WO2023188435A1 - Atomization unit and method for producing same, and inhalation tool - Google Patents

Atomization unit and method for producing same, and inhalation tool Download PDF

Info

Publication number
WO2023188435A1
WO2023188435A1 PCT/JP2022/017006 JP2022017006W WO2023188435A1 WO 2023188435 A1 WO2023188435 A1 WO 2023188435A1 JP 2022017006 W JP2022017006 W JP 2022017006W WO 2023188435 A1 WO2023188435 A1 WO 2023188435A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
molded body
liquid
aerosol
nicotine
Prior art date
Application number
PCT/JP2022/017006
Other languages
French (fr)
Japanese (ja)
Inventor
光史 松本
貴久 工藤
友一 渡辺
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/017006 priority Critical patent/WO2023188435A1/en
Publication of WO2023188435A1 publication Critical patent/WO2023188435A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges

Definitions

  • the present invention relates to an atomization unit, a method for manufacturing the same, and a suction tool.
  • an atomizing unit used in a suction tool includes a liquid storage part that stores a predetermined liquid, and an electrical unit that atomizes the introduced liquid and generates an aerosol.
  • An atomizing unit which is characterized in that it has a load, stores powder of tobacco material such as tobacco leaves in the liquid of this liquid storage part, and disperses the powder of tobacco material. (For example, see Patent Document 1).
  • Patent Document 2 discloses a configuration of an atomization unit included in a suction tool having a basic configuration.
  • Patent Document 4 discloses information regarding tobacco leaf extract.
  • Non-Patent Document 1 discloses a technology related to nicotine.
  • the present invention has been made in view of the above, and one of its objects is to provide a technique that can suppress deterioration of the load on the atomization unit.
  • an atomization unit of a suction device includes a liquid storage section that stores an aerosol generation liquid containing nicotine, and a liquid storage section that is supplied with the aerosol generation liquid.
  • an electrical load that atomizes the supplied aerosol-generating liquid to generate an aerosol a flavor molded body containing a non-tobacco base material and a flavor material; and a flavor molded body formed inside the liquid storage part; a molded body accommodating portion in which the flavor molded body is positioned and arranged, the flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded body is 10% by weight or less, and the flavor molded body contains a tobacco material;
  • the body is positioned and arranged in a state in which a part of the body is in contact with a wall surface forming the molded body storage part, and at least a part of the other part is in contact with the aerosol generating liquid stored in the liquid storage part. has been done.
  • the flavor molded body molded into a predetermined shape is disposed inside the liquid storage section, and it is possible to physically separate the flavor molded body and the electrical load of the atomization unit. can. Furthermore, since a part of the flavor molded object comes into contact with the wall surface of the molded object storage section, swelling of the flavor molded object can be suppressed. Thereby, it is possible to suppress substances such as tobacco materials that may become deposits from adhering to the load of the atomization unit. As a result, it is possible to suppress deterioration of the load on the atomization unit.
  • the atomization unit includes a partition that partitions the liquid storage section into the molded object storage section and the molded object non-accommodation section so that the molded object storage section is formed in a part of the liquid storage section. It may further include a wall portion, and the flavor molded object may be positioned and arranged in contact with the partition wall portion.
  • the flavor molded body is formed into a rod shape, has a circumferential surface connecting both end surfaces in the axial direction, and is positioned and arranged with the circumferential surface in contact with the wall surface. It's okay.
  • the partition wall portion is provided with an opening for allowing the flavor molded body to come into contact with the aerosol generating liquid stored in the molded body non-accommodating portion. It may be.
  • the atomization unit includes a liquid holding member that holds the load and is supplied with the aerosol generating liquid in the liquid storage section, the flavor molded object, and the liquid holding member. It may further include a spacer member disposed between the liquid retaining member and physically separating the flavor molded body from the liquid retaining member.
  • the flavor molded body is formed into a rod shape, and the spacer member is interposed between the first end surface that is one end surface of the flavor molded body in the axial direction and the liquid retaining member. A portion of the first end surface may be in contact with the spacer member so that partial contact of the first end surface with the aerosol generating liquid is allowed.
  • a filter member may be disposed in at least a part of the region of the flavor molded body that comes into contact with the aerosol generating liquid.
  • a suction tool includes the atomizing unit according to any one of aspects 1 to 7 above, and a power source unit that supplies power to the load and to which the atomizing unit is detachably attached. Equipped with
  • a method for manufacturing an atomization unit for a suction device is a method for manufacturing an atomization unit for a suction device having a liquid storage section, the method comprising: producing an atomization unit for a suction device that includes a liquid containing part. a liquid preparation step, a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material, and an assembly of storing the aerosol-generating liquid containing the nicotine and the flavor molded body in the liquid storage section.
  • the flavor material contains a tobacco material
  • the content of the tobacco material in the flavor molded body in a state where the flavor molded body is accommodated inside the liquid storage section is: 10% by weight or less
  • the flavor molded body is placed in a molded body housing part formed inside the liquid housing part, and a part of the flavor molded body is in contact with a wall surface forming the molded body housing part, Further, the other portion is positioned and arranged so as to be in contact with the aerosol generating liquid contained in the liquid storage portion.
  • a method for manufacturing an atomization unit for a suction device is a method for manufacturing an atomization unit for a suction device having a liquid storage portion, the method comprising: preparing a nicotine-containing liquid; a liquid-containing preparation step, a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material, an addition step of adding the nicotine-containing liquid to the flavor molded body, and a step of adding the nicotine-containing liquid to the flavor molded body.
  • the content of the tobacco material in the flavor molded body in the accommodated state is 10% by weight or less, and in the assembly process, nicotine is eluted from the flavor molded body to the aerosol base material, so that the The aerosol generating liquid is stored in the liquid storage part, and in the assembly step, the flavor molded body is placed in the molded body storage part formed inside the liquid storage part, and a part of the molded body storage part is placed in the molded body storage part. It is positioned and arranged so that it is in contact with the wall surface to be formed, and the other part is in contact with the aerosol generating liquid contained in the liquid storage section.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool 100 according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A2-A2 in FIG. 2.
  • FIG. 1 is a schematic perspective view of a flavor molded article according to Embodiment 1.
  • FIG. FIG. 3 is a schematic cross-sectional view of a modification of the flavor molded body according to Embodiment 1.
  • FIG. 2 is a flow diagram for explaining a method for manufacturing an atomization unit according to Embodiment 1.
  • FIG. 3 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of an aerosol generating liquid containing nicotine.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit according to Modification 1 of Embodiment 1.
  • 10 is a diagram schematically showing a cross section taken along the line A3-A3 in FIG. 9.
  • FIG. 3 is a flow diagram for explaining a method for manufacturing an atomization unit according to Modification 2 of Embodiment 1.
  • FIG. FIG. 3 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 2.
  • 13 is a diagram schematically showing a cross section taken along the line A4-A4 in FIG. 12.
  • FIG. 7 is a schematic cross-sectional view showing main parts of an atomization unit according to a modification of Embodiment 2.
  • FIG. 15 is a diagram schematically showing a cross section taken along the line A5-A5 in FIG. 14.
  • FIG. FIG. 3 is a schematic cross-sectional view showing the main parts of an atomization unit according to Embodiment 3.
  • 17 is a diagram schematically showing a cross section taken along the line A6-A6 in FIG. 16.
  • FIG. 17 is a diagram schematically showing a cross section taken along the line A7-A7 in FIG. 16.
  • FIG. FIG. 7 is a schematic cross-sectional view showing main parts of an atomization unit according to a modification of Embodiment 3.
  • the atomization unit (hereinafter also simply referred to as “atomization unit”) of the suction device includes a liquid storage section that stores an aerosol-generating liquid containing nicotine; an electrical load that causes the aerosol generation liquid in the liquid storage section to be introduced and atomizes the introduced aerosol generation liquid to generate an aerosol;
  • a flavor molded article containing a non-tobacco base material and a flavor material; a molded object accommodating section formed inside the liquid accommodating section and in which the flavor molded object is positioned and arranged; Equipped with
  • the flavor material includes a tobacco material, and the content of the tobacco material in the flavor molded article is 10% by weight or less,
  • the flavor molded body is positioned and arranged such that a part thereof is in contact with a wall surface forming the molded body storage part and another part is in contact with the aerosol generating liquid stored in the liquid storage part.
  • the above-mentioned “at least a part of the other part” refers to a part of the flavor molded object that is different from the part (the above-mentioned "part") that comes into contact with the wall surface forming the molded-obtaining part. . That is, the part of the surface of the flavor molded body that comes into contact with the aerosol-generating liquid contained in the liquid storage section is different from the part that contacts the wall surface forming the molded body storage part.
  • the above-mentioned “at least a part of the other part” may be all the parts of the flavor molded article other than the above-mentioned "part” (i.e., the remainder), or even a part of the remaining part. There may be.
  • the nicotine supply source is a solid such as a powder that can become a deposit as disclosed in Patent Document 1. Otherwise, the effect of the present invention can be obtained, and each condition can be arbitrarily combined within the range where this effect can be obtained.
  • an aerosol generating liquid containing nicotine and a flavor molded body containing a tobacco material are used as a source of nicotine. Since the nicotine supply source is used, it is possible to suppress adhesion of the nicotine supply source to the load of the atomization unit, and thereby suppress deterioration of the load. Furthermore, the tobacco material contained in the flavor molded article plays the role of a spice in terms of aroma and taste. On the other hand, since the tobacco material contains components that can cause charring of the load when heated, it is advantageous not to exceed the above upper limit in order to suppress the occurrence of charring.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool 100 according to the first embodiment.
  • the suction device 100 according to the first embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
  • the suction tool 100 extends in the direction of the central axis CL of the suction tool 100.
  • the suction tool 100 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 100 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction (+Z direction or -Z direction) corresponds to the long axis direction of the suction tool 100
  • the X-axis direction (+X direction or -X direction) corresponds to the width direction of the suction tool 100
  • the Y-axis direction (+Y direction or -Y direction) corresponds to the thickness direction of the suction tool 100.
  • the suction tool 100 includes an atomization unit 10 and a power supply unit 20.
  • the atomization unit 10 generates aerosol that is inhaled by the user of the suction tool 100, and discharges air containing the aerosol from an outlet indicated by the reference numeral 102.
  • the atomization unit 10 also serves as a mouthpiece that the user holds in his/her mouth for suction.
  • the user of the suction device 100 can inhale air containing aerosol discharged from the discharge port 102.
  • the power supply unit 20 is detachably connected to the atomization unit 10 and supplies power to the atomization unit 10. Inside the power supply unit 20, a battery as a power source, a control device, etc. are arranged. When the atomization unit 10 is connected to the power supply unit 20, the power supply of the power supply unit 20 and the load 7 (described later) of the atomization unit 10 are electrically connected.
  • a sensor is arranged in the power supply unit 20 to output the value of the pressure change inside the suction tool 100 caused by the user's suction through the discharge port 102.
  • a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 7 of the atomization unit 10, which will be described later.
  • the sensor detects the end of the air suction, transmits this to the control device, and the control device ends the energization to the load 7.
  • the power supply unit 20 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives this suction start request or suction end request starts or ends energization to the load 7.
  • the configuration of the power supply unit 20 as described above is similar to the power supply unit of a known suction tool as exemplified in Patent Document 1, so further detailed explanation will be omitted.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 10 taken along a plane that includes the central axis CL and is orthogonal to the thickness direction (Y direction). It is illustrated.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG.
  • FIG. 4 is a diagram schematically showing a cross section taken along line A2-A2 in FIG.
  • 3 and 4 are cross sections of the main part of the atomization unit 10 taken along a plane perpendicular to the long axis direction (Z direction) (that is, cross sections taken along a cross section normal to the central axis CL). , also referred to as a "cross section").
  • the atomization unit 10 includes an atomization unit housing (hereinafter also referred to as housing) 1, a gasket 2, an air passage 3, a liquid storage section 4, cotton 5, and a wick. 6, a load 7, and a flavor molded body 8.
  • housing atomization unit housing
  • gasket gasket
  • air passage air passage 3
  • liquid storage section 4 cotton 5, and a wick. 6
  • load 7 a flavor molded body 8.
  • the housing 1 accommodates various elements that constitute the atomization unit 10. As shown in FIGS. 2 to 4, the housing 1 includes a plurality of walls. Specifically, the housing 1 includes end walls 11 and 12, side walls 13 to 16, a passage wall 17, and a partition wall 18.
  • the end wall portions 11 and 12 are provided so as to be perpendicular to the long axis direction, extend in the width direction, and face each other.
  • the end wall portion 11 forms an end portion of the housing 1 on the ⁇ Z direction side
  • the end wall portion 12 forms an end portion of the housing 1 on the +Z direction side.
  • the side walls 13 to 16 extend in the longitudinal direction and connect the pair of end walls 11 and 12.
  • the side wall portions 13 and 14 are provided so as to be perpendicular to the width direction and to face each other.
  • the side wall portion 13 forms a side end portion of the housing 1 on the ⁇ X direction side
  • the side wall portion 14 forms a side end portion of the housing 1 on the +X direction side.
  • the side wall portions 15 and 16 are provided so as to be perpendicular to the thickness direction and to face each other.
  • the side wall portion 15 forms a side end portion of the housing 1 on the ⁇ Y direction side
  • the side wall portion 16 forms a side end portion of the housing 1 on the +Y direction side.
  • An internal space of the housing 1 is defined by the end walls 11 and 12 and the side walls 13 to 16.
  • the interior space of the housing 1 is defined by the area surrounded by the end walls 11 and 12 and the side walls 13 to 16.
  • the end wall 11 is provided with an inlet 101, which is a hole for introducing air into the housing 1 from the outside.
  • a discharge port 102 which is a hole for discharging air containing aerosol, is provided.
  • the inlet 101 and the outlet 102 according to this embodiment are arranged on the central axis CL, for example.
  • the internal space of the housing 1 is divided into two regions in the longitudinal direction by the gasket 2.
  • a region of the internal space of the housing 1 on the ⁇ Z direction side relative to the gasket 2 forms a load passage portion 31 that is a part of the air passage 3.
  • a region on the +Z direction side relative to the gasket 2 is referred to as a first region R1.
  • the first region R1 is formed by the region surrounded by the gasket 2, the end wall portion 12, and the side walls 13 to 16.
  • the passage wall portion 17 is formed into a cylindrical shape extending in the longitudinal direction (Z direction).
  • the passage wall portion 17 is provided so that its center axis coincides with the center axis CL.
  • the end of the passage wall 17 on the +Z direction side is connected to the end wall 12 so that the internal space of the passage wall 17 is connected to the inlet 101.
  • the end of the passage wall 17 on the ⁇ Z direction side extends through the gasket 2 to connect the load passage so that the internal space of the passage wall 17 is connected to the load passage 31 through the opening 17a at the end. It protrudes into the inside of the portion 31.
  • the first region R1 which is the region on the +Z direction side of the gasket 2 in the internal space of the housing 1, is separated by the passage wall 17 from the inner region of the passage wall 17 and the passage wall 17. It is divided into two areas: In the first region R1, a region inside the passage wall portion 17 forms a downstream passage portion 32 that is a part of the air passage 3. Further, in the first region R1, a region outside the passage wall portion 17 forms the liquid storage portion 4.
  • the partition wall portion 18 is provided at a position closer to the ⁇ X direction than the passage wall portion 17.
  • the partition wall part 18 extends in the longitudinal direction (Z direction), and its +Z direction end is connected to the end wall part 12, and its -Z direction end is in contact with the gasket 2. There is. That is, the partition wall 18 extends from the end wall 12 to the gasket 2. Further, as shown in FIG. 3, the partition wall portion 18 is connected to the side walls 15 and 16 so as to divide the liquid storage portion 4 into two regions in the width direction (X direction).
  • a region of the liquid storage section 4 on the -X direction side with respect to the partition wall section 18 forms a molded object storage section 41 in which the flavor molded object 8 is stored. Further, a region of the liquid storage portion 4 on the +X direction side with respect to the partition wall portion 18 forms a molded object non-accommodation portion 42 .
  • the partition wall 18 partitions the liquid storage section 4 into the molded object storage section 41 and the molded object non-accommodation section 42 so that the molded object storage section 41 is formed as a part of the liquid storage section 4. ing. Further, as shown in FIGS.
  • a slit 181 is formed in the partition wall portion 18 to communicate the molded body accommodating portion 41 and the molded body non-accommodating portion 42.
  • the shape and size (opening area) of the slit 181 are set so that the flavor molded object 8 placed in the molded object non-accommodating part 42 cannot pass through the slit 181.
  • the slit 181 according to this embodiment has an elongated shape extending in the longitudinal direction.
  • the slit 181 is an example of an "opening" according to the present invention.
  • the air passage 3 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 3 includes the above-mentioned load passage section 31 and the above-mentioned downstream passage section 32.
  • the load passage section 31 is arranged upstream of the downstream passage section 32.
  • the load passage section 31 is formed by a region surrounded by the end wall section 11, the gasket 2, and the side wall sections 13 to 16.
  • a liquid storage section 4, cotton 5, and a wick 6 are arranged in the load passage section 31.
  • the downstream passage section 32 is formed by a region surrounded by the passage wall section 17. Further, the downstream passage section 32 penetrates the liquid storage section 4 in the longitudinal direction.
  • the load passage section 31 and the outside of the housing 1 communicate through the inlet 101, and the load passage section 31 and the downstream passage section 32 communicate with each other through the opening 17a of the passage wall section 17.
  • the downstream passage section 32 and the outside of the housing 1 communicate with each other via the discharge port 102.
  • the air that has passed through the load passage section 31 flows into the downstream passage section 32 through the opening 17a.
  • the air that has passed through the downstream passage section 32 is discharged from the discharge port 102.
  • the flow direction of air in the air passage 3 is the +Z direction.
  • the liquid storage section 4 is a space for storing an aerosol-generating liquid (hereinafter also simply referred to as "aerosol-generating liquid") containing nicotine. As shown in FIGS. 2 to 4, the liquid storage portion 4 is formed by a region surrounded by the gasket 2, the end wall portion 12, the side walls 13 to 16, and the passage wall portion 17.
  • the liquid storage section 4 includes the above-mentioned molded object storage section 41 and the above-mentioned molded object non-storage section 42.
  • the molded body housing portion 41 is formed by a region surrounded by the gasket 2, the end wall portion 12, the side wall portions 13, 15, 16, and the partition wall portion 18.
  • the shape of the molded object storage section 41 is based on the shape of the flavor molded object 8 (the shape corresponding to the shape of the flavor molded object 8), and in this embodiment, it is cylindrical.
  • symbol W1 in a figure shows the inner wall surface of the molded object accommodating part 41.
  • the wall surface W1 is, in other words, a surface that forms (defines) the molded object accommodating portion 41.
  • the wall surface W1 includes a wall surface W11, a wall surface W12, and a wall surface W13.
  • the wall surface W11 is an end surface of the molded body accommodating portion 41 in the ⁇ Z direction, and is formed by a part of the gasket 2.
  • the wall surface W12 is an end surface of the molded object storage section 41 in the +Z direction, and is formed by a part of the end wall section 12.
  • the wall surface W13 is a side surface of the molded body accommodating portion 41, and is formed into a cylindrical shape by a portion of the side wall portions 13, 15, 16 and a portion of the partition wall portion 18.
  • the molded body non-accommodating portion 42 is formed by a region surrounded by the gasket 2, the end wall portion 12, the side walls 14 to 16, the passage wall portion 17, and the partition wall portion 18.
  • the molded body accommodating portion 41 and the molded body non-accommodating portion 42 communicate with each other via the slit 181 described above.
  • the liquid storage section 4 (the molded object storage section 41 and the molded object non-storage section 42) stores the aerosol generation liquid Le. Moreover, the flavor molded object 8 is further arranged in the molded object storage section 41 in a positioned manner. Details of the positioning arrangement of the flavor molded object 8 in the molded object non-accommodating section 42 will be described later.
  • FIG. 2 and the like illustrate a state where the aerosol generation liquid Le is stored in the liquid storage section 4, the atomization unit 10 is not provided to the user in a state where the liquid is stored in the liquid storage section 4.
  • the liquid container 4 may be provided to the user in a state in which no liquid is contained therein, and the user may introduce the liquid and use the liquid.
  • the gasket 2 is a plate-shaped member that partitions the liquid storage section 4 and the load passage section 31 by crossing the internal space of the housing 1. Further, as will be described later, the gasket 2 also serves as a spacer member for physically separating the flavor molded body 8 from the wick 6.
  • the gasket 2 corresponds to an example of a "spacer member" according to the present invention.
  • the gasket 2 is provided to extend in the width direction so as to be orthogonal to the long axis direction. As shown in FIG. 4, the peripheral edge of the gasket 2 is in contact with the side walls 13 to 16. As shown in FIGS.
  • the gasket 2 includes a through hole 21 through which the passage wall 17 passes, a communication hole 22 that communicates between the load passage part 31 and the molded body accommodating part 41, and the load passage part 31.
  • a communication hole 23 that communicates between the molded body non-accommodating portion 42 and the molded body non-accommodating portion 42 is formed.
  • the cotton 5 is a member that is supplied with the aerosol generation liquid Le from the liquid storage section 4 and supplies the supplied aerosol generation liquid Le to the wick 6 .
  • the cotton 5 is placed in the load passage portion 31 so as to cover the communication holes 22 and 23 of the gasket 2.
  • the cotton 5 introduces the aerosol generation liquid Le from the molded body accommodating part 41 and the molded body non-accommodating part 42 through the communicating holes 22 and 23 .
  • the cotton 5 according to the present embodiment for example, can absorb the aerosol generation liquid Le in the liquid storage section 4 by utilizing capillarity (capillary phenomenon). It is supplied to Wick 6.
  • the capillary force (capillary force) of the cotton 5 is preferably larger than the capillary force of the flavor molded body 8 from the viewpoint of being able to use the surrounding liquid without wasting it.
  • the wick 6 is a member that holds the load 7 and is supplied with the aerosol generating liquid Le from the liquid storage section 4 . As shown in FIG. 2, the wick 6 is arranged in the load passage section 31 so as to be in contact with the cotton 5. The wick 6 holds the aerosol generation liquid Le supplied from the cotton 5 and supplies the aerosol generation liquid Le to the load 7.
  • the specific configuration of the wick 6 is not particularly limited as long as it has such a function, but the wick 6 according to the present embodiment uses capillarity (capillary phenomenon) as an example. , the aerosol generation liquid Le in the liquid storage section 4 is supplied to the load 7.
  • the capillary force (capillary force) of the wick 6 is preferably larger than the capillary force of the flavor molded body 8 and the cotton 5 from the viewpoint of being able to use the surrounding liquid without wasting it.
  • the aerosol generation liquid Le may be directly supplied to the wick 6 from the liquid storage part 4 without having the above-mentioned cotton 5.
  • the wick 6 corresponds to an example of a "liquid holding member" according to the present invention.
  • the load 7 is an electrical load to which the aerosol generation liquid Le of the liquid storage section 4 is supplied and which atomizes the supplied aerosol generation liquid Le to generate an aerosol. As shown in FIG. 2, the load 7 is placed in the load passage section 31 while being held by the wick 6. Therefore, the load 7 is in contact with the wick 6, and the aerosol generation liquid Le is supplied from the wick 6 to the load 7.
  • the specific configuration of the load 7 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 7. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used.
  • a heating resistor is used as an example of this heater.
  • the heater serving as the load 7 may have a coil shape. That is, the load 7 according to this embodiment may be a so-called coil heater. This coil heater may be wound around the wick 6.
  • the load 7 is electrically connected to the power supply and control device of the power supply unit 20 described above, and generates heat when power from the power supply is supplied to the load 7 (that is, when energized fever). Further, the operation of the load 7 is controlled by a control device. The load 7 atomizes the aerosol-generating liquid Le supplied to the load 7 via the wick 6 from the liquid storage section 4 by heating it, thereby generating an aerosol.
  • the aerosol generation liquid Le stored in the liquid storage section 4 is not particularly limited as long as it contains nicotine.
  • the form of nicotine contained in the aerosol generation liquid Le is not particularly limited, and examples include one or more types of nicotine selected from synthetic nicotine and natural nicotine. Note that these synthetic nicotine and natural nicotine may exist as nicotine or as nicotine-containing compounds such as nicotine salts.
  • the form of the aerosol generation liquid Le is not particularly limited, and for example, one in which a predetermined solvent contains one or more types of nicotine selected from synthetic nicotine and natural nicotine can be used.
  • the specific type of the predetermined solvent is not particularly limited, but for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • a liquid containing a substance can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the purity of natural nicotine when using natural nicotine as the nicotine contained in the aerosol generation liquid Le, by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible components other than natural nicotine from the extract of tobacco materials, The purity of natural nicotine may be increased, and natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
  • the synthetic nicotine when synthetic nicotine is used as the nicotine contained in the aerosol generation liquid Le, nicotine produced by chemical synthesis using a chemical substance can be used as the synthetic nicotine.
  • the purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the method for producing synthetic nicotine is not particularly limited, and it can be carried out by chemical synthesis using chemical substances, and known production methods can be used.
  • the purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned.
  • the production method is not particularly limited, and any known production method can be used.
  • This tobacco extract component is a substance generally contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and even if these components other than nicotine are contained, they are not included. It does not have to be present, but if it is present, it can function as a fragrance.
  • nicotine there are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually in the S form, with the R form accounting for less than 1 mol%.
  • synthetic nicotine the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method.
  • the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and examples include methods of dissolving nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis or extraction of tobacco materials in the aerosol generation liquid Le; Examples include a method in which nicotine or a nicotine-containing compound is dissolved in a solvent and then mixed with the aerosol generation liquid Le.
  • the tobacco extract can be used as it is as the aerosol generation liquid Le. Examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • liquid aerosol generation liquid Le containing nicotine described above as a nicotine supply source
  • powdered tobacco material that can become a deposit as disclosed in Patent Document 1 is used as a nicotine supply source. It is possible to suppress deterioration of the load 7 of the atomization unit 10 that occurs when the atomization unit 10 is used as a fuel cell.
  • the content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less.
  • the tobacco extract can be used as the source of the tobacco extract component, but in this case, the content of the tobacco extract in the aerosol generation liquid Le is not particularly limited. However, from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, or 0.5% by weight or more and 7.5% by weight or less, It may be 1% by weight or more and 5% by weight or less.
  • the predetermined solvent that can be included in the aerosol generation liquid Le is not particularly limited, and for example, an aerosol base material (a base material for generating an aerosol) can be used.
  • the type of aerosol base material is not particularly limited, and for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • the content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
  • the type of solvent used in the extraction to obtain the above tobacco extract component is not particularly limited as long as it can dissolve nicotine, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances selected from the group or a liquid containing this substance can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the tobacco extract can be used as is as the aerosol generation liquid Le, but the tobacco extract does not contain components that can cause scorching by heating (for example, lipids, etc.). metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation.
  • the tobacco extract contains flavor components in the tobacco material other than nicotine, specific examples of which include neophytadiene and the like.
  • the aerosol generation liquid Le may contain components other than nicotine and the aerosol base material (other components), such as flavor components other than nicotine (including the above-mentioned tobacco extract components other than nicotine).
  • Flavor components other than nicotine and flavor components derived from tobacco materials include, for example, menthol, natural vegetable flavorings (for example, cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g.
  • menthyl acetate isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.
  • ketones e.g. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca lactone, etc.
  • neophytadiene solanone, or solanesol.
  • the flavor molded body 8 is formed by solidifying materials such as a non-tobacco base material and a flavor material into a predetermined shape. As shown in FIGS. 2 to 4, the flavor molded body 8 is arranged in the molded body storage section 41 of the liquid storage section 4. As shown in FIGS. In the present embodiment, one flavor molded object 8 is arranged in one molded object storage section 41, but the quantity of flavor molded objects 8 and molded object storage section 41 is not limited to this, and the number of flavor formed objects 8 and molded object storage section 41 is not limited to this. There may be more than one. Further, a plurality of flavor molded bodies 8 may be arranged in one molded body storage section 41. In the embodiments shown in FIGS.
  • the molded object accommodating portion 41 is formed on one side in the width direction (-X direction side) and the flavor molded object 8 is arranged, but the present invention is not limited thereto.
  • the molded object accommodating sections 41 may be formed on both sides in the width direction with the downstream passage section 32 in between, and the flavor molded objects 8 may be arranged in each of the formed object accommodating sections 41 .
  • the flavor molded body 8 contains a flavor material. Therefore, as will be described later, by forming a state in which the flavor molded body 8 disposed in the molded body storage part 41 and the aerosol generation liquid Le in the liquid storage part 4 are in contact with each other, the flavor contained in the flavor molded body 8 is Flavor components are eluted from the material into the aerosol generation liquid Le.
  • the atomization unit 10 can further impart flavor by eluting flavor components from the flavor material of the flavor molded body 8 into the aerosol generation liquid Le.
  • the flavor material since the flavor material is contained in the flavor molded body 8, it is possible to avoid adhesion to the load of the atomization unit, which occurs due to the use of powdery solids that can become deposits as disclosed in Patent Document 1. Since no problem occurs, deterioration of the load can be suppressed.
  • the aerosol-generating liquid Le is retained by this capillary action, so that the effect of preventing liquid leakage can be obtained.
  • FIG. 1 is a schematic perspective view of a flavor molded body 8 according to Embodiment 1.
  • FIG. The shape of the flavor molded body 8 according to this embodiment is not particularly limited, and is, for example, rod-shaped (columnar).
  • the rod-shaped flavor molded body 8 according to the present embodiment has a rod-shaped polyhedral shape, as an example, and has a cross-sectional shape (more specifically, a cross-sectional shape perpendicular to the axial direction of the rod). It has a cylindrical shape with a circular cross-sectional shape.
  • a "rod shape (column shape)" extends in a predetermined direction, and the length in the extending direction (axial direction) is longer than the length in the width direction (direction orthogonal to the axial direction). Refers to a long shape.
  • the extending direction (axial direction) of the flavor molded body 8 may be referred to as the "longitudinal direction”
  • the width direction (radial direction in this example) of the flavor molded body 8 may be referred to as the "short direction”.
  • the flavor molded body 8 has both end surfaces in the longitudinal direction and a peripheral surface connecting the both end surfaces.
  • the flavor molded product 8 has a first end surface 81 that is one end surface in the longitudinal direction of the flavor molded product 8, a second end surface 82 that is the other end surface, and the first end surface 81 and the second end surface 82. It has a connecting cylindrical peripheral surface 83.
  • the width (i.e. diameter) (W), which is the length in the short direction of the flavor molded body 8 shown in FIG. 5, and the total length (L), which is the length in the longitudinal direction of the flavor molded body 8, are specifically Although the value is not particularly limited, an example of the numerical value is as follows. That is, as the width (W) of the flavor molded body 8, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used. As the total length (L) of the flavor molded body 8, a value selected from a range of, for example, 5 mm or more and 50 mm or less can be used.
  • these values are only examples of the width (W) and overall length (L) of the flavor molded body 8, and the width (W) and total length (L) of the flavor molded body 8 may vary depending on the size of the suction tool 100. Just set a suitable value. When a plurality of flavor molded bodies 8 are present, these parameters are the average value of the numerical values calculated for each flavor molded body 8.
  • the cross-sectional shape of the flavor molded body 8 is not limited to a circle, and other examples include polygons (triangles, quadrilaterals, pentagons, or polygons with six or more corners), etc. There may be.
  • the cross-sectional shape of the flavor molded body 8 may be any shape other than circular or polygonal.
  • the cross-sectional shape may be any shape other than a circle or a polygon, and may be a complicated shape as shown in FIG. 6(c), which will be described later, or may be a concave shape.
  • the flavor molded body 60 has a rod shape with grooves formed on the side surface.
  • the shape of the flavor molded body 8 may be a rod shape having a hollow portion, or a shape in which a plurality of rods are bundled (the plurality of rods may be assembled into a bundle, and mutually ) may or may not be integrated.
  • the rod shape having a hollow portion include a cylindrical shape having a through hole extending in the longitudinal direction, a concave shape having a non-through hole extending in the longitudinal direction, and the like.
  • the shape of the flavor molded body 8 does not have to be a rod shape (column shape).
  • the shape of the flavor molded body 8 may be, for example, a sheet shape, or a shape in which a plurality of sheets are laminated (the plurality of sheets only need to be stacked together, or even if they are integrated with each other). ), the sheet may have a bellows shape with a repeated mountain-fold and valley-fold structure, or the sheet may have a spiral shape with a spiral structure.
  • the flavor molded product 8 is a sheet made of a mixture of a non-tobacco base material and a flavor material, or a sheet made of a mixture of a non-tobacco base material and a flavor material.
  • a cast sheet of a mixture of non-tobacco base material and a flavoring material, a rolled sheet of a mixture of a non-tobacco base material and a flavoring material, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying etc. can be used. .
  • the shape of the flavor molded body 8 may be a shape other than the above-mentioned rod shape or sheet shape, for example, it may be a cubic shape (a shape with sides of the same length), or it may be a porous shape. Alternatively, it may have other shapes.
  • FIGS. 6(a) to 6(e) are schematic cross-sectional views of modified examples of the flavor molded body 8 according to the first embodiment.
  • FIGS. 6(a) to 6(e) a cross section perpendicular to the longitudinal direction of the flavor molded body 8 is illustrated.
  • FIG. 6(a) shows an example of a schematic cross-sectional shape when the flavor molded body 8 has a cylindrical shape
  • FIG. 6(b) shows an example of a schematic cross-sectional shape when the flavor molded body 8 has a plurality of shapes
  • FIG. 6(c) shows an example of a schematic cross-sectional shape when the bars are in a bundle shape
  • FIG. An example is shown, and FIG.
  • FIG. 6(d) shows an example of a schematic cross-sectional shape when the flavor molded body 8 has a bellows shape
  • FIG. 6(e) shows a case where the flavor molded body 8 has a spiral shape.
  • An example of a schematic cross-sectional shape is shown below.
  • the capillary force generated by the flavor molded body 8 itself absorbs the surrounding liquid.
  • the capillary force is smaller than the capillary force of the wick 6 while maintaining a capillary force of a desired magnitude or more.
  • the flavor molded body 8 has a space extending from the end region (including the end and end surface) on the side where the wick 6 exists to the side opposite to the side where the wick 6 exists. A shape having the following is preferable.
  • a space extending from the first end surface 81 of the flavor molded body 8 in the +Z direction is formed.
  • the shape of this space is not particularly limited, and preferred shapes of the flavor molded body 8 include, for example, a cylindrical shape, a concave shape, a shape in which a plurality of rods are bundled, a bellows shape, a spiral shape, a porous shape (especially It is preferable that the shape is selected from one or more types of porous bodies having continuous pores.
  • the flavor molded body 8 has a shape that facilitates dispersion of gas such as air in the liquid storage part, and for example, it is preferable that it has a porous shape.
  • the flavor molded body 8 is preferably coated with a coating material.
  • the flavor molded body 8 is coated with a nonwoven fabric, resin It is preferable to be coated with a coating material such as or a nicotine-containing coating material.
  • Non-woven fabric refers to fibers that are processed into cloth without being woven.
  • a nonwoven fabric is, for example, a fabric formed by adhering or intertwining fibers by thermal, mechanical, or chemical action.
  • the fibers constituting the "nonwoven fabric” are not particularly limited, and may be plant fibers, animal fibers, synthetic fibers, or a mixture of two or more of these.In particular, it is preferable to contain plant fibers, and more preferably to contain paper. preferable. It is preferable for the nonwoven fabric to cover the entirety of the flavor molded body 8 in order to enhance the effect of preventing the flavor molded body 8 from swelling. It is preferable that the nonwoven fabric is paper that wraps the entire flavor molded body 8.
  • the shape of the nonwoven fabric is not particularly limited as long as it can cover at least a portion of the flavor molded body 8.
  • the nonwoven fabric may have a cylindrical shape and be arranged to cover the center of the flavor molded body 8 and the like.
  • the nonwoven fabric may have a cylindrical shape with one opening closed, and may be placed at the end of the flavor molded body 8.
  • a covering step of covering the flavor molded body 8 with the nonwoven fabric can be provided after the molding step of molding the flavor molded body 8.
  • the method of covering the flavor molded body 8 with the nonwoven fabric is not particularly limited, and for example, the flavor molded body 8 can be wrapped with the nonwoven fabric by a machine or by a person, and the sides of the nonwoven fabric can be bonded as necessary.
  • Examples of the coating material (coating) when coating with resin include polyethylene, polyethylene wax, microcrystalline wax, beeswax, or zein.
  • the coating material such as resin suppresses the swelling of the flavor molded body 8. It is preferable that the coating covers 50% or more of the surface of the flavor molded body 8 in order to increase the effect of preventing swelling of materials such as non-tobacco base materials contained in the flavor molded body 8, and 90% or more is more preferable. preferable.
  • the shape of the coating is not particularly limited as long as it can cover at least a portion of the flavor molded body 8.
  • the nicotine-containing coating material is not particularly limited as long as it contains nicotine, and may be, for example, the above-mentioned water glass or resin material containing nicotine.
  • a coating step of covering the flavor molded body 8 with the coating material can be provided after the molding step of molding the flavor molded body 8.
  • the surface of the flavor molded body 8 is coated with a coating agent containing sodium silicate, such as water glass, or a resin, to form a coating.
  • the method of forming the coating material is not particularly limited, and for example, after forming a film of a liquid coating agent containing sodium silicate or a resin on the surface of the flavor molded body 8, it is solidified or gelated by heating or addition of acid or salt. processing can be performed.
  • the flavor molded body 8 may be coated without performing the coating step, and by hardening the material such as a non-tobacco base material to which a flavor component has been appropriately added using a solution containing sodium silicate or resin such as water glass in the molding step. You may.
  • the flavor molded body 8 be covered with a member that contracts into a pre-memorized shape from the viewpoint of efficiently storing the flavor molded body 8 in the molded body housing portion 41.
  • the flavor molded body 8 is rod-shaped as in this embodiment, it is preferable that the flavor molded body 8 is covered with, for example, a heat shrinkable tube.
  • the type of material of the non-tobacco base material used for the flavor molded body 8 is not particularly limited as long as it is derived from a tobacco material (specifically, a tobacco plant); for example, ceramic, synthetic polymer, or tobacco plant material. Pulp derived from other plants may be used. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Further, the non-tobacco base material may be the main material of the flavor molded product 8, particularly the main material that ensures the molding of the flavor molded product 8.
  • the content of the non-tobacco base material in the flavor molded body 8 is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 100% by weight or less, It may be more than 80% by weight and less than 80% by weight.
  • the form of the flavor material contained in the flavor molded body 8 is not particularly limited, and for example, it may be a flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component.
  • component-imparting materials include tobacco materials that provide nicotine.
  • tobacco material when a tobacco material is used as a flavoring material, it is possible to impart flavor with tobacco components such as nicotine as a spice.
  • the flavor molded body 8 contains a flavor component imparting material
  • the flavor component imparting material is treated as the flavor material, not the flavor component contained in the flavor component imparting material.
  • the flavor material is not nicotine contained in the tobacco material, but the tobacco material.
  • the flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using the tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets used in known tobacco products) may be included, but it is necessary to ensure a sufficient amount of use and processing. From the viewpoint of ease of processing, tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
  • the tobacco material contained in the flavor molded body 8 plays the role of spice from the viewpoint of aroma and taste.
  • the flavor material contains tobacco material does not mean that the flavor material contains tobacco material, but rather that tobacco material is included as one of the types of flavor material.
  • the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body 8 is 10% by weight or less” means “the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body 8 is 10% by weight or less”. The tobacco material is 10% by weight or less.”
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generating liquid Le stored in the liquid storage section 4, and finally the aerosol generated by using the atomization unit 10. delivered to the user as
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the flavor molded body 8 has the flavor material on its surface, sufficient contact between the aerosol generation liquid Le in the liquid storage section 4 and the flavor material can be ensured, so that the flavor component is sufficiently eluted into the liquid. , can ensure excellent flavor.
  • the content of the flavor material in the flavor molded body is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight or more. % or more and 50% by weight or less.
  • the flavor molded body 8 contains at least tobacco material as a flavoring material, but the content of the tobacco material in the flavor molded body 8 should be 1% by weight or more from the viewpoint of exerting its role as a flavor spice.
  • the amount of tobacco material is preferably 3% by weight or more, more preferably 7% by weight or more, and if the amount of tobacco material is too large, the tobacco material may separate from the flavor molded body 8 and cause deposits. From the viewpoint of reducing the amount of components contained in the tobacco material that may cause scorching of the load 7 due to heating, the amount is 10% by weight or less, and more preferably 7% by weight or less. , more preferably 3% by weight or less.
  • the flavor molded body 8 may contain a binder in order to bond materials included in the flavor molded body 8 such as non-tobacco base materials, especially when the flavor molded body 8 contains a substance that can be turned into powder. It is preferable that a binder be included in order to prevent the binder from becoming a deposit and promoting deterioration of the load 7.
  • the type of binder is not particularly limited, and for example, starch, hydroxyalkyl cellulose, polyvinyl acetate resin, or alkyl hydroxyalkyl cellulose can be used.
  • the binder component 1 selected from the group consisting of starch, hydroxyalkyl cellulose, and polyvinyl acetate, from the viewpoint that the binder component itself does not become a scorching factor and can maintain the shape of the molded product. It is preferable that the substance is more than one species.
  • the vinyl acetate resin include polyvinyl acetate and vinyl acetate.
  • the content of the binder in the flavor molded body 8 may be 1% by weight or more and 20% by weight or less, and 3% by weight or more and 15% by weight or less, from the viewpoint of the balance between adhesiveness and suppression of burnt component elution. It may be 5% by weight or more and 10% by weight or less.
  • the flavor molded body 8 may contain components other than the above-mentioned various components, such as a gelling agent such as calcium lactate, or a humectant such as glycerin or propylene glycol.
  • a gelling agent such as calcium lactate
  • a humectant such as glycerin or propylene glycol.
  • the density (mass per unit volume) of the flavor molded body 8 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg /cm 3 or less.
  • the density of the flavor molded body 8 is not limited to this, and may be less than 1000 mg/cm 3 or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies 8 are present, this density is determined as the total mass relative to the total volume of the flavor molded bodies 8.
  • the wet tensile strength of the flavor molded body 8 is not particularly limited, but in order to suppress collapse in a humid environment, it is preferably 5 N or more per 15 mm, and preferably 10 N or more per 15 mm. More preferred.
  • This wet tensile strength can be measured according to the method described in JP-A-2019-187451. The specimen to be measured in this measurement is adjusted at 22 ⁇ 2°C and relative humidity 60 ⁇ 5% for at least 24 hours, and then the test sample is adjusted to a length of 250 ⁇ 0.1 mm and a width of 15 ⁇ 0.1 mm. Cut and prepare.
  • the flavor molded body 8 is molded so that its longitudinal direction coincides with the long axis direction (Z direction) of the atomization unit 10, and the first end surface 81 faces in the ⁇ Z direction. It is arranged in the body accommodating part 41. That is, the first end surface 81 of the flavor molded body 8 faces the wick 6 side of the load passage section 31.
  • a part of the surface of the flavor molded object 8 contacts the wall surface W1 forming the molded object storage part 41, and at least one other part of the surface (a part different from the above-mentioned part) is positioned and arranged in a state where it is in contact with the aerosol generating liquid Le stored in the liquid storage part 4.
  • a region of the first end surface 81 excluding the region exposed to the communication hole 22 of the gasket 2 is in contact with the wall surface W11 (gasket 2).
  • the area of the peripheral surface 83 excluding the area exposed to the slit 181 of the partition wall 18 is in contact with the wall surface W13 (the side walls 13, 15, 16 and the partition wall 18).
  • the entire second end surface 82 is in contact with the aerosol generation liquid Le in the molded object storage section 41 .
  • the molded body accommodating portion 41 and the molded body non-accommodating portion 42 communicate with each other through the slit 181, thereby preventing the flavor molded body 8 from coming into contact with the aerosol generation liquid Le stored in the molded body non-accommodating portion 42. Since this is allowed, the area of the peripheral surface 83 exposed to the slit 181 is in contact with the aerosol generation liquid Le in the molded object non-accommodating part 42 via the slit 181.
  • the shape of the molded body accommodating part 41 is a columnar shape corresponding to the shape of the flavor molded body 8, as shown in FIG.
  • the peripheral surface 83 and the wall surface W13 are in contact with each other so as to surround the wall surface W13. Therefore, the peripheral surface 83 is in a state of being fitted into the molded body housing portion 41. Furthermore, in this embodiment, the flavor molded body 8 is inserted into the molded body accommodating portion 41 in a compressed state in the longitudinal direction and the width direction. Therefore, the wall surface W13 of the molded object accommodating portion 41 is pressed by the restoring force from the compression of the flavor molded object 8. Due to the frictional force based on this restoring force, the circumferential surface 83 and the wall surface W13 are securely fitted, and the flavor molded body 8 is fixed to the wall surface W13.
  • the flavor molded object 8 is positioned in the molded object storage section 41, and movement of the flavor molded object 8 within the molded object storage section 41 is suppressed.
  • the flavor molded body 8 may be placed with the second end surface 82 in contact with the wall surface W12.
  • the flavor material contained in the flavor molded body 8 includes tobacco material, but if substances such as tobacco material that can become deposits adhere to the load 7, there is a risk that the load 7 will deteriorate.
  • the flavor molded body 8 and the electrical load 7 are physically separated, as shown in FIG. It can be suppressed. Thereby, according to the atomization unit 10 according to the present embodiment, deterioration of the load 7 can be suppressed.
  • the flavor molded body 8 when the flavor molded body 8 is configured to absorb the aerosol generation liquid Le, the swelling of the flavor molded body 8 causes the aerosol generation to be reduced in the aerosol generation liquid Le in the liquid storage section 4. There is concern that the amount available for use will decrease. Moreover, if the flavor molded body 8 swells excessively and comes into contact with the load 7, there is a possibility that the tobacco material will adhere to the load 7 and the load 7 will deteriorate. In addition, the non-tobacco base material of the flavor molded body 8 may collapse due to absorption of the aerosol generation liquid Le, and in such a case, it is necessary to prevent the collapsed non-tobacco base material from dispersing into the aerosol generation liquid Le. It is necessary to prevent it.
  • the atomization unit 10 by bringing a part of the flavor molded body 8 into contact with the wall surface W1, the contact area between the flavor molded body and the aerosol generation liquid Le is reduced. Thereby, swelling of the flavor molded body 8 can be suppressed. As a result, it is possible to suppress the decrease in the usable aerosol-generating liquid Le and the deterioration of the load 7 due to the swelling of the flavor molded body 8. Further, since a part of the flavor molded body 8 is in contact with the wall surface W, even if the flavor molded body 8 collapses, dispersion of the collapsed non-tobacco base material into the aerosol generation liquid Le can be suppressed. .
  • the atomization unit 10 in the atomization unit 10 according to Embodiment 1, at least a part of the other part of the flavor molded body 8 is brought into contact with the aerosol generation liquid Le stored in the liquid storage section 4, thereby forming a flavor molded body. A contact area with the aerosol generation liquid Le is ensured. Therefore, the flavor component can be eluted into the aerosol generation liquid Le.
  • the flavor molded body 8 is positioned and arranged in the molded body accommodating portion 41 in a state where the flavor molded body 8 is in contact with the wall surface W13 of the molded body accommodating portion 41 at the peripheral surface 83. ing.
  • the circumferential surface 83 of the flavor molded body 8 is contacted with the wall surface W1
  • swelling of the flavor molded body 8 can be suitably suppressed.
  • flavor molding can be performed without separately arranging a positioning member in the molded object storage section 41.
  • the body 8 can be positioned, and the flavor molded body 8 can be positioned and arranged efficiently.
  • the fitting between the circumferential surface 83 of the flavor molded body 8 and the wall surface W13 of the molded body accommodating portion 41 prevents the aerosol-generating liquid Le from entering between the circumferential surface 83 and the wall surface W13. Swelling of the body 8 can be suppressed more suitably.
  • the flavor molded body 8 it is more preferable that 50% or more of the area of the peripheral surface 83 contacts the wall surface W1 of the molded body accommodating part 41, and it is even more preferable that 75% or more of the area contacts the wall surface W1.
  • the area in which the peripheral surface 83 contacts the wall surface W1 increases, the area in which the flavor molded body 8 contacts the aerosol generation liquid Le can be reduced, and the swelling of the flavor molded body 8 can be suppressed more suitably.
  • the atomization unit 10 may allow the flavor molded object 8 placed in the molded object storage section 41 to swell to some extent.
  • the cross-sectional area of the molded body housing portion 41 is set to be 0.5 larger than the cross-sectional area of the flavor molded body 8 in a cross section perpendicular to the longitudinal direction of the flavor molded body 8. % to 10%, more preferably 2% to 5%.
  • the swelling of the flavor molded body 8 can be suppressed by forming a shape based on the flavor molded body 8 (a shape corresponding to the shape of the flavor molded body 8) and bringing a part of the flavor molded body 8 into contact with the wall surface W1.
  • the gasket 2 is disposed between the flavor molded body 8 and the wick 6, so that the flavor molded body 8 are physically separated. Therefore, by ensuring a distance between the flavor molded body 8 and the wick 6, the flavor molded body 8 can be prevented from coming into contact with the wick 6. Thereby, it is possible to suppress the tobacco material contained in the flavor molded body 8 from adhering to the load 7 via the wick 6. As a result, deterioration of the load 7 can be suppressed. Furthermore, in this embodiment, since the gasket 2 is in contact with the first end surface 81 of the flavor molded body 8, movement of the flavor molded body 8 in the ⁇ Z direction is restricted. Note that the gasket 2 does not need to be in contact with the first end surface 81 of the flavor molded body 8.
  • the housing of the power supply unit 20 (power supply unit housing) is also formed with an inlet for taking air into the interior thereof from the outside. Further, inside the power supply unit housing, an internal passage is formed that communicates the inflow port on the power supply unit housing side and the inflow port 101 on the atomization unit housing 1 side. Air supplied through the internal passage flows into the air passage 3 from the inlet 101 of the atomization unit housing 1 .
  • Suction of aerosol using the suction tool 100 is performed as follows. First, when a user starts a suction operation while holding the discharge port 102 of the suction tool 100 in his or her mouth, external air is taken into the power supply unit 20 and flows into the load passage section 31 of the air passage 3 via the inflow port 101. Inflow. At this time, when the control device provided in the power supply unit 20 detects the user's suction operation, it issues a command to the battery and starts energizing the load 7 in the atomization unit 10 . The wick 6 disposed in the load passage section 31 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 4 .
  • the aerosol generating liquid Le held in the wick 6 evaporates. This generates an aerosol.
  • This aerosol contains nicotine contained in the aerosol generation liquid Le in the liquid storage part 4 and flavor components (including nicotine) that can be eluted from the flavor molded body 8.
  • the aerosol generated in the load passage section 31 is mixed with the air that has flowed into the load passage section 31 around the wick 6 (also referred to as the "atomization section").
  • the air to which this aerosol has been added flows into the downstream passage section 32 and is discharged from the discharge port 102, thereby being finally inhaled by the user.
  • FIG. 7 is a flow diagram for explaining a method for manufacturing the atomization unit 10 according to the first embodiment.
  • the manufacturing method is a manufacturing method of an atomization unit of a suction tool having a liquid storage section, comprising: a liquid preparation step for preparing an aerosol generating liquid containing nicotine; a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material; an assembly step of accommodating the aerosol-generating liquid containing the nicotine and the flavor molded object in the liquid storage section,
  • the flavoring material includes a tobacco material, and the content of the tobacco material in the flavoring molded object in a state where the flavoring molded object is accommodated inside the liquid storage section is 10% by weight or less,
  • the flavor molded body is placed in a molded body storage section formed inside the liquid storage section, with a part of the flavor molded body being in contact with a wall surface forming the molded body housing section, and at least the other part being in contact with a wall surface forming the molded body housing section.
  • manufacturing method according to the present embodiment may include steps other than the liquid preparation step, molding step, and assembly step described above.
  • nicotine-containing aerosol generation is used as a nicotine supply source instead of a powdered tobacco material that can become deposits as disclosed in Patent Document 1. Since the flavor molded body containing the liquid and the tobacco material is used, it is possible to suppress the nicotine supply source from adhering to the load of the atomization unit, and thus to suppress the deterioration of the load. Furthermore, the tobacco material contained in the flavor molded article plays the role of a spice in terms of aroma and taste. On the other hand, since the tobacco material contains components that can cause charring of the load when heated, it is advantageous not to exceed the above upper limit in order to suppress the occurrence of charring.
  • an aerosol generation liquid Le (hereinafter also simply referred to as "liquid") containing nicotine is prepared.
  • a specific method for preparing the aerosol generation liquid Le containing nicotine is not particularly limited, and any known method can be employed.
  • a method in which nicotine or a nicotine-containing compound such as a nicotine salt obtained by synthesis etc. is dissolved in the aerosol generation liquid Le, or a component obtained by extraction of tobacco material (which may be only nicotine) is dissolved in the aerosol generation liquid Le.
  • the method of The method for obtaining nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis etc. is not particularly limited, and can be produced by known methods, but commercially available products may also be used.
  • the above aerosol generating liquid Le may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
  • a method for obtaining a liquid by mixing an extract obtained by dissolving tobacco leaves in a solvent with an aerosol base material will be specifically described.
  • an alkaline substance is applied to the tobacco leaves (referred to as alkali treatment).
  • alkali treatment for example, a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • step S10 may be configured without using the collection solvent as described above.
  • the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
  • step S10 may be configured without performing the alkali treatment as described above.
  • tobacco leaves tobacco leaves that have not been subjected to alkali treatment
  • Add one or more selected substances are selected.
  • the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • step S10 one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are aerosolized, or from this group.
  • An aerosol obtained by aerosolizing two or more selected substances is passed through tobacco leaves (tobacco leaves that have not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaves is collected in a collection solvent. Flavor components can also be extracted by such a process.
  • step S10 liquid preparation step
  • step S10 calculates the amount of carbonized components that become carbonized when heated to 250° C., which may be contained in the flavor components extracted by the method described above. It may further include reducing processing (hereinafter also simply referred to as "reducing processing"). By reducing "the amount of carbonized components that become carbide when heated to 250° C.”, adhesion of carbonized components to the load 7 can be effectively suppressed. As a result, it is possible to effectively prevent the load 7 from becoming scorched.
  • the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • Tobacco extract contains components that can cause scorching when heated (e.g., lipids, metal ions, sugars, or proteins), so tobacco extract components are subjected to distillation treatment or vacuum distillation treatment, and other means such as concentration are used. It is preferable to use this method to remove substances that cause scorching. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • components that can cause scorching when heated e.g., lipids, metal ions, sugars, or proteins
  • step S20 the flavor molded body 8 containing a material such as a non-tobacco base material is molded into a predetermined shape, specifically, it is solidified into a predetermined shape (in this embodiment, a bar shape as an example).
  • the flavor molded body 8 is manufactured by molding into the flavor molded body 8.
  • a specific example of this step S20 is as follows.
  • non-tobacco base materials there are no particular restrictions on the method for molding materials such as non-tobacco base materials. Examples include a method of forming the mixture into a predetermined shape by a method such as press pressure molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. It will be done.
  • the non-tobacco base material is a polymer
  • a flavor molded article of a predetermined shape can be obtained by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining 8. Another method is to obtain a composite material in any solid shape containing a non-tobacco base material and then process the composite material into a predetermined shape by cutting, grinding, or the like.
  • the method of imparting flavor materials such as tobacco materials to the non-tobacco base material is not particularly limited, and for example, ceramics, synthetic polymers, or materials other than tobacco plants may be used as raw materials in the production of the flavor molded body 8 of the non-tobacco base material.
  • step S20 may include a process of coating the surface of the flavor molded body 8 with a coating material.
  • wax can be used as this coating material.
  • this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
  • corn protein can also be used as a coating material.
  • Zein model number: Kobayashi Zein DP-N manufactured by Kobayashi Perfume Co., Ltd.
  • polyvinyl acetate can also be used as a coating material.
  • the coating material covering the surface of the flavor molded body 8 has pores (fine pores) that allow the flavor components in the non-tobacco base material to pass through while suppressing the passage of the non-tobacco base material. It is preferable that a plurality of them be provided. That is, the pores of this coating material need only have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material. According to this configuration, the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
  • the specific size (diameter) of the pores provided in this coating material is not particularly limited, but to give a specific example, a value selected from the range of 10 ⁇ m or more and 3 mm or less may be used. can.
  • a net-like mesh member can also be used as the coating material.
  • the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
  • tobacco residue may be included in the non-tobacco base material.
  • the flavor components remaining in the tobacco residue can be eluted into the aerosol generation liquid Le while suppressing the tobacco residue from eluting into the extract liquid.
  • the flavor molded body 8 can be manufactured by washing tobacco residue and the like with a cleaning liquid in the molding process related to step S20, and incorporating the washed tobacco residue and the like into the non-tobacco base material.
  • the amount of carbonized components contained in the tobacco residue etc. can be reduced as much as possible by washing, and the flavor molded body 8 can be manufactured using the tobacco residue etc. with the reduced amount of carbonized components.
  • adhesion of carbonized components to the load 7 can be effectively suppressed. As a result, it is possible to effectively prevent the load 7 from becoming scorched.
  • step S30 an assembly process related to step S30 is executed. Specifically, in step S30, the atomization unit 10 in which the flavor molded object 8 is not accommodated is prepared, and the flavor molded object 8 after step S20 is placed in the liquid storage section 4 of this atomization unit 10. and the aerosol generating liquid Le containing nicotine obtained in step S10. At this time, the flavor molded object 8 is placed in the molded object storage section 41 formed inside the liquid storage section 4 . In addition, in step S30, apart from the flavor component added to the flavor molded body 8 in step S20 described above, a flavor component may be further added to the aerosol generation liquid Le stored in the liquid storage section 4. good.
  • a part of the flavor molded object 8 forms the molded object storage section 41.
  • the flavor molded body 8 is in contact with the wall surface W and at least a part of the other part of the flavor molded body 8 is in contact with the aerosol generation liquid Le stored in the molded body non-accommodating part 42. Position and place.
  • the method for manufacturing the atomization unit 10 does not need to include the step of storing the aerosol generation liquid Le containing nicotine in step S30.
  • the user of the atomization unit 10 can replenish the liquid into the liquid storage section 4 by himself/herself.
  • the aerosol generated by the load 7 contains nicotine contained in the flavor molded body 8 in addition to the nicotine contained in the aerosol generation liquid Le in the liquid storage part 4.
  • Flavor components derived from flavor materials that can be added can be added. This allows you to fully enjoy the flavor.
  • the flavor molded body 8 is disposed inside the aerosol generation liquid Le in the liquid storage section 4, and the flavor molded body 8 and the electrical load 7 are connected to each other. Since they are physically separated, it is possible to prevent tobacco material from adhering to the load 7 of the atomization unit 10. Thereby, deterioration of the load 7 can be suppressed.
  • a part of the flavor molded body 8 is in contact with the wall surface W, and at least a part of the other part of the flavor molded body 8 is accommodated in the liquid storage section 4.
  • the flavor molded body 8 is positioned and arranged so as to be in contact with the aerosol generating liquid Le. Thereby, swelling of the flavor molded body 8 can be suppressed. As a result, deterioration of the load 7 can be suppressed more suitably.
  • the atomization unit 10 has the liquid storage section 4 separated between the molded object storage section 41 and the molded object non-storage section 4 such that the molded object storage section 41 is formed in a part of the liquid storage section 4.
  • a partition wall 18 is provided, and the flavor molded body 8 is positioned and arranged in contact with the partition wall 18. According to this, by forming the molded object non-accommodating section 42 in which the flavor molded object 8 is not accommodated in the liquid storage section 4, the amount of the aerosol generation liquid Le that can be stored in the liquid storage section 4 can be increased.
  • the atomization unit 10 positions and arranges the flavor molded body 8 with the peripheral surface 83 of the flavor molded body 8 in contact with the partition wall 18, so that the flavor molded body 8 and the wall surface W1 are separated. A large contact area can be secured. As a result, swelling of the flavor molded body 8 can be suppressed more suitably.
  • the partition wall 18 is provided with a slit 181 for allowing the flavor molded body 8 to come into contact with the aerosol generation liquid Le accommodated in the molded body non-accommodating part 42. ing. Thereby, the flavor molded body 8 can come into contact with the aerosol generation liquid Le in the molded body non-accommodating part 42 via the slit 181. Thereby, while suppressing the swelling of the flavor molded body 8, the flavor component can be sufficiently eluted into the aerosol generation liquid Le accommodated in the molded body non-accommodating portion 42.
  • the slit 181 is an example of an "opening" according to the present invention, the opening according to the present invention is not limited to a slit. The opening may be, for example, a hole that communicates the molded object accommodating part and the molded object non-accommodating part. Further, there may be a plurality of openings.
  • the above-mentioned partition wall is not an essential configuration. That is, in the present invention, the entire liquid storage section may be used as the molded object storage section without dividing the liquid storage section into the molded object storage section and the molded object non-storage section.
  • the atomization unit 10 includes a gasket 2 that is disposed between the flavor molded body 8 and the wick 6 and physically separates the flavor molded body 8 from the wick 6. , the flavor molded body 8 can be prevented from coming into contact with the wick 6. As a result, deterioration of the load 7 can be suppressed more suitably.
  • the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le with the flavor molded body 8 disposed inside the liquid storage section is preferably 6 mg or less, and 3 mg or less. It is more preferable that there be.
  • the carbonized component contained in the aerosol generation liquid Le in a state where the flavor molded body 8 is placed inside the liquid storage section specifically refers to the carbonized component contained in the aerosol generation liquid Le in the state before the flavor molded body 8 is placed. This value corresponds to the sum of the amount of carbonized components contained in the aerosol generation liquid Le and the amount of carbonized components eluted from the flavor molded body 8 into the aerosol generation liquid Le.
  • the term "carbonized component” refers to a component that becomes carbide when heated to 250°C. Specifically, the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • this "amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le with the flavor molded body 8 disposed inside the liquid storage section” can be measured, for example, by the following method. I can do it. First, a predetermined amount (g) of the aerosol generation liquid Le with the flavor molded body 8 disposed inside the liquid storage section is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured.
  • the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount of carbide contained in 1 g of aerosol generation liquid Le can be measured. (i.e., the amount (mg) of carbonized components).
  • Figure 8 shows the measurement of TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") is used as the aerosol generation liquid Le containing nicotine. It is a figure showing the result.
  • the horizontal axis of FIG. 8 shows the amount of carbonized components contained in 1 g of extract, and the vertical axis shows the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 8 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Step 3 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at °C. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
  • the standing time that is, the immersion time in the immersion liquid
  • the amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) shown in FIG. 8 was measured by the above method.
  • TPM (%) (1-TPM (201puff ⁇ 250puff) / TPM (1puff ⁇ 50puff)) x 100...
  • TPM Total Particle Molecule
  • TPM (1puff to 50puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine
  • TPM (201puff to 250puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
  • FIG. 9 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the first modification of the first embodiment.
  • a longitudinal section of the atomization unit 10 is illustrated similarly to FIG. 2.
  • FIG. 10 is a diagram schematically showing a cross section taken along line A3-A3 in FIG.
  • a filter member F1 is disposed in a region of the surface of the flavor molded body 8 that contacts the aerosol-generating liquid Le. There is.
  • the filter member F1 covers the entire area of the second end surface 82 that contacts the aerosol generation liquid Le in the molded body storage part 41 and the area in the molded body non-storage part 42 through the slit 181 in the peripheral surface 83. and a region in contact with the aerosol generating liquid Le.
  • the filter member F1 has a plurality of holes (fine holes) through which flavor components contained in the flavor molded body 8 can pass while suppressing the non-tobacco base material of the flavor molded body 8 from passing through F1. . That is, the pores of the filter member F1 may have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material.
  • the specific size (diameter) of the holes provided in this filter member F1 is not particularly limited, but to give a specific example, a value selected from the range of 10 ⁇ m or more and 3 mm or less may be used. I can do it.
  • the filter member F1 allows the flavor molded body 8 and the aerosol generation liquid Le to come into contact. That is, the region of the flavor molded body 8 where the filter member F1 is arranged comes into contact with the aerosol generation liquid Le via the filter member F1.
  • Examples of the material for the filter member F1 include nonwoven fabric, net-like metal mesh, cellulose acetate, and the like. However, the material of the filter member F1 is not limited to these.
  • the filter member F1 may be formed as a film that covers a part or the entirety of the flavor molded body 8, or may not be in the form of a film. Moreover, the same structure as the coating material mentioned above can be employ
  • the filter member F1 may be disposed in at least a portion of the region of the flavor molded body 8 that comes into contact with the aerosol-generating liquid Le.
  • the filter member F1 By arranging the filter member F1 having such a configuration in a region of the flavor molded body 8 that comes into contact with the aerosol generation liquid Le, flavor molding can be performed while suppressing elution of the non-tobacco base material into the aerosol generation liquid Le.
  • the flavor components contained in the body 8 can be eluted into the aerosol generation liquid Le.
  • the filter member F1 should just be arrange
  • the filter member F1 may be provided only in the region of the peripheral surface 83 that contacts the aerosol generation liquid Le, or may be provided so as to cover the entire flavor molded body 8.
  • the wall surface W1 of the molded object storage section 41 of the flavor molded object 8 is in contact with the wall surface W1 of the molded object storage section 41. It is not necessary to arrange the filter member F1 in the area where it comes into contact with.
  • FIG. 11 is a flow diagram for explaining a method for manufacturing the atomization unit 10 according to the second modification of the first embodiment.
  • the method of manufacturing the atomization unit 10 according to the second modification of the first embodiment is a method of manufacturing an atomization unit of a suction tool having a liquid storage section, comprising: a nicotine-containing liquid preparation step of preparing a nicotine-containing liquid; a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material; an addition step of adding the nicotine-containing liquid to the flavored molded body; an assembly step of accommodating the flavor molded body to which the nicotine-containing liquid has been added and an aerosol base material in the liquid storage section,
  • the flavoring material includes a tobacco material, and the content of the tobacco material in the flavoring molded object in a state where the flavoring molded object is accommodated inside the liquid storage section is 10% by weight or less, In the assembling step, nicotine is eluted from the flavor molded body to the
  • the manufacturing method according to this modification may include steps other than the above nicotine-containing liquid preparation step, molding step, addition step, and assembly step.
  • Step S10A is an embodiment in which an arbitrary liquid is used instead of the aerosol generation liquid Le in step S10 described with reference to FIG.
  • a method for obtaining a nicotine-containing liquid for example, a method in which synthetic nicotine obtained by synthesis etc. is dissolved in an arbitrary solvent, or a method in which a tobacco extract component obtained by extraction of tobacco materials is dissolved in an arbitrary solvent. etc.
  • a method for obtaining synthetic nicotine and natural nicotine the method described in the description of the atomization unit 10 above can be applied.
  • Any solvent is not particularly limited as long as it can dissolve the substance to be dissolved, and may be an aerosol base material, such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • an aerosol base material such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • Step S20 In the method for manufacturing the atomization unit 10 according to the second modification, the flavor molded body 8 is manufactured in the molding process according to step S20.
  • Step S20 according to this modification is similar to step S20 described with reference to FIG. 7, so detailed explanation will be omitted.
  • step S25 the nicotine-containing liquid obtained in the nicotine-containing liquid preparation step is added to the flavor molded body 8 obtained in the above-mentioned molding step. Add.
  • the method of addition is not particularly limited, and a desired amount of the nicotine-containing liquid may be added to the flavor molded body 8 all at once, or the nicotine-containing liquid may be added by coating or spraying on the surface of the flavor molded body 8. Alternatively, the flavor molded product 8 may be added by immersing it in a nicotine-containing liquid.
  • Step S30A In the manufacturing method of the atomization unit 10 according to the second modification, in the assembly process according to step S30A, the flavor molded body 8 to which the nicotine-containing liquid obtained in the above-mentioned addition process has been added and the aerosol base material are added to the aerosol base material. It is stored in the liquid storage section 4.
  • Step S30A according to this modification is an embodiment in which the aerosol generating liquid Le containing nicotine in Step S30 described in FIG. 7 is replaced with an aerosol base material.
  • the aerosol base material is not particularly limited, and examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • nicotine is eluted from the flavor molded body 8 housed in the liquid storage section 4 into the aerosol base material, so that the flavor molded body 8 and the aerosol generation liquid Le containing nicotine are finally stored in the liquid storage section 4. will be accommodated.
  • the nicotine-containing liquid obtained in the nicotine-containing liquid preparation step is attached to the inner surface of the wall defining the liquid storage part 4.
  • an adhesion step is provided.
  • nicotine is eluted from the nicotine-containing liquid attached to the wall of the liquid storage part 4 to the aerosol base material, so that the liquid storage part 4 is finally , the flavor molded body 8 and the aerosol generation liquid Le containing nicotine are accommodated.
  • FIG. 12 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the second embodiment.
  • a longitudinal cross-section of the atomization unit 10 is illustrated similarly to FIG.
  • FIG. 13 is a diagram schematically showing a cross section taken along line A4-A4 in FIG. 12.
  • a plurality of ribs 411 are formed on the wall surface W13 of the molded object storage section 41, and the first end surface 81 of the flavor molded object 8 is , is in contact with the rib 411 instead of the gasket 2.
  • the rib 411 corresponds to an example of a "spacer member" according to the present invention.
  • the rib 411 is a protrusion formed on the wall surface W13 of the molded object storage section 41, and extends along the longitudinal direction of the atomization unit 10.
  • three ribs 411 are formed.
  • the shape and number of ribs 411 are not limited to those shown in FIGS. 12 and 13.
  • the flavor molded body 8 has a part of its surface in contact with the wall surface W forming the molded body accommodating part 41, and at least a part of the other part of the surface (the said part is not Another part) is positioned and arranged in a state where it is in contact with the aerosol generating liquid Le stored in the liquid storage part 4. Specifically, a portion of the first end surface 81 is in contact with the rib 411. Moreover, the area of the peripheral surface 83 excluding the area exposed to the slit 181 of the partition wall 18 is in contact with the wall surface W13 (the side walls 13, 15, 16 and the partition wall 18).
  • the region of the first end surface 81 that is not in contact with the ribs 411 and the entire second end surface 82 are in contact with the aerosol generation liquid Le in the molded body storage section 41 .
  • a region of the peripheral surface 83 exposed to the slit 181 is in contact with the aerosol generation liquid Le in the molded object non-accommodating portion 42 via the slit 181.
  • the ribs 411 are in contact with the first end surface 81 of the flavor molded body 8, movement of the flavor molded body 8 in the ⁇ Z direction is restricted.
  • the ribs 411 do not need to be in contact with the first end surface 81 of the flavor molded body 8.
  • the flavor molded object 8 may be arranged with the second end surface 82 in contact with the wall surface W12.
  • Embodiment 2 can also provide the same effects as the atomization unit 10 according to Embodiment 1. Specifically, according to the atomization unit 10 according to the second embodiment, a flavor component derived from a flavor material can be added to the aerosol. This allows you to fully enjoy the flavor. Further, according to the atomization unit 10 according to the second embodiment, the flavor molded body 8 and the electrical load 7 are physically separated, so that the tobacco material does not adhere to the load 7 of the atomization unit 10.
  • the atomization unit 10 includes a rib 411 that is disposed between the flavor molded body 8 and the wick 6 and physically separates the flavor molded body 8 from the wick 6. , the flavor molded body 8 can be prevented from coming into contact with the wick 6. As a result, deterioration of the load 7 can be suppressed more suitably.
  • FIG. 14 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to a modification of the second embodiment.
  • a longitudinal cross-section of the atomization unit 10 is illustrated similarly to FIG. 2.
  • FIG. 15 is a diagram schematically showing a cross section taken along the line A5-A5 in FIG. 14.
  • the above-mentioned filter member F1 is arranged in the area of the surface of the flavor molded body 8 that comes into contact with the aerosol-generating liquid Le. ing.
  • the filter member F1 has a region of the first end surface 81 that comes into contact with the aerosol generation liquid Le in the molded object storage section 41 and a second end surface that contacts the aerosol generation liquid Le in the molded object storage section 41. 82 and in a region of the circumferential surface 83 that comes into contact with the aerosol generation liquid Le in the molded object non-accommodating part 42 via the slit 181.
  • the non-tobacco base material is suppressed from being eluted into the aerosol-generating liquid Le, and the non-tobacco base material is suppressed from being contained in the flavor molded body 8.
  • the flavor components can be eluted into the aerosol generation liquid Le.
  • FIG. 16 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the third embodiment.
  • a longitudinal section of the atomization unit 10 is illustrated similarly to FIG. 2.
  • FIG. 17 is a diagram schematically showing a cross section taken along line A6-A6 in FIG. 16.
  • FIG. 18 is a diagram schematically showing a cross section taken along line A7-A7 in FIG. 16.
  • the atomization unit 10 according to the third embodiment does not include the slit 181 like the first and second embodiments, but includes a cap 9 having a through hole 94. Further, in the atomization unit 10 according to the third embodiment, the end of the partition wall 18 on the -Z direction side does not contact the gasket 2. In other words, the partition wall portion 18 extends in the longitudinal direction from the end wall portion 12 to the middle of the liquid storage portion 4 .
  • the cap 9 is fitted into the area surrounded by the end wall 12, the side walls 13, 15, 16, and the partition wall 18, and is fixed. A body accommodating portion 41 is formed.
  • the molded body storage portion 41 according to the third embodiment is formed by a region surrounded by the cap 9, the end wall portion 12, the side wall portions 13, 15, and 16, and the partition wall portion 18.
  • a part of the molded object non-accommodating section 42 is arranged on the -Z direction side of the molded object accommodating section 41 with the cap 9 interposed therebetween.
  • the cap 9 is formed into a disk shape with an outer diameter equivalent to the inner diameter of the wall surface W13. More specifically, the cap 9 has a first end surface 91 that is one end surface in the axial direction, a second end surface 92 that is the other end surface, and a peripheral surface 93 that connects the first end surface 91 and the second end surface 92. and has.
  • the cap 9 is arranged in the molded body storage section 41 so that its axial direction coincides with the long axis direction of the atomization unit 10 and the first end surface 91 faces in the -Z direction.
  • the second end surface 92 of the cap 9 forms a wall surface W11, which is the end surface of the molded body accommodating portion 41 in the -Z direction.
  • a through hole 94 is formed in the cap 9 and passes through the cap 9 in the axial direction from the first end surface 91 to the second end surface 92.
  • the first end surface 81 of the flavor molded body 8 is in contact with the second end surface 92 of the cap 9 instead of the gasket 2.
  • the cap 9 corresponds to an example of a "spacer member" according to the present invention.
  • the flavor molded body 8 has a part of its surface in contact with the wall surface W forming the molded body accommodating part 41, and at least a part of the other part of the surface (the said part is not Another part) is positioned and arranged in a state where it is in contact with the aerosol generating liquid Le stored in the liquid storage part 4. Specifically, a region of the first end surface 81 excluding the region exposed to the through hole 94 of the cap 9 is in contact with the wall surface W11 (the second end surface 92 of the cap 9). Further, the entire area of the circumferential surface 83 is in contact with the wall surface W13 (the side walls 13, 15, 16 and the partition wall 18).
  • a region of the first end surface 81 exposed to the through hole 94 of the cap 9 is in contact with the aerosol generation liquid Le in the molded object non-accommodating part 42 via the through hole 94. Further, the entire second end surface 82 is in contact with the aerosol generation liquid Le in the molded body storage section 41 . Further, in the third embodiment, since the second end surface 92 of the cap 9 is in contact with the first end surface 81 of the flavor molded object 8, movement of the flavor molded object 8 in the -Z direction is restricted. Note that the cap 9 does not need to be in contact with the first end surface 81 of the flavor molded body 8. Moreover, the flavor molded object 8 may be arranged with the second end surface 82 in contact with the wall surface W12.
  • a nonwoven fabric or the like may be placed on the end surface (at least one of the first end surface 91 and the second end surface 92) of the cap 9.
  • the above-described filter member F1 may be arranged on the second end surface 92 of the cap 9 in order to suppress the non-tobacco base material from being eluted into the aerosol generation liquid Le.
  • Embodiment 3 can also provide the same effects as the atomization unit 10 according to Embodiment 1 or Embodiment 2.
  • a flavor component derived from a flavor material can be added to the aerosol. This allows you to fully enjoy the flavor.
  • the flavor molded body 8 and the electrical load 7 are physically separated, so that the tobacco material does not adhere to the load 7 of the atomization unit 10.
  • the atomization unit 10 includes a cap 9 that is disposed between the flavor molded body 8 and the wick 6 and physically separates the flavor molded body 8 from the wick 6.
  • the flavor molded body 8 can be prevented from coming into contact with the wick 6. As a result, deterioration of the load 7 can be suppressed more suitably.
  • a cap 9 is interposed between the first end surface 81 of the flavor molded body 8 and the wick 6, and the first end surface 81 is provided with respect to the aerosol generation liquid Le. A portion of the first end surface 81 and the cap 9 are in contact so that partial contact is allowed. Thereby, while preventing contact between the flavor molded body 8 and the wick 6, the flavor component contained in the flavor molded body 8 can be eluted from the first end surface 81 into the aerosol generation liquid Le. Furthermore, in the third embodiment, since the entire circumferential surface 83 is in contact with the wall surface W13, swelling of the flavor molded body 8 can be suitably suppressed.
  • FIG. 19 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to a modification of the third embodiment.
  • a longitudinal section of the atomization unit 10 is illustrated, similar to FIG. 2.
  • the above-described filter member F1 is disposed on the surface of the flavor molded body 8 in a region that contacts the aerosol-generating liquid Le.
  • the filter member F1 has a region of the first end surface 81 that comes into contact with the aerosol generation liquid Le in the molded body storage section 41 through the through hole 94 of the cap 9, and a region of the first end surface 81 that contacts the aerosol generation liquid Le in the molded body storage section 41
  • the entire second end surface 82 is disposed in contact with the generated liquid Le.
  • the non-tobacco base material is suppressed from being eluted into the aerosol generation liquid Le.
  • the flavor component contained in the flavor molded body 8 can be eluted into the aerosol generation liquid Le.
  • Atomization unit housing 18 Partition wall 181 Slit (an example of an opening) 2 Gasket (an example of a spacer member) 3 Air passage 4 Liquid storage section 41 Molded object storage section 411 Rib (an example of a spacer member) 42 Molded object non-accommodating part 5 Cotton 6 Wick (an example of liquid holding member) 7 Load 8 Flavor molded body 81 First end surface 82 Second end surface 83 Surrounding surface 9 Cap (an example of a spacer member) 10 Atomization unit 100 Suction tool

Abstract

This atomization unit comprises: a liquid housing part that houses an aerosol generation liquid including nicotine; an electric load to which the aerosol generation liquid in the liquid housing part is supplied and which atomizes the supplied aerosol generation liquid to generate aerosol; a flavor molded body including a non-tobacco base material and a flavor material; and a molded body housing part which is formed inside the liquid housing part and in which the flavor molded body is positioned and disposed. The flavor molded body is positioned in a state where part of the flavor molded body is in contact with a wall surface forming the molded body housing part, and at least part of the rest part of the flavor molded body is in contact with the aerosol generation liquid housed in the liquid housing part.

Description

霧化ユニット及びその製造方法、並びに吸引具Atomization unit and its manufacturing method, and suction tool
 本発明は、霧化ユニット及びその製造方法、並びに吸引具に関する。 The present invention relates to an atomization unit, a method for manufacturing the same, and a suction tool.
 従来、吸引具に用いられる霧化ユニットとして、所定の液体を収容する液体収容部と、この液体収容部の液体が導入されるとともに、導入された液体を霧化してエアロゾルを発生させる電気的な負荷と、を有し、この液体収容部の液体の内部にたばこ葉等のたばこ材料の粉体を収容し、該たばこ材料の粉体が分散されることを特徴とする霧化ユニットが知られている(例えば、特許文献1参照)。 Conventionally, an atomizing unit used in a suction tool includes a liquid storage part that stores a predetermined liquid, and an electrical unit that atomizes the introduced liquid and generates an aerosol. An atomizing unit is known which is characterized in that it has a load, stores powder of tobacco material such as tobacco leaves in the liquid of this liquid storage part, and disperses the powder of tobacco material. (For example, see Patent Document 1).
 なお、他の先行技術文献として、特許文献2や特許文献3、特許文献4、及び非特許文献1が挙げられる。特許文献2や特許文献3には、基本的な構成態様を有する吸引具に備わる霧化ユニットの構成態様が開示されている。特許文献4には、たばこ葉の抽出液に関する情報が開示されている。非特許文献1には、ニコチンに関する技術が開示されている。 Note that other prior art documents include Patent Document 2, Patent Document 3, Patent Document 4, and Non-Patent Document 1. Patent Document 2 and Patent Document 3 disclose a configuration of an atomization unit included in a suction tool having a basic configuration. Patent Document 4 discloses information regarding tobacco leaf extract. Non-Patent Document 1 discloses a technology related to nicotine.
国際公開第2019/211332号International Publication No. 2019/211332 特開2020-141705号公報Japanese Patent Application Publication No. 2020-141705 国際公開第2020/058468号International Publication No. 2020/058468 国際公開第2015/129679号International Publication No. 2015/129679
 上述の特許文献1に例示されるような従来の吸引具の霧化ユニットの場合、液体収容部の液体の内部に分散されている粉体状のたばこ材料が、霧化ユニットの電気的な負荷に付着するおそれがある。この場合、霧化ユニットの負荷が劣化するおそれがある。この点において、従来技術は改善の余地があった。 In the case of the atomization unit of the conventional suction device as exemplified in Patent Document 1 mentioned above, the powdered tobacco material dispersed inside the liquid in the liquid storage part is not affected by the electrical load of the atomization unit. There is a risk that the product may adhere to the product. In this case, the load on the atomization unit may deteriorate. In this respect, the conventional technology has room for improvement.
 本発明は、上記のことを鑑みてなされたものであり、霧化ユニットの負荷が劣化することを抑制することができる技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of its objects is to provide a technique that can suppress deterioration of the load on the atomization unit.
 本発明者らは、鋭意検討の結果、特定の成形体を内部に配置する液体収容部を用いることにより、上記課題を解決できることを見出し、本発明に到達した。 As a result of extensive studies, the present inventors have discovered that the above problem can be solved by using a liquid storage section in which a specific molded body is placed, and have arrived at the present invention.
(態様1)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットは、ニコチンを含むエアロゾル生成液を収容する液体収容部と、前記液体収容部の前記エアロゾル生成液が供給されるとともに、供給された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、非たばこ基材及び香味材料を含む香味成形体と、前記液体収容部の内部に形成され、前記香味成形体が位置決め配置される成形体収容部と、を備え、前記香味材料は、たばこ材料を含み、且つ、前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、前記香味成形体は、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部のうち少なくとも一部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態で、位置決め配置されている。
(Aspect 1)
In order to achieve the above object, an atomization unit of a suction device according to one aspect of the present invention includes a liquid storage section that stores an aerosol generation liquid containing nicotine, and a liquid storage section that is supplied with the aerosol generation liquid. , an electrical load that atomizes the supplied aerosol-generating liquid to generate an aerosol; a flavor molded body containing a non-tobacco base material and a flavor material; and a flavor molded body formed inside the liquid storage part; a molded body accommodating portion in which the flavor molded body is positioned and arranged, the flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded body is 10% by weight or less, and the flavor molded body contains a tobacco material; The body is positioned and arranged in a state in which a part of the body is in contact with a wall surface forming the molded body storage part, and at least a part of the other part is in contact with the aerosol generating liquid stored in the liquid storage part. has been done.
 この態様によれば、液体収容部の内部に、所定の形状に成形された香味成形体が配置されており、香味成形体と霧化ユニットの電気的な負荷とを物理的に分離することができる。更に、香味成形体の一部が成形体収容部の壁面と接触した状態となるため、香味成形体の膨潤を抑制することができる。これにより、堆積物となり得るたばこ材料等の物質が霧化ユニットの負荷に付着することを抑制することができる。その結果、霧化ユニットの負荷が劣化することを抑制することができる。 According to this aspect, the flavor molded body molded into a predetermined shape is disposed inside the liquid storage section, and it is possible to physically separate the flavor molded body and the electrical load of the atomization unit. can. Furthermore, since a part of the flavor molded object comes into contact with the wall surface of the molded object storage section, swelling of the flavor molded object can be suppressed. Thereby, it is possible to suppress substances such as tobacco materials that may become deposits from adhering to the load of the atomization unit. As a result, it is possible to suppress deterioration of the load on the atomization unit.
(態様2)
 上記の態様1において、霧化ユニットは、前記成形体収容部が前記液体収容部の一部に形成されるように前記液体収容部を前記成形体収容部と成形体非収容部とに仕切る仕切り壁部を更に備え、前記香味成形体は、前記仕切り壁部に接触した状態で位置決め配置されていてもよい。
(Aspect 2)
In the above aspect 1, the atomization unit includes a partition that partitions the liquid storage section into the molded object storage section and the molded object non-accommodation section so that the molded object storage section is formed in a part of the liquid storage section. It may further include a wall portion, and the flavor molded object may be positioned and arranged in contact with the partition wall portion.
(態様3)
 上記の態様2において、前記香味成形体は、棒形状に形成されており、その軸方向における両端面を接続する周面を有し、前記周面が前記壁面に接触した状態で位置決め配置されていてもよい。
(Aspect 3)
In the above aspect 2, the flavor molded body is formed into a rod shape, has a circumferential surface connecting both end surfaces in the axial direction, and is positioned and arranged with the circumferential surface in contact with the wall surface. It's okay.
(態様4)
 上記の態様2又は3において、前記仕切り壁部には、前記成形体非収容部に収容されている前記エアロゾル生成液に対して前記香味成形体が接触することを許容するための開口部が設けられていてもよい。
(Aspect 4)
In the above aspect 2 or 3, the partition wall portion is provided with an opening for allowing the flavor molded body to come into contact with the aerosol generating liquid stored in the molded body non-accommodating portion. It may be.
(態様5)
 上記の態様1から4の何れかにおいて、霧化ユニットは、前記負荷を保持すると共に前記液体収容部の前記エアロゾル生成液が供給される液保持部材と、前記香味成形体と前記液保持部材との間に配置され、前記液保持部材に対して前記香味成形体を物理的に離間するためのスペーサ部材と、を更に備えてもよい。
(Aspect 5)
In any one of the above aspects 1 to 4, the atomization unit includes a liquid holding member that holds the load and is supplied with the aerosol generating liquid in the liquid storage section, the flavor molded object, and the liquid holding member. It may further include a spacer member disposed between the liquid retaining member and physically separating the flavor molded body from the liquid retaining member.
(態様6)
 上記の態様5において、前記香味成形体は、棒形状に形成されており、前記スペーサ部材は、前記香味成形体の軸方向における一端面である第1端面と前記液保持部材との間に介在して設けられており、前記エアロゾル生成液に対する前記第1端面の部分的な接触が許容されるように、前記第1端面の一部と前記スペーサ部材とが接触していてもよい。
(Aspect 6)
In the above aspect 5, the flavor molded body is formed into a rod shape, and the spacer member is interposed between the first end surface that is one end surface of the flavor molded body in the axial direction and the liquid retaining member. A portion of the first end surface may be in contact with the spacer member so that partial contact of the first end surface with the aerosol generating liquid is allowed.
(態様7)
 上記の態様1から6の何れかにおいて、前記香味成形体のうち、前記エアロゾル生成液と接触する領域の少なくとも一部には、フィルタ部材が配置されていてもよい。
(Aspect 7)
In any one of the above aspects 1 to 6, a filter member may be disposed in at least a part of the region of the flavor molded body that comes into contact with the aerosol generating liquid.
(態様8)
 本発明の一態様に係る吸引具は、上記の態様1から7の何れかの霧化ユニットと、前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、を備える。
(Aspect 8)
A suction tool according to one aspect of the present invention includes the atomizing unit according to any one of aspects 1 to 7 above, and a power source unit that supplies power to the load and to which the atomizing unit is detachably attached. Equipped with
(態様9)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、液体収容部を有する吸引具の霧化ユニットの製造方法であって、ニコチンを含むエアロゾル生成液を準備する液体準備工程と、非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、前記ニコチンを含む前記エアロゾル生成液、及び前記香味成形体を、前記液体収容部に収容する組立工程と、を有し、前記香味材料は、たばこ材料を含み、且つ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、前記組立工程において、前記液体収容部の内部に形成された成形体収容部に、前記香味成形体を、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態となるように、位置決め配置する。
(Aspect 9)
In order to achieve the above object, a method for manufacturing an atomization unit for a suction device according to one aspect of the present invention is a method for manufacturing an atomization unit for a suction device having a liquid storage section, the method comprising: producing an atomization unit for a suction device that includes a liquid containing part. a liquid preparation step, a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material, and an assembly of storing the aerosol-generating liquid containing the nicotine and the flavor molded body in the liquid storage section. and the flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded body in a state where the flavor molded body is accommodated inside the liquid storage section is: 10% by weight or less, and in the assembly step, the flavor molded body is placed in a molded body housing part formed inside the liquid housing part, and a part of the flavor molded body is in contact with a wall surface forming the molded body housing part, Further, the other portion is positioned and arranged so as to be in contact with the aerosol generating liquid contained in the liquid storage portion.
(態様10)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、液体収容部を有する吸引具の霧化ユニットの製造方法であって、ニコチン含有液を準備するニコチン含有液準備工程と、非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、前記香味成形体に前記ニコチン含有液を添加する添加工程と、前記ニコチン含有液が添加された前記香味成形体と、エアロゾル基材とを、前記液体収容部に収容する組立工程と、を有し、前記香味材料は、たばこ材料を含み、且つ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、前記組立工程では、前記香味成形体から前記エアロゾル基材にニコチンが溶出されることで、前記液体収容部にエアロゾル生成液が収容された状態となり、前記組立工程において、前記液体収容部の内部に形成された成形体収容部に、前記香味成形体を、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態となるように、位置決め配置する。
(Aspect 10)
In order to achieve the above object, a method for manufacturing an atomization unit for a suction device according to one aspect of the present invention is a method for manufacturing an atomization unit for a suction device having a liquid storage portion, the method comprising: preparing a nicotine-containing liquid; a liquid-containing preparation step, a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material, an addition step of adding the nicotine-containing liquid to the flavor molded body, and a step of adding the nicotine-containing liquid to the flavor molded body. an assembling step of accommodating a flavor molded body and an aerosol base material in the liquid storage section, wherein the flavor material contains a tobacco material, and the flavor molded body is placed inside the liquid storage section. The content of the tobacco material in the flavor molded body in the accommodated state is 10% by weight or less, and in the assembly process, nicotine is eluted from the flavor molded body to the aerosol base material, so that the The aerosol generating liquid is stored in the liquid storage part, and in the assembly step, the flavor molded body is placed in the molded body storage part formed inside the liquid storage part, and a part of the molded body storage part is placed in the molded body storage part. It is positioned and arranged so that it is in contact with the wall surface to be formed, and the other part is in contact with the aerosol generating liquid contained in the liquid storage section.
 本発明の態様によれば、霧化ユニットの負荷が劣化することを抑制することができる。 According to the aspect of the present invention, it is possible to suppress deterioration of the load on the atomization unit.
実施形態1に係る吸引具100の外観を模式的に示す斜視図である。1 is a perspective view schematically showing the appearance of a suction tool 100 according to Embodiment 1. FIG. 実施形態1に係る霧化ユニットの主要部を示す模式的断面図である。1 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 1. FIG. 図2のA1-A1線断面を模式的に示す図である。3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2. FIG. 図2のA2-A2線断面を模式的に示す図である。3 is a diagram schematically showing a cross section taken along the line A2-A2 in FIG. 2. FIG. 実施形態1に係る香味成形体の模式的な斜視図である。1 is a schematic perspective view of a flavor molded article according to Embodiment 1. FIG. 実施形態1に係る香味成形体の変形例の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of a modification of the flavor molded body according to Embodiment 1. 実施形態1に係る霧化ユニットの製造方法を説明するためのフロー図である。FIG. 2 is a flow diagram for explaining a method for manufacturing an atomization unit according to Embodiment 1. FIG. ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 3 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of an aerosol generating liquid containing nicotine. 実施形態1の変形例1に係る霧化ユニットの主要部を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit according to Modification 1 of Embodiment 1. 図9のA3-A3線断面を模式的に示す図である。10 is a diagram schematically showing a cross section taken along the line A3-A3 in FIG. 9. FIG. 実施形態1の変形例2に係る霧化ユニットの製造方法を説明するためのフロー図である。FIG. 3 is a flow diagram for explaining a method for manufacturing an atomization unit according to Modification 2 of Embodiment 1. FIG. 実施形態2に係る霧化ユニットの主要部を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing the main parts of the atomization unit according to Embodiment 2. 図12のA4-A4線断面を模式的に示す図である。13 is a diagram schematically showing a cross section taken along the line A4-A4 in FIG. 12. FIG. 実施形態2の変形例に係る霧化ユニットの主要部を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing main parts of an atomization unit according to a modification of Embodiment 2. FIG. 図14のA5-A5線断面を模式的に示す図である。15 is a diagram schematically showing a cross section taken along the line A5-A5 in FIG. 14. FIG. 実施形態3に係る霧化ユニットの主要部を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing the main parts of an atomization unit according to Embodiment 3. 図16のA6-A6線断面を模式的に示す図である。17 is a diagram schematically showing a cross section taken along the line A6-A6 in FIG. 16. FIG. 図16のA7-A7線断面を模式的に示す図である。17 is a diagram schematically showing a cross section taken along the line A7-A7 in FIG. 16. FIG. 実施形態3の変形例に係る霧化ユニットの主要部を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing main parts of an atomization unit according to a modification of Embodiment 3.
 以下、本発明に係る霧化ユニット及びこれを備えた吸引具の実施形態を、図面を参照して説明するが、これらの説明は本発明の実施形態の一例であり、本発明はその要旨を超えない限りこれらの内容に限定されない。また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。また、実施形態に記載されている構成要素の寸法、材質、形状、対応その相対配置等は一例である。また、本願明細書では、各実施形態について必要に応じて図面を参照して説明するが、これらの図面は実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。なお、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。また、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。 Hereinafter, embodiments of an atomization unit and a suction tool equipped with the same according to the present invention will be described with reference to the drawings, but these descriptions are merely examples of the embodiments of the present invention, and the gist of the present invention is not limited to the following. It is not limited to these contents as long as they do not exceed. Furthermore, although a plurality of embodiments will be described in this specification, various conditions in each embodiment may be applied to each other within an applicable range. Furthermore, the dimensions, materials, shapes, relative arrangements, etc. of the constituent elements described in the embodiments are merely examples. In addition, in this specification, each embodiment will be described with reference to drawings as necessary, but these drawings are schematically illustrated to facilitate understanding of the features of the embodiments, and each configuration is The dimensional ratios of elements etc. are not necessarily the same as the actual ones. Note that in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary. In addition, in this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits, and "A to B" is It means that it is more than or equal to A and less than or equal to B.
 本発明の実施形態に係る吸引具の霧化ユニット(以下、単に「霧化ユニット」とも称する。)は、ニコチンを含むエアロゾル生成液を収容する液体収容部と、
 前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
 非たばこ基材及び香味材料を含む香味成形体と、
 前記液体収容部の内部に形成され、前記香味成形体が位置決め配置される成形体収容部と、
を備え、
 前記香味材料は、たばこ材料を含み、且つ、前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、
 前記香味成形体は、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態で、位置決め配置されている。
The atomization unit (hereinafter also simply referred to as "atomization unit") of the suction device according to the embodiment of the present invention includes a liquid storage section that stores an aerosol-generating liquid containing nicotine;
an electrical load that causes the aerosol generation liquid in the liquid storage section to be introduced and atomizes the introduced aerosol generation liquid to generate an aerosol;
A flavor molded article containing a non-tobacco base material and a flavor material;
a molded object accommodating section formed inside the liquid accommodating section and in which the flavor molded object is positioned and arranged;
Equipped with
The flavor material includes a tobacco material, and the content of the tobacco material in the flavor molded article is 10% by weight or less,
The flavor molded body is positioned and arranged such that a part thereof is in contact with a wall surface forming the molded body storage part and another part is in contact with the aerosol generating liquid stored in the liquid storage part. There is.
 ここで、上記「他部のうち少なくとも一部」とは、香味成形体のうち、成形体収容部を形成する壁面と接触する部位(上記「一部」)とは別の部位のことを指す。つまり、香味成形体の表面のうち液体収容部に収容されているエアロゾル生成液と接触する部位は、成形体収容部を形成する壁面と接触する部位とは別の部位である。このとき、上記「他部のうち少なくとも一部」は、香味成形体のうち上記「一部」を除く全ての部位(即ち、残部)であってもよいし、残部のうちの更に一部であってもよい。 Here, the above-mentioned "at least a part of the other part" refers to a part of the flavor molded object that is different from the part (the above-mentioned "part") that comes into contact with the wall surface forming the molded-obtaining part. . That is, the part of the surface of the flavor molded body that comes into contact with the aerosol-generating liquid contained in the liquid storage section is different from the part that contacts the wall surface forming the molded body storage part. At this time, the above-mentioned "at least a part of the other part" may be all the parts of the flavor molded article other than the above-mentioned "part" (i.e., the remainder), or even a part of the remaining part. There may be.
 以下、実施形態に係る具体的態様を説明するが、以下に説明する具体的態様に限定されず、ニコチンの供給源が特許文献1に開示されるような堆積物となり得る粉体等の固形物でなければ本発明の効果を得ることができ、この効果が得られる範囲内で任意に各条件を組み合わせることができる。 Hereinafter, specific aspects according to the embodiment will be described, but the invention is not limited to the specific aspects described below, and the nicotine supply source is a solid such as a powder that can become a deposit as disclosed in Patent Document 1. Otherwise, the effect of the present invention can be obtained, and each condition can be arbitrarily combined within the range where this effect can be obtained.
 なお、実施形態では、ニコチンの供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、ニコチンを含むエアロゾル生成液及びたばこ材料を含む香味成形体を用いているため、ニコチンの供給源が霧化ユニットの負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。また、香味成形体に含まれるたばこ材料は、香喫味の観点上、スパイスの役割を担う。一方で、たばこ材料には、加熱により負荷に焦げを発生させる原因となり得る成分が含まれているため、この焦げ発生を抑制するため上記上限を超えないことが有利である。 In addition, in the embodiment, instead of a powdered tobacco material that can form a deposit as disclosed in Patent Document 1, an aerosol generating liquid containing nicotine and a flavor molded body containing a tobacco material are used as a source of nicotine. Since the nicotine supply source is used, it is possible to suppress adhesion of the nicotine supply source to the load of the atomization unit, and thereby suppress deterioration of the load. Furthermore, the tobacco material contained in the flavor molded article plays the role of a spice in terms of aroma and taste. On the other hand, since the tobacco material contains components that can cause charring of the load when heated, it is advantageous not to exceed the above upper limit in order to suppress the occurrence of charring.
 <実施形態1>
 図1は、実施形態1に係る吸引具100の外観を模式的に示す斜視図である。実施形態1に係る吸引具100は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の香味吸引具である。
<Embodiment 1>
FIG. 1 is a perspective view schematically showing the appearance of a suction tool 100 according to the first embodiment. The suction device 100 according to the first embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
 [吸引具]
 実施形態1に係る吸引具100は、一例として、吸引具100の中心軸線CLの方向に延在している。具体的には、吸引具100は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具100の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、X-Y-Zの直交座標のうち、Z軸の方向(+Z方向又は-Z方向)は吸引具100の長軸方向に相当し、X軸の方向(+X方向又は-X方向)は吸引具100の幅方向に相当し、Y軸の方向(+Y方向又は-Y方向)は吸引具100の厚み方向に相当する。以下、+X方向と-X方向とを区別せずに説明する場合には単に「X方向」と称し、+Y方向と-Y方向とを区別せずに説明する場合には単に「Y方向」と称し、+Z方向と-Z方向とを区別せずに説明する場合には単に「Z方向」と称する。
[Suction tool]
As an example, the suction tool 100 according to the first embodiment extends in the direction of the central axis CL of the suction tool 100. Specifically, the suction tool 100 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction" perpendicular to the long axis direction, and a "thickness" perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 100 in the long axis direction, width direction, and thickness direction decrease in this order. Note that among the X-Y-Z orthogonal coordinates, the Z-axis direction (+Z direction or -Z direction) corresponds to the long axis direction of the suction tool 100, and the X-axis direction (+X direction or -X direction) This corresponds to the width direction of the suction tool 100, and the Y-axis direction (+Y direction or -Y direction) corresponds to the thickness direction of the suction tool 100. Hereinafter, when the +X direction and -X direction are explained without distinction, they will be simply referred to as "X direction", and when the +Y direction and -Y direction are explained without distinction, they will be simply referred to as "Y direction". When describing the +Z direction and the -Z direction without distinguishing them, they will simply be referred to as the "Z direction."
 図1に示すように、吸引具100は、霧化ユニット10と電源ユニット20とを備える。霧化ユニット10は、吸引具100のユーザが吸引するエアロゾルを生成し、符号102で示す排出口からエアロゾルを含むエアを排出する。また、霧化ユニット10は、ユーザが吸引のために咥えるマウスピースを兼ねている。吸引具100の使用時において、吸引具100のユーザは、排出口102から排出されたエアロゾルを含むエアを吸い込むことができる。 As shown in FIG. 1, the suction tool 100 includes an atomization unit 10 and a power supply unit 20. The atomization unit 10 generates aerosol that is inhaled by the user of the suction tool 100, and discharges air containing the aerosol from an outlet indicated by the reference numeral 102. Furthermore, the atomization unit 10 also serves as a mouthpiece that the user holds in his/her mouth for suction. When using the suction device 100, the user of the suction device 100 can inhale air containing aerosol discharged from the discharge port 102.
 [電源ユニット]
 電源ユニット20は、霧化ユニット10に着脱自在に接続されており、霧化ユニット10に電力を供給する。電源ユニット20の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット10が電源ユニット20に接続されると、電源ユニット20の電源と、霧化ユニット10の負荷7(後述)とが電気的に接続される。
[Power supply unit]
The power supply unit 20 is detachably connected to the atomization unit 10 and supplies power to the atomization unit 10. Inside the power supply unit 20, a battery as a power source, a control device, etc. are arranged. When the atomization unit 10 is connected to the power supply unit 20, the power supply of the power supply unit 20 and the load 7 (described later) of the atomization unit 10 are electrically connected.
 また、電源ユニット20には、排出口102を通じたユーザの吸引により生じた吸引具100の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、これを制御装置に伝え、制御装置が後述する霧化ユニット10の負荷7への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、これを制御装置に伝え、制御装置が負荷7への通電を終了させる。 Furthermore, a sensor is arranged in the power supply unit 20 to output the value of the pressure change inside the suction tool 100 caused by the user's suction through the discharge port 102. When the user starts suctioning air, a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 7 of the atomization unit 10, which will be described later. Further, when the air suction by the user ends, the sensor detects the end of the air suction, transmits this to the control device, and the control device ends the energization to the load 7.
 なお、電源ユニット20には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、この吸引開始要求や吸引終了要求を受けた制御装置は、負荷7への通電開始や通電終了を行う。 Note that the power supply unit 20 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation. In this case, the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch. The control device that receives this suction start request or suction end request starts or ends energization to the load 7.
 なお、上述したような電源ユニット20の構成は、特許文献1に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。 It should be noted that the configuration of the power supply unit 20 as described above is similar to the power supply unit of a known suction tool as exemplified in Patent Document 1, so further detailed explanation will be omitted.
 [霧化ユニット]
 次に、霧化ユニット10について説明する。図2は、実施形態1に係る霧化ユニット10の主要部を示す模式的断面図である。具体的には、図2は、霧化ユニット10の主要部を、中心軸線CLを含むと共に厚み方向(Y方向)に直交する平面で切断した断面(以下、「縦断面」ともいう)を模式的に図示している。図3は、図2のA1-A1線断面を模式的に示す図である。図4は、図2のA2-A2線断面を模式的に示す図である。図3及び図4は、霧化ユニット10の主要部を、長軸方向(Z方向)に直交する平面で切断した断面(すなわち、中心軸線CLを法線とする切断面で切断した断面であり、「横断面」ともいう)を模式的に図示している。
[Atomization unit]
Next, the atomization unit 10 will be explained. FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 10 taken along a plane that includes the central axis CL and is orthogonal to the thickness direction (Y direction). It is illustrated. FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. FIG. 4 is a diagram schematically showing a cross section taken along line A2-A2 in FIG. 3 and 4 are cross sections of the main part of the atomization unit 10 taken along a plane perpendicular to the long axis direction (Z direction) (that is, cross sections taken along a cross section normal to the central axis CL). , also referred to as a "cross section").
 図2に示すように、霧化ユニット10は、霧化ユニットハウジング(以下、ハウジングとも称する場合がある)1と、ガスケット2と、エア通路3と、液体収容部4と、コットン5と、ウィック6と、負荷7と、香味成形体8と、を備える。以下、霧化ユニット10の各構成について説明する。 As shown in FIG. 2, the atomization unit 10 includes an atomization unit housing (hereinafter also referred to as housing) 1, a gasket 2, an air passage 3, a liquid storage section 4, cotton 5, and a wick. 6, a load 7, and a flavor molded body 8. Each configuration of the atomization unit 10 will be described below.
 [霧化ユニットハウジング]
 ハウジング1は、霧化ユニット10を構成する各種要素を収容する。図2~図4に示すように、ハウジング1は、複数の壁部を備える。具体的には、ハウジング1は、端壁部11,12と、側壁部13~16と、通路壁部17と、仕切り壁部18と、を備える。
[Atomization unit housing]
The housing 1 accommodates various elements that constitute the atomization unit 10. As shown in FIGS. 2 to 4, the housing 1 includes a plurality of walls. Specifically, the housing 1 includes end walls 11 and 12, side walls 13 to 16, a passage wall 17, and a partition wall 18.
 端壁部11,12は、長軸方向に直交すると共に幅方向に延在し、互いに対向するように設けられている。端壁部11は、ハウジング1の-Z方向側の端部を形成し、端壁部12は、ハウジング1の+Z方向側の端部を形成する。 The end wall portions 11 and 12 are provided so as to be perpendicular to the long axis direction, extend in the width direction, and face each other. The end wall portion 11 forms an end portion of the housing 1 on the −Z direction side, and the end wall portion 12 forms an end portion of the housing 1 on the +Z direction side.
 側壁部13~16は、長軸方向に延在すると共に一対の端壁部11,12同士を接続する。側壁部13,14は、幅方向に直交すると共に互いに対向するように設けられている。側壁部13は、ハウジング1の-X方向側の側端部を形成し、側壁部14は、ハウジング1の+X方向側の側端部を形成する。側壁部15,16は、厚み方向に直交すると共に互いに対向するように設けられている。側壁部15は、ハウジング1の-Y方向側の側端部を形成し、側壁部16は、ハウジング1の+Y方向側の側端部を形成する。 The side walls 13 to 16 extend in the longitudinal direction and connect the pair of end walls 11 and 12. The side wall portions 13 and 14 are provided so as to be perpendicular to the width direction and to face each other. The side wall portion 13 forms a side end portion of the housing 1 on the −X direction side, and the side wall portion 14 forms a side end portion of the housing 1 on the +X direction side. The side wall portions 15 and 16 are provided so as to be perpendicular to the thickness direction and to face each other. The side wall portion 15 forms a side end portion of the housing 1 on the −Y direction side, and the side wall portion 16 forms a side end portion of the housing 1 on the +Y direction side.
 これら端壁部11,12と側壁部13~16とによって、ハウジング1の内部空間が画定されている。つまり、端壁部11,12と側壁部13~16とによって囲まれた領域によって、ハウジング1の内部空間が形成されている。図2に示すように、端壁部11には、ハウジング1の内部にエアを外部から取り入れるための孔である流入口101が設けられ、端壁部12には、ハウジング1の内部から外部にエアロゾルを含むエアを排出するための孔である排出口102が設けられている。本実施形態に係る流入口101及び排出口102は、一例として、中心軸線CL上に配置されている。 An internal space of the housing 1 is defined by the end walls 11 and 12 and the side walls 13 to 16. In other words, the interior space of the housing 1 is defined by the area surrounded by the end walls 11 and 12 and the side walls 13 to 16. As shown in FIG. 2, the end wall 11 is provided with an inlet 101, which is a hole for introducing air into the housing 1 from the outside. A discharge port 102, which is a hole for discharging air containing aerosol, is provided. The inlet 101 and the outlet 102 according to this embodiment are arranged on the central axis CL, for example.
 ここで、図2に示すように、本実施形態に係るハウジング1の内部空間は、ガスケット2によって、長軸方向において2つの領域に区分されている。ハウジング1の内部空間のうち、ガスケット2よりも-Z方向側の領域は、エア通路3の一部である負荷通路部31を形成している。ここで、ハウジング1の内部空間のうち、ガスケット2よりも+Z方向側の領域を、第1領域R1と称する。つまり、ガスケット2と端壁部12と側壁部13~16とによって囲まれた領域によって、第1領域R1が形成されている。 Here, as shown in FIG. 2, the internal space of the housing 1 according to the present embodiment is divided into two regions in the longitudinal direction by the gasket 2. A region of the internal space of the housing 1 on the −Z direction side relative to the gasket 2 forms a load passage portion 31 that is a part of the air passage 3. Here, in the internal space of the housing 1, a region on the +Z direction side relative to the gasket 2 is referred to as a first region R1. In other words, the first region R1 is formed by the region surrounded by the gasket 2, the end wall portion 12, and the side walls 13 to 16.
 図2~図4に示すように、通路壁部17は、長軸方向(Z方向)に延在する筒状に形成されている。本実施形態では、通路壁部17は、その中心軸が中心軸線CLと一致するように設けられている。図2に示すように、通路壁部17の+Z方向側の端部は、通路壁部17の内部空間が流入口101と繋がるように、端壁部12に接続されている。また、通路壁部17の-Z方向側の端部は、通路壁部17の内部空間が当該端部の開口17aを介して負荷通路部31と繋がるように、ガスケット2を貫通して負荷通路部31の内部に突出している。図3に示すように、ハウジング1の内部空間のうちガスケット2よりも+Z方向側の領域である第1領域R1は、通路壁部17によって、通路壁部17の内側の領域と通路壁部17の外側の領域とに区分される。第1領域R1のうち、通路壁部17の内側の領域は、エア通路3の一部である下流通路部32を形成している。また、第1領域R1のうち、通路壁部17の外側の領域は、液体収容部4を形成している。 As shown in FIGS. 2 to 4, the passage wall portion 17 is formed into a cylindrical shape extending in the longitudinal direction (Z direction). In this embodiment, the passage wall portion 17 is provided so that its center axis coincides with the center axis CL. As shown in FIG. 2, the end of the passage wall 17 on the +Z direction side is connected to the end wall 12 so that the internal space of the passage wall 17 is connected to the inlet 101. Further, the end of the passage wall 17 on the −Z direction side extends through the gasket 2 to connect the load passage so that the internal space of the passage wall 17 is connected to the load passage 31 through the opening 17a at the end. It protrudes into the inside of the portion 31. As shown in FIG. 3, the first region R1, which is the region on the +Z direction side of the gasket 2 in the internal space of the housing 1, is separated by the passage wall 17 from the inner region of the passage wall 17 and the passage wall 17. It is divided into two areas: In the first region R1, a region inside the passage wall portion 17 forms a downstream passage portion 32 that is a part of the air passage 3. Further, in the first region R1, a region outside the passage wall portion 17 forms the liquid storage portion 4.
 図2~図4に示すように、仕切り壁部18は、通路壁部17よりも-X方向側の位置に設けられている。仕切り壁部18は、長軸方向(Z方向)に延在しており、その+Z方向側の端部は端壁部12に接続され、-Z方向側の端部はガスケット2に当接している。つまり、仕切り壁部18は、端壁部12からガスケット2まで延在している。また、図3に示すように、仕切り壁部18は、液体収容部4を幅方向(X方向)において2つの領域に区分するように、側壁部15,16に接続されている。 As shown in FIGS. 2 to 4, the partition wall portion 18 is provided at a position closer to the −X direction than the passage wall portion 17. The partition wall part 18 extends in the longitudinal direction (Z direction), and its +Z direction end is connected to the end wall part 12, and its -Z direction end is in contact with the gasket 2. There is. That is, the partition wall 18 extends from the end wall 12 to the gasket 2. Further, as shown in FIG. 3, the partition wall portion 18 is connected to the side walls 15 and 16 so as to divide the liquid storage portion 4 into two regions in the width direction (X direction).
 液体収容部4のうち、仕切り壁部18よりも-X方向側の領域は、香味成形体8が収容される成形体収容部41を形成している。また、液体収容部4のうち、仕切り壁部18よりも+X方向側の領域は、成形体非収容部42を形成している。このように、仕切り壁部18は、成形体収容部41が液体収容部4の一部に形成されるように、液体収容部4を成形体収容部41と成形体非収容部42とに仕切っている。また、図2及び図3に示すように、仕切り壁部18には、成形体収容部41と成形体非収容部42とを連通するスリット181が形成されている。スリット181は、成形体非収容部42に配置された香味成形体8がスリット181を通り抜けられないように、その形状や大きさ(開口面積)が設定されている。本実施形態に係るスリット181は、長軸方向に延在する細長形状となっている。スリット181は、本発明に係る「開口部」の一例である。 A region of the liquid storage section 4 on the -X direction side with respect to the partition wall section 18 forms a molded object storage section 41 in which the flavor molded object 8 is stored. Further, a region of the liquid storage portion 4 on the +X direction side with respect to the partition wall portion 18 forms a molded object non-accommodation portion 42 . In this way, the partition wall 18 partitions the liquid storage section 4 into the molded object storage section 41 and the molded object non-accommodation section 42 so that the molded object storage section 41 is formed as a part of the liquid storage section 4. ing. Further, as shown in FIGS. 2 and 3, a slit 181 is formed in the partition wall portion 18 to communicate the molded body accommodating portion 41 and the molded body non-accommodating portion 42. The shape and size (opening area) of the slit 181 are set so that the flavor molded object 8 placed in the molded object non-accommodating part 42 cannot pass through the slit 181. The slit 181 according to this embodiment has an elongated shape extending in the longitudinal direction. The slit 181 is an example of an "opening" according to the present invention.
 [エア通路]
 エア通路3は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。図2に示すように、本実施形態に係るエア通路3は、上述の負荷通路部31と上述の下流通路部32とを有する。エアの流動方向において、負荷通路部31の方が下流通路部32よりも上流側に配置されている。負荷通路部31は、端壁部11とガスケット2と側壁部13~16とによって囲まれた領域によって形成されている。負荷通路部31には、液体収容部4とコットン5とウィック6とが配置される。下流通路部32は、通路壁部17によって囲まれた領域によって形成されている。また、下流通路部32は、液体収容部4を長軸方向に貫通している。図2に示すように、流入口101を介して負荷通路部31とハウジング1の外部とが連通しており、通路壁部17の開口17aを介して負荷通路部31と下流通路部32とが連通しており、排出口102を介して下流通路部32とハウジング1の外部とが連通している。エアは、流入口101から負荷通路部31に流入する。負荷通路部31を通過したエアは、開口17aから下流通路部32に流入する。下流通路部32を通過したエアは、排出口102から排出される。本実施形態において、エア通路3におけるエアの流動方向は、+Z方向である。
[Air passage]
The air passage 3 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol). As shown in FIG. 2, the air passage 3 according to this embodiment includes the above-mentioned load passage section 31 and the above-mentioned downstream passage section 32. In the air flow direction, the load passage section 31 is arranged upstream of the downstream passage section 32. The load passage section 31 is formed by a region surrounded by the end wall section 11, the gasket 2, and the side wall sections 13 to 16. A liquid storage section 4, cotton 5, and a wick 6 are arranged in the load passage section 31. The downstream passage section 32 is formed by a region surrounded by the passage wall section 17. Further, the downstream passage section 32 penetrates the liquid storage section 4 in the longitudinal direction. As shown in FIG. 2, the load passage section 31 and the outside of the housing 1 communicate through the inlet 101, and the load passage section 31 and the downstream passage section 32 communicate with each other through the opening 17a of the passage wall section 17. The downstream passage section 32 and the outside of the housing 1 communicate with each other via the discharge port 102. Air flows into the load passage section 31 from the inlet 101. The air that has passed through the load passage section 31 flows into the downstream passage section 32 through the opening 17a. The air that has passed through the downstream passage section 32 is discharged from the discharge port 102. In this embodiment, the flow direction of air in the air passage 3 is the +Z direction.
 [液体収容部]
 液体収容部4は、ニコチンを含むエアロゾル生成液(以下、単に「エアロゾル生成液」とも称する)を収容するための空間である。図2~図4に示すように、液体収容部4は、ガスケット2と端壁部12と側壁部13~16と通路壁部17とによって囲まれた領域によって形成されている。
[Liquid storage section]
The liquid storage section 4 is a space for storing an aerosol-generating liquid (hereinafter also simply referred to as "aerosol-generating liquid") containing nicotine. As shown in FIGS. 2 to 4, the liquid storage portion 4 is formed by a region surrounded by the gasket 2, the end wall portion 12, the side walls 13 to 16, and the passage wall portion 17.
 また、液体収容部4は、上述の成形体収容部41と上述の成形体非収容部42とを有する。成形体収容部41は、ガスケット2と端壁部12と側壁部13,15,16と仕切り壁部18とによって囲まれた領域によって形成されている。成形体収容部41の形状は、香味成形体8の形状に基づいた形状(香味成形体8の形状に対応した形状)となっており、本実施形態では、円柱形状となっている。なお、図中の符号W1は、成形体収容部41の内壁面を示す。壁面W1は、即ち、成形体収容部41を形成(画定)する面である。壁面W1は、壁面W11と壁面W12と壁面W13とを含む。壁面W11は、成形体収容部41の-Z方向における端面であり、ガスケット2の一部により形成されている。壁面W12は、成形体収容部41の+Z方向における端面であり、端壁部12の一部により形成されている。壁面W13は、成形体収容部41の側面であり、側壁部13,15,16の一部と仕切り壁部18の一部とにより筒状に形成されている。また、成形体非収容部42は、ガスケット2と端壁部12と側壁部14~16と通路壁部17と仕切り壁部18とによって囲まれた領域によって形成されている。成形体収容部41と成形体非収容部42は、上述のスリット181を介して連通している。 Further, the liquid storage section 4 includes the above-mentioned molded object storage section 41 and the above-mentioned molded object non-storage section 42. The molded body housing portion 41 is formed by a region surrounded by the gasket 2, the end wall portion 12, the side wall portions 13, 15, 16, and the partition wall portion 18. The shape of the molded object storage section 41 is based on the shape of the flavor molded object 8 (the shape corresponding to the shape of the flavor molded object 8), and in this embodiment, it is cylindrical. In addition, the code|symbol W1 in a figure shows the inner wall surface of the molded object accommodating part 41. The wall surface W1 is, in other words, a surface that forms (defines) the molded object accommodating portion 41. The wall surface W1 includes a wall surface W11, a wall surface W12, and a wall surface W13. The wall surface W11 is an end surface of the molded body accommodating portion 41 in the −Z direction, and is formed by a part of the gasket 2. The wall surface W12 is an end surface of the molded object storage section 41 in the +Z direction, and is formed by a part of the end wall section 12. The wall surface W13 is a side surface of the molded body accommodating portion 41, and is formed into a cylindrical shape by a portion of the side wall portions 13, 15, 16 and a portion of the partition wall portion 18. Furthermore, the molded body non-accommodating portion 42 is formed by a region surrounded by the gasket 2, the end wall portion 12, the side walls 14 to 16, the passage wall portion 17, and the partition wall portion 18. The molded body accommodating portion 41 and the molded body non-accommodating portion 42 communicate with each other via the slit 181 described above.
 液体収容部4(成形体収容部41及び成形体非収容部42)には、エアロゾル生成液Leが収容される。また、成形体収容部41には更に、香味成形体8が位置決めされた状態で配置される。成形体非収容部42における香味成形体8の位置決め配置の詳細については後述する。なお、図2等では、液体収容部4にエアロゾル生成液Leが収容された状態が図示されているが、霧化ユニット10は、液体収容部4に液体が収容されている状態でユーザに提供されてもよいし、液体収容部4に液体が収容されていない状態で使用者に提供され、ユーザが液体を導入して使用する構成としてもよい。 The liquid storage section 4 (the molded object storage section 41 and the molded object non-storage section 42) stores the aerosol generation liquid Le. Moreover, the flavor molded object 8 is further arranged in the molded object storage section 41 in a positioned manner. Details of the positioning arrangement of the flavor molded object 8 in the molded object non-accommodating section 42 will be described later. Although FIG. 2 and the like illustrate a state where the aerosol generation liquid Le is stored in the liquid storage section 4, the atomization unit 10 is not provided to the user in a state where the liquid is stored in the liquid storage section 4. Alternatively, the liquid container 4 may be provided to the user in a state in which no liquid is contained therein, and the user may introduce the liquid and use the liquid.
 [ガスケット]
 図2に示すように、ガスケット2は、ハウジング1の内部空間を横断することで液体収容部4と負荷通路部31とを仕切る板状の部材である。また、後述するように、ガスケット2は、ウィック6に対して香味成形体8を物理的に離間するためのスペーサ部材も兼ねている。実施形態1では、ガスケット2が、本発明に係る「スペーサ部材」の一例に相当する。ガスケット2は、長軸方向に直交するように幅方向に延在して設けられている。図4に示すように、ガスケット2の周縁は、側壁部13~16に当接している。図2及び図4に示すように、ガスケット2には、通路壁部17が貫通する貫通孔21と、負荷通路部31と成形体収容部41とを連通する連通孔22と、負荷通路部31と成形体非収容部42とを連通する連通孔23と、が形成されている。
[gasket]
As shown in FIG. 2, the gasket 2 is a plate-shaped member that partitions the liquid storage section 4 and the load passage section 31 by crossing the internal space of the housing 1. Further, as will be described later, the gasket 2 also serves as a spacer member for physically separating the flavor molded body 8 from the wick 6. In the first embodiment, the gasket 2 corresponds to an example of a "spacer member" according to the present invention. The gasket 2 is provided to extend in the width direction so as to be orthogonal to the long axis direction. As shown in FIG. 4, the peripheral edge of the gasket 2 is in contact with the side walls 13 to 16. As shown in FIGS. 2 and 4, the gasket 2 includes a through hole 21 through which the passage wall 17 passes, a communication hole 22 that communicates between the load passage part 31 and the molded body accommodating part 41, and the load passage part 31. A communication hole 23 that communicates between the molded body non-accommodating portion 42 and the molded body non-accommodating portion 42 is formed.
 [コットン]
 コットン5は、液体収容部4のエアロゾル生成液Leが供給され、供給されたエアロゾル生成液Leをウィック6に供給する部材である。図2に示すように、コットン5は、ガスケット2の連通孔22,23を覆うようにして負荷通路部31に配置される。コットン5は、連通孔22,23を介して成形体収容部41及び成形体非収容部42からエアロゾル生成液Leを導入する。コットン5の具体的な構成は特に限定されるものではないが、本実施形態に係るコットン5は、一例として、毛管現象(毛細管現象)を利用して、液体収容部4のエアロゾル生成液Leをウィック6に供給している。本実施形態に係る態様では、周囲の液体を無駄なく使用することができる観点から、コットン5の毛管力(毛細管力)が香味成形体8の毛管力よりも大きいことが好ましい。
[cotton]
The cotton 5 is a member that is supplied with the aerosol generation liquid Le from the liquid storage section 4 and supplies the supplied aerosol generation liquid Le to the wick 6 . As shown in FIG. 2, the cotton 5 is placed in the load passage portion 31 so as to cover the communication holes 22 and 23 of the gasket 2. As shown in FIG. The cotton 5 introduces the aerosol generation liquid Le from the molded body accommodating part 41 and the molded body non-accommodating part 42 through the communicating holes 22 and 23 . Although the specific configuration of the cotton 5 is not particularly limited, the cotton 5 according to the present embodiment, for example, can absorb the aerosol generation liquid Le in the liquid storage section 4 by utilizing capillarity (capillary phenomenon). It is supplied to Wick 6. In the aspect according to this embodiment, the capillary force (capillary force) of the cotton 5 is preferably larger than the capillary force of the flavor molded body 8 from the viewpoint of being able to use the surrounding liquid without wasting it.
 [ウィック]
 ウィック6は、負荷7を保持すると共に液体収容部4のエアロゾル生成液Leが供給される部材である。図2に示すように、ウィック6は、コットン5に当接するようにして負荷通路部31に配置される。ウィック6は、コットン5から供給されたエアロゾル生成液Leを保持し、当該エアロゾル生成液Leを負荷7に供給する。このような機能を有するものであれば、ウィック6の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック6は、一例として、毛管現象(毛細管現象)を利用して、液体収容部4のエアロゾル生成液Leを負荷7に供給している。本実施形態に係る態様では、周囲の液体を無駄なく使用することができる観点から、ウィック6の毛管力(毛細管力)が香味成形体8やコットン5の毛管力よりも大きいことが好ましい。なお、本実施形態は、上述のコットン5を有さずに、液体収容部4から直接的にウィック6にエアロゾル生成液Leが供給されてもよい。ウィック6は、本発明に係る「液保持部材」の一例に相当する。
[Wick]
The wick 6 is a member that holds the load 7 and is supplied with the aerosol generating liquid Le from the liquid storage section 4 . As shown in FIG. 2, the wick 6 is arranged in the load passage section 31 so as to be in contact with the cotton 5. The wick 6 holds the aerosol generation liquid Le supplied from the cotton 5 and supplies the aerosol generation liquid Le to the load 7. The specific configuration of the wick 6 is not particularly limited as long as it has such a function, but the wick 6 according to the present embodiment uses capillarity (capillary phenomenon) as an example. , the aerosol generation liquid Le in the liquid storage section 4 is supplied to the load 7. In the aspect according to this embodiment, the capillary force (capillary force) of the wick 6 is preferably larger than the capillary force of the flavor molded body 8 and the cotton 5 from the viewpoint of being able to use the surrounding liquid without wasting it. In addition, in this embodiment, the aerosol generation liquid Le may be directly supplied to the wick 6 from the liquid storage part 4 without having the above-mentioned cotton 5. The wick 6 corresponds to an example of a "liquid holding member" according to the present invention.
 [負荷]
 負荷7は、液体収容部4のエアロゾル生成液Leが供給されるとともに、供給されたエアロゾル生成液Leを霧化してエアロゾルを発生させるための電気的な負荷である。図2に示すように、負荷7は、ウィック6に保持された状態で負荷通路部31に配置される。そのため、負荷7は、ウィック6に接触しており、ウィック6から負荷7にエアロゾル生成液Leが供給される。負荷7の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷7の一例として、ヒータが用いられる。このヒータとしては、発熱抵抗体(すなわち、電熱線)、セラミックヒータ、又は誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体が用いられる。また、本実施形態において、負荷7としてのヒータは、コイル形状を有していてもよい。すなわち、本実施形態に係る負荷7は、いわゆるコイルヒータであってよい。このコイルヒータは、ウィック6に巻き付けられていてよい。
[load]
The load 7 is an electrical load to which the aerosol generation liquid Le of the liquid storage section 4 is supplied and which atomizes the supplied aerosol generation liquid Le to generate an aerosol. As shown in FIG. 2, the load 7 is placed in the load passage section 31 while being held by the wick 6. Therefore, the load 7 is in contact with the wick 6, and the aerosol generation liquid Le is supplied from the wick 6 to the load 7. The specific configuration of the load 7 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 7. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater. Further, in this embodiment, the heater serving as the load 7 may have a coil shape. That is, the load 7 according to this embodiment may be a so-called coil heater. This coil heater may be wound around the wick 6.
 また、本実施形態に係る負荷7は、上述した電源ユニット20の電源や制御装置と電気的に接続されており、電源からの電力が負荷7に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷7の動作は、制御装置によって制御されている。負荷7は、ウィック6を介して負荷7に供給された液体収容部4のエアロゾル生成液Leを加熱することでこれを霧化し、エアロゾルを発生させる。 Further, the load 7 according to the present embodiment is electrically connected to the power supply and control device of the power supply unit 20 described above, and generates heat when power from the power supply is supplied to the load 7 (that is, when energized fever). Further, the operation of the load 7 is controlled by a control device. The load 7 atomizes the aerosol-generating liquid Le supplied to the load 7 via the wick 6 from the liquid storage section 4 by heating it, thereby generating an aerosol.
 なお、これらのウィック6や負荷7の構成は、例えば特許文献2等に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 Note that the configurations of the wick 6 and load 7 are similar to those used in known suction tools such as those exemplified in Patent Document 2, so further detailed explanation will be omitted. .
[エアロゾル生成液]
 液体収容部4に収容されるエアロゾル生成液Leはニコチンを含んでいれば特段制限されない。エアロゾル生成液Leに含まれるニコチンの態様は特段制限されず、例えば、合成ニコチン及び天然ニコチンから選択される1種以上のニコチンが挙げられる。なお、これらの合成ニコチン及び天然ニコチンは、ニコチンとして存在してもよく、ニコチン塩等のニコチン含有化合物として存在していてもよい。
[Aerosol generation liquid]
The aerosol generation liquid Le stored in the liquid storage section 4 is not particularly limited as long as it contains nicotine. The form of nicotine contained in the aerosol generation liquid Le is not particularly limited, and examples include one or more types of nicotine selected from synthetic nicotine and natural nicotine. Note that these synthetic nicotine and natural nicotine may exist as nicotine or as nicotine-containing compounds such as nicotine salts.
 エアロゾル生成液Leの態様は特段制限されず、例えば、所定の溶媒に、合成ニコチン及び天然ニコチンから選択される1種以上のニコチンが含有されたものを用いることができる。
 所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。
The form of the aerosol generation liquid Le is not particularly limited, and for example, one in which a predetermined solvent contains one or more types of nicotine selected from synthetic nicotine and natural nicotine can be used.
The specific type of the predetermined solvent is not particularly limited, but for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. A liquid containing a substance can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent.
 エアロゾル生成液Leに含有されるニコチンとして天然ニコチンを用いる場合、この天然ニコチンは、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When using natural nicotine as the nicotine contained in the aerosol generation liquid Le, specifically, natural nicotine extracted and purified from tobacco leaves can be used. For such a method for producing natural nicotine, a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
 また、エアロゾル生成液Leに含有されるニコチンとして天然ニコチンを用いる場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。また、本明細書では、たばこ材料を抽出することにより得られる成分をたばこ抽出成分(少なくともニコチンを含む)と称する。 In addition, when using natural nicotine as the nicotine contained in the aerosol generation liquid Le, by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible components other than natural nicotine from the extract of tobacco materials, The purity of natural nicotine may be increased, and natural nicotine with increased purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight). Furthermore, in this specification, components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
 一方、エアロゾル生成液Leに含有されるニコチンとして合成ニコチンを用いる場合、この合成ニコチンとして、化学物質を用いた化学合成によって生成されたニコチンを用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。 On the other hand, when synthetic nicotine is used as the nicotine contained in the aerosol generation liquid Le, nicotine produced by chemical synthesis using a chemical substance can be used as the synthetic nicotine. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 合成ニコチンの生成方法は、特に限定されるものではなく、化学物質を用いた化学合成を行うことにより行うことができ、公知の生成方法を用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。 The method for producing synthetic nicotine is not particularly limited, and it can be carried out by chemical synthesis using chemical substances, and known production methods can be used. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン、ニコチンレブリン酸塩、ニコチン安息香酸塩、又はニコチン酒石酸塩等のニコチン塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned. When a nicotine-containing compound such as a nicotine salt is synthesized, the production method is not particularly limited, and any known production method can be used.
 このたばこ抽出成分は、一般的にたばこ植物に含まれる物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。なお、ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル%未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。 This tobacco extract component is a substance generally contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and even if these components other than nicotine are contained, they are not included. It does not have to be present, but if it is present, it can function as a fragrance. Note that there are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually in the S form, with the R form accounting for less than 1 mol%. On the other hand, in synthetic nicotine, the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%). For example, it can be assumed that the nicotine in the oral composition is synthetic nicotine.
 抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。 The target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable. The embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
 エアロゾル生成液Leにニコチンを含有させる方法は特段制限されず、例えば、合成等によりもしくはたばこ材料の抽出により得られるニコチンもしくはニコチン塩等のニコチン含有化合物をエアロゾル生成液Leに溶解させる方法、又はこれらのニコチンもしくはニコチン含有化合物を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。また、たばこ材料の抽出に用いられる溶媒として、エアロゾル基材にもなり得る物質を用いた場合には、たばこ抽出液をそのままエアロゾル生成液Leとして用いることもでき、このような物質としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。 The method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and examples include methods of dissolving nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis or extraction of tobacco materials in the aerosol generation liquid Le; Examples include a method in which nicotine or a nicotine-containing compound is dissolved in a solvent and then mixed with the aerosol generation liquid Le. In addition, when a substance that can also be used as an aerosol base material is used as a solvent for extracting tobacco materials, the tobacco extract can be used as it is as the aerosol generation liquid Le. Examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 本実施形態では、ニコチンの供給源として上記のニコチンを含む液体状のエアロゾル生成液Leを用いることにより、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料をニコチン供給源として用いる場合に生じる霧化ユニット10の負荷7の劣化を抑制することができる。 In this embodiment, by using the liquid aerosol generation liquid Le containing nicotine described above as a nicotine supply source, powdered tobacco material that can become a deposit as disclosed in Patent Document 1 is used as a nicotine supply source. It is possible to suppress deterioration of the load 7 of the atomization unit 10 that occurs when the atomization unit 10 is used as a fuel cell.
 エアロゾル生成液Le中のニコチンの含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。 The content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less.
 たばこ抽出成分を含むエアロゾル生成液Leを用いる態様では、たばこ抽出成分の供給源としてたばこ抽出液を用いることができるが、この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。 In the embodiment using the aerosol generation liquid Le containing tobacco extract components, the tobacco extract can be used as the source of the tobacco extract component, but in this case, the content of the tobacco extract in the aerosol generation liquid Le is not particularly limited. However, from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, or 0.5% by weight or more and 7.5% by weight or less, It may be 1% by weight or more and 5% by weight or less.
 エアロゾル生成液Leに含まれ得る所定の溶媒は特段制限されず、例えば、エアロゾル基材(エアロゾルを生成するための基材)を用いることができる。エアロゾル基材の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。 The predetermined solvent that can be included in the aerosol generation liquid Le is not particularly limited, and for example, an aerosol base material (a base material for generating an aerosol) can be used. The type of aerosol base material is not particularly limited, and for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。 The content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類はニコチンを溶解させることができれば特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル基材としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液Leとして利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、減圧蒸留等の手段を用いて焦げの原因となる物質を除去することが好ましい。 The type of solvent used in the extraction to obtain the above tobacco extract component is not particularly limited as long as it can dissolve nicotine, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances selected from the group or a liquid containing this substance can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent. In addition, when the solvent also acts as an aerosol base material, the tobacco extract can be used as is as the aerosol generation liquid Le, but the tobacco extract does not contain components that can cause scorching by heating (for example, lipids, etc.). metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation.
 なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含み、その具体例としては、例えばネオフィタジエン等が挙げられる。 Note that the tobacco extract contains flavor components in the tobacco material other than nicotine, specific examples of which include neophytadiene and the like.
 エアロゾル生成液Leは、ニコチン及びエアロゾル基材以外の成分を(その他の成分)有してよく、例えば、ニコチン以外の香味成分(上述したニコチン以外のたばこ抽出成分を含む)等が挙げられる。ニコチン及びたばこ材料由来の香味成分以外の香味成分としては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、ラクトン類(例えば、ω-ペンタデカラクトン等)、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられる。 The aerosol generation liquid Le may contain components other than nicotine and the aerosol base material (other components), such as flavor components other than nicotine (including the above-mentioned tobacco extract components other than nicotine). Flavor components other than nicotine and flavor components derived from tobacco materials include, for example, menthol, natural vegetable flavorings (for example, cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), lactones (e.g., ω-pentadeca lactone, etc.), neophytadiene, solanone, or solanesol.
 [香味成形体]
 香味成形体8は、非たばこ基材及び香味材料等の材料が固められて所定形状に成形されたものである。図2~図4に示すように、香味成形体8は、液体収容部4の成形体収容部41に配置されている。本実施形態では、1つの成形体収容部41に1つの香味成形体8が配置されているが、香味成形体8及び成形体収容部41の数量は、これに限定されるものではなく、2つ以上であってもよい。また、1つの成形体収容部41に複数の香味成形体8が配置されていてもよい。図2~図4に示す態様では、幅方向の片側(-X方向側)に成形体収容部41が形成され香味成形体8が配置されているが、本発明はこれに限定されない。例えば、下流通路部32を挟んで幅方向の両側に成形体収容部41が形成され、夫々の成形体収容部41に香味成形体8が配置されてもよい。
[Flavor molded body]
The flavor molded body 8 is formed by solidifying materials such as a non-tobacco base material and a flavor material into a predetermined shape. As shown in FIGS. 2 to 4, the flavor molded body 8 is arranged in the molded body storage section 41 of the liquid storage section 4. As shown in FIGS. In the present embodiment, one flavor molded object 8 is arranged in one molded object storage section 41, but the quantity of flavor molded objects 8 and molded object storage section 41 is not limited to this, and the number of flavor formed objects 8 and molded object storage section 41 is not limited to this. There may be more than one. Further, a plurality of flavor molded bodies 8 may be arranged in one molded body storage section 41. In the embodiments shown in FIGS. 2 to 4, the molded object accommodating portion 41 is formed on one side in the width direction (-X direction side) and the flavor molded object 8 is arranged, but the present invention is not limited thereto. For example, the molded object accommodating sections 41 may be formed on both sides in the width direction with the downstream passage section 32 in between, and the flavor molded objects 8 may be arranged in each of the formed object accommodating sections 41 .
 香味成形体8は、香味材料を含んでいる。そのため、後述のように、成形体収容部41に配置された香味成形体8と液体収容部4のエアロゾル生成液Leとが接触した状態が形成されることで、香味成形体8に含まれる香味材料からエアロゾル生成液Leに香味成分が溶出される。 The flavor molded body 8 contains a flavor material. Therefore, as will be described later, by forming a state in which the flavor molded body 8 disposed in the molded body storage part 41 and the aerosol generation liquid Le in the liquid storage part 4 are in contact with each other, the flavor contained in the flavor molded body 8 is Flavor components are eluted from the material into the aerosol generation liquid Le.
 本実施形態に係る霧化ユニット10は、香味成形体8の香味材料から香味成分をエアロゾル生成液Leに溶出させることにより、更なる香味の付与を達成することができる。また、香味材料は香味成形体8中に含まれることから、特許文献1に開示されるような堆積物となり得る粉体状の固形物の使用により生じていた霧化ユニットの負荷への付着の問題が生じないため、該負荷の劣化を抑制することができる。また、霧化ユニット10内の香味成形体8により毛管作用が発生する場合には、この毛管作用によりエアロゾル生成液Leが保持されるため、液漏れ防止の効果を得ることができる。 The atomization unit 10 according to the present embodiment can further impart flavor by eluting flavor components from the flavor material of the flavor molded body 8 into the aerosol generation liquid Le. In addition, since the flavor material is contained in the flavor molded body 8, it is possible to avoid adhesion to the load of the atomization unit, which occurs due to the use of powdery solids that can become deposits as disclosed in Patent Document 1. Since no problem occurs, deterioration of the load can be suppressed. Moreover, when capillary action is generated by the flavor molded body 8 in the atomization unit 10, the aerosol-generating liquid Le is retained by this capillary action, so that the effect of preventing liquid leakage can be obtained.
 実施形態1に係る香味成形体8の模式的な斜視図である。本実施形態に係る香味成形体8の形状は特段制限されず、一例として、棒形状(柱状)である。具体的には、本実施形態に係る棒形状の香味成形体8は、一例として、棒形状の多面体形状を有しており、この一例として、断面形状(より詳しくは、棒の軸方向に直交する断面の形状)が円形の、円柱形状を有している。なお、本明細書において、「棒形状(柱状)」とは、所定方向に延在すると共にその延在方向(軸方向)における長さが幅方向(軸方向に直交する方向)における長さよりも長い形状のことを指す。以下、香味成形体8の延在方向(軸方向)を「長手方向」と称し、香味成形体8の幅方向(本例では径方向)を「短手方向」と称する場合がある。香味成形体8は、その長手方向における両端面と、両端面を接続する周面を有する。具体的には、香味成形体8は、香味成形体8の長手方向における一端面である第1端面81と、他端面である第2端面82と、第1端面81と第2端面82とを接続する筒状の周面83と、を有する。 1 is a schematic perspective view of a flavor molded body 8 according to Embodiment 1. FIG. The shape of the flavor molded body 8 according to this embodiment is not particularly limited, and is, for example, rod-shaped (columnar). Specifically, the rod-shaped flavor molded body 8 according to the present embodiment has a rod-shaped polyhedral shape, as an example, and has a cross-sectional shape (more specifically, a cross-sectional shape perpendicular to the axial direction of the rod). It has a cylindrical shape with a circular cross-sectional shape. In addition, in this specification, a "rod shape (column shape)" extends in a predetermined direction, and the length in the extending direction (axial direction) is longer than the length in the width direction (direction orthogonal to the axial direction). Refers to a long shape. Hereinafter, the extending direction (axial direction) of the flavor molded body 8 may be referred to as the "longitudinal direction", and the width direction (radial direction in this example) of the flavor molded body 8 may be referred to as the "short direction". The flavor molded body 8 has both end surfaces in the longitudinal direction and a peripheral surface connecting the both end surfaces. Specifically, the flavor molded product 8 has a first end surface 81 that is one end surface in the longitudinal direction of the flavor molded product 8, a second end surface 82 that is the other end surface, and the first end surface 81 and the second end surface 82. It has a connecting cylindrical peripheral surface 83.
 ここで、図5に示す香味成形体8の短手方向の長さである幅(すなわち直径)(W)、及び、香味成形体8の長手方向の長さである全長(L)の具体的な値は、特に限定されるものではないが、数値の一例を挙げると、以下のとおりである。すなわち、香味成形体8の幅(W)として、例えば2mm以上20mm以下の範囲から選択された値を用いることができる。香味成形体8の全長(L)として、例えば5mm以上50mm以下の範囲から選択された値を用いることができる。但し、これらの値は香味成形体8の幅(W)及び全長(L)の一例に過ぎず、香味成形体8の幅(W)及び全長(L)は、吸引具100のサイズに応じて好適な値を設定すればよい。香味成形体8が複数個で存在する場合におけるこれらのパラメータは、それぞれの香味成形体8で算出した数値の平均値とする。 Here, the width (i.e. diameter) (W), which is the length in the short direction of the flavor molded body 8 shown in FIG. 5, and the total length (L), which is the length in the longitudinal direction of the flavor molded body 8, are specifically Although the value is not particularly limited, an example of the numerical value is as follows. That is, as the width (W) of the flavor molded body 8, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used. As the total length (L) of the flavor molded body 8, a value selected from a range of, for example, 5 mm or more and 50 mm or less can be used. However, these values are only examples of the width (W) and overall length (L) of the flavor molded body 8, and the width (W) and total length (L) of the flavor molded body 8 may vary depending on the size of the suction tool 100. Just set a suitable value. When a plurality of flavor molded bodies 8 are present, these parameters are the average value of the numerical values calculated for each flavor molded body 8.
 なお、香味成形体8の断面形状は円形に限定されるものではなく、他の例を挙げると、例えば、多角形(三角形、四角形、五角形、または、角の数が6以上の角形)等であってもよい。また、香味成形体8の断面形状は、円形や多角形以外の任意の形状であってもよい。断面の形状が円形や多角形以外の任意の形状は、後述する図6(c)に示すような複雑な形状であってもよく、凹形状であってもよい。断面が凹形状である場合、香味成形体60は側面に溝が形成された棒形状となる。 In addition, the cross-sectional shape of the flavor molded body 8 is not limited to a circle, and other examples include polygons (triangles, quadrilaterals, pentagons, or polygons with six or more corners), etc. There may be. Moreover, the cross-sectional shape of the flavor molded body 8 may be any shape other than circular or polygonal. The cross-sectional shape may be any shape other than a circle or a polygon, and may be a complicated shape as shown in FIG. 6(c), which will be described later, or may be a concave shape. When the cross section is concave, the flavor molded body 60 has a rod shape with grooves formed on the side surface.
 また、香味成形体8の形状は、中空部を有する棒形状であってもよいし、複数の棒が束になった形状(複数の棒は、集合して束となっていればよく、互いに一体化していても、一体化していなくともよい。)であってもよい。中空部を有する棒形状としては、例えば、長手方向に貫通する貫通孔を有する筒形状、又は長手方向に伸びて形成される非貫通孔を有する凹形状等が挙げられる。香味成形体8が液体収容部4に配置される前に、これらの貫通孔や凹部にあらかじめニコチン等の香味成分を含む液体を保持させておくことにより、エアロゾル生成液Leに更なる香味成分を付与することができる。 Further, the shape of the flavor molded body 8 may be a rod shape having a hollow portion, or a shape in which a plurality of rods are bundled (the plurality of rods may be assembled into a bundle, and mutually ) may or may not be integrated. Examples of the rod shape having a hollow portion include a cylindrical shape having a through hole extending in the longitudinal direction, a concave shape having a non-through hole extending in the longitudinal direction, and the like. By holding a liquid containing flavor components such as nicotine in these through holes and recesses before the flavor molded body 8 is placed in the liquid storage section 4, further flavor components can be added to the aerosol generation liquid Le. can be granted.
 また、香味成形体8の形状は、棒形状(柱状)でなくてもよい。香味成形体8の形状は、例えば、シート形状であってもよく、複数のシートが積層された形状(複数のシートは、集合して積層されていればよく、互いに一体化していても、一体化していなくともよい。)であってもよく、シートを山折りと谷折りの繰り返し構造とした蛇腹形状であってもよく、シートを渦が巻くような構造として渦巻形状であってもよい。なお、香味成形体8としてシート形状のものを用いる場合には、具体的には、香味成形体8として、非たばこ基材と香味材料との混合物の抄造シート、非たばこ基材と香味材料との混合物のキャストシート、又は非たばこ基材と香味材料との混合物の圧延シート等、又は、非たばこ基材のシートの表面に塗布又は噴霧等により香味材料を付与したシート等を用いることができる。 Moreover, the shape of the flavor molded body 8 does not have to be a rod shape (column shape). The shape of the flavor molded body 8 may be, for example, a sheet shape, or a shape in which a plurality of sheets are laminated (the plurality of sheets only need to be stacked together, or even if they are integrated with each other). ), the sheet may have a bellows shape with a repeated mountain-fold and valley-fold structure, or the sheet may have a spiral shape with a spiral structure. In addition, when using a sheet-shaped flavor molded product 8, specifically, the flavor molded product 8 is a sheet made of a mixture of a non-tobacco base material and a flavor material, or a sheet made of a mixture of a non-tobacco base material and a flavor material. A cast sheet of a mixture of non-tobacco base material and a flavoring material, a rolled sheet of a mixture of a non-tobacco base material and a flavoring material, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying etc. can be used. .
 香味成形体8の形状は、上記の棒形状及びシート形状以外の形状であってもよく、例えば、立方体形状(同じ長さの辺を有する形状)であってもよく、多孔質形状であってもよく、あるいは、その他の形状であってもよい。 The shape of the flavor molded body 8 may be a shape other than the above-mentioned rod shape or sheet shape, for example, it may be a cubic shape (a shape with sides of the same length), or it may be a porous shape. Alternatively, it may have other shapes.
 図6(a)~(e)は、実施形態1に係る香味成形体8の変形例の模式的な断面図である。図6(a)~(e)では、香味成形体8の長手方向に直交する断面が図示されている。具体的には、図6(a)は、香味成形体8の形状が筒形状である場合の模式的な断面形状の一例を示し、図6(b)は、香味成形体8の形状が複数の棒が束になった形状である場合の模式的な断面形状の一例を示し、図6(c)は、香味成形体8の側面に溝が形成されている場合の模式的な断面形状の一例を示し、図6(d)は、香味成形体8の形状が蛇腹形状である場合の模式的な断面形状の一例を示し、図6(e)は、香味成形体8の形状が渦巻形状である場合の模式的な断面形状の一例を示す。 FIGS. 6(a) to 6(e) are schematic cross-sectional views of modified examples of the flavor molded body 8 according to the first embodiment. In FIGS. 6(a) to 6(e), a cross section perpendicular to the longitudinal direction of the flavor molded body 8 is illustrated. Specifically, FIG. 6(a) shows an example of a schematic cross-sectional shape when the flavor molded body 8 has a cylindrical shape, and FIG. 6(b) shows an example of a schematic cross-sectional shape when the flavor molded body 8 has a plurality of shapes. FIG. 6(c) shows an example of a schematic cross-sectional shape when the bars are in a bundle shape, and FIG. An example is shown, and FIG. 6(d) shows an example of a schematic cross-sectional shape when the flavor molded body 8 has a bellows shape, and FIG. 6(e) shows a case where the flavor molded body 8 has a spiral shape. An example of a schematic cross-sectional shape is shown below.
 ここで、香味成形体8自体により生じる毛管力(例えば、中空部を有する棒形状の中空部により生じる毛管力、又はシートを蛇腹にした形状におけるシート間で生じる毛管力)は、周囲の液体を無駄なく使用することができる観点から、所望の大きさ以上の毛管力を維持しつつ、ウィック6の毛管力よりも小さいことが好ましい。この毛管力の関係の観点から、香味成形体8は、ウィック6が存在する側の端部領域(端部及び端面を含む。)から、ウィック6が存在する側とは反対側に延びる空間部を有する形状が好ましい。本実施形態の場合、香味成形体8の第1端面81から+Z方向に延びる空間部が形成されることが好ましい。この空間部の形状は特段制限されず、好ましい香味成形体8の形状としては、例えば、筒形状、凹形状、複数の棒が束になった形状、蛇腹形状、渦巻形状、多孔質形状(特に連続気孔を有する多孔質体)から選択された1種以上の形状であることが好ましい。 Here, the capillary force generated by the flavor molded body 8 itself (e.g., the capillary force generated by a rod-shaped hollow portion having a hollow portion, or the capillary force generated between sheets in a bellows-shaped sheet) absorbs the surrounding liquid. From the viewpoint of being able to be used without waste, it is preferable that the capillary force is smaller than the capillary force of the wick 6 while maintaining a capillary force of a desired magnitude or more. From the perspective of this capillary force relationship, the flavor molded body 8 has a space extending from the end region (including the end and end surface) on the side where the wick 6 exists to the side opposite to the side where the wick 6 exists. A shape having the following is preferable. In the case of this embodiment, it is preferable that a space extending from the first end surface 81 of the flavor molded body 8 in the +Z direction is formed. The shape of this space is not particularly limited, and preferred shapes of the flavor molded body 8 include, for example, a cylindrical shape, a concave shape, a shape in which a plurality of rods are bundled, a bellows shape, a spiral shape, a porous shape (especially It is preferable that the shape is selected from one or more types of porous bodies having continuous pores.
 また、液体収容部内の空気等の気泡1つ当たりの体積が大きくなると、上述したように、液体の外部への漏れが発生しやすくなり、安全性の低下及び液体の無駄が生じる。よって、これを抑制する観点からは、香味成形体8は液体収容部内の空気等の気体を分散させやすい形状であることが好ましく、例えば、多孔質形状であることが好ましい。 Furthermore, when the volume of each bubble such as air in the liquid storage section increases, as described above, the liquid tends to leak to the outside, resulting in decreased safety and waste of liquid. Therefore, from the viewpoint of suppressing this, it is preferable that the flavor molded body 8 has a shape that facilitates dispersion of gas such as air in the liquid storage part, and for example, it is preferable that it has a porous shape.
 また、香味成形体8は、吸液による膨張(以下、膨潤ともいう)を抑制する観点では、被覆材で被覆されていることが好ましく、具体的には、不織布で被覆されていること、樹脂等の被覆材(コーティング材)で被覆されていること、又はニコチン含有被覆材で被覆されていることが好ましい。 In addition, from the viewpoint of suppressing expansion due to liquid absorption (hereinafter also referred to as swelling), the flavor molded body 8 is preferably coated with a coating material. Specifically, the flavor molded body 8 is coated with a nonwoven fabric, resin It is preferable to be coated with a coating material such as or a nicotine-containing coating material.
 不織布とは、繊維を織らずに布状に加工したものを指す。不織布は、例えば、繊維を熱的、機械的または化学的な作用によって接着しまたは絡み合わせることで形成した布である。「不織布」を構成する繊維は特に限定されず、植物繊維、動物繊維、合成繊維またはこれらの2以上の混合とすることができ、特に、植物繊維を含むことが好ましく、紙を含むことがより好ましい。不織布は、香味成形体8の全体を被覆することが、香味成形体8の膨潤を防止する効果を高めるうえで好ましい。不織布は、香味成形体8の全体を包む紙であることが好ましい。しかし、不織布は、香味成形体8の少なくとも一部を被覆することができればその形状は特に限定されない。例えば、不織布は、筒状であり、香味成形体8の中央部等を被覆するように配置してもよい。あるいは、不織布は、開口部の一方が閉じた筒状であり、香味成形体8の端部に配置してもよい。 Non-woven fabric refers to fibers that are processed into cloth without being woven. A nonwoven fabric is, for example, a fabric formed by adhering or intertwining fibers by thermal, mechanical, or chemical action. The fibers constituting the "nonwoven fabric" are not particularly limited, and may be plant fibers, animal fibers, synthetic fibers, or a mixture of two or more of these.In particular, it is preferable to contain plant fibers, and more preferably to contain paper. preferable. It is preferable for the nonwoven fabric to cover the entirety of the flavor molded body 8 in order to enhance the effect of preventing the flavor molded body 8 from swelling. It is preferable that the nonwoven fabric is paper that wraps the entire flavor molded body 8. However, the shape of the nonwoven fabric is not particularly limited as long as it can cover at least a portion of the flavor molded body 8. For example, the nonwoven fabric may have a cylindrical shape and be arranged to cover the center of the flavor molded body 8 and the like. Alternatively, the nonwoven fabric may have a cylindrical shape with one opening closed, and may be placed at the end of the flavor molded body 8.
 不織布を用いる場合には、後述する霧化ユニット10の製造方法において、香味成形体8を成形する成形工程の後に、不織布により香味成形体8を被覆する被覆工程を設けることができる。不織布により香味成形体8を被覆する方法は特に限定されず、例えば、機械または人間により香味成形体8を不織布で包み、必要に応じて不織布の側部を接着することができる。 In the case of using a nonwoven fabric, in the method for manufacturing the atomization unit 10 described below, a covering step of covering the flavor molded body 8 with the nonwoven fabric can be provided after the molding step of molding the flavor molded body 8. The method of covering the flavor molded body 8 with the nonwoven fabric is not particularly limited, and for example, the flavor molded body 8 can be wrapped with the nonwoven fabric by a machine or by a person, and the sides of the nonwoven fabric can be bonded as necessary.
 樹脂により被覆を行う場合の被覆材(コーティング)は、ポリエチレン、ポリエチレンワックス、マイクロクリスタリンワックス、みつろう、又はツェイン等が挙げられる。 Examples of the coating material (coating) when coating with resin include polyethylene, polyethylene wax, microcrystalline wax, beeswax, or zein.
 樹脂等の被覆材は、香味成形体8の膨潤を抑制する。コーティングは、香味成形体8の表面の50%以上を被覆することが、香味成形体8に含まれる非たばこ基材等の材料の膨潤を防止する効果を高めるうえで好ましく、90%以上がより好ましい。しかしコーティングは、香味成形体8の少なくとも一部を被覆することができればその形状は特に限定されない。 The coating material such as resin suppresses the swelling of the flavor molded body 8. It is preferable that the coating covers 50% or more of the surface of the flavor molded body 8 in order to increase the effect of preventing swelling of materials such as non-tobacco base materials contained in the flavor molded body 8, and 90% or more is more preferable. preferable. However, the shape of the coating is not particularly limited as long as it can cover at least a portion of the flavor molded body 8.
 ニコチン含有被覆材は、ニコチンを含む被覆材であれば特段制限されず、例えば、上述した水ガラス又は樹脂の材料にニコチンを含有させたものであってよい。 The nicotine-containing coating material is not particularly limited as long as it contains nicotine, and may be, for example, the above-mentioned water glass or resin material containing nicotine.
 被覆材を用いる場合には、後述する霧化ユニット10の製造方法において、香味成形体8を成形する成形工程の後に、被覆材により香味成形体8を被覆する被覆工程を設けることができる。被覆工程においては、香味成形体8の表面を、水ガラス等の珪酸ナトリウム、又は樹脂を含むコーティング剤を用いて被覆し、コーティングを形成する。これにより、香味成形体8として、所定形状に固められたたばこ残渣の表面が被覆材で覆われた構造の香味成形体8を製造することができる。被覆材の形成方法は特に限定されず、例えば、珪酸ナトリウム又は樹脂を含む液状のコーティング剤の膜を香味成形体8の表面に形成した後、加熱または酸若しくは塩の添加等により固化処理またはゲル化処理を行うことができる。なお、被覆工程を行わず、成形工程において、水ガラス等の珪酸ナトリウム又は樹脂を含む溶液を用い、適宜香味成分が添加された非たばこ基材等の材料を固めることで香味成形体8を被覆してもよい。 When using a coating material, in the method for manufacturing the atomization unit 10 described below, a coating step of covering the flavor molded body 8 with the coating material can be provided after the molding step of molding the flavor molded body 8. In the coating step, the surface of the flavor molded body 8 is coated with a coating agent containing sodium silicate, such as water glass, or a resin, to form a coating. Thereby, it is possible to manufacture the flavor molded body 8 having a structure in which the surface of the tobacco residue solidified into a predetermined shape is covered with the covering material. The method of forming the coating material is not particularly limited, and for example, after forming a film of a liquid coating agent containing sodium silicate or a resin on the surface of the flavor molded body 8, it is solidified or gelated by heating or addition of acid or salt. processing can be performed. Note that the flavor molded body 8 may be coated without performing the coating step, and by hardening the material such as a non-tobacco base material to which a flavor component has been appropriately added using a solution containing sodium silicate or resin such as water glass in the molding step. You may.
 また、香味成形体8は、予め記憶された形状に収縮する部材により被覆されることが、香味成形体8の成形体収容部41への収容を効率よく行う観点から好ましい。本実施形態のように香味成形体8が棒形状である場合には、香味成形体8は、例えば、熱収縮チューブにより被覆されることが好ましい。 Furthermore, it is preferable that the flavor molded body 8 be covered with a member that contracts into a pre-memorized shape from the viewpoint of efficiently storing the flavor molded body 8 in the molded body housing portion 41. When the flavor molded body 8 is rod-shaped as in this embodiment, it is preferable that the flavor molded body 8 is covered with, for example, a heat shrinkable tube.
 香味成形体8に用いられる非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材は、香味成形体8の主たる材料、特に、香味成形体8の成形を担保する主たる材料であってよい。 The type of material of the non-tobacco base material used for the flavor molded body 8 is not particularly limited as long as it is derived from a tobacco material (specifically, a tobacco plant); for example, ceramic, synthetic polymer, or tobacco plant material. Pulp derived from other plants may be used. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Further, the non-tobacco base material may be the main material of the flavor molded product 8, particularly the main material that ensures the molding of the flavor molded product 8.
 香味成形体8中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、100重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。 The content of the non-tobacco base material in the flavor molded body 8 is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 100% by weight or less, It may be more than 80% by weight and less than 80% by weight.
 香味成形体8に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、ニコチンを付与するたばこ材料が挙げられる。例えば、香味材料としてたばこ材料を用いた場合、スパイスとしてニコチン等のたばこ成分による香味を付与することができる。なお、本明細書において、香味成形体8に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、香味成形体8がたばこ材料を含む場合、香味材料は、たばこ材料に含まれるニコチンでなく、たばこ材料である。 The form of the flavor material contained in the flavor molded body 8 is not particularly limited, and for example, it may be a flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component. Examples of component-imparting materials include tobacco materials that provide nicotine. For example, when a tobacco material is used as a flavoring material, it is possible to impart flavor with tobacco components such as nicotine as a spice. In this specification, when the flavor molded body 8 contains a flavor component imparting material, the flavor component imparting material is treated as the flavor material, not the flavor component contained in the flavor component imparting material. For example, when the flavor molded body 8 contains a tobacco material, the flavor material is not nicotine contained in the tobacco material, but the tobacco material.
 香味材料はたばこ材料を含み得るが、たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、又はたばこシート等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。香味成形体8が含むたばこ材料は、香喫味の観点上、スパイスの役割を担う。本明細書において、「香味材料はたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに香味成形体8中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに香味成形体8中の前記たばこ材料は10重量%以下である」の表現に換言することができる。 The flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using the tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets used in known tobacco products) may be included, but it is necessary to ensure a sufficient amount of use and processing. From the viewpoint of ease of processing, tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture. The tobacco material contained in the flavor molded body 8 plays the role of spice from the viewpoint of aroma and taste. As used herein, "the flavor material contains tobacco material" does not mean that the flavor material contains tobacco material, but rather that tobacco material is included as one of the types of flavor material. The expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body 8 is 10% by weight or less" means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body 8 is 10% by weight or less". The tobacco material is 10% by weight or less."
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。 Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadeca), lactone, etc.).
 香味材料中の香味成分(香味成分自体が香味材料であってよい。)は、液体収容部4に収容されるエアロゾル生成液Leに溶出し、最終的に霧化ユニット10の使用により発生するエアロゾルとして使用者にデリバリーされる。 The flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generating liquid Le stored in the liquid storage section 4, and finally the aerosol generated by using the atomization unit 10. delivered to the user as
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。 The method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
 香味成形体8がその表面に香味材料を有する態様では、液体収容部4中のエアロゾル生成液Leと香味材料との接触を十分に確保することができるため、液体へ香味成分が十分に溶出し、優れた香味を確保することができる。 In the embodiment in which the flavor molded body 8 has the flavor material on its surface, sufficient contact between the aerosol generation liquid Le in the liquid storage section 4 and the flavor material can be ensured, so that the flavor component is sufficiently eluted into the liquid. , can ensure excellent flavor.
 香味成形体中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。 The content of the flavor material in the flavor molded body is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight or more. % or more and 50% by weight or less.
 特に、香味成形体8には香味材料として少なくともたばこ材料が含まれるが、香味成形体8中のたばこ材料の含有量は、香味のスパイスとしての役割を発揮する観点からは、1重量%以上であることが好ましく、3重量%以上であることがより好ましく、7重量%以上であることがさらに好ましく、また、たばこ材料の量が多すぎるとたばこ材料が香味成形体8から分離して堆積物となるおそれがある観点、及びたばこ材料に含まれる加熱により負荷7の焦げの原因となり得る成分の量の抑制の観点からは、10重量%以下であり、7重量%以下であることがより好ましく、3重量%以下であることがより好ましい。 In particular, the flavor molded body 8 contains at least tobacco material as a flavoring material, but the content of the tobacco material in the flavor molded body 8 should be 1% by weight or more from the viewpoint of exerting its role as a flavor spice. The amount of tobacco material is preferably 3% by weight or more, more preferably 7% by weight or more, and if the amount of tobacco material is too large, the tobacco material may separate from the flavor molded body 8 and cause deposits. From the viewpoint of reducing the amount of components contained in the tobacco material that may cause scorching of the load 7 due to heating, the amount is 10% by weight or less, and more preferably 7% by weight or less. , more preferably 3% by weight or less.
 香味成形体8は、非たばこ基材等の香味成形体8に含まれる材料を接着するため、バインダーを含んでいてもよく、特に、香味成形体8中に粉体となり得る物質が含まれるときは、それが堆積物となって負荷7の劣化を促進してしまうことを抑制できる点からバインダーが含まれることが好ましい。バインダーの種類は特段制限されず、例えば、澱粉、ヒドロキシアルキルセルロース、ポリ酢酸ビニル樹脂、又はアルキルヒドロキシアルキルセルロース等を用いることができ、特に、バインダーがエアロゾル生成液Leに溶解しない、あるいは、溶解しにくい観点から、また、バインダー成分自体が焦げ因子にならず、かつ成型体の形状を維持することができる観点から、澱粉、ヒドロキシアルキルセルロース、及びポリ酢酸ビニルからなる群の中から選択される1種以上の物質であることが好ましい。酢酸ビニル樹脂としては、例えば、ポリ酢酸ビニル、又は酢酸ビニル等が挙げられる。 The flavor molded body 8 may contain a binder in order to bond materials included in the flavor molded body 8 such as non-tobacco base materials, especially when the flavor molded body 8 contains a substance that can be turned into powder. It is preferable that a binder be included in order to prevent the binder from becoming a deposit and promoting deterioration of the load 7. The type of binder is not particularly limited, and for example, starch, hydroxyalkyl cellulose, polyvinyl acetate resin, or alkyl hydroxyalkyl cellulose can be used. 1 selected from the group consisting of starch, hydroxyalkyl cellulose, and polyvinyl acetate, from the viewpoint that the binder component itself does not become a scorching factor and can maintain the shape of the molded product. It is preferable that the substance is more than one species. Examples of the vinyl acetate resin include polyvinyl acetate and vinyl acetate.
 香味成形体8中のバインダーの含有量は、接着性と焦げ成分溶出抑制のバランスの観点から、1重量%以上、20重量%以下であってよく、3重量%以上、15重量%以下であってよく、5重量%以上、10重量%以下であってよい。 The content of the binder in the flavor molded body 8 may be 1% by weight or more and 20% by weight or less, and 3% by weight or more and 15% by weight or less, from the viewpoint of the balance between adhesiveness and suppression of burnt component elution. It may be 5% by weight or more and 10% by weight or less.
 香味成形体8は、上記の各種成分以外の成分を含んでいてもよく、例えば、乳酸カルシウム等のゲル化剤、又はグリセリンもしくはプロピレングリコール等の保湿剤等が挙げられる。ゲル化剤を用いることで、バインダー強度を向上させることができる。 The flavor molded body 8 may contain components other than the above-mentioned various components, such as a gelling agent such as calcium lactate, or a humectant such as glycerin or propylene glycol. By using a gelling agent, binder strength can be improved.
 また、本実施形態において、香味成形体8の密度(単位体積当たりの質量)は、一例として、1000mg/cm以上、1450mg/cm以下であってよく、また、1100mg/cm以上、1450mg/cm以下であってもよい。但し、香味成形体8の密度は、これに限定されるものではなく、1000mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよく、また、1100mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよい。香味成形体8が複数個で存在する場合には、この密度は、香味成形体8の総体積に対する総質量として求める。 Further, in the present embodiment, the density (mass per unit volume) of the flavor molded body 8 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg /cm 3 or less. However, the density of the flavor molded body 8 is not limited to this, and may be less than 1000 mg/cm 3 or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies 8 are present, this density is determined as the total mass relative to the total volume of the flavor molded bodies 8.
 また、本実施形態において、香味成形体8の湿潤引張強度は特段制限されないが、湿潤環境下での崩壊を抑制するため、15mm当たり5N以上であることが好ましく、15mm当たり10N以上であることがより好ましい。この湿潤引張強度は、特開2019-187451号公報に記載の方法に準拠して測定することができる。この測定において測定対象となる標本は、22±2℃、相対湿度60±5%で、少なくとも24時間調整した後、試験試料を縦250±0.1mm、横15±0.1mmとなるように切断して準備する。 Further, in this embodiment, the wet tensile strength of the flavor molded body 8 is not particularly limited, but in order to suppress collapse in a humid environment, it is preferably 5 N or more per 15 mm, and preferably 10 N or more per 15 mm. More preferred. This wet tensile strength can be measured according to the method described in JP-A-2019-187451. The specimen to be measured in this measurement is adjusted at 22 ± 2°C and relative humidity 60 ± 5% for at least 24 hours, and then the test sample is adjusted to a length of 250 ± 0.1 mm and a width of 15 ± 0.1 mm. Cut and prepare.
 [成形体の位置決め配置]
 次に、図2及び図3を参照して、成形体収容部41における香味成形体8の位置決め配置について説明する。図2に示すように、香味成形体8は、その長手方向が霧化ユニット10の長軸方向(Z方向)と一致し、且つ、第1端面81が-Z方向側に向くようにして成形体収容部41に配置されている。つまり、香味成形体8の第1端面81は、負荷通路部31のウィック6側に向いている。
[Positioning arrangement of molded object]
Next, with reference to FIGS. 2 and 3, the positioning and arrangement of the flavor molded object 8 in the molded object storage section 41 will be described. As shown in FIG. 2, the flavor molded body 8 is molded so that its longitudinal direction coincides with the long axis direction (Z direction) of the atomization unit 10, and the first end surface 81 faces in the −Z direction. It is arranged in the body accommodating part 41. That is, the first end surface 81 of the flavor molded body 8 faces the wick 6 side of the load passage section 31.
 ここで、図2及び図3に示すように、香味成形体8は、その表面の一部が成形体収容部41を形成する壁面W1と接触し、且つ、その表面の他部のうち少なくとも一部(前記一部とは別の部位)が液体収容部4に収容されているエアロゾル生成液Leと接触した状態で、位置決め配置されている。具体的には、第1端面81のうち、ガスケット2の連通孔22に露出する領域を除く領域が壁面W11(ガスケット2)と接触している。また、周面83のうち、仕切り壁部18のスリット181に露出する領域を除く領域が壁面W13(側壁部13,15,16及び仕切り壁部18)と接触している。一方、第2端面82は、その全域が成形体収容部41中のエアロゾル生成液Leと接触している。また、成形体収容部41と成形体非収容部42とがスリット181によって連通することで成形体非収容部42に収容されているエアロゾル生成液Leに対して香味成形体8が接触することが許容されているため、周面83のうち、スリット181に露出する領域がスリット181を介して成形体非収容部42中のエアロゾル生成液Leと接触している。このとき、成形体収容部41の形状が香味成形体8の形状に対応した円柱形状であるため、図3に示すように、成形体収容部41の壁面W13が香味成形体8の周面83を取り囲むようにして、周面83と壁面W13とが接触している。そのため、周面83が成形体収容部41に嵌合した状態となっている。更に、本実施形態では、香味成形体8は、長手方向及び短手方向に圧縮された状態で成形体収容部41に挿入されている。そのため、香味成形体8の圧縮からの復元力によって成形体収容部41の壁面W13が押圧されている。この復元力に基づく摩擦力により周面83と壁面W13とが確りと嵌合し、香味成形体8が壁面W13に固定されている。これにより、香味成形体8は成形体収容部41に位置決めされた状態となっており、香味成形体8の成形体収容部41内における移動が抑制されている。なお、香味成形体8は、第2端面82が壁面W12と接触した状態で配置されてもよい。 Here, as shown in FIGS. 2 and 3, a part of the surface of the flavor molded object 8 contacts the wall surface W1 forming the molded object storage part 41, and at least one other part of the surface (a part different from the above-mentioned part) is positioned and arranged in a state where it is in contact with the aerosol generating liquid Le stored in the liquid storage part 4. Specifically, a region of the first end surface 81 excluding the region exposed to the communication hole 22 of the gasket 2 is in contact with the wall surface W11 (gasket 2). Moreover, the area of the peripheral surface 83 excluding the area exposed to the slit 181 of the partition wall 18 is in contact with the wall surface W13 (the side walls 13, 15, 16 and the partition wall 18). On the other hand, the entire second end surface 82 is in contact with the aerosol generation liquid Le in the molded object storage section 41 . In addition, the molded body accommodating portion 41 and the molded body non-accommodating portion 42 communicate with each other through the slit 181, thereby preventing the flavor molded body 8 from coming into contact with the aerosol generation liquid Le stored in the molded body non-accommodating portion 42. Since this is allowed, the area of the peripheral surface 83 exposed to the slit 181 is in contact with the aerosol generation liquid Le in the molded object non-accommodating part 42 via the slit 181. At this time, since the shape of the molded body accommodating part 41 is a columnar shape corresponding to the shape of the flavor molded body 8, as shown in FIG. The peripheral surface 83 and the wall surface W13 are in contact with each other so as to surround the wall surface W13. Therefore, the peripheral surface 83 is in a state of being fitted into the molded body housing portion 41. Furthermore, in this embodiment, the flavor molded body 8 is inserted into the molded body accommodating portion 41 in a compressed state in the longitudinal direction and the width direction. Therefore, the wall surface W13 of the molded object accommodating portion 41 is pressed by the restoring force from the compression of the flavor molded object 8. Due to the frictional force based on this restoring force, the circumferential surface 83 and the wall surface W13 are securely fitted, and the flavor molded body 8 is fixed to the wall surface W13. Thereby, the flavor molded object 8 is positioned in the molded object storage section 41, and movement of the flavor molded object 8 within the molded object storage section 41 is suppressed. Note that the flavor molded body 8 may be placed with the second end surface 82 in contact with the wall surface W12.
 上述のように、香味成形体8に含まれる香味材料には、たばこ材料が含まれるが、堆積物となり得るたばこ材料等の物質が負荷7に付着すると、負荷7が劣化する虞がある。しかしながら、実施形態1に係る霧化ユニット10では、図2に示すように香味成形体8と電気的な負荷7とが物理的に分離されているので、たばこ材料が負荷7に付着することを抑制できる。これにより、本実施形態に係る霧化ユニット10によると、負荷7の劣化を抑制できる。 As described above, the flavor material contained in the flavor molded body 8 includes tobacco material, but if substances such as tobacco material that can become deposits adhere to the load 7, there is a risk that the load 7 will deteriorate. However, in the atomization unit 10 according to the first embodiment, the flavor molded body 8 and the electrical load 7 are physically separated, as shown in FIG. It can be suppressed. Thereby, according to the atomization unit 10 according to the present embodiment, deterioration of the load 7 can be suppressed.
 ここで、香味成形体8がエアロゾル生成液Leを吸液するような構成となっている場合、香味成形体8が膨潤することで、液体収容部4のエアロゾル生成液Leのうちエアロゾルの生成のために使用可能な量が減少することが懸念される。また、仮に、香味成形体8が過度に膨潤することで負荷7に接触すると、たばこ材料が負荷7に付着し、負荷7が劣化する虞がある。また、エアロゾル生成液Leを吸液することで香味成形体8の非たばこ基材が崩壊する場合もあり、そのような場合には崩壊した非たばこ基材がエアロゾル生成液Leに分散することを防ぐ必要がある。 Here, when the flavor molded body 8 is configured to absorb the aerosol generation liquid Le, the swelling of the flavor molded body 8 causes the aerosol generation to be reduced in the aerosol generation liquid Le in the liquid storage section 4. There is concern that the amount available for use will decrease. Moreover, if the flavor molded body 8 swells excessively and comes into contact with the load 7, there is a possibility that the tobacco material will adhere to the load 7 and the load 7 will deteriorate. In addition, the non-tobacco base material of the flavor molded body 8 may collapse due to absorption of the aerosol generation liquid Le, and in such a case, it is necessary to prevent the collapsed non-tobacco base material from dispersing into the aerosol generation liquid Le. It is necessary to prevent it.
 これに対して、実施形態1に係る霧化ユニット10では、香味成形体8の一部を壁面W1と接触させることで、香味成形体とエアロゾル生成液Leとの接触面積を低減させている。これにより、香味成形体8の膨潤を抑制することができる。その結果、香味成形体8の膨潤に起因する、使用可能なエアロゾル生成液Leの減少や負荷7の劣化を抑制することができる。また、香味成形体8の一部が壁面Wと接触しているため、香味成形体8が崩壊した場合であっても、崩壊した非たばこ基材がエアロゾル生成液Leに分散することを抑制できる。一方で、実施形態1に係る霧化ユニット10では、香味成形体8の他部のうち少なくとも一部を液体収容部4に収容されているエアロゾル生成液Leと接触させることで、香味成形体とエアロゾル生成液Leとの接触面積を確保している。そのため、エアロゾル生成液Leに香味成分を溶出させることができる。 On the other hand, in the atomization unit 10 according to Embodiment 1, by bringing a part of the flavor molded body 8 into contact with the wall surface W1, the contact area between the flavor molded body and the aerosol generation liquid Le is reduced. Thereby, swelling of the flavor molded body 8 can be suppressed. As a result, it is possible to suppress the decrease in the usable aerosol-generating liquid Le and the deterioration of the load 7 due to the swelling of the flavor molded body 8. Further, since a part of the flavor molded body 8 is in contact with the wall surface W, even if the flavor molded body 8 collapses, dispersion of the collapsed non-tobacco base material into the aerosol generation liquid Le can be suppressed. . On the other hand, in the atomization unit 10 according to Embodiment 1, at least a part of the other part of the flavor molded body 8 is brought into contact with the aerosol generation liquid Le stored in the liquid storage section 4, thereby forming a flavor molded body. A contact area with the aerosol generation liquid Le is ensured. Therefore, the flavor component can be eluted into the aerosol generation liquid Le.
 また、本実施形態に係る霧化ユニット10では、香味成形体8が周面83において成形体収容部41の壁面W13と接触した状態で、香味成形体8が成形体収容部41に位置決め配置されている。香味成形体8の周面83を壁面W1に接触させることで、香味成形体8と壁面W1との接触面積が大きく確保され、香味成形体8の膨潤を好適に抑制できる。更に、本実施形態では、香味成形体8の周面83と成形体収容部41の壁面W13とを嵌合させることで、成形体収容部41に別途位置決め用の部材を配置することなく香味成形体8を位置決めすることができ、効率的に香味成形体8の位置決め配置を行うことができる。また、香味成形体8の周面83と成形体収容部41の壁面W13との嵌合によって、エアロゾル生成液Leが周面83と壁面W13との間に入り込むことが抑制されるため、香味成形体8の膨潤をより好適に抑制することができる。 In addition, in the atomization unit 10 according to the present embodiment, the flavor molded body 8 is positioned and arranged in the molded body accommodating portion 41 in a state where the flavor molded body 8 is in contact with the wall surface W13 of the molded body accommodating portion 41 at the peripheral surface 83. ing. By bringing the circumferential surface 83 of the flavor molded body 8 into contact with the wall surface W1, a large contact area between the flavor molded body 8 and the wall surface W1 is ensured, and swelling of the flavor molded body 8 can be suitably suppressed. Furthermore, in this embodiment, by fitting the circumferential surface 83 of the flavor molded object 8 and the wall surface W13 of the molded object storage section 41, flavor molding can be performed without separately arranging a positioning member in the molded object storage section 41. The body 8 can be positioned, and the flavor molded body 8 can be positioned and arranged efficiently. Furthermore, the fitting between the circumferential surface 83 of the flavor molded body 8 and the wall surface W13 of the molded body accommodating portion 41 prevents the aerosol-generating liquid Le from entering between the circumferential surface 83 and the wall surface W13. Swelling of the body 8 can be suppressed more suitably.
 なお、香味成形体8の位置決め配置では、周面83の面積の50%以上が成形体収容部41の壁面W1に接触することがより好ましく、75%以上が接触することがさらに好ましい。周面83が壁面W1に接触する面積が増えるほど、香味成形体8がエアロゾル生成液Leと接触する面積を減らすことができ、香味成形体8の膨潤をより好適に抑制できる。 In addition, in the positioning arrangement of the flavor molded body 8, it is more preferable that 50% or more of the area of the peripheral surface 83 contacts the wall surface W1 of the molded body accommodating part 41, and it is even more preferable that 75% or more of the area contacts the wall surface W1. As the area in which the peripheral surface 83 contacts the wall surface W1 increases, the area in which the flavor molded body 8 contacts the aerosol generation liquid Le can be reduced, and the swelling of the flavor molded body 8 can be suppressed more suitably.
 なお、本実施形態に係る霧化ユニット10は、成形体収容部41に配置された香味成形体8の膨潤をある程度許容してもよい。その場合、香味成形体8の過度な膨潤を防止するため、香味成形体8の長手方向に直交する断面において、成形体収容部41の断面積を香味成形体8の断面積よりも0.5%~10%大きくすることが好ましく、2%~5%大きくすることがより好ましい。 Note that the atomization unit 10 according to the present embodiment may allow the flavor molded object 8 placed in the molded object storage section 41 to swell to some extent. In that case, in order to prevent excessive swelling of the flavor molded body 8, the cross-sectional area of the molded body housing portion 41 is set to be 0.5 larger than the cross-sectional area of the flavor molded body 8 in a cross section perpendicular to the longitudinal direction of the flavor molded body 8. % to 10%, more preferably 2% to 5%.
 また、香味成形体8の形状を図6(a)~(e)で示すように円柱形状以外の形状とする場合であっても、成形体収容部41の形状を香味成形体8の形状に基づいた形状(香味成形体8の形状に対応した形状)とし、香味成形体8の一部を壁面W1と接触させることで、香味成形体8の膨潤を抑制できる。 Furthermore, even when the shape of the flavor molded body 8 is made into a shape other than a cylindrical shape as shown in FIGS. The swelling of the flavor molded body 8 can be suppressed by forming a shape based on the flavor molded body 8 (a shape corresponding to the shape of the flavor molded body 8) and bringing a part of the flavor molded body 8 into contact with the wall surface W1.
 ここで、図2に示すように、本実施形態に係る霧化ユニット10では、ガスケット2が香味成形体8とウィック6との間に配置されることで、ウィック6に対して香味成形体8が物理的に離間されている。そのため、香味成形体8がウィック6に香味成形体8とウィック6との離間距離が確保されることで、香味成形体8がウィック6に接触することを防止できる。これにより、香味成形体8に含まれるたばこ材料がウィック6を経由して負荷7に付着することを抑制することができる。その結果、負荷7の劣化を抑制することができる。また、本実施形態では、ガスケット2が香味成形体8の第1端面81に接触しているため、香味成形体8の-Z方向への移動が規制されている。なお、ガスケット2は、香味成形体8の第1端面81に接触していなくてもよい。 Here, as shown in FIG. 2, in the atomization unit 10 according to the present embodiment, the gasket 2 is disposed between the flavor molded body 8 and the wick 6, so that the flavor molded body 8 are physically separated. Therefore, by ensuring a distance between the flavor molded body 8 and the wick 6, the flavor molded body 8 can be prevented from coming into contact with the wick 6. Thereby, it is possible to suppress the tobacco material contained in the flavor molded body 8 from adhering to the load 7 via the wick 6. As a result, deterioration of the load 7 can be suppressed. Furthermore, in this embodiment, since the gasket 2 is in contact with the first end surface 81 of the flavor molded body 8, movement of the flavor molded body 8 in the −Z direction is restricted. Note that the gasket 2 does not need to be in contact with the first end surface 81 of the flavor molded body 8.
 [吸引動作]
 次に、吸引具100を用いたエアロゾルの吸引動作について説明する。ここで、本実施形態に係る吸引具100では、電源ユニット20のハウジング(電源ユニットハウジング)にも、その内部に外部からエアを取り入れるための流入口が形成されている。また、電源ユニットハウジングの内部には、電源ユニットハウジング側の流入口と霧化ユニットハウジング1側の流入口101とを連通する内部通路が形成されている。当該内部通路を通じて供給されるエアは、霧化ユニットハウジング1の流入口101からエア通路3に流入する。
[Suction operation]
Next, an aerosol suction operation using the suction tool 100 will be described. Here, in the suction tool 100 according to the present embodiment, the housing of the power supply unit 20 (power supply unit housing) is also formed with an inlet for taking air into the interior thereof from the outside. Further, inside the power supply unit housing, an internal passage is formed that communicates the inflow port on the power supply unit housing side and the inflow port 101 on the atomization unit housing 1 side. Air supplied through the internal passage flows into the air passage 3 from the inlet 101 of the atomization unit housing 1 .
 吸引具100を用いたエアロゾルの吸引は以下のように行われる。まず、ユーザが吸引具100の排出口102を咥えた状態での吸引動作を開始した場合、外部のエアが電源ユニット20に取り入れられ、流入口101を介してエア通路3の負荷通路部31に流入する。このとき、電源ユニット20に設けられた制御装置が、上記ユーザの吸引動作を検知すると、バッテリに指令を出し、霧化ユニット10における負荷7への通電を開始させる。負荷通路部31に配置されているウィック6には、液体収容部4から供給されたエアロゾル生成液Leが吸液保持されている。そのため、ウィック6に保持されている負荷7に対してバッテリからの通電が開始されると、ウィック6に保持されているエアロゾル生成液Leが蒸発する。これにより、エアロゾルが生成される。このエアロゾルには、液体収容部4中のエアロゾル生成液Leに含まれるニコチンと、香味成形体8から溶出し得る香味成分(ニコチンを含む)と、が含まれている。そして、負荷通路部31において生成されたエアロゾルは、負荷通路部31に流入したエアと、ウィック6の周辺(「霧化部」ともいえる)で混合される。このエアロゾルが付加されたエアは、下流通路部32に流入し、排出口102から排出されることによって、最終的にユーザに吸引される。 Suction of aerosol using the suction tool 100 is performed as follows. First, when a user starts a suction operation while holding the discharge port 102 of the suction tool 100 in his or her mouth, external air is taken into the power supply unit 20 and flows into the load passage section 31 of the air passage 3 via the inflow port 101. Inflow. At this time, when the control device provided in the power supply unit 20 detects the user's suction operation, it issues a command to the battery and starts energizing the load 7 in the atomization unit 10 . The wick 6 disposed in the load passage section 31 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 4 . Therefore, when the battery starts supplying electricity to the load 7 held in the wick 6, the aerosol generating liquid Le held in the wick 6 evaporates. This generates an aerosol. This aerosol contains nicotine contained in the aerosol generation liquid Le in the liquid storage part 4 and flavor components (including nicotine) that can be eluted from the flavor molded body 8. The aerosol generated in the load passage section 31 is mixed with the air that has flowed into the load passage section 31 around the wick 6 (also referred to as the "atomization section"). The air to which this aerosol has been added flows into the downstream passage section 32 and is discharged from the discharge port 102, thereby being finally inhaled by the user.
 [製造方法]
 次に、実施形態1に係る霧化ユニット10の製造方法(以下、単に「霧化ユニットの製造方法」とも称する。)について説明する。図7は、実施形態1に係る霧化ユニット10の製造方法を説明するためのフロー図である。
[Production method]
Next, a method for manufacturing the atomization unit 10 according to the first embodiment (hereinafter also simply referred to as a "method for manufacturing the atomization unit") will be described. FIG. 7 is a flow diagram for explaining a method for manufacturing the atomization unit 10 according to the first embodiment.
 本実施形態に係る製造方法は、液体収容部を有する吸引具の霧化ユニットの製造方法であって、
 ニコチンを含むエアロゾル生成液を準備する液体準備工程と、
 非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、
 前記ニコチンを含む前記エアロゾル生成液、及び前記香味成形体を、前記液体収容部に収容する組立工程と、を有し、
 前記香味材料は、たばこ材料を含み、且つ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、
 前記組立工程において、前記液体収容部の内部に形成された成形体収容部に、前記香味成形体を、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部のうち少なくとも一部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態となるように、位置決め配置する、
 吸引具の霧化ユニットの製造方法である。
The manufacturing method according to the present embodiment is a manufacturing method of an atomization unit of a suction tool having a liquid storage section, comprising:
a liquid preparation step for preparing an aerosol generating liquid containing nicotine;
a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material;
an assembly step of accommodating the aerosol-generating liquid containing the nicotine and the flavor molded object in the liquid storage section,
The flavoring material includes a tobacco material, and the content of the tobacco material in the flavoring molded object in a state where the flavoring molded object is accommodated inside the liquid storage section is 10% by weight or less,
In the assembling process, the flavor molded body is placed in a molded body storage section formed inside the liquid storage section, with a part of the flavor molded body being in contact with a wall surface forming the molded body housing section, and at least the other part being in contact with a wall surface forming the molded body housing section. Positioning and arranging so that a portion thereof is in contact with the aerosol-generating liquid contained in the liquid storage part;
This is a method for manufacturing an atomization unit of a suction tool.
 なお、本実施形態に係る製造方法は、上記の液体準備工程、成形工程、及び組立工程以外の工程を有していてもよい。 Note that the manufacturing method according to the present embodiment may include steps other than the liquid preparation step, molding step, and assembly step described above.
 本実施形態に係る製造方法により得られた香味成形体では、ニコチンの供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、ニコチンを含むエアロゾル生成液及びたばこ材料を含む香味成形体を用いているため、ニコチンの供給源が霧化ユニットの負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。また、香味成形体に含まれるたばこ材料は、香喫味の観点上、スパイスの役割を担う。一方で、たばこ材料には、加熱により負荷に焦げを発生させる原因となり得る成分が含まれているため、この焦げ発生を抑制するため上記上限を超えないことが有利である。 In the flavor molded product obtained by the manufacturing method according to the present embodiment, nicotine-containing aerosol generation is used as a nicotine supply source instead of a powdered tobacco material that can become deposits as disclosed in Patent Document 1. Since the flavor molded body containing the liquid and the tobacco material is used, it is possible to suppress the nicotine supply source from adhering to the load of the atomization unit, and thus to suppress the deterioration of the load. Furthermore, the tobacco material contained in the flavor molded article plays the role of a spice in terms of aroma and taste. On the other hand, since the tobacco material contains components that can cause charring of the load when heated, it is advantageous not to exceed the above upper limit in order to suppress the occurrence of charring.
 [液体準備工程]
 霧化ユニット10の製造方法は、ステップS10に係る液体準備工程においては、ニコチンを含むエアロゾル生成液Le(以下、単に「液体」とも称する。)を準備する。ニコチンを含むエアロゾル生成液Leを準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、合成等により得られるニコチンもしくはニコチン塩等のニコチン含有化合物をエアロゾル生成液Leに溶解させる方法、又はたばこ材料の抽出により得られる成分(ニコチンのみであってよい)をエアロゾル生成液Leに溶解させる方法等が挙げられる。合成等により得られるニコチン又はニコチン塩等のニコチン含有化合物の入手方法は特段制限されず、公知の方法により製造することができるが、市販品を用いてもよい。
[Liquid preparation process]
In the method for manufacturing the atomization unit 10, in the liquid preparation step of step S10, an aerosol generation liquid Le (hereinafter also simply referred to as "liquid") containing nicotine is prepared. A specific method for preparing the aerosol generation liquid Le containing nicotine is not particularly limited, and any known method can be employed. For example, a method in which nicotine or a nicotine-containing compound such as a nicotine salt obtained by synthesis etc. is dissolved in the aerosol generation liquid Le, or a component obtained by extraction of tobacco material (which may be only nicotine) is dissolved in the aerosol generation liquid Le. For example, the method of The method for obtaining nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis etc. is not particularly limited, and can be produced by known methods, but commercially available products may also be used.
 上記のエアロゾル生成液Leは、エアロゾル基材を含む液体であってよく、また、エアロゾル基材自体であってもよい。 The above aerosol generating liquid Le may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
 液体を得る方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合して液体を得る方法について具体的に説明する。 Among the methods for obtaining a liquid, as an example, a method for obtaining a liquid by mixing an extract obtained by dissolving tobacco leaves in a solvent with an aerosol base material will be specifically described.
 まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。 First, an alkaline substance is applied to the tobacco leaves (referred to as alkali treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous potassium carbonate solution can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment). During this heat treatment, the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used. As a result, a collection solvent containing flavor components such as nicotine (hereinafter also simply referred to as "flavor components") can be obtained (that is, flavor components can be extracted from tobacco leaves).
 あるいは、ステップS10は、上述したような捕集溶媒を使用しない構成とすることもできる。具体的には、この場合、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後に、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出することもできる。 Alternatively, step S10 may be configured without using the collection solvent as described above. Specifically, in this case, the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
 あるいは、ステップS10は、上述したようなアルカリ処理を行わない構成とすることもできる。具体的には、この場合、ステップS10において、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、これが添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させる、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Alternatively, step S10 may be configured without performing the alkali treatment as described above. Specifically, in this case, in step S10, tobacco leaves (tobacco leaves that have not been subjected to alkali treatment) are treated with a mixture of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. Add one or more selected substances. Next, the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 あるいは、ステップS10において、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させる。このような工程によっても、香味成分を抽出することができる。 Alternatively, in step S10, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are aerosolized, or from this group. An aerosol obtained by aerosolizing two or more selected substances is passed through tobacco leaves (tobacco leaves that have not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaves is collected in a collection solvent. Flavor components can also be extracted by such a process.
 また、本実施形態に係るステップS10(液体準備工程)は、上述したような手法で抽出された香味成分に含まれ得る、「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)をさらに含んでいてもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷7に炭化成分が付着することを効果的に抑制することができる。この結果、負荷7に焦げが発生することを効果的に抑制することができる。 Further, step S10 (liquid preparation step) according to the present embodiment calculates the amount of carbonized components that become carbonized when heated to 250° C., which may be contained in the flavor components extracted by the method described above. It may further include reducing processing (hereinafter also simply referred to as "reducing processing"). By reducing "the amount of carbonized components that become carbide when heated to 250° C.", adhesion of carbonized components to the load 7 can be effectively suppressed. As a result, it is possible to effectively prevent the load 7 from becoming scorched.
 なお、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、ニコチンの供給源としてたばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。 Furthermore, since the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 The specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced. The amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
 たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分の蒸留処理又は減圧蒸留処理に供し、濃縮等の手段を用いて焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を蒸留処理又は減圧蒸留処理に供することが好ましい。 Tobacco extract contains components that can cause scorching when heated (e.g., lipids, metal ions, sugars, or proteins), so tobacco extract components are subjected to distillation treatment or vacuum distillation treatment, and other means such as concentration are used. It is preferable to use this method to remove substances that cause scorching. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
 [成形工程]
 ステップS20に係る成形工程においては、非たばこ基材等の材料を含む香味成形体8を所定形状に成形すること、具体的には、固めて所定形状(本実施形態では、一例として棒形状)に成形することで、香味成形体8を製造する。このステップS20の具体例は以下のとおりである。
[Molding process]
In the molding process of step S20, the flavor molded body 8 containing a material such as a non-tobacco base material is molded into a predetermined shape, specifically, it is solidified into a predetermined shape (in this embodiment, a bar shape as an example). The flavor molded body 8 is manufactured by molding into the flavor molded body 8. A specific example of this step S20 is as follows.
 非たばこ基材等の材料を成形する方法は特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)を混合して混合物を得た後に、プレス加圧成形、押出成形、射出成形、転写成形、圧縮成形、又は鋳込成形等の方法により該混合物を所定の形状に成形する方法が挙げられる。また、非たばこ基材がポリマーである場合には、ポリマーを溶媒に溶解させて得られた溶液から加熱等により溶媒を揮発させる方法、又はモノマーを重合させる方法等により所定の形状の香味成形体8を得る方法を採用することもできる。また、非たばこ基材を含む任意の固体形状の複合材料を得た後に、切削又は研削等により該複合材料を所定の形状となるように加工する方法が挙げられる。 There are no particular restrictions on the method for molding materials such as non-tobacco base materials. Examples include a method of forming the mixture into a predetermined shape by a method such as press pressure molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. It will be done. In addition, when the non-tobacco base material is a polymer, a flavor molded article of a predetermined shape can be obtained by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining 8. Another method is to obtain a composite material in any solid shape containing a non-tobacco base material and then process the composite material into a predetermined shape by cutting, grinding, or the like.
 非たばこ基材にたばこ材料等の香味材料を付与する方法は特段制限されず、例えば、上記の非たばこ基材の香味成形体8の製造における原料として、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)及び香味材料の混合物を用いる方法、また、上記の方法により得られる非たばこ基材の香味成形体の表面に塗布又は噴霧等により香味材料を付与する方法等が挙げられる。 The method of imparting flavor materials such as tobacco materials to the non-tobacco base material is not particularly limited, and for example, ceramics, synthetic polymers, or materials other than tobacco plants may be used as raw materials in the production of the flavor molded body 8 of the non-tobacco base material. A method using a mixture of a non-tobacco base material such as plant-derived pulp (which may be a melt of the non-tobacco base material) and a flavoring material, and a flavor molded product of a non-tobacco base material obtained by the above method. Examples include a method of applying a flavor material to the surface by coating or spraying.
 さらに、上述の霧化ユニット10の説明で述べたように、香味成形体60はその表面が被覆材(コーティング材)で被覆(コーティング)されていてもよい。この場合には、ステップS20は、香味成形体8の表面を、コーティング材でコーティングする処理を含んでよい。これにより、香味成形体8として、所定形状に固められた非たばこ基材の表面がコーティング材で覆われた構造の香味成形体8を製造することができる。 Furthermore, as described in the above description of the atomization unit 10, the surface of the flavor molded body 60 may be coated with a covering material (coating material). In this case, step S20 may include a process of coating the surface of the flavor molded body 8 with a coating material. Thereby, it is possible to manufacture the flavor molded body 8 having a structure in which the surface of the non-tobacco base material hardened into a predetermined shape is covered with the coating material.
 このコーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。 For example, wax can be used as this coating material. Examples of this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
 あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。 Alternatively, corn protein can also be used as a coating material. A specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd.
 あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。 Alternatively, polyvinyl acetate can also be used as a coating material.
 香味成形体8の表面を覆っているコーティング材には、非たばこ基材が通過することを抑制しつつ、非たばこ基材中の香味成分が通過することが可能な孔(微細な孔)が複数設けられていることが好ましい。すなわち、このコーティング材の孔は、香味成分の大きさよりも大きく且つ非たばこ基材の大きさよりも小さいサイズの孔であればよい。この構成によれば、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、非たばこ基材中の香味成分をエアロゾル生成液Leに溶出させることができる。 The coating material covering the surface of the flavor molded body 8 has pores (fine pores) that allow the flavor components in the non-tobacco base material to pass through while suppressing the passage of the non-tobacco base material. It is preferable that a plurality of them be provided. That is, the pores of this coating material need only have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material. According to this configuration, the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
 このコーティング材に設けられた孔の具体的なサイズ(直径)は、特に限定されるものではないが、具体例を挙げると、例えば、10μm以上3mm以下の範囲から選択された値を用いることができる。 The specific size (diameter) of the pores provided in this coating material is not particularly limited, but to give a specific example, a value selected from the range of 10 μm or more and 3 mm or less may be used. can.
 なお、コーティング材として、網状のメッシュ部材を用いることもできる。この場合においても、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、非たばこ基材中の香味成分をエアロゾル生成液Leに溶出させることができる。 Note that a net-like mesh member can also be used as the coating material. Also in this case, the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
 また、ステップS20に係る成形工程において、非たばこ基材にたばこ残渣を含ませてもよい。この場合においても、たばこ残渣が抽出液に溶出することを抑制しつつ、たばこ残渣に残存した香味成分をエアロゾル生成液Leに溶出させることができる。また、ニコチンを含むエアロゾル生成液Leの製造においてたばこ抽出液を得る場合には、該たばこ抽出物を得る際の抽出で得られたたばこ残渣を用いることが好ましい。このたばこ残渣は、上述した実施形態1におけるたばこ材料として扱う。 Furthermore, in the molding process related to step S20, tobacco residue may be included in the non-tobacco base material. In this case as well, the flavor components remaining in the tobacco residue can be eluted into the aerosol generation liquid Le while suppressing the tobacco residue from eluting into the extract liquid. Furthermore, when obtaining a tobacco extract in the production of the aerosol generating liquid Le containing nicotine, it is preferable to use tobacco residue obtained in the extraction when obtaining the tobacco extract. This tobacco residue is treated as the tobacco material in the first embodiment described above.
 あるいは、ステップS20に係る成形工程において、たばこ残渣等を洗浄液で洗浄し、この洗浄後のたばこ残渣等を非たばこ基材に含ませるようにして香味成形体8を製造することもできる。この構成によれば、洗浄によって、たばこ残渣等に含まれる炭化成分の量をできるだけ低減させ、この炭化成分の量が低減されたたばこ残渣等を用いて香味成形体8を製造することができる。これにより、負荷7に炭化成分が付着することを効果的に抑制することができる。この結果、負荷7に焦げが発生することを効果的に抑制することができる。 Alternatively, the flavor molded body 8 can be manufactured by washing tobacco residue and the like with a cleaning liquid in the molding process related to step S20, and incorporating the washed tobacco residue and the like into the non-tobacco base material. According to this configuration, the amount of carbonized components contained in the tobacco residue etc. can be reduced as much as possible by washing, and the flavor molded body 8 can be manufactured using the tobacco residue etc. with the reduced amount of carbonized components. Thereby, adhesion of carbonized components to the load 7 can be effectively suppressed. As a result, it is possible to effectively prevent the load 7 from becoming scorched.
 [組立工程]
 ステップS20の後に、ステップS30に係る組立工程を実行する。具体的には、ステップS30においては、香味成形体8が収容されていない状態の霧化ユニット10を準備し、この霧化ユニット10の液体収容部4に、ステップS20の後の香味成形体8を収容すると共に、ステップS10で得られたニコチンを含むエアロゾル生成液Leを収容する。このとき、香味成形体8は、液体収容部4の内部に形成された成形体収容部41に配置される。なお、ステップS30においては、上述したステップS20で香味成形体8に添加された香味成分とは別に、液体収容部4に収容された上記のエアロゾル生成液Leに、香味成分をさらに添加してもよい。
[Assembly process]
After step S20, an assembly process related to step S30 is executed. Specifically, in step S30, the atomization unit 10 in which the flavor molded object 8 is not accommodated is prepared, and the flavor molded object 8 after step S20 is placed in the liquid storage section 4 of this atomization unit 10. and the aerosol generating liquid Le containing nicotine obtained in step S10. At this time, the flavor molded object 8 is placed in the molded object storage section 41 formed inside the liquid storage section 4 . In addition, in step S30, apart from the flavor component added to the flavor molded body 8 in step S20 described above, a flavor component may be further added to the aerosol generation liquid Le stored in the liquid storage section 4. good.
 ここで、本実施形態に係る霧化ユニット10の製造方法では、ステップS30の組立工程において、図2及び図3で示すように、香味成形体8の一部が成形体収容部41を形成する壁面Wと接触し、且つ、香味成形体8の他部のうち少なくとも一部が成形体非収容部42に収容されているエアロゾル生成液Leと接触した状態となるように、香味成形体8を位置決め配置する。以上の工程で、本実施形態に係る吸引具100の霧化ユニット10が製造される。 Here, in the manufacturing method of the atomization unit 10 according to the present embodiment, in the assembly process of step S30, as shown in FIGS. 2 and 3, a part of the flavor molded object 8 forms the molded object storage section 41. The flavor molded body 8 is in contact with the wall surface W and at least a part of the other part of the flavor molded body 8 is in contact with the aerosol generation liquid Le stored in the molded body non-accommodating part 42. Position and place. Through the above steps, the atomization unit 10 of the suction tool 100 according to the present embodiment is manufactured.
 なお、本実施形態に係る霧化ユニット10の製造方法は、ステップS30においてニコチンを含むエアロゾル生成液Leを収容する工程を含まなくてもよい。この場合、霧化ユニット10のユーザは自ら液体収容部4に液体を補充することができる。 Note that the method for manufacturing the atomization unit 10 according to the present embodiment does not need to include the step of storing the aerosol generation liquid Le containing nicotine in step S30. In this case, the user of the atomization unit 10 can replenish the liquid into the liquid storage section 4 by himself/herself.
 [作用・効果]
 以上説明したような本実施形態に係る霧化ユニット10によれば、負荷7が発生させるエアロゾルに、液体収容部4中のエアロゾル生成液Leに含まれるニコチンに加えて、香味成形体8に含まれ得る香味材料由来の香味成分を付加することができる。これにより、香味を十分に味わうことができる。
[Action/Effect]
According to the atomization unit 10 according to the present embodiment as described above, the aerosol generated by the load 7 contains nicotine contained in the flavor molded body 8 in addition to the nicotine contained in the aerosol generation liquid Le in the liquid storage part 4. Flavor components derived from flavor materials that can be added can be added. This allows you to fully enjoy the flavor.
 また、本実施形態に係る霧化ユニット10によれば、液体収容部4中のエアロゾル生成液Leの内部に香味成形体8が配置されており、香味成形体8と電気的な負荷7とが物理的に分離されているので、たばこ材料が霧化ユニット10の負荷7に付着することを抑制することができる。これにより、負荷7が劣化することを抑制することができる。 Further, according to the atomization unit 10 according to the present embodiment, the flavor molded body 8 is disposed inside the aerosol generation liquid Le in the liquid storage section 4, and the flavor molded body 8 and the electrical load 7 are connected to each other. Since they are physically separated, it is possible to prevent tobacco material from adhering to the load 7 of the atomization unit 10. Thereby, deterioration of the load 7 can be suppressed.
 更に、本実施形態に係る霧化ユニット10では、香味成形体8の一部が壁面Wと接触し、且つ、香味成形体8の他部のうち少なくとも一部が液体収容部4に収容されているエアロゾル生成液Leと接触した状態となるように、香味成形体8が位置決め配置されている。これにより、香味成形体8の膨潤を抑制することができる。その結果、負荷7の劣化をより好適に抑制することができる。 Furthermore, in the atomization unit 10 according to the present embodiment, a part of the flavor molded body 8 is in contact with the wall surface W, and at least a part of the other part of the flavor molded body 8 is accommodated in the liquid storage section 4. The flavor molded body 8 is positioned and arranged so as to be in contact with the aerosol generating liquid Le. Thereby, swelling of the flavor molded body 8 can be suppressed. As a result, deterioration of the load 7 can be suppressed more suitably.
 また、本実施形態に係る霧化ユニット10は、成形体収容部41が前記液体収容部4の一部に形成されるように液体収容部4を成形体収容部41と成形体非収容部42とに仕切る仕切り壁部18を備えており、香味成形体8は、仕切り壁部18に接触した状態で位置決め配置されている。これによると、香味成形体8が収容されない成形体非収容部42を液体収容部4に形成することで、液体収容部4に収容可能なエアロゾル生成液Leの量を増やすことができる。 In addition, the atomization unit 10 according to the present embodiment has the liquid storage section 4 separated between the molded object storage section 41 and the molded object non-storage section 4 such that the molded object storage section 41 is formed in a part of the liquid storage section 4. A partition wall 18 is provided, and the flavor molded body 8 is positioned and arranged in contact with the partition wall 18. According to this, by forming the molded object non-accommodating section 42 in which the flavor molded object 8 is not accommodated in the liquid storage section 4, the amount of the aerosol generation liquid Le that can be stored in the liquid storage section 4 can be increased.
 また、本実施形態に係る霧化ユニット10は、香味成形体8の周面83が仕切り壁部18に接触した状態で香味成形体8を位置決め配置することで、香味成形体8と壁面W1との接触面積を大きく確保できる。その結果、香味成形体8の膨潤をより好適に抑制することができる。 In addition, the atomization unit 10 according to the present embodiment positions and arranges the flavor molded body 8 with the peripheral surface 83 of the flavor molded body 8 in contact with the partition wall 18, so that the flavor molded body 8 and the wall surface W1 are separated. A large contact area can be secured. As a result, swelling of the flavor molded body 8 can be suppressed more suitably.
 更に、本実施形態に係る仕切り壁部18には、成形体非収容部42に収容されているエアロゾル生成液Leに対して香味成形体8が接触することを許容するためのスリット181が設けられている。これにより、香味成形体8は、スリット181を介して成形体非収容部42のエアロゾル生成液Leと接触することができる。これにより、香味成形体8の膨潤を抑制しながらも、成形体非収容部42に収容されているエアロゾル生成液Leに香味成分を十分に溶出させることができる。なお、スリット181は、本発明に係る「開口部」の一例であるが、本発明の開口部は、スリットに限定されない。開口部は、例えば、成形体収容部と成形体非収容部とを連通する孔であってもよい。また、開口部は、複数あってもよい。 Furthermore, the partition wall 18 according to the present embodiment is provided with a slit 181 for allowing the flavor molded body 8 to come into contact with the aerosol generation liquid Le accommodated in the molded body non-accommodating part 42. ing. Thereby, the flavor molded body 8 can come into contact with the aerosol generation liquid Le in the molded body non-accommodating part 42 via the slit 181. Thereby, while suppressing the swelling of the flavor molded body 8, the flavor component can be sufficiently eluted into the aerosol generation liquid Le accommodated in the molded body non-accommodating portion 42. Note that although the slit 181 is an example of an "opening" according to the present invention, the opening according to the present invention is not limited to a slit. The opening may be, for example, a hole that communicates the molded object accommodating part and the molded object non-accommodating part. Further, there may be a plurality of openings.
 なお、本発明において、上述の仕切り壁は必須の構成ではない。つまり、本発明は、液体収容部を成形体収容部と成形体非収容部とに仕切らずに、液体収容部の全体を成形体収容部として利用してもよい。 Note that in the present invention, the above-mentioned partition wall is not an essential configuration. That is, in the present invention, the entire liquid storage section may be used as the molded object storage section without dividing the liquid storage section into the molded object storage section and the molded object non-storage section.
 更に、本実施形態に係る霧化ユニット10は、香味成形体8とウィック6との間に配置され、ウィック6に対して香味成形体8を物理的に離間するためのガスケット2を備えることで、香味成形体8がウィック6に接触することを防止できる。その結果、負荷7の劣化をより好適に抑制することができる。 Furthermore, the atomization unit 10 according to the present embodiment includes a gasket 2 that is disposed between the flavor molded body 8 and the wick 6 and physically separates the flavor molded body 8 from the wick 6. , the flavor molded body 8 can be prevented from coming into contact with the wick 6. As a result, deterioration of the load 7 can be suppressed more suitably.
 ここで、香味成形体8が前記液体収容部の内部に配置された状態のエアロゾル生成液Leの1g中に含まれる炭化成分の量(mg)は、6mg以下であることが好ましく、3mg以下であることがより好ましい。 Here, the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le with the flavor molded body 8 disposed inside the liquid storage section is preferably 6 mg or less, and 3 mg or less. It is more preferable that there be.
 この構成によれば、電気的な負荷7に付着する炭化成分の量をできるだけ抑制しつつ、ニコチン等の香味成分の香味を味わうことができる。これにより、負荷7に焦げが発生することをできるだけ抑制しつつ、ニコチン等の香味成分の香味を味わうことができる。 According to this configuration, it is possible to enjoy the flavor of flavor components such as nicotine while suppressing the amount of carbonized components adhering to the electrical load 7 as much as possible. Thereby, it is possible to enjoy the flavor of flavor components such as nicotine while suppressing the occurrence of burnt on the load 7 as much as possible.
 なお、「香味成形体8が前記液体収容部の内部に配置された状態のエアロゾル生成液Le中に含まれる炭化成分」は、具体的には、香味成形体8が配置される前の状態のエアロゾル生成液Leに含まれる炭化成分の量と、香味成形体8からエアロゾル生成液Leに溶出した炭化成分の量とを合計した値に相当する。 In addition, "the carbonized component contained in the aerosol generation liquid Le in a state where the flavor molded body 8 is placed inside the liquid storage section" specifically refers to the carbonized component contained in the aerosol generation liquid Le in the state before the flavor molded body 8 is placed. This value corresponds to the sum of the amount of carbonized components contained in the aerosol generation liquid Le and the amount of carbonized components eluted from the flavor molded body 8 into the aerosol generation liquid Le.
 また、本実施形態において、「炭化成分」とは、250℃に加熱された場合に炭化物になる成分をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 Furthermore, in the present embodiment, the term "carbonized component" refers to a component that becomes carbide when heated to 250°C. Specifically, the "carbonized component" refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
 なお、この「香味成形体8が前記液体収容部の内部に配置された状態のエアロゾル生成液Leの1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、香味成形体8が前記液体収容部の内部に配置された状態のエアロゾル生成液Leを所定量(g)、準備する。次いで、このエアロゾル生成液Leを180℃に加熱して、エアロゾル生成液Leに含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液Leに含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液Leの1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 Note that this "amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le with the flavor molded body 8 disposed inside the liquid storage section" can be measured, for example, by the following method. I can do it. First, a predetermined amount (g) of the aerosol generation liquid Le with the flavor molded body 8 disposed inside the liquid storage section is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured. By the above method, it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount of carbide contained in 1 g of aerosol generation liquid Le can be measured. (i.e., the amount (mg) of carbonized components).
 続いて、ニコチンを含むエアロゾル生成液Leの1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図8は、ニコチンを含むエアロゾル生成液Leとしてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図8の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。 Next, the relationship between the amount of carbonized components contained in 1 g of the aerosol generating liquid Le containing nicotine and the TPM reduction rate will be explained. Figure 8 shows the measurement of TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") is used as the aerosol generation liquid Le containing nicotine. It is a figure showing the result. The horizontal axis of FIG. 8 shows the amount of carbonized components contained in 1 g of extract, and the vertical axis shows the TPM reduction rate ( RTPM ) (%).
 図8のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニットのサンプルを準備した。具体的には、この複数の霧化ユニットのサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM :%) in FIG. 8 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at ℃. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of immersion liquid (extract liquid) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, the multiple samples prepared in the above steps were subjected to automatic smoking using an automatic smoking machine (“Analytical Vaping Machine” manufactured by Borgwaldt) under “CRM (Coresta Recommended Method) 81 smoking conditions”. Ta. Incidentally, the smoking condition of CRM81 is that 55 cc of aerosol is inhaled over 3 seconds multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図8のTPM減少率(RTPM)は測定された。 The amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) shown in FIG. 8 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。
R TPM (%) = (1-TPM (201puff ~ 250puff) / TPM (1puff ~ 50puff)) x 100... (1)
Here, TPM (Total Particle Molecule) indicates the total particulate matter collected by the Cambridge filter of the automatic smoking machine. "TPM (1puff to 50puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201puff to 250puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 In other words, the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
 図8から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図5の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 8, there is a proportional relationship between the amount of carbonized components contained in 1 g of extract and the TPM reduction rate. As can be seen from samples SA1 to SA4 in FIG. 5, when the amount of carbonized components contained in 1 g of extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
 [実施形態1の変形例]
 図9は、実施形態1の変形例1に係る霧化ユニット10の主要部を示す模式的断面図である。図9では、図2と同様に、霧化ユニット10の縦断面が図示されている。図10は、図9のA3-A3線断面を模式的に示す図である。図9及び図10に示すように、実施形態1の変形例1に係る霧化ユニット10では、香味成形体8の表面のうち、エアロゾル生成液Leと接触する領域にフィルタ部材F1が配置されている。具体的には、フィルタ部材F1は、成形体収容部41中のエアロゾル生成液Leと接触する第2端面82の全域と、周面83のうちスリット181を介して成形体非収容部42中のエアロゾル生成液Leと接触する領域と、に配置されている。フィルタ部材F1は、香味成形体8の非たばこ基材がF1を通過することを抑制しつつ、香味成形体8に含まれる香味成分が通過することが可能な孔(微細な孔)を複数有する。すなわち、フィルタ部材F1の孔は、香味成分の大きさよりも大きく且つ非たばこ基材の大きさよりも小さいサイズの孔であればよい。このフィルタ部材F1に設けられた孔の具体的なサイズ(直径)は、特に限定されるものではないが、具体例を挙げると、例えば、10μm以上3mm以下の範囲から選択された値を用いることができる。また、フィルタ部材F1は、香味成形体8とエアロゾル生成液Leとの接触を許容するものである。つまり、香味成形体8のうちフィルタ部材F1が配置された領域は、フィルタ部材F1を介してエアロゾル生成液Leと接触する。フィルタ部材F1の材料としては、例えば、不織布や網状の金属メッシュ、酢酸セルロース等が挙げられる。但し、フィルタ部材F1の材料はこれらに限定されない。また、フィルタ部材F1は、香味成形体8の一部又は全体を覆う膜として形成されてもよいし、膜状でなくてもよい。また、フィルタ部材F1には、上述したコーティング材と同様の構成を採用することができる。
[Modification of Embodiment 1]
FIG. 9 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the first modification of the first embodiment. In FIG. 9, a longitudinal section of the atomization unit 10 is illustrated similarly to FIG. 2. FIG. 10 is a diagram schematically showing a cross section taken along line A3-A3 in FIG. As shown in FIGS. 9 and 10, in the atomization unit 10 according to the first modification of the first embodiment, a filter member F1 is disposed in a region of the surface of the flavor molded body 8 that contacts the aerosol-generating liquid Le. There is. Specifically, the filter member F1 covers the entire area of the second end surface 82 that contacts the aerosol generation liquid Le in the molded body storage part 41 and the area in the molded body non-storage part 42 through the slit 181 in the peripheral surface 83. and a region in contact with the aerosol generating liquid Le. The filter member F1 has a plurality of holes (fine holes) through which flavor components contained in the flavor molded body 8 can pass while suppressing the non-tobacco base material of the flavor molded body 8 from passing through F1. . That is, the pores of the filter member F1 may have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material. The specific size (diameter) of the holes provided in this filter member F1 is not particularly limited, but to give a specific example, a value selected from the range of 10 μm or more and 3 mm or less may be used. I can do it. Moreover, the filter member F1 allows the flavor molded body 8 and the aerosol generation liquid Le to come into contact. That is, the region of the flavor molded body 8 where the filter member F1 is arranged comes into contact with the aerosol generation liquid Le via the filter member F1. Examples of the material for the filter member F1 include nonwoven fabric, net-like metal mesh, cellulose acetate, and the like. However, the material of the filter member F1 is not limited to these. Moreover, the filter member F1 may be formed as a film that covers a part or the entirety of the flavor molded body 8, or may not be in the form of a film. Moreover, the same structure as the coating material mentioned above can be employ|adopted for the filter member F1.
 なお、フィルタ部材F1は、香味成形体8のうち、エアロゾル生成液Leと接触する領域の少なくとも一部に配置されていればよい。このような構成を有するフィルタ部材F1を香味成形体8のうちエアロゾル生成液Leと接触する領域に配置することで、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、香味成形体8に含まれる香味成分をエアロゾル生成液Leに溶出させることができる。なお、フィルタ部材F1は、香味成形体8のうち、エアロゾル生成液Leと接触する領域の少なくとも一部に配置されていればよい。例えば、フィルタ部材F1は、周面83においてエアロゾル生成液Leと接触する領域のみに設けられてもよいし、香味成形体8の全体を覆うように設けられてもよい。なお、本実施形態に係る霧化ユニット10では、香味成形体8の一部が成形体収容部41の壁面W1に接触しているため、香味成形体8のうち成形体収容部41の壁面W1に接触する領域にはフィルタ部材F1を配置しなくてもよい。 Note that the filter member F1 may be disposed in at least a portion of the region of the flavor molded body 8 that comes into contact with the aerosol-generating liquid Le. By arranging the filter member F1 having such a configuration in a region of the flavor molded body 8 that comes into contact with the aerosol generation liquid Le, flavor molding can be performed while suppressing elution of the non-tobacco base material into the aerosol generation liquid Le. The flavor components contained in the body 8 can be eluted into the aerosol generation liquid Le. In addition, the filter member F1 should just be arrange|positioned in at least a part of the area|region which contacts the aerosol generation liquid Le among the flavor molded objects 8. For example, the filter member F1 may be provided only in the region of the peripheral surface 83 that contacts the aerosol generation liquid Le, or may be provided so as to cover the entire flavor molded body 8. In addition, in the atomization unit 10 according to the present embodiment, since a part of the flavor molded object 8 is in contact with the wall surface W1 of the molded object storage section 41, the wall surface W1 of the molded object storage section 41 of the flavor molded object 8 is in contact with the wall surface W1 of the molded object storage section 41. It is not necessary to arrange the filter member F1 in the area where it comes into contact with.
 [実施形態1の変形例2]
 図11は、実施形態1の変形例2に係る霧化ユニット10の製造方法を説明するためのフロー図である。実施形態1の変形例2に係る霧化ユニット10の製造方法は、液体収容部を有する吸引具の霧化ユニットの製造方法であって、
 ニコチン含有液を準備するニコチン含有液準備工程と、
 非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、
 前記香味成形体に前記ニコチン含有液を添加する添加工程と、
 前記ニコチン含有液が添加された前記香味成形体と、エアロゾル基材とを、前記液体収容部に収容する組立工程と、を有し、
 前記香味材料は、たばこ材料を含み、且つ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、
 前記組立工程では、前記香味成形体から前記エアロゾル基材にニコチンが溶出されることで、前記液体収容部にエアロゾル生成液が収容された状態となり、
 前記組立工程において、前記液体収容部の内部に形成された成形体収容部に、前記香味成形体を、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部のうち少なくとも一部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態となるように、位置決め配置する、
 吸引具の霧化ユニットの製造方法である。
[Modification 2 of Embodiment 1]
FIG. 11 is a flow diagram for explaining a method for manufacturing the atomization unit 10 according to the second modification of the first embodiment. The method of manufacturing the atomization unit 10 according to the second modification of the first embodiment is a method of manufacturing an atomization unit of a suction tool having a liquid storage section, comprising:
a nicotine-containing liquid preparation step of preparing a nicotine-containing liquid;
a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material;
an addition step of adding the nicotine-containing liquid to the flavored molded body;
an assembly step of accommodating the flavor molded body to which the nicotine-containing liquid has been added and an aerosol base material in the liquid storage section,
The flavoring material includes a tobacco material, and the content of the tobacco material in the flavoring molded object in a state where the flavoring molded object is accommodated inside the liquid storage section is 10% by weight or less,
In the assembling step, nicotine is eluted from the flavor molded body to the aerosol base material, so that the aerosol generation liquid is stored in the liquid storage part,
In the assembling process, the flavor molded body is placed in a molded body storage section formed inside the liquid storage section, with a part of the flavor molded body being in contact with a wall surface forming the molded body housing section, and at least the other part being in contact with a wall surface forming the molded body housing section. Positioning and arranging so that a portion thereof is in contact with the aerosol-generating liquid contained in the liquid storage part;
This is a method for manufacturing an atomization unit of a suction tool.
 本変形例に係る製造方法は、上記のニコチン含有液準備工程、成形工程、添加工程、及び組立工程以外の工程を有していてもよい。 The manufacturing method according to this modification may include steps other than the above nicotine-containing liquid preparation step, molding step, addition step, and assembly step.
[ニコチン含有液準備工程]
 変形例2に係る霧化ユニット10の製造方法は、ステップS10Aに係るニコチン含有液準備工程において、ニコチンを含む液体を準備する。本変形例に係るステップS10Aは、図7で説明したステップS10において、エアロゾル生成液Leの代わりに任意の液体を用いる態様である。具体的には、ニコチン含有液を得る方法として、例えば、合成等により得られる合成ニコチンを任意の溶媒に溶解させる方法、又はたばこ材料の抽出により得られるたばこ抽出成分を任意の溶媒に溶解させる方法等が挙げられる。合成ニコチン及び天然ニコチンを得る方法は、上述の霧化ユニット10の説明で述べた方法を適用することができる。
[Nicotine-containing liquid preparation process]
In the method for manufacturing the atomization unit 10 according to the second modification, a liquid containing nicotine is prepared in the nicotine-containing liquid preparation step of step S10A. Step S10A according to this modification is an embodiment in which an arbitrary liquid is used instead of the aerosol generation liquid Le in step S10 described with reference to FIG. Specifically, as a method for obtaining a nicotine-containing liquid, for example, a method in which synthetic nicotine obtained by synthesis etc. is dissolved in an arbitrary solvent, or a method in which a tobacco extract component obtained by extraction of tobacco materials is dissolved in an arbitrary solvent. etc. As a method for obtaining synthetic nicotine and natural nicotine, the method described in the description of the atomization unit 10 above can be applied.
 任意の溶媒は、溶解させる対象の物質を溶解させることができれば特段制限されず、エアロゾル基材であってもよく、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。 Any solvent is not particularly limited as long as it can dissolve the substance to be dissolved, and may be an aerosol base material, such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances selected from the group consisting of:
[成形工程]
 変形例2に係る霧化ユニット10の製造方法は、ステップS20に係る成形工程において、香味成形体8を製造する。本変形例に係るステップS20は、図7で説明したステップS20と同様であるので、詳細な説明は省略する。
[Molding process]
In the method for manufacturing the atomization unit 10 according to the second modification, the flavor molded body 8 is manufactured in the molding process according to step S20. Step S20 according to this modification is similar to step S20 described with reference to FIG. 7, so detailed explanation will be omitted.
[添加工程]
 変形例2に係る霧化ユニット10の製造方法は、ステップS25に係る添加工程において、上記の成形工程で得られた香味成形体8に、上記のニコチン含有液準備工程で得られたニコチン含有液を添加する。
[Addition process]
In the method for manufacturing the atomization unit 10 according to Modification 2, in the addition step of step S25, the nicotine-containing liquid obtained in the nicotine-containing liquid preparation step is added to the flavor molded body 8 obtained in the above-mentioned molding step. Add.
 添加する方法は特段制限されず、香味成形体8に所望の量のニコチン含有液をまとめて添加してもよく、香味成形体8の表面に塗布又は噴霧等によりニコチン含有液を添加してもよく、また、香味成形体8をニコチン含有液に浸漬させることにより添加してもよい。 The method of addition is not particularly limited, and a desired amount of the nicotine-containing liquid may be added to the flavor molded body 8 all at once, or the nicotine-containing liquid may be added by coating or spraying on the surface of the flavor molded body 8. Alternatively, the flavor molded product 8 may be added by immersing it in a nicotine-containing liquid.
[組立工程]
 変形例2に係る霧化ユニット10の製造方法は、ステップS30Aに係る組立工程において、上記の添加工程で得られたニコチン含有液が添加された香味成形体8と、エアロゾル基材とを、前記液体収容部4に収容する。本変形例に係るステップS30Aは、図7で説明したステップS30におけるニコチンを含むエアロゾル生成液Leをエアロゾル基材に置き換えた態様である。
[Assembly process]
In the manufacturing method of the atomization unit 10 according to the second modification, in the assembly process according to step S30A, the flavor molded body 8 to which the nicotine-containing liquid obtained in the above-mentioned addition process has been added and the aerosol base material are added to the aerosol base material. It is stored in the liquid storage section 4. Step S30A according to this modification is an embodiment in which the aerosol generating liquid Le containing nicotine in Step S30 described in FIG. 7 is replaced with an aerosol base material.
 エアロゾル基材は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。 The aerosol base material is not particularly limited, and examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 組立工程において液体収容部4に収容された香味成形体8からエアロゾル基材にニコチンが溶出することにより、最終的に、液体収容部4には、香味成形体8及びニコチンを含むエアロゾル生成液Leが収容されることとなる。 During the assembly process, nicotine is eluted from the flavor molded body 8 housed in the liquid storage section 4 into the aerosol base material, so that the flavor molded body 8 and the aerosol generation liquid Le containing nicotine are finally stored in the liquid storage section 4. will be accommodated.
 なお、実施形態1の変形例2のさらなる変形例2Aは、上記の添加工程の代わりに、ニコチン含有液準備工程で得られたニコチン含有液を、液体収容部4を画定する壁の内面に付着させる付着工程を設ける態様である。 In addition, in a further modification 2A of modification 2 of embodiment 1, instead of the above-mentioned addition step, the nicotine-containing liquid obtained in the nicotine-containing liquid preparation step is attached to the inner surface of the wall defining the liquid storage part 4. In this embodiment, an adhesion step is provided.
 本変形例2Aの態様とすることにより、組立工程において、液体収容部4の壁に付着されたニコチン含有液からエアロゾル基材にニコチンが溶出することにより、最終的に、液体収容部4には、香味成形体8及びニコチンを含むエアロゾル生成液Leが収容されることとなる。 By adopting the aspect of the present modification 2A, in the assembly process, nicotine is eluted from the nicotine-containing liquid attached to the wall of the liquid storage part 4 to the aerosol base material, so that the liquid storage part 4 is finally , the flavor molded body 8 and the aerosol generation liquid Le containing nicotine are accommodated.
 <実施形態2>
 次に、実施形態2に係る霧化ユニット10を説明する。図12は、実施形態2に係る霧化ユニット10の主要部を示す模式的断面図である。図12では、図2と同様に、霧化ユニット10の縦断面が図示されている。図13は、図12のA4-A4線断面を模式的に示す図である。
<Embodiment 2>
Next, the atomization unit 10 according to the second embodiment will be explained. FIG. 12 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the second embodiment. In FIG. 12, a longitudinal cross-section of the atomization unit 10 is illustrated similarly to FIG. FIG. 13 is a diagram schematically showing a cross section taken along line A4-A4 in FIG. 12.
 図12及び図13に示すように、実施形態2に係る霧化ユニット10では、成形体収容部41の壁面W13に複数のリブ411が形成されており、香味成形体8の第1端面81は、ガスケット2ではなくリブ411に接触している。実施形態2では、リブ411が、本発明に係る「スペーサ部材」の一例に相当する。図12及び図13に示すように、リブ411は、成形体収容部41の壁面W13に形成された突起であり、霧化ユニット10の長軸方向に沿って延在している。本実施形態では、3つのリブ411が形成されている。但し、リブ411の形状や数量は、図12及び図13に示すものに限定されない。 As shown in FIGS. 12 and 13, in the atomization unit 10 according to the second embodiment, a plurality of ribs 411 are formed on the wall surface W13 of the molded object storage section 41, and the first end surface 81 of the flavor molded object 8 is , is in contact with the rib 411 instead of the gasket 2. In the second embodiment, the rib 411 corresponds to an example of a "spacer member" according to the present invention. As shown in FIGS. 12 and 13, the rib 411 is a protrusion formed on the wall surface W13 of the molded object storage section 41, and extends along the longitudinal direction of the atomization unit 10. In this embodiment, three ribs 411 are formed. However, the shape and number of ribs 411 are not limited to those shown in FIGS. 12 and 13.
 実施形態2においても、香味成形体8は、その表面の一部が成形体収容部41を形成する壁面Wと接触し、且つ、その表面の他部のうち少なくとも一部(前記一部とは別の部位)が液体収容部4に収容されているエアロゾル生成液Leと接触した状態で、位置決め配置されている。具体的には、第1端面81の一部がリブ411と接触している。また、周面83のうち、仕切り壁部18のスリット181に露出する領域を除く領域が壁面W13(側壁部13,15,16及び仕切り壁部18)と接触している。一方、第1端面81のうちリブ411と接触していない領域と第2端面82の全域とが成形体収容部41中のエアロゾル生成液Leと接触している。また、周面83のうち、スリット181に露出する領域がスリット181を介して成形体非収容部42のエアロゾル生成液Leと接触している。また、実施形態2では、リブ411が香味成形体8の第1端面81に接触しているため、香味成形体8の-Z方向への移動が規制されている。なお、リブ411は、香味成形体8の第1端面81に接触していなくてもよい。また、香味成形体8は、第2端面82が壁面W12と接触した状態で配置されてもよい。 Also in the second embodiment, the flavor molded body 8 has a part of its surface in contact with the wall surface W forming the molded body accommodating part 41, and at least a part of the other part of the surface (the said part is not Another part) is positioned and arranged in a state where it is in contact with the aerosol generating liquid Le stored in the liquid storage part 4. Specifically, a portion of the first end surface 81 is in contact with the rib 411. Moreover, the area of the peripheral surface 83 excluding the area exposed to the slit 181 of the partition wall 18 is in contact with the wall surface W13 (the side walls 13, 15, 16 and the partition wall 18). On the other hand, the region of the first end surface 81 that is not in contact with the ribs 411 and the entire second end surface 82 are in contact with the aerosol generation liquid Le in the molded body storage section 41 . Further, a region of the peripheral surface 83 exposed to the slit 181 is in contact with the aerosol generation liquid Le in the molded object non-accommodating portion 42 via the slit 181. Furthermore, in the second embodiment, since the ribs 411 are in contact with the first end surface 81 of the flavor molded body 8, movement of the flavor molded body 8 in the −Z direction is restricted. Note that the ribs 411 do not need to be in contact with the first end surface 81 of the flavor molded body 8. Moreover, the flavor molded object 8 may be arranged with the second end surface 82 in contact with the wall surface W12.
 実施形態2においても、実施形態1に係る霧化ユニット10と同様の作用効果を奏することができる。具体的には、実施形態2に係る霧化ユニット10によると、エアロゾルに香味材料由来の香味成分を付加することができる。これにより、香味を十分に味わうことができる。また、実施形態2に係る霧化ユニット10によれば、香味成形体8と電気的な負荷7とが物理的に分離されているので、たばこ材料が霧化ユニット10の負荷7に付着することによる負荷7の劣化を抑制することができる。更に、香味成形体8の一部が成形体収容部41の壁面Wと接触し、且つ、香味成形体8の他部のうち少なくとも一部が液体収容部4中のエアロゾル生成液Leと接触した状態となるように、香味成形体8が位置決め配置されているため、香味成形体8の膨潤を抑制することができる。その結果、負荷7の劣化をより好適に抑制することができる。更に、本実施形態に係る霧化ユニット10は、香味成形体8とウィック6との間に配置され、ウィック6に対して香味成形体8を物理的に離間するためのリブ411を備えることで、香味成形体8がウィック6に接触することを防止できる。その結果、負荷7の劣化をより好適に抑制することができる。 Embodiment 2 can also provide the same effects as the atomization unit 10 according to Embodiment 1. Specifically, according to the atomization unit 10 according to the second embodiment, a flavor component derived from a flavor material can be added to the aerosol. This allows you to fully enjoy the flavor. Further, according to the atomization unit 10 according to the second embodiment, the flavor molded body 8 and the electrical load 7 are physically separated, so that the tobacco material does not adhere to the load 7 of the atomization unit 10. It is possible to suppress deterioration of the load 7 due to Further, a part of the flavor molded body 8 came into contact with the wall surface W of the molded body storage part 41, and at least a part of the other part of the flavor molded body 8 came into contact with the aerosol generation liquid Le in the liquid storage part 4. Since the flavor molded body 8 is positioned and arranged so that the flavor molded body 8 is in the state, swelling of the flavor molded body 8 can be suppressed. As a result, deterioration of the load 7 can be suppressed more suitably. Furthermore, the atomization unit 10 according to the present embodiment includes a rib 411 that is disposed between the flavor molded body 8 and the wick 6 and physically separates the flavor molded body 8 from the wick 6. , the flavor molded body 8 can be prevented from coming into contact with the wick 6. As a result, deterioration of the load 7 can be suppressed more suitably.
 [実施形態2の変形例]
 図14は、実施形態2の変形例に係る霧化ユニット10の主要部を示す模式的断面図である。図14では、図2と同様に、霧化ユニット10の縦断面が図示されている。図15は、図14のA5-A5線断面を模式的に示す図である。図14及び図15に示すように、実施形態2の変形例に係る霧化ユニット10では、香味成形体8の表面のうち、エアロゾル生成液Leと接触する領域に上述のフィルタ部材F1が配置されている。具体的には、フィルタ部材F1は、第1端面81のうち成形体収容部41中のエアロゾル生成液Leと接触する領域と、成形体収容部41中のエアロゾル生成液Leと接触する第2端面82の全域と、周面83のうちスリット181を介して成形体非収容部42中のエアロゾル生成液Leと接触する領域と、に配置されている。
[Modification of Embodiment 2]
FIG. 14 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to a modification of the second embodiment. In FIG. 14, a longitudinal cross-section of the atomization unit 10 is illustrated similarly to FIG. 2. FIG. 15 is a diagram schematically showing a cross section taken along the line A5-A5 in FIG. 14. As shown in FIGS. 14 and 15, in the atomization unit 10 according to the modification of the second embodiment, the above-mentioned filter member F1 is arranged in the area of the surface of the flavor molded body 8 that comes into contact with the aerosol-generating liquid Le. ing. Specifically, the filter member F1 has a region of the first end surface 81 that comes into contact with the aerosol generation liquid Le in the molded object storage section 41 and a second end surface that contacts the aerosol generation liquid Le in the molded object storage section 41. 82 and in a region of the circumferential surface 83 that comes into contact with the aerosol generation liquid Le in the molded object non-accommodating part 42 via the slit 181.
 実施形態2の変形例に係る霧化ユニット10によると、実施形態1の変形例1と同様に、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、香味成形体8に含まれる香味成分をエアロゾル生成液Leに溶出させることができる。 According to the atomization unit 10 according to the modification of Embodiment 2, similarly to Modification 1 of Embodiment 1, the non-tobacco base material is suppressed from being eluted into the aerosol-generating liquid Le, and the non-tobacco base material is suppressed from being contained in the flavor molded body 8. The flavor components can be eluted into the aerosol generation liquid Le.
 <実施形態3>
 次に、実施形態3に係る霧化ユニット10を説明する。図16は、実施形態3に係る霧化ユニット10の主要部を示す模式的断面図である。図16では、図2と同様に、霧化ユニット10の縦断面が図示されている。図17は、図16のA6-A6線断面を模式的に示す図である。図18は、図16のA7-A7線断面を模式的に示す図である。
<Embodiment 3>
Next, the atomization unit 10 according to the third embodiment will be explained. FIG. 16 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to the third embodiment. In FIG. 16, a longitudinal section of the atomization unit 10 is illustrated similarly to FIG. 2. FIG. 17 is a diagram schematically showing a cross section taken along line A6-A6 in FIG. 16. FIG. 18 is a diagram schematically showing a cross section taken along line A7-A7 in FIG. 16.
 図16及び図17に示すように、実施形態3に係る霧化ユニット10は、実施形態1や実施形態2のようにスリット181を備えておらず、貫通孔94を有するキャップ9を備える。また、実施形態3に係る霧化ユニット10では、仕切り壁部18の-Z方向側の端部がガスケット2に当接していない。つまり、仕切り壁部18は、端壁部12から液体収容部4の中途まで、長軸方向に延在している。そして、実施形態3に係る霧化ユニット10では、端壁部12と側壁部13,15,16と仕切り壁部18とによって囲まれた領域にキャップ9が嵌入され、固定されることで、成形体収容部41が形成されている。つまり、実施形態3に係る成形体収容部41は、キャップ9と端壁部12と側壁部13,15,16と仕切り壁部18とによって囲まれた領域によって形成されている。実施形態3では、成形体非収容部42の一部が成形体収容部41の-Z方向側にキャップ9を挟んで配置されている。 As shown in FIGS. 16 and 17, the atomization unit 10 according to the third embodiment does not include the slit 181 like the first and second embodiments, but includes a cap 9 having a through hole 94. Further, in the atomization unit 10 according to the third embodiment, the end of the partition wall 18 on the -Z direction side does not contact the gasket 2. In other words, the partition wall portion 18 extends in the longitudinal direction from the end wall portion 12 to the middle of the liquid storage portion 4 . In the atomization unit 10 according to the third embodiment, the cap 9 is fitted into the area surrounded by the end wall 12, the side walls 13, 15, 16, and the partition wall 18, and is fixed. A body accommodating portion 41 is formed. In other words, the molded body storage portion 41 according to the third embodiment is formed by a region surrounded by the cap 9, the end wall portion 12, the side wall portions 13, 15, and 16, and the partition wall portion 18. In the third embodiment, a part of the molded object non-accommodating section 42 is arranged on the -Z direction side of the molded object accommodating section 41 with the cap 9 interposed therebetween.
 キャップ9は、壁面W13の内径と同等の外径を有する円盤状に形成されている。より具体的には、キャップ9は、その軸方向における一端面である第1端面91と、他端面である第2端面92と、第1端面91と第2端面92とを接続する周面93と、を有する。キャップ9は、その軸方向が霧化ユニット10の長軸方向と一致し、且つ、第1端面91が-Z方向側に向くようにして成形体収容部41に配置されている。実施形態3では、キャップ9の第2端面92によって、成形体収容部41の-Z方向における端面である壁面W11が形成されている。また、キャップ9には、第1端面91から第2端面92までキャップ9を軸方向に貫通する貫通孔94が形成されている。実施形態3では、香味成形体8の第1端面81は、ガスケット2ではなくキャップ9の第2端面92に接触している。実施形態2では、キャップ9が、本発明に係る「スペーサ部材」の一例に相当する。 The cap 9 is formed into a disk shape with an outer diameter equivalent to the inner diameter of the wall surface W13. More specifically, the cap 9 has a first end surface 91 that is one end surface in the axial direction, a second end surface 92 that is the other end surface, and a peripheral surface 93 that connects the first end surface 91 and the second end surface 92. and has. The cap 9 is arranged in the molded body storage section 41 so that its axial direction coincides with the long axis direction of the atomization unit 10 and the first end surface 91 faces in the -Z direction. In the third embodiment, the second end surface 92 of the cap 9 forms a wall surface W11, which is the end surface of the molded body accommodating portion 41 in the -Z direction. In addition, a through hole 94 is formed in the cap 9 and passes through the cap 9 in the axial direction from the first end surface 91 to the second end surface 92. In the third embodiment, the first end surface 81 of the flavor molded body 8 is in contact with the second end surface 92 of the cap 9 instead of the gasket 2. In the second embodiment, the cap 9 corresponds to an example of a "spacer member" according to the present invention.
 実施形態3においても、香味成形体8は、その表面の一部が成形体収容部41を形成する壁面Wと接触し、且つ、その表面の他部のうち少なくとも一部(前記一部とは別の部位)が液体収容部4に収容されているエアロゾル生成液Leと接触した状態で、位置決め配置されている。具体的には、第1端面81のうち、キャップ9の貫通孔94に露出する領域を除く領域が壁面W11(キャップ9の第2端面92)と接触している。また、周面83の全域が壁面W13(側壁部13,15,16及び仕切り壁部18)と接触している。一方、第1端面81のうちキャップ9の貫通孔94に露出する領域が貫通孔94を介して成形体非収容部42中のエアロゾル生成液Leと接触している。また、第2端面82の全域が成形体収容部41中のエアロゾル生成液Leと接触している。また、実施形態3では、キャップ9の第2端面92が香味成形体8の第1端面81に接触しているため、香味成形体8の-Z方向への移動が規制されている。なお、キャップ9は、香味成形体8の第1端面81に接触していなくてもよい。また、香味成形体8は、第2端面82が壁面W12と接触した状態で配置されてもよい。また、成形体収容部41の内容物の流動をコントロールするために、キャップ9の端面(第1端面91と第2端面92とのうち少なくとも一方)に、不織布等を配置してもよい。例えば、非たばこ基材がエアロゾル生成液Leに溶出することを抑制するために、上述のフィルタ部材F1をキャップ9の第2端面92に配置してもよい。 Also in the third embodiment, the flavor molded body 8 has a part of its surface in contact with the wall surface W forming the molded body accommodating part 41, and at least a part of the other part of the surface (the said part is not Another part) is positioned and arranged in a state where it is in contact with the aerosol generating liquid Le stored in the liquid storage part 4. Specifically, a region of the first end surface 81 excluding the region exposed to the through hole 94 of the cap 9 is in contact with the wall surface W11 (the second end surface 92 of the cap 9). Further, the entire area of the circumferential surface 83 is in contact with the wall surface W13 (the side walls 13, 15, 16 and the partition wall 18). On the other hand, a region of the first end surface 81 exposed to the through hole 94 of the cap 9 is in contact with the aerosol generation liquid Le in the molded object non-accommodating part 42 via the through hole 94. Further, the entire second end surface 82 is in contact with the aerosol generation liquid Le in the molded body storage section 41 . Further, in the third embodiment, since the second end surface 92 of the cap 9 is in contact with the first end surface 81 of the flavor molded object 8, movement of the flavor molded object 8 in the -Z direction is restricted. Note that the cap 9 does not need to be in contact with the first end surface 81 of the flavor molded body 8. Moreover, the flavor molded object 8 may be arranged with the second end surface 82 in contact with the wall surface W12. Further, in order to control the flow of the contents of the molded body storage section 41, a nonwoven fabric or the like may be placed on the end surface (at least one of the first end surface 91 and the second end surface 92) of the cap 9. For example, the above-described filter member F1 may be arranged on the second end surface 92 of the cap 9 in order to suppress the non-tobacco base material from being eluted into the aerosol generation liquid Le.
 実施形態3においても、実施形態1や実施形態2に係る霧化ユニット10と同様の作用効果を奏することができる。具体的には、実施形態3に係る霧化ユニット10によると、エアロゾルに香味材料由来の香味成分を付加することができる。これにより、香味を十分に味わうことができる。また、実施形態3に係る霧化ユニット10によれば、香味成形体8と電気的な負荷7とが物理的に分離されているので、たばこ材料が霧化ユニット10の負荷7に付着することによる負荷7の劣化を抑制することができる。更に、香味成形体8の一部が成形体収容部41の壁面Wと接触し、且つ、香味成形体8の他部のうち少なくとも一部が液体収容部4中のエアロゾル生成液Leと接触した状態となるように、香味成形体8が位置決め配置されているため、香味成形体8の膨潤を抑制することができる。その結果、負荷7の劣化をより好適に抑制することができる。更に、本実施形態に係る霧化ユニット10は、香味成形体8とウィック6との間に配置され、ウィック6に対して香味成形体8を物理的に離間するためのキャップ9を備えることで、香味成形体8がウィック6に接触することを防止できる。その結果、負荷7の劣化をより好適に抑制することができる。また、実施形態3に係る霧化ユニット10では、香味成形体8の第1端面81とウィック6との間にキャップ9が介在して設けられており、エアロゾル生成液Leに対する第1端面81の部分的な接触が許容されるように、第1端面81の一部とキャップ9とが接触している。これにより、香味成形体8とウィック6との接触を防止しつつも、香味成形体8に含まれる香味成分を第1端面81からエアロゾル生成液Leに溶出させることができる。また、実施形態3では、周面83の全域が壁面W13に接触しているため、香味成形体8の膨潤を好適に抑制することができる。 Embodiment 3 can also provide the same effects as the atomization unit 10 according to Embodiment 1 or Embodiment 2. Specifically, according to the atomization unit 10 according to the third embodiment, a flavor component derived from a flavor material can be added to the aerosol. This allows you to fully enjoy the flavor. Further, according to the atomization unit 10 according to the third embodiment, the flavor molded body 8 and the electrical load 7 are physically separated, so that the tobacco material does not adhere to the load 7 of the atomization unit 10. It is possible to suppress deterioration of the load 7 due to Further, a part of the flavor molded body 8 came into contact with the wall surface W of the molded body storage part 41, and at least a part of the other part of the flavor molded body 8 came into contact with the aerosol generation liquid Le in the liquid storage part 4. Since the flavor molded body 8 is positioned and arranged so that the flavor molded body 8 is in the state, swelling of the flavor molded body 8 can be suppressed. As a result, deterioration of the load 7 can be suppressed more suitably. Furthermore, the atomization unit 10 according to the present embodiment includes a cap 9 that is disposed between the flavor molded body 8 and the wick 6 and physically separates the flavor molded body 8 from the wick 6. , the flavor molded body 8 can be prevented from coming into contact with the wick 6. As a result, deterioration of the load 7 can be suppressed more suitably. In addition, in the atomization unit 10 according to the third embodiment, a cap 9 is interposed between the first end surface 81 of the flavor molded body 8 and the wick 6, and the first end surface 81 is provided with respect to the aerosol generation liquid Le. A portion of the first end surface 81 and the cap 9 are in contact so that partial contact is allowed. Thereby, while preventing contact between the flavor molded body 8 and the wick 6, the flavor component contained in the flavor molded body 8 can be eluted from the first end surface 81 into the aerosol generation liquid Le. Furthermore, in the third embodiment, since the entire circumferential surface 83 is in contact with the wall surface W13, swelling of the flavor molded body 8 can be suitably suppressed.
 [実施形態3の変形例]
 図19は、実施形態3の変形例に係る霧化ユニット10の主要部を示す模式的断面図である。図19では、図2と同様に、霧化ユニット10の縦断面が図示されている。図19に示すように、実施形態3の変形例に係る霧化ユニット10では、香味成形体8の表面のうち、エアロゾル生成液Leと接触する領域に上述のフィルタ部材F1が配置されている。具体的には、フィルタ部材F1は、第1端面81のうちキャップ9の貫通孔94を介して成形体収容部41中のエアロゾル生成液Leと接触する領域と、成形体収容部41中のエアロゾル生成液Leと接触する第2端面82の全域と、に配置されている。
[Modification of Embodiment 3]
FIG. 19 is a schematic cross-sectional view showing the main parts of the atomization unit 10 according to a modification of the third embodiment. In FIG. 19, a longitudinal section of the atomization unit 10 is illustrated, similar to FIG. 2. As shown in FIG. 19, in the atomization unit 10 according to the modification of the third embodiment, the above-described filter member F1 is disposed on the surface of the flavor molded body 8 in a region that contacts the aerosol-generating liquid Le. Specifically, the filter member F1 has a region of the first end surface 81 that comes into contact with the aerosol generation liquid Le in the molded body storage section 41 through the through hole 94 of the cap 9, and a region of the first end surface 81 that contacts the aerosol generation liquid Le in the molded body storage section 41 The entire second end surface 82 is disposed in contact with the generated liquid Le.
 実施形態3の変形例に係る霧化ユニット10によると、実施形態1の変形例1や実施形態2の変形例と同様に、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、香味成形体8に含まれる香味成分をエアロゾル生成液Leに溶出させることができる。 According to the atomization unit 10 according to the modified example of Embodiment 3, as in the modified example 1 of Embodiment 1 and the modified example of Embodiment 2, the non-tobacco base material is suppressed from being eluted into the aerosol generation liquid Le. , the flavor component contained in the flavor molded body 8 can be eluted into the aerosol generation liquid Le.
 <その他>
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。
<Others>
Although the embodiments and modified examples of the present invention have been described in detail above, the present invention is not limited to such specific embodiments and modified examples, and within the scope of the gist of the present invention as described in the claims. , various modifications and changes are possible.
1     霧化ユニットハウジング
18    仕切り壁部
181   スリット(開口部の一例)
2     ガスケット(スペーサ部材の一例)
3     エア通路
4     液体収容部
41    成形体収容部
411   リブ(スペーサ部材の一例)
42    成形体非収容部
5     コットン
6     ウィック(液保持部材の一例)
7     負荷
8     香味成形体
81    第1端面
82    第2端面
83    周面
9     キャップ(スペーサ部材の一例)
10    霧化ユニット
100   吸引具
1 Atomization unit housing 18 Partition wall 181 Slit (an example of an opening)
2 Gasket (an example of a spacer member)
3 Air passage 4 Liquid storage section 41 Molded object storage section 411 Rib (an example of a spacer member)
42 Molded object non-accommodating part 5 Cotton 6 Wick (an example of liquid holding member)
7 Load 8 Flavor molded body 81 First end surface 82 Second end surface 83 Surrounding surface 9 Cap (an example of a spacer member)
10 Atomization unit 100 Suction tool

Claims (10)

  1.  ニコチンを含むエアロゾル生成液を収容する液体収容部と、
     前記液体収容部の前記エアロゾル生成液が供給されるとともに、供給された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
     非たばこ基材及び香味材料を含む香味成形体と、
     前記液体収容部の内部に形成され、前記香味成形体が位置決め配置される成形体収容部と、を備え、
     前記香味材料は、たばこ材料を含み、且つ、前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、
     前記香味成形体は、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部のうち少なくとも一部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態で、位置決め配置されている、
     吸引具の霧化ユニット。
    a liquid storage section that stores an aerosol-generating liquid containing nicotine;
    an electrical load that is supplied with the aerosol-generating liquid in the liquid storage unit and that atomizes the supplied aerosol-generating liquid to generate an aerosol;
    A flavor molded article containing a non-tobacco base material and a flavor material;
    a molded object accommodating section formed inside the liquid accommodating section and in which the flavor molded object is positioned and arranged,
    The flavor material includes a tobacco material, and the content of the tobacco material in the flavor molded article is 10% by weight or less,
    A part of the flavor molded body is in contact with a wall surface forming the molded body storage part, and at least a part of the other part is in contact with the aerosol generating liquid accommodated in the liquid storage part. , positioning is arranged,
    Atomization unit of suction tool.
  2.  前記成形体収容部が前記液体収容部の一部に形成されるように前記液体収容部を前記成形体収容部と成形体非収容部とに仕切る仕切り壁部を更に備え、
     前記香味成形体は、前記仕切り壁部に接触した状態で位置決め配置されている、
     請求項1に記載の吸引具の霧化ユニット。
    further comprising a partition wall portion that partitions the liquid storage portion into the molded object storage portion and a molded object non-accommodation portion such that the molded object storage portion is formed in a part of the liquid storage portion;
    The flavor molded body is positioned and arranged in contact with the partition wall,
    The atomization unit of the suction tool according to claim 1.
  3.  前記香味成形体は、棒形状に形成されており、その軸方向における両端面を接続する周面を有し、前記周面が前記壁面に接触した状態で位置決め配置されている、
     請求項2に記載の吸引具の霧化ユニット。
    The flavor molded body is formed into a rod shape, has a circumferential surface connecting both end surfaces in the axial direction, and is positioned with the circumferential surface in contact with the wall surface.
    The atomization unit of the suction tool according to claim 2.
  4.  前記仕切り壁部には、前記成形体非収容部に収容されている前記エアロゾル生成液に対して前記香味成形体が接触することを許容するための開口部が設けられている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The partition wall portion is provided with an opening for allowing the flavor molded object to come into contact with the aerosol generating liquid contained in the molded object non-accommodating section.
    The atomization unit of the suction tool according to claim 2 or 3.
  5.  前記負荷を保持すると共に前記液体収容部の前記エアロゾル生成液が供給される液保持部材と、
     前記香味成形体と前記液保持部材との間に配置され、前記液保持部材に対して前記香味成形体を物理的に離間するためのスペーサ部材と、を更に備える、
     請求項1から4の何れか一項に記載の吸引具の霧化ユニット。
    a liquid holding member that holds the load and is supplied with the aerosol generating liquid in the liquid storage section;
    further comprising a spacer member disposed between the flavor molded body and the liquid retaining member for physically separating the flavor molded body from the liquid retaining member;
    The atomization unit of the suction tool according to any one of claims 1 to 4.
  6.  前記香味成形体は、棒形状に形成されており、
     前記スペーサ部材は、前記香味成形体の軸方向における一端面である第1端面と前記液保持部材との間に介在して設けられており、
     前記エアロゾル生成液に対する前記第1端面の部分的な接触が許容されるように、前記第1端面の一部と前記スペーサ部材とが接触している、
     請求項5に記載の吸引具の霧化ユニット。
    The flavor molded body is formed into a rod shape,
    The spacer member is provided to be interposed between a first end surface that is one end surface in the axial direction of the flavor molded object and the liquid retaining member,
    A portion of the first end surface is in contact with the spacer member such that partial contact of the first end surface with the aerosol generating liquid is allowed;
    The atomization unit of the suction tool according to claim 5.
  7.  前記香味成形体のうち、前記エアロゾル生成液と接触する領域の少なくとも一部には、フィルタ部材が配置されている、
     請求項1から6の何れか一項に記載の吸引具の霧化ユニット。
    A filter member is disposed in at least a part of the region of the flavor molded body that comes into contact with the aerosol-generating liquid.
    The atomization unit of the suction tool according to any one of claims 1 to 6.
  8.  請求項1から7の何れか一項に記載の吸引具の霧化ユニットと、
     前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、を備える、
     吸引具。
    The atomization unit of the suction tool according to any one of claims 1 to 7;
    a power supply unit that has a power supply that supplies power to the load, and the atomization unit is detachable;
    Suction tool.
  9.  液体収容部を有する吸引具の霧化ユニットの製造方法であって、
     ニコチンを含むエアロゾル生成液を準備する液体準備工程と、
     非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、
     前記ニコチンを含む前記エアロゾル生成液、及び前記香味成形体を、前記液体収容部に収容する組立工程と、を有し、
     前記香味材料は、たばこ材料を含み、且つ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、
     前記組立工程において、前記液体収容部の内部に形成された成形体収容部に、前記香味成形体を、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部のうち少なくとも一部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態となるように、位置決め配置する、
     吸引具の霧化ユニットの製造方法。
    A method for manufacturing an atomization unit of a suction tool having a liquid storage section, the method comprising:
    a liquid preparation step for preparing an aerosol generating liquid containing nicotine;
    a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material;
    an assembly step of accommodating the aerosol-generating liquid containing the nicotine and the flavor molded object in the liquid storage section,
    The flavoring material includes a tobacco material, and the content of the tobacco material in the flavoring molded object in a state where the flavoring molded object is accommodated inside the liquid storage section is 10% by weight or less,
    In the assembling process, the flavor molded body is placed in a molded body storage section formed inside the liquid storage section, with a part of the flavor molded body being in contact with a wall surface forming the molded body housing section, and at least the other part being in contact with a wall surface forming the molded body housing section. Positioning and arranging so that a portion thereof is in contact with the aerosol-generating liquid contained in the liquid storage part;
    A method for manufacturing an atomizing unit of a suction tool.
  10.  液体収容部を有する吸引具の霧化ユニットの製造方法であって、
     ニコチン含有液を準備するニコチン含有液準備工程と、
     非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、
     前記香味成形体に前記ニコチン含有液を添加する添加工程と、
     前記ニコチン含有液が添加された前記香味成形体と、エアロゾル基材とを、前記液体収容部に収容する組立工程と、を有し、
     前記香味材料は、たばこ材料を含み、且つ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量は、10重量%以下であり、
     前記組立工程では、前記香味成形体から前記エアロゾル基材にニコチンが溶出されることで、前記液体収容部にエアロゾル生成液が収容された状態となり、
     前記組立工程において、前記液体収容部の内部に形成された成形体収容部に、前記香味成形体を、一部が前記成形体収容部を形成する壁面と接触し、且つ、他部のうち少なくとも一部が前記液体収容部に収容されている前記エアロゾル生成液と接触した状態となるように、位置決め配置する、
     吸引具の霧化ユニットの製造方法。
    A method for manufacturing an atomization unit of a suction tool having a liquid storage section, the method comprising:
    a nicotine-containing liquid preparation step of preparing a nicotine-containing liquid;
    a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material;
    an addition step of adding the nicotine-containing liquid to the flavored molded body;
    an assembly step of accommodating the flavor molded body to which the nicotine-containing liquid has been added and an aerosol base material in the liquid storage section,
    The flavoring material includes a tobacco material, and the content of the tobacco material in the flavoring molded object in a state where the flavoring molded object is accommodated inside the liquid storage section is 10% by weight or less,
    In the assembling step, nicotine is eluted from the flavor molded body to the aerosol base material, so that the aerosol generation liquid is stored in the liquid storage part,
    In the assembling process, the flavor molded body is placed in a molded body storage section formed inside the liquid storage section, with a part of the flavor molded body being in contact with a wall surface forming the molded body housing section, and at least the other part being in contact with a wall surface forming the molded body housing section. Positioning and arranging so that a portion thereof is in contact with the aerosol-generating liquid contained in the liquid storage part;
    A method for manufacturing an atomizing unit of a suction tool.
PCT/JP2022/017006 2022-04-01 2022-04-01 Atomization unit and method for producing same, and inhalation tool WO2023188435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017006 WO2023188435A1 (en) 2022-04-01 2022-04-01 Atomization unit and method for producing same, and inhalation tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017006 WO2023188435A1 (en) 2022-04-01 2022-04-01 Atomization unit and method for producing same, and inhalation tool

Publications (1)

Publication Number Publication Date
WO2023188435A1 true WO2023188435A1 (en) 2023-10-05

Family

ID=88200580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017006 WO2023188435A1 (en) 2022-04-01 2022-04-01 Atomization unit and method for producing same, and inhalation tool

Country Status (1)

Country Link
WO (1) WO2023188435A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
WO2018146737A1 (en) * 2017-02-08 2018-08-16 日本たばこ産業株式会社 Supply method for liquids
WO2021078985A1 (en) * 2019-10-24 2021-04-29 Nerudia Limited Smoking substitute system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
WO2018146737A1 (en) * 2017-02-08 2018-08-16 日本たばこ産業株式会社 Supply method for liquids
WO2021078985A1 (en) * 2019-10-24 2021-04-29 Nerudia Limited Smoking substitute system

Similar Documents

Publication Publication Date Title
JP7473239B2 (en) cigarette
JP7215811B2 (en) Aerosol-generating article and aerosol-generating device including the same
JP7414970B2 (en) Non-combustible heated tobacco, electrically heated tobacco products, and non-combustible heated tobacco materials
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023188327A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188375A1 (en) Atomizing unit and method for manufacturing same, and inhaler
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188376A1 (en) Atomization unit, method for manufacturing same, and inhalation apparatus
WO2023248475A1 (en) Atomization unit and method for manufacturing same, and inhalation tool
WO2023188328A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188372A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188374A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188373A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023248476A1 (en) Atomizing unit and method for manufacturing same, and enhaler
WO2023162197A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit
WO2023188329A1 (en) Atomization unit, inhalation implement, and method for producing atomization unit
WO2023162195A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit
WO2023112292A1 (en) Atomization unit, inhalation device, and atomization unit production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935570

Country of ref document: EP

Kind code of ref document: A1