WO2023112292A1 - Atomization unit, inhalation device, and atomization unit production method - Google Patents

Atomization unit, inhalation device, and atomization unit production method Download PDF

Info

Publication number
WO2023112292A1
WO2023112292A1 PCT/JP2021/046676 JP2021046676W WO2023112292A1 WO 2023112292 A1 WO2023112292 A1 WO 2023112292A1 JP 2021046676 W JP2021046676 W JP 2021046676W WO 2023112292 A1 WO2023112292 A1 WO 2023112292A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
atomization unit
aerosol
tobacco
molded body
Prior art date
Application number
PCT/JP2021/046676
Other languages
French (fr)
Japanese (ja)
Inventor
友一 渡辺
貴久 工藤
光史 松本
勝太 山口
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/046676 priority Critical patent/WO2023112292A1/en
Publication of WO2023112292A1 publication Critical patent/WO2023112292A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to an atomization unit, a suction tool, and a method for manufacturing an atomization unit.
  • a non-combustion heating type suction tool there is a liquid storage part that stores a predetermined liquid, and an electric load that introduces the liquid in the liquid storage part and atomizes the introduced liquid to generate an aerosol. and , wherein powder of tobacco leaves is dispersed in the liquid of the liquid container (see, for example, Patent Document 1).
  • Patent Document 2 discloses a basic configuration of a non-combustion heating suction tool.
  • Patent Document 3 discloses information on tobacco leaf extracts.
  • Non-Patent Document 1 discloses a technique related to nicotine.
  • the present invention has been made in view of the above, and one of the objects thereof is to provide a technique capable of suppressing the movement of the liquid adhering to the aerosol flow path.
  • an atomization unit includes an atomization unit that atomizes a liquid to generate an aerosol, and an aerosol flow path through which the aerosol generated by the atomization unit passes. and a tobacco molded body disposed in the aerosol flow path, wherein the tobacco molded body has an exposed surface exposed to the aerosol flow path, and the exposed surface includes a liquid capturing portion.
  • the liquid adhering to the aerosol flow path is captured by the liquid capturing portion of the tobacco molded body, and movement of the liquid can be suppressed.
  • a suction tool that prevents the liquid from being sucked into the user, giving the user an undesirable taste, or adversely affecting the operation of the user.
  • the tobacco molded body may have a hollow portion, and the exposed surface may be formed as an inner surface of the hollow portion.
  • the exposed surface is formed so as to surround the aerosol channel, it is possible to efficiently capture the liquid adhering to the aerosol channel.
  • the tobacco molded body may have at least one of a folded structure and a rolled structure.
  • the surface area of the liquid capturing portion per volume of the aerosol flow path can be increased, and the liquid can be efficiently captured.
  • the liquid trapping portion may be formed in a portion having a density of 1 g/cm 3 or less.
  • the liquid capturing section can more efficiently capture the liquid adhering to the aerosol flow path.
  • the arithmetic mean surface roughness Sa of the liquid trapping portion may be 30 ⁇ m or more and 1000 ⁇ m or less.
  • the liquid capturing section can more efficiently capture the liquid adhering to the aerosol flow path.
  • the atomization unit includes a liquid storage section that stores the liquid, and a wall section that defines the liquid storage section includes a first hole having a first inner diameter and the first hole.
  • a second hole having a second inner diameter larger than the first inner diameter may be formed, and the tobacco molded body may be arranged in the second hole.
  • the liquid containing portion, the aerosol flow path, and the tobacco molded body can be arranged close to each other, and the atomization unit can be made compact.
  • the atomizing liquid may further include at least one of tobacco extract, natural nicotine, and synthetic nicotine.
  • the flavor can be adjusted by atomizing the natural nicotine or synthetic nicotine contained in the tobacco extract via the atomizing liquid.
  • a suction tool according to one aspect of the present invention includes the atomizing unit for a suction tool according to any one of aspects 1 to 7 above.
  • the liquid adhering to the aerosol flow path is captured by the liquid capturing portion of the tobacco molded body, and movement of the liquid can be suppressed. Accordingly, it is possible to prevent the liquid from being sucked by the user, giving an undesirable taste, and adversely affecting the operation of the suction tool.
  • a method for manufacturing an atomization unit according to one aspect of the present invention is a method for manufacturing an atomization unit for a suction device according to aspects 1 to 7, wherein the shape of the aerosol flow path is molding said tobacco molded body into a shape based on.
  • the liquid adhering to the aerosol flow path is captured by the liquid capturing portion of the tobacco molded body, and movement of the liquid can be suppressed.
  • a suction tool that prevents the liquid from being sucked and giving an undesirable taste to the user and from adversely affecting the operation of the suction tool.
  • FIG. 4 is a schematic cross-sectional view showing the main part of the atomization unit of the suction tool according to the embodiment;
  • FIG. 3 is a diagram schematically showing a cross section taken along line A1-A1 of FIG. 2;
  • FIG. 3 is a diagram schematically showing a cross section taken along line A2-A2 of FIG. 2;
  • FIG. 3 is a schematic perspective view of a molded body according to the embodiment;
  • FIG. 4B is a diagram schematically showing a BB line cross section of FIG. 4A.
  • FIG. 4 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract. It is a flow chart for explaining a manufacturing method concerning the above-mentioned embodiment.
  • a suction tool 10 according to an embodiment of the present invention will be described below with reference to the drawings. It should be noted that the drawings of the present application are schematically illustrated in order to facilitate understanding of the features of the embodiments, and the dimensional ratios and the like of each component are not necessarily the same as the actual ones. In addition, XYZ orthogonal coordinates are illustrated in the drawings of the present application as needed.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to this embodiment.
  • the suction tool 10 according to the present embodiment is a non-combustion heating suction tool, specifically, a non-combustion heating electronic cigarette.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10 .
  • the suction tool 10 has a “longitudinal direction (the direction of the central axis CL),” a “width direction” perpendicular to the longitudinal direction, and a “thickness direction” perpendicular to the longitudinal direction and the width direction. , and has an external shape.
  • the dimensions of the suction tool 10 in the longitudinal direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction corresponds to the longitudinal direction
  • the X-axis direction corresponds to It corresponds to the width direction
  • the Y-axis direction corresponds to the thickness direction.
  • the suction tool 10 has a power supply unit 11 and an atomization unit 12.
  • the power supply unit 11 is detachably connected to the atomization unit 12 .
  • a battery as a power supply, a control device, and the like are arranged inside the power supply unit 11.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the atomization unit 12 is provided with a discharge port 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13 .
  • air that is, air
  • the user of the suction tool 10 can suck the air discharged from the discharge port 13 .
  • the power supply unit 11 is provided with a sensor that outputs the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13 .
  • the sensor senses the start of sucking air and notifies the control device, which starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes sucking air, the sensor senses the finish of sucking air and informs the control device, and the control device stops energizing the load 40 .
  • the power supply unit 11 may be provided with an operation switch for transmitting an air suction start request and an air suction end request to the control device by user's operation.
  • the user can operate the operation switch to transmit an air suction start request or a suction end request to the control device.
  • the control device Upon receiving the air suction start request and suction end request, the control device starts and terminates energization of the load 40 .
  • the configuration of the power supply unit 11 as described above is the same as that of the power supply unit of a known suction device as exemplified in Patent Document 2, for example, so further detailed description will be omitted.
  • FIG. 2 is a schematic cross-sectional view showing the main part of the atomization unit 12 of the suction tool 10.
  • FIG. 2 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL.
  • 3A and 3B are diagrams schematically showing A1-A1 line cross-sections and A2-A2 line cross-sections (that is, cross-sections cut along a cutting plane normal to the central axis CL) of FIG. 2, respectively.
  • the atomization unit 12 will be described with reference to FIGS. 2, 3A and 3B.
  • the atomization unit 12 includes a plurality of walls (walls 70a to 70f, walls 710, and 720) extending in the longitudinal direction (direction of the central axis CL) and extending in the width direction. A plurality of walls (walls 71a to 71c, wall 730) are provided.
  • the atomization unit 12 also includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid container 50 and a molding 60 .
  • the air passage 20 is a passage through which air passes when the user inhales air (that is, inhales aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage portion, a load passage portion 22 and an aerosol passage 23 .
  • the upstream passage portion according to the present embodiment includes a plurality of upstream passage portions, specifically, an upstream passage portion 21a (“first upstream passage portion”) and an upstream passage portion 21b. (“second upstream passage portion”).
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the direction of air flow). Downstream end portions of the upstream passage portions 21 a and 21 b communicate with the load passage portion 22 .
  • the load passage portion 22 is a passage portion in which the load 40 is arranged.
  • the aerosol flow path 23 is a passage portion arranged on the downstream side (downstream side in the air flow direction) of the load passage portion 22 . An upstream end portion of the aerosol flow path 23 communicates with the load passage portion 22 . Further, the downstream end of the aerosol channel 23 communicates with the discharge port 13 described above. Air that has passed through the aerosol flow path 23 is discharged from the discharge port 13 .
  • the upstream passage portion 21a is provided in a region surrounded by the wall portion 70a, the wall portion 70b, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the upstream passage portion 21b is provided in a region surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the load passage portion 22 is provided in a region surrounded by the wall portion 70a, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71b, and the wall portion 71c.
  • the aerosol channel 23 includes a first aerosol passage 231 and a second aerosol passage 232.
  • the first aerosol passage 231 and the second aerosol passage 232 are connected so that the aerosol can move.
  • the first aerosol passage 231 is provided in a region surrounded by the tubular wall portion 710 .
  • the second aerosol passage 232 is provided in a region surrounded by the cylindrical shaped body 60 .
  • a hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage portion 21a through the hole 72a, and flows into the upstream passage portion 21b through the hole 72b. Further, holes 72c and 72d are provided in the wall portion 71b. Air passing through the upstream passage portion 21a flows into the load passage portion 22 through the hole 72c, and air passing through the upstream passage portion 21b flows into the load passage portion 22 through the hole 72d.
  • the direction of air flow in the upstream passage portions 21 a and 21 b is opposite to the direction of air flow in the aerosol channel 23 .
  • the direction of air flow in the upstream passages 21a and 21b is the -Z direction
  • the direction of air flow in the aerosol channel 23 is the Z direction.
  • the upstream passage portion 21a and the upstream passage portion 21b according to the present embodiment are arranged such that the liquid storage portion 50 is formed by the upstream passage portion 21a and the upstream passage portion 21b. are arranged adjacent to the liquid containing portion 50 so as to sandwich the .
  • the upstream passage portion 21a has the liquid storage portion 50 therebetween in a cross-sectional view cut along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction).
  • the upstream passage portion 21b is arranged on the other side (the side in the X direction) across the liquid storage portion 50 in this cross-sectional view.
  • the upstream passage portion 21 a is arranged on one side of the liquid containing portion 50 in the width direction of the suction tool 10
  • the upstream passage portion 21 b is arranged on the side of the liquid containing portion 50 in the width direction of the suction tool 10 . located on the other side.
  • the wick 30 is a member for introducing the liquid in the liquid storage section 50 to the load 40 in the load passage section 22 .
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function. 50 liquids are introduced to the load 40;
  • the load 40 is an electrical load for introducing the liquid in the liquid containing portion 50 and atomizing the introduced liquid to generate an aerosol.
  • a specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator can be used.
  • a heater is used as an example of the load 40 .
  • a heating resistor that is, a heating wire
  • a ceramic heater that is, a ceramic heater, a dielectric heating type heater, or the like
  • a heating resistor is used as an example of this heater.
  • the heater as the load 40 has a coil shape. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around a wick 30 .
  • the load 40 is arranged in the wick 30 portion inside the load passage portion 22 as an example.
  • the load 40 is electrically connected to the power supply and the control device of the power supply unit 11 described above, and heats up when electricity from the power supply is supplied to the load 40 (that is, heats up when energized). Also, the operation of the load 40 is controlled by a control device.
  • the load 40 heats the liquid in the liquid containing portion 50 introduced into the load 40 through the wick 30 to atomize the liquid to generate an aerosol.
  • the configurations of the wick 30 and the load 40 are the same as the wick and the load used in a known suction tool as exemplified in Patent Document 2, for example, so further detailed description will be omitted.
  • the liquid storage part 50 is a part for storing an atomization liquid such as tobacco leaf extract. This liquid is hereinafter referred to as an atomizing liquid Ld.
  • the atomizing liquid Ld contains the flavor component of tobacco leaves.
  • the liquid storage portion 50 according to the present embodiment is provided in a region surrounded by the wall portion 70b, the wall portion 70c, the wall portion 70e, the wall portion 70f, the wall portion 70g, the wall portion 71a, and the wall portion 71b. defined by a wall.
  • Wall portion 70 g includes wall portion 710 , wall portion 720 , and wall portion 730 .
  • the liquid containing portion 50 is provided with a through hole having cylindrical wall portions 710 and 720 as inner surfaces along the direction of the central axis CA.
  • the aerosol flow path 23 described above is provided in the through hole.
  • the wall portion 710 and the wall portion 720 of the present embodiment are cylindrical with the center axis CL as an axis.
  • the inner surface of the wall portion 710 is the inner surface of the first hole H1 having the first inner diameter W1.
  • the inner surface of the wall portion 720 is the inner surface of the second hole H2 having the second inner diameter W2.
  • the second inner diameter W2 is larger than the first inner diameter W1, and the compact 60 is arranged in the second hole H2.
  • the inner diameter is the maximum diameter in the cross section of the hole.
  • the second hole H2 is formed downstream of the aerosol flow channel 23 rather than the first hole H1, and thus the compact 60 is arranged downstream of the aerosol flow channel 23.
  • the molded body 60 may be provided on the wick 30 side of the aerosol channel 23 or may be provided in the central portion of the aerosol channel. Also, the molded body 60 can be provided in any range of the aerosol flow path 23, for example, it may be provided over the wall portion 71a on the downstream side from the central portion. Since the first inner diameter W1 and the second inner diameter W2 are different, the walls 710 and 720 are physically connected by the wall 730 formed along the XY plane.
  • the wall portion 70g defining the liquid containing portion 50 has a first hole H1 having a first inner diameter W1 and a second inner diameter W2 larger than the first inner diameter W1.
  • a through hole including the second hole H2 is formed, and the compact 60 is arranged in the second hole H2.
  • the atomizing liquid Ld is preferably a tobacco raw material extract.
  • Tobacco raw materials refer to raw materials derived from tobacco plants such as tobacco leaves, backbones, stems and roots.
  • tobacco leaf broadly includes core bones, but in the following embodiments, the mesophyll portion called lamina is referred to as tobacco leaf.
  • the lamina is a particularly fragrant portion, and the atomizing liquid Ld is more preferably tobacco leaf extract.
  • a liquid containing a flavor component extracted from the tobacco material such as tobacco leaves in a predetermined solvent can be used as the extract of the tobacco material such as tobacco leaves.
  • the specific type of the predetermined solvent is not particularly limited, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, Alternatively, a liquid containing two or more substances selected from this group can be used. Glycerin and propylene glycol can be used as examples of predetermined solvents.
  • tobacco leaf flavor components contained in the atomizing liquid Ld include natural nicotine and neophytadiene.
  • the atomizing liquid Ld may contain at least one of natural nicotine and synthetic nicotine instead of or in addition to flavor components extracted from tobacco materials such as tobacco leaves.
  • nicotine contained in the atomizing liquid Ld may be natural nicotine alone or synthetic nicotine alone. , both natural and synthetic nicotine.
  • natural nicotine is generally considered to be cheaper than synthetic nicotine
  • the manufacturing cost of the inhaler 10 is generally lower when natural nicotine is used than when synthetic nicotine is used. can be made cheaper.
  • natural nicotine contained in the atomizing liquid Ld may be Synthetic nicotine is preferably used in conjunction with or in place of natural nicotine.
  • Natural nicotine When natural nicotine is used as the nicotine contained in the atomizing liquid Ld, natural nicotine extracted and refined from tobacco leaves can be used as the natural nicotine.
  • a well-known technique as exemplified in Non-Patent Document 1 can be applied, and detailed description thereof will be omitted.
  • the tobacco leaf extract is purified to remove components other than natural nicotine from the tobacco leaf extract as much as possible, thereby reducing natural nicotine. Purified and natural nicotine with this enhanced purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the liquid for atomization Ld may be 99.9 wt% or more (that is, in this case, the impurities contained in the natural nicotine ( ingredients other than natural nicotine) is less than 0.1 wt%).
  • the synthetic nicotine when synthetic nicotine is used as the nicotine contained in the atomizing liquid Ld, nicotine produced by chemical synthesis using chemical substances can be used as the synthetic nicotine.
  • the purity of this synthetic nicotine may also be 99.9 wt% or more, like natural nicotine.
  • the method for producing synthetic nicotine is not particularly limited, and known production methods can be used.
  • the ratio (% by weight (wt %)) of at least one of natural nicotine and synthetic nicotine contained in the atomizing liquid Ld of the liquid storage unit 50 is not particularly limited, but is, for example, 0.1 wt % or more. Values selected from the range up to 0.5 wt% can be used.
  • FIG. 4A is a schematic perspective view of the molded body 60
  • FIG. 4B is a cross-sectional view taken along line BB of FIG. 4A.
  • the molded body 60 is formed by solidifying tobacco raw materials such as tobacco leaves into a predetermined shape.
  • a molded body 60 according to the present embodiment has a first surface 61, a second surface 62 facing the first surface 61, and a connection surface 63 connecting the first surface 61 and the second surface 62.
  • the molded body 60 has a cylindrical main body, the first surface 61 corresponds to the bottom surface, and the connecting surface 63 corresponds to the cylindrical surface.
  • An opening 610 is formed in the first surface 61 and the second surface 62, and a hollow portion 600 passing through the molded body 60 is formed.
  • An inner surface 620 of the hollow portion 600 is an exposed surface exposed to the aerosol flow path 23 (FIG. 2).
  • a liquid capturing portion CP is formed on this exposed surface. Since the liquid capturing part CP is arranged on the inner surface 620 of the hollow part 600, the liquid capturing part CP can be arranged so as to surround the aerosol channel 23, and the liquid in the aerosol channel 23 can be efficiently captured. can be done.
  • the shape and size of the liquid capturing part CP are not particularly limited as long as it is the surface of a member that absorbs or retains liquid.
  • the surface of tobacco leaves or residues of flavor components extracted from tobacco leaves absorbs liquid, and thus functions as a liquid capture portion CP.
  • the liquid capturing portion CP is preferably formed in a portion of the compact 60 where the density is 1 g/cm 3 or less. This is because the lower the density, the more efficiently the liquid tends to be absorbed. In order to efficiently absorb the liquid, it is preferable that the surface roughness of the liquid trapping portion CP is within an appropriate range.
  • the liquid trapping portion CP preferably has an arithmetic mean surface roughness Sa of 30 ⁇ m or more and 1000 ⁇ m or less, more preferably 30 ⁇ m or more and 500 ⁇ m or less, and even more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the shape of the molded body 60 is not particularly limited as long as the surface that functions as the liquid capturing part CP is exposed to the aerosol flow path 23 .
  • the molded body 60 may have a plurality of through-holes each serving as a hollow portion.
  • the shape of the wall surface that defines the hollow portion is not particularly limited, and it may have the shape of the side surface of a polygonal prism as well as the cylindrical surface.
  • the molded body 60 may have a honeycomb structure.
  • the molded body 60 does not necessarily require a hollow portion 600, and may be, for example, a rod-like shape (that is, a shape whose length is longer than its width) extending in a predetermined direction, or a cubic shape (having sides of the same length).
  • the liquid capturing portion CP preferably has at least one of a folded structure and a wound structure.
  • a folded structure is a structure that includes one or more fold lines.
  • the wound structure is a structure in which the sheet-shaped molded bodies 60 overlap in the radial direction.
  • the sheet-shaped molded body 60 may be folded into a bellows shape, or may be wound so that the cross section perpendicular to the rotating shaft has a spiral shape and placed in the atomization unit 12 .
  • the number of molded bodies 60 arranged in the atomization unit 12 is not particularly limited as long as the surface that functions as the liquid capturing part CP is exposed in the aerosol flow path 23 .
  • the size of the molded body 60 is not particularly limited as long as the surface that functions as the liquid capturing portion CP is exposed to the aerosol channel 23 .
  • Specific values of the width (that is, outer diameter) (W), which is the length in the lateral direction of the molded body 60, and the total length (L), which is the length in the longitudinal direction of the molded body 60, are particularly limited.
  • an example of the numerical value is as follows. That is, as the width (W) of the molded body 60, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used.
  • the total length (L) of the molded body 60 a value selected from the range of, for example, 5 mm or more and 50 mm or less can be used. However, these values are merely examples of the width (W) and the total length (L) of the molded body 60, and the width (W) and the total length (L) of the molded body 60 are suitable for the size of the suction tool 10. value should be set.
  • the size and shape of the hollow portion 600 of the molded body 60 are not particularly limited as long as the user can inhale the aerosol through the aerosol flow path 23 .
  • the cross-sectional shape and inner diameter of the hollow portion 600 should be substantially the same as the cross-sectional shape and inner diameter of the first aerosol flow path 231 defined by the wall portion 710 from the viewpoint of efficiently inhaling the aerosol. preferable.
  • the density (mass per unit volume) of the compact 60 is, for example, 1100 mg/cm 3 or more and 1450 mg/cm 3 or less.
  • the density of the compact 60 is not limited to this, and may be less than 1100 mg/cm 3 or greater than 1450 mg/cm 3 .
  • the suction using the suction tool 10 is performed as follows. First, when the user starts sucking air, the air passes through the upstream passage portions 21 a and 21 b of the air passage 20 and flows into the load passage portion 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage portion 22 . This aerosol contains the flavor component contained in the atomizing liquid Ld. The air to which the aerosol has been added passes through the aerosol flow path 23 and is discharged from the discharge port 13 to be sucked by the user.
  • the atomization unit 12 is arranged in a load 40 that atomizes the atomizing liquid Ld to generate an aerosol, an aerosol channel 23 through which the aerosol generated by the load 40 passes, and the aerosol channel 23.
  • the molded body 60 is formed with an inner surface 620 exposed to the aerosol flow path 23, and the inner surface 620 includes the liquid capturing portion CP.
  • movement of the liquid adhering to the aerosol channel 23 can be suppressed.
  • the amount (mg) of the carbonized component contained in 1 g of the extract used as the atomizing liquid Ld is preferably 6 mg or less, more preferably 3 mg or less.
  • carbonized component refers to a component that becomes a carbide when heated to 250°C.
  • carbonized component refers to a component that does not form a carbide at a temperature of less than 250°C, but that forms a carbide when the temperature is maintained at 250°C for a predetermined period of time.
  • the “amount (mg) of carbonized components contained in 1 g of the extract” can be measured, for example, by the following method. First, a predetermined amount (g) of extract is prepared. Next, this extract is heated to 180° C. to volatilize the solvent (liquid component) contained in the extract, thereby obtaining a “residue composed of non-volatile components”. The residue is then heated to 250° C. to carbonize the residue to obtain a carbide. The amount (mg) of this carbide is then measured. By the above method, the amount (mg) of charcoal contained in a predetermined amount (g) of liquid extract can be measured. The amount (mg) of the component can be calculated.
  • FIG. 5 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of the extract.
  • the horizontal axis of FIG. 5 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate (R TPM ) (%).
  • the TPM reduction rate (R TPM : %) in FIG. 5 was measured by the following method. First, a plurality of suction tool samples having different amounts of carbonized components contained in 1 g of the extract were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples of the plurality of suction tools. These five samples were prepared by the following steps.
  • Step 1 20 (wt%) of potassium carbonate in terms of dry weight was added to tobacco raw material composed of tobacco leaves, and then heat distillation treatment was performed.
  • the distillation residue after the heat distillation treatment is immersed in water of 15 times the weight of the tobacco raw material before the heat distillation treatment for 10 minutes, dehydrated with a dehydrator, and then dried with a dryer to obtain tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in step 1 was washed with water to prepare a tobacco residue containing a small amount of charcoal.
  • Step 3 25 g of an immersion liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extract liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the immersion liquid was raised to 60. °C and allowed to stand. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized component eluted into the immersion liquid (extract) was varied.
  • an immersion liquid propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%
  • the CRM 81 smoking condition is a condition in which 55 cc of aerosol is inhaled over 3 seconds, and is performed multiple times every 30 seconds.
  • the amount of total particulate matter collected by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate (R TPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) in FIG. 5 was measured by the above method.
  • R TPM (%) (1-TPM (201 puff to 250 puff) / TPM (1 puff to 50 puff)) x 100 (1)
  • TPM Total Particle Molecule
  • TPM (1 puff to 50 puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
  • TPM (201 puff to 250 puff) indicates the amount of total particulate matter captured by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate (R TPM ) in Equation (1) is defined as "the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine. 1 minus the value obtained by dividing by the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff, and multiplied by 100.
  • FIG. 6 is a flowchart for explaining the manufacturing method of the atomization unit 12 according to this embodiment.
  • An example of extracting flavor components from tobacco leaves will be described below, but tobacco raw materials other than tobacco leaves may be used.
  • step S10 flavor components are extracted from tobacco leaves.
  • the specific method of step S10 is not particularly limited, for example, the following method can be used.
  • an alkaline substance is applied to tobacco leaves (referred to as alkaline treatment).
  • a basic substance such as an aqueous solution of potassium carbonate can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80°C or more and less than 150°C) (referred to as heat treatment). Then, during this heat treatment, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group Two or more substances are brought into contact with tobacco leaves.
  • a predetermined temperature for example, a temperature of 80°C or more and less than 150°C
  • heat treatment for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group Two or more substances are brought into contact with tobacco leaves.
  • flavor components are included here
  • the collection solvent for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or two types selected from this group The above substances can be used.
  • a collection solvent containing flavor components can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • step S10 can be configured without using the collection solvent as described above. Specifically, in this case, after subjecting the alkali-treated tobacco leaves to the above-described heat treatment, the components released from the tobacco leaves into the gas phase are cooled using a condenser or the like. can be condensed to extract flavor components.
  • step S10 may be configured without the alkali treatment as described above.
  • tobacco leaves tobacco leaves that have not been subjected to alkali treatment
  • glycerin glycerin
  • propylene glycol glycerin
  • triacetin 1,3-butanediol
  • water glycerin
  • triacetin 1,3-butanediol
  • water water
  • a selected substance or two or more substances selected from this group are added.
  • the tobacco leaves to which this has been added are heated, and the components released during this heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • step S10 an aerosol in which one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or an aerosol selected from this group
  • Tobacco leaves tobacco leaves that have not been subjected to alkali treatment
  • the aerosol that has passed through the tobacco leaves is collected by a collection solvent.
  • Flavor components can also be extracted by such a process.
  • step S10 extraction step
  • step S10 reduces "the amount of carbonized components that become carbonized when heated to 250 ° C.” contained in the flavor components extracted by the above-described method. It may further include According to this configuration, it is possible to effectively suppress adhesion of carbonized components to the load 40 . As a result, scorching of the load 40 can be effectively suppressed.
  • a specific method for reducing the amount of the carbonized component contained in the extracted flavor component is not particularly limited, but for example, the component precipitated by cooling the extracted flavor component is
  • the amount of carbonized components contained in the extracted flavor component may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor component may be reduced by centrifuging the extracted flavor component with a centrifuge.
  • a reverse osmosis membrane RO filter
  • step S10 After step S10, a molding process related to step S20 and a concentration process related to step S100 described below are executed.
  • step S20 the "tobacco residue", which is the tobacco leaves extracted in the extraction step of step S10, is solidified into a shape based on the shape of the second aerosol flow path 232 (in this embodiment, a cylindrical shape as an example). ) to manufacture the molded body 60 .
  • Tobacco raw materials such as tobacco leaves can absorb liquid, so if tobacco leaves or the like are exposed on the inner side surface 620 of the molded body 60 exposed in the second aerosol flow path 232, they function as the liquid capturing portion CP.
  • the inner surface 620 or other surfaces of the molded body 60 may be coated, or a resin may be used to harden the tobacco residue into a predetermined shape.
  • a material other than tobacco material that absorbs or retains liquid may be disposed on inner surface 620 .
  • the coating or resin may be recessed to expose tobacco residue.
  • step S30 the assembly process related to step S30 is executed. Specifically, in step S30, the atomization unit 12 in which the molded body 60 is not stored is prepared, and the second hole H2 defined by the wall portion 70g of the liquid storage portion 50 of the atomization unit 12 is , the compact 60 after step S20 is housed. Note that step S30 may be performed after step S40, which will be described later.
  • the flavor components extracted in step S10 are concentrated.
  • the flavor components contained in the collection solvent containing the flavor components extracted in step S10 are concentrated.
  • a concentration step is preferable in that the amount of flavor components contained in the tobacco leaf extract can be increased.
  • step S200 by adding the flavor component extracted in step S10 (specifically, here, the flavor component after being concentrated in step S100) to a predetermined solvent, tobacco Manufacture leaf extract.
  • a predetermined solvent for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, Alternatively, two or more substances selected from this group can be used.
  • step S40 the accommodation process related to step S40 is executed. Specifically, in step S40, the atomization unit 12 containing the compact 60 in step S30 is prepared. contain "liquid”. Through the steps described above, the atomization unit 12 of the suction tool 10 according to the present modification is manufactured. The atomization unit 12 is connected with the power supply unit 11 to manufacture the suction tool 10 .
  • the suction device 10 is atomized by suppressing the movement of the liquid in the aerosol flow path 23 while effectively utilizing the tobacco residue as the material of the molded body 60.
  • Unit 12 can be manufactured.
  • step S200 the tobacco leaf extract may be produced by adding the flavor component extracted in step S10 to a predetermined solvent. Also in this modified example, the atomization unit 12 of the suction tool 10 that suppresses movement of the liquid in the aerosol flow path 23 can be manufactured.
  • Modification 2 In the manufacturing method of the above-described embodiment, a configuration that does not include step S40 is also possible.
  • the user is provided with the atomization unit 12 that does not contain the liquid for atomization Ld, and the user can store the desired liquid for atomization Ld in the liquid storage section 50 .
  • Modification 3 In the manufacturing method of the above-described embodiment, steps S100 and S200 are omitted, and the atomizing liquid Ld containing a flavor component such as synthetic nicotine is prepared separately. may be accommodated in In the manufacturing method of this modified example, it is possible to manufacture the atomization unit 12 of the inhaler 10 that does not require natural tobacco raw materials and that suppresses movement of the liquid in the aerosol flow path 23 .
  • the liquid containing portion 50 may contain the atomizing liquid Ld containing purified natural nicotine. In this case, the use of pre-purified natural nicotine eliminates the need for an extraction operation.

Abstract

An atomization unit (12) comprises: an atomization part (40) which atomizes a liquid (Ld) to generate an aerosol; an aerosol flow path (23) through which the aerosol generated by the atomization part (40) passes; and a tobacco molded body (60) which is disposed in the aerosol flow path (23), wherein an exposure surface (620) that is exposed to the aerosol flow path (23) is formed on the tobacco molded body (60), and the exposure surface (620) includes a liquid capture part (CP).

Description

霧化ユニット、吸引具、及び、霧化ユニットの製造方法Atomization unit, suction tool, and method for manufacturing the atomization unit
 本発明は、霧化ユニット、吸引具、及び、霧化ユニットの製造方法に関する。 The present invention relates to an atomization unit, a suction tool, and a method for manufacturing an atomization unit.
 従来、非燃焼加熱型の吸引具として、所定の液体を収容する液体収容部と、この液体収容部の液体が導入されるとともに、導入された液体を霧化してエアロゾルを発生させる電気的な負荷と、を有する霧化ユニットを備え、この液体収容部の液体の内部に、たばこ葉の粉体が分散されたことを特徴とする吸引具が知られている(例えば、特許文献1参照)。 Conventionally, as a non-combustion heating type suction tool, there is a liquid storage part that stores a predetermined liquid, and an electric load that introduces the liquid in the liquid storage part and atomizes the introduced liquid to generate an aerosol. and , wherein powder of tobacco leaves is dispersed in the liquid of the liquid container (see, for example, Patent Document 1).
 なお、他の先行技術文献として、特許文献2や特許文献3や非特許文献1が挙げられる。特許文献2には、非燃焼加熱型の吸引具の基本的な構成態様が開示されている。特許文献3には、たばこ葉の抽出液に関する情報が開示されている。非特許文献1には、ニコチンに関する技術が開示されている。 In addition, Patent Document 2, Patent Document 3, and Non-Patent Document 1 can be cited as other prior art documents. Patent Literature 2 discloses a basic configuration of a non-combustion heating suction tool. Patent Document 3 discloses information on tobacco leaf extracts. Non-Patent Document 1 discloses a technique related to nicotine.
国際公開第2019/211332号公報International Publication No. 2019/211332 日本国特開2020-141705号公報Japanese Patent Application Laid-Open No. 2020-141705 国際公開第2015/129679号WO2015/129679
 上述したような特許文献1に例示されるような従来の吸引具の場合、エアロゾル流路においてエアロゾルが冷却されて液体となり、当該液体がユーザに吸引されたり吸引具の動作に悪影響を及ぼすおそれがある。この点において、従来技術は改善の余地があった。 In the case of the conventional suction tool as exemplified in Patent Document 1 as described above, the aerosol is cooled in the aerosol flow path and becomes a liquid, and the liquid may be sucked by the user or adversely affect the operation of the suction tool. be. In this regard, the prior art has room for improvement.
 本発明は、上記のことを鑑みてなされたものであり、エアロゾル流路に付着した液体の移動を抑制することができる技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of the objects thereof is to provide a technique capable of suppressing the movement of the liquid adhering to the aerosol flow path.
(態様1)
 上記目的を達成するため、本発明の一態様に係る霧化ユニットは、液体を霧化してエアロゾルを生成する霧化部と、前記霧化部で生成された前記エアロゾルが通過するエアロゾル流路と、前記エアロゾル流路に配置されるたばこ成形体とを備え、前記たばこ成形体には、前記エアロゾル流路に露出される露出面が形成されており、前記露出面は、液捕捉部を含む。
(Aspect 1)
To achieve the above object, an atomization unit according to an aspect of the present invention includes an atomization unit that atomizes a liquid to generate an aerosol, and an aerosol flow path through which the aerosol generated by the atomization unit passes. and a tobacco molded body disposed in the aerosol flow path, wherein the tobacco molded body has an exposed surface exposed to the aerosol flow path, and the exposed surface includes a liquid capturing portion.
 この態様によれば、たばこ成形体の液捕捉部により、エアロゾル流路に付着した液体が捕捉され、当該液体の移動を抑制することができる。これにより、当該液体が、ユーザに吸引され望ましくない味覚を与えたり、動作に悪影響を及ぼすことを抑制した吸引具を提供することができる。 According to this aspect, the liquid adhering to the aerosol flow path is captured by the liquid capturing portion of the tobacco molded body, and movement of the liquid can be suppressed. As a result, it is possible to provide a suction tool that prevents the liquid from being sucked into the user, giving the user an undesirable taste, or adversely affecting the operation of the user.
(態様2)
 上記の態様1において、前記たばこ成形体は中空部が形成されており、前記露出面は前記中空部の内面として形成されていてもよい。
(Aspect 2)
In the above aspect 1, the tobacco molded body may have a hollow portion, and the exposed surface may be formed as an inner surface of the hollow portion.
 この態様によれば、エアロゾル流路を囲むように露出面が形成されるため、エアロゾル流路に付着した液体を効率よく捕捉することができる。 According to this aspect, since the exposed surface is formed so as to surround the aerosol channel, it is possible to efficiently capture the liquid adhering to the aerosol channel.
(態様3)
 上記の態様1において、前記たばこ成形体は、折畳み構造および巻き構造の少なくとも一つを有してもよい。
(Aspect 3)
In the above aspect 1, the tobacco molded body may have at least one of a folded structure and a rolled structure.
 この態様によれば、エアロゾル流路の体積当たりの、液捕捉部の表面積を高めることができ、効率よく液体を捕捉することができる。 According to this aspect, the surface area of the liquid capturing portion per volume of the aerosol flow path can be increased, and the liquid can be efficiently captured.
(態様4)
 上記の態様1から3において、前記液捕捉部は、密度が1g/cm以下の部分に形成されていてもよい。
(Aspect 4)
In aspects 1 to 3 above, the liquid trapping portion may be formed in a portion having a density of 1 g/cm 3 or less.
 この態様によれば、液捕捉部が、エアロゾル流路に付着した液体をより効率よく捕捉することができる。 According to this aspect, the liquid capturing section can more efficiently capture the liquid adhering to the aerosol flow path.
(態様5)
 上記の態様1から4において、前記液捕捉部の算術平均表面粗さSaは30μm以上1000μm以下であってもよい。
(Aspect 5)
In the above aspects 1 to 4, the arithmetic mean surface roughness Sa of the liquid trapping portion may be 30 μm or more and 1000 μm or less.
 この態様によれば、液捕捉部が、エアロゾル流路に付着した液体をさらに効率よく捕捉することができる。 According to this aspect, the liquid capturing section can more efficiently capture the liquid adhering to the aerosol flow path.
(態様6)
 上記の態様1から5において、前記霧化ユニットは、前記液体を収容する液体収容部を備え、前記液体収容部を画定する壁部には、第1の内径を有する第1孔と、前記第1の内径より大きい第2の内径を有する第2孔とを含む貫通孔が形成され、前記第2孔に前記たばこ成形体が配置されていてもよい。
(Aspect 6)
In aspects 1 to 5 above, the atomization unit includes a liquid storage section that stores the liquid, and a wall section that defines the liquid storage section includes a first hole having a first inner diameter and the first hole. A second hole having a second inner diameter larger than the first inner diameter may be formed, and the tobacco molded body may be arranged in the second hole.
 この態様によれば、液体収容部、エアロゾル流路およびたばこ成形体を近い距離に配置でき、霧化ユニットをコンパクトにすることができる。 According to this aspect, the liquid containing portion, the aerosol flow path, and the tobacco molded body can be arranged close to each other, and the atomization unit can be made compact.
(態様7)
 上記の態様1から6において、前記霧化用液体はたばこ抽出物、天然ニコチンおよび合成ニコチンの少なくとも一つをさらに含んでいてもよい。
(Aspect 7)
In aspects 1 to 6 above, the atomizing liquid may further include at least one of tobacco extract, natural nicotine, and synthetic nicotine.
 この態様によれば、たばこ抽出物に含まれる成分、天然ニコチンまたは合成ニコチンを、霧化用液体を介して霧化することにより、香味を調整することができる。 According to this aspect, the flavor can be adjusted by atomizing the natural nicotine or synthetic nicotine contained in the tobacco extract via the atomizing liquid.
(態様8)
 また、上記目的を達成するため、本発明の一態様に係る吸引具は、上記の態様1から7のいずれかに記載の吸引具用霧化ユニットを備える。
(Aspect 8)
Moreover, in order to achieve the above object, a suction tool according to one aspect of the present invention includes the atomizing unit for a suction tool according to any one of aspects 1 to 7 above.
 この態様によれば、たばこ成形体の液捕捉部により、エアロゾル流路に付着した液体が捕捉され、当該液体の移動を抑制することができる。これにより、当該液体が、ユーザに吸引され望ましくない味覚を与えたり、吸引具の動作に悪影響を及ぼすことを抑制することができる。 According to this aspect, the liquid adhering to the aerosol flow path is captured by the liquid capturing portion of the tobacco molded body, and movement of the liquid can be suppressed. Accordingly, it is possible to prevent the liquid from being sucked by the user, giving an undesirable taste, and adversely affecting the operation of the suction tool.
(態様9)
 上記目的を達成するため、本発明の一態様に係る霧化ユニットの製造方法は、上記の態様1から7に係る吸引具の霧化ユニットの製造方法であって、前記エアロゾル流路の形状に基づく形状に前記たばこ成形体を成形することを含む。
(Aspect 9)
In order to achieve the above object, a method for manufacturing an atomization unit according to one aspect of the present invention is a method for manufacturing an atomization unit for a suction device according to aspects 1 to 7, wherein the shape of the aerosol flow path is molding said tobacco molded body into a shape based on.
 この態様によれば、たばこ成形体の液捕捉部により、エアロゾル流路に付着した液体が捕捉され、当該液体の移動を抑制することができる。これにより、当該液体が、ユーザに吸引され望ましくない味覚を与えたり、吸引具の動作に悪影響を及ぼすことを抑制した吸引具を提供することができる。 According to this aspect, the liquid adhering to the aerosol flow path is captured by the liquid capturing portion of the tobacco molded body, and movement of the liquid can be suppressed. As a result, it is possible to provide a suction tool that prevents the liquid from being sucked and giving an undesirable taste to the user and from adversely affecting the operation of the suction tool.
 本発明の態様によれば、霧化ユニットのエアロゾル流路に付着した液体の移動を抑制することができる。 According to the aspect of the present invention, it is possible to suppress movement of the liquid adhering to the aerosol flow path of the atomization unit.
一実施形態に係る吸引具の外観を模式的に示す斜視図である。It is a perspective view which shows typically the external appearance of the suction tool which concerns on one Embodiment. 上記実施形態に係る吸引具の霧化ユニットの主要部を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing the main part of the atomization unit of the suction tool according to the embodiment; 図2のA1-A1線断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section taken along line A1-A1 of FIG. 2; 図2のA2-A2線断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section taken along line A2-A2 of FIG. 2; 上記実施形態に係る成形体の模式的な斜視図である。FIG. 3 is a schematic perspective view of a molded body according to the embodiment; 図4AのB-B線断面を模式的に示す図である。FIG. 4B is a diagram schematically showing a BB line cross section of FIG. 4A. 抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 4 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract. 上記実施形態に係る製造方法を説明するためのフロー図である。It is a flow chart for explaining a manufacturing method concerning the above-mentioned embodiment.
 以下、本発明の実施形態に係る吸引具10について、図面を参照しつつ説明する。なお、本願の図面は、実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。 A suction tool 10 according to an embodiment of the present invention will be described below with reference to the drawings. It should be noted that the drawings of the present application are schematically illustrated in order to facilitate understanding of the features of the embodiments, and the dimensional ratios and the like of each component are not necessarily the same as the actual ones. In addition, XYZ orthogonal coordinates are illustrated in the drawings of the present application as needed.
 図1は、本実施形態に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の電子たばこである。 FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to this embodiment. The suction tool 10 according to the present embodiment is a non-combustion heating suction tool, specifically, a non-combustion heating electronic cigarette.
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長手方向(中心軸線CLの方向)」と、長手方向に直交する「幅方向」と、長手方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長手方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長手方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 As an example, the suction tool 10 according to this embodiment extends in the direction of the central axis CL of the suction tool 10 . Specifically, for example, the suction tool 10 has a “longitudinal direction (the direction of the central axis CL),” a “width direction” perpendicular to the longitudinal direction, and a “thickness direction” perpendicular to the longitudinal direction and the width direction. , and has an external shape. The dimensions of the suction tool 10 in the longitudinal direction, width direction, and thickness direction decrease in this order. In this embodiment, of the XYZ orthogonal coordinates, the Z-axis direction (Z direction or -Z direction) corresponds to the longitudinal direction, and the X-axis direction (X direction or -X direction) corresponds to It corresponds to the width direction, and the Y-axis direction (Y direction or −Y direction) corresponds to the thickness direction.
 吸引具10は、電源ユニット11と、霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。 The suction tool 10 has a power supply unit 11 and an atomization unit 12. The power supply unit 11 is detachably connected to the atomization unit 12 . Inside the power supply unit 11, a battery as a power supply, a control device, and the like are arranged. When the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
 霧化ユニット12には、エア(すなわち、空気)を排出するための排出口13が設けられている。エアロゾルを含むエアは、この排出口13から排出される。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアを吸い込むことができる。 The atomization unit 12 is provided with a discharge port 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13 . When using the suction tool 10 , the user of the suction tool 10 can suck the air discharged from the discharge port 13 .
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、制御装置に伝え、制御装置が負荷40への通電を終了させる。 The power supply unit 11 is provided with a sensor that outputs the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13 . When the user starts sucking air, the sensor senses the start of sucking air and notifies the control device, which starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes sucking air, the sensor senses the finish of sucking air and informs the control device, and the control device stops energizing the load 40 .
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、このエアの吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。 The power supply unit 11 may be provided with an operation switch for transmitting an air suction start request and an air suction end request to the control device by user's operation. In this case, the user can operate the operation switch to transmit an air suction start request or a suction end request to the control device. Upon receiving the air suction start request and suction end request, the control device starts and terminates energization of the load 40 .
 なお、上述したような電源ユニット11の構成は、例えば、特許文献2に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。 It should be noted that the configuration of the power supply unit 11 as described above is the same as that of the power supply unit of a known suction device as exemplified in Patent Document 2, for example, so further detailed description will be omitted.
 図2は、吸引具10の霧化ユニット12の主要部を示す模式的断面図である。具体的には図2は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面を模式的に図示している。図3Aおよび3Bは、図2のA1-A1線断面およびA2-A2線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)をそれぞれ模式的に示す図である。図2、図3Aおよび図3Bを参照しつつ、霧化ユニット12について説明する。 FIG. 2 is a schematic cross-sectional view showing the main part of the atomization unit 12 of the suction tool 10. FIG. Specifically, FIG. 2 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL. 3A and 3B are diagrams schematically showing A1-A1 line cross-sections and A2-A2 line cross-sections (that is, cross-sections cut along a cutting plane normal to the central axis CL) of FIG. 2, respectively. The atomization unit 12 will be described with reference to FIGS. 2, 3A and 3B.
 霧化ユニット12は、長手方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70f、壁部710、壁部720)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c、壁部730)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、成形体60とを備えている。 The atomization unit 12 includes a plurality of walls (walls 70a to 70f, walls 710, and 720) extending in the longitudinal direction (direction of the central axis CL) and extending in the width direction. A plurality of walls (walls 71a to 71c, wall 730) are provided. The atomization unit 12 also includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid container 50 and a molding 60 .
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、エアロゾル流路23とを備えている。本実施形態に係る上流通路部は、一例として、複数の上流通路部、具体的には、上流通路部21a(「第1の上流通路部」)、及び、上流通路部21b(「第2の上流通路部」)を備えている。 The air passage 20 is a passage through which air passes when the user inhales air (that is, inhales aerosol). The air passage 20 according to this embodiment includes an upstream passage portion, a load passage portion 22 and an aerosol passage 23 . As an example, the upstream passage portion according to the present embodiment includes a plurality of upstream passage portions, specifically, an upstream passage portion 21a (“first upstream passage portion”) and an upstream passage portion 21b. (“second upstream passage portion”).
 上流通路部21a,21bは、負荷通路部22よりも上流側(エア流動方向で上流側)に配置されている。上流通路部21a,21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。エアロゾル流路23は、負荷通路部22よりも下流側(エア流動方向で下流側)に配置された通路部である。エアロゾル流路23の上流側端部は負荷通路部22に連通している。また、エアロゾル流路23の下流側端部は、前述した排出口13に連通している。エアロゾル流路23を通過したエアは、排出口13から排出される。 The upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the direction of air flow). Downstream end portions of the upstream passage portions 21 a and 21 b communicate with the load passage portion 22 . The load passage portion 22 is a passage portion in which the load 40 is arranged. The aerosol flow path 23 is a passage portion arranged on the downstream side (downstream side in the air flow direction) of the load passage portion 22 . An upstream end portion of the aerosol flow path 23 communicates with the load passage portion 22 . Further, the downstream end of the aerosol channel 23 communicates with the discharge port 13 described above. Air that has passed through the aerosol flow path 23 is discharged from the discharge port 13 .
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。 Specifically, the upstream passage portion 21a according to the present embodiment is provided in a region surrounded by the wall portion 70a, the wall portion 70b, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. there is The upstream passage portion 21b is provided in a region surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. The load passage portion 22 is provided in a region surrounded by the wall portion 70a, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71b, and the wall portion 71c.
 エアロゾル流路23は、第1エアロゾル通路231と第2エアロゾル通路232とを含む。第1エアロゾル通路231と第2エアロゾル通路232はエアロゾルが移動可能に接続されている。第1エアロゾル通路231は、筒状の壁部710によって囲われた領域に設けられている。第2エアロゾル通路232は、筒状の成形体60によって囲われた領域に設けられている。 The aerosol channel 23 includes a first aerosol passage 231 and a second aerosol passage 232. The first aerosol passage 231 and the second aerosol passage 232 are connected so that the aerosol can move. The first aerosol passage 231 is provided in a region surrounded by the tubular wall portion 710 . The second aerosol passage 232 is provided in a region surrounded by the cylindrical shaped body 60 .
 壁部71aには、孔72a及び孔72bが設けられている。エアは、孔72aから上流通路部21aに流入し、孔72bから上流通路部21bに流入する。また、壁部71bには、孔72c及び孔72dが設けられている。上流通路部21aを通過したエアは、孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、孔72dから負荷通路部22に流入する。 A hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage portion 21a through the hole 72a, and flows into the upstream passage portion 21b through the hole 72b. Further, holes 72c and 72d are provided in the wall portion 71b. Air passing through the upstream passage portion 21a flows into the load passage portion 22 through the hole 72c, and air passing through the upstream passage portion 21b flows into the load passage portion 22 through the hole 72d.
 本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、エアロゾル流路23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、-Z方向であり、エアロゾル流路23におけるエアの流動方向は、Z方向である。 In the present embodiment, the direction of air flow in the upstream passage portions 21 a and 21 b is opposite to the direction of air flow in the aerosol channel 23 . Specifically, in the present embodiment, the direction of air flow in the upstream passages 21a and 21b is the -Z direction, and the direction of air flow in the aerosol channel 23 is the Z direction.
 また、図2、図3Aおよび図3Bを参照して、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。 Further, referring to FIGS. 2, 3A and 3B, the upstream passage portion 21a and the upstream passage portion 21b according to the present embodiment are arranged such that the liquid storage portion 50 is formed by the upstream passage portion 21a and the upstream passage portion 21b. are arranged adjacent to the liquid containing portion 50 so as to sandwich the .
 具体的には、本実施形態に係る上流通路部21aは、図3Aおよび3Bに示すように、中心軸線CLを法線とする切断面で切断した断面視で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、吸引具10の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、吸引具10の幅方向で、液体収容部50の他方の側に配置されている。 Specifically, as shown in FIGS. 3A and 3B, the upstream passage portion 21a according to the present embodiment has the liquid storage portion 50 therebetween in a cross-sectional view cut along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction). On the other hand, the upstream passage portion 21b is arranged on the other side (the side in the X direction) across the liquid storage portion 50 in this cross-sectional view. In other words, the upstream passage portion 21 a is arranged on one side of the liquid containing portion 50 in the width direction of the suction tool 10 , and the upstream passage portion 21 b is arranged on the side of the liquid containing portion 50 in the width direction of the suction tool 10 . located on the other side.
 ウィック30は、液体収容部50の液体を負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象を利用して、液体収容部50の液体を負荷40に導入している。 The wick 30 is a member for introducing the liquid in the liquid storage section 50 to the load 40 in the load passage section 22 . The specific configuration of the wick 30 is not particularly limited as long as it has such a function. 50 liquids are introduced to the load 40;
 負荷40は、液体収容部50の液体が導入されるとともに、この導入された液体を霧化してエアロゾルを発生させるための電気的な負荷である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータを用いている。このヒータとしては、発熱抵抗体(すなわち、電熱線)や、セラミックヒータ、誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体を用いている。また、本実施形態において、負荷40としてのヒータは、コイル形状を有している。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータである。このコイルヒータは、ウィック30に巻き付けられている。 The load 40 is an electrical load for introducing the liquid in the liquid containing portion 50 and atomizing the introduced liquid to generate an aerosol. A specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator can be used. In this embodiment, a heater is used as an example of the load 40 . As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heating type heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater. Moreover, in this embodiment, the heater as the load 40 has a coil shape. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around a wick 30 .
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50の液体を加熱することで霧化して、エアロゾルを発生させる。 Further, the load 40 according to the present embodiment is arranged in the wick 30 portion inside the load passage portion 22 as an example. The load 40 is electrically connected to the power supply and the control device of the power supply unit 11 described above, and heats up when electricity from the power supply is supplied to the load 40 (that is, heats up when energized). Also, the operation of the load 40 is controlled by a control device. The load 40 heats the liquid in the liquid containing portion 50 introduced into the load 40 through the wick 30 to atomize the liquid to generate an aerosol.
 なお、このウィック30や負荷40の構成は、例えば特許文献2等に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 The configurations of the wick 30 and the load 40 are the same as the wick and the load used in a known suction tool as exemplified in Patent Document 2, for example, so further detailed description will be omitted.
 液体収容部50は、たばこ葉の抽出液等の霧化用の液体を収容するための部位である。以下では、この液体を霧化用液体Ldと呼ぶ。霧化用液体Ldは、たばこ葉の香味成分を含む。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部70gと壁部71aと壁部71bとによって囲まれた領域に設けられ、これらの壁部により画定されている。壁部70gは、壁部710と、壁部720と、壁部730とを含む。液体収容部50には、中心軸線CAの方向に沿って、筒状の壁部710および720を内側面とする貫通孔が設けられている。また、本実施形態において、前述したエアロゾル流路23は、当該貫通孔に設けられている。 The liquid storage part 50 is a part for storing an atomization liquid such as tobacco leaf extract. This liquid is hereinafter referred to as an atomizing liquid Ld. The atomizing liquid Ld contains the flavor component of tobacco leaves. The liquid storage portion 50 according to the present embodiment is provided in a region surrounded by the wall portion 70b, the wall portion 70c, the wall portion 70e, the wall portion 70f, the wall portion 70g, the wall portion 71a, and the wall portion 71b. defined by a wall. Wall portion 70 g includes wall portion 710 , wall portion 720 , and wall portion 730 . The liquid containing portion 50 is provided with a through hole having cylindrical wall portions 710 and 720 as inner surfaces along the direction of the central axis CA. Moreover, in this embodiment, the aerosol flow path 23 described above is provided in the through hole.
 本実施形態の壁部710および壁部720は、中心軸線CLを軸とする円筒状である。壁部710の内側面は、第1の内径W1を有する第1孔H1の内側面となっている。壁部720の内側面は、第2の内径W2を有する第2孔H2の内側面となっている。第2の内径W2は、第1の内径W1よりも大きく、第2孔H2に成形体60が配置されている。ここで、内径は、孔の横断面における最大径とする。本実施形態では、第1孔H1よりも第2孔H2がエアロゾル流路23の下流側に形成されており、したがって成形体60がエアロゾル流路23の下流側に配置されているが、特にこれに限定されない。成形体60は、エアロゾル流路23のウィック30側に設けられてもよいし、エアロゾル流路の中央部に設けられてもよい。また、成形体60はエアロゾル流路23の任意の範囲において設けることができ、例えば、中央部から下流側の壁部71aにわたって設けてもよい。第1の内径W1と第2の内径W2とが異なるため、XY平面に沿って形成された壁部730により壁部710と720とが物理的に接続されている。 The wall portion 710 and the wall portion 720 of the present embodiment are cylindrical with the center axis CL as an axis. The inner surface of the wall portion 710 is the inner surface of the first hole H1 having the first inner diameter W1. The inner surface of the wall portion 720 is the inner surface of the second hole H2 having the second inner diameter W2. The second inner diameter W2 is larger than the first inner diameter W1, and the compact 60 is arranged in the second hole H2. Here, the inner diameter is the maximum diameter in the cross section of the hole. In the present embodiment, the second hole H2 is formed downstream of the aerosol flow channel 23 rather than the first hole H1, and thus the compact 60 is arranged downstream of the aerosol flow channel 23. is not limited to The molded body 60 may be provided on the wick 30 side of the aerosol channel 23 or may be provided in the central portion of the aerosol channel. Also, the molded body 60 can be provided in any range of the aerosol flow path 23, for example, it may be provided over the wall portion 71a on the downstream side from the central portion. Since the first inner diameter W1 and the second inner diameter W2 are different, the walls 710 and 720 are physically connected by the wall 730 formed along the XY plane.
 本実施形態の霧化ユニット12では、液体収容部50を画定する壁部70gには、第1の内径W1を有する第1孔H1と、第1の内径W1より大きい第2の内径W2を有する第2孔H2とを含む貫通孔が形成されており、第2孔H2に成形体60が配置される。これにより、液体収容部50、成形体60および、流体収容部50の貫通孔に形成されたエアロゾル流路23を近い距離に配置できるため、コンパクトな霧化ユニット12を提供することができる。 In the atomization unit 12 of the present embodiment, the wall portion 70g defining the liquid containing portion 50 has a first hole H1 having a first inner diameter W1 and a second inner diameter W2 larger than the first inner diameter W1. A through hole including the second hole H2 is formed, and the compact 60 is arranged in the second hole H2. As a result, the liquid containing portion 50, the molded body 60, and the aerosol flow path 23 formed in the through hole of the fluid containing portion 50 can be arranged at a short distance, so that the compact atomization unit 12 can be provided.
 霧化用液体Ldは、たばこ原料の抽出液であることが好ましい。たばこ原料とは、たばこ葉、中骨、茎および根等のたばこ植物由来の原料を指す。「たばこ葉」には、広義には中骨も含まれるが、以下の実施形態では、ラミナと呼ばれる葉肉部分をたばこ葉と呼ぶ。ラミナは特に香りの高い部分であり、霧化用液体Ldはたばこ葉の抽出液であることがより好ましい。たばこ葉等のたばこ原料の抽出液として、所定の溶媒に、たばこ葉等のたばこ原料から抽出された香味成分が含有されたものを用いることができる。所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を含む液体を用いることができる。所定の溶媒の一例として、グリセリン及びプロピレングリコールを用いることができる。 The atomizing liquid Ld is preferably a tobacco raw material extract. Tobacco raw materials refer to raw materials derived from tobacco plants such as tobacco leaves, backbones, stems and roots. "Tobacco leaf" broadly includes core bones, but in the following embodiments, the mesophyll portion called lamina is referred to as tobacco leaf. The lamina is a particularly fragrant portion, and the atomizing liquid Ld is more preferably tobacco leaf extract. As the extract of the tobacco material such as tobacco leaves, a liquid containing a flavor component extracted from the tobacco material such as tobacco leaves in a predetermined solvent can be used. Although the specific type of the predetermined solvent is not particularly limited, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, Alternatively, a liquid containing two or more substances selected from this group can be used. Glycerin and propylene glycol can be used as examples of predetermined solvents.
 霧化用液体Ldに含有されるたばこ葉の香味成分の具体例を挙げると、例えば天然ニコチン、ネオフィタジエン等が挙げられる。なお、霧化用液体Ldは、たばこ葉等のたばこ材料から抽出した香味成分の代わりに、または当該香味成分に加えて、天然ニコチンおよび合成ニコチンの少なくとも一方を含んでもよい。 Specific examples of tobacco leaf flavor components contained in the atomizing liquid Ld include natural nicotine and neophytadiene. The atomizing liquid Ld may contain at least one of natural nicotine and synthetic nicotine instead of or in addition to flavor components extracted from tobacco materials such as tobacco leaves.
 霧化用液体Ldとして、上記所定の溶媒に、天然ニコチンまたは合成ニコチンを含有させたものを用いる場合、霧化用液体Ldに含有されるニコチンは、天然ニコチンのみでもよく、合成ニコチンのみでもよく、天然ニコチン及び合成ニコチンの両方でもよい。 When natural nicotine or synthetic nicotine is contained in the predetermined solvent as the atomizing liquid Ld, nicotine contained in the atomizing liquid Ld may be natural nicotine alone or synthetic nicotine alone. , both natural and synthetic nicotine.
 なお、一般に、天然ニコチンの方が合成ニコチンに比較して安価であると考えられるので、一般的には、天然ニコチンを用いる方が合成ニコチンを用いる場合に比較して、吸引具10の製造コストを安価にすることができる。但し、例えば、吸引具10が使用される地域において高純度の天然ニコチンの入手が容易でない、というような何等かの事情がある場合には、霧化用液体Ldに含有されるニコチンとして、天然ニコチンとともに、又は、天然ニコチンに代えて、合成ニコチンを用いることが好ましい。 In addition, since natural nicotine is generally considered to be cheaper than synthetic nicotine, the manufacturing cost of the inhaler 10 is generally lower when natural nicotine is used than when synthetic nicotine is used. can be made cheaper. However, if for some reason it is not easy to obtain high-purity natural nicotine in the region where the suction device 10 is used, natural nicotine contained in the atomizing liquid Ld may be Synthetic nicotine is preferably used in conjunction with or in place of natural nicotine.
 霧化用液体Ldに含有されるニコチンとして天然ニコチンを用いる場合、この天然ニコチンは、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When natural nicotine is used as the nicotine contained in the atomizing liquid Ld, natural nicotine extracted and refined from tobacco leaves can be used as the natural nicotine. For such a method for producing natural nicotine, for example, a well-known technique as exemplified in Non-Patent Document 1 can be applied, and detailed description thereof will be omitted.
 また、霧化用液体Ldに含有されるニコチンとして天然ニコチンを用いる場合、たばこ葉の抽出液を精製して、たばこ葉の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、霧化用液体Ldの所定の溶媒に含有される天然ニコチンの純度は99.9wt%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1wt%よりも少ない)。 Further, when natural nicotine is used as the nicotine contained in the liquid for atomization Ld, the tobacco leaf extract is purified to remove components other than natural nicotine from the tobacco leaf extract as much as possible, thereby reducing natural nicotine. Purified and natural nicotine with this enhanced purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the liquid for atomization Ld may be 99.9 wt% or more (that is, in this case, the impurities contained in the natural nicotine ( ingredients other than natural nicotine) is less than 0.1 wt%).
 一方、霧化用液体Ldに含有されるニコチンとして合成ニコチンを用いる場合、この合成ニコチンとして、化学物質を用いた化学合成によって生成されたニコチンを用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9wt%以上であってもよい。 On the other hand, when synthetic nicotine is used as the nicotine contained in the atomizing liquid Ld, nicotine produced by chemical synthesis using chemical substances can be used as the synthetic nicotine. The purity of this synthetic nicotine may also be 99.9 wt% or more, like natural nicotine.
 合成ニコチンの生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The method for producing synthetic nicotine is not particularly limited, and known production methods can be used.
 液体収容部50の霧化用液体Ldに含まれる天然ニコチン及び合成ニコチンの少なくとも一方の比率(重量%(wt%))は、特に限定されるものではないが、例えば、0.1wt%以上7.5wt%以下の範囲から選択された値を用いることができる。 The ratio (% by weight (wt %)) of at least one of natural nicotine and synthetic nicotine contained in the atomizing liquid Ld of the liquid storage unit 50 is not particularly limited, but is, for example, 0.1 wt % or more. Values selected from the range up to 0.5 wt% can be used.
 図4Aは、成形体60の模式的な斜視図であり、図4Bは、図4AのB-B線断面図である。成形体60は、たばこ葉等のたばこ原料が固められて所定形状に成形されたものである。本実施形態に係る成形体60には、第1面61、第1面61に対向する第2面62、第1面61と第2面62を接続する接続面63が形成されている。成形体60は、円柱状の本体を有し、第1面61が底面、接続面63が円柱面に相当する。第1面61および第2面62に開口部610が形成され、成形体60を貫通する中空部600が形成されている。中空部600の内面620は、エアロゾル流路23(図2)に露出する露出面となっている。この露出面に液捕捉部CPが形成されている。中空部600の内面620に液捕捉部CPが配置されていることで、エアロゾル流路23を囲むように液捕捉部CPを配置することができ、効率よくエアロゾル流路23の液体を捕捉することができる。 4A is a schematic perspective view of the molded body 60, and FIG. 4B is a cross-sectional view taken along line BB of FIG. 4A. The molded body 60 is formed by solidifying tobacco raw materials such as tobacco leaves into a predetermined shape. A molded body 60 according to the present embodiment has a first surface 61, a second surface 62 facing the first surface 61, and a connection surface 63 connecting the first surface 61 and the second surface 62. As shown in FIG. The molded body 60 has a cylindrical main body, the first surface 61 corresponds to the bottom surface, and the connecting surface 63 corresponds to the cylindrical surface. An opening 610 is formed in the first surface 61 and the second surface 62, and a hollow portion 600 passing through the molded body 60 is formed. An inner surface 620 of the hollow portion 600 is an exposed surface exposed to the aerosol flow path 23 (FIG. 2). A liquid capturing portion CP is formed on this exposed surface. Since the liquid capturing part CP is arranged on the inner surface 620 of the hollow part 600, the liquid capturing part CP can be arranged so as to surround the aerosol channel 23, and the liquid in the aerosol channel 23 can be efficiently captured. can be done.
 液捕捉部CPは、液体を吸収または保持する部材の表面であれば、その形状および大きさは特に限定されない。たばこ葉またはたばこ葉から香味成分を抽出した残渣等の表面は、液体を吸収するため、液捕捉部CPとして機能する。液捕捉部CPは、成形体60の密度が1g/cm以下の部分に形成されていることが好ましい。密度が低いほど、液体を効率よく吸収する傾向があるためである。効率よく液体を吸収するためには、液捕捉部CPの表面粗さが適切な範囲にあることが好ましい。この観点から、液捕捉部CPは、算術平均表面粗さSaが、30μm以上1000μm以下であることが好ましく、30μm以上500μm以下であることがより好ましく、30μm以上100μm以下であることがさらに好ましい。 The shape and size of the liquid capturing part CP are not particularly limited as long as it is the surface of a member that absorbs or retains liquid. The surface of tobacco leaves or residues of flavor components extracted from tobacco leaves absorbs liquid, and thus functions as a liquid capture portion CP. The liquid capturing portion CP is preferably formed in a portion of the compact 60 where the density is 1 g/cm 3 or less. This is because the lower the density, the more efficiently the liquid tends to be absorbed. In order to efficiently absorb the liquid, it is preferable that the surface roughness of the liquid trapping portion CP is within an appropriate range. From this point of view, the liquid trapping portion CP preferably has an arithmetic mean surface roughness Sa of 30 μm or more and 1000 μm or less, more preferably 30 μm or more and 500 μm or less, and even more preferably 30 μm or more and 100 μm or less.
 成形体60の形状は、エアロゾル流路23に液捕捉部CPとして機能する面が露出すれば特に限定されない。成形体60は、それぞれ中空部となる複数の貫通孔を有してもよい。中空部を画定する壁面の形状は特に限定されず、円柱面の他、多角柱の側面の形状を有してもよい。例えば、成形体60は、ハニカム構造を有してもよい。成形体60は、必ずしも中空部600を必要とせず、例えば、所定方向に延在する棒状(すなわち、長さが幅よりも長い形状)であってもよく、立方体形状(同じ長さの辺を有する形状)であってもよく、あるいは、シート形状であってもよく、その他の形状であってもよい。成形体60としてシート形状のものを用いる場合には、具体的には、成形体60として、たばこ葉の抄造シート、たばこ葉のキャストシート、たばこ葉の圧延シート等を用いることができる。液捕捉部CPの表面積を大きくして効率よく液を捕捉する観点から、液捕捉部CPは、折畳み構造および巻き構造の少なくとも一つを有することが好ましい。折畳み構造は、1か所以上の折畳み線を含む構造である。巻き構造は、シート形状の成形体60が、径方向に重なる構造である。例えば、シート形状の成形体60を蛇腹状に折り畳んだり、回転軸に垂直な断面がらせん状になるよう巻いて霧化ユニット12に配置してもよい。霧化ユニット12に配置される成形体60の個数は、エアロゾル流路23に液捕捉部CPとして機能する面が露出すれば特に限定されない。 The shape of the molded body 60 is not particularly limited as long as the surface that functions as the liquid capturing part CP is exposed to the aerosol flow path 23 . The molded body 60 may have a plurality of through-holes each serving as a hollow portion. The shape of the wall surface that defines the hollow portion is not particularly limited, and it may have the shape of the side surface of a polygonal prism as well as the cylindrical surface. For example, the molded body 60 may have a honeycomb structure. The molded body 60 does not necessarily require a hollow portion 600, and may be, for example, a rod-like shape (that is, a shape whose length is longer than its width) extending in a predetermined direction, or a cubic shape (having sides of the same length). shape), or a sheet shape, or any other shape. When a sheet-shaped molded article 60 is used, specifically, a sheet of tobacco leaves, a cast sheet of tobacco leaves, a rolled sheet of tobacco leaves, or the like can be used as the molded article 60 . From the viewpoint of efficiently capturing the liquid by increasing the surface area of the liquid capturing portion CP, the liquid capturing portion CP preferably has at least one of a folded structure and a wound structure. A folded structure is a structure that includes one or more fold lines. The wound structure is a structure in which the sheet-shaped molded bodies 60 overlap in the radial direction. For example, the sheet-shaped molded body 60 may be folded into a bellows shape, or may be wound so that the cross section perpendicular to the rotating shaft has a spiral shape and placed in the atomization unit 12 . The number of molded bodies 60 arranged in the atomization unit 12 is not particularly limited as long as the surface that functions as the liquid capturing part CP is exposed in the aerosol flow path 23 .
 成形体60の大きさは、エアロゾル流路23に液捕捉部CPとして機能する面が露出すれば特に限定されない。成形体60の短手方向の長さである幅(すなわち外径)(W)、及び、成形体60の長手方向の長さである全長(L)の具体的な値は、特に限定されるものではないが、数値の一例を挙げると、以下のとおりである。すなわち、成形体60の幅(W)として、例えば2mm以上20mm以下の範囲から選択された値を用いることができる。成形体60の全長(L)として、例えば5mm以上50mm以下の範囲から選択された値を用いることができる。但し、これらの値は成形体60の幅(W)及び全長(L)の一例に過ぎず、成形体60の幅(W)及び全長(L)は、吸引具10のサイズに応じて好適な値を設定すればよい。 The size of the molded body 60 is not particularly limited as long as the surface that functions as the liquid capturing portion CP is exposed to the aerosol channel 23 . Specific values of the width (that is, outer diameter) (W), which is the length in the lateral direction of the molded body 60, and the total length (L), which is the length in the longitudinal direction of the molded body 60, are particularly limited. Although it is not a thing, an example of the numerical value is as follows. That is, as the width (W) of the molded body 60, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used. As the total length (L) of the molded body 60, a value selected from the range of, for example, 5 mm or more and 50 mm or less can be used. However, these values are merely examples of the width (W) and the total length (L) of the molded body 60, and the width (W) and the total length (L) of the molded body 60 are suitable for the size of the suction tool 10. value should be set.
 成形体60の中空部600の大きさおよび形状は、ユーザがエアロゾル流路23を通してエアロゾルを吸引できれば特に限定されない。中空部600の横断面の形状および内径は、壁部710により画定される第1エアロゾル流路231の横断面の形状および内径と実質的に同一であることが、エアロゾルを効率よく吸引する観点から好ましい。 The size and shape of the hollow portion 600 of the molded body 60 are not particularly limited as long as the user can inhale the aerosol through the aerosol flow path 23 . The cross-sectional shape and inner diameter of the hollow portion 600 should be substantially the same as the cross-sectional shape and inner diameter of the first aerosol flow path 231 defined by the wall portion 710 from the viewpoint of efficiently inhaling the aerosol. preferable.
 また、本実施形態において、成形体60の密度(単位体積当たりの質量)は、一例として、1100mg/cm以上、1450mg/cm以下である。但し、成形体60の密度は、これに限定されるものではなく、1100mg/cm未満でもよく、あるいは、1450mg/cmより大きくてもよい。 Further, in the present embodiment, the density (mass per unit volume) of the compact 60 is, for example, 1100 mg/cm 3 or more and 1450 mg/cm 3 or less. However, the density of the compact 60 is not limited to this, and may be less than 1100 mg/cm 3 or greater than 1450 mg/cm 3 .
 吸引具10を用いた吸引は以下のように行われる。まず、ユーザがエアの吸引を開始した場合、エアはエア通路20の上流通路部21a,21bを通過して、負荷通路部22に流入する。負荷通路部22に流入したエアには、負荷40において発生したエアロゾルが付加される。このエアロゾルには、霧化用液体Ldに含まれる香味成分が含まれている。このエアロゾルが付加されたエアは、エアロゾル流路23を通過して排出口13から排出されて、ユーザに吸引される。 The suction using the suction tool 10 is performed as follows. First, when the user starts sucking air, the air passes through the upstream passage portions 21 a and 21 b of the air passage 20 and flows into the load passage portion 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage portion 22 . This aerosol contains the flavor component contained in the atomizing liquid Ld. The air to which the aerosol has been added passes through the aerosol flow path 23 and is discharged from the discharge port 13 to be sucked by the user.
 本実施形態に係る霧化ユニット12は、霧化用液体Ldを霧化してエアロゾルを生成する負荷40と、負荷40で生成されたエアロゾルが通過するエアロゾル流路23と、エアロゾル流路23に配置される成形体60とを備え、成形体60には、エアロゾル流路23に露出される内面620が形成されており、内面620は、液捕捉部CPを含む。これにより、エアロゾル流路23に付着した液体の移動を抑制することができる。その結果、エアロゾル流路23に付着した液体が、ユーザに吸引され望ましくない味覚を与えたり、動作に悪影響を及ぼすことを抑制した吸引具10を提供することができる。 The atomization unit 12 according to the present embodiment is arranged in a load 40 that atomizes the atomizing liquid Ld to generate an aerosol, an aerosol channel 23 through which the aerosol generated by the load 40 passes, and the aerosol channel 23. The molded body 60 is formed with an inner surface 620 exposed to the aerosol flow path 23, and the inner surface 620 includes the liquid capturing portion CP. As a result, movement of the liquid adhering to the aerosol channel 23 can be suppressed. As a result, it is possible to provide the suction device 10 that suppresses the liquid adhering to the aerosol flow path 23 from being sucked by the user and giving an undesirable taste or adversely affecting the operation.
 また、霧化用液体Ldとして用いる抽出液1g中に含まれる炭化成分の量(mg)は、6mg以下であることが好ましく、3mg以下であることがより好ましい。 Also, the amount (mg) of the carbonized component contained in 1 g of the extract used as the atomizing liquid Ld is preferably 6 mg or less, more preferably 3 mg or less.
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、たばこ葉の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、たばこ葉の香味を味わうことができる。 According to this configuration, it is possible to enjoy the flavor of tobacco leaves while suppressing the amount of carbonized components adhering to the electrical load 40 as much as possible. As a result, it is possible to enjoy the flavor of tobacco leaves while minimizing the occurrence of scorching of the load 40 .
 また、本実施形態において、「炭化成分」とは、250℃に加熱された場合に炭化物になる成分をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 In addition, in the present embodiment, "carbonized component" refers to a component that becomes a carbide when heated to 250°C. Specifically, the term "carbonized component" refers to a component that does not form a carbide at a temperature of less than 250°C, but that forms a carbide when the temperature is maintained at 250°C for a predetermined period of time.
 なお、この「抽出液1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、抽出液を所定量(g)、準備する。次いで、この抽出液を180℃に加熱して、抽出液に含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)の抽出液に含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、抽出液1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 The "amount (mg) of carbonized components contained in 1 g of the extract" can be measured, for example, by the following method. First, a predetermined amount (g) of extract is prepared. Next, this extract is heated to 180° C. to volatilize the solvent (liquid component) contained in the extract, thereby obtaining a “residue composed of non-volatile components”. The residue is then heated to 250° C. to carbonize the residue to obtain a carbide. The amount (mg) of this carbide is then measured. By the above method, the amount (mg) of charcoal contained in a predetermined amount (g) of liquid extract can be measured. The amount (mg) of the component can be calculated.
 続いて、抽出液1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図5は、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図5の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。 Next, the relationship between the amount of carbonized components contained in 1 g of the extract and the TPM reduction rate will be described. FIG. 5 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of the extract. The horizontal axis of FIG. 5 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate (R TPM ) (%).
 図5のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の吸引具のサンプルを準備した。具体的には、この複数の吸引具のサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM : %) in FIG. 5 was measured by the following method. First, a plurality of suction tool samples having different amounts of carbonized components contained in 1 g of the extract were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples of the plurality of suction tools. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ原料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
20 (wt%) of potassium carbonate in terms of dry weight was added to tobacco raw material composed of tobacco leaves, and then heat distillation treatment was performed. The distillation residue after the heat distillation treatment is immersed in water of 15 times the weight of the tobacco raw material before the heat distillation treatment for 10 minutes, dehydrated with a dehydrator, and then dried with a dryer to obtain tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in step 1 was washed with water to prepare a tobacco residue containing a small amount of charcoal.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of an immersion liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extract liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the immersion liquid was raised to 60. °C and allowed to stand. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized component eluted into the immersion liquid (extract) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of the immersion liquid (extract) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, automatic smoking was performed on the plurality of samples prepared in the above-described steps using an automatic smoking machine ("Analytical Vaping Machine" manufactured by Borgwaldt) under "CRM (Coresta Recommended Method) 81 smoking conditions". rice field. The CRM 81 smoking condition is a condition in which 55 cc of aerosol is inhaled over 3 seconds, and is performed multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図5のTPM減少率(RTPM)は測定された。 The amount of total particulate matter collected by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate (R TPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) in FIG. 5 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1) R TPM (%) = (1-TPM (201 puff to 250 puff) / TPM (1 puff to 50 puff)) x 100 (1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。 Here, TPM (Total Particle Molecule) indicates the total particulate matter captured by the Cambridge filter of the automatic smoking machine. “TPM (1 puff to 50 puff)” in the formula (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201 puff to 250 puff)" in equation (1) indicates the amount of total particulate matter captured by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 That is, the TPM reduction rate (R TPM ) in Equation (1) is defined as "the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine. 1 minus the value obtained by dividing by the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff, and multiplied by 100.
 図5から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図5の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 5, there is a proportional relationship between the amount of carbonized components contained in 1 g of the extract and the TPM reduction rate. As can be seen particularly from samples SA1 to SA4 in FIG. 5, when the amount of carbonized components contained in 1 g of the extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
 図6は、本実施形態に係る霧化ユニット12の製造方法を説明するためのフロー図である。以下では、たばこ葉から香味成分を抽出する例を説明するが、たばこ葉以外のたばこ原料を用いてもよい。 FIG. 6 is a flowchart for explaining the manufacturing method of the atomization unit 12 according to this embodiment. An example of extracting flavor components from tobacco leaves will be described below, but tobacco raw materials other than tobacco leaves may be used.
 ステップS10に係る抽出工程においては、たばこ葉から香味成分を抽出する。このステップS10の具体的な手法は、特に限定されるものではないが、例えば、以下の手法を用いることができる。まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。 In the extraction process of step S10, flavor components are extracted from tobacco leaves. Although the specific method of step S10 is not particularly limited, for example, the following method can be used. First, an alkaline substance is applied to tobacco leaves (referred to as alkaline treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous solution of potassium carbonate can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80°C or more and less than 150°C) (referred to as heat treatment). Then, during this heat treatment, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group Two or more substances are brought into contact with tobacco leaves.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここには香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を用いることができる。これにより、香味成分を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (flavor components are included here) released from tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or two types selected from this group The above substances can be used. As a result, a collection solvent containing flavor components can be obtained (that is, flavor components can be extracted from tobacco leaves).
 あるいは、ステップS10は、上述したような捕集溶媒を使用しない構成とすることもできる。具体的には、この場合、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後に、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出することもできる。 Alternatively, step S10 can be configured without using the collection solvent as described above. Specifically, in this case, after subjecting the alkali-treated tobacco leaves to the above-described heat treatment, the components released from the tobacco leaves into the gas phase are cooled using a condenser or the like. can be condensed to extract flavor components.
 あるいは、ステップS10は、上述したようなアルカリ処理を行わない構成とすることもできる。具体的には、この場合、ステップS10において、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を添加する。次いで、これが添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させる、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Alternatively, step S10 may be configured without the alkali treatment as described above. Specifically, in this case, in step S10, tobacco leaves (tobacco leaves that have not been subjected to alkali treatment) are treated with glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. A selected substance or two or more substances selected from this group are added. Next, the tobacco leaves to which this has been added are heated, and the components released during this heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 あるいは、ステップS10において、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させる。このような工程によっても、香味成分を抽出することができる。 Alternatively, in step S10, an aerosol in which one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or an aerosol selected from this group Tobacco leaves (tobacco leaves that have not been subjected to alkali treatment) are passed through the aerosol in which two or more kinds of substances are aerosolized, and the aerosol that has passed through the tobacco leaves is collected by a collection solvent. Flavor components can also be extracted by such a process.
 また、本実施形態に係るステップS10(抽出工程)は、上述したような手法で抽出された香味成分に含まれる、「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることをさらに含んでいてもよい。この構成によれば、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。 In addition, step S10 (extraction step) according to the present embodiment reduces "the amount of carbonized components that become carbonized when heated to 250 ° C." contained in the flavor components extracted by the above-described method. It may further include According to this configuration, it is possible to effectively suppress adhesion of carbonized components to the load 40 . As a result, scorching of the load 40 can be effectively suppressed.
 この抽出された香味成分に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 A specific method for reducing the amount of the carbonized component contained in the extracted flavor component is not particularly limited, but for example, the component precipitated by cooling the extracted flavor component is The amount of carbonized components contained in the extracted flavor component may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor component may be reduced by centrifuging the extracted flavor component with a centrifuge. Alternatively, a reverse osmosis membrane (RO filter) may be used to reduce the amount of carbonized components contained in the extracted flavor components.
 ステップS10の後において、以下に説明するステップS20に係る成形工程及びステップS100に係る濃縮工程を実行する。 After step S10, a molding process related to step S20 and a concentration process related to step S100 described below are executed.
 ステップS20においては、ステップS10に係る抽出工程で抽出された後のたばこ葉である「たばこ残渣」を、固めて第2エアロゾル流路232の形状に基づく形状(本実施形態では、一例として円筒状)に成形することで、成形体60を製造する。たばこ葉等のたばこ原料は、液体を吸収しえるので、第2エアロゾル流路232に露出する成形体60の内側面620にたばこ葉等が露出すれば、液捕捉部CPとして機能する。 In step S20, the "tobacco residue", which is the tobacco leaves extracted in the extraction step of step S10, is solidified into a shape based on the shape of the second aerosol flow path 232 (in this embodiment, a cylindrical shape as an example). ) to manufacture the molded body 60 . Tobacco raw materials such as tobacco leaves can absorb liquid, so if tobacco leaves or the like are exposed on the inner side surface 620 of the molded body 60 exposed in the second aerosol flow path 232, they function as the liquid capturing portion CP.
 なお、ステップS20において、成形体60の内側面620または他の面をコーティングしたり、たばこ残渣を固めて所定形状にする際に樹脂を用いて固めてもよい。たばこ原料以外の、液体を吸収または保持する材料を内側面620に配置してもよい。あるいは、コーティングまたは樹脂に凹部を形成してたばこ残渣を露出させてもよい。 In step S20, the inner surface 620 or other surfaces of the molded body 60 may be coated, or a resin may be used to harden the tobacco residue into a predetermined shape. A material other than tobacco material that absorbs or retains liquid may be disposed on inner surface 620 . Alternatively, the coating or resin may be recessed to expose tobacco residue.
 ステップS20の後に、ステップS30に係る組立工程を実行する。具体的には、ステップS30においては、成形体60が収容されていない状態の霧化ユニット12を準備し、この霧化ユニット12の液体収容部50の壁部70gにより画定される第2孔H2に、ステップS20の後の成形体60を収容する。なお、後述するステップS40の後にステップS30を行ってもよい。 After step S20, the assembly process related to step S30 is executed. Specifically, in step S30, the atomization unit 12 in which the molded body 60 is not stored is prepared, and the second hole H2 defined by the wall portion 70g of the liquid storage portion 50 of the atomization unit 12 is , the compact 60 after step S20 is housed. Note that step S30 may be performed after step S40, which will be described later.
 一方、ステップS100に係る濃縮工程においては、ステップS10で抽出された香味成分を濃縮する。具体的には、本実施形態に係るステップS100においては、ステップS10で抽出された香味成分を含む捕集溶媒に含まれる香味成分を濃縮する。濃縮工程を行うと、たばこ葉の抽出液に含まれる香味成分の量を多くすることができる点で好ましい。 On the other hand, in the concentration process related to step S100, the flavor components extracted in step S10 are concentrated. Specifically, in step S100 according to the present embodiment, the flavor components contained in the collection solvent containing the flavor components extracted in step S10 are concentrated. A concentration step is preferable in that the amount of flavor components contained in the tobacco leaf extract can be increased.
 ステップS100の後に、ステップS200に係る抽出液製造工程を実行する。具体的には、ステップS200において、ステップS10で抽出された香味成分(具体的には、ここでは、さらに、ステップS100で濃縮された後の香味成分)を所定の溶媒に添加することで、たばこ葉の抽出液を製造する。所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を用いることができる。 After step S100, the liquid extract manufacturing process of step S200 is executed. Specifically, in step S200, by adding the flavor component extracted in step S10 (specifically, here, the flavor component after being concentrated in step S100) to a predetermined solvent, tobacco Manufacture leaf extract. Although the specific type of the predetermined solvent is not particularly limited, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, Alternatively, two or more substances selected from this group can be used.
 ステップS30およびS200の後に、ステップS40に係る収容工程を実行する。具体的には、ステップS40において、ステップS30で成形体60が収容された霧化ユニット12を準備し、この霧化ユニット12の液体収容部50に、ステップS200で製造された「たばこ葉の抽出液」と、を収容する。以上の工程で、本変形例に係る吸引具10の霧化ユニット12が製造される。霧化ユニット12は、電源ユニット11と連結され、吸引具10が製造される。 After steps S30 and S200, the accommodation process related to step S40 is executed. Specifically, in step S40, the atomization unit 12 containing the compact 60 in step S30 is prepared. contain "liquid". Through the steps described above, the atomization unit 12 of the suction tool 10 according to the present modification is manufactured. The atomization unit 12 is connected with the power supply unit 11 to manufacture the suction tool 10 .
 以上説明したような本実施形態に係る製造方法によれば、たばこ残渣を成形体60の材料として有効的に活用しつつ、エアロゾル流路23での液体の移動を抑制した吸引具10の霧化ユニット12を製造することができる。 According to the manufacturing method according to the present embodiment as described above, the suction device 10 is atomized by suppressing the movement of the liquid in the aerosol flow path 23 while effectively utilizing the tobacco residue as the material of the molded body 60. Unit 12 can be manufactured.
 次のような変形も本発明の範囲内であり、上述の実施形態若しくは他の変形と組み合わせることが可能である。以下の変形例において、上述の実施形態と同様の構造、機能を示す部位等に関しては、同一の符号で参照し、適宜説明を省略する。 The following modifications are also within the scope of the present invention, and can be combined with the above-described embodiment or other modifications. In the following modified examples, the same reference numerals are used to refer to parts having the same structures and functions as those of the above-described embodiment, and description thereof will be omitted as appropriate.
(変形例1)
 上述の実施形態の製造方法において、ステップS100を含んでいない構成とすることもできる。この場合、ステップS200において、ステップS10で抽出された香味成分を所定の溶媒に添加することで、たばこ葉の抽出液を製造すればよい。本変形例においても、エアロゾル流路23での液体の移動を抑制した吸引具10の霧化ユニット12を製造することができる。
(Modification 1)
In the manufacturing method of the above-described embodiment, a configuration that does not include step S100 is also possible. In this case, in step S200, the tobacco leaf extract may be produced by adding the flavor component extracted in step S10 to a predetermined solvent. Also in this modified example, the atomization unit 12 of the suction tool 10 that suppresses movement of the liquid in the aerosol flow path 23 can be manufactured.
(変形例2)
 上述の実施形態の製造方法において、ステップS40を含んでいない構成とすることもできる。この場合、霧化用液体Ldを含まない霧化ユニット12がユーザに提供され、ユーザが自ら所望の霧化用液体Ldを液体収容部50に収容することができる。
(Modification 2)
In the manufacturing method of the above-described embodiment, a configuration that does not include step S40 is also possible. In this case, the user is provided with the atomization unit 12 that does not contain the liquid for atomization Ld, and the user can store the desired liquid for atomization Ld in the liquid storage section 50 .
(変形例3)
 上述の実施形態の製造方法において、ステップS100およびS200を省略して、合成ニコチン等の香味成分を含む霧化用液体Ldを別途調製し、ステップS40において当該霧化用液体Ldを液体収容部50に収容してもよい。本変形例の製造方法では、天然のたばこ原料を必要とせず、エアロゾル流路23での液体の移動を抑制した吸引具10の霧化ユニット12を製造することができる。なお、精製された天然ニコチンを含む霧化用液体Ldを液体収容部50に収容してもよい。この場合、予め精製された天然ニコチンを用いることで抽出操作が不要となる。
(Modification 3)
In the manufacturing method of the above-described embodiment, steps S100 and S200 are omitted, and the atomizing liquid Ld containing a flavor component such as synthetic nicotine is prepared separately. may be accommodated in In the manufacturing method of this modified example, it is possible to manufacture the atomization unit 12 of the inhaler 10 that does not require natural tobacco raw materials and that suppresses movement of the liquid in the aerosol flow path 23 . Note that the liquid containing portion 50 may contain the atomizing liquid Ld containing purified natural nicotine. In this case, the use of pre-purified natural nicotine eliminates the need for an extraction operation.
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The embodiments and modifications of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments and modifications, and is within the scope of the gist of the invention described in the scope of claims. , various modifications and changes are possible.
10 吸引具
12 霧化ユニット
20 エア通路
23 エアロゾル流路
40 負荷
50 液体収容部
60 成形体
600 中空部
620 中空部の内面
CP 液捕捉部
H1 第1孔
H2 第2孔
Ld 霧化用液体
10 Suction Tool 12 Atomization Unit 20 Air Passage 23 Aerosol Flow Path 40 Load 50 Liquid Storage Part 60 Molded Body 600 Hollow Part 620 Inner Surface CP of Hollow Part Liquid Capture Part H1 First Hole H2 Second Hole Ld Liquid for atomization

Claims (9)

  1.  液体を霧化してエアロゾルを生成する霧化部と、
     前記霧化部で生成された前記エアロゾルが通過するエアロゾル流路と、
     前記エアロゾル流路に配置されるたばこ成形体とを備え、
     前記たばこ成形体には、前記エアロゾル流路に露出される露出面が形成されており、前記露出面は、液捕捉部を含む、霧化ユニット。
    an atomization unit that atomizes a liquid to generate an aerosol;
    an aerosol flow path through which the aerosol generated by the atomization unit passes;
    a tobacco molded body arranged in the aerosol flow path,
    The atomization unit, wherein the tobacco molded body has an exposed surface exposed to the aerosol flow path, and the exposed surface includes a liquid capturing portion.
  2.  前記たばこ成形体は中空部が形成されており、前記露出面は前記中空部の内面として形成されている、請求項1に記載の霧化ユニット。 The atomization unit according to claim 1, wherein the tobacco molded body is formed with a hollow portion, and the exposed surface is formed as an inner surface of the hollow portion.
  3.  前記たばこ成形体は、折畳み構造および巻き構造の少なくとも一つを有する、請求項1に記載の霧化ユニット。 The atomization unit according to claim 1, wherein the tobacco molded body has at least one of a folded structure and a rolled structure.
  4.  前記液捕捉部は、密度が1g/cm以下の部分に形成されている、請求項1から3のいずれかに記載の霧化ユニット。 The atomization unit according to any one of claims 1 to 3 , wherein the liquid capturing portion is formed in a portion having a density of 1 g/cm3 or less.
  5.  前記液捕捉部の算術平均表面粗さSaは30μm以上1000μm以下である、請求項1から4のいずれか一項に記載の霧化ユニット。 The atomization unit according to any one of claims 1 to 4, wherein the liquid capturing portion has an arithmetic mean surface roughness Sa of 30 µm or more and 1000 µm or less.
  6.  前記霧化ユニットは、前記液体を収容する液体収容部を備え、
     前記液体収容部を画定する壁部には、第1の内径を有する第1孔と、前記第1の内径より大きい第2の内径を有する第2孔とを含む貫通孔が形成されており、
     前記第2孔に前記たばこ成形体が配置される、請求項1から5のいずれか一項に記載の霧化ユニット。
    The atomization unit includes a liquid storage section that stores the liquid,
    A through hole including a first hole having a first inner diameter and a second hole having a second inner diameter larger than the first inner diameter is formed in a wall portion defining the liquid containing portion,
    6. The atomization unit according to any one of claims 1 to 5, wherein the tobacco compact is arranged in the second hole.
  7.  前記液体はたばこ抽出物、天然ニコチンおよび合成ニコチンの少なくとも一つを含む、請求項1から6のいずれか一項に記載の霧化ユニット。 The atomization unit according to any one of claims 1 to 6, wherein the liquid contains at least one of tobacco extract, natural nicotine and synthetic nicotine.
  8.  請求項1から7のいずれか一項に記載の霧化ユニットを含む、吸引具。 A suction tool comprising the atomization unit according to any one of claims 1 to 7.
  9.  請求項1から7のいずれか一項に記載の霧化ユニットを製造する、霧化ユニットの製造方法であって、
     前記エアロゾル流路の形状に基づく形状に前記たばこ成形体を成形することを含む、霧化ユニットの製造方法。
    An atomization unit manufacturing method for manufacturing the atomization unit according to any one of claims 1 to 7,
    A method for manufacturing an atomization unit, comprising molding the tobacco molded body into a shape based on the shape of the aerosol flow path.
PCT/JP2021/046676 2021-12-17 2021-12-17 Atomization unit, inhalation device, and atomization unit production method WO2023112292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046676 WO2023112292A1 (en) 2021-12-17 2021-12-17 Atomization unit, inhalation device, and atomization unit production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046676 WO2023112292A1 (en) 2021-12-17 2021-12-17 Atomization unit, inhalation device, and atomization unit production method

Publications (1)

Publication Number Publication Date
WO2023112292A1 true WO2023112292A1 (en) 2023-06-22

Family

ID=86773898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046676 WO2023112292A1 (en) 2021-12-17 2021-12-17 Atomization unit, inhalation device, and atomization unit production method

Country Status (1)

Country Link
WO (1) WO2023112292A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020110069A (en) * 2019-01-10 2020-07-27 岡野 哲也 Aerosol suction device
WO2021100110A1 (en) * 2019-11-19 2021-05-27 日本たばこ産業株式会社 Atomization unit and non-combustion heating-type flavor inhaler
JP6899480B1 (en) * 2020-11-20 2021-07-07 日本たばこ産業株式会社 Aerosol generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020110069A (en) * 2019-01-10 2020-07-27 岡野 哲也 Aerosol suction device
WO2021100110A1 (en) * 2019-11-19 2021-05-27 日本たばこ産業株式会社 Atomization unit and non-combustion heating-type flavor inhaler
JP6899480B1 (en) * 2020-11-20 2021-07-07 日本たばこ産業株式会社 Aerosol generator

Similar Documents

Publication Publication Date Title
RU2710775C2 (en) Device for heating material which can be smoked, product for use with such device and method for producing such product
CN107529830B (en) Cartridges, components, and methods for generating inhalable media
RU2664351C1 (en) Product for use with device for smoking material heating
EP3818866A1 (en) Aerosol generating article and aerosol generating device comprising same
RU2765178C1 (en) Device for generating an inhaled medium, its use for stable nicotine delivery, a cartridge and a capsule with a tobacco mixture for such a device
JP2021531803A (en) Generation of suctionable medium
KR102529133B1 (en) Aerosol generating system
WO2023112292A1 (en) Atomization unit, inhalation device, and atomization unit production method
WO2023162197A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit
WO2023105746A1 (en) Inhalation tool and method for manufacturing atomizing unit for inhalation tool
WO2023162195A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit
WO2023112132A1 (en) Inhalator and method for manufacturing inhalator
WO2023112130A1 (en) Production method for atomization unit
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023286238A1 (en) Inhalation tool and method for manufacturing atomizing unit for inhalation tool
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023286239A1 (en) Inhalator and method for producing inhalator
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023112191A1 (en) Tobacco molded article, atomization unit for inhalation device, inhalation device, method for manufacturing tobacco molded article, and method for manufacturing atomization unit for inhalation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968207

Country of ref document: EP

Kind code of ref document: A1