処理条件を調整する調整情報を算出する手順を、前記コンピュータに 実行させるプログラム。
[82] 請求項 77に記載のプログラムにおいて、
前記パターンのサイズの異常が検出されていない場合には、調整する処理内容を 、変更しても前記物体に対する処理を続行することができる処理内容に限定する手 順を、前記コンピュータにさらに実行させるプログラム。
[83] 請求項 77〜82のいずれか一項に記載のプログラムにおいて、
算出した調整情報を、前記処理装置に通知する手順を、前記コンピュータにさらに 実行させるプログラム。
PCT/JP2006/321858 2005-11-04 2006-11-01 解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム WO2007052699A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542782A JP5035685B2 (ja) 2005-11-04 2006-11-01 解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005320281 2005-11-04
JP2005-320281 2005-11-04

Publications (1)

Publication Number Publication Date
WO2007052699A1 true WO2007052699A1 (ja) 2007-05-10

Family

ID=38005852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321858 WO2007052699A1 (ja) 2005-11-04 2006-11-01 解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム

Country Status (4)

Country Link
JP (1) JP5035685B2 (ja)
KR (1) KR101555709B1 (ja)
TW (1) TWI413154B (ja)
WO (1) WO2007052699A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277957A (ja) * 2008-05-16 2009-11-26 Renesas Technology Corp 半導体デバイスの製造方法および製造システム
JP2011054859A (ja) * 2009-09-04 2011-03-17 Hitachi High-Technologies Corp 半導体装置用パターン検査装置および検査システム
JP2011142319A (ja) * 2009-12-18 2011-07-21 Asml Netherlands Bv リソグラフィ装置における動的位置決め誤差の性質を測定する方法、データ処理装置、およびコンピュータプログラム製品
JP2014103294A (ja) * 2012-11-21 2014-06-05 Dainippon Printing Co Ltd インプリントモールドとインプリントモールドの作製方法、および、パターン形成方法と半導体装置の製造方法
JP2020047078A (ja) * 2018-09-20 2020-03-26 株式会社Screenホールディングス データ処理方法、データ処理装置、およびデータ処理プログラム
CN112967942A (zh) * 2020-08-07 2021-06-15 重庆康佳光电技术研究院有限公司 晶圆测试方法和装置、计算机存储介质及计算机设备
TWI768409B (zh) * 2015-02-23 2022-06-21 日商尼康股份有限公司 基板處理系統及基板處理方法、以及元件製造方法
US11474150B2 (en) 2018-09-20 2022-10-18 SCREEN Holdings Co., Ltd. Data processing method, data processing device, and non-transitory computer-readable recording medium
JP7329386B2 (ja) 2019-08-09 2023-08-18 コニアク ゲーエムベーハー リソグラフィ処理される半導体デバイスのためのプロセス制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065082B2 (ja) * 2008-02-25 2012-10-31 東京エレクトロン株式会社 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
KR101017109B1 (ko) * 2008-11-26 2011-02-25 세메스 주식회사 반도체 제조 공정 모니터링 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168640A (ja) * 1989-11-28 1991-07-22 Fujitsu Ltd ホトマスクの検査装置及びホトマスクの検査方法
JP2003243288A (ja) * 2002-02-15 2003-08-29 Canon Inc 加工装置
JP2005101286A (ja) * 2003-09-25 2005-04-14 Toshiba Corp 半導体製造方法及び半導体製造装置
JP2005175283A (ja) * 2003-12-12 2005-06-30 Nikon Corp データ分析方法、及び、デバイス製造方法とそのシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121286A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd 酸素富化給湯装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168640A (ja) * 1989-11-28 1991-07-22 Fujitsu Ltd ホトマスクの検査装置及びホトマスクの検査方法
JP2003243288A (ja) * 2002-02-15 2003-08-29 Canon Inc 加工装置
JP2005101286A (ja) * 2003-09-25 2005-04-14 Toshiba Corp 半導体製造方法及び半導体製造装置
JP2005175283A (ja) * 2003-12-12 2005-06-30 Nikon Corp データ分析方法、及び、デバイス製造方法とそのシステム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277957A (ja) * 2008-05-16 2009-11-26 Renesas Technology Corp 半導体デバイスの製造方法および製造システム
JP2011054859A (ja) * 2009-09-04 2011-03-17 Hitachi High-Technologies Corp 半導体装置用パターン検査装置および検査システム
JP2011142319A (ja) * 2009-12-18 2011-07-21 Asml Netherlands Bv リソグラフィ装置における動的位置決め誤差の性質を測定する方法、データ処理装置、およびコンピュータプログラム製品
US8554510B2 (en) 2009-12-18 2013-10-08 Asml Netherlands B.V. Method of measuring properties of dynamic positioning errors in a lithographic apparatus, data processing apparatus, and computer program product
JP2014103294A (ja) * 2012-11-21 2014-06-05 Dainippon Printing Co Ltd インプリントモールドとインプリントモールドの作製方法、および、パターン形成方法と半導体装置の製造方法
TWI768409B (zh) * 2015-02-23 2022-06-21 日商尼康股份有限公司 基板處理系統及基板處理方法、以及元件製造方法
JP7214417B2 (ja) 2018-09-20 2023-01-30 株式会社Screenホールディングス データ処理方法およびデータ処理プログラム
US11474150B2 (en) 2018-09-20 2022-10-18 SCREEN Holdings Co., Ltd. Data processing method, data processing device, and non-transitory computer-readable recording medium
JP2020047078A (ja) * 2018-09-20 2020-03-26 株式会社Screenホールディングス データ処理方法、データ処理装置、およびデータ処理プログラム
JP2023052477A (ja) * 2018-09-20 2023-04-11 株式会社Screenホールディングス データ処理方法およびデータ処理プログラム
JP7329386B2 (ja) 2019-08-09 2023-08-18 コニアク ゲーエムベーハー リソグラフィ処理される半導体デバイスのためのプロセス制御方法
CN112967942A (zh) * 2020-08-07 2021-06-15 重庆康佳光电技术研究院有限公司 晶圆测试方法和装置、计算机存储介质及计算机设备
CN112967942B (zh) * 2020-08-07 2023-03-10 重庆康佳光电技术研究院有限公司 晶圆测试方法和装置、计算机存储介质及计算机设备

Also Published As

Publication number Publication date
KR20080074942A (ko) 2008-08-13
KR101555709B1 (ko) 2015-09-25
JP5035685B2 (ja) 2012-09-26
JPWO2007052699A1 (ja) 2009-04-30
TWI413154B (zh) 2013-10-21
TW200719397A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP5035685B2 (ja) 解析装置、処理装置、測定装置、露光装置、基板処理システム、解析方法及びプログラム
US8566756B2 (en) Processing condition determining method and apparatus, display method and apparatus, processing apparatus, measurement apparatus and exposure apparatus, substrate processing system, and program and information recording medium
US20070105244A1 (en) Analytical apparatus, processing apparatus, measuring and/or inspecting apparatus, exposure apparatus, substrate processing system, analytical method, and program
KR102411813B1 (ko) 디바이스 제조 프로세스의 수율의 예측 방법
JP5077770B2 (ja) デバイス製造方法、デバイス製造システム及び測定検査装置
KR102166317B1 (ko) 패터닝 공정의 제어 방법, 디바이스 제조 방법, 리소그래피 장치용 제어 시스템 및 리소그래피 장치
KR102555175B1 (ko) 패터닝 프로세스용 보정 결정 방법
US7718327B2 (en) Overlay management method and apparatus, processing apparatus, measurement apparatus and exposure apparatus, device manufacturing system and device manufacturing method, and program and information recording medium
KR101476370B1 (ko) 리소그래피 장치, 디바이스 제조 방법 및 연계된 데이터 처리 장치 그리고 컴퓨터 프로그램 제품
TWI786474B (zh) 最佳化微影製程之方法及裝置
JP4947483B2 (ja) デバイス製造処理方法、デバイス製造処理システム、プログラム及び記憶媒体
JP2011119457A (ja) 位置合わせ条件最適化方法及びシステム、パターン形成方法及びシステム、露光装置、デバイス製造方法、並びに重ね合わせ精度評価方法及びシステム
JP2007158034A (ja) 情報処理装置、デバイス製造処理システム、デバイス製造処理方法、プログラム、露光方法、露光装置、測定又は検査方法及び測定検査器
JP5838594B2 (ja) ダブルパターニング最適化方法及びシステム、パターン形成方法、露光装置、並びにデバイス製造方法
JP5152612B2 (ja) 情報管理方法、情報管理システム、プログラム、記録媒体、パターン検査装置及び基板検査装置
JP4947269B2 (ja) 測定検査方法、測定検査装置、露光装置及びデバイス製造処理装置
EP4191337A1 (en) A method of monitoring a lithographic process and associated apparatuses
JP2013254849A (ja) パターン形成最適化方法及びシステム、露光方法及び装置、検出装置、並びにデバイス製造方法
WO2023036526A1 (en) A method of monitoring a lithographic process and associated apparatuses
KR20230131224A (ko) 리소그래피 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822787

Country of ref document: EP

Kind code of ref document: A1