WO2023188377A1 - Atomization unit, method for manufacturing same, and inhalation tool - Google Patents

Atomization unit, method for manufacturing same, and inhalation tool Download PDF

Info

Publication number
WO2023188377A1
WO2023188377A1 PCT/JP2022/016818 JP2022016818W WO2023188377A1 WO 2023188377 A1 WO2023188377 A1 WO 2023188377A1 JP 2022016818 W JP2022016818 W JP 2022016818W WO 2023188377 A1 WO2023188377 A1 WO 2023188377A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
filter material
atomization unit
tobacco
flavor
Prior art date
Application number
PCT/JP2022/016818
Other languages
French (fr)
Japanese (ja)
Inventor
貴久 工藤
雄史 新川
光史 松本
毅 長谷川
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/016818 priority Critical patent/WO2023188377A1/en
Publication of WO2023188377A1 publication Critical patent/WO2023188377A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors

Definitions

  • the present invention relates to an atomization unit of a suction tool, a method for manufacturing the same, and a suction tool.
  • an atomization unit used in a non-combustion heating type suction device, a liquid storage part for storing an aerosol generation liquid, the aerosol generation liquid in the liquid storage part is introduced, and the introduced aerosol generation liquid is atomized.
  • An atomization unit is known that includes an electrical load that generates an aerosol and a flavor source that imparts a flavor component to the aerosol (for example, see Patent Document 1).
  • Patent Document 2 can be cited as another prior art document.
  • Patent Document 2 discloses information regarding tobacco leaf extract.
  • the conventional atomization unit as described above does not have the function of removing dust such as dust contained in the air taken into the atomization unit from the outside, and there is room for improvement.
  • the present invention has been made in view of the above, and one of the objects is to provide a technology that can reduce the amount of dust contained in aerosol sucked by a user in an atomization unit of a suction tool. Let's do one.
  • an atomization unit of a suction device is arranged in a liquid storage part that contains an aerosol generating liquid containing a tobacco extract component and an air passage through which air passes,
  • an electric load for atomizing the introduced aerosol-generating liquid to generate an aerosol and an electric load for generating an aerosol by atomizing the introduced aerosol-generating liquid, and an electric load for generating an aerosol in the air passage, which is located in a direction that is lower than the load in the air flow direction.
  • It includes a filter material that is disposed in an upstream passage located on the upstream side and captures dust contained in air flowing through the upstream passage.
  • the filter material may be formed as a molded body having a dust trapping surface exposed to the upstream passage section.
  • the filter material may be a flavor molded article containing a non-tobacco base material and a flavor material.
  • the filter material has a rod shape extending along the upstream passage portion, and extends through the filter material in the axial direction and allows air to flow into the inside thereof. It may have a hollow air flow path for circulating air, and an inner surface of the air flow path may be formed as the dust trapping surface.
  • the filter material has a rod shape that extends along the upstream passage, and has a side surface thereof that extends in the axial direction of the filter material and allows air to flow through the filter material. It may have an air circulation groove for circulating air, and a surface of the air circulation groove may be formed as the dust trapping surface.
  • the filter material has a rod shape extending along the upstream passage, and a cross section perpendicular to the flow direction of air in the upstream passage.
  • a plurality of the filter materials are arranged in parallel along the direction, and an air flow path is formed between the outer surfaces of the filter materials arranged in parallel, and the air flow path faces the air flow path.
  • the dust trapping surface may be formed by an outer surface of the filter material.
  • the filter material has a bellows sheet shape as a whole, and includes a plurality of sheet portions extending along the flow direction of air in the upstream passage portion, and each sheet. and a ridgeline section that connects the sections in a bellows-like manner and extends along the air flow direction, and air circulation that circulates air between the sheet sections that are connected via the ridgeline section.
  • a passage may be formed, and the dust trapping surface may be formed by an outer surface of the seat portion facing the air flow passage.
  • the filter material has a plate shape extending along the air flow direction in the upstream passage, and is orthogonal to the air flow direction in the upstream passage.
  • a plurality of the filter materials are arranged side by side so as to face each other at intervals along the cross section, and an air flow passage for circulating air is formed between the filter materials disposed facing each other.
  • the dust trapping surface may be formed by an outer surface of the filter material facing the air flow path.
  • a suction tool includes the atomizing unit according to any one of aspects 1 to 8 above, and a power source that supplies power to the load, and a power source unit to which the atomizing unit is detachably attached. and.
  • a method for manufacturing an atomization unit of a suction tool includes: an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a preparation step for preparing a filter material for capturing dust contained in the flowing air; an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the filter material in the air passage; has In the assembly process, The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the filter material is arranged in an upstream passage part located upstream of the load in the air flow direction. .
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG.
  • FIG. 4 is a schematic perspective view of the flavor molded article according to Embodiment 1.
  • FIG. 5 is a flow diagram for explaining the method for manufacturing the atomization unit according to the first embodiment.
  • FIG. 6 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment.
  • FIG. 3 is a
  • FIG. 7 is a longitudinal sectional view of the atomization unit according to Modification 1 of Embodiment 1.
  • FIG. 8 is a cross-sectional view of the atomization unit according to Modification 1 of Embodiment 1.
  • FIG. 9 is a longitudinal sectional view of the atomization unit according to the second modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of the atomization unit according to the second modification of the first embodiment.
  • FIG. 11 is a longitudinal sectional view of the atomization unit according to the third modification of the first embodiment.
  • FIG. 12 is a cross-sectional view of the atomization unit according to the third modification of the first embodiment.
  • FIG. 13 is a cross-sectional view of the atomization unit according to Modification 4 of Embodiment 1.
  • FIG. 14 is a cross-sectional view of the atomization unit according to the fifth modification of the first embodiment.
  • the atomization unit is a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components; an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol; A filter material that is disposed in an upstream passageway of the air passageway that is located upstream of the load in the air flow direction, and that captures dust contained in the air flowing through the upstream passageway; Equipped with
  • the filter material may be formed as a molded body having a dust trapping surface exposed to the upstream passage.
  • the filter material may be a flavor molded article containing a non-tobacco base material and a flavor material.
  • the flavor material may include a tobacco material, and the content of the tobacco material in the flavor molded body may be 10% by weight or less.
  • the method for manufacturing the atomization unit includes: an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a preparation step for preparing a filter material for capturing dust contained in the flowing air; an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the filter material in the air passage; has In the assembly process, The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and The filter material may be arranged in an upstream passage section located upstream of the load in the air flow direction.
  • dust is a general term for dirt, dust, etc. contained in air.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to the first embodiment.
  • the suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10.
  • the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
  • the suction tool 10 has a power supply unit 11 and an atomization unit 12.
  • the power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the reference numeral 120 in FIG. 1 is an atomization unit housing that houses various elements constituting the atomization unit 12, and a part of the housing also serves as a mouthpiece that the user holds in his or her mouth for suction.
  • the atomization unit housing 120 of the atomization unit 12 has inflow ports 72a and 72b, which are holes for introducing air into the atomization unit housing 120 from the outside, and inlets 72a and 72b for introducing aerosol from the inside of the atomization unit housing 120 to the outside.
  • a discharge port 13 is provided for discharging the air contained therein.
  • a sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13.
  • a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, and notifies the control device of this, and the control device ends the energization of the load 40.
  • the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives this suction start request or suction end request starts or ends energization to the load 40.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 12 taken along a plane including the central axis CL.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a cross section normal to the central axis CL, also referred to as a "cross section").
  • the atomization unit 12 will be explained with reference to FIGS. 2 and 3.
  • the atomization unit 12 (atomization unit housing 120) according to the present embodiment includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and has a width It includes a plurality of wall portions (wall portions 71a to 71c) extending in the direction. Further, the atomization unit 12 includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid storage section 50 , and a filter material 60 disposed in the air passage 20 .
  • the air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23.
  • the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a (i.e., "first upstream passage section") and an upstream passage section 21b ( In other words, it includes a "second upstream passage section").
  • the air passage may have a single upstream passage, or may have three or more upstream passages.
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction).
  • the downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22.
  • the load passage section 22 is a passage section in which a load 40 is disposed.
  • the downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
  • the upstream passage section 21a is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c.
  • the downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
  • the wall portion 71a of the atomization unit housing 120 is provided with inflow ports 72a and 72b. Air outside the housing flows into the upstream passage section 21a through the inlet 72a, and flows into the upstream passage section 21b through the inlet 72b. Further, the wall portion 71b is provided with a communication hole 72c and a communication hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the communication hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the communication hole 72d.
  • the direction of flow of air (flow direction) in the upstream passages 21a and 21b is opposite to the direction of flow of air in the downstream passage 23.
  • the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction
  • the direction of air flow in the downstream passage section 23 is the Z direction.
  • the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
  • the upstream passage section 21a is configured to accommodate liquid in a cross-sectional view (i.e., a cross-sectional view) taken along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction) with the section 50 interposed therebetween. On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • a cross-sectional view i.e., a cross-sectional view
  • the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12. 50.
  • cross-sectional shapes of the upstream passage portion 21a and the upstream passage portion 21b are not limited to the polygonal shape illustrated in FIG. (For example, it may be circular.)
  • the wick 30 is a member for introducing an aerosol generating liquid Le, which will be described later, stored in the liquid storage section 50 into the load 40 of the load passage section 22.
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. While absorbing and holding the aerosol generating liquid Le of 50, the aerosol generating liquid Le is introduced into the load 40.
  • the wick 30 can be made of, for example, glass fiber or porous ceramic, but is not limited thereto.
  • the load 40 is an electrical load for introducing the aerosol generation liquid Le from the liquid storage section 50 and for atomizing the introduced aerosol generation liquid Le to generate an aerosol.
  • "introducing" the aerosol generation liquid Le has substantially the same meaning as "supplying”.
  • the specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used.
  • a heater is used as an example of the load 40.
  • a heating resistor that is, a heating wire
  • a ceramic heater a dielectric heater, or the like can be used.
  • a heating resistor is used as an example of this heater, and a heating resistor having a coil shape is used as an example of this heating resistor. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
  • the load 40 is arranged in the wick 30 inside the load passage section 22, for example.
  • the load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device.
  • the load 40 heats and atomizes the aerosol-generating liquid Le in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
  • the liquid storage section 50 is a part for storing the aerosol generation liquid Le.
  • the liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the aforementioned downstream passage section 23 is provided, as an example, so as to penetrate the liquid storage section 50 in the direction of the central axis CL.
  • the configuration is not limited to this, and, for example, the downstream passage section 23 may be provided adjacent to the liquid storage section 50 in the thickness direction (Y-axis direction) of the suction tool 10.
  • the aerosol generating liquid Le is one in which a tobacco extract component is contained in a predetermined solvent.
  • the aerosol generation liquid Le is not particularly limited as long as it contains tobacco extract components.
  • the aspect of the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and can be obtained, for example, by extracting tobacco materials such as tobacco leaves. In this specification, components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
  • Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance.
  • the aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains tobacco extract components" may also be referred to as "contains natural nicotine.”
  • the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc.
  • tobacco leaves may be used. It is preferable.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
  • the method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco materials in the aerosol generation liquid, or a method of dissolving the tobacco extract component in a solvent and then adding nicotine to the aerosol.
  • Examples include a method of mixing with the product liquid Le.
  • the tobacco extract can be used as it is as the aerosol generation liquid Le.
  • examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the tobacco extract component contains natural nicotine
  • natural nicotine extracted and purified from tobacco leaves can be used.
  • a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
  • the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials.
  • natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • the content of nicotine (particularly natural nicotine) in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it is, for example, 0.1% by weight or more and 10% by weight or less. It may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • tobacco extract can be used as a source of nicotine.
  • the content of the tobacco extract in the aerosol-generating liquid Le is not particularly limited, but may be, for example, 0.1% by weight or more and 10% by weight or less, from the viewpoint of enabling a sufficient supply of nicotine. , may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • the type of predetermined solvent contained in the aerosol generation liquid Le is not particularly limited, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and one or more substances selected from the group consisting of water.
  • the content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
  • the type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances, or liquids containing the substances, can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the solvent also acts as an aerosol-generating base material, the tobacco extract can be used as it is as an aerosol-generating liquid; however, the tobacco extract may contain components that can cause charring when heated (e.g., lipids, etc.).
  • the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
  • the aerosol generation liquid Le contains at least a tobacco extract component as a component for imparting nicotine, but from the viewpoint of aroma and taste, it may further contain synthetic nicotine obtained by synthesis or the like.
  • the synthetic nicotine may exist as nicotine or as a nicotine-containing compound such as a nicotine salt.
  • nicotine obtained by synthesis is also referred to as "synthetic nicotine,” which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances.
  • the method for producing synthetic nicotine is not particularly limited, and any known production method can be used. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the type of nicotine-containing compound is not particularly limited, and examples include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, and nicotine fumarate.
  • nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, and nicotine fumarate.
  • the production method is not particularly limited, and any known production method can be used.
  • the aerosol generation liquid Le may have components other than the tobacco extract component and the aerosol generation base material (other components), for example, flavor components other than the tobacco extract component (including tobacco extract components other than nicotine as described above). ) may be included.
  • Flavor components other than tobacco extract components include, for example, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum).
  • natural vegetable flavorings e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum.
  • vetiver oil rose oil, lovage oil
  • esters e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.
  • ketones e.g., menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadecalactone, etc.
  • neophytadiene, solanone, solanesol, or the like which can be tobacco extract components, may be contained in the aerosol generation liquid Le as a synthetically obtained substance rather than as a tobacco extract component.
  • the filter material 60 of the atomization unit 12 is a member for capturing (collecting) dust contained in the air taken into the air passage 20 from the outside through the inflow ports 72a and 72b in the atomization unit housing 120, and In the embodiment, they are arranged in the upstream passage portions 21a and 21b.
  • the filter material 60 is formed as a molded body having a dust trapping surface exposed to the upstream passage portions 21a and 21b. More specifically, in this embodiment, an embodiment in which the filter material 60 is formed as a flavor molded body containing a non-tobacco base material and a flavor material will be exemplified.
  • FIG. 4 is a schematic perspective view of the filter material 60 according to the first embodiment.
  • the filter material 60 shown in FIG. 4 has a rod shape along the extending direction (air flow direction) of the air passage 20 (in this embodiment, the upstream passage parts 21a and 21b). More specifically, the filter material 60 has a rectangular parallelepiped shape, and has an axis X1 extending along the direction in which the air passage 20 (in this embodiment, the upstream passage portions 21a and 21b) extends (air flow direction). have.
  • the filter material 60 is formed with an air flow passage 61 that penetrates the filter material 60 along the axis X1. In the example shown in FIG.
  • the air flow passage 61 is arranged coaxially with the axis X1 of the filter material 60, but the invention is not limited thereto. Further, the number of air flow passages 61 formed in the filter material 60 is not particularly limited, and for example, a plurality of air flow passages 61 may be arranged side by side along the axis X1 of the filter material 60. Further, in the example shown in FIG. 4, the cross-sectional shape of the air flow passage 61 is circular, but the cross-sectional shape of the air flow passage 61 is not particularly limited. Note that reference numeral 65 is the inner surface of the air flow passage 61, and in this embodiment, it is formed as a dust trapping surface for trapping dust contained in the air passing through the air flow passage 61.
  • the filter material 60 is arranged in the downstream passage section 23 such that the dust trapping surface 65 is exposed to the downstream passage section 23.
  • the dust trapping surface 65 is formed by the inner surface of each air flow passage 61.
  • the filter material 60 may have a honeycomb structure in which a plurality of air flow passages 61 are mutually separated by partition walls.
  • the axis X1 is an axis extending along the longitudinal direction of the filter material 60, but the invention is not limited to this.
  • the shape of the filter material 60 is not particularly limited; for example, the length dimension (dimension along the axis X1 direction) of the filter material 60 may be equal to the width dimension perpendicular to this, or the length dimension The width dimension may be larger than the dimension.
  • the shape of the cross section perpendicular to the axis X1 is not particularly limited, and may be a polygon other than a quadrangle, or may have another shape such as a circle or an ellipse. good.
  • the length of the filter material 60 is smaller than the length of the upstream passage portions 21a and 21b in the atomization unit 12.
  • One end of the filter material 60 is positioned in contact with the wall 71b of the atomization unit housing 120.
  • a section of the upstream passage portions 21a and 21b where the filter material 60 is not arranged is hollow.
  • the filter material 60 may be positioned and fixed at a prescribed position with its side surface being compressed by the wall surfaces of the upstream passage portions 21a and 21b.
  • the filter material 60 in this embodiment is arranged in the upstream passage parts 21a, 21b in such a manner that the ventilation resistance of the air flowing through the upstream passage parts 21a, 21b does not become excessively large, that is, in a manner that the smooth circulation of the air is not inhibited.
  • the air flow passage 61 passes through the flavor molded body 60 along the axis X1 direction, air can be smoothly circulated through the air flow passage 61.
  • the filter material 60 may have an air flow groove extending along the side surface of the filter material 60 in place of or in addition to the air flow path 61 passing through the inside thereof in the axis X1 direction. good.
  • the air flow groove can function as a concave air flow path for circulating air.
  • a plurality of rod-shaped filter materials 60 may be arranged in a bundle in the upstream passage portions 21a and 21b.
  • the individual filter materials 60 may or may not be integrated with each other.
  • the filter material 60 having a sheet shape
  • a sheet made of a mixture of a non-tobacco base material and a flavoring material a cast sheet of a mixture of a non-tobacco base material and a flavoring material, or a cast sheet of a mixture of a non-tobacco base material and a flavoring material is used.
  • the filter material 60 can be formed of a rolled sheet of a mixture of the above, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying on the surface of the sheet.
  • the filter material 60 may be arranged in the upstream passage portions 21a and 21b in a state in which a single sheet is folded into an arbitrary shape such as a bellows shape or a spiral shape. Further, a plurality of strip sheet pieces obtained by cutting the above sheet into strips may be used as the filter material 60 and filled in the upstream passage portions 21a and 21b. In this case, the strip sheet pieces serving as the filter material 60 may be arranged in alignment along the downstream passage section 23, or may be arranged randomly without being aligned in a specific direction.
  • the filter material 60 may have a plate shape. Further, the filter material 60 may have a shape other than a rod shape, a plate shape, or a sheet shape.
  • the filter material 60 may be in the form of granules, and a plurality of granules forming the filter material 60 may be filled in the upstream passage portions 21a and 21b.
  • the shape of the granules forming the filter material 60 is not particularly limited.
  • the filter material 60 in this embodiment is formed as a flavor molded body.
  • the filter material 60 includes a non-tobacco base material, a flavor material, etc., which are hardened and molded into a predetermined shape.
  • the flavor material contained in the flavor molded article may include tobacco material.
  • the amount of tobacco material in the flavor molded article may be 10% by weight or less.
  • the flavor material may contain, in addition to the tobacco material, various flavor components not derived from the tobacco material.
  • the type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be.
  • tobacco materials specifically, tobacco plants
  • ceramics include alumina, zirconia, aluminum nitride, and silicon carbide.
  • synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH.
  • plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves.
  • the non-tobacco base material may be the main material of the flavor molded product, particularly the main material that ensures the molding of the flavor molded product.
  • the content of the non-tobacco base material in the flavor molded product is not particularly limited, and may be, for example, 10% by weight or more and 50% by weight or less, 30% by weight or more and 90% by weight or less, and 50% by weight. % or more and 80% by weight or less.
  • the form of the flavor material contained in the flavor molded body is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and the flavor component may be a flavor component itself.
  • the imparting material include tobacco materials that impart nicotine.
  • the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material.
  • the flavor material is not the nicotine contained in the tobacco material, but the tobacco material.
  • the form of the tobacco material is not particularly limited; for example, it may contain tissues such as leaves, stems, flowers, roots, reproductive organs, or embryos of tobacco plants, and tobacco materials using these tobacco plant tissues may also be used.
  • Processed products for example, tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in known tobacco products
  • tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
  • the flavoring material contains tobacco material does not mean that the flavoring material contains tobacco material, but rather that it contains tobacco material as one of the types of flavoring material.
  • the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less” means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less”. The content of the material is 10% by weight or less.”
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the content of the flavor material in the flavor molded body is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight or more. % or more and 50% by weight or less.
  • the content of the tobacco material in the flavor molded body is not particularly limited, but from the viewpoint of imparting flavor to the air flowing through the upstream passages 21a and 21b as a flavor spice. It is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 7% by weight or more.
  • the content of the tobacco material in the flavor molded product is preferably 10% by weight or less, and preferably 7% by weight or less.
  • the content is more preferably 3% by weight or less, and even more preferably 3% by weight or less.
  • the flavor molded product may contain a binder for adhering materials included in the flavor molded product, such as a non-tobacco base material.
  • a binder for adhering materials included in the flavor molded product such as a non-tobacco base material.
  • the type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, polyvinyl acetate, or alkylhydroxyalkylcellulose can be used.
  • the content of the binder in the flavor molded product may be 1% by weight or more and 20% by weight or less, and may be 3% by weight or more and 15% by weight or less, from the viewpoint of ensuring sufficient adhesiveness. , 5% by weight or more and 10% by weight or less.
  • the flavor molded body may contain components other than the above-mentioned various components, for example, potassium carbonate, potassium hydrogen carbonate (for pH adjustment), etc.
  • the surface of the flavor molded object may be coated with a coating material such as resin.
  • a coating material such as resin.
  • the surface of the flavor molded object does not need to be coated with the coating material.
  • the coating material include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
  • the density (mass per unit volume) of the flavor molded object may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg/cm 3 or more. cm 3 or less.
  • the density of the flavor molded body is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 .
  • the density can be determined as the total mass relative to the total volume of the flavor molded bodies.
  • Suction of aerosol using the suction tool 10 is performed as follows. First, when a user starts a suction operation while holding the discharge port 13 of the suction tool 10 in his or her mouth, external air flows from each inlet port 72a, 72b in the atomization unit 12 to the air passage 20 (upstream passage portion 21a, 21b). Further, when the control device provided in the power supply unit 11 detects the user's suction operation, it issues a command to the battery and starts energizing the load 40 in the atomization unit 12 . Air flowing into the upstream passage portions 21a, 21b of the air passage 20 from the respective inflow ports 72a, 72b passes through the air flow passage 61 of the filter material 60 disposed in the upstream passage portions 21a, 21b.
  • the filter material 60 in this embodiment is formed as a flavor molded body, when air passes through the air flow path 61, the flavor material (for example, tobacco material) contained in the filter material 60 (flavor molded body) is removed. It is also possible to impart flavor to the air by using flavor components (flavor components, etc.).
  • the air from which dust has been removed by the filter material 60 and which has been flavored is transported through the communication holes 72c and 72d in the atomization unit housing 120 to the load passage where the wick 30 and the load 40 are disposed. 22.
  • the wick 30 disposed in the load passage section 22 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 50. Therefore, when electricity starts to be applied from the battery to the load 40, the aerosol generation liquid Le held in the wick 30 evaporates. Then, the vapor of the aerosol generation liquid Le generated in the load passage section 22 is transmitted to the air that has flowed into the load passage section 22 (the air from which dust has been removed and which has been flavored) and around the wick 30 (the "atomization section"). ) as a result of mixing, an aerosol is generated.
  • the air containing the aerosol generated in the load passage section 22 flows into the downstream passage section 23 and is discharged from the discharge port 13 located at the downstream end of the downstream passage section 23.
  • the liquid is eventually sucked into the user's oral cavity.
  • the aerosol generation liquid Le stored in the liquid storage part 50 contains tobacco extract components, it is possible to impart flavor components derived from the tobacco extract components contained in the aerosol generation liquid Le to the aerosol. can.
  • flavor components can be applied to the aerosol in two stages before the aerosol is finally supplied into the user's oral cavity. That is, in the first step, the flavor component contained in the flavor molded body forming the filter material 60 can be applied to the air passing through the upstream passages 21a and 21b. Then, in the second stage, the load 40 disposed in the load passage section 22 (atomization section) is operated to evaporate the aerosol generation liquid Le containing the tobacco extract components, so that the flavor components derived from the tobacco extract components are can be added to an aerosol. Thereby, the aerosol generated by the atomization unit 12 can be sufficiently flavored.
  • the present embodiment it is possible to impart a deep flavor to the aerosol that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the filter material 60 alone.
  • the atomization unit 12 according to the present embodiment, it has a function of removing dust contained in the air taken into the atomization unit 12 (atomization unit housing 120) from the outside, so that it is inhaled by the user. It becomes possible to reduce the amount of dust contained in aerosol.
  • the arithmetic surface roughness Sa of the dust trapping surface 65 in the filter material 60 may be 30 ⁇ m or more and 1000 ⁇ m or less. Further, the arithmetic surface roughness Sa of the dust trapping surface 65 is preferably 30 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less. By adjusting the arithmetic surface roughness Sa of the dust trapping surface 65 within this range, it becomes easier for dust to adhere to the dust trapping surface 65, and the dust contained in the air can be captured by the dust trapping surface 65 even more efficiently.
  • the filter material 60 (flavor molded body) is configured to include a non-tobacco base material, the weight can be easily controlled even when it is desired to add a small amount of flavor material to the flavor molded body.
  • a non-tobacco base material in the flavor molded article, there is an advantage that the volatilization of the flavor component is stabilized during use of the product (improvement of sustained release properties).
  • the flavor molded body forming the filter material 60 contains tobacco material as one type of flavor material, the content of the tobacco material in the flavor molded body may be 10% by weight or less.
  • the flavor molded body by including a small amount of tobacco material in the flavor molded body, it is possible to impart a spice-like flavor to the aerosol generated in the atomization unit 12. Furthermore, since the amount of tobacco material contained in the flavor molded body does not increase excessively, there is an advantage that the tobacco material is difficult to separate from the non-tobacco base material. Furthermore, in this embodiment, since the flavor source that imparts flavor to the air passing through the upstream passages 21a and 21b is arranged in the form of a molded body, the filter material 60 (flavor The molded body) is easy to handle.
  • FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first embodiment.
  • the atomization unit housing in which the liquid storage part 50 and the air passage 20 are formed, the aerosol generation liquid Le containing tobacco extract components, and the dust contained in the air flowing through the air passage 20 are removed.
  • a filter material 60 for capturing, an electrical load 40 for atomizing the aerosol generating liquid to generate aerosol, and a wick 30 are prepared.
  • the atomization unit housing referred to here is the atomization unit housing 120 described in FIGS. 2 and 3, etc., in which the load 40, the wick 30, the filter material 60, etc. are not yet arranged in the air passage 20, and, This refers to the housing in a state before the liquid storage section 50 is filled with the aerosol generation liquid Le.
  • the filter material 60 prepared in the preparation step is, for example, a flavor molded body containing the above-mentioned non-tobacco base material and flavor material.
  • the specific method for preparing the aerosol generation liquid Le containing tobacco extract components in the preparation step is not particularly limited, and any known method can be adopted.
  • a method may be mentioned in which a component obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
  • an alkaline substance is applied to tobacco leaves (referred to as alkali treatment).
  • alkali treatment for example, a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • heat treatment for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group. Two or more kinds of substances are brought into contact with tobacco leaves.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • the aerosol generation liquid Le may be produced without using the above-mentioned collection solvent.
  • the components released from the tobacco leaves into the gas phase can be condensed by cooling them using a condenser or the like.
  • the flavor components may be extracted.
  • the aerosol generation liquid Le may be produced without performing the alkali treatment described above.
  • one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment).
  • Add substance the tobacco leaf to which the above substance has been added is heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • an aerosol in which one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or
  • the aerosol formed by two or more substances selected from this group is passed through tobacco leaves (tobacco leaves that have not been treated with alkali), and the aerosol that has passed through the tobacco leaves is captured in a collection solvent. You may collect them. Flavor components can also be extracted by such a process.
  • a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250 ° C.") that may be included in the flavor components extracted by the method described above is reduced. (also referred to as “reduction processing”) may be performed.
  • amount of carbonized components that become carbide when heated to 250° C.” adhesion of carbonized components to the load 40 can be effectively suppressed.
  • occurrence of burnt on the load 40 can be effectively suppressed.
  • the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), tobacco extract components are subjected to distillation treatment or vacuum distillation treatment to eliminate charring. It is preferable to remove the causative substance. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • components that can cause charring when heated e.g., lipids, metal ions, sugars, or proteins
  • tobacco extract components are subjected to distillation treatment or vacuum distillation treatment to eliminate charring. It is preferable to remove the causative substance. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • the flavor molded article may be, for example, a molded article that contains a tobacco material containing a non-tobacco base material and a flavor material, with a small amount of the flavor material (the content in the flavor molded article is 10% by weight or less).
  • the method for producing the flavored molded body is not particularly limited, but for example, a non-tobacco base material such as a ceramic, a synthetic polymer, or a pulp derived from a plant other than tobacco plants (it may be a melt of a non-tobacco base material) is used.
  • a flavor material and a binder such as a binder are mixed to obtain a mixture, and then the mixture is molded into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer molding, compression molding, or casting molding. It may be molded into the shape of
  • the non-tobacco base material is a polymer
  • flavor molding into a predetermined shape is performed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining a body.
  • the composite material may be processed into a predetermined shape by cutting, grinding, or the like.
  • flavor molding is performed by applying or spraying a flavor material onto the surface of the non-tobacco base material. You can also manufacture bodies.
  • the surface of the flavor molded object may be coated with a coating material.
  • a coating material it is possible to produce a flavor molded article in which the surface of the non-tobacco base material hardened into a predetermined shape is covered with the coating material.
  • wax can be used as the coating material.
  • this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
  • corn protein can also be used as a coating material.
  • a specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd.
  • polyvinyl acetate can also be used as a coating material.
  • tobacco residue may be included in the non-tobacco base material. Further, when obtaining a tobacco extract liquid in the production of an aerosol production liquid containing tobacco extract components, it is preferable to use tobacco residue obtained by extraction when obtaining the tobacco extract.
  • the aerosol generation liquid Le is accommodated in the liquid storage part 50 of the atomization unit housing 120, and the filter material 60 (flavor molded body) and the wick 30 are placed in the air passage 20. , loads 40 are placed respectively.
  • the wick 30 and the load 40 are arranged in the load passage section 22 of the atomization unit housing 120, and the filter material 60 is arranged in each upstream passage section 21a, 21b.
  • the load 40 is arranged in such a manner that the aerosol generating liquid Le is introduced from the liquid storage section 50.
  • the wick 30 may be installed in the load passage section 22 so as to communicate with the inside of the liquid storage section 50, and the load 40 may be installed in the load passage section 22 in a state in which it is in contact with the wick 30.
  • the filter material 60 is placed at a location upstream of the load 40 in the air passage 20 in the air flow direction, that is, at each upstream passage portion 21a, 21b.
  • the atomization unit 12 of the suction tool 10 can be suitably manufactured.
  • the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le stored in the liquid storage part 50 is preferably 6 mg or less, and preferably 3 mg or less. It is more preferable.
  • the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
  • the "carbonized component” contained in 1 g of aerosol-generating liquid specifically refers to "component that becomes carbide when heated to 250°C.”
  • the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • This "amount (mg) of carbonized components contained in 1 g of aerosol generating liquid” can be measured, for example, by the following method. First, a predetermined amount (g) of aerosol generation liquid Le is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured.
  • the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid ( That is, the amount (mg) of carbonized components can be calculated.
  • Figure 6 shows the TPM reduction rate measured with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as an aerosol generating liquid containing nicotine. It is a figure showing a result.
  • the horizontal axis of FIG. 6 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 6 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Step 3 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at °C. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
  • the standing time that is, the immersion time in the immersion liquid
  • the amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) shown in FIG. 6 was measured by the above method.
  • R TPM (%) (1-TPM (201puff ⁇ 250puff) / TPM (1puff ⁇ 50puff)) x 100... (1)
  • TPM Total Particle Molecule
  • TPM (1puff to 50puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
  • TPM (201puff to 250puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
  • symbol may be attached
  • FIG. 7 is a longitudinal cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1.
  • FIG. 8 is a cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1, and shows a cross section taken along line A2-A2 in FIG.
  • the atomization unit 12 according to the first modification differs from the first embodiment only in the aspect of the filter material 60 disposed in each upstream passage section 21a, 21b. Also in this modification, the filter material 60 is formed of a flavor molded body.
  • a plurality of rod-shaped filter materials 60 are arranged in parallel along the cross-sectional direction of each upstream passage section 21a, 21b.
  • each filter material 60 has a solid cylindrical shape, and along the extending direction (Z direction) of each upstream passage section 21a, 21b (that is, air along the flow direction), the axial direction of each filter material extends.
  • each filter material 60 is arranged in parallel in the cross-sectional direction (X direction, Y direction) of each upstream passage portion 21a, 21b.
  • nine filter materials 60 are arranged in each upstream passage section 21a, 21b in a pattern of 3 rows and 3 columns. The number of 60 and the arrangement pattern thereof are not particularly limited.
  • an air flow passage 61A for circulating air is formed between the filter materials 60 arranged in parallel in each of the upstream passage portions 21a and 21b.
  • a dust trapping surface 65 is formed by the outer surface of the filter material 60 .
  • reference numeral 25A shown in FIG. 7 is a breathable support material that supports the upstream end 601 of the filter material 60.
  • Reference numeral 25B is a breathable support supporting the downstream end 602 of the filter material.
  • the upstream end and downstream end herein mean an upstream end and a downstream end with respect to the flow direction of air.
  • the support members 25A and 25B cooperate to support the upstream end 601 and the downstream end 602 of each filter material 60 while sandwiching them in the axial direction. Thereby, even when a plurality of filter materials 60 are arranged in each of the upstream passage portions 21a and 21b, the plurality of filter materials 60 can be maintained in a regular position in an aligned state.
  • the supporting materials 25A and 25B have air permeability, it is possible to suppress the flow of air along the respective upstream passage portions 21a and 21b from being obstructed.
  • 61 A of air flow paths as demonstrated in FIG. 4 may extend along an axial direction.
  • the air flow passage 61A is formed between each of the filter materials 60 arranged in parallel in each of the upstream passage parts 21a and 21b, the air passes through the air flow passage 61A. Flavor can be imparted to the air by the flavor material of the filter material 60. Further, since the dust trapping surface 65 is formed by the outer surface of the filter material 60 facing the air flow path 61A, dust contained in the air can be efficiently removed by the dust trapping surface 65, and as a result, the user can It becomes possible to reduce the amount of dust contained in the aerosol that is sucked.
  • FIG. 9 is a longitudinal cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment, and shows a cross section taken along the line A3-A3 in FIG.
  • the atomization unit 12 according to the second modification differs from the first modification only in the aspect of the filter material 60 disposed in each upstream passage section 21a, 21b. Also in this modification, the filter material 60 is formed of a flavor molded body.
  • a plurality of filter materials 60 each having a plate shape are arranged in each of the upstream passage portions 21a and 21b.
  • Each filter material 60 extends along the extending direction of each upstream passage section 21a, 21b (air flow direction, ie, Z direction).
  • each filter material 60 extends along the extending direction of each upstream passage section 21a, 21b (air flow direction, ie, Z direction).
  • each filter material 60 has a flat plate shape that is elongated in the extending direction of each upstream passage section 21a, 21b, and the cross section of each upstream passage section 21a, 21b (air (ie, the XY plane direction). More specifically, the upstream end 601 and downstream end 602 of each filter material 60 are positioned and fixed in a state where they are sandwiched in the axial direction by the above-mentioned supporting materials 25A and 25B.
  • each of the plurality of filter materials 60 is arranged side by side so as to face each other at intervals.
  • An air flow path 61B for circulating air is formed by the gap formed between the filter materials 60 arranged to face each other, and the outer surface of the filter material 60 facing the air flow path 61B allows dust to be removed.
  • a capture surface 65 is formed.
  • the air flow passage 61B is formed between each of the filter materials 60 that are arranged to face each other in each of the upstream passage portions 21a and 21b. Therefore, the flavor material of the filter material 60 can impart flavor to the air passing through the air flow path 61B. Further, dust contained in the air can be efficiently removed by the dust capturing surface 65, and as a result, it is possible to reduce the amount of dust contained in the aerosol sucked by the user.
  • FIG. 11 is a longitudinal sectional view of the atomization unit 12 according to the third modification of the first embodiment.
  • FIG. 12 is a cross-sectional view of the atomization unit 12 according to the third modification of the first embodiment, and shows a cross section taken along the line A4-A4 in FIG. 11.
  • the atomization unit 12 according to Modification 3 differs from Modifications 1 and 2 only in the aspect of the filter material 60 disposed in each upstream passage section 21a, 21b. Also in this modification, the filter material 60 is formed of a flavor molded body.
  • a filter material 60 having an overall bellows sheet shape is arranged in each of the upstream passage portions 21a and 21b.
  • the filter material 60 having a bellows sheet shape includes a plurality of sheet parts ( The ridgeline portion 63 connects the sheet portions 62 to each other in a bellows-like manner and extends along the air flow direction.
  • an air flow path 61C through which air circulates is formed between the sheet parts 62 that are connected via the ridgeline part 63.
  • the air flow passage 61C extends along the direction in which the upstream passage portions 21a and 21b extend (the air flow direction, that is, the Z direction).
  • a dust trapping surface 65 is formed by the outer surface of the sheet portion 62 facing the air flow path 61C. Therefore, according to the atomization unit 12 according to this modification, the flavor material of the filter material 60 can impart flavor to the air passing through the air flow path 61C of the filter material 60 having a bellows sheet shape. Further, since the dust contained in the air can be efficiently removed by the dust capturing surface 65, it is possible to reduce the amount of dust contained in the aerosol sucked by the user.
  • the upstream end 601 and downstream end 602 of the filter material 60 are positioned and fixed by the breathable support members 25A and 25B.
  • the sheet-shaped flavor molded body 60 can be positioned and held at a regular position without obstructing the flow of air along each of the upstream passages 21a, 21b.
  • FIG. 13 is a cross-sectional view of the atomization unit 12 according to the fourth modification of the first embodiment.
  • a large number of filter materials 60 in the form of strip-shaped sheet pieces are filled in each upstream passage section 21a, 21b.
  • each filter material 60 (rectangular sheet piece) is arranged so that its longitudinal direction extends along each upstream passage portion 21a, 21b (that is, along the air flow direction), The upstream end and downstream end thereof may be positioned by supporting members 25A and 25B as described in FIG. 11.
  • an air flow passage 61D is formed by the gap between each filter material 60 (rectangular sheet piece), and the side surface (outer surface) of each filter material 60 defining the air flow passage 61D prevents dust from being removed.
  • a capture surface 65 is formed. Therefore, when the air that has flowed into each of the upstream passages 21a and 21b passes through the air flow passage 61D, the flavor components of the flavor material contained in the filter material 60 can be suitably imparted to the air. Further, since the dust contained in the air can be efficiently removed by the dust capturing surface 65, it is possible to reduce the amount of dust contained in the aerosol sucked by the user.
  • the strip sheet pieces serving as the filter material 60 may be arranged randomly and filled without being aligned along the air passage 20 (each upstream passage portion 21a, 21b).
  • FIG. 14 is a cross-sectional view of the atomization unit 12 according to the fifth modification of the first embodiment.
  • the filter material 60 of the atomization unit 12 according to the fifth modification has an air flow passage 61 as a through hole penetrating in the axial direction, and an air flow groove 610 as an air flow passage formed on the side surface (outer surface). It differs from the filter material 60 described in FIGS. 2 to 4 in that it is In the embodiment shown in FIG. 14, the air circulation groove 610 in the filter material 60 is a groove provided on the side surface (outer surface) of the filter material 60 along the axial direction.
  • the air circulation groove 610 is formed from the upstream end (front end) 601 to the downstream end (rear end) 602 of the filter material 60, and the surface of the air circulation groove 610 forms a dust trapping surface 65.
  • air can be smoothly circulated through the air flow path 61 and the air flow groove 610, and the flavor components of the flavor material contained in the filter material 60 can be suitably imparted to the air. .
  • the dust contained in the air can be efficiently removed by the dust capturing surface 65, it is possible to reduce the amount of dust contained in the aerosol sucked by the user.
  • the number of air circulation grooves 610 provided on the side surface (outer surface) of the filter material 60 is not particularly limited. However, as shown in FIG.
  • the filter material 60 by forming a plurality of air circulation grooves 610 on the side surface (outer surface) of the filter material 60, it is possible to more efficiently distribute air and impart flavor to the air. I can do it.
  • the air flow passage 61 passing through the inside thereof in the axial direction may be omitted, and only the air flow groove 610 may be formed.
  • a flavor molded body containing a non-tobacco base material and a flavor material is used as an example of the filter material 60 disposed in the upstream passages 21a and 21b of the atomization unit 12.
  • the filter material 60 can adopt various forms as long as it can capture (collect) dust contained in the air flowing through the upstream passages 21a and 21b.
  • the filter material 60 may be configured as a molded body that does not contain flavoring material.
  • the filter material 60 is formed of a non-tobacco base material such as ceramic, synthetic polymer, pulp, or the like.

Abstract

Provided is an atomization unit of an inhalation tool that can reduce the amount of dust contained in an aerosol inhaled by a user. This atomization unit of an inhalation tool comprises: a liquid accommodation part that accommodates an aerosol generating liquid containing a tobacco extracted component; an electrical load that is disposed in an air passage through which air passes, and that atomizes the aerosol generating liquid to generate an aerosol upon the aerosol generating liquid in the liquid accommodation part being introduced to the electrical load; and a filter material that is disposed in an upstream passage portion of the air passage positioned upstream from the load in a flow direction of air, and that captures dust contained in the air flowing through the upstream passage portion.

Description

霧化ユニット及びその製造方法、並びに吸引具Atomization unit and its manufacturing method, and suction tool
 本発明は、吸引具の霧化ユニット及びその製造方法、並びに吸引具に関する。 The present invention relates to an atomization unit of a suction tool, a method for manufacturing the same, and a suction tool.
 従来、非燃焼加熱型の吸引具に用いる霧化ユニットとして、エアロゾル生成液を収容する液体収容部と、液体収容部のエアロゾル生成液が導入されるとともに、この導入されたエアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに香味成分を付与する香味源と、を備える霧化ユニットが知られている(例えば、特許文献1参照)。 Conventionally, as an atomization unit used in a non-combustion heating type suction device, a liquid storage part for storing an aerosol generation liquid, the aerosol generation liquid in the liquid storage part is introduced, and the introduced aerosol generation liquid is atomized. An atomization unit is known that includes an electrical load that generates an aerosol and a flavor source that imparts a flavor component to the aerosol (for example, see Patent Document 1).
 なお、他の先行技術文献として、特許文献2が挙げられる。特許文献2には、たばこ葉の抽出液に関する情報が開示されている。 Note that Patent Document 2 can be cited as another prior art document. Patent Document 2 discloses information regarding tobacco leaf extract.
特開2020-141705号公報Japanese Patent Application Publication No. 2020-141705 国際公開第2015/129679号International Publication No. 2015/129679
 上述したような従来の霧化ユニットは、外部から霧化ユニット内に取り入れた空気に含まれる埃や塵等といったダストを除去する機能がなく、改善の余地があった。 The conventional atomization unit as described above does not have the function of removing dust such as dust contained in the air taken into the atomization unit from the outside, and there is room for improvement.
 本発明は、上記のことを鑑みてなされたものであり、吸引具の霧化ユニットにおいて、ユーザに吸引されるエアロゾルに含まれるダストの量を低減可能なに関する技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of the objects is to provide a technology that can reduce the amount of dust contained in aerosol sucked by a user in an atomization unit of a suction tool. Let's do one.
 (態様1)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットは、たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記エア通路のうち、前記負荷よりもエアの流動方向で上流側に位置する上流通路部に配置され、当該上流通路部を流れるエアに含まれるダストを捕捉するフィルタ材と、を備える。
(Aspect 1)
In order to achieve the above object, an atomization unit of a suction device according to one aspect of the present invention is arranged in a liquid storage part that contains an aerosol generating liquid containing a tobacco extract component and an air passage through which air passes, When the aerosol-generating liquid in the liquid storage section is introduced, an electric load for atomizing the introduced aerosol-generating liquid to generate an aerosol, and an electric load for generating an aerosol by atomizing the introduced aerosol-generating liquid, and an electric load for generating an aerosol in the air passage, which is located in a direction that is lower than the load in the air flow direction. It includes a filter material that is disposed in an upstream passage located on the upstream side and captures dust contained in air flowing through the upstream passage.
 (態様2)
 上記の態様1において、前記フィルタ材は、前記上流通路部に露出されたダスト捕捉面、を有する成形体として形成されていてもよい。
(Aspect 2)
In the first aspect described above, the filter material may be formed as a molded body having a dust trapping surface exposed to the upstream passage section.
 (態様3)
 上記の態様2において、前記フィルタ材は、非たばこ基材及び香味材料を含む香味成形体であってもよい。
(Aspect 3)
In the above-mentioned embodiment 2, the filter material may be a flavor molded article containing a non-tobacco base material and a flavor material.
 (態様4)
 上記の態様2又は3において、前記フィルタ材は、前記上流通路部に沿って延在する棒形状を有し、且つ、その内部に、当該フィルタ材の軸方向に貫通して延びるとともにエアを流通させる中空状のエア流通路を有し、前記エア流通路の内面が前記ダスト捕捉面として形成されていてもよい。
(Aspect 4)
In the above-mentioned aspect 2 or 3, the filter material has a rod shape extending along the upstream passage portion, and extends through the filter material in the axial direction and allows air to flow into the inside thereof. It may have a hollow air flow path for circulating air, and an inner surface of the air flow path may be formed as the dust trapping surface.
 (態様5)
 上記の態様2から4の何れかにおいて、前記フィルタ材は、前記上流通路部に沿って延在する棒形状を有し、且つ、その側面に、当該フィルタ材の軸方向に延びるとともにエアを流通させるエア流通溝を有し、前記エア流通溝の表面が前記ダスト捕捉面として形成されていてもよい。
(Aspect 5)
In any of the above aspects 2 to 4, the filter material has a rod shape that extends along the upstream passage, and has a side surface thereof that extends in the axial direction of the filter material and allows air to flow through the filter material. It may have an air circulation groove for circulating air, and a surface of the air circulation groove may be formed as the dust trapping surface.
 (態様6)
 上記の態様2から5の何れかにおいて、前記フィルタ材は、前記上流通路部に沿って延在する棒形状を有しており、前記上流通路部におけるエアの流動方向と直交する横断面方向に沿って、複数の前記フィルタ材が並列して配置されており、並列配置される前記フィルタ材の外面間にエアを流通させるエア流通路が形成されており、前記エア流通路に面する前記フィルタ材の外面によって前記ダスト捕捉面が形成されていてもよい。
(Aspect 6)
In any of the above aspects 2 to 5, the filter material has a rod shape extending along the upstream passage, and a cross section perpendicular to the flow direction of air in the upstream passage. A plurality of the filter materials are arranged in parallel along the direction, and an air flow path is formed between the outer surfaces of the filter materials arranged in parallel, and the air flow path faces the air flow path. The dust trapping surface may be formed by an outer surface of the filter material.
 (態様7)
 上記の態様2又は3において、前記フィルタ材は、全体として蛇腹シート形状を有しており、且つ、前記上流通路部におけるエアの流動方向に沿って延在する複数のシート部と、各シート部同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部と、を含んで構成され、前記稜線部を介して接続される前記シート部同士の間にエアを流通させるエア流通路が形成され、前記エア流通路に面する前記シート部の外面によって前記ダスト捕捉面が形成されていてもよい。
(Aspect 7)
In the above aspect 2 or 3, the filter material has a bellows sheet shape as a whole, and includes a plurality of sheet portions extending along the flow direction of air in the upstream passage portion, and each sheet. and a ridgeline section that connects the sections in a bellows-like manner and extends along the air flow direction, and air circulation that circulates air between the sheet sections that are connected via the ridgeline section. A passage may be formed, and the dust trapping surface may be formed by an outer surface of the seat portion facing the air flow passage.
 (態様8)
 上記の態様2又は3において、前記フィルタ材は、前記上流通路部におけるエアの流動方向に沿って延在する板形状を有しており、前記上流通路部におけるエアの流動方向と直交する横断面に沿って、複数の前記フィルタ材が互いに間隔をおいて対向するように並んで配置されており、対向配置される前記フィルタ材同士の間にエアを流通させるエア流通路が形成されており、前記エア流通路に面する前記フィルタ材の外面によって前記ダスト捕捉面が形成されていてもよい。
(Aspect 8)
In the above aspect 2 or 3, the filter material has a plate shape extending along the air flow direction in the upstream passage, and is orthogonal to the air flow direction in the upstream passage. A plurality of the filter materials are arranged side by side so as to face each other at intervals along the cross section, and an air flow passage for circulating air is formed between the filter materials disposed facing each other. The dust trapping surface may be formed by an outer surface of the filter material facing the air flow path.
 (態様9)
 また、本発明の一態様に係る吸引具は、上記の態様1から8の何れかにおける霧化ユニットと、前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、を備える。
(Aspect 9)
Further, a suction tool according to one aspect of the present invention includes the atomizing unit according to any one of aspects 1 to 8 above, and a power source that supplies power to the load, and a power source unit to which the atomizing unit is detachably attached. and.
 (態様10)
 また、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、
 液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記エア通路を流れるエアに含まれるダストを捕捉するためのフィルタ材と、を準備する準備工程と、
 前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記負荷及び前記フィルタ材を配置する組立工程と、
 を有し、
 前記組立工程において、
 前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、前記フィルタ材を、前記負荷よりもエアの流動方向で上流側に位置する上流通路部に配置する。
(Aspect 10)
Further, a method for manufacturing an atomization unit of a suction tool according to one aspect of the present invention includes:
an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a preparation step for preparing a filter material for capturing dust contained in the flowing air;
an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the filter material in the air passage;
has
In the assembly process,
The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the filter material is arranged in an upstream passage part located upstream of the load in the air flow direction. .
 本発明の態様によれば、吸引具の霧化ユニットにおいて、ユーザに吸引されるエアロゾルに含まれるダストの量を低減可能なに関する技術を提供できる。 According to the aspect of the present invention, it is possible to provide a technique that can reduce the amount of dust contained in the aerosol sucked into the user in the atomization unit of the suction tool.
図1は、実施形態1に係る吸引具の外観を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment. 図2は、実施形態1に係る吸引具の霧化ユニットの主要部を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment. 図3は、図2のA1-A1線断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 図4は、実施形態1に係る香味成形体の模式的な斜視図である。FIG. 4 is a schematic perspective view of the flavor molded article according to Embodiment 1. 図5は、実施形態1に係る霧化ユニットの製造方法を説明するためのフロー図である。FIG. 5 is a flow diagram for explaining the method for manufacturing the atomization unit according to the first embodiment. 図6は、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 6 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine. 図7は、実施形態1の変形例1に係る霧化ユニットの縦断面図である。FIG. 7 is a longitudinal sectional view of the atomization unit according to Modification 1 of Embodiment 1. 図8は、実施形態1の変形例1に係る霧化ユニットの横断面図である。FIG. 8 is a cross-sectional view of the atomization unit according to Modification 1 of Embodiment 1. 図9は、実施形態1の変形例2に係る霧化ユニットの縦断面図である。FIG. 9 is a longitudinal sectional view of the atomization unit according to the second modification of the first embodiment. 図10は、実施形態1の変形例2に係る霧化ユニットの横断面図である。FIG. 10 is a cross-sectional view of the atomization unit according to the second modification of the first embodiment. 図11は、実施形態1の変形例3に係る霧化ユニットの縦断面図である。FIG. 11 is a longitudinal sectional view of the atomization unit according to the third modification of the first embodiment. 図12は、実施形態1の変形例3に係る霧化ユニットの横断面図である。FIG. 12 is a cross-sectional view of the atomization unit according to the third modification of the first embodiment. 図13は、実施形態1の変形例4に係る霧化ユニットの横断面図である。FIG. 13 is a cross-sectional view of the atomization unit according to Modification 4 of Embodiment 1. 図14は、実施形態1の変形例5に係る霧化ユニットの横断面図である。FIG. 14 is a cross-sectional view of the atomization unit according to the fifth modification of the first embodiment.
 以下、本発明に係る霧化ユニット及びこれを備えた吸引具の実施形態を、図面を参照して説明するが、これらの説明は本発明の実施形態の一例であり、本発明はその要旨を超えない限りこれらの内容に限定されない。また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。また、実施形態に記載されている構成要素の寸法、材質、形状、対応その相対配置等は一例である。また、本願明細書では、各実施形態について必要に応じて図面を参照して説明するが、これらの図面は実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。 Hereinafter, embodiments of an atomization unit and a suction tool equipped with the same according to the present invention will be described with reference to the drawings, but these descriptions are merely examples of the embodiments of the present invention, and the gist of the present invention is not limited to the following. It is not limited to these contents as long as they do not exceed. Furthermore, although a plurality of embodiments will be described in this specification, various conditions in each embodiment may be applied to each other within an applicable range. Furthermore, the dimensions, materials, shapes, relative arrangements, etc. of the constituent elements described in the embodiments are merely examples. In addition, in this specification, each embodiment will be described with reference to drawings as necessary, but these drawings are schematically illustrated to facilitate understanding of the features of the embodiments, and each configuration is The dimensional ratios of elements etc. are not necessarily the same as the actual ones. Further, in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary.
 ここで、実施形態に係る霧化ユニットは、
 たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、
 エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
 エア通路のうち、負荷よりもエアの流動方向で上流側に位置する上流通路部に配置され、当該上流通路部を流れるエアに含まれるダストを捕捉するフィルタ材と、
 を備える。
Here, the atomization unit according to the embodiment is
a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components;
an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
A filter material that is disposed in an upstream passageway of the air passageway that is located upstream of the load in the air flow direction, and that captures dust contained in the air flowing through the upstream passageway;
Equipped with
 ここで、前記フィルタ材は、前記上流通路部に露出されたダスト捕捉面、を有する成形体として形成されていてもよい。この場合、前記フィルタ材は、非たばこ基材及び香味材料を含む香味成形体であってもよい。そして、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下であってもよい。 Here, the filter material may be formed as a molded body having a dust trapping surface exposed to the upstream passage. In this case, the filter material may be a flavor molded article containing a non-tobacco base material and a flavor material. The flavor material may include a tobacco material, and the content of the tobacco material in the flavor molded body may be 10% by weight or less.
 また、実施形態に係る霧化ユニットの製造方法は、
 液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記エア通路を流れるエアに含まれるダストを捕捉するためのフィルタ材と、を準備する準備工程と、
 前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記負荷及び前記フィルタ材を配置する組立工程と、
 を有し、
 前記組立工程において、
 前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、
 前記フィルタ材を、前記負荷よりもエアの流動方向で上流側に位置する上流通路部に配置してもよい。
Further, the method for manufacturing the atomization unit according to the embodiment includes:
an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a preparation step for preparing a filter material for capturing dust contained in the flowing air;
an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the filter material in the air passage;
has
In the assembly process,
The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and
The filter material may be arranged in an upstream passage section located upstream of the load in the air flow direction.
 なお、本明細書において、「ダスト」とは、エアに含まれる埃や塵などの総称である。 Note that in this specification, "dust" is a general term for dirt, dust, etc. contained in air.
<実施形態1>
 図1は、実施形態1に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の香味吸引具である。
<Embodiment 1>
FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to the first embodiment. The suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 As an example, the suction tool 10 according to the present embodiment extends in the direction of the central axis CL of the suction tool 10. Specifically, the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction" perpendicular to the long axis direction, and a "thickness" perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order. In this embodiment, among the orthogonal coordinates of X-Y-Z, the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction, and the X-axis direction (X direction or -X direction) corresponds to the width direction, and the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
 吸引具10は、電源ユニット11と、霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。 The suction tool 10 has a power supply unit 11 and an atomization unit 12. The power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged. When the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
 ここで、図1における符号120は、霧化ユニット12を構成する各種要素を収容する霧化ユニットハウジングであるとともに、その一部は、ユーザが吸引のために咥えるマウスピースを兼ねている。霧化ユニット12の霧化ユニットハウジング120には、霧化ユニットハウジング120の内部にエアを外部から取り入れるための孔である流入口72a,72bと、霧化ユニットハウジング120の内部から外部にエアロゾルを含むエアを排出するための排出口13が設けられている。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアロゾルを含むエアを吸い込むことができる。 Here, the reference numeral 120 in FIG. 1 is an atomization unit housing that houses various elements constituting the atomization unit 12, and a part of the housing also serves as a mouthpiece that the user holds in his or her mouth for suction. The atomization unit housing 120 of the atomization unit 12 has inflow ports 72a and 72b, which are holes for introducing air into the atomization unit housing 120 from the outside, and inlets 72a and 72b for introducing aerosol from the inside of the atomization unit housing 120 to the outside. A discharge port 13 is provided for discharging the air contained therein. When using the suction tool 10, the user of the suction tool 10 can inhale air containing aerosol discharged from the outlet 13.
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、これを制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、これを制御装置に伝え、制御装置が負荷40への通電を終了させる。 A sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13. When the user starts suctioning air, a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, and notifies the control device of this, and the control device ends the energization of the load 40.
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、この吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。 Note that the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation. In this case, the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch. The control device that receives this suction start request or suction end request starts or ends energization to the load 40.
 なお、上述したような電源ユニット11の構成は、特許文献1に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。 Note that the configuration of the power supply unit 11 as described above is similar to the power supply unit of a known suction tool as exemplified in Patent Document 1, so a more detailed explanation will be omitted.
 図2は、実施形態1に係る吸引具10の霧化ユニット12の主要部を示す模式的断面図である。具体的には、図2は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面(以下、「縦断面」ともいう)を模式的に図示している。図3は、図2のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面であり、「横断面」ともいう)を模式的に示す図である。図2及び図3を参照しつつ、霧化ユニット12について説明する。 FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 12 taken along a plane including the central axis CL. FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a cross section normal to the central axis CL, also referred to as a "cross section"). The atomization unit 12 will be explained with reference to FIGS. 2 and 3.
 本実施形態に係る霧化ユニット12(霧化ユニットハウジング120)は、長軸方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、エア通路20に配置されたフィルタ材60とを備えている。 The atomization unit 12 (atomization unit housing 120) according to the present embodiment includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and has a width It includes a plurality of wall portions (wall portions 71a to 71c) extending in the direction. Further, the atomization unit 12 includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid storage section 50 , and a filter material 60 disposed in the air passage 20 .
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、複数の上流通路部、具体的には、上流通路部21a(すなわち、「第1の上流通路部」)、及び、上流通路部21b(すなわち、「第2の上流通路部」)を備えている。但し、エア通路は、単一の上流通路部を有していてもよいし、3本以上の上流通路部を有していてもよい。 The air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol). The air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23. The upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a (i.e., "first upstream passage section") and an upstream passage section 21b ( In other words, it includes a "second upstream passage section"). However, the air passage may have a single upstream passage, or may have three or more upstream passages.
 上流通路部21a,21bは、負荷通路部22よりも上流側(エアの流動方向で上流側)に配置されている。上流通路部21a,21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エアの流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。 The upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction). The downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22. The load passage section 22 is a passage section in which a load 40 is disposed. The downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。 Specifically, the upstream passage section 21a according to the present embodiment is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. There is. Further, the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. The load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c. The downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
 霧化ユニットハウジング120における壁部71aには、流入口72a,72bが設けられている。ハウジング外部のエアは、流入口72aから上流通路部21aに流入し、流入口72bから上流通路部21bに流入する。また、壁部71bには、連通孔72c及び連通孔72dが設けられている。上流通路部21aを通過したエアは、連通孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、連通孔72dから負荷通路部22に流入する。 The wall portion 71a of the atomization unit housing 120 is provided with inflow ports 72a and 72b. Air outside the housing flows into the upstream passage section 21a through the inlet 72a, and flows into the upstream passage section 21b through the inlet 72b. Further, the wall portion 71b is provided with a communication hole 72c and a communication hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the communication hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the communication hole 72d.
 本実施形態において、上流通路部21a,21bにおけるエアの流動方向(流通方向)は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。 In the present embodiment, the direction of flow of air (flow direction) in the upstream passages 21a and 21b is opposite to the direction of flow of air in the downstream passage 23. Specifically, in this embodiment, the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction, and the direction of air flow in the downstream passage section 23 is the Z direction.
 また、図2及び図3に示すように、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。 Further, as shown in FIGS. 2 and 3, the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
 具体的には、本実施形態に係る上流通路部21aは、図3に示すように、中心軸線CLを法線とする切断面で切断した断面視(すなわち、横断面視)で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、霧化ユニット12の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、霧化ユニット12の幅方向で、液体収容部50の他方の側に配置されている。 Specifically, as shown in FIG. 3, the upstream passage section 21a according to the present embodiment is configured to accommodate liquid in a cross-sectional view (i.e., a cross-sectional view) taken along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction) with the section 50 interposed therebetween. On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view. In other words, the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12. 50.
 なお、上流通路部21a及び上流通路部21bの横断面形状は、図3に例示するような多角形(図3では、一例として四角形)に限定されるものではなく、多角形以外の形状(例えば円形等)であってもよい。 Note that the cross-sectional shapes of the upstream passage portion 21a and the upstream passage portion 21b are not limited to the polygonal shape illustrated in FIG. (For example, it may be circular.)
 ウィック30は、液体収容部50に収容された、後述するエアロゾル生成液Leを負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象を利用して、液体収容部50のエアロゾル生成液Leを吸液保持するとともに、エアロゾル生成液Leを負荷40に導入している。ウィック30は、例えば、ガラス繊維や多孔質セラミックなどによって構成することができるが、これらには限定されない。 The wick 30 is a member for introducing an aerosol generating liquid Le, which will be described later, stored in the liquid storage section 50 into the load 40 of the load passage section 22. Although the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. While absorbing and holding the aerosol generating liquid Le of 50, the aerosol generating liquid Le is introduced into the load 40. The wick 30 can be made of, for example, glass fiber or porous ceramic, but is not limited thereto.
 負荷40は、液体収容部50のエアロゾル生成液Leが導入されるとともに、この導入されたエアロゾル生成液Leを霧化してエアロゾルを発生させるための電気的な負荷である。なお、本明細書において、エアロゾル生成液Leが「導入される」とは、「供給される」と実質的に同義である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータを用いている。このヒータとしては、発熱抵抗体(すなわち、電熱線)や、セラミックヒータ、誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体を用いており、この発熱抵抗体の一例として、コイル形状を有する発熱抵抗体を用いている。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータである。このコイルヒータは、ウィック30に巻き付けられている。 The load 40 is an electrical load for introducing the aerosol generation liquid Le from the liquid storage section 50 and for atomizing the introduced aerosol generation liquid Le to generate an aerosol. In addition, in this specification, "introducing" the aerosol generation liquid Le has substantially the same meaning as "supplying". The specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 40. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater, and a heating resistor having a coil shape is used as an example of this heating resistor. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50のエアロゾル生成液Leを加熱することで霧化して、エアロゾルを発生させる。 Further, the load 40 according to the present embodiment is arranged in the wick 30 inside the load passage section 22, for example. The load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device. The load 40 heats and atomizes the aerosol-generating liquid Le in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
 なお、このウィック30や負荷40の構成は、特許文献1に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 Note that the configurations of the wick 30 and the load 40 are similar to those used in known suction tools such as those exemplified in Patent Document 1, so a detailed description thereof will be omitted.
 液体収容部50はエアロゾル生成液Leを収容するための部位である。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、一例として、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。但し、この構成に限定されるものではなく、例えば、下流通路部23は、吸引具10の厚み方向(Y軸の方向)で液体収容部50に隣接するように設けられていてもよい。 The liquid storage section 50 is a part for storing the aerosol generation liquid Le. The liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Furthermore, in this embodiment, the aforementioned downstream passage section 23 is provided, as an example, so as to penetrate the liquid storage section 50 in the direction of the central axis CL. However, the configuration is not limited to this, and, for example, the downstream passage section 23 may be provided adjacent to the liquid storage section 50 in the thickness direction (Y-axis direction) of the suction tool 10.
[エアロゾル生成液]
 本実施形態では、エアロゾル生成液Leとして、所定の溶媒に、たばこ抽出成分が含有されたものを用いている。エアロゾル生成液Leはたばこ抽出成分を含んでいれば特段制限されない。エアロゾル生成液Leに含まれるたばこ抽出成分の態様は特段制限されず、例えば、たばこ葉等のたばこ材料を抽出することにより得られる。本明細書では、たばこ材料を抽出することにより得られる成分をたばこ抽出成分(少なくともニコチンを含む)と称する。
[Aerosol generation liquid]
In the present embodiment, the aerosol generating liquid Le is one in which a tobacco extract component is contained in a predetermined solvent. The aerosol generation liquid Le is not particularly limited as long as it contains tobacco extract components. The aspect of the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and can be obtained, for example, by extracting tobacco materials such as tobacco leaves. In this specification, components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
 たばこ抽出成分は、たばこ植物に含まれるニコチン等の物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。エアロゾル生成液Leは、たばこ抽出物として特にニコチンを少なくとも含んでいることが好ましく、この態様においては「たばこ抽出成分を含む」を「天然ニコチンを含む」と換言してもよい 。ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル%未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。なお、エアロゾル生成液Leに含まれるニコチンは、天然ニコチン及び後述する合成ニコチンのいずれにおいても、ニコチン塩等のニコチン化合物として存在していてもよい。 Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance. The aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains tobacco extract components" may also be referred to as "contains natural nicotine." There are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually the S-form, with the R-form accounting for less than 1 mol%. On the other hand, in synthetic nicotine, the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%). For example, it can be assumed that the nicotine in the oral composition is synthetic nicotine. The target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable. The embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like. Note that the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
 エアロゾル生成液Leにニコチンを含有させる方法は特段制限されず、例えば、たばこ材料の抽出により得られるたばこ抽出成分をエアロゾル生成液に溶解させる方法、又は当該たばこ抽出成分を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。また、たばこ材料の抽出に用いられる溶媒として、エアロゾル基材にもなり得る物質を用いた場合には、たばこ抽出液をそのままエアロゾル生成液Leとして用いることもでき、このような物質としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。 The method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco materials in the aerosol generation liquid, or a method of dissolving the tobacco extract component in a solvent and then adding nicotine to the aerosol. Examples include a method of mixing with the product liquid Le. In addition, when a substance that can also be used as an aerosol base material is used as a solvent for extracting tobacco materials, the tobacco extract can be used as it is as the aerosol generation liquid Le. Examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 たばこ抽出成分が天然ニコチンを含む場合、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When the tobacco extract component contains natural nicotine, specifically, natural nicotine extracted and purified from tobacco leaves can be used. For such a method for producing natural nicotine, a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
 また、たばこ抽出成分が天然ニコチンを含む場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。 In addition, when tobacco extract components contain natural nicotine, the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials. , natural nicotine with increased purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
 エアロゾル生成液Le中のニコチン(特には天然ニコチン)の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。エアロゾル生成液Leにおいて、ニコチンの供給源としてたばこ抽出液を用いることができる。この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。 The content of nicotine (particularly natural nicotine) in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it is, for example, 0.1% by weight or more and 10% by weight or less. It may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less. In the aerosol generation liquid Le, tobacco extract can be used as a source of nicotine. In this case, the content of the tobacco extract in the aerosol-generating liquid Le is not particularly limited, but may be, for example, 0.1% by weight or more and 10% by weight or less, from the viewpoint of enabling a sufficient supply of nicotine. , may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
 エアロゾル生成液Leに含まれる所定の溶媒、例えば、エアロゾル基材(エアロゾルを生成するための基材)の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。 The type of predetermined solvent contained in the aerosol generation liquid Le, such as the type of aerosol base material (base material for generating aerosol), is not particularly limited, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and one or more substances selected from the group consisting of water.
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。 The content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル生成基材としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液として利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、減圧蒸留等の手段を用いて焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含んでいてもよく、その具体例としては、例えばネオフィタジエン等が挙げられる。 The type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances, or liquids containing the substances, can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent. Note that if the solvent also acts as an aerosol-generating base material, the tobacco extract can be used as it is as an aerosol-generating liquid; however, the tobacco extract may contain components that can cause charring when heated (e.g., lipids, etc.). metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation. Note that the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
 エアロゾル生成液Leは、ニコチンを付与するための成分としてたばこ抽出成分を少なくとも含むが、香喫味の観点から、さらに、合成等により得られる合成ニコチンを含んでいてもよい。なお、合成ニコチンは、ニコチンとして存在してもよく、ニコチン塩等のニコチン含有化合物として存在していてもよい。本明細書では、合成により得られたニコチンを「合成ニコチン」とも称するが、これは化学合成によって生成されたニコチンである。すなわち、合成ニコチンは、たばこ材料を抽出することで得られるニコチン(天然ニコチン)ではなく、化学物質を用いて化学合成することで得られるニコチンである。合成ニコチンの生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。 The aerosol generation liquid Le contains at least a tobacco extract component as a component for imparting nicotine, but from the viewpoint of aroma and taste, it may further contain synthetic nicotine obtained by synthesis or the like. Note that the synthetic nicotine may exist as nicotine or as a nicotine-containing compound such as a nicotine salt. In this specification, nicotine obtained by synthesis is also referred to as "synthetic nicotine," which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances. The method for producing synthetic nicotine is not particularly limited, and any known production method can be used. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン等のニコチン塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The type of nicotine-containing compound is not particularly limited, and examples include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, and nicotine fumarate. When a nicotine-containing compound such as a nicotine salt is synthesized, the production method is not particularly limited, and any known production method can be used.
 エアロゾル生成液Leは、たばこ抽出成分及びエアロゾル生成基材以外の成分(その他の成分)を有していてもよく、例えば、たばこ抽出成分以外の香味成分(上述したニコチン以外のたばこ抽出成分を含む)を含んでいてもよい。 The aerosol generation liquid Le may have components other than the tobacco extract component and the aerosol generation base material (other components), for example, flavor components other than the tobacco extract component (including tobacco extract components other than nicotine as described above). ) may be included.
 たばこ抽出成分以外の香味成分しては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。なお、たばこ抽出成分となり得るネオフィタジエン、ソラノン、又はソラネソール等を、たばこ抽出成分としてではなく、合成により得られた物質としてエアロゾル生成液Leに含有させてもよい。 Flavor components other than tobacco extract components include, for example, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum). , vetiver oil, rose oil, lovage oil), esters (e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g., menthone, ionone, ethyl maltol, etc.) , alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadecalactone, etc.) etc. Note that neophytadiene, solanone, solanesol, or the like, which can be tobacco extract components, may be contained in the aerosol generation liquid Le as a synthetically obtained substance rather than as a tobacco extract component.
[フィルタ材]
 次に、霧化ユニット12のフィルタ材60について説明する。本実施形態において、フィルタ材60は、霧化ユニットハウジング120における流入口72a,72bを通じて外部からエア通路20に取り込まれたエアに含まれるダストを捕捉(捕集)するための部材であり、本実施形態においては上流通路部21a,21bに配置されている。ここでは、フィルタ材60を、上流通路部21a,21bに露出されたダスト捕捉面を有する成形体として形成する例について説明する。より詳しくは、本実施形態においては、フィルタ材60を、非たばこ基材及び香味材料を含む香味成形体として形成する態様について例示的に説明する。
[Filter material]
Next, the filter material 60 of the atomization unit 12 will be explained. In this embodiment, the filter material 60 is a member for capturing (collecting) dust contained in the air taken into the air passage 20 from the outside through the inflow ports 72a and 72b in the atomization unit housing 120, and In the embodiment, they are arranged in the upstream passage portions 21a and 21b. Here, an example in which the filter material 60 is formed as a molded body having a dust trapping surface exposed to the upstream passage portions 21a and 21b will be described. More specifically, in this embodiment, an embodiment in which the filter material 60 is formed as a flavor molded body containing a non-tobacco base material and a flavor material will be exemplified.
 図4は、実施形態1に係るフィルタ材60の模式的な斜視図である。図4に示すフィルタ材60は、エア通路20(本実施形態においては、上流通路部21a,21b)の延在方向(エアの流動方向)に沿って棒形状を有している。より詳しくは、フィルタ材60は、直方体形状を有し、エア通路20(本実施形態においては、上流通路部21a,21b)の延在方向(エアの流動方向)に沿って延びる軸X1を有している。また、図4に示すように、フィルタ材60には、軸X1に沿って、フィルタ材60を貫通するエア流通路61が形成されている。なお、図4に示す例では、エア流通路61がフィルタ材60の軸X1と同軸に配置されているが、これには限定されない。また、フィルタ材60に形成されるエア流通路61の数については特に限定されず、例えば複数のエア流通路61がフィルタ材60の軸X1に沿って並んで配置されていてもよい。また、図4に示す例では、エア流通路61の横断面が円形状を有しているが、エア流通路61の横断面形状は特に限定されない。なお、符号65は、エア流通路61の内面であり、本実施形態においてはエア流通路61を通過するエアに含まれるダストを捕捉するためのダスト捕捉面として形成されている。フィルタ材60は、ダスト捕捉面65が下流通路部23に露出するように下流通路部23に配置される。例えば、フィルタ材60を軸X1方向に沿って貫通するエア流通路61が複数形成される場合、各エア流通路61の内面によってダスト捕捉面65が形成される。また、フィルタ材60は、隔壁によって複数のエア流通路61を互いに区画するハニカム構造を有していてもよい。 FIG. 4 is a schematic perspective view of the filter material 60 according to the first embodiment. The filter material 60 shown in FIG. 4 has a rod shape along the extending direction (air flow direction) of the air passage 20 (in this embodiment, the upstream passage parts 21a and 21b). More specifically, the filter material 60 has a rectangular parallelepiped shape, and has an axis X1 extending along the direction in which the air passage 20 (in this embodiment, the upstream passage portions 21a and 21b) extends (air flow direction). have. Moreover, as shown in FIG. 4, the filter material 60 is formed with an air flow passage 61 that penetrates the filter material 60 along the axis X1. In the example shown in FIG. 4, the air flow passage 61 is arranged coaxially with the axis X1 of the filter material 60, but the invention is not limited thereto. Further, the number of air flow passages 61 formed in the filter material 60 is not particularly limited, and for example, a plurality of air flow passages 61 may be arranged side by side along the axis X1 of the filter material 60. Further, in the example shown in FIG. 4, the cross-sectional shape of the air flow passage 61 is circular, but the cross-sectional shape of the air flow passage 61 is not particularly limited. Note that reference numeral 65 is the inner surface of the air flow passage 61, and in this embodiment, it is formed as a dust trapping surface for trapping dust contained in the air passing through the air flow passage 61. The filter material 60 is arranged in the downstream passage section 23 such that the dust trapping surface 65 is exposed to the downstream passage section 23. For example, when a plurality of air flow passages 61 passing through the filter material 60 along the axis X1 direction are formed, the dust trapping surface 65 is formed by the inner surface of each air flow passage 61. Further, the filter material 60 may have a honeycomb structure in which a plurality of air flow passages 61 are mutually separated by partition walls.
 また、図4に示す例では、軸X1がフィルタ材60の長手方向に沿って延びる軸となっているが、これには限定されない。フィルタ材60の形状は、特に限定されるものではなく、例えば、フィルタ材60の長さ寸法(軸X1方向に沿った寸法)と、これに直交する幅寸法が等しくてもよいし、長さ寸法よりも幅寸法の方が大きくてもよい。勿論、フィルタ材60において、軸X1に直交する横断面の形状は特に限定されず、例えば四角形以外の多角形であってもよいし、円形、楕円形など、他の形状を有していてもよい。 Further, in the example shown in FIG. 4, the axis X1 is an axis extending along the longitudinal direction of the filter material 60, but the invention is not limited to this. The shape of the filter material 60 is not particularly limited; for example, the length dimension (dimension along the axis X1 direction) of the filter material 60 may be equal to the width dimension perpendicular to this, or the length dimension The width dimension may be larger than the dimension. Of course, in the filter material 60, the shape of the cross section perpendicular to the axis X1 is not particularly limited, and may be a polygon other than a quadrangle, or may have another shape such as a circle or an ellipse. good.
 また、図2に示す例では、フィルタ材60の長さ寸法は、霧化ユニット12における上流通路部21a,21bの長さ寸法よりも小さい。そして、フィルタ材60における一方の端部が、霧化ユニットハウジング120における壁部71bに当接した状態で位置決めされている。上流通路部21a,21bのうち、フィルタ材60が配置されていない区間は、中空となっている。また、フィルタ材60は、その側面が上流通路部21a,21bの壁面によって圧縮された状態で規定位置に位置決め固定されていてもよい。 In the example shown in FIG. 2, the length of the filter material 60 is smaller than the length of the upstream passage portions 21a and 21b in the atomization unit 12. One end of the filter material 60 is positioned in contact with the wall 71b of the atomization unit housing 120. A section of the upstream passage portions 21a and 21b where the filter material 60 is not arranged is hollow. Further, the filter material 60 may be positioned and fixed at a prescribed position with its side surface being compressed by the wall surfaces of the upstream passage portions 21a and 21b.
 本実施形態におけるフィルタ材60は、上流通路部21a,21bを流通するエアの通気抵抗が過度に大きくならない態様、すなわち、当該エアの円滑な流通が阻害されない態様で上流通路部21a,21bに配置される。図4に示す例では、香味成形体60の軸X1方向に沿ってエア流通路61が貫通しているため、このエア流通路61を通じてエアを円滑に流通させることができる。 The filter material 60 in this embodiment is arranged in the upstream passage parts 21a, 21b in such a manner that the ventilation resistance of the air flowing through the upstream passage parts 21a, 21b does not become excessively large, that is, in a manner that the smooth circulation of the air is not inhibited. will be placed in In the example shown in FIG. 4, since the air flow passage 61 passes through the flavor molded body 60 along the axis X1 direction, air can be smoothly circulated through the air flow passage 61.
 また、フィルタ材60は、その内部を軸X1方向に貫通するエア流通路61に代えて、或いは当該エア流通路61に加えて、フィルタ材60の側面に沿ってエア流通溝が延びていてもよい。エア流通溝は、エアを流通させるための凹状のエア流通路として機能することができる。 Further, the filter material 60 may have an air flow groove extending along the side surface of the filter material 60 in place of or in addition to the air flow path 61 passing through the inside thereof in the axis X1 direction. good. The air flow groove can function as a concave air flow path for circulating air.
 また、本実施形態においては、複数の棒状のフィルタ材60が束となって上流通路部21a,21bに配置されていてもよい。この場合、個々のフィルタ材60は、互いに一体化していてもよいし、一体化していなくともよい。 Furthermore, in this embodiment, a plurality of rod-shaped filter materials 60 may be arranged in a bundle in the upstream passage portions 21a and 21b. In this case, the individual filter materials 60 may or may not be integrated with each other.
 また、シート形状を有するフィルタ材60を用いる場合、非たばこ基材と香味材料との混合物の抄造シート、非たばこ基材と香味材料との混合物のキャストシート、又は非たばこ基材と香味材料との混合物の圧延シート等、又は、非たばこ基材のシートの表面に塗布又は噴霧等により香味材料を付与したシート等によってフィルタ材60を形成することができる。また、フィルタ材60は、単一のシートを蛇腹形態や渦巻形態等、任意の形態に折り込んだ状態で上流通路部21a,21bに配置されてもよい。また、上記シートを短冊状に裁断した複数の短冊シート片をフィルタ材60として上流通路部21a,21bに充填してもよい。この場合、フィルタ材60としての短冊シート片は、下流通路部23に沿って整列配置されてもよいし、特定の方向に沿って整列させないランダム配置としてもよい。 In addition, when using the filter material 60 having a sheet shape, a sheet made of a mixture of a non-tobacco base material and a flavoring material, a cast sheet of a mixture of a non-tobacco base material and a flavoring material, or a cast sheet of a mixture of a non-tobacco base material and a flavoring material is used. The filter material 60 can be formed of a rolled sheet of a mixture of the above, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying on the surface of the sheet. Further, the filter material 60 may be arranged in the upstream passage portions 21a and 21b in a state in which a single sheet is folded into an arbitrary shape such as a bellows shape or a spiral shape. Further, a plurality of strip sheet pieces obtained by cutting the above sheet into strips may be used as the filter material 60 and filled in the upstream passage portions 21a and 21b. In this case, the strip sheet pieces serving as the filter material 60 may be arranged in alignment along the downstream passage section 23, or may be arranged randomly without being aligned in a specific direction.
 また、フィルタ材60は板形状を有していてもよい。また、フィルタ材60は、棒形状、板形状、シート形状以外の形状を有していてもよい。例えば、フィルタ材60は顆粒の形態を呈しており、フィルタ材60を形成する複数の顆粒が上流通路部21a,21bに充填されてもよい。勿論、フィルタ材60を形成する顆粒の形状は特に限定されない。 Additionally, the filter material 60 may have a plate shape. Further, the filter material 60 may have a shape other than a rod shape, a plate shape, or a sheet shape. For example, the filter material 60 may be in the form of granules, and a plurality of granules forming the filter material 60 may be filled in the upstream passage portions 21a and 21b. Of course, the shape of the granules forming the filter material 60 is not particularly limited.
 また、本実施形態におけるフィルタ材60は香味成形体として形成されている。例えば、フィルタ材60(香味成形体)は、非たばこ基材及び香味材料等を含み、これらが固められて所定形状に成形されている。香味成形体に含まれる香味材料には、たばこ材料が含まれていてもよい。この場合、香味成形体中におけるたばこ材料は10重量%以下にしてもよい。勿論、香味材料は、たばこ材料に加えて、たばこ材料に由来しない種々の香味成分を含んでいてもよい。 Furthermore, the filter material 60 in this embodiment is formed as a flavor molded body. For example, the filter material 60 (flavor molded body) includes a non-tobacco base material, a flavor material, etc., which are hardened and molded into a predetermined shape. The flavor material contained in the flavor molded article may include tobacco material. In this case, the amount of tobacco material in the flavor molded article may be 10% by weight or less. Of course, the flavor material may contain, in addition to the tobacco material, various flavor components not derived from the tobacco material.
 非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材は、香味成形体の主たる材料、特に、香味成形体の成形を担保する主たる材料であってよい。 The type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Further, the non-tobacco base material may be the main material of the flavor molded product, particularly the main material that ensures the molding of the flavor molded product.
 香味成形体中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、50重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。 The content of the non-tobacco base material in the flavor molded product is not particularly limited, and may be, for example, 10% by weight or more and 50% by weight or less, 30% by weight or more and 90% by weight or less, and 50% by weight. % or more and 80% by weight or less.
 香味成形体に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、ニコチンを付与するたばこ材料が挙げられる。なお、本明細書において、香味成形体に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、香味成形体がたばこ材料を含む場合、香味材料は、たばこ材料に含まれるニコチンでなく、たばこ材料である。 The form of the flavor material contained in the flavor molded body is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and the flavor component may be a flavor component itself. Examples of the imparting material include tobacco materials that impart nicotine. In addition, in this specification, when a flavor component imparting material is contained in a flavor molded object, the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material. For example, when the flavor molded article contains a tobacco material, the flavor material is not the nicotine contained in the tobacco material, but the tobacco material.
 たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。 The form of the tobacco material is not particularly limited; for example, it may contain tissues such as leaves, stems, flowers, roots, reproductive organs, or embryos of tobacco plants, and tobacco materials using these tobacco plant tissues may also be used. Processed products (for example, tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in known tobacco products) may be included, but from the viewpoint of ensuring a sufficient amount of use and ease of processing, Tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
 本明細書において、「香味材料がたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに香味成形体中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに前記香味成形体中の前記たばこ材料は10重量%以下である」の表現に換言することができる。 As used herein, "the flavoring material contains tobacco material" does not mean that the flavoring material contains tobacco material, but rather that it contains tobacco material as one of the types of flavoring material. , the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less" means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less". The content of the material is 10% by weight or less."
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。 Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadeca), lactone, etc.).
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。 The method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
 香味成形体中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。また、香味成形体がたばこ材料を含む場合、香味成形体中のたばこ材料の含有量は特段制限されないが、香味のスパイスとしての上流通路部21a,21bを流通するエアに香味を付与する観点からは、1重量%以上であることが好ましく、3重量%以上であることがより好ましく、7重量%以上であることがさらに好ましい。一方、香味成形体に含まれるたばこ材料の量が多すぎると、たばこ材料が非たばこ基材から分離しやすくなり得る。そこで、非たばこ基材からたばこ材料が分離すること等を抑制する観点からは、香味成形体中におけるたばこ材料の含有量は10重量%以下であることが好ましく、7重量%以下であることがより好ましく、3重量%以下であることがさらにより好ましい。 The content of the flavor material in the flavor molded body is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight or more. % or more and 50% by weight or less. In addition, when the flavor molded body contains a tobacco material, the content of the tobacco material in the flavor molded body is not particularly limited, but from the viewpoint of imparting flavor to the air flowing through the upstream passages 21a and 21b as a flavor spice. It is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 7% by weight or more. On the other hand, if the amount of tobacco material contained in the flavor molded body is too large, the tobacco material may easily separate from the non-tobacco base material. Therefore, from the viewpoint of suppressing the separation of the tobacco material from the non-tobacco base material, the content of the tobacco material in the flavor molded product is preferably 10% by weight or less, and preferably 7% by weight or less. The content is more preferably 3% by weight or less, and even more preferably 3% by weight or less.
 香味成形体は、非たばこ基材等といった香味成形体に含まれる材料を接着するためのバインダーを含んでいてもよい。バインダーの種類は特段制限されず、例えば、澱粉、ヒドロキシアルキルセルロース、ポリ酢酸ビニル、又はアルキルヒドロキシアルキルセルロース等を用いることができる。また、香味成形体中のバインダーの含有量は、十分な接着性を確保する観点から、1重量%以上、20重量%以下であってよく、3重量%以上、15重量%以下であってよく、5重量%以上、10重量%以下であってよい。 The flavor molded product may contain a binder for adhering materials included in the flavor molded product, such as a non-tobacco base material. The type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, polyvinyl acetate, or alkylhydroxyalkylcellulose can be used. In addition, the content of the binder in the flavor molded product may be 1% by weight or more and 20% by weight or less, and may be 3% by weight or more and 15% by weight or less, from the viewpoint of ensuring sufficient adhesiveness. , 5% by weight or more and 10% by weight or less.
 香味成形体は、上記の各種成分以外の成分を含んでいてもよく、例えば、炭酸カリウム、炭酸水素カリウム(pH調整のため)等を含んでいてもよい。 The flavor molded body may contain components other than the above-mentioned various components, for example, potassium carbonate, potassium hydrogen carbonate (for pH adjustment), etc.
 また、香味成形体の表面は、樹脂等のコーティング材でコーティングされていてもよい。勿論、香味成形体の表面がコーティング材によってコーティングされていなくてもよい。但し、香味成形体の表面がコーティング材によってコーティングされていることにより、成形体の形状を保つことが容易になる。コーティング材としては、例えば、ポリエチレン、ポリエチレンワックス、マイクロクリスタリンワックス、みつろう、又はツェイン等が挙げられる。 Additionally, the surface of the flavor molded object may be coated with a coating material such as resin. Of course, the surface of the flavor molded object does not need to be coated with the coating material. However, since the surface of the flavor molded product is coated with a coating material, it becomes easier to maintain the shape of the molded product. Examples of the coating material include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
 また、本実施形態において、香味成形体の密度(単位体積当たりの質量)は、一例として、1000mg/cm以上、1450mg/cm以下であってよく、また、1100mg/cm以上、1450mg/cm以下であってもよい。但し、香味成形体の密度は、これに限定されるものではなく、1000mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよく、また、1100mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよい。香味成形体が複数個で存在する場合には、この密度は、香味成形体の総体積に対する総質量として求めることができる。 Further, in the present embodiment, the density (mass per unit volume) of the flavor molded object may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg/cm 3 or more. cm 3 or less. However, the density of the flavor molded body is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies are present, the density can be determined as the total mass relative to the total volume of the flavor molded bodies.
 吸引具10を用いたエアロゾルの吸引は以下のように行われる。まず、ユーザが吸引具10の排出口13を咥えた状態での吸引動作を開始した場合、外部のエアが霧化ユニット12における各流入口72a,72bからエア通路20(上流通路部21a,21b)に流入する。また、電源ユニット11に設けられた制御装置が、上記ユーザの吸引動作を検知すると、バッテリに指令を出し、霧化ユニット12における負荷40への通電を開始させる。各流入口72a,72bからエア通路20における上流通路部21a,21bに流入したエアは、上流通路部21a,21bに配置されたフィルタ材60のエア流通路61を通過する。その際、エア流通路61の内面として形成されたダスト捕捉面65にエアが晒されながらエア流通路61を通過することとなり、エアに含まれるダストがダスト捕捉面65に付着する。こうして、エア流通路61をエアが通過する際、エアに含まれるダストをダスト捕捉面65によって捕捉することができる。更に、本実施形態におけるフィルタ材60は香味成形体として形成されているため、エア流通路61をエアが通過する際、フィルタ材60(香味成形体)に含まれる香味材料(例えば、たばこ材料の香味成分等)によって香味をエアに付与することも可能となる。 Suction of aerosol using the suction tool 10 is performed as follows. First, when a user starts a suction operation while holding the discharge port 13 of the suction tool 10 in his or her mouth, external air flows from each inlet port 72a, 72b in the atomization unit 12 to the air passage 20 ( upstream passage portion 21a, 21b). Further, when the control device provided in the power supply unit 11 detects the user's suction operation, it issues a command to the battery and starts energizing the load 40 in the atomization unit 12 . Air flowing into the upstream passage portions 21a, 21b of the air passage 20 from the respective inflow ports 72a, 72b passes through the air flow passage 61 of the filter material 60 disposed in the upstream passage portions 21a, 21b. At this time, the air passes through the air flow path 61 while being exposed to the dust trapping surface 65 formed as the inner surface of the air flow path 61, and the dust contained in the air adheres to the dust trapping surface 65. In this way, when air passes through the air flow path 61, dust contained in the air can be captured by the dust capturing surface 65. Furthermore, since the filter material 60 in this embodiment is formed as a flavor molded body, when air passes through the air flow path 61, the flavor material (for example, tobacco material) contained in the filter material 60 (flavor molded body) is removed. It is also possible to impart flavor to the air by using flavor components (flavor components, etc.).
 上記のように、フィルタ材60によってダストが取り除かられるとともに香味が付与されたエアは、霧化ユニットハウジング120における各連通孔72c,72dを介して、ウィック30及び負荷40が配置された負荷通路部22へと流入する。 As described above, the air from which dust has been removed by the filter material 60 and which has been flavored is transported through the communication holes 72c and 72d in the atomization unit housing 120 to the load passage where the wick 30 and the load 40 are disposed. 22.
 一方、負荷通路部22に配置されているウィック30には、液体収容部50から供給されたエアロゾル生成液Leが吸液保持されている。そのため、バッテリから負荷40への通電が開始されると、ウィック30に保持されているエアロゾル生成液Leが蒸発する。そして、負荷通路部22において生成されたエアロゾル生成液Leの蒸気は、負荷通路部22に流入したエア(ダストが取り除かられるとともに香味が付与されたエア)と、ウィック30の周辺(「霧化部」ともいえる)で混合される結果、エアロゾルが生成される。このようにして、負荷通路部22(霧化部)で生成されたエアロゾルを含むエアは下流通路部23に流入し、当該下流通路部23の下流端に位置する排出口13から排出されることによって、最終的にユーザの口腔内に吸引される。本実施形態においては、液体収容部50に収容されたエアロゾル生成液Leはたばこ抽出成分を含んでいるため、エアロゾル生成液Leに含まれるたばこ抽出成分に由来する香味成分をエアロゾルに付与することができる。 On the other hand, the wick 30 disposed in the load passage section 22 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 50. Therefore, when electricity starts to be applied from the battery to the load 40, the aerosol generation liquid Le held in the wick 30 evaporates. Then, the vapor of the aerosol generation liquid Le generated in the load passage section 22 is transmitted to the air that has flowed into the load passage section 22 (the air from which dust has been removed and which has been flavored) and around the wick 30 (the "atomization section"). ) as a result of mixing, an aerosol is generated. In this way, the air containing the aerosol generated in the load passage section 22 (atomization section) flows into the downstream passage section 23 and is discharged from the discharge port 13 located at the downstream end of the downstream passage section 23. The liquid is eventually sucked into the user's oral cavity. In this embodiment, since the aerosol generation liquid Le stored in the liquid storage part 50 contains tobacco extract components, it is possible to impart flavor components derived from the tobacco extract components contained in the aerosol generation liquid Le to the aerosol. can.
 以上のように構成される霧化ユニット12によれば、エアロゾルが最終的にユーザの口腔内への供給されるまでに、エアロゾルに対して2段階で香味成分を付与することができる。すなわち、第1段階としては、上流通路部21a,21bを通過するエアに対して、フィルタ材60を形成する香味成形体に含まれる香味成分を付与することができる。そして、第2段階としては、負荷通路部22(霧化部)に配置された負荷40を作動させ、たばこ抽出成分を含むエアロゾル生成液Leを蒸発させることで、たばこ抽出成分に由来する香味成分をエアロゾルに付与することができる。これにより、霧化ユニット12によって生成されるエアロゾルに対する香味付けを十分に行うことができる。つまり、本実施形態によれば、エアロゾル生成液Leに含まれる香味成分のみや、フィルタ材60に含まれる香味成分のみでは表現しきれない深みのある香味をエアロゾルに付与することができる。そして、本実施形態に係る霧化ユニット12によれば、外部から霧化ユニット12(霧化ユニットハウジング120)内に取り入れた空気に含まれるダストを除去する機能を有するため、ユーザに吸引されるエアロゾルに含まれるダストの量を低減することが可能となる。 According to the atomization unit 12 configured as described above, flavor components can be applied to the aerosol in two stages before the aerosol is finally supplied into the user's oral cavity. That is, in the first step, the flavor component contained in the flavor molded body forming the filter material 60 can be applied to the air passing through the upstream passages 21a and 21b. Then, in the second stage, the load 40 disposed in the load passage section 22 (atomization section) is operated to evaporate the aerosol generation liquid Le containing the tobacco extract components, so that the flavor components derived from the tobacco extract components are can be added to an aerosol. Thereby, the aerosol generated by the atomization unit 12 can be sufficiently flavored. That is, according to the present embodiment, it is possible to impart a deep flavor to the aerosol that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the filter material 60 alone. According to the atomization unit 12 according to the present embodiment, it has a function of removing dust contained in the air taken into the atomization unit 12 (atomization unit housing 120) from the outside, so that it is inhaled by the user. It becomes possible to reduce the amount of dust contained in aerosol.
 なお、フィルタ材60におけるダスト捕捉面65の算術表面粗度Saは、30μm以上1000μm以下であってもよい。また、ダスト捕捉面65の算術表面粗度Saは、30μm以上500μm以下であることが好ましく、30μm以上100μm以下であることが更に好ましい。ダスト捕捉面65の算術表面粗度Saをこの範囲に調整することで、ダスト捕捉面65にダストを付着させやすくなり、エアに含まれるダストをダスト捕捉面65によってより一層効率よく捕捉できる。 Note that the arithmetic surface roughness Sa of the dust trapping surface 65 in the filter material 60 may be 30 μm or more and 1000 μm or less. Further, the arithmetic surface roughness Sa of the dust trapping surface 65 is preferably 30 μm or more and 500 μm or less, and more preferably 30 μm or more and 100 μm or less. By adjusting the arithmetic surface roughness Sa of the dust trapping surface 65 within this range, it becomes easier for dust to adhere to the dust trapping surface 65, and the dust contained in the air can be captured by the dust trapping surface 65 even more efficiently.
 また、本実施形態において、フィルタ材60(香味成形体)が、非たばこ基材を含んで構成されることで、香味成形体に少量の香味材料を添加したい場合においても、重量のコントロールが容易となるという利点がある。また、香味成形体に非たばこ基材を含ませることによって、香味成分の揮発が製品の使用中にわたり安定する(徐放性の改善)という利点もある。また、フィルタ材60を形成する香味成形体が香味材料の1種としてたばこ材料を含む場合、香味成形体中のたばこ材料の含有量が10重量%以下としてもよい。このように、香味成形体に、少量のたばこ材料を含ませることによって、霧化ユニット12で生成するエアロゾルに対して、スパイス的な香味を付与することができる。また、香味成形体に含まれるたばこ材料の量が過度に多くならないため、たばこ材料が非たばこ基材から分離しにくくなるという利点がある。また、本実施形態においては、上流通路部21a,21bを通過するエアに付香する香味源を成形体の形態で配置するようにしたため、霧化ユニット12の組み立て時におけるフィルタ材60(香味成形体)の取り扱いが容易である。 Furthermore, in this embodiment, since the filter material 60 (flavor molded body) is configured to include a non-tobacco base material, the weight can be easily controlled even when it is desired to add a small amount of flavor material to the flavor molded body. There is an advantage that Further, by including a non-tobacco base material in the flavor molded article, there is an advantage that the volatilization of the flavor component is stabilized during use of the product (improvement of sustained release properties). Further, when the flavor molded body forming the filter material 60 contains tobacco material as one type of flavor material, the content of the tobacco material in the flavor molded body may be 10% by weight or less. In this way, by including a small amount of tobacco material in the flavor molded body, it is possible to impart a spice-like flavor to the aerosol generated in the atomization unit 12. Furthermore, since the amount of tobacco material contained in the flavor molded body does not increase excessively, there is an advantage that the tobacco material is difficult to separate from the non-tobacco base material. Furthermore, in this embodiment, since the flavor source that imparts flavor to the air passing through the upstream passages 21a and 21b is arranged in the form of a molded body, the filter material 60 (flavor The molded body) is easy to handle.
 続いて、霧化ユニット12の製造方法について説明する。図5は、実施形態1に係る霧化ユニット12の製造方法を説明するためのフロー図である。 Next, a method for manufacturing the atomization unit 12 will be explained. FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first embodiment.
[準備工程]
 ステップS10に係る準備工程において、液体収容部50とエア通路20が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液Leと、エア通路20を流れるエアに含まれるダストを捕捉するためのフィルタ材60と、エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷40と、ウィック30を準備する。ここでいう霧化ユニットハウジングは、図2及び図3等で説明した霧化ユニットハウジング120のうち、エア通路20に負荷40、ウィック30、フィルタ材60等が未だ配置されておらず、且つ、液体収容部50にエアロゾル生成液Leが充填される前の状態のハウジングを指す。また、準備工程において準備するフィルタ材60は、例えば、上述した非たばこ基材及び香味材料を含む香味成形体である。
[Preparation process]
In the preparation process related to step S10, the atomization unit housing in which the liquid storage part 50 and the air passage 20 are formed, the aerosol generation liquid Le containing tobacco extract components, and the dust contained in the air flowing through the air passage 20 are removed. A filter material 60 for capturing, an electrical load 40 for atomizing the aerosol generating liquid to generate aerosol, and a wick 30 are prepared. The atomization unit housing referred to here is the atomization unit housing 120 described in FIGS. 2 and 3, etc., in which the load 40, the wick 30, the filter material 60, etc. are not yet arranged in the air passage 20, and, This refers to the housing in a state before the liquid storage section 50 is filled with the aerosol generation liquid Le. Further, the filter material 60 prepared in the preparation step is, for example, a flavor molded body containing the above-mentioned non-tobacco base material and flavor material.
 準備工程でたばこ抽出成分を含むエアロゾル生成液Leを準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、たばこ材料の抽出により得られる成分をエアロゾル生成液Leに溶解させる方法等が挙げられる。 The specific method for preparing the aerosol generation liquid Le containing tobacco extract components in the preparation step is not particularly limited, and any known method can be adopted. For example, a method may be mentioned in which a component obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
 以下、エアロゾル生成液Leを製造する方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合する方法について具体的に説明する。 Hereinafter, as an example of the method for producing the aerosol-generating liquid Le, a method in which an extract obtained by dissolving tobacco leaves in a solvent is mixed with an aerosol base material will be specifically described.
 上記製造方法は、まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。 In the above manufacturing method, first, an alkaline substance is applied to tobacco leaves (referred to as alkali treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous potassium carbonate solution can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種の物質、または、この群の中から選択される2種類以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment). During this heat treatment, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group. Two or more kinds of substances are brought into contact with tobacco leaves.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used. As a result, a collection solvent containing flavor components such as nicotine (hereinafter also simply referred to as "flavor components") can be obtained (that is, flavor components can be extracted from tobacco leaves).
 なお、上述した捕集溶媒を使用せずにエアロゾル生成液Leを製造してもよい。この場合、例えば、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出してもよい。 Note that the aerosol generation liquid Le may be produced without using the above-mentioned collection solvent. In this case, for example, after applying the above heat treatment to tobacco leaves that have been treated with alkali, the components released from the tobacco leaves into the gas phase can be condensed by cooling them using a condenser or the like. The flavor components may be extracted.
 また、上述したアルカリ処理を行わずにエアロゾル生成液Leを製造してもよい。この場合、例えば、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、上記物質が添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させ、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Additionally, the aerosol generation liquid Le may be produced without performing the alkali treatment described above. In this case, for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment). Add substance. Next, the tobacco leaf to which the above substance has been added is heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 また、エアロゾル生成液Leを製造する際、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させてもよい。このような工程によっても、香味成分を抽出することができる。 Further, when producing the aerosol generation liquid Le, an aerosol in which one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or The aerosol formed by two or more substances selected from this group is passed through tobacco leaves (tobacco leaves that have not been treated with alkali), and the aerosol that has passed through the tobacco leaves is captured in a collection solvent. You may collect them. Flavor components can also be extracted by such a process.
 また、エアロゾル生成液Leを製造する際、上述した手法で抽出された香味成分に含まれ得る「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)を行ってもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。なお、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、ニコチンの供給源としてたばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。 In addition, when producing the aerosol generation liquid Le, a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250 ° C.") that may be included in the flavor components extracted by the method described above is reduced. (also referred to as "reduction processing") may be performed. By reducing "the amount of carbonized components that become carbide when heated to 250° C.", adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed. Furthermore, since the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 The specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced. The amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
 ここで、たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分を蒸留処理又は減圧蒸留処理に供し、焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を蒸留処理又は減圧蒸留処理に供することが好ましい。 Here, since tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), tobacco extract components are subjected to distillation treatment or vacuum distillation treatment to eliminate charring. It is preferable to remove the causative substance. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
 次に、フィルタ材60を構成する香味成形体の製造方法について説明する。香味成形体は、例えば、非たばこ基材及び香味材料を含み、香味材料が少量(香味成形体中の含有量が10重量%以下)のたばこ材料を含む成形体であってもよい。香味成形体の製造方法は特に限定されないが、例えば、セラミック、合成ポリマー、又は、たばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)と、香味材料と、バインダー等の結合剤を混合して混合物を得た後、プレス加圧成形、押出成形、射出成形、転写成形、圧縮成形、又は鋳込成形等の方法により、当該混合物を所定の形状に成形してもよい。ここで、非たばこ基材がポリマーである場合には、ポリマーを溶媒に溶解させて得られた溶液から加熱等により溶媒を揮発させる方法、又はモノマーを重合させる方法等により所定の形状の香味成形体を得る方法を採用することもできる。また、非たばこ基材を含む任意の固体形状の複合材料を得た後に、切削又は研削等により該複合材料を所定の形状となるように加工してもよい。或いは、上述した非たばこ基材(非たばこ基材の溶融物であってもよい)を所定の形状に成形した後、非たばこ基材の表面に香味材料を塗布又は噴霧する等して香味成形体を製造してもよい。 Next, a method for manufacturing the flavor molded body constituting the filter material 60 will be described. The flavor molded article may be, for example, a molded article that contains a tobacco material containing a non-tobacco base material and a flavor material, with a small amount of the flavor material (the content in the flavor molded article is 10% by weight or less). The method for producing the flavored molded body is not particularly limited, but for example, a non-tobacco base material such as a ceramic, a synthetic polymer, or a pulp derived from a plant other than tobacco plants (it may be a melt of a non-tobacco base material) is used. , a flavor material and a binder such as a binder are mixed to obtain a mixture, and then the mixture is molded into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer molding, compression molding, or casting molding. It may be molded into the shape of Here, when the non-tobacco base material is a polymer, flavor molding into a predetermined shape is performed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining a body. Furthermore, after obtaining a composite material in any solid shape containing a non-tobacco base material, the composite material may be processed into a predetermined shape by cutting, grinding, or the like. Alternatively, after forming the above-mentioned non-tobacco base material (which may be a melt of the non-tobacco base material) into a predetermined shape, flavor molding is performed by applying or spraying a flavor material onto the surface of the non-tobacco base material. You can also manufacture bodies.
 なお、香味成形体を製造する際、香味成形体の表面をコーティング材でコーティングしてもよい。これにより、所定形状に固められた非たばこ基材の表面がコーティング材で覆われた香味成形体を製造することができる。 Note that when manufacturing the flavor molded object, the surface of the flavor molded object may be coated with a coating material. Thereby, it is possible to produce a flavor molded article in which the surface of the non-tobacco base material hardened into a predetermined shape is covered with the coating material.
 コーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。 For example, wax can be used as the coating material. Examples of this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
 あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。 Alternatively, corn protein can also be used as a coating material. A specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd. Alternatively, polyvinyl acetate can also be used as a coating material.
 また、香味成形体を製造する際、非たばこ基材にたばこ残渣を含ませてもよい。また、たばこ抽出成分を含むエアロゾル生成液の製造においてたばこ抽出液を得る場合には、該たばこ抽出物を得る際の抽出で得られたたばこ残渣を用いることが好ましい。 Furthermore, when producing a flavor molded article, tobacco residue may be included in the non-tobacco base material. Further, when obtaining a tobacco extract liquid in the production of an aerosol production liquid containing tobacco extract components, it is preferable to use tobacco residue obtained by extraction when obtaining the tobacco extract.
[組立工程]
 上記の準備工程が終わると、ステップS20に係る組立工程において、霧化ユニットハウジング120の液体収容部50にエアロゾル生成液Leを収容し、エア通路20にフィルタ材60(香味成形体)、ウィック30、負荷40をそれぞれ配置する。ここでは、霧化ユニットハウジング120の負荷通路部22にウィック30及び負荷40を配置し、各上流通路部21a,21bにフィルタ材60をそれぞれ配置する。その際、負荷40は、エアロゾル生成液Leが液体収容部50から導入される態様で配置される。例えば、液体収容部50の内部に連通するようにウィック30を負荷通路部22に設置し、当該ウィック30と接触した状態で負荷40を負荷通路部22に設置してもよい。本実施形態では、組立工程において、フィルタ材60を、エア通路20における負荷40よりもエアの流動方向で上流側の箇所、すなわち、各上流通路部21a,21bに配置する。
[Assembly process]
After the above preparation process is completed, in the assembly process related to step S20, the aerosol generation liquid Le is accommodated in the liquid storage part 50 of the atomization unit housing 120, and the filter material 60 (flavor molded body) and the wick 30 are placed in the air passage 20. , loads 40 are placed respectively. Here, the wick 30 and the load 40 are arranged in the load passage section 22 of the atomization unit housing 120, and the filter material 60 is arranged in each upstream passage section 21a, 21b. At this time, the load 40 is arranged in such a manner that the aerosol generating liquid Le is introduced from the liquid storage section 50. For example, the wick 30 may be installed in the load passage section 22 so as to communicate with the inside of the liquid storage section 50, and the load 40 may be installed in the load passage section 22 in a state in which it is in contact with the wick 30. In the present embodiment, in the assembly process, the filter material 60 is placed at a location upstream of the load 40 in the air passage 20 in the air flow direction, that is, at each upstream passage portion 21a, 21b.
 以上説明したような製造方法によれば、吸引具10の霧化ユニット12を好適に製造できる。 According to the manufacturing method as described above, the atomization unit 12 of the suction tool 10 can be suitably manufactured.
 なお、本実施形態において、液体収容部50に収容されるエアロゾル生成液Leは、このエアロゾル生成液1g中に含まれる炭化成分の量(mg)が6mg以下であることが好ましく、3mg以下であることがより好ましい。 In addition, in this embodiment, the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le stored in the liquid storage part 50 is preferably 6 mg or less, and preferably 3 mg or less. It is more preferable.
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。 According to this configuration, the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
 なお、エアロゾル生成液1g中に含まれる「炭化成分」とは、具体的には、「250℃に加熱された場合に炭化物になる成分」をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 Note that the "carbonized component" contained in 1 g of aerosol-generating liquid specifically refers to "component that becomes carbide when heated to 250°C." Specifically, the "carbonized component" refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
 この「エアロゾル生成液1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、エアロゾル生成液Leを所定量(g)、準備する。次いで、このエアロゾル生成液Leを180℃に加熱して、エアロゾル生成液Leに含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液Leに含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 This "amount (mg) of carbonized components contained in 1 g of aerosol generating liquid" can be measured, for example, by the following method. First, a predetermined amount (g) of aerosol generation liquid Le is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured. By the above method, it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid ( That is, the amount (mg) of carbonized components can be calculated.
 続いて、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図6は、ニコチンを含むエアロゾル生成液としてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図6の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。 Next, the relationship between the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine and the TPM reduction rate will be explained. Figure 6 shows the TPM reduction rate measured with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as an aerosol generating liquid containing nicotine. It is a figure showing a result. The horizontal axis of FIG. 6 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
 図6のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニットのサンプルを準備した。具体的には、この複数の霧化ユニットのサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM :%) in FIG. 6 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at ℃. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of immersion liquid (extract liquid) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, the multiple samples prepared in the above steps were subjected to automatic smoking using an automatic smoking machine (“Analytical Vaping Machine” manufactured by Borgwaldt) under “CRM (Coresta Recommended Method) 81 smoking conditions”. Ta. Incidentally, the smoking condition of CRM81 is that 55 cc of aerosol is inhaled over 3 seconds multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図6のTPM減少率(RTPM)は測定された。 The amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) shown in FIG. 6 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1) R TPM (%) = (1-TPM (201puff ~ 250puff) / TPM (1puff ~ 50puff)) x 100... (1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。 Here, TPM (Total Particle Molecule) indicates the total particulate matter collected by the Cambridge filter of the automatic smoking machine. "TPM (1puff to 50puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201puff to 250puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 In other words, the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
 図6から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図6の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 6, there is a proportional relationship between the amount of carbonized components contained in 1 g of extract and the TPM reduction rate. As can be seen from samples SA1 to SA4 in FIG. 6, when the amount of carbonized components contained in 1 g of extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
 続いて、実施形態1に係る霧化ユニット12の変形例について説明する。なお、以下の変形例及び他の実施形態において、上述した実施形態と同一又は対応する構成について、同一の符号を付して説明を適宜省略する場合がある。 Next, a modification of the atomization unit 12 according to the first embodiment will be described. In addition, in the following modified examples and other embodiments, the same code|symbol may be attached|subjected about the same code|symbol as the embodiment mentioned above about the structure which corresponds, and description may be abbreviate|omitted suitably.
<変形例1>
 図7は、実施形態1の変形例1に係る霧化ユニット12の縦断面図である。図8は、実施形態1の変形例1に係る霧化ユニット12の横断面図であり、図7のA2-A2線断面を示している。変形例1に係る霧化ユニット12は、各上流通路部21a,21bに配置されるフィルタ材60の態様のみが上記実施形態1と相違している。また、本変形例においても、フィルタ材60は香味成形体によって形成されている。
<Modification 1>
FIG. 7 is a longitudinal cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1. FIG. 8 is a cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1, and shows a cross section taken along line A2-A2 in FIG. The atomization unit 12 according to the first modification differs from the first embodiment only in the aspect of the filter material 60 disposed in each upstream passage section 21a, 21b. Also in this modification, the filter material 60 is formed of a flavor molded body.
 各上流通路部21a,21bにはそれぞれ、棒形状を有する複数のフィルタ材60が、各上流通路部21a,21bの横断面方向に沿って並列して配置されている。図7及び図8に示す例では、各フィルタ材60は中実な円柱形状を有しており、各上流通路部21a,21bの延在方向(Z方向)に沿って(すなわち、エアの流動方向に沿って)、各フィルタ材の軸方向が延在している。本変形例において、各フィルタ材60は、各上流通路部21a,21bの横断面方向(X方向、Y方向)に並列に配置されている。図8に示す例では、各上流通路部21a,21bに9個のフィルタ材60が3行3列のパターンで配置されているが、各上流通路部21a,21bに配置されるフィルタ材60の数や、その配置パターンは特に限定されない。 A plurality of rod-shaped filter materials 60 are arranged in parallel along the cross-sectional direction of each upstream passage section 21a, 21b. In the example shown in FIGS. 7 and 8, each filter material 60 has a solid cylindrical shape, and along the extending direction (Z direction) of each upstream passage section 21a, 21b (that is, air along the flow direction), the axial direction of each filter material extends. In this modification, each filter material 60 is arranged in parallel in the cross-sectional direction (X direction, Y direction) of each upstream passage portion 21a, 21b. In the example shown in FIG. 8, nine filter materials 60 are arranged in each upstream passage section 21a, 21b in a pattern of 3 rows and 3 columns. The number of 60 and the arrangement pattern thereof are not particularly limited.
 図8に示すように、各上流通路部21a,21bに並列配置されるフィルタ材60同士の間には、エアを流通させるエア流通路61Aが形成されており、エア流通路61Aに面するフィルタ材60の外面によってダスト捕捉面65が形成されている。 As shown in FIG. 8, an air flow passage 61A for circulating air is formed between the filter materials 60 arranged in parallel in each of the upstream passage portions 21a and 21b. A dust trapping surface 65 is formed by the outer surface of the filter material 60 .
 また、図7に示す符号25Aは、フィルタ材60の上流端601を支持する通気性の支持材である。符号25Bは、フィルタ材の下流端602を支持する通気性の支持材である。ここでいう上流端、下流端とは、エアの流動方向を基準とした場合の上流側の端部、下流側の端部を意味する。支持材25A,25Bは、協働して、各フィルタ材60の上流端601及び下流端602を軸方向に挟み込んだ状態でこれを支持している。これにより、各上流通路部21a,21bに複数のフィルタ材を配置する場合においても、これら複数のフィルタ材60を整列した状態で正規の位置に保持できる。また、支持材25A,25Bは通気性を有しているため、各上流通路部21a,21bに沿ったエアの流れが阻害されることを抑制できる。なお、図7及び図8で説明した香味成形体60においても、図4で説明したようなエア流通路61Aが軸方向に沿って延在していてもよい。 Further, reference numeral 25A shown in FIG. 7 is a breathable support material that supports the upstream end 601 of the filter material 60. Reference numeral 25B is a breathable support supporting the downstream end 602 of the filter material. The upstream end and downstream end herein mean an upstream end and a downstream end with respect to the flow direction of air. The support members 25A and 25B cooperate to support the upstream end 601 and the downstream end 602 of each filter material 60 while sandwiching them in the axial direction. Thereby, even when a plurality of filter materials 60 are arranged in each of the upstream passage portions 21a and 21b, the plurality of filter materials 60 can be maintained in a regular position in an aligned state. Moreover, since the supporting materials 25A and 25B have air permeability, it is possible to suppress the flow of air along the respective upstream passage portions 21a and 21b from being obstructed. In addition, also in the flavor molded object 60 demonstrated in FIG.7 and FIG.8, 61 A of air flow paths as demonstrated in FIG. 4 may extend along an axial direction.
 以上のように、本変形例においても、各上流通路部21a,21bに並列配置される各フィルタ材60同士の間にエア流通路61Aが形成されているため、エア流通路61Aを通過するエアにフィルタ材60の香味材料によって香味を付与できる。また、エア流通路61Aに面するフィルタ材60の外面によってダスト捕捉面65が形成されているため、エアに含まれるダストをダスト捕捉面65によって効率的に取り除くことができ、その結果、ユーザに吸引されるエアロゾルに含まれるダストの量を低減することが可能となる。 As described above, also in this modification, since the air flow passage 61A is formed between each of the filter materials 60 arranged in parallel in each of the upstream passage parts 21a and 21b, the air passes through the air flow passage 61A. Flavor can be imparted to the air by the flavor material of the filter material 60. Further, since the dust trapping surface 65 is formed by the outer surface of the filter material 60 facing the air flow path 61A, dust contained in the air can be efficiently removed by the dust trapping surface 65, and as a result, the user can It becomes possible to reduce the amount of dust contained in the aerosol that is sucked.
<変形例2>
 図9は、実施形態1の変形例2に係る霧化ユニット12の縦断面図である。図10は、実施形態1の変形例2に係る霧化ユニット12の横断面図であり、図9のA3-A3線断面を示している。変形例2に係る霧化ユニット12は、各上流通路部21a,21bに配置されるフィルタ材60の態様のみが上記変形例1と相違している。また、本変形例においても、フィルタ材60は香味成形体によって形成されている。
<Modification 2>
FIG. 9 is a longitudinal cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment. FIG. 10 is a cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment, and shows a cross section taken along the line A3-A3 in FIG. The atomization unit 12 according to the second modification differs from the first modification only in the aspect of the filter material 60 disposed in each upstream passage section 21a, 21b. Also in this modification, the filter material 60 is formed of a flavor molded body.
 各上流通路部21a,21bにはそれぞれ、板形状を有する複数のフィルタ材60が配置されている。各フィルタ材60は、各上流通路部21a,21bの延在方向(エアの流動方向、すなわちZ方向)に沿って延在している。 A plurality of filter materials 60 each having a plate shape are arranged in each of the upstream passage portions 21a and 21b. Each filter material 60 extends along the extending direction of each upstream passage section 21a, 21b (air flow direction, ie, Z direction).
 図9及び図10に示す例において、各フィルタ材60は、各上流通路部21a,21bの延在方向(エアの流動方向、すなわちZ方向)に沿って延在している。図9及び図10に示す例において、各フィルタ材60は各上流通路部21a,21bの延在方向に長尺な平板形状を有し、各上流通路部21a,21bの横断面(エアの流動方向と直交する方向、すなわちXY平面方向)に沿って並んで配置されている。より具体的には、各フィルタ材60の上流端601及び下流端602は、上述した支持材25A,25Bによって軸方向に挟み込まれた状態で位置決め固定されている。その結果、複数のフィルタ材60の各々は、互いに間隔をおいて対向するように並んで配置されている。そして、互いに対向配置されるフィルタ材60同士の間に形成された隙間によって、エアを流通させるためのエア流通路61Bが形成されるとともに、エア流通路61Bに面するフィルタ材60の外面によってダスト捕捉面65が形成されている。 In the example shown in FIGS. 9 and 10, each filter material 60 extends along the extending direction of each upstream passage section 21a, 21b (air flow direction, ie, Z direction). In the example shown in FIGS. 9 and 10, each filter material 60 has a flat plate shape that is elongated in the extending direction of each upstream passage section 21a, 21b, and the cross section of each upstream passage section 21a, 21b (air (ie, the XY plane direction). More specifically, the upstream end 601 and downstream end 602 of each filter material 60 are positioned and fixed in a state where they are sandwiched in the axial direction by the above-mentioned supporting materials 25A and 25B. As a result, each of the plurality of filter materials 60 is arranged side by side so as to face each other at intervals. An air flow path 61B for circulating air is formed by the gap formed between the filter materials 60 arranged to face each other, and the outer surface of the filter material 60 facing the air flow path 61B allows dust to be removed. A capture surface 65 is formed.
 以上のように、本変形例においては、各上流通路部21a,21bに対向配置される各フィルタ材60同士の間にエア流通路61Bが形成される。よって、エア流通路61Bを通過するエアにフィルタ材60の香味材料によって香味を付与できる。また、エアに含まれるダストをダスト捕捉面65によって効率的に取り除くことができ、その結果、ユーザに吸引されるエアロゾルに含まれるダストの量を低減することが可能となる。 As described above, in this modification, the air flow passage 61B is formed between each of the filter materials 60 that are arranged to face each other in each of the upstream passage portions 21a and 21b. Therefore, the flavor material of the filter material 60 can impart flavor to the air passing through the air flow path 61B. Further, dust contained in the air can be efficiently removed by the dust capturing surface 65, and as a result, it is possible to reduce the amount of dust contained in the aerosol sucked by the user.
<変形例3>
 図11は、実施形態1の変形例3に係る霧化ユニット12の縦断面図である。図12は、実施形態1の変形例3に係る霧化ユニット12の横断面図であり、図11のA4-A4線断面を示している。変形例3に係る霧化ユニット12は、各上流通路部21a,21bに配置されるフィルタ材60の態様のみが上記変形例1及び2と相違している。また、本変形例においても、フィルタ材60は香味成形体によって形成されている。
<Modification 3>
FIG. 11 is a longitudinal sectional view of the atomization unit 12 according to the third modification of the first embodiment. FIG. 12 is a cross-sectional view of the atomization unit 12 according to the third modification of the first embodiment, and shows a cross section taken along the line A4-A4 in FIG. 11. The atomization unit 12 according to Modification 3 differs from Modifications 1 and 2 only in the aspect of the filter material 60 disposed in each upstream passage section 21a, 21b. Also in this modification, the filter material 60 is formed of a flavor molded body.
 各上流通路部21a,21bには、全体として蛇腹シート形状を有するフィルタ材60が配置されている。図12に示すように、蛇腹シート形状を有するフィルタ材60は、各上流通路部21a,21bの延在方向(エアの流動方向、すなわちZ方向)に沿って延在する複数のシート部(パネル部)62と、各シート部62同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部63と、を含んで構成されている。上記のような蛇腹シート形態のフィルタ材60においては、稜線部63を介して接続されるシート部62同士の間には、エアを流通させるエア流通路61Cが形成される。そして、このエア流通路61Cは、各上流通路部21a,21bの延在方向(エアの流動方向、すなわちZ方向)に沿って延在している。また、本変形例におけるフィルタ材60は、エア流通路61Cに面するシート部62の外面によってダスト捕捉面65が形成されている。よって、本変形例に係る霧化ユニット12によれば、蛇腹シート形状を有するフィルタ材60のエア流通路61Cを通過するエアに対してフィルタ材60の香味材料によって香味を付与できる。また、エアに含まれるダストをダスト捕捉面65によって効率的に取り除くことができるため、ユーザに吸引されるエアロゾルに含まれるダストの量を低減することが可能となる。 A filter material 60 having an overall bellows sheet shape is arranged in each of the upstream passage portions 21a and 21b. As shown in FIG. 12, the filter material 60 having a bellows sheet shape includes a plurality of sheet parts ( The ridgeline portion 63 connects the sheet portions 62 to each other in a bellows-like manner and extends along the air flow direction. In the filter material 60 in the form of a bellows sheet as described above, an air flow path 61C through which air circulates is formed between the sheet parts 62 that are connected via the ridgeline part 63. The air flow passage 61C extends along the direction in which the upstream passage portions 21a and 21b extend (the air flow direction, that is, the Z direction). Further, in the filter material 60 in this modification, a dust trapping surface 65 is formed by the outer surface of the sheet portion 62 facing the air flow path 61C. Therefore, according to the atomization unit 12 according to this modification, the flavor material of the filter material 60 can impart flavor to the air passing through the air flow path 61C of the filter material 60 having a bellows sheet shape. Further, since the dust contained in the air can be efficiently removed by the dust capturing surface 65, it is possible to reduce the amount of dust contained in the aerosol sucked by the user.
 なお、図11に示すように、本変形例においても、フィルタ材60の上流端601及び下流端602が通気性を有する支持材25A,25Bによって位置決め固定されている。これにより、各上流通路部21a,21bに沿ったエアの流れを阻害せずに、シート形態の香味成形体60を正規の位置に位置決め保持することができる。 Note that, as shown in FIG. 11, also in this modification, the upstream end 601 and downstream end 602 of the filter material 60 are positioned and fixed by the breathable support members 25A and 25B. Thereby, the sheet-shaped flavor molded body 60 can be positioned and held at a regular position without obstructing the flow of air along each of the upstream passages 21a, 21b.
<変形例4>
 図13は、実施形態1の変形例4に係る霧化ユニット12の横断面図である。変形例4においては、短冊状シート片の形態を有する多数のフィルタ材60が各上流通路部21a,21bに充填されている。各フィルタ材60(短冊状シート片)は、例えば、長手方向が各上流通路部21a,21bに沿って(すなわち、エアの流動方向に沿って)延在するように整列配置されており、その上流端及び下流端が図11で説明したような支持材25A,25Bによって位置決めされていてもよい。本変形例においては、各フィルタ材60(短冊状シート片)同士の隙間によってエア流通路61Dが形成されており、エア流通路61Dを規定している各フィルタ材60の側面(外面)によってダスト捕捉面65が形成されている。そのため、各上流通路部21a,21bに流入したエアがエア流通路61Dを通過する際、フィルタ材60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。また、エアに含まれるダストをダスト捕捉面65によって効率的に取り除くことができるため、ユーザに吸引されるエアロゾルに含まれるダストの量を低減することが可能となる。なお、フィルタ材60としての短冊シート片は、エア通路20(各上流通路部21a,21b)に沿って整列させることなく充填するランダム配置としてもよい。
<Modification 4>
FIG. 13 is a cross-sectional view of the atomization unit 12 according to the fourth modification of the first embodiment. In the fourth modification, a large number of filter materials 60 in the form of strip-shaped sheet pieces are filled in each upstream passage section 21a, 21b. For example, each filter material 60 (rectangular sheet piece) is arranged so that its longitudinal direction extends along each upstream passage portion 21a, 21b (that is, along the air flow direction), The upstream end and downstream end thereof may be positioned by supporting members 25A and 25B as described in FIG. 11. In this modification, an air flow passage 61D is formed by the gap between each filter material 60 (rectangular sheet piece), and the side surface (outer surface) of each filter material 60 defining the air flow passage 61D prevents dust from being removed. A capture surface 65 is formed. Therefore, when the air that has flowed into each of the upstream passages 21a and 21b passes through the air flow passage 61D, the flavor components of the flavor material contained in the filter material 60 can be suitably imparted to the air. Further, since the dust contained in the air can be efficiently removed by the dust capturing surface 65, it is possible to reduce the amount of dust contained in the aerosol sucked by the user. Note that the strip sheet pieces serving as the filter material 60 may be arranged randomly and filled without being aligned along the air passage 20 (each upstream passage portion 21a, 21b).
<変形例5>
 図14は、実施形態1の変形例5に係る霧化ユニット12の横断面図である。変形例5に係る霧化ユニット12のフィルタ材60は、その軸方向に貫通する貫通孔としてのエア流通路61に加えて、側面(外面)にエア流通路としてのエア流通溝610が形成されている点で図2~4で説明したフィルタ材60と相違している。図14に示す態様において、フィルタ材60におけるエア流通溝610は、フィルタ材60の軸方向に沿って、その側面(外面)に設けられた溝である。エア流通溝610はフィルタ材60の上流端(前端)601から下流端(後端)602にわたって形成されており、エア流通溝610の表面によってダスト捕捉面65が形成されている。本変形例においては、エア流通路61及びエア流通溝610を通じてエアを円滑に流通させることができ、フィルタ材60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。また、エアに含まれるダストをダスト捕捉面65によって効率的に取り除くことができるため、ユーザに吸引されるエアロゾルに含まれるダストの量を低減することが可能となる。なお、本変形例において、フィルタ材60の側面(外面)に設けられるエア流通溝610の数は特に限定されない。但し、図14に示すように、フィルタ材60の側面(外面)に複数のエア流通溝610を形成することによって、エアの流通と、当該エアに対する香味の付与と、をより効率的に行うことができる。また、本変形例に係るフィルタ材60において、その内部を軸方向に貫通するエア流通路61を省略し、エア流通溝610のみを形成してもよい。
<Modification 5>
FIG. 14 is a cross-sectional view of the atomization unit 12 according to the fifth modification of the first embodiment. The filter material 60 of the atomization unit 12 according to the fifth modification has an air flow passage 61 as a through hole penetrating in the axial direction, and an air flow groove 610 as an air flow passage formed on the side surface (outer surface). It differs from the filter material 60 described in FIGS. 2 to 4 in that it is In the embodiment shown in FIG. 14, the air circulation groove 610 in the filter material 60 is a groove provided on the side surface (outer surface) of the filter material 60 along the axial direction. The air circulation groove 610 is formed from the upstream end (front end) 601 to the downstream end (rear end) 602 of the filter material 60, and the surface of the air circulation groove 610 forms a dust trapping surface 65. In this modification, air can be smoothly circulated through the air flow path 61 and the air flow groove 610, and the flavor components of the flavor material contained in the filter material 60 can be suitably imparted to the air. . Further, since the dust contained in the air can be efficiently removed by the dust capturing surface 65, it is possible to reduce the amount of dust contained in the aerosol sucked by the user. Note that in this modification, the number of air circulation grooves 610 provided on the side surface (outer surface) of the filter material 60 is not particularly limited. However, as shown in FIG. 14, by forming a plurality of air circulation grooves 610 on the side surface (outer surface) of the filter material 60, it is possible to more efficiently distribute air and impart flavor to the air. I can do it. In addition, in the filter material 60 according to this modification, the air flow passage 61 passing through the inside thereof in the axial direction may be omitted, and only the air flow groove 610 may be formed.
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。 Although the embodiments and modified examples of the present invention have been described in detail above, the present invention is not limited to such specific embodiments and modified examples, and within the scope of the gist of the present invention as described in the claims. , various modifications and changes are possible.
 例えば、上述までの実施形態及び変形例において、霧化ユニット12における上流通路部21a,21bに配置するフィルタ材60の一形態として、非たばこ基材及び香味材料を含む香味成形体を例に説明したが、これには限られない。すなわち、フィルタ材60は、上流通路部21a,21bを流れるエアに含まれるダストを捕捉(捕集)することができる限りにおいて種々の形態を採用することができる。例えば、フィルタ材60は、香味材料を含まない成形体として構成されていてもよい。この場合、フィルタ材60を、例えば、セラミック、合成ポリマー、パルプ等といった非たばこ基材によって形成する態様が一例として挙げられる。 For example, in the embodiments and modifications described above, a flavor molded body containing a non-tobacco base material and a flavor material is used as an example of the filter material 60 disposed in the upstream passages 21a and 21b of the atomization unit 12. Although explained, it is not limited to this. That is, the filter material 60 can adopt various forms as long as it can capture (collect) dust contained in the air flowing through the upstream passages 21a and 21b. For example, the filter material 60 may be configured as a molded body that does not contain flavoring material. In this case, an example is an embodiment in which the filter material 60 is formed of a non-tobacco base material such as ceramic, synthetic polymer, pulp, or the like.
 また、本実施形態に開示された各態様は、本実施形態に開示された他の態様と自由に組み合わせることができる。 Furthermore, each aspect disclosed in this embodiment can be freely combined with other aspects disclosed in this embodiment.
10・・・吸引具
11・・・電源ユニット
12・・・霧化ユニット
20・・・エア通路
21a,21b・・・上流通路部
22・・・負荷通路部
23・・・下流通路部
30・・・ウィック
40・・・負荷
50・・・液体収容部
60・・・フィルタ材
Le・・・エアロゾル生成液
10... Suction tool 11... Power supply unit 12... Atomization unit 20... Air passages 21a, 21b... Upstream passage section 22... Load passage section 23... Downstream passage section 30 ...Wick 40...Load 50...Liquid storage section 60...Filter material Le...Aerosol generation liquid

Claims (10)

  1.  たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、
     エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
     前記エア通路のうち、前記負荷よりもエアの流動方向で上流側に位置する上流通路部に配置され、当該上流通路部を流れるエアに含まれるダストを捕捉するフィルタ材と、
     を備える、
     吸引具の霧化ユニット。
    a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components;
    an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
    A filter material that is disposed in an upstream passage section of the air passageway that is located upstream of the load in the air flow direction, and that captures dust contained in the air flowing through the upstream passage section;
    Equipped with
    Atomization unit of suction tool.
  2.  前記フィルタ材は、前記上流通路部に露出されたダスト捕捉面、を有する成形体として形成されている、
     請求項1に記載の吸引具の霧化ユニット。
    The filter material is formed as a molded body having a dust trapping surface exposed to the upstream passage.
    The atomization unit of the suction tool according to claim 1.
  3.  前記フィルタ材は、非たばこ基材及び香味材料を含む香味成形体である、
     請求項2に記載の吸引具の霧化ユニット。
    The filter material is a flavor molded body containing a non-tobacco base material and a flavor material.
    The atomization unit of the suction tool according to claim 2.
  4.  前記フィルタ材は、前記上流通路部に沿って延在する棒形状を有し、且つ、その内部に、当該フィルタ材の軸方向に貫通して延びるとともにエアを流通させる中空状のエア流通路を有し、
     前記エア流通路の内面が前記ダスト捕捉面として形成されている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The filter material has a rod shape extending along the upstream passage section, and has a hollow air flow passage therein that extends through the filter material in the axial direction and allows air to flow therethrough. has
    an inner surface of the air flow passage is formed as the dust trapping surface;
    The atomization unit of the suction tool according to claim 2 or 3.
  5.  前記フィルタ材は、前記上流通路部に沿って延在する棒形状を有し、且つ、その側面に、当該フィルタ材の軸方向に延びるとともにエアを流通させるエア流通溝を有し、
     前記エア流通溝の表面が前記ダスト捕捉面として形成されている、
     請求項2から4の何れか一項に記載の吸引具の霧化ユニット。
    The filter material has a rod shape extending along the upstream passage portion, and has an air circulation groove on a side surface thereof that extends in the axial direction of the filter material and allows air to circulate;
    a surface of the air circulation groove is formed as the dust trapping surface;
    The atomization unit of the suction tool according to any one of claims 2 to 4.
  6.  前記フィルタ材は、前記上流通路部に沿って延在する棒形状を有しており、
     前記上流通路部におけるエアの流動方向と直交する横断面方向に沿って、複数の前記フィルタ材が並列して配置されており、
     並列配置される前記フィルタ材の外面間にエアを流通させるエア流通路が形成されており、
     前記エア流通路に面する前記フィルタ材の外面によって前記ダスト捕捉面が形成されている、
     請求項2から5の何れか一項に記載の吸引具の霧化ユニット。
    The filter material has a rod shape extending along the upstream passage section,
    A plurality of the filter materials are arranged in parallel along a cross-sectional direction perpendicular to the flow direction of air in the upstream passage,
    An air flow path is formed for circulating air between the outer surfaces of the filter materials arranged in parallel,
    the dust trapping surface is formed by an outer surface of the filter material facing the air flow path;
    The atomization unit of the suction tool according to any one of claims 2 to 5.
  7.  前記フィルタ材は、全体として蛇腹シート形状を有しており、且つ、前記上流通路部におけるエアの流動方向に沿って延在する複数のシート部と、各シート部同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部と、を含んで構成され、
     前記稜線部を介して接続される前記シート部同士の間にエアを流通させるエア流通路が形成され、前記エア流通路に面する前記シート部の外面によって前記ダスト捕捉面が形成されている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The filter material has a bellows sheet shape as a whole, and connects each sheet portion to a plurality of sheet portions extending along the air flow direction in the upstream passage portion in a bellows shape. and a ridgeline extending along the flow direction of the air,
    An air flow passage for circulating air is formed between the sheet parts connected via the ridgeline part, and the dust trapping surface is formed by an outer surface of the sheet part facing the air flow passage.
    The atomization unit of the suction tool according to claim 2 or 3.
  8.  前記フィルタ材は、前記上流通路部におけるエアの流動方向に沿って延在する板形状を有しており、
     前記上流通路部におけるエアの流動方向と直交する横断面に沿って、複数の前記フィルタ材が互いに間隔をおいて対向するように並んで配置されており、
     対向配置される前記フィルタ材同士の間にエアを流通させるエア流通路が形成されており、
     前記エア流通路に面する前記フィルタ材の外面によって前記ダスト捕捉面が形成されている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The filter material has a plate shape extending along the flow direction of air in the upstream passage,
    A plurality of the filter materials are arranged side by side so as to face each other at intervals along a cross section perpendicular to the air flow direction in the upstream passage section,
    An air flow path for circulating air is formed between the filter materials arranged oppositely,
    the dust trapping surface is formed by an outer surface of the filter material facing the air flow path;
    The atomization unit of the suction tool according to claim 2 or 3.
  9.  請求項1から8の何れか一項に記載の霧化ユニットと、
     前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、
     を備える、吸引具。
    The atomization unit according to any one of claims 1 to 8,
    a power supply unit having a power supply that supplies power to the load, and to which the atomization unit is detachable;
    A suction device equipped with.
  10.  吸引具の霧化ユニットの製造方法であって、
     液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記エア通路を流れるエアに含まれるダストを捕捉するためのフィルタ材と、を準備する準備工程と、
     前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記負荷及び前記フィルタ材を配置する組立工程と、
     を有し、
     前記組立工程において、
     前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、
     前記フィルタ材を、前記負荷よりもエアの流動方向で上流側に位置する上流通路部に配置する、
     吸引具の霧化ユニットの製造方法。
    A method for manufacturing an atomization unit of a suction tool, the method comprising:
    an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a preparation step for preparing a filter material for capturing dust contained in the flowing air;
    an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the filter material in the air passage;
    has
    In the assembly process,
    The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and
    disposing the filter material in an upstream passageway located upstream of the load in the air flow direction;
    A method for manufacturing an atomizing unit of a suction tool.
PCT/JP2022/016818 2022-03-31 2022-03-31 Atomization unit, method for manufacturing same, and inhalation tool WO2023188377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016818 WO2023188377A1 (en) 2022-03-31 2022-03-31 Atomization unit, method for manufacturing same, and inhalation tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016818 WO2023188377A1 (en) 2022-03-31 2022-03-31 Atomization unit, method for manufacturing same, and inhalation tool

Publications (1)

Publication Number Publication Date
WO2023188377A1 true WO2023188377A1 (en) 2023-10-05

Family

ID=88200403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016818 WO2023188377A1 (en) 2022-03-31 2022-03-31 Atomization unit, method for manufacturing same, and inhalation tool

Country Status (1)

Country Link
WO (1) WO2023188377A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041654A (en) * 1998-08-04 2000-02-15 Japan Tobacco Inc Electric heating control system for flavor-productive article
WO2016121143A1 (en) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 Non-combustible flavor inhaler, flavor source unit, and method for manufacturing non-combustible flavor inhaler member
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
JP2020505041A (en) * 2017-01-31 2020-02-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator
WO2020234916A1 (en) * 2019-05-17 2020-11-26 日本たばこ産業株式会社 Tobacco rod for flavor inhaler
JP2022033996A (en) * 2017-06-22 2022-03-02 日本たばこ産業株式会社 Flavor generating segment, and flavor generating article and flavor inhalation system which are equipped therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041654A (en) * 1998-08-04 2000-02-15 Japan Tobacco Inc Electric heating control system for flavor-productive article
WO2016121143A1 (en) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 Non-combustible flavor inhaler, flavor source unit, and method for manufacturing non-combustible flavor inhaler member
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
JP2020505041A (en) * 2017-01-31 2020-02-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator
JP2022033996A (en) * 2017-06-22 2022-03-02 日本たばこ産業株式会社 Flavor generating segment, and flavor generating article and flavor inhalation system which are equipped therewith
WO2020234916A1 (en) * 2019-05-17 2020-11-26 日本たばこ産業株式会社 Tobacco rod for flavor inhaler

Similar Documents

Publication Publication Date Title
CA3104663C (en) Aerosol generating article and aerosol generating device comprising same
CN109688855A (en) Container
JP7139451B2 (en) Non-combustion heating smoking article, electrically heated smoking system, and method of manufacturing non-combustion heating smoking article
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188376A1 (en) Atomization unit, method for manufacturing same, and inhalation apparatus
WO2023188375A1 (en) Atomizing unit and method for manufacturing same, and inhaler
WO2023188374A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188373A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188372A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188327A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188328A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023248475A1 (en) Atomization unit and method for manufacturing same, and inhalation tool
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023248476A1 (en) Atomizing unit and method for manufacturing same, and enhaler
WO2023188329A1 (en) Atomization unit, inhalation implement, and method for producing atomization unit
WO2023112292A1 (en) Atomization unit, inhalation device, and atomization unit production method
WO2023162197A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit
WO2023105746A1 (en) Inhalation tool and method for manufacturing atomizing unit for inhalation tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935516

Country of ref document: EP

Kind code of ref document: A1