WO2023188599A1 - ポリオレフィン系フィルム、積層体、包装材、及び梱包体 - Google Patents

ポリオレフィン系フィルム、積層体、包装材、及び梱包体 Download PDF

Info

Publication number
WO2023188599A1
WO2023188599A1 PCT/JP2022/046643 JP2022046643W WO2023188599A1 WO 2023188599 A1 WO2023188599 A1 WO 2023188599A1 JP 2022046643 W JP2022046643 W JP 2022046643W WO 2023188599 A1 WO2023188599 A1 WO 2023188599A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polyolefin
resin
polyolefin film
Prior art date
Application number
PCT/JP2022/046643
Other languages
English (en)
French (fr)
Inventor
今西康之
大倉正寿
青野春樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022578978A priority Critical patent/JP7347699B1/ja
Priority to JP2023136015A priority patent/JP2023164765A/ja
Publication of WO2023188599A1 publication Critical patent/WO2023188599A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to polyolefin films, laminates, packaging materials, and packages that are particularly suitable for use in packaging applications.
  • polypropylene film has excellent transparency, mechanical properties, and electrical properties, it is used in a variety of applications such as packaging, tape, cable wrapping, and electrical insulation such as capacitors.
  • packaging applications laminated films in which a thin film of aluminum (hereinafter sometimes referred to as "Al") is deposited on a polypropylene film are widely used.
  • Al aluminum
  • the film obtained by Al vapor deposition becomes opaque, it is not suitable for applications requiring visibility of the contents.
  • films containing an Al vapor-deposited layer do not have sufficient recyclability.
  • polypropylene film when polypropylene film is applied to food packaging, it may be subjected to heat sterilization treatment (boiling, semi-retort, retort, etc.), but polypropylene film generally has inferior thermal dimensional stability compared to polyester film, etc. There is also the problem that the film is deformed by the heat during the sterilization process, causing defects such as pinholes and cracks in the deposited layer, which tends to impair water vapor barrier properties and oxygen barrier properties.
  • Films with improved thermal dimensional stability of polypropylene films have conventionally been produced by blending polypropylene with a cyclic olefin resin with a glass transition temperature of 120 to 170°C, or by providing polypropylene layers on both sides of the cyclic olefin resin layer. Films suitable for capacitors have been proposed that can improve heat resistance and exhibit voltage resistance even at high temperatures by forming laminated films with high heat resistance (Patent Documents 1 and 2). Similarly, by providing polypropylene layers on both sides of a blended resin layer of cyclic olefin resin and polypropylene, we have proposed a film suitable for packaging material applications that has high barrier properties, strength suitable for processing, and transparency. (Patent Documents 3 and 4).
  • the polypropylene film described in Patent Document 1 has improved heat resistance by blending a cyclic olefin resin and a polypropylene resin, the area stretching ratio during film formation is small and the molecular chain of the polypropylene resin is insufficiently stretched. Therefore, there was room for improvement in thermal stability.
  • the film of Patent Document 2 has a cycloolefin alone as an inner layer, like the polypropylene film described in Patent Document 1, the area stretching ratio during film formation is small and the molecular chain of the polypropylene resin is insufficiently stretched. There was room for improvement in thermal stability.
  • the film of Patent Document 3 suitable for packaging uses a blend of cyclic olefin resin and polypropylene resin and is biaxially stretched, but the dispersion of the cyclic olefin resin in the film and heat fixation after stretching are insufficient. Therefore, poor thermal dimensional stability becomes a problem.
  • the film of Patent Document 4 is a blend film of a cyclic olefin resin and a polypropylene resin, but there was no concept of stretching and the film had insufficient thermal stability. Therefore, in the films of Patent Documents 3 and 4, defects such as pinholes and cracks are likely to occur in the vapor deposited layer due to the film being deformed by the heat during heat sterilization treatment, resulting in a decrease in water vapor barrier properties and oxygen barrier properties. There was an issue.
  • an object of the present invention is to provide a polyolefin film that can reduce the decrease in structural stability, water vapor barrier property, and oxygen barrier property caused by heating.
  • the present inventors have made extensive studies to solve the above problems, and have invented the following first polyolefin film of the present invention and second polyolefin film of the present invention.
  • the first polyolefin film of the present invention has a storage modulus of E'50 (Pa) and E'121 ( Pa), E'121/E'50 is more than 0.25 and less than 0.99, and the thermal contraction rate in the main orientation axis direction at 150 ° C.
  • a polyolefin system having a tensile elongation in the direction orthogonal to the main orientation axis of 20% or more and 300% or less, and having at least one layer (layer A) containing a cyclic olefin resin and a polypropylene resin. It's a film.
  • the second polyolefin film of the present invention has at least one layer (A layer) containing a cyclic olefin resin and a polypropylene resin, and the A layer is formed in a plane parallel to the main orientation axis direction and the thickness direction.
  • a layer containing a cyclic olefin resin and a polypropylene resin
  • the A layer is formed in a plane parallel to the main orientation axis direction and the thickness direction.
  • the present invention it is possible to obtain a polyolefin film that can reduce deterioration in structural stability, water vapor barrier properties, and oxygen barrier properties due to heating.
  • a rectangle with a size of 1 ⁇ m x 2 ⁇ m with a pair of sides parallel to the thickness direction in the cross section It is a schematic diagram showing the domain of the cyclic olefin resin which passes.
  • 1 is an enlarged photograph (magnification: 2,000 times) of cross section X of a polyolefin film according to one embodiment of the present invention (aspects of Example 1 and Example 2).
  • first and second polyolefin films of the present invention will be explained in detail.
  • the combination can be arbitrary.
  • the first and second polyolefin films of the present invention may be collectively referred to as the present invention or the polyolefin film of the present invention.
  • a polyolefin film may be simply referred to as a film.
  • the "thickness direction” refers to a direction perpendicular to the film surface.
  • “Longitudinal direction” is a direction corresponding to the flow direction in the film manufacturing process (hereinafter sometimes referred to as "MD")
  • “width direction” is the direction corresponding to the flow direction in the film manufacturing process and the film surface. (hereinafter sometimes referred to as "TD").
  • MD flow direction in the film manufacturing process
  • TD width direction
  • the film winding direction can be said to be the longitudinal direction.
  • the polyolefin film of the present invention is not a microporous film and therefore does not have a large number of pores.
  • the polyolefin film of the present invention means a polyolefin film other than a microporous film.
  • a microporous film is a film that penetrates both surfaces of the film, and is measured by the permeation time of 100 ml of air at 23°C and 65% relative humidity using a JIS P 8117 (1998) B type Gurley tester. It is defined as a film having a pore structure with an air permeability of ,000 seconds/100ml or less.
  • the polyolefin film refers to a sheet-shaped molded product containing more than 50 mass % and 100 mass % or less of a polyolefin resin when all components constituting the film are 100 mass %.
  • the content of polyolefin resins shall be calculated by adding up all the polyolefin resins.
  • Polyolefin resin refers to a resin containing more than 50 mol% of olefin units and 100 mol% or less when all the structural units constituting the resin are 100 mol%. In addition, when multiple types of structural units corresponding to olefin units are included, all the olefin units are added together to determine the amount of olefin units.
  • Polypropylene-based resin refers to resins that do not fall under cyclic olefin-based resins among resins that contain propylene units in an amount greater than 50 mol% and less than or equal to 100 mol%, when the total constituent units constituting the resin are 100 mol%.
  • Cyclic olefin resin refers to a resin containing cyclic olefin units in an amount of more than 10 mol% and 100 mol% or less, when the total constituent units constituting the resin are 100 mol%. In addition, when multiple types of structural units corresponding to cyclic olefin units are included, all the cyclic olefin units are summed up to determine the amount of cyclic olefin units.
  • the first polyolefin film of the present invention has a storage modulus of E'50 in the main orientation axis direction at 50°C and 121°C, which is obtained at a dynamic viscoelasticity measurement frequency of 10Hz. (Pa) and E'121 (Pa), it is important that E'121/E'50 is more than 0.25 and less than 0.99. Note that a method for measuring the storage modulus in the direction of the main orientation axis will be described later.
  • E'121/E'50 of the polyolefin film exceeds 0.25 means that the temperature dependence of the storage modulus is small, in other words, the amorphous molecular chains within the film are difficult to move in a high temperature environment. means.
  • the E'121/E'50 of the polyolefin film larger than 0.25, for example, a layer containing a total of more than 50% by mass and 100% by mass of metals and inorganic compounds on at least one side of the film (described later) (
  • layer D When depositing layer D (hereinafter referred to as layer D), defects such as pinholes and cracks that occur in layer D due to deformation of the film due to heat during deposition are suppressed, and the laminate on which layer D is deposited has water vapor barrier properties. and oxygen barrier properties can be improved.
  • E'121/E'50 of the film is preferably 0.28 or more, more preferably 0.31 or more, still more preferably 0.33 or more, particularly preferably 0.35 or more.
  • the upper limit of E'121/E'50 is preferably 0.89, more preferably 0.69.
  • the second polyolefin film of the present invention has a storage modulus of E' in the direction of the main orientation axis at 50°C and 121°C, which is obtained at a frequency of 10Hz in dynamic viscoelasticity measurement.
  • 50 (Pa) and E'121 (Pa) it is important that E'121/E'50 exceeds 0.20 and is 0.99 or less.
  • E'121/E'50 of the film is preferably more than 0.25, more preferably 0.28 or more, even more preferably 0.31 or more, even more preferably 0.33 or more, particularly preferably 0.35. That's all.
  • the upper limit of E'121/E'50 is preferably 0.89, more preferably 0.69.
  • the E'121/E'50 of the first polyolefin film of the present invention is controlled to be more than 0.25 and 0.99 or less
  • the E'121/E'50 of the second polyolefin film of the present invention is controlled to be more than 0.25 and 0.99 or less.
  • a method of controlling the domain structure (sea-island structure) of the A layer can be used.
  • a compound resin raw material is prepared by pre-kneading a cyclic olefin resin and a polypropylene resin, and the content of the cyclic olefin resin is controlled and then melt extruded to form a sheet.
  • the area stretching ratio is set to 36.0 times or more (preferably 40.0 times or more), and the preheating temperature before stretching in the width direction in biaxial stretching is 5°C to 15°C higher than the stretching temperature in the width direction. This is effective.
  • E'121/E'50 can be adjusted to a preferable range by the above method is that in layer A, the resin peels off at the sea-island interface of the sea-island structure in which the polypropylene resin is regarded as a sea and the cyclic olefin resin is regarded as an island.
  • the island structure becoming smaller or thinner, the mobility of amorphous chains in the film can be suppressed due to the synergistic effect of the high thermal stability of the cyclic olefin resin and the excellent stretchability of the polypropylene resin. It is thought that this is because of this.
  • the first polyolefin film of the present invention has a heat shrinkage rate of -2% or more and 10% or less in the main orientation axis direction at 150°C.
  • the film can suppress the occurrence of defects such as pinholes and cracks in the D layer due to shrinkage of the film due to the heat during vapor deposition, for example when laminating the D layer described below by vapor deposition.
  • D layers can be laminated to have good water vapor barrier properties and oxygen barrier properties.
  • shrinkage of the film can be suppressed, and water vapor barrier properties and oxygen barrier properties can be prevented from being impaired.
  • the upper limit of the heat shrinkage rate in the main orientation axis direction at 150° C. is preferably 8%, more preferably 6%, and still more preferably 4%.
  • the lower limit of the heat shrinkage rate in the main orientation axis direction at 150° C. is preferably ⁇ 1%. Note that the thermal shrinkage rate in the main orientation axis direction at 150° C. can be measured by the method described below.
  • the main orientation axis direction in the present invention refers to the direction in which molecules are most strongly oriented within the plane of the polyolefin film. Normally, when biaxial stretching is performed in the production of a polyolefin film, stretching is carried out in the longitudinal direction and the width direction, and generally, the direction of the main orientation axis is the one with a larger stretching ratio. If the stretching direction (longitudinal direction and width direction) has been specified but the magnification is unknown, measure the maximum load until breakage in the tensile test described below, and consider the direction with the largest measured value as the main orientation axis direction. be able to.
  • the main orientation axis direction can be easily identified, but in the case of a film where these are unknown, the main orientation axis direction can be identified by the following method. Specifically, prepare a film, cut it out into a rectangle with a length of 150 mm x width of 10 mm with the arbitrary direction facing upward, and define the long side direction of sample ⁇ 1> as 0°. . Next, sample ⁇ 2> of the same size is taken so that the long side direction is rotated 15 degrees to the right from the 0 degree direction. Similarly, the long side direction of the rectangular sample is rotated by 15 degrees, and samples ⁇ 3> to ⁇ 12> are similarly collected. Next, for each rectangular sample, the maximum load until breakage is measured in a tensile test to be described later, and the direction with the largest measured value is defined as the main orientation axis direction.
  • the method for making the film have a heat shrinkage rate of -2% or more and 10% or less at 150°C is not particularly limited, but for example, using a cyclic olefin as a raw material for layer A is not particularly limited.
  • the first polyolefin film of the present invention has a tensile elongation of 20% or more and 300% or less in the direction orthogonal to the main orientation axis.
  • the direction perpendicular to the main orientation axis refers to a direction perpendicular to the main orientation axis within the film plane. If the tensile elongation in the direction perpendicular to the main orientation axis of the film is 20% or more, it is possible to suppress the breakage of the polyolefin film due to the tension that may occur during vapor deposition processing or transportation, especially when used for packaging purposes. It is also possible to suppress tearing during the bag-making process when making a package.
  • the lower limit of the tensile elongation in the direction perpendicular to the main orientation axis is preferably 27%, more preferably 35%. If the tensile elongation is 300% or less, deformation of the polyolefin film due to tension during vapor deposition or transportation can be suppressed, and deformation during bag-making process when making a package can also be suppressed.
  • the upper limit of the tensile elongation in the direction orthogonal to the main orientation axis is preferably 250%, more preferably 200%, still more preferably 120%, and particularly preferably 60%.
  • the tensile elongation herein refers to the tensile elongation measured at a tensile rate of 300 mm/min in an environment of 23°C.
  • the tensile elongation can be measured using a known tensile tester, and the detailed procedure will be described later.
  • a method for adjusting the tensile elongation in the direction orthogonal to the main orientation axis to 20% or more and 300% or less is not particularly limited, but for example, a polyolefin film may be made into a biaxially oriented film. Then, as a raw material for layer A, a compound resin raw material is prepared by pre-kneading a cyclic olefin resin and a polypropylene resin, and after controlling the content of the cyclic olefin resin, it is melt-extruded to form a sheet. is also preferable.
  • the first and second polyolefin films of the present invention have at least one layer (layer A) containing a cyclic olefin resin and a polypropylene resin.
  • layer A a layer containing a cyclic olefin resin and a polypropylene resin.
  • the resulting polyolefin film has excellent thermal stability due to the effects of the high thermal stability of the cyclic olefin resin and the excellent stretchability of the polypropylene resin.
  • the laminate that is vapor-deposited has excellent barrier properties.
  • the polyolefin film of the present invention has a single-film structure consisting of only one A layer, a laminated structure in which a plurality of A layers are laminated in a total of two or more layers in the thickness direction, and a layer A and a layer other than the A layer having a thickness.
  • Any laminated structure formed by laminating a total of two or more layers in the direction may be used.
  • a cyclic layer containing polypropylene resin as the main component and containing more polypropylene resin than the A layer When a layer with a low content of olefin resin is the B layer, it is preferable to have the B layer.
  • Specific embodiments of the laminated structure of the polyolefin film of the present invention include, for example, a two-layer structure of A layer/B layer, B layer/A layer/B layer, and A layer/B layer/A layer.
  • Layer structure B layer/A layer/C layer, A layer/B layer/C layer, which has a layer (C layer) with a melting point lower than the A layer and B layer described later and whose melting point is 100 ° C. or higher and 150 ° C. or lower.
  • Examples include 3 types of 3-layer configurations, and 4 or more layer configurations in which layer A is the inner layer of the film or the outermost layer on both surfaces of the film.
  • a configuration of /A layer/C layer is preferred.
  • the lower limit of the thickness of layer A is preferably 10%, more preferably 35%, still more preferably 60%, particularly preferably 80%.
  • the upper limit is 100%, including a single layer.
  • the polyolefin film of the present invention has multiple A layers, their compositions may be the same or different.
  • the lamination method include a feedblock method using coextrusion, a multi-manifold method, and a coating method, but a lamination method using coextrusion (for example, melt coextrusion) is preferable from the viewpoint of production efficiency and cost.
  • the lower limit of the content of the cyclic olefin resin in the entire film is preferably 1% by mass, more preferably 2% by mass, and even more preferably 3% by mass.
  • the upper limit is preferably 39% by weight, more preferably 25% by weight, more preferably 19% by weight, even more preferably 14% by weight, particularly preferably 9% by weight, and most preferably 7.5% by weight.
  • the lower limit of the content of the cyclic olefin resin in the film A layer is preferably 1% by mass, more preferably 2% by mass.
  • the upper limit is preferably 39% by weight, more preferably 25% by weight, more preferably 19% by weight, even more preferably 14% by weight, particularly preferably 10% by weight, and most preferably 9% by weight.
  • the cross section when the A layer is cut along a plane parallel to the main orientation axis direction and the thickness direction is the cross section X
  • a pair of short sides within the cross section It is important that there be two or more domains of the cyclic olefin resin that pass through the pair of short sides in a rectangle of size 1 ⁇ m x 2 ⁇ m that is set parallel to the direction.
  • the number of domains of the cyclic olefin resin passing through a pair of sides parallel to the thickness direction is preferably 4 or more, more preferably 6 or more.
  • the upper limit is not particularly limited, but is set to 100. Note that it is preferable that the first polyolefin film of the present invention also satisfy the requirements, and the preferable numerical range is also the same.
  • the cyclic olefin resin By having two or more domains of cyclic olefin resin passing through a pair of sides parallel to the thickness direction, the cyclic olefin resin is finely dispersed in a flat shape within the plane, and the cyclic olefin resin It is thought that the synergistic effect of the high thermal stability of the resin and the excellent stretchability of the polypropylene resin can suppress the mobility of amorphous chains in the film. Therefore, for example, when laminating the D layer (described later) by vapor deposition, it is possible to prevent defects such as pinholes and cracks from occurring in the D layer due to the shrinkage of the film due to the heat during vapor deposition. The body's water vapor barrier properties and oxygen barrier properties can be improved. Further, even when high-temperature treatment such as heat sterilization treatment is performed after bag-making, shrinkage of the film can be suppressed, and water vapor barrier properties and oxygen barrier properties can be prevented from being impaired.
  • a method for increasing the number of domains of the cyclic olefin resin that passes through a pair of sides parallel to the thickness direction within the cross section X to two or more it is possible to use a method of controlling the domain structure (sea-island structure) of layer A. can. For example, preparing a compound resin raw material by pre-kneading a cyclic olefin resin and a polypropylene resin as a raw material for the A layer, controlling the content of the cyclic olefin resin and then melt-extruding it into a sheet, It is effective to perform biaxial stretching at a stretching ratio of 36.0 times or more (preferably 40.0 times or more) and to perform heat treatment after the biaxial stretching.
  • FIG. 1 shows a 1 ⁇ m x 2 ⁇ m rectangle with a pair of sides parallel to the thickness direction in the cross section X of a polyolefin film according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a domain of a cyclic olefin resin passing through a pair of sides.
  • Reference numerals 1 to 5 in FIG. 1 respectively refer to a part of the cross section , represents a pair of sides parallel to the thickness direction.
  • the left figure in Figure 1 is a part of cross-section .
  • the sea portion is a polypropylene resin
  • the island portion is a cyclic olefin resin.
  • a domain of a cyclic olefin resin that passes through a pair of sides parallel to the thickness direction refers to a domain of a cyclic olefin resin that passes through a pair of sides parallel to the thickness direction.
  • the 4th to 7th domains from the top correspond to this, and the 1st to 3rd domains from the top do not correspond to this, so the ⁇ parallel to the thickness direction'' in the example
  • the C layer when the C layer is a layer having a melting point lower than that of the A layer and the B layer and having a melting point of 100°C or more and 150°C or less, the B layer is located on the outermost surface of one, and the other It is preferable that the C layer is located on the outermost surface of the substrate. Since the C layer melts at a lower temperature than the A and B layers, by melting only the C layer at a temperature lower than the melting point of the A and B layers, the C layer plays the role of a heat seal layer. be able to. Heat sealing refers to the state (or process) in which films are melted and pressed together through heat treatment when filling and packaging the contents to form a bag. This refers to the properties of the film that is melted and pressed.
  • the C layer preferably contains a polypropylene resin with low crystallinity and a low melting point, and specifically, an ethylene-propylene random copolymer. Polymers, ethylene-propylene-butene random copolymers, propylene-butene random copolymers, etc. can be preferably used.
  • the melting point of the C layer is preferably 110°C or more and 148°C or less, more preferably 120°C or more and 145°C or less. The melting point of the C layer can be read as the peak temperature at which the heat of fusion is greatest among the endothermic peaks due to melting when the C layer of the film is analyzed by differential scanning calorimetry (DSC).
  • the polyolefin film of the present invention has a tan ⁇ 50/tan ⁇ 121 of 0.25 when the tan ⁇ in the main orientation axis direction at 50° C. and 121° C. obtained at a frequency of 10 Hz in dynamic viscoelasticity measurement is set as tan ⁇ 50 and tan ⁇ 121, respectively. It is preferable that it exceeds 0.99 or less. When tan ⁇ 50/tan ⁇ 121 exceeds 0.25, it means that the temperature dependence of loss tangent (tan ⁇ ) is small.
  • the amorphous molecular chains within the film are difficult to move in a high-temperature environment, and for example, when depositing the D layer described later, pinholes and cracks occur in the D layer due to the deformation of the film due to the heat during deposition. defects can be suppressed, and the water vapor barrier properties and oxygen barrier properties of the laminate on which the D layer is deposited can be improved.
  • deformation of the film due to high-temperature treatments such as heat sterilization performed after bag-making can be suppressed, thereby reducing deterioration in water vapor barrier properties and oxygen barrier properties caused by such treatments.
  • the upper limit of tan ⁇ 50/tan ⁇ 121 is set to 0.99 or less.
  • tan ⁇ at each temperature can be determined from the storage modulus and loss modulus that can be read from the viscoelasticity-temperature curve using the dynamic viscoelasticity method, and the measurement method will be described later along with the method for measuring each elastic modulus. .
  • the lower limit of tan ⁇ 50/tan ⁇ 121 of the film is 0.28, preferably 0.31, more preferably 0.33, and even more preferably 0.35.
  • the upper limit of tan ⁇ 50/tan ⁇ 121 is preferably 0.89, more preferably 0.69.
  • tan ⁇ 50/tan ⁇ 121 In order to control tan ⁇ 50/tan ⁇ 121 to more than 0.25 and 0.99 or less, for example, it is necessary to prepare a compound resin raw material by pre-kneading a cyclic olefin resin and a polypropylene resin as a raw material for the A layer, After controlling the content of the olefin resin, melt extrusion to form a sheet, setting the area stretching ratio to 36.0 times or more (preferably 40.0 times or more), and preheating temperature before stretching in the width direction in biaxial stretching. It is effective to make the temperature higher than the width direction stretching temperature by 5° C. or more and 15° C. or less.
  • the polyolefin film of the present invention has a ten-point area height (S10z) of at least one surface of the B layer measured by three-dimensional non-contact surface shape measurement of 150 nm or more and 900 nm or less. It is preferable that there be.
  • the height of the ten-point area on the surface (S10z) is the height of the five-point mountain area in the evaluation visual field image (S5p: average height of the fifth highest mountain peak among the mountain peaks in the reference area).
  • S5p average height of the fifth highest mountain peak among the mountain peaks in the reference area.
  • S5p average height of the fifth highest mountain peak among the mountain peaks in the reference area
  • S5v average height of the fifth to deepest valley bottoms (positive value) among the valley bottoms in the reference area. That is, the smaller (S10z) means a surface with less difference in unevenness, and conversely, the larger (S10z) means a surface with more difference in unevenness.
  • the lower limit of the surface ten-point region height (S10z) is preferably 180 nm, more preferably 200 nm.
  • the upper limit is preferably 700 nm, more preferably 400 nm.
  • the B layer described below contains 1% by mass or more of a thermoplastic resin that is incompatible with polypropylene resin and 10% by mass of polypropylene resin. % or less is effective.
  • the polyolefin film of the present invention preferably contains at least one of metal particles and inorganic compound particles.
  • inorganic compound particles include, for example, aluminum, aluminum oxide (sometimes referred to as alumina), silicon oxide, cerium oxide, calcium oxide, and diamond-like carbon film. or a mixture thereof, and particularly preferably contains at least one of alumina, silica, and an oxide of aluminum and silicon.
  • the type of particles can be identified by, for example, energy dispersive X-ray analysis (EDS) and, if necessary, EELS analysis using GATAN GIF "Tridiem".
  • EDS energy dispersive X-ray analysis
  • the components of the particles can be identified by comparing the obtained EELS spectrum with the EELS spectrum of a commercially available metal compound or publicly available EELS spectrum data.
  • Measurement devices include JED-2300F (manufactured by JEOL Ltd., semiconductor detector, dry SD extra) for EDS, and field emission transmission electron microscope JEM-2100F (manufactured by JEOL Ltd.) for EELS analysis. , acceleration voltage 200 kV), etc. can be used.
  • the aspect ratio of the metal particles or inorganic compound particles is 2 or more when observed in a cross section when the polyolefin film of the present invention is cut along a plane parallel to the main orientation axis direction and perpendicular to the thickness direction. . Since the more layered the particles, the higher the barrier properties can be exhibited, the aspect ratio is more preferably 10 or more, further preferably 30 or more, and particularly preferably 50 or more. The upper limit of the aspect ratio is not particularly limited, but is set to 500.
  • the method of increasing the aspect ratio of particles in the film to 2 or more is not particularly limited. % or less (Layer D) is used as a raw material. At this time, in the melting step of melting the laminate, it is preferable to melt with high shear or to melt the thin laminate of layer D.
  • the aspect ratio of a particle is calculated as the ratio of the length of the long side to the length of the short side of a cross-sectional image of the particle obtained by observation with an SEM (scanning electron microscope), surrounded by a rectangle with the smallest area. can do.
  • At least one film has a surface gloss of more than 130% and no more than 160%.
  • a film surface gloss of more than 130% means that the surface of the film is smooth because the light scattering density on the film surface is low. Therefore, by making the film surface gloss higher than 130%, defects such as pinholes and cracks that occur in the D layer can be suppressed when the D layer is vapor-deposited, and the moisture vapor barrier properties and oxygen Good barrier properties can be achieved.
  • the film surface glossiness exceeds 160%, it means that the surface is excessively smoothed, and the slippage of the film may be extremely likely to decrease.
  • the film surface glossiness is more preferably 135% or more and 149% or less, and even more preferably 140% or more and 148% or less. Note that the glossiness can be measured according to JIS K-7105 (1981), the details of which will be described later.
  • a compound resin raw material is prepared by pre-kneading a cyclic olefin resin and a polypropylene resin as a raw material for the A layer.
  • it is effective to set the area stretching ratio to 36.0 times or more (preferably 40.0 times or more).
  • the polyolefin film of the present invention is preferably a biaxially oriented film.
  • a biaxially oriented film By forming a biaxially oriented film, the storage modulus in the direction of the main orientation axis and the tensile elongation in the direction perpendicular to the main orientation axis at 50°C and 121°C, which are obtained at a dynamic viscoelasticity measurement frequency of 10Hz, can be improved by the present invention. It becomes easy to control the temperature within a preferable range.
  • the biaxially oriented film is a film in which molecular chains are oriented in two orthogonal directions, and is usually obtained by stretching in two orthogonal directions.
  • the polyolefin film of the present invention can be widely used in industrial applications such as packaging applications, mold release applications, tape applications, film capacitor applications, etc., and from the viewpoint of making it suitable for film capacitor applications and packaging applications, the polyolefin film has a thickness of 0.5 ⁇ m. It is preferable that the diameter is larger than 60 ⁇ m. By making the thickness larger than 0.5 ⁇ m, sagging during vapor deposition processing and transportation can be suppressed, and furthermore, film tearing due to tension can be reduced. From the above viewpoint, the lower limit of the thickness is more preferably 0.8 ⁇ m, even more preferably 1.2 ⁇ m, for capacitor use, and more preferably 10 ⁇ m, and even more preferably 11 ⁇ m for packaging use.
  • the thickness of the film is determined by measuring the thickness of any 10 points on the film with a contact micrometer in an atmosphere of 23°C and 65% RH, and calculating the arithmetic average value of all the measured values. can do.
  • the method for making the thickness of the polyolefin film greater than 0.5 ⁇ m and less than 60 ⁇ m or in the above preferred range is not particularly limited, and includes, for example, a method of adjusting the discharge amount during melt extrusion of the polyolefin resin composition, and a method of adjusting the discharge amount during melt extrusion of the polyolefin resin composition, A method of adjusting the rotation speed of the cast drum during cooling and solidification, a method of adjusting the lip gap of the die that discharges the molten sheet, a method of adjusting the stretching ratio in the longitudinal direction, a method of adjusting the stretching ratio in the width direction, etc. can be used. More specifically, the thickness of the polyolefin film can be reduced by lowering the discharge rate, increasing the rotational speed of the cast drum, reducing the lip gap of the die, and increasing the stretching ratio in the longitudinal and width directions. can do.
  • the A layer of the polyolefin film of the present invention has a storage modulus in the direction of the main orientation axis at 50°C and 121°C, and a heat shrinkage coefficient in the direction of the main orientation axis at 150°C, which are obtained at a frequency of 10Hz in dynamic viscoelasticity measurement. From the viewpoint of keeping the tensile elongation in the direction perpendicular to the main orientation axis within the above range, it is preferable that the main component is a polypropylene resin and that the melting point of the A layer is 135°C or more and 175°C or less.
  • the lower limit of the melting point of layer A is preferably 140°C, more preferably 145°C, even more preferably 150°C, particularly preferably 157°C, and most preferably 163°C.
  • the upper limit of the melting point of layer A is preferably 173°C, more preferably 171°C, particularly preferably 169°C.
  • the melting point of layer A can be read as the peak temperature of the endothermic peak due to melting of the 2nd Run when analyzing layer A of the polyolefin film by differential scanning calorimetry (DSC), which has the largest peak area. . Note that a detailed method for measuring the melting point will be described later.
  • the polypropylene resin used as the main component in layer B of the polyolefin film of the present invention preferably has a mesopentad fraction of 0.900 or more.
  • the lower limit of the mesopentad fraction is preferably 0.930, more preferably 0.960, still more preferably 0.970.
  • the mesopentad fraction is an index indicating the stereoregularity of the crystalline phase of the polypropylene resin, and is measured by nuclear magnetic resonance (NMR).
  • the crystallinity of the B layer is increased, and the orientation of the polypropylene film (especially the B layer) is increased. It has the effect of increasing sex.
  • polypropylene film when polypropylene film is used for packaging purposes, it suppresses deformation due to heat during vapor deposition, makes it easier to uniformly laminate the D layer, which will be described later, including the vapor deposited film, and prevents pin holes in the D layer. Defects such as cracks and cracks can also be suppressed.
  • the effect of improving the water vapor barrier property and oxygen barrier property of the laminate in which the D layer is laminated can be obtained.
  • the upper limit of the mesopentad fraction is preferably 0.99, more preferably 0.98, from the viewpoint of feasibility and increasing the adhesion between the B layer and the D layer.
  • the polypropylene resin used in layer B of the polyolefin film of the present invention may be one type, or two or more types may be mixed.
  • the melting point of the polypropylene resin as the main component is preferably 151°C or higher, more preferably 153°C or higher, still more preferably 155°C or higher, and especially The temperature is preferably 158°C or higher, most preferably 160°C or higher. Since the melting point of the polypropylene resin, which is the main component of layer B, is 151° C.
  • the crystallinity of layer B is maintained high, so that deformation of the polypropylene film due to heat during vapor deposition is reduced. That is, when the D layer described below is laminated by vapor deposition, defects such as pinholes and cracks in the D layer are reduced, and the water vapor barrier properties and oxygen barrier properties of the laminate in which the D layers are laminated are improved.
  • a modified polypropylene resin is preferably used as the polypropylene resin other than the main component.
  • a resin By using such a resin, the content of nitrogen elements and oxygen elements on the surface of the B layer increases, and when the D layer described below is laminated, the adhesion between the B layer and the D layer can be increased.
  • modified polypropylene resins include Mitsui Chemicals' "Admer” (registered trademark) series (unsaturated carboxylic acid modified polypropylene) and Sanyo Chemical Industries, Ltd.'s "Umex” (registered trademark) series.
  • the content of the modified polypropylene resin in the B layer is preferably 40% by mass or less, more preferably 30% by mass when the entire resin of the B layer is 100% by mass.
  • the content is preferably 20% by mass or less.
  • an incompatible resin that is not compatible with the polypropylene resin may be added to the extent that the effect of the present invention is not inhibited from the viewpoint of imparting surface layer lubricity.
  • the amount of the incompatible resin that is not compatible with the polypropylene resin is preferably 1% by mass or more and 10% by mass or less, when the total resin amount constituting the B layer is 100% by mass.
  • the amount of the incompatible resin that is not compatible with the polypropylene resin is preferably 2% by mass or more, more preferably 3% by mass or more, and the upper limit is is preferably 9% by mass, more preferably 8% by mass.
  • the incompatible resin it is particularly preferable to use polymethylpentene resin because it has a relatively high affinity with polypropylene resin and can reduce the domain size.
  • the melting point of the polymethylpentene resin is preferably 185°C to 240°C, more preferably 220°C, from the viewpoint of extrusion stability when blended with polypropylene and imparting surface irregularities using the domain sea-island structure. ⁇ 240°C.
  • a polymer in which the structural unit derived from 4-methylpentene-1 accounts for 80 mol% or more and 100 mol% or less out of 100 mol% of the total structural units is preferable, for example, "TPX” (registered trademark) MX series, "TPX” (registered trademark) DX series, "TPX” (registered trademark) RT series, etc. sold as “TPX” (registered trademark) series by Mitsui Chemicals, Inc. It can be preferably used.
  • TPX registered trademark
  • MX002, MX004, DX310, DX845, and RT31 are preferable because they have a relatively high affinity with polypropylene resins and can reduce the domain size.
  • Cyclic olefin resins are obtained, for example, mainly by polymerizing cyclic olefin monomers.
  • Cyclic olefin monomers include monocyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, cyclopentadiene, and 1,3-cyclohexadiene, bicyclo[2,2,1]hept-2-ene, and 5-methyl-bicyclo[ 2,2,1]hept-2-ene, 5,5-dimethyl-bicyclo[2,2,1]hept-2-ene, 5-ethyl-bicyclo[2,2,1]hept-2-ene, 5-Butyl-bicyclo[2,2,1]hept-2-ene, 5-ethylidene-bicyclo[2,2,1]hept-2-ene, 5-hexyl-bicyclo[2,2,1]hept-2-ene 2-ene, 5-octyl-bicyclo[2,2,1]hept-2-ene, 5-octadecyl-bicyclo[2,2,1
  • bicyclo[2,2,1]hept-2-ene (hereinafter referred to as norbornene), tricyclo[4,3,0,12 .5] Tricyclic olefin having 10 carbon atoms such as deca-3-ene (hereinafter referred to as tricyclodecene), tetracyclo[4,4,0,12.5,17.10]dodec-3-ene
  • tricyclodecene Tricyclic olefin having 10 carbon atoms
  • tricyclodecene tetracyclo[4,4,0,12.5,17.10]dodec-3-ene
  • tetracyclic olefin having 12 carbon atoms hereinafter referred to as tetracyclododecene
  • cyclopentadiene or 1,3-cyclohexadiene is preferably used.
  • a cyclic olefin resin is a resin in which only the above cyclic olefin monomers are polymerized (hereinafter referred to as a , COP) or a resin obtained by copolymerizing the above-mentioned cyclic olefin monomer and chain olefin monomer (hereinafter sometimes referred to as COC), or a mixture of both may be used.
  • a cyclic olefin resin is a resin in which only the above cyclic olefin monomers are polymerized (hereinafter referred to as a , COP) or a resin obtained by copolymerizing the above-mentioned cyclic olefin monomer and chain olefin monomer (hereinafter sometimes referred to as COC), or a mixture of both may be used.
  • COC chain olefin monomer
  • Methods for producing COP include known methods such as addition polymerization of cyclic olefin monomers or ring-opening polymerization. For example, after carrying out ring-opening metathesis polymerization of norbornene, tricyclodecene, tetracyclodecene, and their derivatives, Examples include hydrogenation, addition polymerization of norbornene and its derivatives, and hydrogenation after 1,2-, 1,4-addition polymerization of cyclopentadiene and cyclohexadiene.
  • preferred chain olefin monomers for copolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1 -hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and the like.
  • ethylene can be particularly preferably used from the viewpoint of productivity and cost.
  • methods for producing a resin obtained by copolymerizing a cyclic olefin monomer and a chain olefin monomer include known methods such as addition polymerization of a cyclic olefin monomer and a chain olefin monomer. Examples include a method of addition polymerizing ethylene.
  • a binary or tertiary copolymerization consisting of norbornene or tricyclodecene as the cyclic olefin monomer and ethylene and/or propylene as the chain olefin monomer is more preferable.
  • the cyclic olefin resin used in the polyolefin film of the present invention is preferably amorphous.
  • the glass transition temperature of the amorphous cyclic olefin resin is determined from the viewpoint of controlling the E'121/E'50 of the polyolefin film, the heat shrinkage rate in the main orientation axis direction at 150°C within the above-mentioned preferred range.
  • the temperature is preferably 125°C or higher, more preferably 130°C or higher, even more preferably 135°C or higher.
  • the upper limit is not particularly limited, but is set at 200° C. from the viewpoint of film formability.
  • the cyclic olefin resin is amorphous when the cyclic olefin resin is heated from 30°C to 260°C at a rate of 20°C/min using a differential scanning calorimeter DSC. It is defined that no peak melting temperature (Tm) is observed.
  • the polyolefin film of the present invention may contain resins other than the polypropylene resin and the cyclic olefin resin as long as the object of the present invention is not impaired.
  • resins include vinyl polymer resins including various polyolefin resins, polyester resins, polyamide resins, polyphenylene sulfide resins, polyimide resins, polycarbonate resins, etc.
  • polymethylpentene, syndiotac Preferred examples include polystyrene and the like.
  • the content of resins other than polypropylene resins and cyclic olefin resins is preferably less than 3% by mass, more preferably 2% by mass or less, even more preferably It is 1% by mass or less. If the content of resins other than polypropylene resin and cyclic olefin resin is 3% by mass or more, the influence of the domain interface becomes large, resulting in decreased stretchability and poor water vapor barrier properties of the laminate in which the D layer is laminated. Oxygen barrier properties may deteriorate. Note that the layer containing these components is not particularly limited.
  • the polyolefin film of the present invention can be widely used in industrial applications such as packaging, mold release, tape, and film capacitor applications. It can be suitably used as a polyolefin film that has excellent water vapor barrier properties and oxygen barrier properties even against heat during heat sterilization treatment.
  • the laminate of the present invention has a layer (D layer) containing a total of more than 50% by mass and 100% by mass or less of a metal and an inorganic compound on at least one side of the polyolefin film of the present invention.
  • a layer containing a total of more than 50% by mass and 100% by mass or less of a metal and an inorganic compound means a layer containing only a metal in an amount of more than 50% by mass when all components constituting the layer are 100% by mass.
  • metals and/or inorganic compounds for the D layer include aluminum, aluminum oxide, silicon oxide, cerium oxide, Calcium oxide, diamond-like carbon film, or a mixture thereof is preferably used.
  • the average height (Spk) of the protruding peaks on the surface of the D layer measured by a three-dimensional non-contact surface roughness meter is 10 nm or more and 400 nm or less. .
  • Spk average height
  • the average height (Spk) of the protruding peaks on the surface of the D layer measured by a three-dimensional non-contact surface roughness meter is 10 nm or more and 400 nm or less.
  • the lower limit of Spk is preferably 20 nm, more preferably 30 nm, and even more preferably 40 nm.
  • the upper limit of Spk is preferably 350 nm, more preferably 250 nm, still more preferably 150 nm, particularly preferably 130 nm.
  • the method includes controlling the melt extrusion to form a sheet, forming a laminated structure, controlling the cooling temperature during cooling and solidification of the molten sheet at a low level (preferably 30°C or less), and area stretching ratio of 36.0 times or more (preferably 40.0 times or more) is effective.
  • the thickness of the D layer in the laminate of the present invention is 200 nm from the viewpoint of recyclability in that the laminate can be reused as a resin or film, resistance to cracking to improve barrier properties, and visibility of contents when used as a packaging material.
  • the following are preferred. From the above viewpoint, the thickness is more preferably 110 nm or less, further preferably 50 nm or less, and even more preferably 30 nm or less.
  • the lower limit is not particularly limited, it is set to 1 nm from the viewpoint of developing barrier properties.
  • a resin layer having a thickness of 1 ⁇ m or less may be provided by coating or the like between the D layer and the surface of the polyolefin film.
  • a resin layer By providing such a resin layer, effects such as improving the adhesion between the D layer and the polyolefin film may be obtained.
  • an embodiment without the resin layer that is, an embodiment in which the D layer is directly laminated on the outermost surface of the polyolefin film
  • the B layer of the polyolefin film is preferable. More preferred is an embodiment having a D layer on the surface.
  • Methods for forming the D layer on the polyolefin film of the present invention to form a laminate include coating, vapor deposition, lamination, etc.
  • vapor deposition is preferable because it is not dependent on humidity and can exhibit excellent gas barrier properties as a thin film. Particularly preferred.
  • various physical vapor deposition methods such as vacuum vapor deposition, EB vapor deposition, sputtering method, and ion plating method, and various chemical vapor deposition methods such as plasma CVD can be used, but from the viewpoint of productivity, vacuum vapor deposition is preferable.
  • the method is particularly preferably used.
  • a top coat layer containing an organic-inorganic mixture may be laminated on the surface of the D layer.
  • a preferable example of the top coat layer is a mixture of an alkoxide containing a metal or silicon atom and/or a polycondensate thereof, and a water-soluble polymer.
  • the packaging material of the present invention is characterized by having at least one of the polyolefin film of the present invention and the laminate of the present invention.
  • the packaging material of the present invention has excellent structural stability against heat during vapor deposition, and has particularly good water vapor barrier properties and oxygen barrier properties when laminated with transparent vapor deposited layers, so it is easily deteriorated by water vapor and oxygen. It can be suitably used for packaging things.
  • the package of the present invention is characterized in that the contents are packed using the packaging material of the present invention.
  • the contents are not particularly limited, since the packaging material of the present invention has excellent transparency, water vapor barrier properties, and oxygen barrier properties, visibility from the outside is required, and it should be noted that it is easily deteriorated by water vapor and oxygen. preferable.
  • the package of the present invention is obtained by covering the contents with the packaging material of the present invention, and its mode is not particularly limited. For example, a package obtained by heat-sealing the packaging material of the present invention into a bag shape and placing contents therein can be mentioned. Specific examples of such packages include retort pouch foods and the like.
  • the polyolefin film of the present invention can be obtained by biaxial stretching, heat treatment, and relaxation treatment using raw materials capable of imparting the above-mentioned properties.
  • Biaxial stretching can be achieved by any of the simultaneous inflation biaxial stretching method, simultaneous tenter biaxial stretching method, and sequential tenter biaxial stretching method. It is preferable to employ a tenter sequential biaxial stretching method or a tenter simultaneous biaxial stretching method in terms of controlling mechanical properties and thermal dimensional stability while increasing the structure and surface properties, particularly the stretching ratio of the present invention.
  • a compound resin raw material prepared by pre-kneading a cyclic olefin resin and a polypropylene resin is diluted or directly melt-extruded onto a support to form an unstretched film.
  • This unstretched film is stretched in the longitudinal direction and then in the width direction, resulting in sequential biaxial stretching.
  • heat treatment and relaxation treatment are performed to produce a biaxially oriented polyolefin film.
  • the dispersion state of the cyclic olefin resin and the polypropylene resin (A) is improved, and the E'121/E'50 is controlled to be more than 0.25 and less than 0.99, and the storage elastic modulus is
  • the E'121/E'50 is controlled to be more than 0.25 and less than 0.99
  • the storage elastic modulus is By obtaining a film with low temperature dependence, we can suppress film deformation due to heat, especially when depositing the D layer on the film, and improve the water vapor barrier properties and oxygen barrier properties of the laminate in which the D layer is laminated.
  • a short-screw extruder, a twin-screw extruder, etc. can be used for compounding, it is particularly preferable to use a twin-screw extruder from the viewpoint of obtaining a good dispersion state and high thermal stability.
  • the amount of the antioxidant is preferably 0.2 parts by mass or more, more preferably 0.3 parts by mass or more, and even more preferably 0.4 parts by mass or more, based on 100 parts by mass of the compound resin component.
  • the upper limit is 1.0 part by mass.
  • a resin raw material obtained by compounding a cyclic olefin resin and a polypropylene resin is supplied to a single-screw extruder for the A layer, and a polypropylene resin or a polypropylene resin composition, which is a raw material for the B layer, and a polypropylene resin composition, which is a raw material for the C layer.
  • the polypropylene resin or polypropylene resin composition is supplied to a single screw extruder for layer B and a single screw extruder for layer C, respectively.
  • Layers A, B, and C are each melt-extruded from a single-screw extruder at an extrusion temperature of 220° C. to 280° C., preferably 230° C.
  • molten resins are mixed into a desired layer configuration (layer A at the unstretched stage is layer a, layer B at the unstretched stage is layer b, layer C at the unstretched stage is layer c, for example, layer b/ They are combined using a stacking device such as a feed block so as to form a layer (a layer/c layer). Thereafter, it is extruded through a slit-shaped die at a temperature of 200°C to 260°C.
  • the resin is sufficiently melted and the molecular chains are prevented from being cut due to the shear caused by the rotation of the screw, so that the film structure can be stabilized without relaxing even at high temperatures. It is preferable to set the temperature so that the temperature after passing through the filter is lower than that before the filtration filter, and the mouth temperature immediately before discharge is further lowered to achieve multistage cooling.
  • the oxygen concentration in the raw material supply hopper is preferably 1% or less (on a volume basis, the same applies hereinafter), more preferably 0.1% or less, still more preferably 0.05% or less.
  • the molten resin sheet extruded from the slit-shaped die is cooled and solidified on a casting drum (cooling drum) whose surface temperature is controlled at 10° C. to 40° C. to obtain an unstretched film.
  • a casting drum cooling drum
  • the roughness parameter of layer D formed on the surface of layer B can be controlled within the desired range. This is preferred because it is easy to do.
  • any of the following methods can be used: an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, an air chamber method, etc.
  • the air knife method is preferred since it can improve the flatness of the film and control the surface roughness.
  • the surface temperature of the casting drum is preferably 10°C to 35°C, more preferably 10°C from the viewpoint of smoothing the surface of the resulting polypropylene film and improving the thickness uniformity and adhesion of the D layer formed by vapor deposition.
  • the temperature range is from 10°C to 30°C, particularly preferably from 10°C to 25°C.
  • the meso phase is an intermediate phase between crystal and amorphous, and is specifically generated when solidified from a molten state at a very fast cooling rate. It is generally known that when polypropylene is cooled and solidified, it crystallizes and spherulites grow. However, when an unstretched film with spherulites formed in this way is stretched, crystals inside the spherulites and between the spherulites grow. It is thought that there is a difference in stretching stress between and amorphous, and local stretching unevenness occurs, leading to thickness unevenness and structural unevenness.
  • the meso phase does not take a spherulite form, no stretching unevenness occurs and the stretching uniformity is high, so that when formed into a film, the thickness is highly uniform, and the surface roughness is likely to be small and uniform.
  • the unstretched film is biaxially stretched and biaxially oriented. More specifically, the unstretched film is preferably kept at a temperature of 100 to 170°C, more preferably 120 to 165°C, and the longitudinal direction is preferably 2.0 to 12 times, more preferably 3.0 to 11 times. , more preferably 4.0 to 10 times, particularly preferably 4.5 to 10 times, most preferably 5.0 to 9.0 times, and then cooled to room temperature.
  • the film which has been uniaxially stretched in the longitudinal direction, is guided into a tenter while holding both ends in the width direction with clips.
  • the temperature of the preheating step immediately before stretching in the width direction is preferably the stretching temperature in the width direction +12°C, and more preferably the stretching temperature in the width direction +10°C.
  • the film is stretched in the width direction while holding both ends in the width direction with clips.
  • the stretching temperature in the width direction is preferably 150 to 175. °C, more preferably 155-175 °C.
  • the stretching ratio in the width direction is preferably 6.0 to 20.0 times, More preferably 8.1 to 17.0 times, still more preferably 9.1 to 15.0 times.
  • the area stretching ratio is preferably 36.0 times or more.
  • the area stretching ratio is preferably 36.0 times or more.
  • the molecular chain tension in the film plane increases and the domain structure becomes smaller or thinner, so that the temperature dependence of the storage elastic modulus when made into a film is reduced; It is possible to improve thermal dimensional stability and elongation at break.
  • the obtained film is suppressed from being deformed by heat, especially when the D layer is deposited on the film, and the laminate in which the D layer is laminated has excellent water vapor barrier properties and oxygen barrier properties.
  • the areal stretching ratio is the longitudinal stretching ratio multiplied by the widthwise stretching ratio.
  • the area stretching ratio is more preferably 38.0 times or more, still more preferably 40.0 times or more, particularly preferably 44.0 times or more.
  • the upper limit of the areal stretching ratio is not particularly limited, but from the viewpoint of feasibility, it is 90.0 times in the case of sequential biaxial stretching, and 150 times in the case of simultaneous biaxial stretching.
  • the important point in the polyolefin film of the present invention is to reduce the temperature dependence of the storage modulus and the heat shrinkage rate in the direction of the main orientation axis at 150°C while maintaining a high area stretching ratio.
  • the goal is to increase tensile elongation. That is, in the present invention, it is preferable to increase the dispersibility of the cyclic olefin resin domains dispersed in the polypropylene resin, and to preheat the polypropylene resin at a higher temperature than the stretching temperature during biaxial stretching and further widthwise stretching.
  • heat treatment is performed at 145°C or more and 170°C or less while loosening the film by 2 to 20% in the width direction while holding both ends in the width direction with a clip. It is preferable to carry out this method from the viewpoint of removing residual distortion of the film and improving thermal dimensional stability.
  • Such treatment can suppress film deformation due to heat, particularly when the D layer is deposited on the film, and improve the water vapor barrier properties and oxygen barrier properties of the laminate in which the D layers are laminated.
  • the lower limit of the heat treatment temperature is preferably 150°C, more preferably 155°C, and even more preferably 160°C.
  • the lower limit of the relaxation rate is preferably 5%, more preferably 8%, and even more preferably 11%, while the upper limit is preferably 18%, More preferably it is 17%.
  • the film is guided to the outside of the tenter, the clips at both ends of the film in the width direction are released in a room temperature atmosphere, and the edges on both sides of the film in the width direction are slit in a winder step.
  • In-line surface modification treatment includes, for example, corona discharge treatment, plasma treatment, ion beam treatment, etc. in the atmosphere or in an atmospheric gas of oxygen, nitrogen, hydrogen, argon, carbon dioxide, silane gas, or a mixture thereof. can be mentioned.
  • corona discharge treatment it is effective to perform it in an atmospheric gas with an oxygen concentration of 10% or less, preferably 5% or less, more preferably 1% or less, and an atmospheric gas with an oxygen concentration of 1% or less.
  • an atmospheric gas with an oxygen concentration of 10% or less preferably 5% or less, more preferably 1% or less
  • an atmospheric gas with an oxygen concentration of 1% or less it is preferable to use nitrogen gas, carbon dioxide gas, or a mixture thereof, and it is particularly effective to use a mixture of nitrogen gas and carbon dioxide gas.
  • a method of combining the above-described corona discharge treatment in an atmospheric gas, plasma treatment, and ion beam treatment is also effective.
  • the polyolefin film of the present invention can be obtained by winding the film thus obtained into a roll.
  • the temperature before the filtration filter should be high, the temperature after passing through the filter should be lower than before the filtration filter, and the mouth temperature immediately before discharge should be lowered further (multistage low temperature).
  • the oxygen concentration in the raw material supply hopper should be 1% or less.
  • the pre-compounded resin raw material is used for layer A, and layer A is used as an inner layer to form a laminated structure.
  • the area stretching ratio of biaxial stretching is 36.0 times or more.
  • the preheating temperature before widthwise stretching is from widthwise stretching temperature +5 to widthwise stretching temperature +15°C.
  • heat treatment is performed at 145°C or more and 170°C or less while giving 2 to 20% relaxation in the width direction.
  • the metal film laminate film of the present invention has a metal film on at least one side of the polyolefin film of the present invention.
  • This metal film laminated film can be obtained by providing a metal film on at least one side of the polypropylene film according to the present invention.
  • the method of applying the metal film is not particularly limited, but for example, aluminum or an alloy of aluminum and zinc is deposited on at least one side of a polyolefin film to form a deposited film that becomes the internal electrode of a film capacitor.
  • a method of providing a metal film is preferably used.
  • other metal components such as nickel, copper, gold, silver, and chromium can also be deposited simultaneously or sequentially with aluminum.
  • a protective layer may be provided on the deposited film using oil or the like.
  • the metal film laminated film after forming the metal film, can be annealed or heat treated at a specific temperature, if necessary. Furthermore, for insulation or other purposes, at least one side of the metal film laminate film may be coated with a resin such as polyphenylene oxide.
  • the film capacitor of the present invention uses the metal film laminate film of the present invention. That is, the film capacitor of the present invention has the metal film laminate film of the present invention.
  • the film capacitor of the present invention can be obtained by laminating or winding the metal film laminate film of the present invention described above using various methods.
  • a preferred method for manufacturing a wound film capacitor is as follows.
  • Aluminum is deposited on one side of the polyolefin film under reduced pressure. At that time, the vapor is deposited in a stripe shape having a margin section running in the longitudinal direction. Next, a blade is inserted into the center of each vapor deposition part and the center of each margin part on the surface to make a slit, thereby producing a tape-shaped take-up reel having a margin on one side of the surface. Two tape-shaped take-up reels with a margin on the left or right are wound, one each on the left margin and one on the right margin, overlapping each other so that the vapor-deposited part protrudes beyond the margin in the width direction to form a wound body. get.
  • one side is vapor-deposited in a stripe shape with a margin running in the longitudinal direction
  • the other side is vapor-deposited in a stripe shape with a margin in the longitudinal direction located in the center of the back side vapor deposition area.
  • a blade is inserted into the center of the margin portion of each of the front and back sides to make a slit, thereby producing a tape-shaped take-up reel having a margin on one side of both sides (for example, if there is a margin on the right side of the front side, there is a margin on the left side of the back side).
  • the obtained reel and one undeposited laminated film are stacked and wound so that the metallized film protrudes from the laminated film in the width direction to obtain a wound body.
  • the core material is removed from the wound body produced as described above, the core material is pressed, and metallicon is sprayed on both end faces to form external electrodes.
  • One method is to weld a lead wire to a metallicon to create a wound film capacitor.
  • Film capacitors have a wide range of applications, including power control units for electric vehicles such as electric vehicles, hybrid vehicles, and fuel cell vehicles, and electric aircraft such as drones, railway vehicles, solar power generation/wind power generation, and general home appliances.
  • the film capacitor of the present invention can also be suitably used for these applications.
  • the power control unit of the present invention includes the film capacitor of the present invention.
  • a power control unit is a system that manages power in electric vehicles, electric aircraft, etc. that have mechanisms that are powered by electricity. By mounting the film capacitor of the present invention in a power control unit, the power control unit itself can be downsized, heat resistant, and highly efficient, resulting in improved fuel efficiency.
  • the electric vehicle of the present invention has the power control unit of the present invention.
  • the electric bicycle refers to a vehicle having a mechanism driven by electric power, such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle.
  • the power control unit of the present invention can be miniaturized and also has excellent heat resistance and efficiency, so when an electric vehicle is equipped with the power control unit of the present invention, fuel efficiency can be improved.
  • each rectangular sample was set in a tensile tester ("Tensilon" (registered trademark) UCT-100 manufactured by Orientec) with an initial distance of 20 mm between chucks so that the long side direction was the tensile direction.
  • a tensile test was conducted in an atmosphere at a tensile speed of 300 mm/min. At this time, the maximum load until the sample broke was read, and the value divided by the cross-sectional area (film thickness x width) of the sample before the test was calculated as the stress at the maximum point strength.
  • the same measurement was carried out five times for each sample to obtain the average value of the stress at the maximum point strength, and the long side direction of the sample with the maximum average value was taken as the main orientation axis direction of the polyolefin film.
  • the direction perpendicular to the plane was defined as the direction perpendicular to the main orientation axis of the polyolefin film.
  • Ratio of storage modulus in the main orientation axis direction E'121/E'50 Using the apparatus and conditions shown below, a rectangular polyolefin film (width (short side) 10 mm x length (long side) 20 mm) cut out with the main orientation axis direction as the long side direction was placed in the device chuck part in an atmosphere of 23°C. and set it in the furnace. The atmosphere in the furnace where the film was set was cooled with liquid nitrogen, the temperature was raised from -100°C to 180°C, and the viscoelasticity-temperature curve was drawn by dynamic viscoelasticity measurement, and the film was stored at 50°C. The elastic modulus (E'50) was read.
  • Heat shrinkage rate (%) in the main orientation axis direction at 150°C
  • the test piece was sandwiched between pieces of paper, held horizontally in an oven kept at 150°C, heated for 10 minutes, taken out, cooled in an environment of 23°C, and measured for dimensions (l1). It was calculated using the following formula, and the average value of the five pieces was taken as the heat shrinkage rate in each direction.
  • Heat shrinkage rate ⁇ (l0-l1)/l0 ⁇ x 100 (%).
  • the position of the sample in the long side direction was adjusted so that the center of the sample was near the center between the chucks.
  • the elongation (unit: %) at the time when the sample broke was determined by measurement. The measurement was performed five times, and the tensile elongation of the polyolefin film or laminate in the direction perpendicular to the main orientation axis was determined as the average value of the elongation at the point of breakage.
  • each layer of the polyolefin film was cut from the resin composition of the raw material used for the polyolefin resin film of the present invention (if multiple raw materials are mixed, a resin composition obtained by mixing them at a predetermined ratio). I used something.
  • a differential scanning calorimeter EXSTAR DSC6220 manufactured by Seiko Instruments
  • a 3 mg polyolefin resin sample was heated from 30°C to 260°C at a rate of 20°C/min in a nitrogen atmosphere. Next, the temperature was maintained at 260°C for 5 minutes, and then the temperature was lowered to 30°C at a rate of 20°C/min.
  • the cyclic olefin resin is dyed blacker than the polypropylene resin.
  • TEM Transmission electron microscope
  • ⁇ Acceleration voltage 100kV
  • Observation magnification 2,000 times
  • the same measurement was performed a total of 10 times by changing the position of the rectangle in the image, and the average value of the obtained domain numbers was calculated, and the value was rounded to one decimal place.
  • the number of domains of the cyclic olefin resin passing through the side (number/2 ⁇ m 2 ) was taken as the number of domains of the cyclic olefin resin passing through the side.
  • the domain with the constricted part was treated as a cyclic olefin resin domain that was dyed darker than the polypropylene resin part in the sea part and was treated as a connected domain.
  • the film roll was set in a vacuum evaporation device equipped with a film running device and brought to a high reduced pressure of 1.00 ⁇ 10 ⁇ 2 Pa, and then placed on a cooled metal drum at 20° C. while introducing oxygen gas.
  • the film was run while AlOx was being reacted and evaporated to form a deposited layer on the surface that had been previously subjected to corona discharge treatment. At that time, the thickness of the vapor deposited layer was controlled to be 20 nm.
  • the inside of the vacuum vapor deposition apparatus was returned to normal pressure, the wound film was rewound, and aged at a temperature of 40° C. for 2 days to obtain a laminate in which a vapor deposited layer of AlOx (alumina) was laminated on the film. .
  • a rating of B or higher was considered to have good water vapor barrier properties, and a rating of C was considered to be at a level that poses no practical problems.
  • S 0.3 g/m 2 /day or less.
  • A greater than 0.3 g/m 2 /day and less than 0.5 g/m 2 /day.
  • B greater than 0.5 g/m 2 /day and less than 1.0 g/m 2 /day.
  • C greater than 1.0 g/m 2 /day and less than 2.0 g/m 2 /day.
  • D Greater than 2.0 g/m 2 /day, or membrane rupture occurred during vapor deposition.
  • a value of B or higher was considered to have good oxygen barrier properties, and a value of C was considered to be at a level that poses no practical problems.
  • S 1.5cc/m 2 /day or less.
  • A Greater than 1.5 cc/m 2 /day and less than 2.0 cc/m 2 /day.
  • B greater than 2.0 cc/m 2 /day and less than 10 cc/m 2 /day.
  • C greater than 10 cc/m 2 /day and less than 100 cc/m 2 /day.
  • D Greater than 100 cc/m 2 /day, or membrane rupture occurred during vapor deposition.
  • Thickness of D layer The thickness of the D layer constituting the laminate of the present invention was measured by observing a cross section using a transmission electron microscope (TEM). Samples for cross-sectional observation were obtained by the FIB method using a microsampling system (FB-2000A manufactured by Hitachi, Ltd.) (specifically described in "Polymer Surface Processing” (by Akira Iwamori), pages 118-119). (based on the method of ). Next, the cross section of the observation sample was observed using a transmission electron microscope (H-9000UHRII manufactured by Hitachi, Ltd.) at an accelerating voltage of 300 kV, and the D layer was measured at 10 arbitrary locations using the length measurement function of the transmission electron microscope. I checked the thickness. The arithmetic mean value thereof was taken as the thickness of layer D (unit: nm).
  • Equipment name Scanning white interference microscope VS1540 ⁇ Measurement conditions: Objective lens 10 ⁇ Lens barrel 1 ⁇ Zoom lens 1x Wavelength filter 530nm white ⁇ Measurement mode: Wave ⁇ Measurement software: VS-Measure Version 10.0.4.0 ⁇ Analysis software: VS-Viewer Version 10.0.3.0 -Measurement area: 0.561 x 0.561 [mm 2 ].
  • the vapor deposition films A and B were each slit to obtain vapor deposition reels A and B each having a film width of 50 mm (end margin width 2 mm).
  • the capacitor element is wound up using an element winding machine (KAW-4NHB) manufactured by Kaito Seisakusho Co., Ltd., so that the capacitor element has an element capacitance of 10 ⁇ F after being finished as a capacitor element, with vapor deposition reels A and B alternately overlapping each other.
  • KAW-4NHB element winding machine manufactured by Kaito Seisakusho Co., Ltd.
  • heat treatment was performed at a temperature of 128° C. for 12 hours under reduced pressure, and lead wires were attached to complete the capacitor element.
  • Cyclic olefin resin COC1: Polyplastics “TOPAS” (registered trademark) 6013F-04 (resin (COC) made by copolymerizing ethylene and norbornene, glass transition temperature is 138°C)
  • COC2 “APEL” (registered trademark) 5014CL manufactured by Mitsui Chemicals (a resin (COC) made by copolymerizing ethylene and a norbornadiene derivative, with a glass transition temperature of 136°C)
  • Antioxidant “IRGANOX” (registered trademark) 1010 manufactured by Ciba Specialty Chemicals.
  • polyolefin resin raw material AM1
  • polypropylene resin A2
  • cyclic olefin resin COC1
  • antioxidant 0.5 parts by mass
  • Polyolefin resin raw material (AM3) Each component was mixed so that the polypropylene resin (A1) was 69.5 parts by mass, the cyclic olefin resin (COC2) was 30 parts by mass, and the antioxidant was 0.5 parts by mass. After kneading and extruding with an extruder, the strands were cooled with water and then chipped to obtain a polyolefin resin raw material (AM3).
  • Example 1 The components were mixed so that the polyolefin resin raw material (AM1) was 32 parts by mass, the polypropylene resin (A1) was 67.6 parts by mass, and the antioxidant was 0.4 parts by mass, and the mixture was uniaxially melt extruded for layer A.
  • the polypropylene resin B1 was supplied to a uniaxial melt extruder for layer B
  • the polypropylene resin C1 was supplied to a uniaxial melt extruder for layer C.
  • the oxygen concentration in each extruder supply hopper was controlled to 0.05%, and after melt extrusion was performed at a temperature of 260°C in each extruder, the melt was extruded through a sintered filter with a cut of 80 ⁇ m.
  • the laminated molten resin was introduced into a T-die and discharged into a sheet at a temperature of 240°C, and the discharged molten sheet was cooled and solidified on a casting drum maintained at 21°C to obtain an unstretched sheet.
  • b was brought into contact with the casting drum, and air controlled at 40° C. was blown from an air knife to bring the molten sheet into close contact with the casting drum.
  • the unstretched polyolefin film was preheated stepwise to 145°C using a group of rolls, and then kept at a temperature of 155°C and passed between rolls with a difference in circumferential speed so that the film was heated 5.2 times in the longitudinal direction. It was extended to. Subsequently, the stretched film was cooled by passing it between rolls kept at 70°C, and then cooled to room temperature to obtain a uniaxially oriented film. Furthermore, the obtained uniaxially oriented film was introduced into a tenter, preheated to 165°C while holding both ends in the width direction with clips, stretched 9.2 times in the width direction at 158°C, and then stretched by 12% in the width direction. Heat treatment was performed at 162° C.
  • the film was guided to the outside of the tenter through a cooling process at 140° C. while the both ends in the width direction were held under tension with the clips, and the clips at both ends in the width direction were released.
  • the film surface (layer B side that will be in contact with the casting drum) was treated with a treatment intensity of 25 W min/m 2 under a mixed gas atmosphere of carbon dioxide gas and nitrogen gas mixed at a volume ratio of 15:85 (by oxygen concentration measurement). After performing corona discharge treatment in an environment of 0.8% by volume), the obtained polyolefin film was wound up as a roll.
  • Example 2 A polyolefin film and a laminate were produced in the same manner as in Example 1, except that AlOx was vapor-deposited instead of Al, and the laminate had an AlOx layer (D layer).
  • Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that AlOx was deposited by the method described above.
  • Example 3 The polyolefin film produced in Example 2 was crushed and compressed using a crusher, and the oxygen concentration in the hopper was controlled to 0.05%, and the temperature was set at 240°C. The recycled pellets (AR1) were obtained. Next, as a polyolefin resin raw material for layer A, A1, AM1, and AR1 were mixed at a mass ratio of 53:27:20, and fed to a uniaxial melt extruder for layer A to form polypropylene resin B1. was supplied to a uniaxial melt extruder for layer B, and polypropylene resin C1 was supplied to a uniaxial melt extruder for layer C.
  • Example 2 A laminate in which a polyolefin film and layer D were deposited was prepared in the same manner as in the above. Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited.
  • Example 4 A laminate in which a polyolefin film and a layer D were deposited in the same manner as in Example 2, except that the layer configuration was B/A/B, polypropylene resin B2 was used for the B layer, and the film forming conditions were as shown in Table 1. was created. Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the B layer side that was in contact with the cast drum.
  • Example 5 The layer structure was B/A/B, and each component was adjusted so that the polyolefin resin raw material (AM2) was 63 parts by mass, the polypropylene resin (A1) was 36.6 parts by mass, and the antioxidant was 0.4 parts by mass.
  • a laminate in which a polyolefin film and a layer D were vapor-deposited was prepared in the same manner as in Example 2, except that the mixture was mixed and supplied to a uniaxial melt extruder for the A layer, and the lamination ratio and film forming conditions were as shown in Table 1. Created. Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the B layer side that was in contact with the cast drum.
  • Example 6 The layer structure is layer A alone, and each component is added so that the polyolefin resin raw material (AM1) is 66.7 parts by mass, the polypropylene resin (A1) is 32.6 parts by mass, and the antioxidant is 0.4 parts by mass.
  • a laminate in which a polyolefin film and a layer D were deposited was produced in the same manner as in Example 2, except that the mixture was mixed and supplied to a uniaxial melt extruder for layer A, and the film forming conditions were as shown in Table 1.
  • Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the surface in contact with the cast drum.
  • Example 7 As the B layer of Example 2, each component was mixed so that the polyolefin resin raw material (B1) was 95.6 parts by mass, the polyolefin resin raw material (BM1) was 4 parts by mass, and the antioxidant was 0.4 parts by mass. Mix and supply to a uniaxial melt extruder for layer B, and as layer A, 28.6 parts by mass of polyolefin resin raw material (AM1), 67.6 parts by mass of polypropylene resin (A1), and 0 part of antioxidant.
  • B1 polyolefin resin raw material
  • BM1 polyolefin resin raw material
  • the antioxidant was 0.4 parts by mass.
  • the cyclic olefin resin contained in layer A is 8.6% by mass, Since the thickness ratio of the polyolefin film was approximately 83%, the cyclic olefin resin contained in the entire film was 7.1% by mass), and the polyolefin film and A laminate having a D layer deposited thereon was produced.
  • Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the surface in contact with the cast drum.
  • Example 8 As the B layer of Example 2, each component was mixed so that the polyolefin resin raw material (B1) was 87.6 parts by mass, the polyolefin resin raw material (BM1) was 12 parts by mass, and the antioxidant was 0.4 parts by mass. Mix and supply to a uniaxial melt extruder for layer B, and as layer A, 28.6 parts by mass of polyolefin resin raw material (AM1), 67.6 parts by mass of polypropylene resin (A1), and 0 part of antioxidant. A polyolefin film and D A laminate was prepared by depositing the layers. Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited.
  • Example 9 A laminate in which a polyolefin film and a layer D were deposited was produced in the same manner as in Example 8, except that a polyolefin resin raw material (AM3) was used as the A layer of Example 8, and the film forming conditions were as shown in Table 1. .
  • Table 1 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the surface in contact with the cast drum.
  • Example 10 The film thickness was set to 3.1 ⁇ m, and the A layer contained 28.6 parts by mass of polyolefin resin raw material (AM1), 67.6 parts by mass of polypropylene resin (A1), and 0.4 parts by mass of antioxidant.
  • a polyolefin film was produced in the same manner as in Example 4, except that each component was mixed and supplied to a uniaxial melt extruder for layer A, and the film forming conditions were as shown in Table 1. Table 1 shows the capacitor characteristics of the produced film.
  • Example 11 A polyolefin film was produced in the same manner as in Example 10, except that the polyolefin resin raw material (AM3) was used as the A layer of Example 10, and the film forming conditions were as shown in Table 1. Table 1 shows the capacitor characteristics of the produced film.
  • Example 1 A laminate in which a polyolefin film and a layer D were deposited was produced in the same manner as in Example 2, except that only polypropylene resin A1 was used without using a masterbatch for layer A, and the film forming conditions were as shown in Table 2.
  • Table 2 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited.
  • the layer configuration is B/A/B, no masterbatch is used in the A layer, the polypropylene resin A1 is 90 parts by mass, the cyclic olefin resin is 9.6 parts by mass, and the antioxidant is 0.4 parts by mass.
  • the polyolefin was prepared in the same manner as in Example 2, except that the components were mixed and fed to a uniaxial melt extruder for layer A, polypropylene resin B2 was used for layer B, and the film forming conditions were as shown in Table 2. A laminate in which the system film and the D layer were deposited was produced. Table 2 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the B layer side that was in contact with the cast drum.
  • Example 3 A laminate in which a polyolefin film and layer D were deposited was produced in the same manner as in Example 2, except that the film forming conditions and the lamination ratio were as shown in Table 2.
  • Table 2 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited.
  • Example 4 The oxygen concentration in the raw material supply hopper was 10%, and the temperature conditions during extrusion were kept constant at 260°C instead of using a multi-stage lowering temperature in stages from the extruder to the T-die, and the film forming conditions are shown below.
  • a laminate in which a polyolefin film and layer D were deposited was produced in the same manner as in Example 4, except that the procedure was as in Example 2.
  • Table 2 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the B layer side that was in contact with the cast drum.
  • the laminated structure is B/A/B, the laminated thickness ratio is 1/8/1, and the A layer contains 63 parts by mass of polyolefin resin raw material (AM2), 36.6 parts by mass of polypropylene resin (A1), and antioxidant.
  • AM2 polyolefin resin raw material
  • A1 polypropylene resin
  • antioxidant antioxidant
  • a laminate in which a polyolefin film and layer D were deposited was prepared in the same manner as in Example 4. Table 2 shows the properties of the obtained polyolefin film and the laminate on which the D layer was deposited. Note that the vapor deposition was performed on the B layer side that was in contact with the cast drum.
  • Example 6 A polyolefin film was produced in the same manner as in Example 4, except that the film thickness was 3.1 ⁇ m and the film forming conditions were as shown in Table 2. Table 2 shows the properties of the produced polyolefin film and film capacitor.
  • Comparative example 7 A polyolefin film was produced in the same manner as in Comparative Example 2, except that the film thickness was 3.1 ⁇ m and the film forming conditions were as shown in Table 2. Table 2 shows the capacitor characteristics of the produced film.
  • the present invention it is possible to provide a polyolefin film that can reduce deterioration in structural stability, water vapor barrier properties, and oxygen barrier properties due to heating. Since the polyolefin film of the present invention has the above-mentioned properties, it can be suitably used for packaging items that are easily deteriorated by water vapor or oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、例えば包装用途に用いる際、蒸着時の熱に対して構造安定性に優れ、加熱殺菌処理時の熱に対しても水蒸気バリア性、酸素バリア性が良好なポリオレフィン系フィルムを提供することを課題とする。 動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE'50(Pa)、E'121(Pa)としたときに、E'121/E'50が0.25を超え0.99以下であり、150℃での主配向軸方向の熱収縮率が-2%以上10%以下であり、主配向軸と直交する方向の引っ張り伸度が20%以上300%以下であり、環状オレフィン系樹脂とポリプロピレン系樹脂とを含む層(A層)を少なくとも1層有することを特徴とする、ポリオレフィン系フィルム。

Description

ポリオレフィン系フィルム、積層体、包装材、及び梱包体
 本発明は、特に包装用途に適して用いられるポリオレフィン系フィルム、積層体、包装材、及び梱包体に関する。
 ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気絶縁用途等の様々な用途に用いられている。この中でも包装用途においては、ポリプロピレンフィルムの上にアルミニウム(以降、「Al」と称することがある。)の薄膜を蒸着した積層フィルムが広く用いられている。しかしながら、Al蒸着によって得られるフィルムは不透明なものとなるため、内容物の視認性が要求される用途には適さない。また、近年は包装用プラスチックをリサイクルする動きが活発化しているが、Al蒸着層を含むフィルムは、リサイクル性が十分ではないという問題もある。
 前述のような事情から、従来のAl蒸着層を、酸化アルミニウム(以降、AlOxと称することがある。)や酸化ケイ素等の透明蒸着層で置き換える動きがある。これらの透明蒸着層を用いた場合、包装材の透明性及びリサイクル性を向上させることができる。しかしながら、一般に透明蒸着層はAl蒸着層と比べて薄く脆いため、蒸着層の形成中、もしくは製袋加工等の後工程において蒸着層内にピンホールやクラックといった欠陥が発生し、水蒸気バリア性や酸素バリア性が損なわれやすいという問題がある。また、ポリプロピレンフィルムを食品包装用途に適用する場合、加熱殺菌処理(ボイル、セミレトルト、レトルト等)を施す場合があるが、一般にポリプロピレンフィルムはポリエステルフィルム等と比べ熱寸法安定性に劣るため、加熱殺菌処理時の熱によってフィルムが変形し、蒸着層内ピンホールやクラックといった欠陥が発生する結果、水蒸気バリア性や酸素バリア性が損なわれやすいという問題もある。
 ポリプロピレンフィルムの熱寸法安定性を改良したフィルムとして、従来、ガラス転移温度が120~170℃の環状オレフィン系樹脂とポリプロピレンをブレンドしたフィルムや、環状オレフィン系樹脂の層の両面にポリプロピレンの層を設けた積層フィルムとすることで耐熱性を高め、高温でも耐電圧性を発現できるコンデンサ用に適したフィルムが提案されている(特許文献1、2)。同様に、環状オレフィン系樹脂とポリプロピレンをブレンドした樹脂層の両面にポリプロピレンの層を設けることで、高いバリア性と加工に適した強度、及び透明性を具備する包装材用途に適したフィルムも提案されている(特許文献3、4)。
特表2020-521867号公報 特開2018-34510号公報 特開平9-272188号公報 特表2005-535481号公報
 しかしながら、特許文献1に記載のポリプロピレンフィルムは環状オレフィン系樹脂とポリプロピレン樹脂をブレンドすることにより耐熱性が向上しているが、製膜時の面積延伸倍率が小さくポリプロピレン樹脂の分子鎖伸張が不十分であり、熱安定性に改良の余地があった。また、特許文献2のフィルムはシクロオレフィン単体を内層にしているため、特許文献1に記載のポリプロピレンフィルムと同じく、製膜時の面積延伸倍率が小さくポリプロピレン樹脂の分子鎖伸張が不十分であり、熱安定性に改良の余地があった。
 包装用途に適した特許文献3のフィルムは、環状オレフィン系樹脂とポリプロピレン樹脂をブレンドし二軸延伸しているが、フィルム中の環状オレフィン系樹脂の分散や延伸後の熱固定が不十分であるため、熱寸法安定性に劣ることが問題となる。特許文献4のフィルムは環状オレフィン系樹脂とポリプロピレン樹脂のブレンドフィルムであるが、延伸する思想がなく熱安定性が不十分であった。そのため、特許文献3、4のフィルムは加熱殺菌処理時の熱によってフィルムが変形することにより蒸着層内にピンホールやクラック等の欠陥が発生しやすく、水蒸気バリア性や酸素バリア性が低下するという課題があった。
 そこで本発明は、加熱に伴う構造安定性、水蒸気バリア性、及び酸素バリア性の低下を軽減可能なポリオレフィン系フィルムを提供することをその課題とする。
 本発明者らは、上記の課題を解決するため鋭意検討を重ね、以下の本発明の第1のポリオレフィン系フィルム、本発明の第2のポリオレフィン系フィルムを発明するに至った。本発明の第1のポリオレフィン系フィルムは、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE’50(Pa)、E’121(Pa)としたときに、E’121/E’50が0.25を超え0.99以下であり、150℃での主配向軸方向の熱収縮率が-2%以上10%以下であり、主配向軸と直交する方向の引っ張り伸度が20%以上300%以下であり、環状オレフィン系樹脂とポリプロピレン系樹脂とを含む層(A層)を少なくとも1層有することを特徴とする、ポリオレフィン系フィルムである。
 本発明の第2のポリオレフィン系フィルムは、環状オレフィン系樹脂とポリプロピレン系樹脂とを含む層(A層)を少なくとも1層有し、主配向軸方向及び厚み方向に平行な面で前記A層を切断したときの断面を断面Xとしたときに、前記断面X内に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形において、前記一対の短辺を通過する前記環状オレフィン系樹脂のドメインが2個以上存在し、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE’50(Pa)、E’121(Pa)としたときに、E’121/E’50が0.20を超え0.99以下である、ポリオレフィン系フィルムである。
 本発明により、加熱に伴う構造安定性、水蒸気バリア性、及び酸素バリア性の低下を軽減可能なポリオレフィン系フィルムを得ることができる。
本発明の一実施態様に係るポリオレフィン系フィルムの断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形、及び当該長方形の厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメインを表す模式図である。 本発明の一実施態様(実施例1および実施例2の態様)に係るポリオレフィン系フィルムの断面Xの拡大写真(倍率2,000倍)である。
 以下、本発明の第1、第2のポリオレフィン系フィルムについて詳細に説明する。以下好ましい範囲について上限と下限が別々に記載されている場合、その組み合わせは任意とすることができる。また、本発明の第1、第2のポリオレフィン系フィルムを総称して、本発明、あるいは本発明のポリオレフィン系フィルムということがある。
 また、本明細書において、以下ポリオレフィン系フィルムを単にフィルムと称する場合がある。また、本発明のポリオレフィン系フィルムにおいて、「厚み方向」とはフィルム面に垂直な方向をいう。「長手方向」とは、フィルム製造工程における流れ方向に対応する方向(以下、「MD」という場合がある。)であり、「幅方向」とは、前記のフィルム製造工程における流れ方向とフィルム面内で直交する方向(以下、「TD」という場合がある。)である。フィルムサンプルがリール、ロール等の形状の場合は、フィルム巻き取り方向が長手方向といえる。
 なお、本発明のポリオレフィン系フィルムは、微多孔フィルムではないため、多数の空孔を有していない。つまり本発明のポリオレフィン系フィルムとは、微多孔フィルム以外のポリオレフィン系フィルムを意味する。ここで微多孔フィルムとは、フィルムの両表面を貫通し、JIS P 8117(1998)のB形ガーレー試験器を用いて、23℃、相対湿度65%にて、100mlの空気の透過時間で5,000秒/100ml以下の透気性を有する孔構造を有するフィルムと定義する。
 さらにポリオレフィン系フィルムとは、フィルムを構成する全成分を100質量%としたときに、ポリオレフィン系樹脂を50質量%より多く100質量%以下含むシート状の成形体をいう。なお、ポリオレフィン系樹脂が複数種含まれる場合は、全てのポリオレフィン系樹脂を合算してポリオレフィン系樹脂の含有量を算出するものとする。
 ポリオレフィン系樹脂とは、樹脂を構成する全構成単位を100mol%としたときに、オレフィン単位を50mol%より多く100mol%以下含む樹脂をいう。なお、オレフィン単位に相当する構成単位が複数種含まれる場合は、全てのオレフィン単位を合算してオレフィン単位量とする。
 ポリプロピレン系樹脂とは、樹脂を構成する全構成単位を100mol%としたときに、プロピレン単位を50mol%より多く100mol%以下含む樹脂のうち、環状オレフィン系樹脂に該当しないものをいう。
 環状オレフィン系樹脂とは、樹脂を構成する全構成単位を100mol%としたときに、環状オレフィン単位を10mol%より多く100mol%以下含む樹脂をいう。なお、環状オレフィン単位に相当する構成単位が複数種含まれる場合は、全ての環状オレフィン単位を合算して環状オレフィン単位量とする。
 本発明の第1のポリオレフィン系フィルムは、熱安定性を有する観点から、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE’50(Pa)、E’121(Pa)としたときに、E’121/E’50が0.25を超え0.99以下であることが重要である。なお、主配向軸方向の貯蔵弾性率の測定方法については後述する。
 ポリオレフィン系フィルムのE’121/E’50が0.25を超えることは、貯蔵弾性率の温度依存性が小さいこと、言い換えれば高温環境下にてフィルム内の非晶分子鎖が動きにくいことを意味する。ポリオレフィン系フィルムのE’121/E’50を0.25より大きくすることにより、例えば、後述するフィルムの少なくとも片面に金属と無機化合物を合計で50質量%を超えて100質量%以下含む層(以下、D層)を蒸着する際に、蒸着時の熱によるフィルムの変形に起因してD層に発生するピンホールやクラック等の欠陥を抑制し、D層を蒸着した積層体の水蒸気バリア性や酸素バリア性を良好なものとすることができる。また、製袋加工後に行う加熱殺菌処理などの高温処理によるフィルムの変形も抑えられるため、このような処理に伴う水蒸気バリア性や酸素バリア性の低下も軽減できる。他方、フィルムのE’121/E’50が0.99を超えると、製膜時に破膜するなど生産性が劣ることがある。これは、過度に結晶性が高い原料を使用することや、製膜時に高面積倍率での二軸延伸を施すことが必要となるためである。
 上記観点から、フィルムのE’121/E’50は0.28以上が好ましく、より好ましくは0.31以上、さらに好ましくは0.33以上、特に好ましくは0.35以上である。他方、E’121/E’50の上限は、好ましくは0.89、より好ましくは0.69である。
 また本発明の第2のポリオレフィン系フィルムは、熱安定性を有する観点から、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE’50(Pa)、E’121(Pa)としたときに、E’121/E’50が0.20を超え0.99以下であることが重要である。フィルムのE’121/E’50は0.25を超えることが好ましく、より好ましくは0.28以上、さらに好ましくは0.31以上、よりさらに好ましくは0.33以上、特に好ましくは0.35以上である。他方、E’121/E’50の上限は、好ましくは0.89、より好ましくは0.69である。
 本発明の第1のポリオレフィン系フィルムのE’121/E’50を、0.25を超え0.99以下に制御、および本発明の第2のポリオレフィン系フィルムのE’121/E’50を、0.20を超え0.99以下に制御するには、例えば、A層のドメイン構造(海島構造)を制御する方法を用いることができる。より具体的には、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化すること、面積延伸倍率を36.0倍以上(好ましくは40.0倍以上)とした上で二軸延伸における幅方向の延伸前予熱温度を幅方向延伸温度よりも5℃~15℃高くすること等が効果的である。
 なお、予め上記のコンパウンド樹脂原料を作製することがもたらす効果として、延伸性を高める効果が期待できる。これは、製膜時に単に樹脂を混合する場合に比べてより均一に2種類の樹脂が混ざり合うため、島成分となる樹脂が海成分となる樹脂中に微分散されることによるものである。また、環状オレフィン系樹脂を高濃度で含むよう二軸押出機で予備混練したコンパウンド樹脂原料をマスターバッチとして希釈して用いることも、環状オレフィン系樹脂の分散性が高くなるため好ましい。
 上記方法によりE’121/E’50を好ましい範囲に調整できる理由としては、A層において、ポリプロピレン系樹脂を海、環状オレフィン系樹脂を島と見立てた海島構造の海島界面での樹脂の剥離が抑えられ、さらに島構造が小さく又は薄くなる結果、環状オレフィン系樹脂の有する高い熱安定性とポリプロピレン系樹脂の有する優れた延伸性の相乗効果によって、フィルム中における非晶鎖の運動性を抑制できるためと考えられる。
 本発明の第1のポリオレフィン系フィルムは、150℃での主配向軸方向の熱収縮率が-2%以上10%以下であることが重要である。フィルムが上記要件を満たすことにより、例えば後述のD層を蒸着によって積層する際に、蒸着時の熱でフィルムが収縮することによりD層中にピンホールやクラックといった欠陥が発生することを抑制し、D層を積層した積層体の水蒸気バリア性や酸素バリア性を良好なものとすることができる。また、製袋加工後に加熱殺菌処理などの高温の処理を施す際も、フィルムが収縮するのを抑制し、水蒸気バリア性や酸素バリア性が損なわれるのを防ぐことができる。上記観点から、150℃での主配向軸方向の熱収縮率の上限は、好ましくは8%、より好ましくは6%、さらに好ましくは4%である。他方、150℃での主配向軸方向の熱収縮率の下限は、好ましくは-1%である。なお、150℃での主配向軸方向の熱収縮率は、後述の方法により測定することができる。
 本発明における主配向軸方向とは、ポリオレフィン系フィルム面内で分子が最も強く配向している方向をいう。通常、ポリオレフィン系フィルムの製造において二軸延伸を行う場合は長手方向と幅方向に延伸を行うが、一般的に、その延伸倍率が大きい方が主配向軸方向となる。延伸方向(長手方向と幅方向)は特定できているが倍率が不明である場合は、後述する引張試験で破断するまでの最大荷重を測定し、測定値の大きい方向を主配向軸方向とすることができる。
 上記の通り、延伸方向と延伸倍率が分かれば容易に主配向軸方向を特定することができるが、これらが不明なフィルムの場合は以下の方法により主配向軸方向を特定することができる。具体的には、フィルムを準備し、任意の方向を上に向けて、長さ150mm×幅10mmの矩形に切り出しサンプル<1>とし、サンプル<1>の長辺の方向を0°と定義する。次に、長辺方向が0°方向から右に15°回転した方向となるように、同サイズのサンプル<2>を採取する。以下同様に、矩形のサンプルの長辺方向を15°ずつ回転させ、同様にサンプル<3>~<12>を採取する。次に、各矩形のサンプルについて、後述する引張試験で破断するまでの最大荷重を測定し、測定値の最も大きい方向を主配向軸方向とする。
 長さ150mm×幅10mmのサンプルが取得できず後述の引張試験を実施できない場合は、広角X線によるα晶(110)面の結晶配向を次のように測定し、下記の判断基準に基づいて主配向軸方向を決定する。具体的には、フィルム表面に対して垂直方向にX線(CuKα線)を入射し、2θ=約14°(α晶(110)面)における結晶ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も高い方向を主配向軸方向とする。
 フィルムの150℃での主配向軸方向の熱収縮率が-2%以上10%以下を満たすようにする方法としては、特に限定されるものではないが、例えば、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化すること、二軸延伸における面積延伸倍率を36.0倍以上(好ましくは40.0倍以上)とした上で、幅方向の延伸前予熱温度を幅方向の延伸温度よりも5℃以上15℃以下で高くすることが効果的である。
 本発明の第1のポリオレフィン系フィルムは、主配向軸と直交する方向の引っ張り伸度が20%以上300%以下であることが重要である。ここで主配向軸と直交する方向とは、主配向軸方向にフィルム面内で直交する方向をいう。フィルムの主配向軸と直交する方向の引っ張り伸度が20%以上あれば、特に包装用途として用いる際に生じうる蒸着加工時や搬送時の張力に対してポリオレフィン系フィルムの破断を抑制でき、また梱包体とする際の製袋加工において破れも抑制できる。上記観点から、主配向軸と直交する方向の引っ張り伸度の下限は、好ましくは27%、より好ましくは35%である。引っ張り伸度が300%以下であれば、蒸着加工時や搬送時の張力に対してポリオレフィン系フィルムの変形を抑制でき、また梱包体とする際の製袋加工における変形も抑制できる。他方、主配向軸と直交する方向の引っ張り伸度の上限は、好ましくは250%、より好ましくは200%、さらに好ましくは120%、特に好ましくは60%である。なお、ここで引っ張り伸度とは、23℃の環境下で引張速度を300mm/分として測定した引っ張り伸度をいう。引っ張り伸度は、公知の引張試験器で測定することができ、その詳細な手順は後述する。
 主配向軸と直交する方向の引っ張り伸度を20%以上300%以下とする方法としては、特に限定されるものではないが、例えば、ポリオレフィン系フィルムを二軸配向フィルムとすることが挙げられる。その上で、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化することも好ましい。
 本発明の第1、第2のポリオレフィン系フィルムは、熱安定性を向上させる観点から、環状オレフィン系樹脂とポリプロピレン系樹脂とを含む層(A層)を少なくとも1層有することが重要である。このような態様とすることで、環状オレフィン系樹脂の有する高い熱安定性とポリプロピレン系樹脂の有する優れた延伸性の効果により、得られるポリオレフィン系フィルムは熱安定性が優れ、例えば後述のD層を蒸着した積層体のバリア性に優れたものとなる。
 なお、本発明のポリオレフィン系フィルムは、一つのA層のみからなる単膜構成、複数のA層が厚み方向に合計2層以上積層されてなる積層構成、A層とA層以外の層が厚み方向に合計2層以上積層されてなる積層構成のいずれであってもよい。但し、フィルムの延伸性、高温環境下の優れた耐電圧特性と信頼性、および加工性を発現する観点から、ポリプロピレン系樹脂を主成分とし、かつA層よりもポリプロピレン系樹脂を多く含み、環状オレフィン系樹脂の含有率が低い層をB層としたときに、B層を有することが好ましい。
 本発明のポリオレフィン系フィルムの積層構成の具体的な態様としては、例えば、A層/B層の2層構成、B層/A層/B層、A層/B層/A層の2種3層構成、後述するA層及びB層よりも融点が低く、かつ融点が100℃以上150℃以下の層(C層)を有するB層/A層/C層、A層/B層/C層の3種3層構成、およびA層をフィルム内層あるいはフィルム両表面の最外層とする4層以上の構成が挙げられ、延伸製膜安定性の観点からB層/A層/B層またはB層/A層/C層の構成が好ましい。ここで、フィルム全体厚みを100%としたときA層の厚み下限は10%が好ましく、より好ましくは35%、さらに好ましくは60%、特に好ましくは80%である。上限は単層も含む100%とするものである。A層の厚みをかかる範囲とすることで、ポリオレフィン系フィルムが蒸着時の熱に対して非常に安定な構造となるため、蒸着層をはじめとする後述のD層を積層して積層体とした際に、その水蒸気バリア性や酸素バリア性を良好なものとすることができる。
 また、本発明のポリオレフィン系フィルムがA層を複数有する場合、その組成は同一であっても異なっていてもよい。積層の方法としては、共押出によるフィードブロック方式やマルチマニホールド方式、コーティングによる方法などがあげられるが、生産効率およびコストの観点から共押出(例えば溶融共押出)による積層方法が好ましい。
 本発明のポリオレフィン系フィルムにおいて、フィルム全体に占める環状オレフィン系樹脂の含有量の下限は、1質量%が好ましく、より好ましくは2質量%、さらに好ましくは3質量%である。他方、上限は39質量%が好ましく、より好ましくは25質量%、より好ましくは19質量%、さらに好ましくは14質量%、特に好ましくは9質量%、最も好ましくは7.5質量%である。またフィルムA層に占める環状オレフィン系樹脂の含有量の下限は、1質量%が好ましく、より好ましくは2質量%である。他方、上限は39質量%が好ましく、より好ましくは25質量%、より好ましくは19質量%、さらに好ましくは14質量%、特に好ましくは10質量%、最も好ましくは9質量%である。フィルム全体中の環状オレフィン系樹脂およびフィルムA層中の含有量を好ましい範囲とすることで二軸延伸時に面積倍率が高められ、フィルムにD層を蒸着した積層体の水蒸気バリア性や酸素バリア性を良好にすることができる。
 本発明の第2のポリオレフィン系フィルムは主配向軸方向及び厚み方向に平行な面で前記A層を切断したときの断面を断面Xとしたときに、前記断面X内に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形において、前記一対の短辺を通過する前記環状オレフィン系樹脂のドメインが2個以上存在することが重要である。本発明のポリオレフィン系フィルムにおいて、厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメインは好ましくは4個以上、より好ましくは6個以上である。上限は特に限定しないが、100個とするものである。なお当該要件は本発明の第1のポリオレフィン系フィルムにおいても満たすことが好ましく、好ましい数値範囲も同様である。
 厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメインを2個以上とすることで、面内に環状オレフィン系樹脂がより扁平状に微分散していることになり、環状オレフィン系樹脂の有する高い熱安定性とポリプロピレン系樹脂の有する優れた延伸性の相乗効果によって、フィルム中における非晶鎖の運動性を抑制できると考えられる。そのため、例えば後述のD層を蒸着によって積層する際に、蒸着時の熱でフィルムが収縮することによりD層中にピンホールやクラックといった欠陥が発生することを抑制し、D層を積層した積層体の水蒸気バリア性や酸素バリア性を良好なものとすることができる。また、製袋加工後に加熱殺菌処理などの高温の処理を施す際も、フィルムが収縮するのを抑制し、水蒸気バリア性や酸素バリア性が損なわれるのを防ぐことができることができる。
 断面X内において、厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメイン個数を2個以上とする方法としては、A層のドメイン構造(海島構造)を制御する方法を用いることができる。例えば、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化すること、面積延伸倍率を36.0倍以上(好ましくは40.0倍以上)で二軸延伸すること、二軸延伸後に熱処理を施すことが効果的である。
 以下、本発明のポリオレフィン系フィルムにおいて、断面X内に一対の辺が厚み方向に平行となるように1μm×2μmサイズの長方形を定める方法、及び厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメイン数の決定方法について、図面を参照しながら説明する。図1は、本発明の一実施態様に係るポリオレフィン系フィルムの断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形、及び当該長方形の厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメインを表す模式図である。図1における符号1~5はそれぞれ順に、断面Xの一部、海部分、島部分(ドメイン)、断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形、厚み方向と平行な一対の辺を表す。図1の左図が断面Xの一部、右図が断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形の破線で示した長方形の拡大図である。なお、本発明のポリオレフィン系フィルムにおいては、海部分がポリプロピレン系樹脂、島部分が環状オレフィン系樹脂となる。
 断面X内に一対の辺が厚み方向に平行となるように1μm×2μmサイズの長方形を定めるにあたっては、当該長方形の底辺は海部分に設定するものとし、底辺と対向する辺上にドメインが位置する場合は、これは無いものと見なして個数としてはカウントしないこととする(図1の例においてはこのようなドメインは存在しない。)。
 ここで「厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメイン」とは、厚み方向と平行な一対の辺を共に通過する環状オレフィン系樹脂のドメインをいう。すなわち、図1の例(右図)においては上から4~7番目のドメインがこれに該当し、上から1~3番目のドメインはこれに該当しないため、当該例における「厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメイン」は4つとなる。
 本発明のポリオレフィン系フィルムは、A層及びB層よりも融点が低く、かつ融点が100℃以上150℃以下の層をC層としたときに、一方の最表面にB層が位置し、他方の最表面に前記C層が位置することが好ましい。ここでC層はA層やB層よりも低い温度で融解するため、A層やB層の融点より低い温度でC層のみを融解させることにより、C層はヒートシール層としての役割を担うことができる。ヒートシールとは、内容物を充填・包装し袋としての形態を取るにあたり、加熱処理を通じてフィルム同士が溶融して圧着した状態(若しくはその工程)のことであり、ヒートシール性とは、加熱により溶融・圧着するフィルム側の性質のことである。
 C層をより低温環境下でかつ高速に機能するヒートシール層とする観点から、C層は低結晶性かつ融点の低いポリプロピレン系樹脂を含むことが好ましく、具体的にはエチレン-プロピレンランダム共重合体、エチレン-プロピレン-ブテンランダム共重合体、プロピレン-ブテンランダム共重合体等を好ましく用いることができる。上記観点からC層の融点は、好ましくは110℃以上148℃以下、さらに好ましくは120℃以上145℃以下である。C層の融点は、フィルムのC層を示差走査熱量分析(DSC)で分析した際の融解による吸熱ピークのうち、最も融解熱量が大きなピーク温度として読み取ることができる。
 本発明のポリオレフィン系フィルムは、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向のtanδをそれぞれtanδ50、tanδ121としたときに、tanδ50/tanδ121が0.25を超え0.99以下であることが好ましい。tanδ50/tanδ121が0.25を超えることは損失正接(tanδ)の温度依存性が小さいことを意味する。すなわち高温環境下にてフィルム内の非晶分子鎖が動きにくく、例えば後述するD層を蒸着する際に、蒸着時の熱によるフィルムの変形に起因してD層に発生するピンホールやクラック等の欠陥を抑制し、D層を蒸着した積層体の水蒸気バリア性や酸素バリア性を良好なものとすることができる。また、製袋加工後に行う加熱殺菌処理などの高温処理によるフィルムの変形も抑えられるため、このような処理に伴う水蒸気バリア性や酸素バリア性の低下も軽減できる。他方、実現可能性の観点からtanδ50/tanδ121の上限を0.99以下とする。なお、各温度でのtanδは、動的粘弾性法により粘弾性-温度曲線から読み取れる貯蔵弾性率、損失弾性率より求めることができ、各弾性率の測定方法と併せてその測定方法は後述する。
 上記観点から、フィルムのtanδ50/tanδ121の下限は0.28、好ましくは0.31、より好ましくは0.33、さらに好ましくは0.35である。他方、tanδ50/tanδ121の上限は、好ましくは0.89、より好ましくは0.69である。
 tanδ50/tanδ121を、0.25を超え0.99以下に制御するには、例えば、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化すること、面積延伸倍率を36.0倍以上(好ましくは40.0倍以上)とし、二軸延伸における幅方向の延伸前予熱温度を幅方向延伸温度よりも5℃以上15℃以下高くすることが効果的である。
 本発明のポリオレフィン系フィルムは、高いバリア性を付与できる観点から、三次元非接触表面形状計測により測定した前記B層の少なくとも一方の表面の十点領域高さ(S10z)が150nm以上900nm以下であることが好ましい。ここで表面の十点領域高さ(S10z)とは、評価視野画像における五点山領域高さ(S5p:基準領域内にある山頂のうち、高いものから5番目までの山頂の平均高さ)と五点谷領域深さ(S5v:基準領域内にある谷底のうち、深いものから5番目までの谷底(正の値)の平均高さ)の和としてS5p+S5vで求められるパラメータである。すなわち(S10z)が小さいほど凹凸格差が少ない表面であり、逆に大きいほど凹凸格差が多い表面を意味する。
 例えば粒子を含まないフィルム表面は(S10z)が小さくなる傾向があり、粗大な粒子を含むフィルムは(S10z)が大きくなる傾向がある。上記の観点から表面の十点領域高さ(S10z)の下限は好ましくは180nm、より好ましくは200nmである。他方、上限は好ましくは700nm、より好ましくは400nmである。表面の十点領域高さ(S10z)を150nm以上900nm以下に制御するには、例えば後述するB層がポリプロピレン系樹脂とポリプロピレン系樹脂とは非相溶の熱可塑性樹脂を1質量%以上10質量%以下含む構成とすることが効果的である。
 本発明のポリオレフィン系フィルムは、金属粒子と無機化合物粒子の少なくとも一方を含むことが好ましい。高いバリア性やフィルム表面の易滑性を付与できる観点から、無機化合物粒子は、例えば、アルミニウム、酸化アルミニウム(アルミナと称す場合がある。)、酸化珪素、酸化セリウム、酸化カルシウム、ダイアモンド状炭素膜、あるいはこれらの混合物のいずれかが好適に用いられ、特にアルミナ、シリカ、アルミニウムと珪素の酸化物のうち少なくとも一つを含むことが好ましい。
 粒子の種類は、例えば、エネルギー分散型X線分析(EDS)、および必要に応じてGATAN GIF“Tridiem”を用いたEELS分析を行うことで特定することができる。EELS分析では、得られたEELSスペクトルと市販の金属化合物のEELSスペクトルもしくは一般に公開されているEELSスペクトルデータと照合を行うことで、粒子の成分を同定することができる。測定装置としては、EDSにはJED-2300F(日本電子(株)製、半導体検出器、ドライSDエクストラ)等を、EELS分析には電界放出型透過電子顕微鏡JEM-2100F(日本電子(株)製、加速電圧200kV)等を用いることができる。
 また、本発明のポリオレフィン系フィルムを主配向軸方向に平行かつ厚み方向と垂直な面で切断したときの断面で観察される、金属粒子や無機化合物粒子のアスペクト比が2以上であることが好ましい。粒子が層状になるほど高いバリア性を発現できるため、より好ましいアスペクト比は10以上、さらに好ましくは30以上、特に好ましくは50以上である。アスペクト比の上限は特に限定しないが500とするものである。
 フィルム中の粒子のアスペクト比を2以上にする方法としては、特に限定されるものではないが、例えば、後述するポリオレフィン系フィルム層と、金属と無機化合物を合計で50質量%を超えて100質量%以下含む層(D層)を有する積層体を原料として使用する方法が挙げられる。このとき、当該積層体を溶融する溶融工程において、高せん断で溶融することや、D層の薄い積層体を溶融させること等が好ましい。なお、粒子のアスペクト比は、SEM(走査型電子顕微鏡)での観察により取得した粒子の断面画像を面積が最小となる長方形で囲み、その長辺の長さと短辺の長さの比として算出することができる。
 本発明のポリオレフィン系フィルムは、少なくとも一方のフィルム表面光沢度が130%を超えて160%以下であることが好ましい。フィルム表面光沢度が130%を超えることは、フィルム表面での光散乱密度が低いことから、表面が平滑化していることを意味する。そのため、フィルム表面光沢度を130%より大きくすることにより、D層を蒸着した積層体とした場合にD層に発生するピンホールやクラック等の欠陥を抑制し、積層体の水蒸気バリア性や酸素バリア性を良好なものとすることができる。他方、フィルム表面光沢度が160%を超える場合は表面が過度に平滑化されていることを意味し、フィルムの滑りが極端に低下しやすくなる場合がある。そのため、フィルム表面光沢度を160%以下とすることにより、D層を蒸着する際のハンドリング性の悪化やそれに伴うシワの発生が抑えられるため、積層体の水蒸気バリア性や酸素バリア性が良好となる。上記観点から、フィルム表面光沢度は、より好ましくは135%以上149%以下、さらに好ましくは140%以上148%以下である。なお、光沢度はJIS K-7105(1981)に準じて測定することができ、その詳細は後述する。
 フィルム表面光沢度を、130%を超えて160%以下又は上記の好ましい範囲に制御するには、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化すること、少なくともA層とB層を有する積層構成とすること、溶融シート冷却固化時の温度を30℃以下に制御すること、面積延伸倍率を36.0倍以上(好ましくは40.0倍以上)とすることが効果的である。
 本発明のポリオレフィン系フィルムは二軸配向フィルムであることが好ましい。二軸配向フィルムとすることで、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率、主配向軸と直交する方向の引っ張り伸度を本発明の好ましい範囲に制御することが容易となる。ここで二軸配向フィルムとは、直交する2方向に分子鎖が配向したフィルムであり、これは通常、直交する2方向に延伸することにより得られる。
 本発明のポリオレフィン系フィルムは、包装用途、離型用途、テープ用途、フィルムコンデンサ用途など工業用途等に広く使用でき、フィルムコンデンサ用途、包装用途に好適なものとする観点から、厚みが0.5μmより大きく60μm以下であることが好ましい。厚みを0.5μmより大きくすることで、蒸着加工時や搬送時のたるみが抑えられ、さらに張力によるフィルム破れを軽減できる。上記観点から厚みの下限は、コンデンサ用途では0.8μmがより好ましく、1.2μmがさらに好ましく、包装用途では10μmがより好ましく、11μmがさらに好ましい。一方、厚みを60μm以下とすることで、ハンドリング性を良好にできる他、製造コストを抑えることもできる。上記観点から厚みの上限値は、フィルムコンデンサ用途では5.5μmがより好ましく、4.0μmがさらに好ましく、3.2μmが特に好ましく、包装用途では50μmがより好ましく、40μmがさらに好ましく、19μmが特に好ましい。なお、フィルムの厚みは、フィルムの任意の10箇所の厚みを、23℃65%RHの雰囲気下で接触式のマイクロメータで測定し、得られた全測定値の算術平均値を求めることにより決定することができる。
 ポリオレフィン系フィルムの厚みを0.5μmより大きく60μm以下又は上記の好ましい範囲とする方法は、特に制限されず、例えばポリオレフィン系樹脂組成物の溶融押出の際に吐出量を調整する方法や、溶融シートの冷却固化の際にキャストドラムの回転速度を調整する方法、溶融シートを吐出する口金のリップ間隙を調整する方法、長手方向の延伸倍率を調整する方法、幅方向の延伸倍率を調整する方法等を用いることができる。より具体的には、吐出量を下げること、キャストドラムの回転速度を上げること、口金のリップ間隙を小さくすること、長手方向や幅方向の延伸倍率を上げることで、ポリオレフィン系フィルムの厚みを小さくすることができる。
 続いて、本発明のポリオレフィン系フィルムに用いると好ましい樹脂について説明する。本発明のポリオレフィン系フィルムのA層は、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率、150℃での主配向軸方向の熱収縮率、主配向軸と直交する方向の引っ張り伸度を前述の範囲とする観点から、ポリプロピレン系樹脂を主成分とし、かつA層の融点が135℃以上175℃以下であることが好ましい。上記観点から、A層の融点の下限は好ましくは140℃、より好ましくは145℃、さらに好ましくは150℃、特に好ましくは157℃、最も好ましくは163℃である。他方、A層の融点の上限は好ましくは173℃、より好ましくは171℃、特に好ましくは169℃である。A層の融点をかかる範囲とすることで、フィルムのE’121/E’50、150℃での主配向軸方向の熱収縮率を前述の好ましい範囲に制御することが容易になる。なお、A層の融点は、ポリオレフィン系フィルムのA層を示差走査熱量分析(DSC)で分析した際の2nd Runの融解による吸熱ピークのうち、最もピーク面積が大きいもののピーク温度として読み取ることができる。なお、融点の詳細な測定方法は、後述する。
 本発明のポリオレフィン系フィルムのB層に主成分として用いられるポリプロピレン系樹脂は、そのメソペンタッド分率が0.900以上であることが好ましい。メソペンタッド分率の下限は好ましくは0.930、より好ましくは0.960、さらに好ましくは0.970である。メソペンタッド分率は、ポリプロピレン系樹脂の結晶相の立体規則性を示す指標であり、核磁気共鳴法(NMR法)で測定される。本発明のポリオレフィン系フィルムでは、メソペンタッド分率が0.90以上のポリプロピレン系樹脂をB層の主成分とすることで、B層の結晶化度が高くなり、ポリプロピレンフィルム(特にB層)の配向性を高める効果がある。これにより、ポリプロピレンフィルムを包装用途に用いる際、蒸着時の熱による変形を抑制し、蒸着膜をはじめとする後述のD層を均一に積層することを容易にするとともに、D層中のピンホールやクラック等の欠陥も抑制できる。そのため、D層を積層した積層体の水蒸気バリア性や酸素バリア性を向上させる効果が得られる。なお、メソペンタッド分率は実現可能性およびB層とD層の密着性を高くする観点から上限は好ましくは0.99、より好ましくは0.98である。
 本発明のポリオレフィン系フィルムのB層に用いられるポリプロピレン系樹脂は、1種であってもよいし、2種以上が混合されていてもよい。但し、フィルムとしたときに蒸着時の熱による変形を軽減する観点から、主成分であるポリプロピレン系樹脂の融点は151℃以上が好ましく、より好ましくは153℃以上、さらに好ましくは155℃以上、特に好ましくは158℃以上、最も好ましくは160℃以上である。B層の主成分であるポリプロピレン系樹脂の融点が151℃以上であることにより、B層の結晶性が高く保たれるため、蒸着時の熱によるポリプロピレンフィルムの変形が軽減される。すなわち、蒸着により後述のD層を積層した際にD層中のピンホールやクラック等の欠陥が軽減され、D層を積層した積層体の水蒸気バリア性や酸素バリア性が高くなる。
 本発明のポリオレフィン系フィルムのB層に2種以上のポリプロピレン系樹脂を用いる場合、主成分以外のポリプロピレン系樹脂としては、変性ポリプロピレン系樹脂が好適に用いられる。かかる樹脂を用いることで、B層表面の窒素元素や酸素元素の含有量が多くなり、後述のD層を積層した際、B層とD層の密着性を高くすることができる。変性ポリプロピレン系樹脂としては、例えば、三井化学(株)の“アドマー”(登録商標)シリーズ(ポリプロピレンの不飽和カルボン酸変性体)や、三洋化成工業(株)の“ユーメックス”(登録商標)シリーズ(酸変性低分子量ポリプロピレン系樹脂)等が挙げられる。B層中の変性ポリプロピレン系樹脂の含有量は、B層の結晶性を高く保つ観点から、B層の樹脂全体を100質量%とした際、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。
 また、本発明のポリオレフィン系フィルムのB層には、表層易滑化を付与する観点から本発明の効果を阻害しない範囲でポリプロピレン系樹脂とは相溶しない非相溶樹脂を添加してもよい。ポリプロピレン系樹脂とは相溶しない非相溶樹脂の添加量は、B層を構成する全体の樹脂量を100質量%とした場合に、1質量%以上10質量%以下であることが好ましい。ポリオレフィン系フィルムの表層易滑化を付与する観点からポリプロピレン系樹脂とは相溶しない非相溶樹脂は2質量%以上であることが好ましく、より好ましくは3質量%以上であることであり、上限は9質量%が好ましく、8質量%がより好ましい。
 ここで非相溶樹脂としては、ポリプロピレン系樹脂と比較的親和性が高く、ドメインサイズを小さくできることから特にポリメチルペンテン系樹脂を用いることが好ましい。またポリメチルペンテン系樹脂の融点としては、ポリプロピレンとブレンドしたときの押出安定性、及びドメイン海島構造を利用して表面凹凸を付与する観点から、好ましくは185℃~240℃、より好ましくは220℃~240℃である。これらの特性を踏まえた上で、本発明のポリプロピレンフィルムにおいては、全構成単位100mol%中、4-メチルペンテン-1由来の構成単位が80mol%以上100mol%以下である重合体が好ましく、例えば、三井化学(株)より“TPX”(登録商標)シリーズとして販売されている“TPX”(登録商標)MXシリーズ、“TPX”(登録商標)DXシリーズ、“TPX”(登録商標)RTシリーズなどを好ましく用いることができる。具体的には“TPX”(登録商標)MX002、MX004、DX310、DX845、RT31がポリプロピレン系樹脂と比較的親和性が高く、ドメインサイズを小さくできる観点で好ましい。
 本発明のポリオレフィン系フィルムに用いる環状オレフィン系樹脂について説明する。環状オレフィン系樹脂は、例えば、主に環状オレフィンモノマーを重合して得られる。
 環状オレフィンモノマーとしては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、シクロペンタジエン、1,3-シクロヘキサジエンといった単環式オレフィン、ビシクロ〔2,2,1〕ヘプト-2-エン、5-メチル-ビシクロ〔2,2,1〕ヘプタ-2-エン、5,5-ジメチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-エチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-ブチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-エチリデン-ビシクロ〔2,2,1〕ヘプト-2-エン、5-ヘキシル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-オクチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-オクタデシル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-メチリデン- ビシクロ〔2,2,1〕ヘプト-2-エン、5-ビニル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-プロペニル-ビシクロ〔2,2,1〕ヘプト-2-エンといった二環式オレフィン、トリシクロ〔4,3,0,12.5〕デカ-3,7-ジエン、トリシクロ〔4,3,0,12.5〕デカ-3-エン、トリシクロ〔4,3,0,12.5〕ウンデカ-3,7-ジエン、トリシクロ〔4,3,0,12.5〕ウンデカ-3,8-ジエン、トリシクロ〔4,3,0,12.5〕ウンデカ-3-エン、5-シクロペンチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-シクロヘキシル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-シクロヘキセニルビシクロ〔2,2,1〕ヘプト-2-エン、5-フェニル-ビシクロ〔2,2,1〕ヘプタ-2-エンといった三環式オレフィン、テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-メチルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-エチルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-メチリデンテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-エチリデンテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-ビニルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-プロペニル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エンといった四環式オレフィン、および8-シクロペンチル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-シクロヘキシル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、テトラシクロ〔7,4,13.6,01.9,02.7〕テトラデカ-4,9,11,13-テトラエン、テトラシクロ〔8,4,14.7,01.10,03.8〕ペンタデカ-5,10,12,14-テトラエン、ペンタシクロ〔6,6,13.6,02.7,09.14〕-4-ヘキサデセン、ペンタシクロ〔6,5,1,13.6,02.7,09.13〕-4-ペンタデセン、ペンタシクロ〔7,4,0,02.7,13.6,110.13〕-4-ペンタデセン、ヘプタシクロ〔8,7,0,12.9,14.7,111.17,03.8,012.16〕-5-エイコセン、ヘプタシクロ〔8,7,0,12.9,03.8,14.7,012.17,113.16〕-14-エイコセン、シクロペンタジエンといった四量体等の多環式オレフィンなどが挙げられる。これらの環状オレフィンモノマーは、それぞれ単独であるいは2種以上組合せて用いることができる。
 環状オレフィンモノマーとしては、上記した中でも、生産性、表面性の観点から、ビシクロ〔2,2,1〕ヘプト-2-エン(以下、ノルボルネンとする。)、トリシクロ〔4,3,0,12.5〕デカ-3-エンなどの炭素数10の三環式オレフィン(以下、トリシクロデセンとする。)、テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エンなどの炭素数12の四環式オレフィン(以下、テトラシクロドデセンとする。)、シクロペンタジエン、または1,3-シクロヘキサジエンが好ましく用いられる。
 環状オレフィン系樹脂は、重合体100モル%中に占める環状オレフィンモノマー由来の構成単位が合計で20モル%を超えて100モル%以下であれば、上記環状オレフィンモノマーのみを重合させた樹脂(以下、COPということがある。)や、上記環状オレフィンモノマーと鎖状オレフィンモノマーとを共重合させた樹脂(以下、COCということがある。)のいずれの樹脂でもよく、両者を混合させてもよい。
 COPの製造方法としては、環状オレフィンモノマーの付加重合、あるいは開環重合などの公知の方法が挙げられ、例えば、ノルボルネン、トリシクロデセン、テトラシクロデセン、およびその誘導体を開環メタセシス重合させた後に水素化させる方法、ノルボルネンおよびその誘導体を付加重合させる方法、シクロペンタジエン、シクロヘキサジエンを1,2-、1,4-付加重合させた後に水素化させる方法などが挙げられる。これらの中でも、生産性、成型性の観点から、ノルボルネン、トリシクロデセン、テトラシクロデセン、およびその誘導体を開環メタセシス重合させた後に水素化させる方法がより好ましい。
 COCの場合、共重合させるのに好ましい鎖状オレフィンモノマーとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。これらの中でも、生産性、コストの観点から、エチレンが特に好ましく用いることができる。また、環状オレフィンモノマーと鎖状オレフィンモノマーとを共重合させた樹脂の製造方法としては、環状オレフィンモノマーと鎖状オレフィンモノマーの付加重合などの公知の方法が挙げられ、例えば、ノルボルネンおよびその誘導体とエチレンを付加重合させる方法などが挙げられる。中でも、生産性、成型性の観点から、環状オレフィンモノマーとしてノルボルネンまたはトリシクロデセン、鎖状オレフィンモノマーとしてエチレンおよび、またはプロピレンからなる2元または3元共重合であることがより好ましい。
 本発明のポリオレフィン系フィルムに用いる環状オレフィン系樹脂は非晶性であることが好ましい。さらに非晶性の環状オレフィン系樹脂のガラス転移温度は、ポリオレフィン系フィルムのE’121/E’50、150℃での主配向軸方向の熱収縮率を前述の好ましい範囲に制御する観点から、125℃以上が好ましく、より好ましくは130℃以上、さらに好ましくは135℃以上である。ガラス転移温が125℃以上であることにより、フィルムとしたときの熱安定性が向上する。上限は特に限定しないが、製膜性の観点から200℃とするものである。なお、本発明のポリオレフィン系フィルムにおいて環状オレフィン系樹脂が非晶性であるとは、環状オレフィン系樹脂を示差走査熱量計DSCで30℃から260℃まで20℃/minで昇温した際に得られる融解ピーク温度(Tm)が観察されないことと定義する。
 本発明のポリオレフィン系フィルムは、ポリプロピレン系樹脂を主成分とする場合であっても、本発明の目的を損なわない範囲でポリプロピレン樹脂、環状オレフィン系樹脂以外の樹脂を含んでいてもよい。具体的な樹脂としては、各種ポリオレフィン系樹脂を含むビニルポリマー樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂などが挙げられ、特に、ポリメチルペンテン、シンジオタクチックポリスチレンなどが好ましく例示される。ポリプロピレン樹脂、環状オレフィン系樹脂以外の樹脂の含有量は、ポリオレフィン系フィルムを構成する樹脂成分全体を100質量%とした場合、3質量%未満が好ましく、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。ポリプロピレン樹脂、環状オレフィン系樹脂以外の樹脂の含有量が3質量%以上であると、ドメイン界面の影響が大きくなるため、延伸性が低下したり、D層を積層した積層体の水蒸気バリア性や酸素バリア性が低下してしまう場合がある。なお、これらの成分が含まれる層は特に限定されない。
 本発明のポリオレフィン系フィルムは、包装用途、離型用途、テープ用途、フィルムコンデンサ用途など工業用途等に広く使用でき、例えば、特に包装用途に用いる際、蒸着時の熱に対して構造安定性に優れ、加熱殺菌処理時の熱に対しても水蒸気バリア性、酸素バリア性が良好なポリオレフィン系フィルムとして好適に用いることができる。
 <積層体>
 続いて、本発明の積層体について説明する。本発明の積層体は、本発明のポリオレフィン系フィルムの少なくとも片面に金属と無機化合物を合計で50質量%を超えて100質量%以下含む層(D層)を有する。ここで、「金属と無機化合物を合計で50質量%を超えて100質量%以下含む層」とは、層を構成する全成分を100質量%としたときに、金属のみを50質量%より多く含む層、無機化合物のみを50質量%より多く含む層、金属と無機化合物をいずれも含み、それらの合計が50質量%を超える層を指す。D層の金属及び/又は無機化合物としては、フィルムとの密着性向上、フィルムに積層した際のガスバリア性向上、及び環境負荷低減の観点から、例えば、アルミニウム、酸化アルミニウム、酸化珪素、酸化セリウム、酸化カルシウム、ダイアモンド状炭素膜、あるいはこれらの混合物のいずれかが好適に用いられる。
 ここで、ポリオレフィン系フィルムが積層構成である場合、3次元非接触式表面粗さ計で測定されるD層の表面の突出山部平均高さ(Spk)が10nm以上400nm以下であることが好ましい。Spkを10nm以上とすることで適度な易滑性を付与でき蒸着加工工程のフィルム搬送性と高い水蒸気バリア性や酸素バリア性を達成することができる。他方、Spkを400nm以下とすることにより、急峻な突起の形成が抑えられるため、該突起に起因して発生するD層のピンホールやクラック等の欠陥による水蒸気バリア性や酸素バリア性の低下を軽減できる。上記観点からSpkの下限は20nmが好ましく、より好ましくは30nm、さらに好ましくは40nmである。他方、Spkの上限は350nmが好ましく、より好ましくは250nm、さらに好ましくは150nm、特に好ましくは130nmである。
 積層体のSpkを上記の好ましい範囲に制御するには、A層用の原料として環状オレフィン系樹脂とポリプロピレン系樹脂とを予備混練したコンパウンド樹脂原料を作製すること、環状オレフィン系樹脂の含有量を制御した上で溶融押出してシート化すること、積層構成とすること、溶融シート冷却固化時の冷却温度を低く(好ましくは30℃以下)で制御すること、面積延伸倍率36.0倍以上(好ましくは40.0倍以上)で二軸延伸することが効果的である。
 本発明の積層体におけるD層の厚みは、積層体を樹脂あるいはフィルムとして再利用するリサイクル性、割れにくくしてバリア性を高め、包装材としたときの内容物の視認性を得る観点から200nm以下が好ましい。上記観点から、より好ましくは110nm以下、さらに好ましくは50nm以下、さらに好ましくは30nm以下である。下限は特に限定されないが、バリア性発現の観点から1nmとする。
 また、本発明の積層体においてD層とポリオレフィン系フィルム表面の間には、コーティング等により厚み1μm以下の樹脂層を設けてもかまわない。かかる樹脂層を設けることで、D層とポリオレフィン系フィルムの密着性を向上させるなどの効果を得られる場合がある。但し、製造コストやリサイクル性の観点からは、該樹脂層を有さない態様(すなわち、D層が、ポリオレフィン系フィルムの最表面上に直接積層される態様)が好ましく、ポリオレフィン系フィルムのB層表面上にD層を有する態様がより好ましい。
 本発明のポリオレフィン系フィルムにD層を形成して積層体とする方法としては、コーティング、蒸着、ラミネート等が挙げられるが、湿度依存がなく、薄膜で優れたガスバリア性を発現できることから、蒸着が特に好ましい。蒸着方法としては、真空蒸着法、EB蒸着法、スパッタリング法、イオンプレーティング法等の物理的蒸着法、プラズマCVD等の各種化学蒸着法を用いることができるが、生産性の観点からは真空蒸着法が特に好ましく用いられる。
 また、本発明の積層体の酸素透過率を向上させる観点から、例えば、有機無機混合物を含むトップコート層をD層の表面に積層してもよい。トップコート層の好ましい一例として、例えば金属又は珪素原子を含むアルコキシドおよび/またはその重縮合物と、水溶性高分子の混合物が挙げられる。
 <包装材、梱包体>
 以下、本発明の包装材、梱包体について説明する。本発明の包装材は、本発明のポリオレフィン系フィルム、及び本発明の積層体の少なくとも一方を有することを特徴とする。本発明の包装材は、蒸着時の熱に対して構造安定性に優れ、特に透明蒸着層を積層した際に水蒸気バリア性、酸素バリア性が良好であることから、水蒸気や酸素により劣化しやすいものの包装に好適に用いることができる。
 本発明の梱包体は、本発明の包装材により内容物が梱包されていることを特徴とする。内容物は特に制限されないが、本発明の包装材が透明性、水蒸気バリア性、酸素バリア性に優れることから、外部からの視認性が求められ、水蒸気や酸素により劣化しやすいものであることが好ましい。なお、本発明の梱包体は本発明の包装材で内容物を覆うことで得られ、その態様は特に制限されない。例えば、ヒートシールにより本発明の包装材を袋状に加工し、その中に内容物を入れることで得られる梱包体が挙げられる。このような梱包体の具体例としては、レトルトパウチ食品等が挙げられる。
 <製造方法>
 本発明のポリオレフィン系フィルムは、上述した特性を与えうる原料を用い、二軸延伸、熱処理および弛緩処理されることによって得ることが可能である。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、その中でも、フィルムの製膜安定性、結晶・非晶構造、表面特性、特に本発明の延伸倍率を高めながら機械特性および熱寸法安定性を制御する点においてテンター逐次二軸延伸法、テンター同時二軸延伸法を採用することが好ましい。
 次に本発明のポリオレフィン系フィルムの製造方法を例に挙げて説明する。まず、環状オレフィン系樹脂とポリプロピレン系樹脂とを事前に予備混練したコンパウンド樹脂原料を希釈またはそのまま支持体上に溶融押出して未延伸フィルムとする。この未延伸フィルムを長手方向に延伸し、次いで幅方向に延伸して、逐次二軸延伸せしめる。その後、熱処理および弛緩処理を施して二軸配向ポリオレフィン系フィルムを製造する。以下、より具体的に説明するが、本発明は必ずしもこれに限定して解釈されるものではない。
 まず、本発明のポリオレフィン系フィルムでは環状オレフィン系樹脂とポリプロピレン系樹脂(A)との分散状態をよくしてE’121/E’50が0.25超え0.99以下に制御し貯蔵弾性率の温度依存性が小さいフィルムを得ることで、特にフィルムにD層を蒸着する際の熱によるフィルム変形を抑制し、D層を積層した積層体の水蒸気バリア性や酸素バリア性を良好なものとする観点から、予め環状オレフィン系樹脂とポリプロピレン系樹脂と酸化防止剤と混合しコンパウンドすることが好ましい。コンパウンドには短軸押出機、二軸押出機などを用いることができるが、良好な分散状態と高い熱安定性を得る観点から、特に二軸押出機を用いることが好ましい。
 酸化防止剤の量は、コンパウンド樹脂成分100質量部に対して0.2質量部以上が好ましく、より好ましくは0.3質量部以上、さらに好ましくは0.4質量部以上である。上限は1.0質量部とするものである。
 次いで環状オレフィン系樹脂とポリプロピレン系樹脂とをコンパウンドした樹脂原料をA層用の単軸押出機に供給し、B層の原料となるポリプロピレン系樹脂若しくはポリプロピレン系樹脂組成物、C層の原料となるポリプロピレン系樹脂若しくはポリプロピレン系樹脂組成物をそれぞれB層用の単軸押出機、C層用の単軸押出機に供給する。押出温度220℃~280℃、好ましくは230℃~270℃に設定したA層、B層、C層それぞれの単軸押出機から溶融押出し、濾過フィルタを通過させて異物等を取り除く。続いてこれらの溶融樹脂を、所望の層構成(未延伸段階のA層をa層、未延伸段階のB層をb層、未延伸段階のC層をc層とすると、例えば、b層/a層/c層)となるように、フィードブロックなどの積層装置で合流させる。その後、200℃~260℃の温度でスリット状口金から押し出す。
 ここで溶融押出時は樹脂を十分に溶融させ、スクリュー回転によるせん断起因で分子鎖が切断されるのを防ぐことで、高温でもフィルム構造が緩和せず安定化できる観点から、濾過フィルタ前は高温、フィルタ通過後は濾過フィルタ前よりも低温とし、吐出直前の口金温度はさらに低温化した多段式低温化が達成できるような温度設定とすることが好ましい。また、原料供給ホッパー内の酸素濃度は1%以下(体積基準、以下同じ)であることが好ましく、より好ましくは0.1%以下、さらに好ましくは0.05%以下である。原料供給ホッパー内の酸素濃度を1%以下とすることでポリプロピレン樹脂の酸化劣化を抑制できE’121/E’50を本発明の好ましい範囲に制御しやすくなる。
 次に、スリット状口金から押し出された溶融樹脂シートを、表面温度が10℃~40℃に制御されたキャスティングドラム(冷却ドラム)上で冷却固化させ、未延伸フィルムを得る。この際、口金から押し出された溶融シートが最初に接するドラム面側がB層となるように共押出積層することが、B層の表面に形成するD層の粗さパラメータを所望の範囲内に制御しやすいため好ましい。
 溶融シートのキャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法、エアーチャンバー法等のうちいずれの手法を用いてもよく、また複数の方法を組み合わせてもよいが、フィルムの平面性を良好にでき、かつ表面粗さを制御することが可能なエアーナイフ法が好ましい。また、エアーナイフ法を用いる場合、フィルムの振動を生じさせないために製膜下流側にエアーが流れるようにエアーナイフの位置を適宜調整することが好ましい。
 キャスティングドラムの表面温度は、得られるポリプロピレンフィルムの表面を平滑にし、蒸着膜等により形成するD層の厚み均一性及び密着性向上を図る観点から、好ましくは10℃~35℃、より好ましくは10℃~30℃、特に好ましくは10℃~25℃である。かかる温度範囲とすることで、未延伸フィルムの特にドラム面側(延伸後にB層となる面側)の表層部分のメゾ相分率を高め、該未延伸フィルムがメゾ相構造を有するようにすることができる。
 メゾ相とは、結晶と非晶の中間相であり、溶融状態から非常に速い冷却速度で固化させた際に特異的に生成する。一般的にポリプロピレンを冷却固化させると、結晶化して球晶が成長することが知られているが、このように球晶が生じた未延伸フィルムを延伸すると、球晶内部や球晶間の結晶と非晶の間などで延伸応力に差が生じ、局所的な延伸斑が発生し厚み斑や構造斑に繋がると考えられる。一方、メゾ相は球晶形態をとらないため、延伸斑が生じず延伸均一性が高くなるため、フィルムとしたときの厚み均一性が高く、表面粗さも小さくかつ均一になりやすい。
 次に、未延伸フィルムを二軸延伸し、二軸配向せしめる。より具体的には、未延伸フィルムを好ましくは100~170℃、より好ましくは120~165℃の温度に保ち、長手方向に好ましくは2.0~12倍、より好ましくは3.0~11倍、さらに好ましくは4.0~10倍、特に好ましくは4.5~10倍、最も好ましくは5.0~9.0倍に延伸した後、室温まで冷却する。
 次いで長手方向に一軸延伸せしめたフィルムの幅方向両端部をクリップで把持したまま、テンターに導く。ここで本発明においては幅方向へ延伸する直前の予熱工程の温度を幅方向の延伸温度+5~幅方向の延伸温度+15℃とすることにより、一軸延伸で長手方向に高配向したフィブリル構造をさらに強化できるため、フィルムの貯蔵弾性率の温度依存性を小さくし、容易にE’121/E’50を前述の好ましい範囲に制御できる。また一軸延伸後、配向が不十分な分子鎖を高温予熱で安定化させることは、熱寸法安定性が向上できる観点で好ましい。前記観点から、幅方向へ延伸する直前の予熱工程の温度の上限は、幅方向の延伸温度+12℃が好ましく、より好ましくは幅方向の延伸温度+10℃である。
 次いでフィルムの幅方向両端部をクリップで把持したまま幅方向へ延伸するが、E’121/E’50を前述の好ましい範囲に制御する観点から、幅方向の延伸温度は、好ましくは150~175℃、より好ましくは155~175℃である。
 フィルムの貯蔵弾性率の温度依存性を小さくし、容易にE’121/E’50を前述の好ましい範囲に制御する観点から、幅方向の延伸倍率は好ましくは6.0~20.0倍、より好ましくは8.1~17.0倍、さらに好ましくは9.1~15.0倍である。幅方向の延伸倍率が6.0倍以上とすることにより、一軸延伸で長手方向に高配向したフィブリル構造の配向寄与が緩和されるため、特にフィルムにD層を蒸着する際の熱によるフィルム変形が軽減され、D層を積層した積層体の水蒸気バリア性や酸素バリア性が保たれる。また、長手方向よりも幅方向の延伸倍率を高めることは、長手方向の高い配向状態を保ったまま幅方向の配向が付与されるため、面内の分子鎖緊張が高まることで特に貯蔵弾性率の温度依存性を小さくできる効果を得られるため好ましい。
 ここで、面積延伸倍率は36.0倍以上であることが好ましい。面積延伸倍率を36.0倍以上とすることにより、フィルム面内の分子鎖緊張が高まってドメイン構造が小さく又は薄くなるため、フィルムとしたときの貯蔵弾性率の温度依存性を小さくすること、熱寸法安定性を高めること、破断伸度を高めることができる。その結果、得られるフィルムは、特にフィルムにD層を蒸着する際の熱による変形が抑えられ、D層を積層した積層体の水蒸気バリア性や酸素バリア性が優れたものとなる。本発明において、面積延伸倍率とは、長手方向の延伸倍率に幅方向の延伸倍率を乗じたものである。上記観点から、面積延伸倍率は、より好ましくは38.0倍以上、さらに好ましくは40.0倍以上、特に好ましくは44.0倍以上である。面積延伸倍率の上限は特に限定されないが、実現可能性の観点から逐次二軸延伸の場合は90.0倍、同時二軸延伸の場合は150倍である。
 本発明のポリオレフィン系フィルムにおいて重要な点は、高い面積延伸倍率としながら貯蔵弾性率の温度依存性や150℃での主配向軸方向の熱収縮率を小さくし、主配向軸と直交する方向の引っ張り伸度を高めることである。すなわち、本発明においてはポリプロピレン系樹脂中に分散する環状オレフィン系樹脂ドメインの分散性を高め、二軸延伸、さらには幅方向に延伸するときの予熱温度を延伸温度より高温に施すことが好ましい。
 本発明のポリプロピレンフィルムの製造においては、続く熱処理および弛緩処理工程ではクリップで幅方向両端部を緊張把持したまま、幅方向に2~20%の弛緩を与えつつ145℃以上170℃以下の熱処理を行うことが、フィルムの残留歪みを除去して熱寸法安定性を高める点で好ましい。このような処理により、特にフィルムにD層を蒸着する際の熱によるフィルム変形を抑制し、D層を積層した積層体の水蒸気バリア性や酸素バリア性を良好とすることができる。上記観点から、熱処理温度の下限は好ましくは150℃、より好ましくは155℃であり、さらに好ましくは160℃である。弛緩処理においては、フィルムの熱に対する構造安定性を高める観点から、弛緩率の下限が好ましくは5%、より好ましくは8%、さらに好ましくは11%であり、他方、上限が好ましくは18%、より好ましくは17%である。
 上記の熱処理および弛緩処理工程を経た後は、フィルムをテンターの外側へ導き、室温雰囲気にてフィルム幅方向両端部のクリップを解放し、ワインダー工程にてフィルム幅方向両側のエッジ部をスリットする。
 続いて、金属と無機化合物を合計で50質量%を超えて100質量%以下含む層(D層)を積層する面(通常はキャストドラムと接していた側の表面)に対し、D層の剥離力を高くすることを目的として、インラインでの表面改質処理を施すことが好ましい。インラインでの表面改質処理としては、例えば、大気中、もしくは酸素、窒素、水素、アルゴン、炭酸ガス、シランガスあるいはこれらの混合物の雰囲気ガス中でのコロナ放電処理、もしくはプラズマ処理、イオンビーム処理等が挙げられる。
 特に、コロナ放電処理に関しては、酸素濃度が10%以下、好ましくは5%以下、より好ましくは1%以下の雰囲気ガス中で行うことが効果的であり、酸素濃度が1%以下である雰囲気ガスの具体的な態様としては、窒素ガス、炭酸ガスあるいはこれらの混合物を採択することが好ましく、特に窒素ガス、炭酸ガスの混合物を採択することが効果的である。また、前述した雰囲気ガス中でのコロナ放電処理と、プラズマ処理、イオンビーム処理を組み合わせる方法も効果的である。かかる雰囲気中で処理を行うことで、フィルム表面においてポリプロピレンの分子鎖切断に伴う低分子量物の生成を抑制しつつ、効率的に親水性の官能基を導入することができるため、ポリオレフィン系フィルムからのD層の剥離力を高くすることが容易になる。こうして得られたフィルムをロール状に巻き取って、本発明のポリオレフィン系フィルムを得ることができる。
 なお、本発明のポリオレフィン系フィルムを得るため、着眼される製造条件を具体的に挙げてみると、例としては以下のとおりである。なお、これらの製造条件を全て満たすことが好ましいが、必ずしも全て備える態様とはせずに適宜組み合わせてもよい。例えば、「逐次二軸延伸において幅方向の延伸前の予熱温度が幅方向の延伸温度+5~幅方向の延伸温度+15℃であること。」に代えて、同時二軸延伸を採用してもよい。
・環状オレフィン系樹脂とポリプロピレン系樹脂とを予備コンパウンドすること。
・押出条件について、濾過フィルタ前は高温、フィルタ通過後は濾過フィルタ前よりも低温とし、吐出直前の口金温度はさらに低温化した条件(多段式低温化)とすること。
・原料供給ホッパー内の酸素濃度を1%以下とすること。
・前記予備コンパウンドした樹脂原料をA層に用い、かつA層を内層とした積層構成とすること。
・二軸延伸の面積延伸倍率が36.0倍以上であること。
・逐次二軸延伸において幅方向の延伸前の予熱温度が幅方向の延伸温度+5~幅方向の延伸温度+15℃であること。
・二軸延伸後に幅方向に2~20%の弛緩を与えつつ145℃以上170℃以下の熱処理が施されていること。
 <金属膜積層フィルム、それを用いてなるフィルムコンデンサ、およびそれらの製造方法>
 本発明の金属膜積層フィルムは、本発明のポリオレフィン系フィルムの少なくとも片面に金属膜を有する。この金属膜積層フィルムは、上記の本発明に係るポリプロピレンフィルムの少なくとも片面に金属膜を設けることで得ることができる。
 本発明において、金属膜を付与する方法は特に限定されないが、例えば、ポリオレフィン系フィルムの少なくとも片面に、アルミニウムまたは、アルミニウムと亜鉛との合金を蒸着してフィルムコンデンサの内部電極となる蒸着膜等の金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、例えば、ニッケル、銅、金、銀、クロムなどの他の金属成分を蒸着することもできる。また、蒸着膜上にオイルなどで保護層を設けることもできる。ポリオレフィン系フィルムの表面粗さが表裏で異なる場合には、粗さが平滑な表面側に金属膜を設けて金属膜積層フィルムとすることが耐電圧性を高める観点から好ましい。
 本発明では、必要により、金属膜を形成後、金属膜積層フィルムを特定の温度でアニール処理を行ったり、熱処理を行ったりすることができる。また、絶縁もしくは他の目的で、金属膜積層フィルムの少なくとも片面に、ポリフェニレンオキサイドなど樹脂のコーティングを施すこともできる。
 本発明のフィルムコンデンサは、本発明の金属膜積層フィルムを用いてなる。つまり本発明のフィルムコンデンサは、本発明の金属膜積層フィルムを有する。
 例えば、上記した本発明の金属膜積層フィルムを、種々の方法で積層もしくは捲回すことにより本発明のフィルムコンデンサを得ることができる。捲回型フィルムコンデンサの好ましい製造方法を例示すると、次のとおりである。
 ポリオレフィン系フィルムの片面にアルミニウムを減圧状態で蒸着する。その際、長手方向に走るマージン部を有するストライプ状に蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、表面の一方にマージンを有した、テープ状の巻取リールを作製する。左もしくは右にマージンを有するテープ状の巻取リールを左マージンおよび右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部よりはみ出すように2枚重ね合わせて捲回し、捲回体を得る。
 両面に蒸着を行う場合は、一方の面の長手方向に走るマージン部を有するストライプ状に蒸着し、もう一方の面には長手方向のマージン部が裏面側蒸着部の中央に位置するようにストライプ状に蒸着する。次に表裏それぞれのマージン部中央に刃を入れてスリットし、両面ともそれぞれ片側にマージン(例えば表面右側にマージンがあれば裏面には左側にマージン)を有するテープ状の巻取リールを作製する。得られたリールと未蒸着の合わせフィルム各1本ずつを、幅方向に金属化フィルムが合わせフィルムよりはみ出すように2枚重ね合わせて捲回し、捲回体を得る。
 本発明の金属層積層フィルムから本発明のフィルムコンデンサを得る方法としては、例えば、以上のようにして作製した捲回体から芯材を抜いてプレスし、両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して捲回型フィルムコンデンサとする方法が挙げられる。フィルムコンデンサの用途は、電気自動車、ハイブリッド車、燃料電池車等の電動自動車やドローン等の電動航空機のパワーコントロールユニット用途、鉄道車輌用途、太陽光発電・風力発電用途および一般家電用途等、多岐に亘っており、本発明のフィルムコンデンサもこれら用途に好適に用いることができる。
 以下、本発明のパワーコントロールユニット、電動自動車や電動航空機について説明する。本発明のパワーコントロールユニットは、本発明のフィルムコンデンサを有する。パワーコントロールユニットは、電力により駆動する機構を持つ電動自動車や電動航空機等において、動力をマネジメントするシステムである。パワーコントロールユニットに本発明のフィルムコンデンサを搭載することで、パワーコントロールユニット自体の小型化、耐熱性向上、高効率化が可能となり、結果、燃費が向上する。
 本発明の電動自動車は、本発明のパワーコントロールユニットを有する。ここで電動自転車とは、電気自動車、ハイブリッド車、燃料電池車等の電力により駆動する機構を有する自動車を指す。前述のとおり、本発明のパワーコントロールユニットは小型化が可能な他、耐熱性や効率にも優れるため、電動自動車が本発明のパワーコントロールユニットを備えることで燃費の向上等に繋がる。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は以下に示す態様に限定されない。なお、各項目の評価は以下の方法により行った。
 <特性値の測定方法、効果の評価方法>
 本発明における特性値の測定方法、並びに効果の評価方法は次の通りである。
 (1)主配向軸方向の特定
 ポリオレフィン系フィルムを準備し、長手方向を上に向けて、長さ150mm×幅10mmの矩形に切り出しサンプル<1>とした。この際、矩形のサンプル<1>の長辺が向く方向を0°と定義した。次に、長辺方向が0°方向から右に15°回転した方向となるように、同サイズのサンプル<2>を採取した。以下同様に、矩形のサンプルの長辺方向を15°ずつ回転させ、同様にサンプル<3>~<12>を採取した。次に、各矩形のサンプルを引張試験機(オリエンテック製“テンシロン”(登録商標)UCT-100)に、長辺方向が引っ張り方向となるように初期チャック間距離20mmでセットし、23℃の雰囲気下で引張速度を300mm/分として引張試験を行った。このときサンプルが破断するまでの最大荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅)で除した値を最大点強度の応力として算出した。各サンプルについて同様の測定を5回ずつ行って最大点強度の応力の平均値を求め、当該平均値が最大であったサンプルの長辺方向をポリオレフィン系フィルムの主配向軸方向とし、これにフィルム面内で直交する方向をポリオレフィン系フィルムの主配向軸と直交する方向とした。
 (2)フィルムの厚み
 ポリオレフィン系フィルムの任意の10箇所の厚みを、23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて測定した。その10箇所の厚みの算術平均値をフィルムの厚み(単位:μm)とした。
 (3)主配向軸方向の貯蔵弾性率の比 E’121/E’50
 以下に示す装置および条件にて、主配向軸方向を長辺方向として切り出した長方形のポリオレフィン系フィルム(幅(短辺)10mm×長さ(長辺)20mm)を23℃雰囲気下で装置チャック部に取り付け、炉内にセットした。フィルムがセットされた炉内雰囲気を液体窒素で冷却して、-100℃から180℃まで昇温させて測定を行い、動的粘弾性測定により粘弾性-温度曲線を描き、50℃での貯蔵弾性率(E’50)を読み取った。なお測定試験数はn=3で行い、貯蔵弾性率(E’50)の平均値を算出した。同様に測定試験数はn=3として、粘弾性-温度曲線から121℃での貯蔵弾性率(E’121)を読み取り、その平均値を得た。得られたE’121の平均値を得られたE’50の平均値で除して、E’121/E’50(単位;無次元)を得た。
<装置及び条件>
装置:EXSTAR DMS6100(セイコーインスツルメント(株)製)
試験モード  :引張モード
チャック間距離:20mm
周波数    :10Hz
歪振幅    :20.0μm
ゲイン    :1.5
力振幅初期値 :490mN
温度範囲   :-100~180℃
昇温速度   :5℃/分
測定雰囲気  :大気中
測定厚み   :上記(2)のフィルム厚みを用いた。
 (4)150℃での主配向軸方向の熱収縮率(%)
 ポリオレフィン系フィルムの主配向軸方向に、幅10mm、長さ150mm(測定方向)の試料を5本切り出し、両端から5mmの位置にそれぞれ印を付けて試長100mm(l0)とした。次に、試験片を紙に挟み込み、水平に保持した状態で150℃に保温されたオーブン内で、10分間加熱後に取り出して、23℃の環境下で冷却後、寸法(l1)を測定して下記式にて求め、5本の平均値を各方向の熱収縮率とした。
熱収縮率={(l0-l1)/l0}×100(%)。
 (5)主配向軸と直交する方向の引っ張り伸度(%)
 フィルム試長方向(前述のように定めた主配向軸と直交する方向)を長辺方向として切り出した長方形のポリオレフィン系フィルムまたは積層体(幅(短辺)10mm×長さ(長辺)150mm)を測定試料とした。次にサンプル引張試験機(オリエンテック製“テンシロン”(登録商標)UCT-100)に、初期チャック間距離20mmでセットし、23℃の環境下で引張速度を300mm/分としてフィルムの引張試験を行った。この際、試料の中心がチャック間の中央近傍に来るように試料の長辺方向の位置を調整した。測定にてサンプルが破断した時点の伸度(単位:%)を得た。測定は5回行い、その破断した点の伸度の平均値として、当該ポリオレフィン系フィルムまたは積層体の、主配向軸と直交する方向の引っ張り伸度を求めた。
 (6)主配向軸方向のtanδの比 tanδ50/tanδ121
 上記(3)と同様の装置および条件にて、動的粘弾性法により粘弾性-温度曲線を描き、50℃での貯蔵弾性率(E’50)、50℃での損失弾性率(E”50)を読み取った。なお測定試験数はn=3で行い、貯蔵弾性率(E’50)と損失弾性率(E”50)それぞれの平均値を算出し、次式からフィルム主配向軸方向の50℃における損失正接(tanδ50)算出した。
式; tanδ50=E”50/E’50
 同様に測定試験数はn=3にて、粘弾性-温度曲線から121℃での貯蔵弾性率(E’121)、121℃での損失弾性率(E”121)を読み取り、その平均値を算出し、次式からフィルム主配向軸方向の121℃における損失正接(tanδ121)算出した。
式; tanδ121=E”121/E’121
 得られたtanδ50の値を得られたtanδ121の値で除して、tanδ50/tanδ121(単位;無次元)を得た。
 (7)光沢度
 JIS K-7105(1981)に準じ、スガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件でキャスティングドラム接触面側におけるフィルム表面を測定した5点のデータの平均値を光沢度(%)とした。
 (8)原料樹脂組成物およびフィルム各層の樹脂組成物の融点(Tm)
 試料として、本発明のポリオレフィン系樹脂フィルムに用いられる原料の樹脂組成物(原料が複数混合されている場合は、それらを所定の割合で混合した樹脂組成物)、ポリオレフィン系フィルムの各層を切削したものを用いた。示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのポリオレフィン系樹脂サンプルを30℃から260℃まで20℃/分の条件で昇温した。次いで、260℃で5分間保持した後、20℃/分の条件で30℃まで降温した。さらに、30℃で5分間保持した後、30℃から260℃まで20℃/分の条件で昇温した。この昇温時に得られる吸熱カーブのピーク温度を原料樹脂組成物およびフィルム各層の融点とした。本実施例ではn=3の測定を行った平均値から(Tm)を算出した。なおピーク温度が130℃を超えて260℃以下の範囲の中で2つ以上観測される場合や、ショルダーといわれる多段型のDSCチャートに観測できるピーク温度(2つ以上のピークが重なり合ったチャートの場合に観測される。)がでる場合があるが、本実施例においてはDSCチャートの縦軸熱流(単位:mW)の絶対値が最も大きいピークの温度を融点(Tm)(℃)とした。
 (9)A層における1μm×2μmの長方形において 厚み方向と平行な一対の辺を通過する環状オレフィン樹脂のドメイン数(個/2μm
 ミクロトーム法を用い、ポリオレフィン系フィルムのA層について主配向軸方向と厚み方向に平行な面で切断し、切断面を有するポリプロピレンフィルム片を作成した。前記断面をRuO4で染色した後、染色面を切削して断面Xを有する超薄切片を採取した。採取した超薄切片を下記条件にて透過型電子顕微鏡(TEM)を用いて断面を観察した。なお、この時、環状オレフィン系樹脂は、ポリプロピレン系樹脂よりも黒く染まる。
・装置:(株)日立製作所製 透過型電子顕微鏡(TEM)HT7700
・加速電圧:100kV
・観察倍率:2,000倍
 前記観察で採取した像に、一対の辺が厚み方向に1μm、厚み方向と直交する方向に2μmの長方形を定めた2μmの四方で囲んだ長方形を描き、当該長方形において厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメイン数をカウントした。同様の測定を画像内の長方形の位置を変えて合計10回行って得られたドメイン数の平均値を算出し、小数点以下1桁の数値を四捨五入した値をA層における厚み方向と平行な一対の辺を通過する環状オレフィン樹脂のドメイン数(個/2μm)とした。なお、断面X内に一対の辺が厚み方向に1μm、厚み方向と直交する方向に2μmの長方形を定めるにあたっては、当該長方形の底辺は海部分に設定するものとし、底辺と対向する辺上にドメインが位置する場合は、これは無いものと見なして個数としてはカウントしないこととした。また、くびれ部のあるドメインについても、海部分のポリプロピレン系樹脂部より濃く染色された環状オレフィン系樹脂ドメインみなして 連結したドメインとして扱った。
 (10)三次元非接触表面形状計測により測定した表面の十点領域高さ(S10z)
 S10z値の測定は、三次元非接触表面形状の測定器である、(株)日立ハイテクサイエンスの走査型白色干渉顕微鏡VS1540を使用して行った。また、解析においては付属の解析ソフトにより、撮影画面を多項式4次近似面補正にてうねり成分を除去し、次いでメジアン(3×3)フィルタにて処理後、補間処理(高さデータの取得ができなかった画素に対し周囲の画素より算出した高さデータで補う処理)を行った。測定条件は下記の通りとした。なおB層が両表面にある場合には両面測定を行い、低い方の値を採用した。
製造元:株式会社日立ハイテクサイエンス
装置名:走査型白色干渉顕微鏡VS1540
・測定条件:対物レンズ 10×
      鏡筒 1×
      ズームレンズ 1×
      波長フィルタ 530nm white
・測定モード:Wave
・測定ソフトウェア:VS-Measure Version10.0.4.0
・解析ソフトフェア:VS-Viewer Version10.0.3.0
・解析条件:S-Filter=5μm
・測定面積:0.561×0.561[mm]。
 (11)ヒートシール性
 フィルムのC層表面(C層がない場合は蒸着側と反対表面)と厚み12μmの延伸PETフィルムを重ね合わせ、平板ヒートシーラーを用いて以下の条件でヒートシールし貼合品を作製した。オリエンテック社製“テンシロン”(登録商標)を使用して本発明のポリオレフィン系フィルムと延伸PETフィルムの界面についてT字型剥離試験を行い、ヒートシール強度を測定した。なお、剥離試験の貼合品は幅20mm×長さ150mmの短冊状にサンプリングし、300mm/分の引張速度でヒートシール強度を測定した。本測定は3回行い、得られた値の平均値を求め、得られた値をヒートシール強度(N/25.4mm)とした。ヒートシール強度が2N/25.4mm以上を達成できた場合、ヒートシール性が合格(A)であると判定し、2N/25.4mm未満であれば、ヒートシール性が不合格(B)であると判定した。
<ヒートシール条件>
・プレス圧 :0.4N/mm
・プレス時間:1sec
・ヒーター温度:120℃。
 (12)Al蒸着後、またはAlOx蒸着後の水蒸気バリア性
 <Al蒸着の方法>
 フィルム走行装置を具備した真空蒸着装置内にフィルムロールをセットして、1.00×10-2Paの高減圧状態にした後に、20℃の冷却金属ドラムの上で、アルミニウム金属を加熱蒸発させながらフィルムを走行させてB層の上に蒸着薄膜層を形成した。その際、蒸着膜の厚みが100nmになるよう制御した。蒸着後、真空蒸着装置内を常圧に戻して、巻取ったフィルムを巻き返し、40℃の温度で2日間エージングして、フィルムにAl(アルミニウム)の蒸着層が積層された積層体を得た。
 <AlOx蒸着の方法>
 フィルム走行装置を具備した真空蒸着装置内にフィルムロールをセットして、1.00×10-2Paの高減圧状態にした後に、20℃の冷却金属ドラムの上で、酸素ガスを導入しながらAlOxを反応蒸発させながらフィルムを走行させて、先にコロナ放電処理を行った表面の上に蒸着層を形成した。その際、蒸着層の厚みが20nmになるよう制御した。蒸着後、真空蒸着装置内を常圧に戻して、巻取ったフィルムを巻き返し、40℃の温度で2日間エージングして、フィルムにAlOx(アルミナ)の蒸着層が積層された積層体を得た。
 <水蒸気バリア性の評価方法>
 Al蒸着あるいはAlOx蒸着を施した積層体について、MOCON/Modern Controls社製の水蒸気透過率測定装置“PERMATRAN-W”(登録商標)3/30を用いて、温度40℃、湿度90%RHの条件で測定した。測定はサンプル毎に5回行い、得られた値の平均値を算出し、該フィルムの水蒸気透過率とした(単位:g/m/day)。得られた水蒸気透過率より、積層体の水蒸気バリア性を下記基準に従い判定した。B以上を水蒸気バリア性良好とし、Cは実用上問題ないレベルとした。
S:0.3g/m/day以下。
A:0.3g/m/dayより大きく0.5g/m/day以下。
B:0.5g/m/dayより大きく1.0g/m/day以下。
C:1.0g/m/dayより大きく2.0g/m/day以下。
D:2.0g/m/dayより大きい、または蒸着加工時に破膜した。
 (13)Al蒸着後、またはAlOx蒸着後の酸素バリア性
 (12)に記載の方法により、Al蒸着層若しくはAlOx蒸着層が積層された積層体を得た。各積層体について、MOCON/Modern Controls社製の酸素透過率測定装置“OX-TRAN”(登録商標)2/20を用いて、温度23℃、湿度0%RHの条件で酸素透過率を測定した。測定はサンプル毎に5回行い、得られた値の平均値を算出し、これを該フィルムの酸素透過率とした(単位:cc/m/day)。得られた酸素透過率より、積層体の酸素バリア性を下記基準に従い判定した。B以上を酸素バリア性良好とし、Cは実用上問題ないレベルとした。
S:1.5cc/m/day以下。
A:1.5cc/m/dayより大きく2.0cc/m/day以下。
B:2.0cc/m/dayより大きく10cc/m/day以下。
C:10cc/m/dayより大きく100cc/m/day以下。
D:100cc/m/dayより大きい、または蒸着加工時に破膜した。
 (14)D層の厚み
 本発明の積層体を構成するD層の厚みは、透過型電子顕微鏡(TEM)により断面観察を行うことで測定した。断面観察用サンプルをマイクロサンプリングシステム((株)日立製作所製 FB-2000A)を使用してFIB法により(具体的には「高分子表面加工学」(岩森暁著)p.118~119に記載の方法に基づいて)作製した。続いて、透過型電子顕微鏡((株)日立製作所製 H-9000UHRII)により、加速電圧300kVとして、観察用サンプルの断面を観察し、透過型電子顕微鏡の測長機能により任意の10箇所についてD層の厚みを確認した。それらの算術平均値をD層の厚み(単位:nm)とした。
 (15)D層の表面の突出山部平均高さ(Spk)
 Spk値の測定は、三次元非接触表面形状の測定器である、(株)日立ハイテクサイエンスの走査型白色干渉顕微鏡VS1540を使用して行った。また、解析においては付属の解析ソフトにより、撮影画面を多項式4次近似面補正にてうねり成分を除去し、次いでメジアン(3×3)フィルタにて処理後、補間処理(高さデータの取得ができなかった画素に対し周囲の画素より算出した高さデータで補う処理)を行った。測定条件は下記の通りとした。
製造元:株式会社日立ハイテクサイエンス
装置名:走査型白色干渉顕微鏡VS1540
・測定条件:対物レンズ 10×
      鏡筒 1×
      ズームレンズ 1×
      波長フィルタ 530nm white
・測定モード:Wave
・測定ソフトウェア:VS-Measure Version10.0.4.0
・解析ソフトフェア:VS-Viewer Version10.0.3.0
・測定面積:0.561×0.561[mm]。
 (16)フィルムコンデンサ特性の評価(135℃での耐電圧、信頼性)
 フィルムの一方の面(なお、濡れ張力が表裏両面で異なる場合は、濡れ張力が高い方の面)に、(株)アルバック製真空蒸着機でアルミニウムを膜抵抗が10Ω/sqで長手方向に垂直な方向にマージン部を設けた、いわゆるT型マージン(マスキングオイルにより長手方向ピッチ(周期)が17mm、ヒューズ幅が0.5mm)を有する蒸着パターンで蒸着を施した蒸着フィルムAと、T型マージンを有する蒸着パターンを施していないもの蒸着フィルムBをそれぞれ作成した。前記蒸着フィルムA、Bをそれぞれスリットし、フィルム幅50mm(端部マージン幅2mm)の蒸着リールA、Bを得た。次いで、蒸着リールA、Bが交互に重なるようにして(株)皆藤製作所製素子巻機(KAW-4NHB)にてコンデンサ素子として仕上げた後の素子容量が10μFとなるようにコンデンサ素子を巻き取り、メタリコンを施した後、減圧下、128℃の温度で12時間の熱処理を施し、リード線を取り付けコンデンサ素子に仕上げた。こうして得られたコンデンサ素子10個を用いて、135℃高温下でコンデンサ素子に150VDCの電圧を印加し、該電圧で10分間経過後にステップ状に50VDC/1分で徐々に印加電圧を上昇させることを繰り返す所謂ステップアップ試験を行った。
 <耐電圧評価>
 ステップアップ試験において、静電容量変化を測定しグラフ上にプロットし、該容量が初期値の70%になった電圧をフィルムの厚み(上記(1))で割り返して耐電圧を求め、コンデンサ素子10個の平均値を算出して以下の基準で評価した。Aは使用可能であり、Bは実用上の性能に劣ることをそれぞれ意味する。
A:320V/μm以上
B:320V/μm未満。
 <信頼性評価>
 静電容量が初期値に対して12%以下に減少するまで電圧を上昇させた後に、コンデンサ素子10個の中で最も耐電圧を高く上昇させたコンデンサ素子1個を解体し、破壊の状態を調べて信頼性を以下の通り評価した。Aは使用可能、Bは実用上の性能に劣ることをそれぞれ意味する。
A:素子形状の変化は無く、かつフィルム1層以上10層以内の貫通状の破壊が観察された。若しくは素子形状の変化、貫通状の破壊共に観察されなかった。
B:素子形状に変化が認められた、若しくは10層を超える貫通状の破壊が観察された。
 [樹脂等]
 各実施例及び比較例におけるポリオレフィン系フィルムの製造には、以下の樹脂等を使用した。
(A層用ポリプロピレン系樹脂)
A1:ホモポリプロピレン樹脂(プライムポリマー(株)社製“F133A”(メソペンタッド分率:0.973、融点:165℃、MFR=3.0g/10min)
A2:ホモポリプロピレン樹脂(プライムポリマー(株)社製“F113G”(メソペンタッド分率:0.940 融点:162℃ MFR:2.9g/10min)
(B層用ポリプロピレン系樹脂)
B1:ホモポリプロピレン樹脂(プライムポリマー(株)社製“F113G”(メソペンタッド分率:0.940 融点:162℃ MFR:2.9g/10min)
B2:ホモポリプロピレン樹脂(プライムポリマー(株)社製“F133A”(メソペンタッド分率:0.973、融点:165℃、MFR=3.0g/10min)
(C層用ポリプロピレン系樹脂)
C1:エチレン-プロピレンランダム共重合体(日本ポリプロ株式会社製“WFW4M”融点:135℃、MFR=7.0g/min)。
 <ポリプロピレン系樹脂以外の成分>
環状オレフィン系樹脂:
COC1:ポリプラスチックス製“TOPAS”(登録商標)6013F-04(エチレンとノルボルネンを共重合させた樹脂(COC)であり、ガラス転移温度が138℃)
COC2:三井化学製“APEL”(登録商標)5014CL(エチレンとノルボルナジエン誘導体を共重合させた樹脂(COC)であり、ガラス転移温度が136℃)
酸化防止剤:
チバ・スペシャリティ・ケミカルズ製“IRGANOX”(登録商標)1010。
 <ポリプロピレン系樹脂とは非相溶の熱可塑性樹脂>
ポリメチルペンテン系樹脂(PMP):
三井化学(株)製“TPX”(登録商標)(RT31、融点:232℃、MFR:9g/10min@260℃)
 <A層用マスターバッチ>
ポリオレフィン系樹脂原料(AM1):
ポリプロピレン樹脂(A1)が69.5質量部、環状オレフィン系樹脂(COC1)が30質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化してポリオレフィン系樹脂原料(AM1)とした。
ポリオレフィン系樹脂原料(AM2):
ポリプロピレン樹脂(A2)が69.5質量部、環状オレフィン系樹脂(COC1)が30質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化してポリオレフィン系樹脂原料(AM2)とした。
ポリオレフィン系樹脂原料(AM3):
ポリプロピレン樹脂(A1)が69.5質量部、環状オレフィン系樹脂(COC2)が30質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化してポリオレフィン系樹脂原料(AM3)とした。
 <B層用マスターバッチ>
ポリオレフィン系樹脂原料(BM1)
ポリプロピレン樹脂(B1)が69.5質量部、ポリメチルペンテン系樹脂(PMP)が30質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化してポリオレフィン系樹脂原料(BM1)とした。
 (実施例1)
 ポリオレフィン系樹脂原料(AM1)が32質量部、ポリプロピレン樹脂(A1)が67.6質量部、酸化防止剤が0.4質量部となるように各成分を混合しA層用の単軸溶融押出機に供給し、ポリプロピレン樹脂B1をB層用の単軸溶融押出機に供給し、ポリプロピレン樹脂C1をC層用の単軸溶融押出機に供給した。ここで、それぞれの押出機供給ホッパー内の酸素濃度を0.05%に制御し、それぞれの押出機にて温度260℃で溶融押出を行った後、80μmカットの焼結フィルタで押し出された溶融樹脂から異物を除去した。その後、フィードブロックを用いて、温度250℃で、層構成がb/a/cの3層構成(溶融状態のB層、A層、C層用の組成物を、順にb、a、cとする。)、積層比が1/10/1(A層中に含まれる環状オレフィン系樹脂は9.6質量%であり、フィルム全体に対するA層の厚み割合は約83%のため、フィルム全体に含まれる環状オレフィン系樹脂は8.0質量%)となるように溶融樹脂を積層させた。このとき、積層比の調整は各押出機からの押出量の調節により行った。さらに、積層した溶融樹脂をTダイに導いて温度240℃でシート状に吐出させ、吐出させた溶融シートを21℃に保持されたキャスティングドラム上で冷却固化し、未延伸シートを得た。なお、このときbがキャスティングドラムに接するようにし、エアーナイフから40℃に制御されたエアーを吹き付けることにより溶融シートをキャスティングドラムに密着させた。
 次に、該未延伸ポリオレフィン系フィルムを複数のロール群にて段階的に145℃まで予熱し、引き続き155℃の温度に保ち周速差を設けたロール間に通し、長手方向に5.2倍に延伸した。続いて、延伸後のフィルムを70℃に保たれたロール間に通して冷却した後、室温まで冷却して一軸配向フィルムを得た。さらに、得られた一軸配向フィルムをテンターに導き、幅方向両端部をクリップで把持したまま165℃に予熱し、幅方向に158℃で9.2倍に延伸した後、幅方向に12%の弛緩を与えながら162℃で熱処理を行った。その後、クリップで幅方向両端部を引き続き緊張把持したまま、140℃の冷却工程を経てフィルムをテンターの外側へ導き、幅方向両端部のクリップを解放した。次いでフィルム表面(キャスティングドラム接触面になるB層側)に25W・分/mの処理強度で、炭酸ガスと窒素ガスを15:85の体積比で混合した混合気体雰囲気下(酸素濃度測定で0.8体積%の環境)でコロナ放電処理を行った上で、得られたポリオレフィン系フィルムをロールとして巻き取った。続いて、上記のポリオレフィン系フィルムをロールより巻き出し、そのコロナ放電処理を施した面に前述の方法でAl蒸着を施し、Al蒸着層(D層)を有する積層体を得た。得られたポリオレフィン系フィルムおよび積層体の特性を表1に示す。
 (実施例2)
 Alに代えてAlOxの蒸着を行い、AlOx層(D層)を有する積層体とした以外は実施例1と同様にしてポリオレフィン系フィルムおよび積層体の作製を行った。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、AlOxの蒸着は前述の方法により行った。
 (実施例3)
 実施例2で作製したポリオレフィン系フィルムをクラッシャーで粉砕し圧縮し、ホッパー内酸素濃度0.05%に制御し温度240℃に設定した押出機に投入して混練押出した後、ストランドを水冷後チップ化し、再生ペレット(AR1)を得た。次いでA層用のポリオレフィン系樹脂原料として、A1、AM1、AR1を質量比が53:27:20となるように各成分を混合しA層用の単軸溶融押出機に供給し、ポリプロピレン樹脂B1をB層用の単軸溶融押出機に供給し、ポリプロピレン樹脂C1をC層用の単軸溶融押出機に供給した。ここで、それぞれの押出機供給ホッパー内の酸素濃度を0.05%に制御し、それぞれの押出機にて温度260℃で溶融押出し、製膜条件を表1のとおり(A層中に含有する環状オレフィン含有量は9.7質量%であり、フィルム全体に対するA層の厚み割合は83%のため、フィルム全体で含有する環状オレフィン含有量は8.1質量%)とした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。
 (実施例4)
 層構成をB/A/Bとし、B層にポリプロピレン系樹脂B2を用い、製膜条件を表1のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、蒸着はキャストドラムに接触したB層側に施した。
 (実施例5)
 層構成をB/A/Bとし、ポリオレフィン系樹脂原料(AM2)が63質量部、ポリプロピレン樹脂(A1)が36.6質量部、酸化防止剤が0.4質量部となるように各成分を混合してA層用の単軸溶融押出機に供給し、積層比率、製膜条件を表1のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、蒸着はキャストドラムに接触したB層側に施した。
 (実施例6)
 層構成をA層単体とし、ポリオレフィン系樹脂原料(AM1)が66.7質量部、ポリプロピレン樹脂(A1)が32.6質量部、酸化防止剤が0.4質量部となるように各成分を混合してA層用の単軸溶融押出機に供給し、製膜条件を表1のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、蒸着はキャストドラムに接触した面に施した。
 (実施例7)
 実施例2のB層として、ポリオレフィン系樹脂原料(B1)が95.6質量部、ポリオレフィン系樹脂原料(BM1)が4質量部、酸化防止剤が0.4質量部となるように各成分を混合してB層用の単軸溶融押出機に供給し、A層としてポリオレフィン系樹脂原料(AM1)が28.6質量部、ポリプロピレン樹脂(A1)が67.6質量部、酸化防止剤が0.4質量部となるように各成分を混合しA層用の単軸溶融押出機に供給し(A層中に含まれる環状オレフィン系樹脂は8.6質量%であり、フィルム全体に対するA層の厚み割合は約83%のため、フィルム全体に含まれる環状オレフィン系樹脂は7.1質量%)、製膜条件を表1のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、蒸着はキャストドラムに接触した面に施した。
 (実施例8)
 実施例2のB層として、ポリオレフィン系樹脂原料(B1)が87.6質量部、ポリオレフィン系樹脂原料(BM1)が12質量部、酸化防止剤が0.4質量部となるように各成分を混合してB層用の単軸溶融押出機に供給し、A層としてポリオレフィン系樹脂原料(AM1)が28.6質量部、ポリプロピレン樹脂(A1)が67.6質量部、酸化防止剤が0.4質量部となるように各成分を混合しA層用の単軸溶融押出機に供給し、製膜条件を表1のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、蒸着はキャストドラムに接触した面に施した。
(実施例9)
 実施例8のA層としてポリオレフィン系樹脂原料(AM3)を用い、製膜条件を表1のとおりとした以外は実施例8と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表1に示す。なお、蒸着はキャストドラムに接触した面に施した。
 (実施例10)
 フィルム厚みを3.1μmとし、A層としてポリオレフィン系樹脂原料(AM1)が28.6質量部、ポリプロピレン樹脂(A1)が67.6質量部、酸化防止剤が0.4質量部となるように各成分を混合しA層用の単軸溶融押出機に供給し、製膜条件を表1のとおりとした以外は実施例4と同様にしてポリオレフィン系フィルムを作成した。作成したフィルムのコンデンサ特性を表1に示す。
 (実施例11)
 実施例10のA層としてポリオレフィン系樹脂原料(AM3)を用い、製膜条件を表1のとおりとした以外は実施例10と同様にしてポリオレフィン系フィルムを作成した。作成したフィルムのコンデンサ特性を表1に示す。
 (比較例1)
 A層にマスターバッチを用いずポリプロピレン系樹脂A1のみ用い、製膜条件を表2のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表2に示す。
 (比較例2)
 層構成をB/A/Bとし、A層にマスターバッチを用いず、ポリプロピレン系樹脂A1が90質量部、環状オレフィン系樹脂が9.6質量部、酸化防止剤が0.4質量部となるように各成分を混合しA層用の単軸溶融押出機に供給し、B層にポリプロピレン系樹脂B2を用い、製膜条件を表2のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表2に示す。なお、蒸着はキャストドラムに接触したB層側に施した。
 (比較例3)
 製膜条件、積積層比率を表2のとおりとした以外は実施例2と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表2に示す。
 (比較例4)
 原料供給ホッパー内の酸素濃度を10%、押出時の温度条件を、押出機からTダイまでの区間で段階的に温度を下げる多段式低温化とせずに260℃一定とし、製膜条件を表2のとおりとした以外は実施例4と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表2に示す。なお、蒸着はキャストドラムに接触したB層側に施した。
 (比較例5)
 積層構成をB/A/Bとし、積層厚み比1/8/1とし、A層にはポリオレフィン系樹脂原料(AM2)が63質量部、ポリプロピレン樹脂(A1)が36.6質量部、酸化防止剤が0.4質量部となるように各成分を混合してA層用の単軸溶融押出機に供給し、二軸延伸を施さない製膜条件として表2のとおりとした以外は実施例4と同様にしてポリオレフィン系フィルムおよびD層を蒸着した積層体を作製した。得られたポリオレフィン系フィルムとD層を蒸着した積層体の特性を表2に示す。なお、蒸着はキャストドラムに接触したB層側に施した。
 (比較例6)
フィルム厚みを3.1μmとし、製膜条件を表2のとおりとした以外は実施例4と同様にしてポリオレフィン系フィルムを作製した。作製したポリオレフィン系フィルムとフィルムコンデンサ特性を表2に示す。
(比較例7)
 フィルム厚みを3.1μmとし、製膜条件を表2のとおりとした以外は比較例2と同様にしてポリオレフィン系フィルムを作製した。作製したフィルムのコンデンサ特性を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明により、加熱に伴う構造安定性、水蒸気バリア性、及び酸素バリア性の低下を軽減可能なポリオレフィン系フィルムを提供することができる。本発明のポリオレフィン系フィルムは、上記特性を具備するため、水蒸気や酸素により劣化しやすいものの包装に好適に用いることができる。
1 断面Xの一部
2 海部分
3 島部分(ドメイン)
4 断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形
5 厚み方向と平行な一対の辺

Claims (21)

  1.  動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE’50(Pa)、E’121(Pa)としたときに、E’121/E’50が0.25を超え0.99以下であり、150℃での主配向軸方向の熱収縮率が-2%以上10%以下であり、主配向軸と直交する方向の引っ張り伸度が20%以上300%以下であり、環状オレフィン系樹脂とポリプロピレン系樹脂とを含む層(A層)を少なくとも1層有することを特徴とする、ポリオレフィン系フィルム。
  2.  環状オレフィン系樹脂とポリプロピレン系樹脂とを含む層(A層)を少なくとも1層有し、主配向軸方向及び厚み方向に平行な面で前記A層を切断したときの断面を断面Xとしたときに、前記断面X内に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形において、前記一対の短辺を通過する前記環状オレフィン系樹脂のドメインが2個以上存在し、動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向の貯蔵弾性率をそれぞれE’50(Pa)、E’121(Pa)としたときに、E’121/E’50が0.20を超え0.99以下である、ポリオレフィン系フィルム。
  3.  動的粘弾性測定の周波数10Hzで得られる、50℃、121℃における主配向軸方向のtanδをそれぞれtanδ50、tanδ121としたときに、tanδ50/tanδ121が0.25を超え0.99以下である、請求項1または2に記載のポリオレフィン系フィルム。
  4.  ポリプロピレン系樹脂を主成分とし、前記A層よりも環状オレフィン系樹脂の含有率が低い層をB層としたときに、前記A層の少なくとも片面に前記B層を有する、請求項1~3のいずれかに記載のポリオレフィン系フィルム。
  5.  前記A層及びB層よりも融点が低く、かつ融点が100℃以上150℃以下の層をC層としたときに、一方の最表面に前記B層が位置し、他方の最表面に前記C層が位置する、請求項4に記載のポリオレフィン系フィルム。
  6.  三次元非接触表面形状計測により測定した前記B層の少なくとも一方の表面の十点領域高さ(S10z)が150nm以上900nm以下である、請求項4または5に記載のポリオレフィン系フィルム。
  7.  前記B層がポリプロピレン系樹脂とは非相溶の熱可塑性樹脂を1質量%以上10質量%以下含む、請求項4~6のいずれかに記載のポリオレフィン系フィルム。
  8.  金属粒子と無機化合物粒子の少なくとも一方を含む、請求項1~7のいずれかに記載のポリオレフィン系フィルム。
  9.  前記無機化合物粒子が、アルミナ、シリカ、アルミニウムとケイ素の酸化物のうち少なくとも一つを含む、請求項8に記載のポリオレフィン系フィルム。
  10.  ポリプロピレン系樹脂を主成分とする、請求項1~9のいずれかに記載のポリオレフィン系フィルム。
  11.  少なくとも一方のフィルム表面光沢度が130%を超えて160%以下である、請求項1~10のいずれかに記載のポリオレフィン系フィルム。
  12.  二軸配向フィルムである、請求項1~11のいずれかに記載のポリオレフィン系フィルム。
  13.  請求項1~12のいずれかに記載のポリオレフィン系フィルムと、金属と無機化合物を合計で50質量%を超えて100質量%以下含む層(D層)とを有する、積層体。
  14.  3次元非接触式表面粗さ計で測定される前記D層の表面の突出山部平均高さ(Spk)が10nm以上400nm以下である、請求項13に記載の積層体。
  15.  請求項1~12のいずれかに記載のポリオレフィン系フィルム、及び請求項13または14に記載の積層体の少なくとも一方を有する、包装材。
  16.  請求項15に記載の包装材により内容物が梱包されている、梱包体。
  17.  請求項1~4、6、7、10~12のいずれかに記載のポリオレフィン系フィルムの少なくとも片面に金属膜を有する、金属膜積層フィルム。
  18.  請求項17に記載の金属膜積層フィルムを用いてなる、フィルムコンデンサ。
  19.  請求項18に記載のフィルムコンデンサを有する、パワーコントロールユニット。
  20.  請求項19に記載のパワーコントロールユニットを有する、電動自動車。
  21.  請求項19に記載のパワーコントロールユニットを有する、電動航空機。
PCT/JP2022/046643 2022-03-30 2022-12-19 ポリオレフィン系フィルム、積層体、包装材、及び梱包体 WO2023188599A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022578978A JP7347699B1 (ja) 2022-03-30 2022-12-19 ポリオレフィン系フィルム、積層体、包装材、及び梱包体
JP2023136015A JP2023164765A (ja) 2022-03-30 2023-08-24 ポリオレフィン系フィルム、積層体、包装材、及び梱包体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055761 2022-03-30
JP2022-055761 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188599A1 true WO2023188599A1 (ja) 2023-10-05

Family

ID=88200052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046643 WO2023188599A1 (ja) 2022-03-30 2022-12-19 ポリオレフィン系フィルム、積層体、包装材、及び梱包体

Country Status (1)

Country Link
WO (1) WO2023188599A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110827A (ja) * 2004-10-14 2006-04-27 Toyobo Co Ltd 熱収縮性ポリオレフィン系フィルム
JP2011148226A (ja) * 2010-01-22 2011-08-04 C I Kasei Co Ltd 積層フィルム、および当該積層フィルムを用いて作製される包装容器
WO2012035956A1 (ja) * 2010-09-15 2012-03-22 東レ株式会社 成型用フィルムおよび成型転写箔
WO2013002065A1 (ja) * 2011-06-30 2013-01-03 東レ株式会社 積層フィルムおよびそれを用いた成型転写箔
JP2015164800A (ja) * 2014-02-05 2015-09-17 日本ポリエチレン株式会社 易引裂性多層シーラントフィルム及び包装材
JP2017154504A (ja) * 2012-10-17 2017-09-07 東レ株式会社 機能性樹脂層転写フィルム
JP2018034510A (ja) * 2016-08-30 2018-03-08 東レ株式会社 オレフィン系積層フィルムおよびフィルムコンデンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110827A (ja) * 2004-10-14 2006-04-27 Toyobo Co Ltd 熱収縮性ポリオレフィン系フィルム
JP2011148226A (ja) * 2010-01-22 2011-08-04 C I Kasei Co Ltd 積層フィルム、および当該積層フィルムを用いて作製される包装容器
WO2012035956A1 (ja) * 2010-09-15 2012-03-22 東レ株式会社 成型用フィルムおよび成型転写箔
WO2013002065A1 (ja) * 2011-06-30 2013-01-03 東レ株式会社 積層フィルムおよびそれを用いた成型転写箔
JP2017154504A (ja) * 2012-10-17 2017-09-07 東レ株式会社 機能性樹脂層転写フィルム
JP2015164800A (ja) * 2014-02-05 2015-09-17 日本ポリエチレン株式会社 易引裂性多層シーラントフィルム及び包装材
JP2018034510A (ja) * 2016-08-30 2018-03-08 東レ株式会社 オレフィン系積層フィルムおよびフィルムコンデンサ

Similar Documents

Publication Publication Date Title
JP7173202B2 (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ並びにそれらの製造方法
CN111051400B (zh) 聚丙烯膜、金属膜叠层膜及膜电容器
JP7135320B2 (ja) 二軸配向ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP6160782B2 (ja) オレフィン系積層フィルムおよびフィルムコンデンサ
EP4269104A1 (en) Polypropylene film, laminate, packaging material, and packing body
JP7188651B1 (ja) ポリプロピレンフィルム、積層体、包装材、及び梱包体
WO2022270577A1 (ja) ポリオレフィン系フィルム、それを用いた金属膜積層フィルム、フィルムコンデンサ、パワーコントロールユニット、電動自動車、および電動航空機
JP2022035487A (ja) ポリプロピレンフィルム、積層体、包装材、及び梱包体
CN115135703A (zh) 聚丙烯膜、金属膜层叠膜及膜电容器
JP7347699B1 (ja) ポリオレフィン系フィルム、積層体、包装材、及び梱包体
JP2023118131A (ja) ポリプロピレンフィルム、積層体、包装材、梱包体、およびその製造方法
WO2023188599A1 (ja) ポリオレフィン系フィルム、積層体、包装材、及び梱包体
JP2019044171A (ja) ポリプロピレンフィルム、金属膜積層フィルムおよびフィルムコンデンサ
JP7424517B1 (ja) ポリプロピレンフィルム、それを用いた金属膜積層フィルムおよびフィルムコンデンサ
JP7243905B2 (ja) 積層体、包装材、及び梱包体
JP7355268B1 (ja) ポリプロピレンフィルム、積層体、包装材、梱包体、およびその製造方法
WO2023008400A1 (ja) 積層体、包装材、及び梱包体
JP2023021016A (ja) 積層体、包装材、及び梱包体
CN117480202A (zh) 聚烯烃系膜、使用其的金属膜叠层膜、膜电容器、动力控制单元、电动车及电动航空器
JPH07276585A (ja) ヒートシール層を具備してなる金属蒸着用二軸配向ポリプロピレン複合フイルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022578978

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935727

Country of ref document: EP

Kind code of ref document: A1