WO2023188372A1 - Atomization unit and method for manufacturing same, and inhalation device - Google Patents

Atomization unit and method for manufacturing same, and inhalation device Download PDF

Info

Publication number
WO2023188372A1
WO2023188372A1 PCT/JP2022/016813 JP2022016813W WO2023188372A1 WO 2023188372 A1 WO2023188372 A1 WO 2023188372A1 JP 2022016813 W JP2022016813 W JP 2022016813W WO 2023188372 A1 WO2023188372 A1 WO 2023188372A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
air
molded body
passage
load
Prior art date
Application number
PCT/JP2022/016813
Other languages
French (fr)
Japanese (ja)
Inventor
光史 松本
雄史 新川
貴久 工藤
毅 長谷川
学 山田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/016813 priority Critical patent/WO2023188372A1/en
Publication of WO2023188372A1 publication Critical patent/WO2023188372A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors

Definitions

  • the present invention relates to an atomization unit of a suction tool, a method for manufacturing the same, and a suction tool.
  • an atomization unit used in a non-combustion heating type suction device, a liquid storage part for storing an aerosol generation liquid, the aerosol generation liquid in the liquid storage part is introduced, and the introduced aerosol generation liquid is atomized.
  • An atomization unit is known that includes an electrical load that generates an aerosol and a flavor source that imparts a flavor component to the aerosol (for example, see Patent Document 1).
  • Patent Document 2 can be cited as another prior art document.
  • Patent Document 2 discloses information regarding tobacco leaf extract.
  • the conventional atomization unit as described above has room for improvement in terms of sufficiently imparting flavor to aerosol.
  • the present invention has been made in view of the above, and one of its objects is to provide a technology related to an atomization unit of a suction tool that can impart sufficient flavor to an aerosol.
  • a suction device is arranged in a liquid storage part that stores an aerosol generating liquid containing nicotine and an air passage through which air passes, and is arranged in a liquid storage part that stores an aerosol generating liquid containing nicotine, and is arranged in an air passage through which air passes, so that the aerosol in the liquid storage part is
  • an electrical load is provided to atomize the introduced aerosol generating liquid to generate an aerosol, and a portion of the air passageway is located upstream and downstream of the load in the air flow direction.
  • a flavor molded body disposed on at least one of the sides, the flavor molded body containing a non-tobacco base material and a flavor material, and the flavor material containing a tobacco material and the flavor molding.
  • the content of the tobacco material in the body is 10% by weight or less.
  • the air passage includes a load passage section in which the load is arranged, and an upstream passage that communicates with the load passage section and is arranged upstream of the load passage section in the air flow direction. and a downstream passage portion that communicates with the load passage portion and is disposed downstream of the load passage portion in the air flow direction, and the flavor molded object has a It may be arranged in at least either one of the downstream passage parts.
  • the flavor molded body may be arranged in both the upstream passage section and the downstream passage section.
  • the flavor molded object has a rod shape extending along the flow direction of the air in the air passage, and at least one of the inside and the side surface thereof includes: It may have an air flow path that extends in the axial direction of the flavor molded object and allows air to flow therethrough.
  • the flavor molded object has a rod shape extending along the flow direction of air in the air passage, and is perpendicular to the flow direction of air in the air passage.
  • a plurality of the flavor molded bodies may be arranged in parallel along the cross-sectional direction, and an air flow path may be formed to circulate air between the flavor molded bodies arranged in parallel.
  • the flavor molded body has a bellows sheet shape as a whole, and a plurality of sheet portions extending along the flow direction of air in the air passage; A ridgeline section that connects each sheet section in a bellows-like manner and extends along the air flow direction, and allows air to flow between the sheet sections connected via the ridgeline section.
  • An air flow path may be formed.
  • the flavor molded body has a plate shape extending along the flow direction of air in the air passage, and is perpendicular to the flow direction of air in the air passage.
  • a plurality of the flavor molded bodies are arranged side by side to face each other at intervals along the cross section, and an air flow path is formed for circulating air between the flavor molded bodies arranged facing each other. may have been done.
  • a suction tool includes the atomizing unit according to any one of aspects 1 to 7 above, and a power source that supplies power to the load, and a power source unit to which the atomizing unit is detachably attached. and.
  • a method for manufacturing an atomization unit of a suction device includes: an atomization unit housing in which a liquid storage portion and an air passage are formed; an aerosol generating liquid containing nicotine; and a non-tobacco base material.
  • the load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the flavor molded body is placed at a location upstream and downstream of the load in the air flow direction. Place it in at least one of the locations.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG.
  • FIG. 4 is a schematic perspective view of the flavor molded article according to Embodiment 1.
  • FIG. 5 is a flow diagram for explaining the method for manufacturing the atomization unit according to the first embodiment.
  • FIG. 6 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment.
  • FIG. 3 is a
  • FIG. 7 is a longitudinal sectional view of the atomization unit according to Modification 1 of Embodiment 1.
  • FIG. 8 is a cross-sectional view of the atomization unit according to Modification 1 of Embodiment 1.
  • FIG. 9 is a longitudinal sectional view of the atomization unit according to the second modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of the atomization unit according to the second modification of the first embodiment.
  • FIG. 11 is a longitudinal sectional view of the atomization unit according to the third modification of the first embodiment.
  • FIG. 12 is a cross-sectional view of the atomization unit according to the third modification of the first embodiment.
  • FIG. 13 is a cross-sectional view of the atomization unit according to Modification 4 of Embodiment 1.
  • FIG. 14 is a cross-sectional view of the atomization unit according to the fifth modification of the first embodiment.
  • FIG. 15 is a schematic cross-sectional view of an atomization unit according to a sixth modification of the first embodiment.
  • FIG. 16 is a longitudinal sectional view of the atomization unit according to Modification Example 7 of Embodiment 1.
  • FIG. 17 is a cross-sectional view of the atomization unit according to Modification Example 7 of Embodiment 1.
  • FIG. 18 is a longitudinal cross-sectional view of the atomization unit according to the second embodiment.
  • FIG. 19 is a longitudinal cross-sectional view of the atomization unit according to the third embodiment.
  • the atomization unit is a liquid storage section that stores an aerosol-generating liquid containing nicotine; an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
  • a flavor molded body disposed in at least one of a location upstream and downstream of the load in the air flow direction in the air passage; Equipped with The flavor molded article includes a non-tobacco base material and a tobacco material, and the content of the tobacco material in the flavor molded article is specified to be 10% by weight or less.
  • the air passage includes a load passage section in which the load is disposed, an upstream passage section that communicates with the load passage section and is disposed upstream of the load passage section in the air flow direction; a downstream passage that communicates with the load passage and is disposed downstream of the load passage in the air flow direction, and the flavor molded body is connected to the upstream passage and the downstream passage. It may be arranged at least on either side. Moreover, the said flavor molded object may be arrange
  • the method for manufacturing the atomization unit includes: An atomizing unit housing in which a liquid storage part and an air passage are formed, an aerosol generating liquid containing nicotine, a flavor molding containing a non-tobacco base material and a flavoring material, and atomizing the aerosol generating liquid to generate an aerosol.
  • a preparation process for preparing an electrical load an assembly step of accommodating an aerosol generating liquid in a liquid accommodating section and arranging a flavor molded body and a load in an air passage; has
  • the flavor material in the flavor molded body contains tobacco material, and the content of tobacco material in the flavor molded body is specified to be 10% by weight or less,
  • the load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the flavor molded body is arranged at at least one of a location upstream and downstream of the load in the air flow direction. do.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to the first embodiment.
  • the suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10.
  • the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
  • the suction tool 10 has a power supply unit 11 and an atomization unit 12.
  • the power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the reference numeral 120 in FIG. 1 is an atomization unit housing that houses various elements constituting the atomization unit 12, and a part of the housing also serves as a mouthpiece that the user holds in his or her mouth for suction.
  • the atomization unit housing 120 of the atomization unit 12 has inflow ports 72a and 72b, which are holes for introducing air into the atomization unit housing 120 from the outside, and inlets 72a and 72b for introducing aerosol from the inside of the atomization unit housing 120 to the outside.
  • a discharge port 13 is provided for discharging the air contained therein.
  • a sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13.
  • a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, and notifies the control device of this, and the control device ends the energization of the load 40.
  • the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives this suction start request or suction end request starts or ends energization to the load 40.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 12 taken along a plane including the central axis CL.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a cross section normal to the central axis CL, also referred to as a "cross section").
  • the atomization unit 12 will be explained with reference to FIGS. 2 and 3.
  • the atomization unit 12 (atomization unit housing 120) according to the present embodiment includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and has a width It includes a plurality of wall portions (wall portions 71a to 71c) extending in the direction. Further, the atomization unit 12 includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid storage section 50 , and a flavor molded body 60 disposed in the air passage 20 .
  • the air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23.
  • the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a (i.e., "first upstream passage section") and an upstream passage section 21b ( In other words, it includes a "second upstream passage section").
  • the air passage may have a single upstream passage, or may have three or more upstream passages.
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction).
  • the downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22.
  • the load passage section 22 is a passage section in which a load 40 is disposed.
  • the downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
  • the upstream passage section 21a is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c.
  • the downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
  • the wall portion 71a of the atomization unit housing 120 is provided with inflow ports 72a and 72b. Air outside the housing flows into the upstream passage section 21a through the inlet 72a, and flows into the upstream passage section 21b through the inlet 72b. Further, the wall portion 71b is provided with a communication hole 72c and a communication hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the communication hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the communication hole 72d.
  • the direction of flow of air (flow direction) in the upstream passages 21a and 21b is opposite to the direction of flow of air in the downstream passage 23.
  • the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction
  • the direction of air flow in the downstream passage section 23 is the Z direction.
  • the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
  • the upstream passage section 21a is configured to accommodate liquid in a cross-sectional view (i.e., a cross-sectional view) taken along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction) with the section 50 interposed therebetween. On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • a cross-sectional view i.e., a cross-sectional view
  • the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12. 50.
  • cross-sectional shapes of the upstream passage portion 21a and the upstream passage portion 21b are not limited to the polygonal shape illustrated in FIG. (For example, it may be circular.)
  • the wick 30 is a member for introducing an aerosol generating liquid Le, which will be described later, stored in the liquid storage section 50 into the load 40 of the load passage section 22.
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. While absorbing and holding the aerosol generating liquid Le of 50, the aerosol generating liquid Le is introduced into the load 40.
  • the wick 30 can be made of, for example, glass fiber or porous ceramic, but is not limited thereto.
  • the load 40 is an electrical load for introducing the aerosol generation liquid Le from the liquid storage section 50 and for atomizing the introduced aerosol generation liquid Le to generate an aerosol.
  • "introducing" the aerosol generation liquid Le has substantially the same meaning as "supplying”.
  • the specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used.
  • a heater is used as an example of the load 40.
  • a heating resistor that is, a heating wire
  • a ceramic heater a dielectric heater, or the like can be used.
  • a heating resistor is used as an example of this heater, and a heating resistor having a coil shape is used as an example of this heating resistor. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
  • the load 40 is arranged in the wick 30 inside the load passage section 22, for example.
  • the load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device.
  • the load 40 heats and atomizes the aerosol-generating liquid Le in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
  • the liquid storage section 50 is a part for storing the aerosol generation liquid Le.
  • the liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the aforementioned downstream passage section 23 is provided, as an example, so as to penetrate the liquid storage section 50 in the direction of the central axis CL.
  • the configuration is not limited to this, and, for example, the downstream passage section 23 may be provided adjacent to the liquid storage section 50 in the thickness direction (Y-axis direction) of the suction tool 10.
  • the aerosol generation liquid Le a liquid containing nicotine in a predetermined solvent is used as the aerosol generation liquid Le.
  • the aerosol generation liquid Le is not particularly limited as long as it contains nicotine.
  • the form of nicotine contained in the aerosol generation liquid Le is not particularly limited, and examples include one or more types of nicotine selected from synthetic nicotine and natural nicotine. Note that these synthetic nicotine and natural nicotine may exist as nicotine or as nicotine-containing compounds such as nicotine salts.
  • the form of the aerosol generation liquid Le is not particularly limited, and for example, one in which a predetermined solvent contains one or more types of nicotine selected from synthetic nicotine and natural nicotine can be used.
  • the specific type of the predetermined solvent is not particularly limited, but for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • a liquid containing a substance can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the purity of natural nicotine when using natural nicotine as the nicotine contained in the aerosol generation liquid Le, by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible components other than natural nicotine from the extract of tobacco materials, The purity of natural nicotine may be increased, and natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
  • the synthetic nicotine when synthetic nicotine is used as the nicotine contained in the aerosol generation liquid Le, nicotine produced by chemical synthesis using a chemical substance can be used as the synthetic nicotine.
  • the purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the method for producing synthetic nicotine is not particularly limited, and any known production method can be used.
  • the type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned.
  • the production method is not particularly limited, and any known production method can be used.
  • Tobacco extract components are generally substances contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance.
  • tobacco plants examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance.
  • S S-nicotine
  • R neophytadiene
  • R solanesol
  • synthetic nicotine the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method.
  • the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and examples include methods of dissolving nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis or extraction of tobacco materials in the aerosol generation liquid Le; Examples include a method in which nicotine or a nicotine-containing compound is dissolved in a solvent and then mixed with the aerosol generation liquid Le.
  • the content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less.
  • the tobacco extract can be used as the nicotine supply source.
  • the content of the tobacco extract in the aerosol-generating liquid Le is not particularly limited, but may be, for example, 0.1% by weight or more and 10% by weight or less, from the viewpoint of enabling a sufficient supply of nicotine. , may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • the type of predetermined solvent contained in the aerosol generation liquid Le is not particularly limited, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and one or more substances selected from the group consisting of water.
  • the content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
  • the type of solvent used in the extraction to obtain the above tobacco extract component is not particularly limited as long as it can dissolve nicotine, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances selected from the group or a liquid containing this substance can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the solvent also acts as an aerosol-generating base material, the tobacco extract can be used as it is as an aerosol-generating liquid; however, the tobacco extract may contain components that can cause charring when heated (e.g., lipids, etc.).
  • the tobacco extract can contain flavor components in the tobacco material other than nicotine, and specific examples thereof include neophytadiene and the like.
  • the aerosol generation liquid Le may have components other than nicotine and the aerosol base material (other components), such as flavor components other than nicotine (including the above-mentioned tobacco extract components other than nicotine), etc. .
  • Flavor components other than nicotine and flavor components derived from tobacco materials include, for example, menthol, natural vegetable flavorings (for example, cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil) , chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone , ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -penta decalactone, etc.
  • neophytadiene solanone, or solanesol.
  • the flavor molded body 60 includes a non-tobacco base material, a flavor material, etc., and is solidified and molded into a predetermined shape. Further, in the present embodiment, the flavor material contained in the flavor molded body 60 includes at least tobacco material, and the tobacco material in the flavor molded body 60 is specified to be 10% by weight or less. Of course, the flavor material may contain, in addition to the tobacco material, various flavor components not derived from the tobacco material.
  • the type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be.
  • tobacco materials specifically, tobacco plants
  • ceramics include alumina, zirconia, aluminum nitride, and silicon carbide.
  • synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH.
  • plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves.
  • the non-tobacco base material may be the main material of the flavor molded body 60, particularly the main material that ensures the molding of the flavor molded body 60.
  • the content of the non-tobacco base material in the flavor molded body 60 is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 100% by weight or less, It may be more than 80% by weight and less than 80% by weight.
  • the form of the flavor material contained in the flavor molded body 60 is not particularly limited, and for example, it may be a flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component imparting material.
  • component-imparting materials include tobacco materials that provide nicotine.
  • the flavor molded body 60 contains a flavor component imparting material
  • the flavor component imparting material is treated as the flavor material, not the flavor component contained in the flavor component imparting material.
  • the flavor material is not nicotine contained in the tobacco material, but the tobacco material.
  • the form of the tobacco material is not particularly limited; for example, it may contain tissues such as leaves, stems, flowers, roots, reproductive organs, or embryos of tobacco plants, and tobacco materials using these tobacco plant tissues may also be used.
  • Processed products for example, tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in known tobacco products
  • tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
  • the flavoring material contains tobacco material does not mean that the flavoring material contains tobacco material, but rather that it contains tobacco material as one of the types of flavoring material.
  • the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less” means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less”. The content of the material is 10% by weight or less.”
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the content of the flavor material in the flavor molded body 60 is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, 3 It may be more than 50% by weight and less than 50% by weight. Further, when the flavor molded body 60 contains tobacco material, the content of the tobacco material in the flavor molded body 60 is not particularly limited, but from the viewpoint of imparting flavor to the air flowing through the air passage 20 as a flavor spice. , is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 7% by weight or more.
  • the content of the tobacco material in the flavor molded body 60 is preferably 10% by weight or less, and preferably 7% by weight or less.
  • the content is more preferably 3% by weight or less, and even more preferably 3% by weight or less.
  • the flavor molded body 60 may contain a binder to bond materials included in the flavor molded body 60 such as non-tobacco base materials.
  • the type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, polyvinyl acetate, or alkylhydroxyalkylcellulose can be used.
  • the content of the binder in the flavor molded product may be 1% by weight or more and 20% by weight or less, and may be 3% by weight or more and 15% by weight or less, from the viewpoint of ensuring sufficient adhesiveness. , 5% by weight or more and 10% by weight or less.
  • the flavor molded body 60 may contain components other than the above-mentioned various components, for example, potassium carbonate, potassium hydrogen carbonate (for pH adjustment), etc.
  • the surface of the flavor molded body 60 may be coated with a coating material such as resin.
  • a coating material such as resin.
  • the surface of the flavor molded object 60 does not need to be coated with the coating material.
  • the surface of the flavor molded body 60 is coated with a coating material, it becomes easier to maintain the shape of the molded body.
  • the coating material include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
  • the density (mass per unit volume) of the flavor molded body 60 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg /cm 3 or less.
  • the density of the flavor molded body 60 is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies 60 are present, this density can be determined as the total mass relative to the total volume of the flavor molded bodies 60.
  • the shape of the flavor molded body 60 according to the present embodiment is not particularly limited, and is, for example, a rod shape (a shape in which the length is longer than the width).
  • the cross-sectional shape of the flavor molded body 60 is not particularly limited, and any shape can be adopted.
  • a plurality of rod-shaped flavor molded bodies 60 may be arranged in a bundle in the air passage 20.
  • the individual flavor molded bodies 60 may or may not be integrated with each other.
  • an air flow passage extending in the axial direction of the flavor molded body 60 is formed in at least one of the inside and the side surface (outer surface). Good too.
  • This air flow path is a flow path for circulating air, and can be formed from the front end to the rear end of the flavor molded body 60. Further, the air flow passage may be a through hole formed inside the flavor molded body 60, or a groove formed on the side surface (outer surface) of the flavor molded body 60.
  • the flavor molded body 60 when using the flavor molded body 60 having a sheet shape, specifically, the flavor molded body 60 may be a sheet made of a mixture of a non-tobacco base material and a flavor material, or a sheet made of a mixture of a non-tobacco base material and a flavor material.
  • a cast sheet of a mixture, a rolled sheet of a mixture of a non-tobacco base material and a flavoring material, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying on the surface of the sheet can be used.
  • the flavor molded body 60 may be placed in the air passage 20 in a state in which a single sheet is folded into an arbitrary shape such as a bellows shape or a spiral shape. Further, the air passage 20 may be filled with a plurality of strip sheet pieces obtained by cutting the sheet into strips as the flavor molded body 60. In this case, the strip sheet pieces serving as the flavor molded bodies 60 may be arranged in alignment along the air passage 20, or may be arranged randomly without being aligned in a specific direction.
  • the flavor molded body 60 may have a plate shape. Further, the flavor molded body 60 may have a shape other than a rod shape, a plate shape, or a sheet shape.
  • the flavor molded body 60 is in the form of granules, and the air passage 20 may be filled with a plurality of granules forming the flavor molded body 60.
  • the shape of the granules forming the flavor molded body 60 is not particularly limited.
  • FIG. 4 is a schematic perspective view of the flavor molded body 60 according to the first embodiment.
  • the flavor molded body 60 shown in FIG. 4 has a rod shape along the extending direction (air flow direction) of the air passage 20 (in the present embodiment, the upstream passage portions 21a, 21b). More specifically, the flavor molded body 60 has a rectangular parallelepiped shape, and has an axis X1 extending along the direction in which the air passage 20 (in this embodiment, the upstream passage portions 21a and 21b) extends (air flow direction). have. Moreover, as shown in FIG. 4, the flavor molded body 60 is formed with an air flow passage 61 that penetrates the flavor molded body 60 along the axis X1. In the example shown in FIG.
  • the air flow passage 61 is arranged coaxially with the axis X1 of the flavor molded body 60, but the invention is not limited thereto. Further, the number of air flow passages 61 formed in the flavor molded body 60 is not particularly limited, and for example, a plurality of air flow passages 61 may be formed in the flavor molded body 60. Further, in the example shown in FIG. 4, the cross-sectional shape of the air flow passage 61 is circular, but the cross-sectional shape of the air flow passage 61 is not particularly limited.
  • the axis X1 is an axis extending along the longitudinal direction of the flavor molded body 60, but the axis is not limited to this.
  • the shape of the flavor molded body 60 is not particularly limited, and for example, the length dimension of the flavor molded body 60 (the shape of the air flowing through the air passage 20 (in this embodiment, the upstream passage portions 21a, 21b) The dimension along the flow direction) and the width dimension perpendicular thereto may be equal, or the width dimension may be larger than the length dimension.
  • the shape of the cross section perpendicular to the axis X1 is not particularly limited, and may be a polygon other than a quadrangle, or have other shapes such as a circle or an ellipse. Good too.
  • the length dimension of the flavor molded object 60 is smaller than the length dimension of the upstream passage portions 21a and 21b in the atomization unit 12.
  • One end of the flavor molded body 60 is positioned in contact with the wall 71b of the atomization unit housing 120.
  • the section where the flavor molded body 60 is not arranged is hollow.
  • the flavor molded body 60 may be positioned and fixed at a prescribed position with its side surface compressed by the wall surfaces of the upstream passage portions 21a and 21b.
  • the flavor molded body 60 in this embodiment is arranged in the upstream passage parts 21a, 21b in such a manner that the ventilation resistance of the air flowing through the upstream passage parts 21a, 21b does not become excessively large, that is, in such a manner that the smooth circulation of the air is not inhibited. 21b.
  • the air flow passage 61 passes through the flavor molded body 60 along the axis X1 direction, air can be smoothly circulated through the air flow passage 61.
  • Suction of aerosol using the suction tool 10 is performed as follows. First, when a user starts a suction operation while holding the discharge port 13 of the suction tool 10 in his or her mouth, external air flows from each inlet port 72a, 72b in the atomization unit 12 to the air passage 20 (upstream passage portion 21a, 21b). Further, when the control device provided in the power supply unit 11 detects the user's suction operation, it issues a command to the battery and starts energizing the load 40 in the atomization unit 12 . The air flowing into the upstream passage portions 21a, 21b of the air passage 20 from the respective inflow ports 72a, 72b passes through the air flow passage 61 of the flavor molded body 60 disposed in the upstream passage portions 21a, 21b.
  • the flavor molded body 60 in this embodiment has a flavor material containing at least a tobacco material, when air passes through the air flow passage 61 of the flavor molded body 60, the flavor molded body 60 Flavoring materials (eg, flavoring components of tobacco materials) impart flavor to the air.
  • the wick 30 disposed in the load passage section 22 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 50. Therefore, when electricity starts to be applied from the battery to the load 40, the aerosol generation liquid Le held in the wick 30 evaporates. Then, the vapor of the aerosol generation liquid Le generated in the load passage section 22 is mixed with the air (air after flavoring) that has flowed into the load passage section 22 around the wick 30 (which can also be called the "atomization section"). As a result, aerosols are generated. In this way, the air containing the aerosol generated in the load passage section 22 (atomization section) flows into the downstream passage section 23 and is discharged from the discharge port 13 located at the downstream end of the downstream passage section 23. This ultimately attracts the user.
  • the aerosol generating liquid Le containing nicotine is stored in the liquid storage part 50, and the air passage 20 is A flavor molded body 60 containing a flavor material is arranged. Therefore, the flavor component derived from nicotine contained in the aerosol generation liquid Le and the flavor component contained in the flavor molded body 60 can be added to the air passing through the air passage 20 in two stages. Thereby, the aerosol generated by the atomization unit 12 can be sufficiently flavored. That is, according to the present embodiment, it is possible to impart a deep flavor to the aerosol that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the flavor molded body 60 alone.
  • the flavor molded product 60 in this embodiment has a non-tobacco base material, there is an advantage that the weight can be easily controlled even when it is desired to add a small amount of flavor material to the flavor molded product 60. . Further, by including the non-tobacco base material in the flavor molded body 60, there is an advantage that the volatilization of the flavor component is stabilized during use of the product (improvement of sustained release properties). Further, the flavor molded body 60 contains tobacco material as one type of flavor material, and the content of the tobacco material in the flavor molded body 60 is specified to be 10% by weight or less.
  • the flavor molded body 60 by including a small amount of tobacco material in the flavor molded body 60, a spice-like flavor can be imparted to the aerosol generated in the atomization unit 12. Furthermore, since the amount of tobacco material contained in the flavor molded body 60 is not excessively large, there is an advantage that the tobacco material is difficult to separate from the non-tobacco base material. In addition, since the flavor source that adds flavor to the air passing through the air passage 20 (in this embodiment, the upstream passage sections 21a and 21b) is arranged in the form of a molded body, the flavor source when assembling the atomization unit 12 can be The molded body 60 is easy to handle.
  • FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first embodiment.
  • the atomization unit housing in which the liquid storage part 50 and the air passage 20 are formed, the aerosol generating liquid Le containing nicotine, the flavor molded body 60 containing the non-tobacco base material and the flavor material are prepared.
  • the atomization unit housing referred to here is the atomization unit housing 120 described in FIGS. 2, 3, etc., in which the load 40, the wick 30, the flavor molded body 60, etc. are not yet arranged in the air passage 20, and , refers to the housing in a state before the liquid storage section 50 is filled with the aerosol generation liquid Le.
  • the specific method for preparing the aerosol generating liquid Le containing nicotine in the preparation step is not particularly limited, and any known method can be adopted. Examples include a method in which a nicotine-containing compound such as nicotine or a nicotine salt obtained by synthesis or the like is dissolved in the aerosol generation liquid, or a method in which a component obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
  • the method for obtaining nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis etc. is not particularly limited, and can be produced by known methods, but commercially available products may also be used.
  • the above-mentioned aerosol generating liquid Le may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
  • an alkaline substance is applied to tobacco leaves (referred to as alkali treatment).
  • alkali treatment for example, a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • heat treatment for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group. Two or more kinds of substances are brought into contact with tobacco leaves.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • the aerosol generation liquid Le may be produced without using the above-mentioned collection solvent.
  • the components released from the tobacco leaves into the gas phase can be condensed by cooling them using a condenser or the like.
  • the flavor components may be extracted.
  • the aerosol generation liquid Le may be produced without performing the alkali treatment described above.
  • one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment).
  • Add substance the tobacco leaf to which the above substance has been added is heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • an aerosol in which one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or
  • the aerosol formed by two or more substances selected from this group is passed through tobacco leaves (tobacco leaves that have not been treated with alkali), and the aerosol that has passed through the tobacco leaves is captured in a collection solvent. You may collect them. Flavor components can also be extracted by such a process.
  • a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250 ° C.") that may be included in the flavor components extracted by the method described above is reduced. (also referred to as “reduction processing”) may be performed.
  • amount of carbonized components that become carbide when heated to 250° C.” adhesion of carbonized components to the load 40 can be effectively suppressed.
  • occurrence of burnt on the load 40 can be effectively suppressed.
  • the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • the tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), the tobacco extract is subjected to a concentration treatment to concentrate the tobacco extract components. It is preferable to remove substances that cause scorching using the following means. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to concentration treatment if it contains a substance that causes scorching.
  • the flavor molded product 60 is a molded product that contains a non-tobacco base material and a flavor material, and contains a tobacco material with a small amount of flavor material (the content in the flavor molded product 60 is 10% by weight or less).
  • the method for producing the flavor molded body 60 is not particularly limited, but for example, non-tobacco base materials such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants (melts of non-tobacco base materials may also be used) and a flavoring material to obtain a mixture, and then molding the mixture into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. good.
  • the non-tobacco base material is a polymer
  • flavor molding into a predetermined shape is performed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc.
  • the composite material may be processed into a predetermined shape by cutting, grinding, or the like.
  • flavor molding is performed by applying or spraying a flavor material onto the surface of the non-tobacco base material.
  • the body 60 may be manufactured.
  • the surface of the flavor molded body 60 may be coated with a coating material. Thereby, it is possible to manufacture the flavor molded object 60 in which the surface of the non-tobacco base material hardened into a predetermined shape is covered with the coating material.
  • wax can be used as this coating material.
  • this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
  • corn protein can also be used as a coating material.
  • a specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd.
  • polyvinyl acetate can also be used as a coating material.
  • tobacco residue may be included in the non-tobacco base material. Furthermore, when obtaining a tobacco extract in the production of an aerosol generating liquid containing nicotine, it is preferable to use tobacco residue obtained in the extraction when obtaining the tobacco extract.
  • the aerosol generation liquid Le is accommodated in the liquid storage part 50 of the atomization unit housing 120, and the flavor molded body 60, the wick 30, and the load 40 are placed in the air passage 20. Place each.
  • the wick 30 and the load 40 are arranged in the load passage section 22 of the atomization unit housing 120, and the flavor molded bodies 60 are arranged in each upstream passage section 21a, 21b.
  • the load 40 is arranged in such a manner that the aerosol generating liquid Le is introduced from the liquid storage section 50.
  • the wick 30 may be installed in the load passage section 22 so as to communicate with the inside of the liquid storage section 50, and the load 40 may be installed in the load passage section 22 in a state in which it is in contact with the wick 30.
  • the flavor molded body 60 in the assembly process, is placed at a location upstream in the air flow direction from the load 40 in the air passage 20, that is, at each upstream passage portion 21a, 21b. Deploy.
  • the flavor molded body 60 may be arranged in the downstream passage part 23 instead of the upstream passage parts 21a, 21b, or the flavor molded body 60 can be arranged in both the upstream passage parts 21a, 21b and the downstream passage part 23. You may.
  • the atomization unit of the suction tool 10 can be suitably manufactured.
  • the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le stored in the liquid storage part 50 is preferably 6 mg or less, and preferably 3 mg or less. It is more preferable.
  • the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
  • the "carbonized component” contained in 1 g of aerosol-generating liquid specifically refers to "component that becomes carbide when heated to 250°C.”
  • the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • This "amount (mg) of carbonized components contained in 1 g of aerosol generating liquid” can be measured, for example, by the following method. First, a predetermined amount (g) of aerosol generation liquid Le is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured.
  • the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid ( That is, the amount (mg) of carbonized components can be calculated.
  • Figure 6 shows the TPM reduction rate measured with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as an aerosol generating liquid containing nicotine. It is a figure showing a result.
  • the horizontal axis of FIG. 6 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 6 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Step 3 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at °C. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
  • the standing time that is, the immersion time in the immersion liquid
  • the amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) shown in FIG. 6 was measured by the above method.
  • R TPM (%) (1-TPM (201puff ⁇ 250puff) / TPM (1puff ⁇ 50puff)) x 100... (1)
  • TPM Total Particle Molecule
  • TPM (1puff to 50puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
  • TPM (201puff to 250puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
  • symbol may be attached
  • FIG. 7 is a longitudinal cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1.
  • FIG. 8 is a cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1, and shows a cross section taken along line A2-A2 in FIG.
  • a plurality of rod-shaped flavor moldings 60 are arranged in parallel along the cross-sectional direction of each upstream passage section 21a, 21b.
  • each flavor molded object 60 has a solid cylindrical shape, and along each upstream passage section 21a, 21b (that is, along the air flow direction), The axial direction of each flavor molded object 60 extends.
  • nine flavor molded bodies 60 are arranged in a pattern of 3 rows and 3 columns for each upstream passage section 21a, 21b.
  • the number of flavor molded bodies 60 and their arrangement pattern are not particularly limited.
  • an air flow passage 61A through which air flows is formed between the flavor molded bodies 60 arranged in parallel in each upstream passage portion 21a, 21b. According to this, when the air that has flowed into each of the upstream passage sections 21a and 21b passes through the air flow passage 61A, the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air. I can do it.
  • the reference numeral 25A shown in FIG. 7 is an air-permeable support material that supports the upstream end 601 of the flavor molded body 60.
  • Reference numeral 25B is an air-permeable support material that supports the downstream end 602 of the flavor molded body 60.
  • the upstream end and downstream end herein mean an upstream end and a downstream end with respect to the flow direction of air.
  • the supporting members 25A and 25B cooperate to support the upstream end 601 and downstream end 602 of each flavor molded object 60 while sandwiching them in the axial direction. Thereby, even when a plurality of flavor molded bodies 60 are arranged in each of the upstream passage portions 21a and 21b, the plurality of flavor molded bodies 60 can be maintained in a regular position in an aligned state.
  • the supporting materials 25A and 25B have air permeability, it is possible to suppress the flow of air along the respective upstream passage portions 21a and 21b from being obstructed.
  • 61 A of air flow paths as demonstrated in FIG. 4 may extend along an axial direction.
  • FIG. 9 is a longitudinal cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment.
  • FIG. 10 is a cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment, and shows a cross section taken along the line A3-A3 in FIG.
  • a plurality of flavor molded bodies 60 each having a plate shape are arranged in each of the upstream passage portions 21a and 21b.
  • Each flavor molded body 60 extends along each upstream passage section 21a, 21b (that is, along the flow direction of air).
  • each flavor molded body 60 has an elongated flat plate shape along each upstream passage section 21a, 21b, and has a cross section of each upstream passage section 21a, 21b (air They are arranged side by side along a cross section perpendicular to the flow direction.
  • each flavor molded body 60 are positioned and fixed in a state where they are sandwiched in the axial direction by the above-mentioned supporting members 25A and 25B, and as a result, each flavor molded body 60 They are arranged side by side so as to face each other at intervals.
  • a gap is formed between the flavor molded bodies 60 that are arranged to face each other, and an air flow path 61B is formed by this gap. Since the air flow passage 61B extends along each of the upstream passages 21a and 21b (that is, along the air flow direction), the air flowing into each of the upstream passages 21a and 21b flows through the air flow passage.
  • the flavor component of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air.
  • FIG. 11 is a longitudinal sectional view of the atomization unit 12 according to the third modification of the first embodiment.
  • FIG. 12 is a cross-sectional view of the atomization unit 12 according to the third modification of the first embodiment, and shows a cross section taken along the line A4-A4 in FIG. 11.
  • a flavor molded body 60 having an overall bellows sheet shape is arranged in each upstream passage section 21a, 21b.
  • the flavor molded body 60 having a bellows sheet shape includes a plurality of sheet portions (panel portions) 62 extending along the air flow direction in each upstream passage portion 21a, 21b, and each sheet. It is configured to include a ridgeline portion 63 that connects the portions 62 to each other in a bellows shape and extends along the flow direction of air.
  • an air flow path 61C through which air circulates is formed between the sheet parts 62 that are connected via the ridgeline part 63.
  • the air flow passage 61C extends along each upstream passage portion 21a, 21b (that is, along the air flow direction). Therefore, when the air that has flowed into each of the upstream passage sections 21a and 21b passes through the air flow passage 61C, the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air.
  • the upstream end 601 and downstream end 602 of the flavor molded body 60 are positioned and fixed by the breathable support members 25A and 25B. Thereby, the sheet-shaped flavor molded body 60 can be positioned and held at a regular position without obstructing the flow of air along each of the upstream passages 21a, 21b.
  • FIG. 13 is a cross-sectional view of the atomization unit 12 according to the fourth modification of the first embodiment.
  • a large number of flavor molded bodies 60 in the form of strip-shaped sheet pieces are filled in each upstream passage section 21a, 21b.
  • the flavor molded bodies 60 (rectangular sheet pieces) are arranged so that their longitudinal directions extend along the respective upstream passages 21a and 21b (that is, along the air flow direction). , the upstream and downstream ends thereof may be positioned by supporting members 25A and 25B as described in FIG. 11.
  • air flow passages 61D are formed by gaps between the flavor molded bodies 60 (rectangular sheet pieces).
  • the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air.
  • the strip sheet pieces serving as the flavor molded body 60 may be arranged randomly and filled without being aligned along the air passage 20 (each upstream passage portion 21a, 21b).
  • FIG. 14 is a cross-sectional view of the atomization unit 12 according to the fifth modification of the first embodiment.
  • the flavor molded body 60 of the atomization unit 12 according to the fifth modification has an air flow passage 61 as a through hole penetrating in the axial direction, and an air flow groove 610 as an air flow passage formed on the side surface (outer surface). It is different from the flavor molded body 60 described in FIGS. 2 to 4 in that it is In the embodiment shown in FIG. 14, the air circulation groove 610 in the flavor molded body 60 is a groove provided on the side surface (outer surface) of the flavor molded body 60 along the axial direction. It is formed from a front end (front end) 601 to a downstream end (rear end) 602.
  • the number of air circulation grooves 610 provided on the side surface (outer surface) of the flavor molded body 60 is not particularly limited. However, as shown in FIG. 14, by forming a plurality of air circulation grooves 610 on the side surface (outer surface) of the flavor molded body 60, air circulation and flavor imparting to the air can be performed more efficiently. be able to. Further, in the flavor molded body 60 according to this modification, the air flow passage 61 that passes through the inside thereof in the axial direction may be omitted, and only the air flow groove 610 may be formed.
  • FIG. 15 is a schematic cross-sectional view of the atomization unit 12 according to the sixth modification of the first embodiment. Specifically, FIG. 15 schematically illustrates a cross section in the thickness direction of the main part of the atomization unit 12 according to this modification.
  • the air passage 20 of the atomization unit 12 according to this modification has only one upstream passage part (only the upstream passage part 21a is provided), and the upstream passage part 21a is the atomization unit.
  • the air passage 20 of the atomization unit 12 is mainly different from the air passage 20 of the atomization unit 12 described with reference to FIGS. 2 and 3 in that it is disposed adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12 .
  • the flavor molded body 60 having an air flow passage 61 formed therethrough in the longitudinal axis direction is disposed in the upstream passage portion 21a, as described in FIG. 4. Also in this modification, the same effects as the atomization unit 12 and the suction tool 10 including the atomization unit 12 according to the first embodiment described above can be achieved.
  • the various flavor molded bodies 60 described in Modifications 1 to 5 may be applied instead of the flavor molded body 60 shown in FIG.
  • FIG. 16 is a longitudinal sectional view of the atomization unit 12 according to the seventh modification of the first embodiment.
  • FIG. 17 is a cross-sectional view of the atomization unit 12 according to Modification Example 7 of Embodiment 1, and shows a cross section taken along line A5-A5 in FIG. 16.
  • the atomization unit 12 differs from the embodiments described above in that flavor molded bodies 60 are disposed in both the upstream passage sections 21a, 21b and the downstream passage section 23.
  • the flavor molded body 60 disposed in the downstream passage section 23 has, for example, a cylindrical shape, and an air flow passage 61 is formed therethrough along the axial direction.
  • the various flavor molded bodies 60 described in Modifications 1 to 5 can be applied to the flavor molded body 60 disposed in the load passage section 22 of the atomization unit 12. Further, the flavor molded body 60 may be positioned and fixed at a proper position in the load passage section 22 using the above-mentioned support materials 25A and 25B having air permeability. In addition, in this modification, an example in which the flavor molded body 60 is arranged in both the upstream passage parts 21a, 21b and the downstream passage part 23 in the atomization unit 12 has been described. The flavor molded body 60 may be arranged only in the downstream passage section 23 without installing the flavor molded body 60 in the downstream passage section 23 .
  • FIG. 18 is a longitudinal cross-sectional view of the atomization unit 12 according to the second embodiment.
  • the air passage 20 does not have an upstream passage part, and the flavor molded body 60 is filled in the downstream passage part 23.
  • the wall 71c of the load passage section 22 is provided with an inlet 72e, which is a hole for introducing air into the atomization unit housing 120 from the outside.
  • the housing of the power supply unit 11 in the suction tool 10 may also have an inflow port formed therein for taking in air from the outside.
  • an internal passage is formed inside the power supply unit housing to communicate the inflow port on the power supply unit housing side and the inflow port 72e on the atomization unit housing 120 side, and the air supplied through the internal passage is transferred to the inflow port 72e. It may also be incorporated into the atomization unit housing 120 from within the atomization unit housing 120. Air taken into the atomization unit housing 120 from the inflow port 72e flows into the load passage section 22, passes through the load passage section 22, passes through the downstream passage section 23, and is discharged from the discharge port 13.
  • the downstream passage section 23 according to the second embodiment has an enlarged diameter section 24a.
  • the enlarged diameter portion 24a is provided in a part of the downstream passage portion 23, and is a portion whose diameter is enlarged more than “the other portion 24b (that is, the non-expanded diameter portion)” of the downstream passage portion 23.
  • the downstream passage section 23 according to the second embodiment is entirely disposed inside the liquid storage section 50.
  • the enlarged diameter portion 24a is disposed in the middle of the downstream passage portion 23.
  • another part 24b is arranged upstream of the enlarged diameter part 24a, and another part 24b is arranged downstream of the enlarged diameter part 24a (that is, the enlarged diameter part 24a is ).
  • the flavor molded body 60 according to the second embodiment is arranged in this enlarged diameter portion 24a.
  • the flavor molded body 60 disposed in the enlarged diameter portion 24a is formed so that an air flow passage 61 passes through it along the flow direction of air, as shown in FIG. Therefore, when the air containing the aerosol passes through the air flow path 61 of the flavor molded body 60, the flavor material contained in the flavor molded body 60 imparts flavor.
  • the number of air flow passages 61 formed in the flavor molded body 60 is not particularly limited. In the example shown in FIG. 18, a plurality of air flow passages 61 are formed in the flavor molded body 60, but a single air flow passage 61 may be formed. Also in this embodiment, the various flavor molded bodies 60 described in the above-mentioned Modifications 1 to 5 may be applied.
  • this embodiment can also achieve the same effects as the atomization unit 12 according to the first embodiment.
  • the flavor component contained in the aerosol generation liquid Le and the flavor component contained in the flavor molded body 60 can be added to the air passing through the air passage 20.
  • the aerosol generated by the atomization unit 12 can be sufficiently flavored. Therefore, a deep flavor that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the flavor molded body 60 can be imparted to the aerosol.
  • the flavor molded body 60 is filled in the enlarged diameter portion 24a, the flavor molded body 60 is It is possible to keep the ventilation resistance value of air passing through (an index indicating how difficult it is for air to pass through) to a low level.
  • the flavor components of tobacco leaves contained in the flavor molded body 60 are more effectively absorbed downstream. It is possible to add a flavor component to the air flowing through the passage section 23 (that is, it is possible to effectively impart a flavor component to air containing aerosol).
  • downstream passage section 23 is entirely disposed inside the liquid storage section 50, but it is not limited to this embodiment.
  • the downstream passage section 23 may be arranged adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12.
  • FIG. 19 is a longitudinal cross-sectional view of the atomization unit 12 according to the third embodiment.
  • the atomization unit 12 according to the third embodiment is provided such that the "other part 24b" of the downstream passage section 23 penetrates the inside of the liquid storage part 50, and the enlarged diameter part 24a is connected to this "other part 24b".
  • This embodiment is different from the second embodiment described above in that it is disposed downstream of "24b" in the air flow direction. That is, the downstream passage section 23 according to the third embodiment has another section 24b on the upstream side, and has an enlarged diameter section 24a on the downstream side of this other section 24b.
  • the enlarged diameter portion 24a according to the present embodiment also has a function as a downstream extending portion that extends downstream of the liquid storage portion 50 in the air flow direction.
  • the flavor molded body 60 is formed so that an air flow passage 61 passes through it along the flow direction of air.
  • "at least one groove 24c In FIG. 19, a plurality of grooves 24c are illustrated.
  • the peripheral wall surface is provided with "at least one groove 24c (a plurality of grooves 24c are illustrated in FIG. 19)" extending in the X-axis direction. According to such a groove 24c, the air passing through the enlarged diameter portion 24a can be made to flow so as to be diffused in the cross-sectional direction of the enlarged diameter portion 24a.
  • a plurality of air flow passages 61 are arranged side by side in its cross-sectional direction (direction perpendicular to the flow direction of air flowing through the air flow passages 61). Therefore, the air diffused in the cross-sectional direction of the enlarged diameter portion 24a by the action of the groove 24c formed on the inner circumferential wall surface of the enlarged diameter portion 24a described above is transferred from the upstream end 601 of the flavor molded body 60 to each air flow path 61. can be efficiently guided. Therefore, the flavor material contained in the flavor molded product 60 can efficiently impart flavor to the air containing the aerosol passing through the air flow path 61 of the flavor molded product 60.
  • the number of air flow passages 61 formed in the flavor molded body 60 is not particularly limited.
  • the downstream end 602 of the flavor molded body 60 is supported by a support material 25B having air permeability.
  • a supporting material 25B having air permeability is interposed between the downstream end 602 and the downstream end 602.
  • the diameter of the enlarged diameter portion 24a according to the present embodiment is enlarged so that it has the same width and thickness as the width and thickness of the liquid storage portion 50.
  • the shape of the enlarged diameter portion 24a is not limited to this.
  • the enlarged diameter portion 24a is not disposed inside the liquid storage portion 50 (or is not adjacent to the liquid storage portion 50 in the thickness direction of the atomization unit 12), the enlarged diameter portion 24a It is easy to adjust the cross-sectional area of the diameter portion 24a, the length of the enlarged diameter portion 24a in the air flow direction (the length in the Z direction), etc. Thereby, the ventilation resistance value of air passing through the flavor molded body 60 can be easily adjusted to a desired value.
  • the other portion 24b of the downstream passage portion 23 is not limited to the configuration that penetrates the inside of the liquid storage portion 50 as illustrated in FIG. 19.
  • the other portion 24b may be provided adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12.
  • groove 24c provided in the inner wall surface of the enlarged diameter portion 24a according to the present embodiment may be formed in the enlarged diameter portion 24a of the atomization unit 12 according to the second embodiment described above.

Abstract

Provided is a technology relating to an atomization unit of an inhalation device capable of imparting a sufficient flavor to an aerosol. An atomization unit of an inhalation device, said atomization unit being equipped with: a liquid housing part in which an aerosol-producing liquid containing nicotine is housed; an electrical load which is placed in an air passage for flowing air therethrough, into which the aerosol-producing liquid in the liquid housing part is introduced, and by which the introduced aerosol-producing liquid is atomized to generate an aerosol; and a flavoring molded body which is placed at the upstream and/or downstream locations in the air passage in the air flow direction from the load. The flavoring molded body contains a non-tobacco base material and a flavoring material, the flavoring material contains a tobacco material, and the content of the tobacco material in the flavoring molded body is 10 wt% or less.

Description

霧化ユニット及びその製造方法、並びに吸引具Atomization unit and its manufacturing method, and suction tool
 本発明は、吸引具の霧化ユニット及びその製造方法、並びに吸引具に関する。 The present invention relates to an atomization unit of a suction tool, a method for manufacturing the same, and a suction tool.
 従来、非燃焼加熱型の吸引具に用いる霧化ユニットとして、エアロゾル生成液を収容する液体収容部と、液体収容部のエアロゾル生成液が導入されるとともに、この導入されたエアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに香味成分を付与する香味源と、を備える霧化ユニットが知られている(例えば、特許文献1参照)。 Conventionally, as an atomization unit used in a non-combustion heating type suction device, a liquid storage part for storing an aerosol generation liquid, the aerosol generation liquid in the liquid storage part is introduced, and the introduced aerosol generation liquid is atomized. An atomization unit is known that includes an electrical load that generates an aerosol and a flavor source that imparts a flavor component to the aerosol (for example, see Patent Document 1).
 なお、他の先行技術文献として、特許文献2が挙げられる。特許文献2には、たばこ葉の抽出液に関する情報が開示されている。 Note that Patent Document 2 can be cited as another prior art document. Patent Document 2 discloses information regarding tobacco leaf extract.
特開2020-141705号公報Japanese Patent Application Publication No. 2020-141705 国際公開第2015/129679号International Publication No. 2015/129679
 上述したような従来の霧化ユニットは、エアロゾルに香味を十分に付与するという観点において、改善の余地があった。 The conventional atomization unit as described above has room for improvement in terms of sufficiently imparting flavor to aerosol.
 本発明は、上記のことを鑑みてなされたものであり、エアロゾルに十分な香味を付与できる吸引具の霧化ユニットに関する技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of its objects is to provide a technology related to an atomization unit of a suction tool that can impart sufficient flavor to an aerosol.
 (態様1)
 上記目的を達成するため、本発明の一態様に係る吸引具は、ニコチンを含むエアロゾル生成液を収容する液体収容部と、エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記エア通路のうち、前記負荷よりもエアの流動方向で上流側の箇所及び下流側の箇所の少なくとも何れか一方に配置された、香味成形体と、を備え、前記香味成形体は非たばこ基材及び香味材料を含み、且つ、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下である。
(Aspect 1)
In order to achieve the above object, a suction device according to one aspect of the present invention is arranged in a liquid storage part that stores an aerosol generating liquid containing nicotine and an air passage through which air passes, and is arranged in a liquid storage part that stores an aerosol generating liquid containing nicotine, and is arranged in an air passage through which air passes, so that the aerosol in the liquid storage part is When the generated liquid is introduced, an electrical load is provided to atomize the introduced aerosol generating liquid to generate an aerosol, and a portion of the air passageway is located upstream and downstream of the load in the air flow direction. a flavor molded body disposed on at least one of the sides, the flavor molded body containing a non-tobacco base material and a flavor material, and the flavor material containing a tobacco material and the flavor molding. The content of the tobacco material in the body is 10% by weight or less.
 (態様2)
 上記の態様1において、前記エア通路は、前記負荷が配置された負荷通路部と、前記負荷通路部に連通するとともに前記負荷通路部よりもエアの流動方向で上流側に配置された上流通路部と、前記負荷通路部に連通するとともに前記負荷通路部よりもエアの流動方向で下流側に配置された下流通路部と、を有し、前記香味成形体は、前記上流通路部及び前記下流通路部の少なくとも何れか一方に配置されていてもよい。
(Aspect 2)
In the above aspect 1, the air passage includes a load passage section in which the load is arranged, and an upstream passage that communicates with the load passage section and is arranged upstream of the load passage section in the air flow direction. and a downstream passage portion that communicates with the load passage portion and is disposed downstream of the load passage portion in the air flow direction, and the flavor molded object has a It may be arranged in at least either one of the downstream passage parts.
 (態様3)
 上記の態様2において、前記香味成形体は、前記上流通路部及び前記下流通路部の双方に配置されていてもよい。
(Aspect 3)
In the above-mentioned aspect 2, the flavor molded body may be arranged in both the upstream passage section and the downstream passage section.
 (態様4)
 上記の態様1から3の何れかにおいて、前記香味成形体は、前記エア通路におけるエアの流動方向に沿って延在する棒形状を有し、且つ、その内部及び側面の少なくとも何れか一方に、当該香味成形体の軸方向に延びるとともにエアを流通させるエア流通路を有していてもよい。
(Aspect 4)
In any one of the above aspects 1 to 3, the flavor molded object has a rod shape extending along the flow direction of the air in the air passage, and at least one of the inside and the side surface thereof includes: It may have an air flow path that extends in the axial direction of the flavor molded object and allows air to flow therethrough.
 (態様5)
 上記の態様1から4の何れかにおいて、前記香味成形体は、前記エア通路におけるエアの流動方向に沿って延在する棒形状を有しており、前記エア通路におけるエアの流動方向と直交する横断面方向に沿って、複数の前記香味成形体が並列して配置されており、並列配置される前記香味成形体同士の間にエアを流通させるエア流通路が形成されていてもよい。
(Aspect 5)
In any one of the above aspects 1 to 4, the flavor molded object has a rod shape extending along the flow direction of air in the air passage, and is perpendicular to the flow direction of air in the air passage. A plurality of the flavor molded bodies may be arranged in parallel along the cross-sectional direction, and an air flow path may be formed to circulate air between the flavor molded bodies arranged in parallel.
 (態様6)
 上記の態様1から3の何れかにおいて、前記香味成形体は、全体として蛇腹シート形状を有しており、且つ、前記エア通路におけるエアの流動方向に沿って延在する複数のシート部と、各シート部同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部と、を含んで構成され、前記稜線部を介して接続される前記シート部同士の間にエアを流通させるエア流通路が形成されていてもよい。
(Aspect 6)
In any one of the above aspects 1 to 3, the flavor molded body has a bellows sheet shape as a whole, and a plurality of sheet portions extending along the flow direction of air in the air passage; A ridgeline section that connects each sheet section in a bellows-like manner and extends along the air flow direction, and allows air to flow between the sheet sections connected via the ridgeline section. An air flow path may be formed.
 (態様7)
 上記の態様1から3の何れかにおいて、前記香味成形体は、前記エア通路におけるエアの流動方向に沿って延在する板形状を有しており、前記エア通路におけるエアの流動方向と直交する横断面に沿って、複数の前記香味成形体が互いに間隔をおいて対向するように並んで配置されており、対向配置される前記香味成形体同士の間にエアを流通させるエア流通路が形成されていてもよい。
(Aspect 7)
In any one of the above aspects 1 to 3, the flavor molded body has a plate shape extending along the flow direction of air in the air passage, and is perpendicular to the flow direction of air in the air passage. A plurality of the flavor molded bodies are arranged side by side to face each other at intervals along the cross section, and an air flow path is formed for circulating air between the flavor molded bodies arranged facing each other. may have been done.
 (態様8)
 また、本発明の一態様に係る吸引具は、上記の態様1から7の何れかにおける霧化ユニットと、前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、を備える。
(Aspect 8)
Further, a suction tool according to one aspect of the present invention includes the atomizing unit according to any one of aspects 1 to 7 above, and a power source that supplies power to the load, and a power source unit to which the atomizing unit is detachably attached. and.
 (態様9)
 また、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、ニコチンを含むエアロゾル生成液と、非たばこ基材及び香味材料を含む香味成形体と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、を準備する準備工程と、前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記香味成形体及び前記負荷を配置する組立工程と、を有し、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下であり、前記組立工程において、前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、前記香味成形体を、前記負荷よりもエアの流動方向で上流側の箇所及び下流側の箇所の少なくとも何れか一方に配置する。
(Aspect 9)
Further, a method for manufacturing an atomization unit of a suction device according to one aspect of the present invention includes: an atomization unit housing in which a liquid storage portion and an air passage are formed; an aerosol generating liquid containing nicotine; and a non-tobacco base material. and a preparatory step of preparing a flavor molded body containing a flavor material, and an electrical load for atomizing the aerosol-generating liquid to generate an aerosol; and storing the aerosol-generating liquid in the liquid storage section, and an assembling step of arranging the flavor molded body and the load in a passageway, the flavor material containing tobacco material and the content of the tobacco material in the flavor molded body being 10% by weight or less, and the In the assembly process, the load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the flavor molded body is placed at a location upstream and downstream of the load in the air flow direction. Place it in at least one of the locations.
 本発明の態様によれば、エアロゾルに十分な香味を付与できる吸引具の霧化ユニットに関する技術を提供できる。 According to the aspect of the present invention, it is possible to provide a technology related to an atomization unit of a suction tool that can impart sufficient flavor to an aerosol.
図1は、実施形態1に係る吸引具の外観を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment. 図2は、実施形態1に係る吸引具の霧化ユニットの主要部を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment. 図3は、図2のA1-A1線断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 図4は、実施形態1に係る香味成形体の模式的な斜視図である。FIG. 4 is a schematic perspective view of the flavor molded article according to Embodiment 1. 図5は、実施形態1に係る霧化ユニットの製造方法を説明するためのフロー図である。FIG. 5 is a flow diagram for explaining the method for manufacturing the atomization unit according to the first embodiment. 図6は、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 6 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine. 図7は、実施形態1の変形例1に係る霧化ユニットの縦断面図である。FIG. 7 is a longitudinal sectional view of the atomization unit according to Modification 1 of Embodiment 1. 図8は、実施形態1の変形例1に係る霧化ユニットの横断面図である。FIG. 8 is a cross-sectional view of the atomization unit according to Modification 1 of Embodiment 1. 図9は、実施形態1の変形例2に係る霧化ユニットの縦断面図である。FIG. 9 is a longitudinal sectional view of the atomization unit according to the second modification of the first embodiment. 図10は、実施形態1の変形例2に係る霧化ユニットの横断面図である。FIG. 10 is a cross-sectional view of the atomization unit according to the second modification of the first embodiment. 図11は、実施形態1の変形例3に係る霧化ユニットの縦断面図である。FIG. 11 is a longitudinal sectional view of the atomization unit according to the third modification of the first embodiment. 図12は、実施形態1の変形例3に係る霧化ユニットの横断面図である。FIG. 12 is a cross-sectional view of the atomization unit according to the third modification of the first embodiment. 図13は、実施形態1の変形例4に係る霧化ユニットの横断面図である。FIG. 13 is a cross-sectional view of the atomization unit according to Modification 4 of Embodiment 1. 図14は、実施形態1の変形例5に係る霧化ユニットの横断面図である。FIG. 14 is a cross-sectional view of the atomization unit according to the fifth modification of the first embodiment. 図15は、実施形態1の変形例6に係る霧化ユニットの模式的断面図である。FIG. 15 is a schematic cross-sectional view of an atomization unit according to a sixth modification of the first embodiment. 図16は、実施形態1の変形例7に係る霧化ユニットの縦断面図である。FIG. 16 is a longitudinal sectional view of the atomization unit according to Modification Example 7 of Embodiment 1. 図17は、実施形態1の変形例7に係る霧化ユニットの横断面図である。FIG. 17 is a cross-sectional view of the atomization unit according to Modification Example 7 of Embodiment 1. 図18は、実施形態2に係る霧化ユニットの縦断面図である。FIG. 18 is a longitudinal cross-sectional view of the atomization unit according to the second embodiment. 図19は、実施形態3に係る霧化ユニットの縦断面図である。FIG. 19 is a longitudinal cross-sectional view of the atomization unit according to the third embodiment.
 以下、本発明に係る霧化ユニット及びこれを備えた吸引具の実施形態を、図面を参照して説明するが、これらの説明は本発明の実施形態の一例であり、本発明はその要旨を超えない限りこれらの内容に限定されない。また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。また、実施形態に記載されている構成要素の寸法、材質、形状、対応その相対配置等は一例である。また、本願明細書では、各実施形態について必要に応じて図面を参照して説明するが、これらの図面は実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。 Hereinafter, embodiments of an atomization unit and a suction tool equipped with the same according to the present invention will be described with reference to the drawings, but these descriptions are merely examples of the embodiments of the present invention, and the gist of the present invention is not limited to the following. It is not limited to these contents as long as they do not exceed. Furthermore, although a plurality of embodiments will be described in this specification, various conditions in each embodiment may be applied to each other within an applicable range. Furthermore, the dimensions, materials, shapes, relative arrangements, etc. of the constituent elements described in the embodiments are merely examples. In addition, in this specification, each embodiment will be described with reference to drawings as necessary, but these drawings are schematically illustrated to facilitate understanding of the features of the embodiments, and each configuration is The dimensional ratios of elements etc. are not necessarily the same as the actual ones. Further, in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary.
 ここで、実施形態に係る霧化ユニットは、
 ニコチンを含むエアロゾル生成液を収容する液体収容部と、
 エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
 前記エア通路のうち、前記負荷よりもエアの流動方向で上流側の箇所及び下流側の箇所の少なくとも何れか一方に配置された、香味成形体と、
 を備え、
 前記香味成形体は、非たばこ基材及びたばこ材料を含み、且つ、前記香味成形体中の前記たばこ材料の含有量が10重量%以下に規定されている。
Here, the atomization unit according to the embodiment is
a liquid storage section that stores an aerosol-generating liquid containing nicotine;
an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
A flavor molded body disposed in at least one of a location upstream and downstream of the load in the air flow direction in the air passage;
Equipped with
The flavor molded article includes a non-tobacco base material and a tobacco material, and the content of the tobacco material in the flavor molded article is specified to be 10% by weight or less.
 また、前記エア通路は、前記負荷が配置された負荷通路部と、前記負荷通路部に連通するとともに前記負荷通路部よりもエアの流動方向で上流側に配置された上流通路部と、前記負荷通路部に連通するとともに前記負荷通路部よりもエアの流動方向で下流側に配置された下流通路部と、を有し、前記香味成形体は、前記上流通路部及び前記下流通路部の少なくとも何れか一方に配置されていてもよい。また、前記香味成形体は、前記上流通路部及び前記下流通路部の双方に配置されていてもよい。 Further, the air passage includes a load passage section in which the load is disposed, an upstream passage section that communicates with the load passage section and is disposed upstream of the load passage section in the air flow direction; a downstream passage that communicates with the load passage and is disposed downstream of the load passage in the air flow direction, and the flavor molded body is connected to the upstream passage and the downstream passage. It may be arranged at least on either side. Moreover, the said flavor molded object may be arrange|positioned in both the said upstream passage part and the said downstream passage part.
 また、実施形態に係る霧化ユニットの製造方法は、
 液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、ニコチンを含むエアロゾル生成液と、非たばこ基材及び香味材料を含む香味成形体と、エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、を準備する準備工程と、
 液体収容部にエアロゾル生成液を収容し、エア通路に香味成形体及び負荷を配置する組立工程と、
 を有し、
 香味成形体における香味材料はたばこ材料を含むとともに香味成形体中のたばこ材料の含有量が10重量%以下に規定されており、
 組立工程において、
 負荷を、エアロゾル生成液が液体収容部から導入される態様で配置し、且つ、香味成形体を、負荷よりもエアの流動方向で上流側の箇所及び下流側の箇所の少なくとも何れか一方に配置する。
Further, the method for manufacturing the atomization unit according to the embodiment includes:
An atomizing unit housing in which a liquid storage part and an air passage are formed, an aerosol generating liquid containing nicotine, a flavor molding containing a non-tobacco base material and a flavoring material, and atomizing the aerosol generating liquid to generate an aerosol. a preparation process for preparing an electrical load;
an assembly step of accommodating an aerosol generating liquid in a liquid accommodating section and arranging a flavor molded body and a load in an air passage;
has
The flavor material in the flavor molded body contains tobacco material, and the content of tobacco material in the flavor molded body is specified to be 10% by weight or less,
In the assembly process,
The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the flavor molded body is arranged at at least one of a location upstream and downstream of the load in the air flow direction. do.
<実施形態1>
 図1は、実施形態1に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の香味吸引具である。
<Embodiment 1>
FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to the first embodiment. The suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 As an example, the suction tool 10 according to the present embodiment extends in the direction of the central axis CL of the suction tool 10. Specifically, the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction" perpendicular to the long axis direction, and a "thickness" perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order. In this embodiment, among the orthogonal coordinates of X-Y-Z, the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction, and the X-axis direction (X direction or -X direction) corresponds to the width direction, and the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
 吸引具10は、電源ユニット11と、霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。 The suction tool 10 has a power supply unit 11 and an atomization unit 12. The power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged. When the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
 ここで、図1における符号120は、霧化ユニット12を構成する各種要素を収容する霧化ユニットハウジングであるとともに、その一部は、ユーザが吸引のために咥えるマウスピースを兼ねている。霧化ユニット12の霧化ユニットハウジング120には、霧化ユニットハウジング120の内部にエアを外部から取り入れるための孔である流入口72a,72bと、霧化ユニットハウジング120の内部から外部にエアロゾルを含むエアを排出するための排出口13が設けられている。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアロゾルを含むエアを吸い込むことができる。 Here, the reference numeral 120 in FIG. 1 is an atomization unit housing that houses various elements constituting the atomization unit 12, and a part of the housing also serves as a mouthpiece that the user holds in his or her mouth for suction. The atomization unit housing 120 of the atomization unit 12 has inflow ports 72a and 72b, which are holes for introducing air into the atomization unit housing 120 from the outside, and inlets 72a and 72b for introducing aerosol from the inside of the atomization unit housing 120 to the outside. A discharge port 13 is provided for discharging the air contained therein. When using the suction tool 10, the user of the suction tool 10 can inhale air containing aerosol discharged from the outlet 13.
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、これを制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、これを制御装置に伝え、制御装置が負荷40への通電を終了させる。 A sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13. When the user starts suctioning air, a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, and notifies the control device of this, and the control device ends the energization of the load 40.
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、この吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。 Note that the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation. In this case, the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch. The control device that receives this suction start request or suction end request starts or ends energization to the load 40.
 なお、上述したような電源ユニット11の構成は、特許文献1に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。 Note that the configuration of the power supply unit 11 as described above is similar to the power supply unit of a known suction tool as exemplified in Patent Document 1, so a more detailed explanation will be omitted.
 図2は、実施形態1に係る吸引具10の霧化ユニット12の主要部を示す模式的断面図である。具体的には、図2は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面(以下、「縦断面」ともいう)を模式的に図示している。図3は、図2のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面であり、「横断面」ともいう)を模式的に示す図である。図2及び図3を参照しつつ、霧化ユニット12について説明する。 FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 12 taken along a plane including the central axis CL. FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a cross section normal to the central axis CL, also referred to as a "cross section"). The atomization unit 12 will be explained with reference to FIGS. 2 and 3.
 本実施形態に係る霧化ユニット12(霧化ユニットハウジング120)は、長軸方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、エア通路20に配置された香味成形体60とを備えている。 The atomization unit 12 (atomization unit housing 120) according to the present embodiment includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and has a width It includes a plurality of wall portions (wall portions 71a to 71c) extending in the direction. Further, the atomization unit 12 includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid storage section 50 , and a flavor molded body 60 disposed in the air passage 20 .
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、複数の上流通路部、具体的には、上流通路部21a(すなわち、「第1の上流通路部」)、及び、上流通路部21b(すなわち、「第2の上流通路部」)を備えている。但し、エア通路は、単一の上流通路部を有していてもよいし、3本以上の上流通路部を有していてもよい。 The air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol). The air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23. The upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a (i.e., "first upstream passage section") and an upstream passage section 21b ( In other words, it includes a "second upstream passage section"). However, the air passage may have a single upstream passage, or may have three or more upstream passages.
 上流通路部21a,21bは、負荷通路部22よりも上流側(エアの流動方向で上流側)に配置されている。上流通路部21a,21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エアの流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。 The upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction). The downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22. The load passage section 22 is a passage section in which a load 40 is disposed. The downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。 Specifically, the upstream passage section 21a according to the present embodiment is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. There is. Further, the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. The load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c. The downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
 霧化ユニットハウジング120における壁部71aには、流入口72a,72bが設けられている。ハウジング外部のエアは、流入口72aから上流通路部21aに流入し、流入口72bから上流通路部21bに流入する。また、壁部71bには、連通孔72c及び連通孔72dが設けられている。上流通路部21aを通過したエアは、連通孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、連通孔72dから負荷通路部22に流入する。 The wall portion 71a of the atomization unit housing 120 is provided with inflow ports 72a and 72b. Air outside the housing flows into the upstream passage section 21a through the inlet 72a, and flows into the upstream passage section 21b through the inlet 72b. Further, the wall portion 71b is provided with a communication hole 72c and a communication hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the communication hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the communication hole 72d.
 本実施形態において、上流通路部21a,21bにおけるエアの流動方向(流通方向)は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。 In the present embodiment, the direction of flow of air (flow direction) in the upstream passages 21a and 21b is opposite to the direction of flow of air in the downstream passage 23. Specifically, in this embodiment, the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction, and the direction of air flow in the downstream passage section 23 is the Z direction.
 また、図2及び図3に示すように、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。 Further, as shown in FIGS. 2 and 3, the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
 具体的には、本実施形態に係る上流通路部21aは、図3に示すように、中心軸線CLを法線とする切断面で切断した断面視(すなわち、横断面視)で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、霧化ユニット12の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、霧化ユニット12の幅方向で、液体収容部50の他方の側に配置されている。 Specifically, as shown in FIG. 3, the upstream passage section 21a according to the present embodiment is configured to accommodate liquid in a cross-sectional view (i.e., a cross-sectional view) taken along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction) with the section 50 interposed therebetween. On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view. In other words, the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12. 50.
 なお、上流通路部21a及び上流通路部21bの横断面形状は、図3に例示するような多角形(図3では、一例として四角形)に限定されるものではなく、多角形以外の形状(例えば円形等)であってもよい。 Note that the cross-sectional shapes of the upstream passage portion 21a and the upstream passage portion 21b are not limited to the polygonal shape illustrated in FIG. (For example, it may be circular.)
 ウィック30は、液体収容部50に収容された、後述するエアロゾル生成液Leを負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象を利用して、液体収容部50のエアロゾル生成液Leを吸液保持するとともに、エアロゾル生成液Leを負荷40に導入している。ウィック30は、例えば、ガラス繊維や多孔質セラミックなどによって構成することができるが、これらには限定されない。 The wick 30 is a member for introducing an aerosol generating liquid Le, which will be described later, stored in the liquid storage section 50 into the load 40 of the load passage section 22. Although the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. While absorbing and holding the aerosol generating liquid Le of 50, the aerosol generating liquid Le is introduced into the load 40. The wick 30 can be made of, for example, glass fiber or porous ceramic, but is not limited thereto.
 負荷40は、液体収容部50のエアロゾル生成液Leが導入されるとともに、この導入されたエアロゾル生成液Leを霧化してエアロゾルを発生させるための電気的な負荷である。なお、本明細書において、エアロゾル生成液Leが「導入される」とは、「供給される」と実質的に同義である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータを用いている。このヒータとしては、発熱抵抗体(すなわち、電熱線)や、セラミックヒータ、誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体を用いており、この発熱抵抗体の一例として、コイル形状を有する発熱抵抗体を用いている。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータである。このコイルヒータは、ウィック30に巻き付けられている。 The load 40 is an electrical load for introducing the aerosol generation liquid Le from the liquid storage section 50 and for atomizing the introduced aerosol generation liquid Le to generate an aerosol. In addition, in this specification, "introducing" the aerosol generation liquid Le has substantially the same meaning as "supplying". The specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 40. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater, and a heating resistor having a coil shape is used as an example of this heating resistor. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50のエアロゾル生成液Leを加熱することで霧化して、エアロゾルを発生させる。 Further, the load 40 according to the present embodiment is arranged in the wick 30 inside the load passage section 22, for example. The load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device. The load 40 heats and atomizes the aerosol-generating liquid Le in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
 なお、このウィック30や負荷40の構成は、特許文献1に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 Note that the configurations of the wick 30 and the load 40 are similar to those used in known suction tools such as those exemplified in Patent Document 1, so a detailed description thereof will be omitted.
 液体収容部50はエアロゾル生成液Leを収容するための部位である。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、一例として、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。但し、この構成に限定されるものではなく、例えば、下流通路部23は、吸引具10の厚み方向(Y軸の方向)で液体収容部50に隣接するように設けられていてもよい。 The liquid storage section 50 is a part for storing the aerosol generation liquid Le. The liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Furthermore, in this embodiment, the aforementioned downstream passage section 23 is provided, as an example, so as to penetrate the liquid storage section 50 in the direction of the central axis CL. However, the configuration is not limited to this, and, for example, the downstream passage section 23 may be provided adjacent to the liquid storage section 50 in the thickness direction (Y-axis direction) of the suction tool 10.
[エアロゾル生成液]
 本実施形態では、エアロゾル生成液Leとして、所定の溶媒に、ニコチンが含有されたものを用いている。エアロゾル生成液Leはニコチンを含んでいれば特段制限されない。エアロゾル生成液Leに含まれるニコチンの態様は特段制限されず、例えば、合成ニコチン及び天然ニコチンから選択される1種以上のニコチンが挙げられる。なお、これらの合成ニコチン及び天然ニコチンは、ニコチンとして存在してもよく、ニコチン塩等のニコチン含有化合物として存在していてもよい。
[Aerosol generation liquid]
In this embodiment, as the aerosol generation liquid Le, a liquid containing nicotine in a predetermined solvent is used. The aerosol generation liquid Le is not particularly limited as long as it contains nicotine. The form of nicotine contained in the aerosol generation liquid Le is not particularly limited, and examples include one or more types of nicotine selected from synthetic nicotine and natural nicotine. Note that these synthetic nicotine and natural nicotine may exist as nicotine or as nicotine-containing compounds such as nicotine salts.
 エアロゾル生成液Leの態様は特段制限されず、例えば、所定の溶媒に、合成ニコチン及び天然ニコチンから選択される1種以上のニコチンが含有されたものを用いることができる。所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。 The form of the aerosol generation liquid Le is not particularly limited, and for example, one in which a predetermined solvent contains one or more types of nicotine selected from synthetic nicotine and natural nicotine can be used. The specific type of the predetermined solvent is not particularly limited, but for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. A liquid containing a substance can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent.
 エアロゾル生成液Leに含有されるニコチンとして天然ニコチンを用いる場合、この天然ニコチンは、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When using natural nicotine as the nicotine contained in the aerosol generation liquid Le, specifically, natural nicotine extracted and purified from tobacco leaves can be used. For such a method for producing natural nicotine, a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
 また、エアロゾル生成液Leに含有されるニコチンとして天然ニコチンを用いる場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。また、本明細書では、たばこ材料を抽出することにより得られる成分をたばこ抽出成分(少なくともニコチンを含む)と称する。 In addition, when using natural nicotine as the nicotine contained in the aerosol generation liquid Le, by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible components other than natural nicotine from the extract of tobacco materials, The purity of natural nicotine may be increased, and natural nicotine with increased purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight). Furthermore, in this specification, components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
 一方、エアロゾル生成液Leに含有されるニコチンとして合成ニコチンを用いる場合、この合成ニコチンとして、化学物質を用いた化学合成によって生成されたニコチンを用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。 On the other hand, when synthetic nicotine is used as the nicotine contained in the aerosol generation liquid Le, nicotine produced by chemical synthesis using a chemical substance can be used as the synthetic nicotine. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 合成ニコチンの生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The method for producing synthetic nicotine is not particularly limited, and any known production method can be used.
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン、ニコチンレブリン酸塩、ニコチン安息香酸塩、又はニコチン酒石酸塩等のニコチン塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned. When a nicotine-containing compound such as a nicotine salt is synthesized, the production method is not particularly limited, and any known production method can be used.
 たばこ抽出成分は、一般的にたばこ植物に含まれる物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。なお、ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル% 未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。 Tobacco extract components are generally substances contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance. Note that there are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually in the S-form, with the R-form accounting for less than 1 mol%. On the other hand, in synthetic nicotine, the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%). For example, it can be assumed that the nicotine in the oral composition is synthetic nicotine. The target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable. The embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
 エアロゾル生成液Leにニコチンを含有させる方法は特段制限されず、例えば、合成等によりもしくはたばこ材料の抽出により得られるニコチンもしくはニコチン塩等のニコチン含有化合物をエアロゾル生成液Leに溶解させる方法、又はこれらのニコチンもしくはニコチン含有化合物を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。 The method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and examples include methods of dissolving nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis or extraction of tobacco materials in the aerosol generation liquid Le; Examples include a method in which nicotine or a nicotine-containing compound is dissolved in a solvent and then mixed with the aerosol generation liquid Le.
 エアロゾル生成液Le中のニコチンの含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。たばこ抽出成分を含むエアロゾル生成液Leを用いる態様では、ニコチンの供給源としてたばこ抽出液を用いることができる。この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。 The content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less. In the embodiment using the aerosol generation liquid Le containing tobacco extract components, the tobacco extract can be used as the nicotine supply source. In this case, the content of the tobacco extract in the aerosol-generating liquid Le is not particularly limited, but may be, for example, 0.1% by weight or more and 10% by weight or less, from the viewpoint of enabling a sufficient supply of nicotine. , may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
 エアロゾル生成液Leに含まれる所定の溶媒、例えば、エアロゾル基材(エアロゾルを生成するための基材)の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。 The type of predetermined solvent contained in the aerosol generation liquid Le, such as the type of aerosol base material (base material for generating aerosol), is not particularly limited, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and one or more substances selected from the group consisting of water.
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。 The content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類はニコチンを溶解させることができれば特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル生成基材としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液として利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、減圧蒸留等の手段を用いて焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含むことができ、その具体例としては、例えばネオフィタジエン等が挙げられる。 The type of solvent used in the extraction to obtain the above tobacco extract component is not particularly limited as long as it can dissolve nicotine, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances selected from the group or a liquid containing this substance can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent. Note that if the solvent also acts as an aerosol-generating base material, the tobacco extract can be used as it is as an aerosol-generating liquid; however, the tobacco extract may contain components that can cause charring when heated (e.g., lipids, etc.). metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation. Note that the tobacco extract can contain flavor components in the tobacco material other than nicotine, and specific examples thereof include neophytadiene and the like.
 エアロゾル生成液Leは、ニコチン及びエアロゾル基材以外の成分(その他の成分)を有していてもよく、例えば、ニコチン以外の香味成分(上述したニコチン以外のたばこ抽出成分を含む)等が挙げられる。 The aerosol generation liquid Le may have components other than nicotine and the aerosol base material (other components), such as flavor components other than nicotine (including the above-mentioned tobacco extract components other than nicotine), etc. .
 ニコチン及びたばこ材料由来の香味成分以外の香味成分しては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、ラクトン類(例えば、ω-ペンタデカラクトン等)、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられる。 Flavor components other than nicotine and flavor components derived from tobacco materials include, for example, menthol, natural vegetable flavorings (for example, cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil) , chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone) , ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), lactones (e.g., ω-penta decalactone, etc.), neophytadiene, solanone, or solanesol.
[成形体]
 次に、エア通路20に配置された香味成形体60について説明する。香味成形体60は、非たばこ基材及び香味材料等を含み、これらが固められて所定形状に成形されたものである。また、本実施形態において、香味成形体60に含まれる香味材料には、少なくともたばこ材料が含まれており、且つ、香味成形体60中におけるたばこ材料は10重量%以下に規定されている。勿論、香味材料は、たばこ材料に加えて、たばこ材料に由来しない種々の香味成分を含んでいてもよい。
[Molded object]
Next, the flavor molded body 60 disposed in the air passage 20 will be explained. The flavor molded body 60 includes a non-tobacco base material, a flavor material, etc., and is solidified and molded into a predetermined shape. Further, in the present embodiment, the flavor material contained in the flavor molded body 60 includes at least tobacco material, and the tobacco material in the flavor molded body 60 is specified to be 10% by weight or less. Of course, the flavor material may contain, in addition to the tobacco material, various flavor components not derived from the tobacco material.
 非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材は、香味成形体60の主たる材料、特に、香味成形体60の成形を担保する主たる材料であってよい。 The type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Further, the non-tobacco base material may be the main material of the flavor molded body 60, particularly the main material that ensures the molding of the flavor molded body 60.
 香味成形体60中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、100重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。 The content of the non-tobacco base material in the flavor molded body 60 is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 100% by weight or less, It may be more than 80% by weight and less than 80% by weight.
 香味成形体60に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、ニコチンを付与するたばこ材料が挙げられる。なお、本明細書において、香味成形体60に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、香味成形体60がたばこ材料を含む場合、香味材料は、たばこ材料に含まれるニコチンでなく、たばこ材料である。 The form of the flavor material contained in the flavor molded body 60 is not particularly limited, and for example, it may be a flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component imparting material. Examples of component-imparting materials include tobacco materials that provide nicotine. In this specification, when the flavor molded body 60 contains a flavor component imparting material, the flavor component imparting material is treated as the flavor material, not the flavor component contained in the flavor component imparting material. For example, when the flavor molded body 60 contains a tobacco material, the flavor material is not nicotine contained in the tobacco material, but the tobacco material.
 たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。 The form of the tobacco material is not particularly limited; for example, it may contain tissues such as leaves, stems, flowers, roots, reproductive organs, or embryos of tobacco plants, and tobacco materials using these tobacco plant tissues may also be used. Processed products (for example, tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in known tobacco products) may be included, but from the viewpoint of ensuring a sufficient amount of use and ease of processing, Tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
 本明細書において、「香味材料がたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに香味成形体中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに前記香味成形体中の前記たばこ材料は10重量%以下である」の表現に換言することができる。 As used herein, "the flavoring material contains tobacco material" does not mean that the flavoring material contains tobacco material, but rather that it contains tobacco material as one of the types of flavoring material. , the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less" means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less". The content of the material is 10% by weight or less."
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。 Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadeca), lactone, etc.).
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。 The method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
 香味成形体60中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。また、香味成形体60がたばこ材料を含む場合、香味成形体60中のたばこ材料の含有量は特段制限されないが、香味のスパイスとしてのエア通路20を流通するエアに香味を付与する観点からは、1重量%以上であることが好ましく、3重量%以上であることがより好ましく、7重量%以上であることがさらに好ましい。一方、香味成形体60に含まれるたばこ材料の量が多すぎると、たばこ材料が非たばこ基材から分離しやすくなり得る。そこで、非たばこ基材からたばこ材料が分離すること等を抑制する観点からは、香味成形体60中におけるたばこ材料の含有量は、10重量%以下であることが好ましく、7重量%以下であることがより好ましく、3重量%以下であることがさらに好ましい。 The content of the flavor material in the flavor molded body 60 is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, 3 It may be more than 50% by weight and less than 50% by weight. Further, when the flavor molded body 60 contains tobacco material, the content of the tobacco material in the flavor molded body 60 is not particularly limited, but from the viewpoint of imparting flavor to the air flowing through the air passage 20 as a flavor spice. , is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 7% by weight or more. On the other hand, if the amount of tobacco material contained in the flavor molded body 60 is too large, the tobacco material may be easily separated from the non-tobacco base material. Therefore, from the viewpoint of suppressing the separation of the tobacco material from the non-tobacco base material, the content of the tobacco material in the flavor molded body 60 is preferably 10% by weight or less, and preferably 7% by weight or less. The content is more preferably 3% by weight or less, and even more preferably 3% by weight or less.
 香味成形体60は、非たばこ基材等の香味成形体60に含まれる材料を接着するため、バインダーを含んでいてもよい。バインダーの種類は特段制限されず、例えば、澱粉、ヒドロキシアルキルセルロース、ポリ酢酸ビニル、又はアルキルヒドロキシアルキルセルロース等を用いることができる。また、香味成形体中のバインダーの含有量は、十分な接着性を確保する観点から、1重量%以上、20重量%以下であってよく、3重量%以上、15重量%以下であってよく、5重量%以上、10重量%以下であってよい。 The flavor molded body 60 may contain a binder to bond materials included in the flavor molded body 60 such as non-tobacco base materials. The type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, polyvinyl acetate, or alkylhydroxyalkylcellulose can be used. In addition, the content of the binder in the flavor molded product may be 1% by weight or more and 20% by weight or less, and may be 3% by weight or more and 15% by weight or less, from the viewpoint of ensuring sufficient adhesiveness. , 5% by weight or more and 10% by weight or less.
 香味成形体60は、上記の各種成分以外の成分を含んでいてもよく、例えば、炭酸カリウム、炭酸水素カリウム(pH調整のため)等を含んでいてもよい。 The flavor molded body 60 may contain components other than the above-mentioned various components, for example, potassium carbonate, potassium hydrogen carbonate (for pH adjustment), etc.
 また、香味成形体60の表面は、樹脂等のコーティング材でコーティングされていてもよい。勿論、香味成形体60の表面がコーティング材によってコーティングされていなくてもよい。但し、香味成形体60の表面がコーティング材によってコーティングされていることにより、成形体の形状を保つことが容易になる。コーティング材としては、例えば、ポリエチレン、ポリエチレンワックス、マイクロクリスタリンワックス、みつろう、又はツェイン等が挙げられる。 Additionally, the surface of the flavor molded body 60 may be coated with a coating material such as resin. Of course, the surface of the flavor molded object 60 does not need to be coated with the coating material. However, since the surface of the flavor molded body 60 is coated with a coating material, it becomes easier to maintain the shape of the molded body. Examples of the coating material include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
 また、本実施形態において、香味成形体60の密度(単位体積当たりの質量)は、一例として、1000mg/cm以上、1450mg/cm以下であってよく、また、1100mg/cm以上、1450mg/cm以下であってもよい。但し、香味成形体60の密度は、これに限定されるものではなく、1000mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよく、また、1100mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよい。香味成形体60が複数個で存在する場合には、この密度は、香味成形体60の総体積に対する総質量として求めることができる。 Further, in the present embodiment, the density (mass per unit volume) of the flavor molded body 60 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg /cm 3 or less. However, the density of the flavor molded body 60 is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies 60 are present, this density can be determined as the total mass relative to the total volume of the flavor molded bodies 60.
 本実施形態に係る香味成形体60の形状は特段制限されず、一例として、棒形状(長さが幅よりも長い形状)である。香味成形体60の横断面形状は特に限定されず、任意の形状を採用できる。また、複数の棒状の香味成形体60が束となってエア通路20に配置されていてもよい。この場合、個々の香味成形体60は、互いに一体化していてもよいし、一体化していなくともよい。また、後述するように、香味成形体60が棒形状を有する場合、その内部及び側面(外面)の少なくとも何れか一方に、当該香味成形体60の軸方向に延びるエア流通路が形成されていてもよい。このエア流通路は、エアを流通させるための流路であり、香味成形体60の前端から後端にわたり形成することができる。また、エア流通路は、香味成形体60の内部に形成される貫通孔であってもよいし、香味成形体60の側面(外面)に形成された溝部であってもよい。 The shape of the flavor molded body 60 according to the present embodiment is not particularly limited, and is, for example, a rod shape (a shape in which the length is longer than the width). The cross-sectional shape of the flavor molded body 60 is not particularly limited, and any shape can be adopted. Further, a plurality of rod-shaped flavor molded bodies 60 may be arranged in a bundle in the air passage 20. In this case, the individual flavor molded bodies 60 may or may not be integrated with each other. In addition, as will be described later, when the flavor molded body 60 has a rod shape, an air flow passage extending in the axial direction of the flavor molded body 60 is formed in at least one of the inside and the side surface (outer surface). Good too. This air flow path is a flow path for circulating air, and can be formed from the front end to the rear end of the flavor molded body 60. Further, the air flow passage may be a through hole formed inside the flavor molded body 60, or a groove formed on the side surface (outer surface) of the flavor molded body 60.
 また、シート形状を有する香味成形体60を用いる場合には、具体的には、香味成形体60として、非たばこ基材と香味材料との混合物の抄造シート、非たばこ基材と香味材料との混合物のキャストシート、又は非たばこ基材と香味材料との混合物の圧延シート等、又は、非たばこ基材のシートの表面に塗布又は噴霧等により香味材料を付与したシート等を用いることができる。また、香味成形体60は、単一のシートを蛇腹形態や渦巻形態等、任意の形態に折り込んだ状態でエア通路20に配置されてもよい。また、上記シートを短冊状に裁断した複数の短冊シート片を香味成形体60としてエア通路20に充填してもよい。この場合、香味成形体60としての短冊シート片は、エア通路20に沿って整列配置されてもよいし、特定の方向に沿って整列させないランダム配置としてもよい。 In addition, when using the flavor molded body 60 having a sheet shape, specifically, the flavor molded body 60 may be a sheet made of a mixture of a non-tobacco base material and a flavor material, or a sheet made of a mixture of a non-tobacco base material and a flavor material. A cast sheet of a mixture, a rolled sheet of a mixture of a non-tobacco base material and a flavoring material, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying on the surface of the sheet can be used. Further, the flavor molded body 60 may be placed in the air passage 20 in a state in which a single sheet is folded into an arbitrary shape such as a bellows shape or a spiral shape. Further, the air passage 20 may be filled with a plurality of strip sheet pieces obtained by cutting the sheet into strips as the flavor molded body 60. In this case, the strip sheet pieces serving as the flavor molded bodies 60 may be arranged in alignment along the air passage 20, or may be arranged randomly without being aligned in a specific direction.
 また、香味成形体60は板形状を有していてもよい。また、香味成形体60は、棒形状、板形状、シート形状以外の形状を有していてもよい。例えば、香味成形体60は顆粒の形態を呈しており、香味成形体60を形成する複数の顆粒がエア通路20に充填されてもよい。勿論、香味成形体60を形成する顆粒の形状は特に限定されない。 Additionally, the flavor molded body 60 may have a plate shape. Further, the flavor molded body 60 may have a shape other than a rod shape, a plate shape, or a sheet shape. For example, the flavor molded body 60 is in the form of granules, and the air passage 20 may be filled with a plurality of granules forming the flavor molded body 60. Of course, the shape of the granules forming the flavor molded body 60 is not particularly limited.
 図4は、実施形態1に係る香味成形体60の模式的な斜視図である。図4に示す香味成形体60は、エア通路20(本実施形態においては、上流通路部21a,21b)の延在方向(エアの流動方向)に沿って棒形状を有している。より詳しくは、香味成形体60は、直方体形状を有し、エア通路20(本実施形態においては、上流通路部21a,21b)の延在方向(エアの流動方向)に沿って延びる軸X1を有している。また、図4に示すように、香味成形体60には、軸X1に沿って、香味成形体60を貫通するエア流通路61が形成されている。なお、図4に示す例では、エア流通路61が香味成形体60の軸X1と同軸に配置されているが、これには限定されない。また、香味成形体60に形成されるエア流通路61の数については特に限定されず、例えば複数のエア流通路61が香味成形体60に形成されていてもよい。また、図4に示す例では、エア流通路61の横断面が円形状を有しているが、エア流通路61の横断面形状は特に限定されない。 FIG. 4 is a schematic perspective view of the flavor molded body 60 according to the first embodiment. The flavor molded body 60 shown in FIG. 4 has a rod shape along the extending direction (air flow direction) of the air passage 20 (in the present embodiment, the upstream passage portions 21a, 21b). More specifically, the flavor molded body 60 has a rectangular parallelepiped shape, and has an axis X1 extending along the direction in which the air passage 20 (in this embodiment, the upstream passage portions 21a and 21b) extends (air flow direction). have. Moreover, as shown in FIG. 4, the flavor molded body 60 is formed with an air flow passage 61 that penetrates the flavor molded body 60 along the axis X1. In the example shown in FIG. 4, the air flow passage 61 is arranged coaxially with the axis X1 of the flavor molded body 60, but the invention is not limited thereto. Further, the number of air flow passages 61 formed in the flavor molded body 60 is not particularly limited, and for example, a plurality of air flow passages 61 may be formed in the flavor molded body 60. Further, in the example shown in FIG. 4, the cross-sectional shape of the air flow passage 61 is circular, but the cross-sectional shape of the air flow passage 61 is not particularly limited.
 また、図4に示す例では、軸X1が香味成形体60の長手方向に沿って延びる軸となっているが、これには限定されない。香味成形体60の形状は、特に限定されるものではなく、例えば、香味成形体60の長さ寸法(エア通路20(本実施形態においては、上流通路部21a,21b)を流通するエアの流動方向に沿う寸法)と、これに直交する幅寸法が等しくてもよいし、長さ寸法よりも幅寸法の方が大きくてもよい。勿論、香味成形体60において、軸X1に直交する横断面の形状は特に限定されず、例えば四角形以外の多角形であってもよいし、円形、楕円形など、他の形状を有していてもよい。 Further, in the example shown in FIG. 4, the axis X1 is an axis extending along the longitudinal direction of the flavor molded body 60, but the axis is not limited to this. The shape of the flavor molded body 60 is not particularly limited, and for example, the length dimension of the flavor molded body 60 (the shape of the air flowing through the air passage 20 (in this embodiment, the upstream passage portions 21a, 21b) The dimension along the flow direction) and the width dimension perpendicular thereto may be equal, or the width dimension may be larger than the length dimension. Of course, in the flavor molded body 60, the shape of the cross section perpendicular to the axis X1 is not particularly limited, and may be a polygon other than a quadrangle, or have other shapes such as a circle or an ellipse. Good too.
 また、図2に示すように、香味成形体60の長さ寸法は、霧化ユニット12における上流通路部21a,21bの長さ寸法よりも小さい。そして、香味成形体60における一方の端部が、霧化ユニットハウジング120における壁部71bに当接した状態で位置決めされている。上流通路部21a,21bのうち、香味成形体60が配置されていない区間は、中空となっている。また、香味成形体60は、その側面が上流通路部21a,21bの壁面によって圧縮された状態で規定位置に位置決め固定されていてもよい。 Moreover, as shown in FIG. 2, the length dimension of the flavor molded object 60 is smaller than the length dimension of the upstream passage portions 21a and 21b in the atomization unit 12. One end of the flavor molded body 60 is positioned in contact with the wall 71b of the atomization unit housing 120. Among the upstream passage sections 21a and 21b, the section where the flavor molded body 60 is not arranged is hollow. Further, the flavor molded body 60 may be positioned and fixed at a prescribed position with its side surface compressed by the wall surfaces of the upstream passage portions 21a and 21b.
 本実施形態における香味成形体60は、上流通路部21a,21bを流通するエアの通気抵抗が過度に大きくならない態様、すなわち、当該エアの円滑な流通が阻害されない態様で上流通路部21a,21bに配置される。図4に示す例では、香味成形体60の軸X1方向に沿ってエア流通路61が貫通しているため、このエア流通路61を通じてエアを円滑に流通させることができる。 The flavor molded body 60 in this embodiment is arranged in the upstream passage parts 21a, 21b in such a manner that the ventilation resistance of the air flowing through the upstream passage parts 21a, 21b does not become excessively large, that is, in such a manner that the smooth circulation of the air is not inhibited. 21b. In the example shown in FIG. 4, since the air flow passage 61 passes through the flavor molded body 60 along the axis X1 direction, air can be smoothly circulated through the air flow passage 61.
 吸引具10を用いたエアロゾルの吸引は以下のように行われる。まず、ユーザが吸引具10の排出口13を咥えた状態での吸引動作を開始した場合、外部のエアが霧化ユニット12における各流入口72a,72bからエア通路20(上流通路部21a,21b)に流入する。また、電源ユニット11に設けられた制御装置が、上記ユーザの吸引動作を検知すると、バッテリに指令を出し、霧化ユニット12における負荷40への通電を開始させる。各流入口72a,72bからエア通路20における上流通路部21a,21bに流入したエアは、上流通路部21a,21bに配置された香味成形体60のエア流通路61を通過した後、各連通孔72c,72dを介して、ウィック30及び負荷40が配置された負荷通路部22に流入する。上記のとおり、本実施形態における香味成形体60は、少なくともたばこ材料を含む香味材料を有しているため、香味成形体60のエア流通路61をエアが通過する際に、香味成形体60の香味材料(例えば、たばこ材料の香味成分)によってエアに香味が付与される。 Suction of aerosol using the suction tool 10 is performed as follows. First, when a user starts a suction operation while holding the discharge port 13 of the suction tool 10 in his or her mouth, external air flows from each inlet port 72a, 72b in the atomization unit 12 to the air passage 20 ( upstream passage portion 21a, 21b). Further, when the control device provided in the power supply unit 11 detects the user's suction operation, it issues a command to the battery and starts energizing the load 40 in the atomization unit 12 . The air flowing into the upstream passage portions 21a, 21b of the air passage 20 from the respective inflow ports 72a, 72b passes through the air flow passage 61 of the flavor molded body 60 disposed in the upstream passage portions 21a, 21b. It flows into the load passage section 22 in which the wick 30 and the load 40 are arranged through the communication holes 72c and 72d. As described above, since the flavor molded body 60 in this embodiment has a flavor material containing at least a tobacco material, when air passes through the air flow passage 61 of the flavor molded body 60, the flavor molded body 60 Flavoring materials (eg, flavoring components of tobacco materials) impart flavor to the air.
 一方、負荷通路部22に配置されているウィック30には、液体収容部50から供給されたエアロゾル生成液Leが吸液保持されている。そのため、バッテリから負荷40への通電が開始されると、ウィック30に保持されているエアロゾル生成液Leが蒸発する。そして、負荷通路部22において生成されたエアロゾル生成液Leの蒸気は、負荷通路部22に流入したエア(香味付与後のエア)と、ウィック30の周辺(「霧化部」ともいえる)で混合される結果、エアロゾルが生成される。このようにして、負荷通路部22(霧化部)で生成されたエアロゾルを含むエアは下流通路部23に流入し、当該下流通路部23の下流端に位置する排出口13から排出されることによって、最終的にユーザに吸引される。 On the other hand, the wick 30 disposed in the load passage section 22 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 50. Therefore, when electricity starts to be applied from the battery to the load 40, the aerosol generation liquid Le held in the wick 30 evaporates. Then, the vapor of the aerosol generation liquid Le generated in the load passage section 22 is mixed with the air (air after flavoring) that has flowed into the load passage section 22 around the wick 30 (which can also be called the "atomization section"). As a result, aerosols are generated. In this way, the air containing the aerosol generated in the load passage section 22 (atomization section) flows into the downstream passage section 23 and is discharged from the discharge port 13 located at the downstream end of the downstream passage section 23. This ultimately attracts the user.
 以上説明したような本実施形態に係る霧化ユニット12及びこれを備えた吸引具10によれば、液体収容部50にニコチンを含むエアロゾル生成液Leが収容されており、且つ、エア通路20に香味材料を含む香味成形体60が配置されている。そのため、エア通路20を通過するエアに、エアロゾル生成液Leに含まれるニコチンに由来する香味成分と、香味成形体60に含まれる香味成分とを、2段階で付加することができる。これにより、霧化ユニット12によって生成されるエアロゾルに対する香味付けを十分に行うことができる。つまり、本実施形態によれば、エアロゾル生成液Leに含まれる香味成分のみや、香味成形体60に含まれる香味成分のみでは表現しきれない深みのある香味をエアロゾルに付与することができる。 According to the atomization unit 12 and the suction tool 10 equipped with the atomization unit 12 according to the present embodiment as described above, the aerosol generating liquid Le containing nicotine is stored in the liquid storage part 50, and the air passage 20 is A flavor molded body 60 containing a flavor material is arranged. Therefore, the flavor component derived from nicotine contained in the aerosol generation liquid Le and the flavor component contained in the flavor molded body 60 can be added to the air passing through the air passage 20 in two stages. Thereby, the aerosol generated by the atomization unit 12 can be sufficiently flavored. That is, according to the present embodiment, it is possible to impart a deep flavor to the aerosol that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the flavor molded body 60 alone.
 また、本実施形態における香味成形体60は、非たばこ基材を有しているため、香味成形体60に少量の香味材料を添加したい場合においても、重量のコントロールが容易となるという利点がある。また、香味成形体60に非たばこ基材を含ませることによって、香味成分の揮発が製品の使用中にわたり安定する(徐放性の改善)という利点もある。また、香味成形体60には、香味材料の1種としてたばこ材料を含み、香味成形体60中のたばこ材料の含有量が10重量%以下に規定されている。このように、香味成形体60に、少量のたばこ材料を含ませることによって、霧化ユニット12で生成するエアロゾルに対して、スパイス的な香味を付与することができる。また、香味成形体60に含まれるたばこ材料の量が過度に多くないため、たばこ材料が非たばこ基材から分離しにくくなるという利点がある。また、エア通路20(本実施形態では、上流通路部21a,21b)を通過するエアに付香する香味源を成形体の形態で配置するようにしたため、霧化ユニット12の組み立て時における香味成形体60の取り扱いが容易である。 Furthermore, since the flavor molded product 60 in this embodiment has a non-tobacco base material, there is an advantage that the weight can be easily controlled even when it is desired to add a small amount of flavor material to the flavor molded product 60. . Further, by including the non-tobacco base material in the flavor molded body 60, there is an advantage that the volatilization of the flavor component is stabilized during use of the product (improvement of sustained release properties). Further, the flavor molded body 60 contains tobacco material as one type of flavor material, and the content of the tobacco material in the flavor molded body 60 is specified to be 10% by weight or less. In this way, by including a small amount of tobacco material in the flavor molded body 60, a spice-like flavor can be imparted to the aerosol generated in the atomization unit 12. Furthermore, since the amount of tobacco material contained in the flavor molded body 60 is not excessively large, there is an advantage that the tobacco material is difficult to separate from the non-tobacco base material. In addition, since the flavor source that adds flavor to the air passing through the air passage 20 (in this embodiment, the upstream passage sections 21a and 21b) is arranged in the form of a molded body, the flavor source when assembling the atomization unit 12 can be The molded body 60 is easy to handle.
 続いて、霧化ユニット12の製造方法について説明する。図5は、実施形態1に係る霧化ユニット12の製造方法を説明するためのフロー図である。 Next, a method for manufacturing the atomization unit 12 will be explained. FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first embodiment.
[準備工程]
 ステップS10に係る準備工程において、液体収容部50とエア通路20が内部に形成された霧化ユニットハウジングと、ニコチンを含むエアロゾル生成液Leと、非たばこ基材及び香味材料を含む香味成形体60と、エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷40と、ウィック30を準備する。ここでいう霧化ユニットハウジングは、図2及び図3等で説明した霧化ユニットハウジング120のうち、エア通路20に負荷40、ウィック30、香味成形体60等が未だ配置されておらず、且つ、液体収容部50にエアロゾル生成液Leが充填される前の状態のハウジングを指す。
[Preparation process]
In the preparation process related to step S10, the atomization unit housing in which the liquid storage part 50 and the air passage 20 are formed, the aerosol generating liquid Le containing nicotine, the flavor molded body 60 containing the non-tobacco base material and the flavor material Then, an electric load 40 that atomizes the aerosol-generating liquid to generate an aerosol, and a wick 30 are prepared. The atomization unit housing referred to here is the atomization unit housing 120 described in FIGS. 2, 3, etc., in which the load 40, the wick 30, the flavor molded body 60, etc. are not yet arranged in the air passage 20, and , refers to the housing in a state before the liquid storage section 50 is filled with the aerosol generation liquid Le.
 準備工程でニコチンを含むエアロゾル生成液Leを準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、合成等により得られるニコチンもしくはニコチン塩等のニコチン含有化合物をエアロゾル生成液に溶解させる方法、又はたばこ材料の抽出により得られる成分をエアロゾル生成液Leに溶解させる方法等が挙げられる。ここで、合成等により得られるニコチン又はニコチン塩等のニコチン含有化合物の入手方法は特段制限されず、公知の方法により製造することができるが、市販品を用いてもよい。また、上記のエアロゾル生成液Leは、エアロゾル基材を含む液体であってよく、また、エアロゾル基材自体であってもよい。 The specific method for preparing the aerosol generating liquid Le containing nicotine in the preparation step is not particularly limited, and any known method can be adopted. Examples include a method in which a nicotine-containing compound such as nicotine or a nicotine salt obtained by synthesis or the like is dissolved in the aerosol generation liquid, or a method in which a component obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le. Here, the method for obtaining nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis etc. is not particularly limited, and can be produced by known methods, but commercially available products may also be used. Moreover, the above-mentioned aerosol generating liquid Le may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
 以下、エアロゾル生成液Leを製造する方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合する方法について具体的に説明する。 Hereinafter, as an example of the method for producing the aerosol-generating liquid Le, a method in which an extract obtained by dissolving tobacco leaves in a solvent is mixed with an aerosol base material will be specifically described.
 上記製造方法は、まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。 In the above manufacturing method, first, an alkaline substance is applied to tobacco leaves (referred to as alkali treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous potassium carbonate solution can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種の物質、または、この群の中から選択される2種類以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment). During this heat treatment, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group. Two or more kinds of substances are brought into contact with tobacco leaves.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used. As a result, a collection solvent containing flavor components such as nicotine (hereinafter also simply referred to as "flavor components") can be obtained (that is, flavor components can be extracted from tobacco leaves).
 なお、上述した捕集溶媒を使用せずにエアロゾル生成液Leを製造してもよい。この場合、例えば、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出してもよい。 Note that the aerosol generation liquid Le may be produced without using the above-mentioned collection solvent. In this case, for example, after applying the above heat treatment to tobacco leaves that have been treated with alkali, the components released from the tobacco leaves into the gas phase can be condensed by cooling them using a condenser or the like. The flavor components may be extracted.
 また、上述したアルカリ処理を行わずにエアロゾル生成液Leを製造してもよい。この場合、例えば、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、上記物質が添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させ、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Additionally, the aerosol generation liquid Le may be produced without performing the alkali treatment described above. In this case, for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment). Add substance. Next, the tobacco leaf to which the above substance has been added is heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 また、エアロゾル生成液Leを製造する際、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させてもよい。このような工程によっても、香味成分を抽出することができる。 Further, when producing the aerosol generation liquid Le, an aerosol in which one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or The aerosol formed by two or more substances selected from this group is passed through tobacco leaves (tobacco leaves that have not been treated with alkali), and the aerosol that has passed through the tobacco leaves is captured in a collection solvent. You may collect them. Flavor components can also be extracted by such a process.
 また、エアロゾル生成液Leを製造する際、上述した手法で抽出された香味成分に含まれ得る「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)を行ってもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。なお、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、ニコチンの供給源としてたばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。 In addition, when producing the aerosol generation liquid Le, a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250 ° C.") that may be included in the flavor components extracted by the method described above is reduced. (also referred to as "reduction processing") may be performed. By reducing "the amount of carbonized components that become carbide when heated to 250° C.", adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed. Furthermore, since the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 The specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced. The amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
 ここで、たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分を濃縮するための濃縮処理に供し、濃縮等の手段を用いて焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を濃縮処理に供することが好ましい。 Here, since the tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), the tobacco extract is subjected to a concentration treatment to concentrate the tobacco extract components. It is preferable to remove substances that cause scorching using the following means. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to concentration treatment if it contains a substance that causes scorching.
 次に、香味成形体60の製造方法について説明する。香味成形体60は、上記のとおり、非たばこ基材及び香味材料を含み、香味材料が少量(香味成形体60中の含有量が10重量%以下)のたばこ材料を含む成形体である。香味成形体60の製造方法は特に限定されないが、例えば、セラミック、合成ポリマー、又は、たばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)と香味材料を混合して混合物を得た後、プレス加圧成形、押出成形、射出成形、転写成形、圧縮成形、又は鋳込成形等の方法により、当該混合物を所定の形状に成形してもよい。ここで、非たばこ基材がポリマーである場合には、ポリマーを溶媒に溶解させて得られた溶液から加熱等により溶媒を揮発させる方法、又はモノマーを重合させる方法等により所定の形状の香味成形体を得る方法を採用することもできる。また、非たばこ基材を含む任意の固体形状の複合材料を得た後に、切削又は研削等により該複合材料を所定の形状となるように加工してもよい。或いは、上述した非たばこ基材(非たばこ基材の溶融物であってもよい)を所定の形状に成形した後、非たばこ基材の表面に香味材料を塗布又は噴霧する等して香味成形体60を製造してもよい。 Next, a method for manufacturing the flavor molded body 60 will be explained. As described above, the flavor molded product 60 is a molded product that contains a non-tobacco base material and a flavor material, and contains a tobacco material with a small amount of flavor material (the content in the flavor molded product 60 is 10% by weight or less). The method for producing the flavor molded body 60 is not particularly limited, but for example, non-tobacco base materials such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants (melts of non-tobacco base materials may also be used) and a flavoring material to obtain a mixture, and then molding the mixture into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. good. Here, when the non-tobacco base material is a polymer, flavor molding into a predetermined shape is performed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining a body. Furthermore, after obtaining a composite material in any solid shape containing a non-tobacco base material, the composite material may be processed into a predetermined shape by cutting, grinding, or the like. Alternatively, after forming the above-mentioned non-tobacco base material (which may be a melt of the non-tobacco base material) into a predetermined shape, flavor molding is performed by applying or spraying a flavor material onto the surface of the non-tobacco base material. The body 60 may be manufactured.
 なお、香味成形体60を製造する際、香味成形体60の表面をコーティング材でコーティングしてもよい。これにより、香味成形体60として、所定形状に固められた非たばこ基材の表面がコーティング材で覆われた香味成形体60を製造することができる。 Note that when manufacturing the flavor molded body 60, the surface of the flavor molded body 60 may be coated with a coating material. Thereby, it is possible to manufacture the flavor molded object 60 in which the surface of the non-tobacco base material hardened into a predetermined shape is covered with the coating material.
 このコーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。 For example, wax can be used as this coating material. Examples of this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
 あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。 Alternatively, corn protein can also be used as a coating material. A specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd. Alternatively, polyvinyl acetate can also be used as a coating material.
 また、香味成形体60を製造する際、非たばこ基材にたばこ残渣を含ませてもよい。また、ニコチンを含むエアロゾル生成液の製造においてたばこ抽出液を得る場合には、該たばこ抽出物を得る際の抽出で得られたたばこ残渣を用いることが好ましい。 Furthermore, when manufacturing the flavor molded body 60, tobacco residue may be included in the non-tobacco base material. Furthermore, when obtaining a tobacco extract in the production of an aerosol generating liquid containing nicotine, it is preferable to use tobacco residue obtained in the extraction when obtaining the tobacco extract.
[組立工程]
 上記の準備工程が終わると、ステップS20に係る組立工程において、霧化ユニットハウジング120の液体収容部50にエアロゾル生成液Leを収容し、エア通路20に香味成形体60、ウィック30、負荷40をそれぞれ配置する。ここでは、霧化ユニットハウジング120の負荷通路部22にウィック30及び負荷40を配置し、各上流通路部21a,21bに香味成形体60をそれぞれ配置する。その際、負荷40は、エアロゾル生成液Leが液体収容部50から導入される態様で配置される。例えば、液体収容部50の内部に連通するようにウィック30を負荷通路部22に設置し、当該ウィック30と接触した状態で負荷40を負荷通路部22に設置してもよい。本実施形態では、組立工程においては、香味成形体60を、エア通路20における負荷40よりもエアの流動方向で上流側の箇所、すなわち、各上流通路部21a,21bに香味成形体60を配置する。但し、上流通路部21a,21bに代えて下流通路部23に香味成形体60を配置してもよいし、上流通路部21a,21b及び下流通路部23の双方に香味成形体60を配置してもよい。
[Assembly process]
After the above preparation process is completed, in the assembly process related to step S20, the aerosol generation liquid Le is accommodated in the liquid storage part 50 of the atomization unit housing 120, and the flavor molded body 60, the wick 30, and the load 40 are placed in the air passage 20. Place each. Here, the wick 30 and the load 40 are arranged in the load passage section 22 of the atomization unit housing 120, and the flavor molded bodies 60 are arranged in each upstream passage section 21a, 21b. At this time, the load 40 is arranged in such a manner that the aerosol generating liquid Le is introduced from the liquid storage section 50. For example, the wick 30 may be installed in the load passage section 22 so as to communicate with the inside of the liquid storage section 50, and the load 40 may be installed in the load passage section 22 in a state in which it is in contact with the wick 30. In this embodiment, in the assembly process, the flavor molded body 60 is placed at a location upstream in the air flow direction from the load 40 in the air passage 20, that is, at each upstream passage portion 21a, 21b. Deploy. However, the flavor molded body 60 may be arranged in the downstream passage part 23 instead of the upstream passage parts 21a, 21b, or the flavor molded body 60 can be arranged in both the upstream passage parts 21a, 21b and the downstream passage part 23. You may.
 以上説明したような製造方法によれば、吸引具10の霧化ユニットを好適に製造できる。 According to the manufacturing method as described above, the atomization unit of the suction tool 10 can be suitably manufactured.
 なお、本実施形態において、液体収容部50に収容されるエアロゾル生成液Leは、このエアロゾル生成液1g中に含まれる炭化成分の量(mg)が6mg以下であることが好ましく、3mg以下であることがより好ましい。 In addition, in this embodiment, the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le stored in the liquid storage part 50 is preferably 6 mg or less, and preferably 3 mg or less. It is more preferable.
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。 According to this configuration, the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
 なお、エアロゾル生成液1g中に含まれる「炭化成分」とは、具体的には、「250℃に加熱された場合に炭化物になる成分」をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 Note that the "carbonized component" contained in 1 g of aerosol-generating liquid specifically refers to "component that becomes carbide when heated to 250°C." Specifically, the "carbonized component" refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
 この「エアロゾル生成液1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、エアロゾル生成液Leを所定量(g)、準備する。次いで、このエアロゾル生成液Leを180℃に加熱して、エアロゾル生成液Leに含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液Leに含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 This "amount (mg) of carbonized components contained in 1 g of aerosol generating liquid" can be measured, for example, by the following method. First, a predetermined amount (g) of aerosol generation liquid Le is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured. By the above method, it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid ( That is, the amount (mg) of carbonized components can be calculated.
 続いて、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図6は、ニコチンを含むエアロゾル生成液としてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図6の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。 Next, the relationship between the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine and the TPM reduction rate will be explained. Figure 6 shows the TPM reduction rate measured with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as an aerosol generating liquid containing nicotine. It is a figure showing a result. The horizontal axis of FIG. 6 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
 図6のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニットのサンプルを準備した。具体的には、この複数の霧化ユニットのサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM :%) in FIG. 6 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at ℃. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of immersion liquid (extract liquid) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, the multiple samples prepared in the above steps were subjected to automatic smoking using an automatic smoking machine (“Analytical Vaping Machine” manufactured by Borgwaldt) under “CRM (Coresta Recommended Method) 81 smoking conditions”. Ta. Incidentally, the smoking condition of CRM81 is that 55 cc of aerosol is inhaled over 3 seconds multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図6のTPM減少率(RTPM)は測定された。 The amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) shown in FIG. 6 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1) R TPM (%) = (1-TPM (201puff ~ 250puff) / TPM (1puff ~ 50puff)) x 100... (1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。 Here, TPM (Total Particle Molecule) indicates the total particulate matter collected by the Cambridge filter of the automatic smoking machine. "TPM (1puff to 50puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201puff to 250puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 In other words, the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
 図6から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図6の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 6, there is a proportional relationship between the amount of carbonized components contained in 1 g of extract and the TPM reduction rate. As can be seen from samples SA1 to SA4 in FIG. 6, when the amount of carbonized components contained in 1 g of extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
 続いて、実施形態1に係る霧化ユニット12の変形例について説明する。なお、以下の変形例及び他の実施形態において、上述した実施形態と同一又は対応する構成について、同一の符号を付して説明を適宜省略する場合がある。 Next, a modification of the atomization unit 12 according to the first embodiment will be described. In addition, in the following modified examples and other embodiments, the same code|symbol may be attached|subjected about the same code|symbol as the embodiment mentioned above about the structure which corresponds, and description may be abbreviate|omitted suitably.
<変形例1>
 図7は、実施形態1の変形例1に係る霧化ユニット12の縦断面図である。図8は、実施形態1の変形例1に係る霧化ユニット12の横断面図であり、図7のA2-A2線断面を示している。
<Modification 1>
FIG. 7 is a longitudinal cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1. FIG. 8 is a cross-sectional view of the atomization unit 12 according to Modification 1 of Embodiment 1, and shows a cross section taken along line A2-A2 in FIG.
 各上流通路部21a,21bにはそれぞれ、棒形状を有する複数の香味成形体60が、各上流通路部21a,21bの横断面方向に沿って並列して配置されている。図7及び図8に示す例では、各香味成形体60は中実な円柱形状を有しており、各上流通路部21a,21bに沿って(すなわち、エアの流動方向に沿って)、各香味成形体60の軸方向が延在している。図8に示す例では、各上流通路部21a,21bに対して9個の香味成形体60が3行3列のパターンで配置されているが、各上流通路部21a,21bに配置される香味成形体60の数や、その配置パターンは特に限定されない。 A plurality of rod-shaped flavor moldings 60 are arranged in parallel along the cross-sectional direction of each upstream passage section 21a, 21b. In the example shown in FIGS. 7 and 8, each flavor molded object 60 has a solid cylindrical shape, and along each upstream passage section 21a, 21b (that is, along the air flow direction), The axial direction of each flavor molded object 60 extends. In the example shown in FIG. 8, nine flavor molded bodies 60 are arranged in a pattern of 3 rows and 3 columns for each upstream passage section 21a, 21b. The number of flavor molded bodies 60 and their arrangement pattern are not particularly limited.
 図8に示すように、各上流通路部21a,21bに並列配置される香味成形体60同士の間には、エアを流通させるエア流通路61Aが形成されている。これによれば、各上流通路部21a,21bに流入したエアがエア流通路61Aを通過する際、香味成形体60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。 As shown in FIG. 8, an air flow passage 61A through which air flows is formed between the flavor molded bodies 60 arranged in parallel in each upstream passage portion 21a, 21b. According to this, when the air that has flowed into each of the upstream passage sections 21a and 21b passes through the air flow passage 61A, the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air. I can do it.
 なお、図7に示す符号25Aは、香味成形体60の上流端601を支持する通気性の支持材である。符号25Bは、香味成形体60の下流端602を支持する通気性の支持材である。ここでいう上流端、下流端とは、エアの流動方向を基準とした場合の上流側の端部、下流側の端部を意味する。支持材25A,25Bは、協働して、各香味成形体60の上流端601及び下流端602を軸方向に挟み込んだ状態でこれを支持している。これにより、各上流通路部21a,21bに複数の香味成形体60を配置する場合においても、これら複数の香味成形体60を整列した状態で正規の位置に保持できる。また、支持材25A,25Bは通気性を有しているため、各上流通路部21a,21bに沿ったエアの流れが阻害されることを抑制できる。なお、図7及び図8で説明した香味成形体60においても、図4で説明したようなエア流通路61Aが軸方向に沿って延在していてもよい。 Note that the reference numeral 25A shown in FIG. 7 is an air-permeable support material that supports the upstream end 601 of the flavor molded body 60. Reference numeral 25B is an air-permeable support material that supports the downstream end 602 of the flavor molded body 60. The upstream end and downstream end herein mean an upstream end and a downstream end with respect to the flow direction of air. The supporting members 25A and 25B cooperate to support the upstream end 601 and downstream end 602 of each flavor molded object 60 while sandwiching them in the axial direction. Thereby, even when a plurality of flavor molded bodies 60 are arranged in each of the upstream passage portions 21a and 21b, the plurality of flavor molded bodies 60 can be maintained in a regular position in an aligned state. Moreover, since the supporting materials 25A and 25B have air permeability, it is possible to suppress the flow of air along the respective upstream passage portions 21a and 21b from being obstructed. In addition, also in the flavor molded object 60 demonstrated in FIG.7 and FIG.8, 61 A of air flow paths as demonstrated in FIG. 4 may extend along an axial direction.
<変形例2>
 図9は、実施形態1の変形例2に係る霧化ユニット12の縦断面図である。図10は、実施形態1の変形例2に係る霧化ユニット12の横断面図であり、図9のA3-A3線断面を示している。
<Modification 2>
FIG. 9 is a longitudinal cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment. FIG. 10 is a cross-sectional view of the atomization unit 12 according to the second modification of the first embodiment, and shows a cross section taken along the line A3-A3 in FIG.
 各上流通路部21a,21bにはそれぞれ、板形状を有する複数の香味成形体60が配置されている。各香味成形体60は、各上流通路部21a,21bに沿って(すなわち、エアの流動方向に沿って)延在している。図9及び図10に示す例において、各香味成形体60は、各上流通路部21a,21bに沿って長尺な平板形状を有し、各上流通路部21a,21bの横断面(エアの流動方向と直交する横断面)に沿って並んで配置されている。より詳しくは、各香味成形体60の上流端601及び下流端602は、上述した支持材25A,25Bによって軸方向に挟み込まれた状態で位置決め固定されており、その結果、各香味成形体60は互いに間隔をおいて対向するように並んで配置されている。そして、互いに対向配置される香味成形体60同士の間には隙間が形成されており、この隙間によってエア流通路61Bが形成されている。このエア流通路61Bは、各上流通路部21a,21bに沿って(すなわち、エアの流動方向に沿って)延在するため、各上流通路部21a,21bに流入したエアがエア流通路61Bを通過する際、香味成形体60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。 A plurality of flavor molded bodies 60 each having a plate shape are arranged in each of the upstream passage portions 21a and 21b. Each flavor molded body 60 extends along each upstream passage section 21a, 21b (that is, along the flow direction of air). In the example shown in FIGS. 9 and 10, each flavor molded body 60 has an elongated flat plate shape along each upstream passage section 21a, 21b, and has a cross section of each upstream passage section 21a, 21b (air They are arranged side by side along a cross section perpendicular to the flow direction. More specifically, the upstream end 601 and downstream end 602 of each flavor molded body 60 are positioned and fixed in a state where they are sandwiched in the axial direction by the above-mentioned supporting members 25A and 25B, and as a result, each flavor molded body 60 They are arranged side by side so as to face each other at intervals. A gap is formed between the flavor molded bodies 60 that are arranged to face each other, and an air flow path 61B is formed by this gap. Since the air flow passage 61B extends along each of the upstream passages 21a and 21b (that is, along the air flow direction), the air flowing into each of the upstream passages 21a and 21b flows through the air flow passage. When passing through 61B, the flavor component of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air.
<変形例3>
 図11は、実施形態1の変形例3に係る霧化ユニット12の縦断面図である。図12は、実施形態1の変形例3に係る霧化ユニット12の横断面図であり、図11のA4-A4線断面を示している。
<Modification 3>
FIG. 11 is a longitudinal sectional view of the atomization unit 12 according to the third modification of the first embodiment. FIG. 12 is a cross-sectional view of the atomization unit 12 according to the third modification of the first embodiment, and shows a cross section taken along the line A4-A4 in FIG. 11.
 各上流通路部21a,21bには、全体として蛇腹シート形状を有する香味成形体60が配置されている。図12に示すように、蛇腹シート形状を有する香味成形体60は、各上流通路部21a,21bにおけるエアの流動方向に沿って延在する複数のシート部(パネル部)62と、各シート部62同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部63と、を含んで構成されている。上記のような蛇腹シート形態の香味成形体60においては、稜線部63を介して接続されるシート部62同士の間には、エアを流通させるエア流通路61Cが形成される。そして、このエア流通路61Cは、各上流通路部21a,21bに沿って(すなわち、エアの流動方向に沿って)延在する。そのため、各上流通路部21a,21bに流入したエアがエア流通路61Cを通過する際、香味成形体60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。 A flavor molded body 60 having an overall bellows sheet shape is arranged in each upstream passage section 21a, 21b. As shown in FIG. 12, the flavor molded body 60 having a bellows sheet shape includes a plurality of sheet portions (panel portions) 62 extending along the air flow direction in each upstream passage portion 21a, 21b, and each sheet. It is configured to include a ridgeline portion 63 that connects the portions 62 to each other in a bellows shape and extends along the flow direction of air. In the flavor molded body 60 in the form of a bellows sheet as described above, an air flow path 61C through which air circulates is formed between the sheet parts 62 that are connected via the ridgeline part 63. The air flow passage 61C extends along each upstream passage portion 21a, 21b (that is, along the air flow direction). Therefore, when the air that has flowed into each of the upstream passage sections 21a and 21b passes through the air flow passage 61C, the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air.
 なお、図11に示すように、本変形例においても、香味成形体60の上流端601及び下流端602が通気性を有する支持材25A,25Bによって位置決め固定されている。これにより、各上流通路部21a,21bに沿ったエアの流れを阻害せずに、シート形態の香味成形体60を正規の位置に位置決め保持することができる。 Note that, as shown in FIG. 11, also in this modification, the upstream end 601 and downstream end 602 of the flavor molded body 60 are positioned and fixed by the breathable support members 25A and 25B. Thereby, the sheet-shaped flavor molded body 60 can be positioned and held at a regular position without obstructing the flow of air along each of the upstream passages 21a, 21b.
<変形例4>
 図13は、実施形態1の変形例4に係る霧化ユニット12の横断面図である。変形例4においては、短冊状シート片の形態を有する多数の香味成形体60が各上流通路部21a,21bに充填されている。各香味成形体60(短冊状シート片)は、例えば、長手方向が各上流通路部21a,21bに沿って(すなわち、エアの流動方向に沿って)延在するように整列配置されており、その上流端及び下流端が図11で説明したような支持材25A,25Bによって位置決めされていてもよい。本変形例においては、各香味成形体60(短冊状シート片)同士の隙間によってエア流通路61Dが形成されている。そのため、各上流通路部21a,21bに流入したエアがエア流通路61Dを通過する際、香味成形体60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。なお、香味成形体60としての短冊シート片は、エア通路20(各上流通路部21a,21b)に沿って整列させることなく充填するランダム配置としてもよい。
<Modification 4>
FIG. 13 is a cross-sectional view of the atomization unit 12 according to the fourth modification of the first embodiment. In the fourth modification, a large number of flavor molded bodies 60 in the form of strip-shaped sheet pieces are filled in each upstream passage section 21a, 21b. For example, the flavor molded bodies 60 (rectangular sheet pieces) are arranged so that their longitudinal directions extend along the respective upstream passages 21a and 21b (that is, along the air flow direction). , the upstream and downstream ends thereof may be positioned by supporting members 25A and 25B as described in FIG. 11. In this modification, air flow passages 61D are formed by gaps between the flavor molded bodies 60 (rectangular sheet pieces). Therefore, when the air that has flowed into each of the upstream passages 21a and 21b passes through the air flow passage 61D, the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air. Note that the strip sheet pieces serving as the flavor molded body 60 may be arranged randomly and filled without being aligned along the air passage 20 (each upstream passage portion 21a, 21b).
<変形例5>
 図14は、実施形態1の変形例5に係る霧化ユニット12の横断面図である。変形例5に係る霧化ユニット12の香味成形体60は、その軸方向に貫通する貫通孔としてのエア流通路61に加えて、側面(外面)にエア流通路としてのエア流通溝610が形成されている点で図2~4で説明した香味成形体60と相違している。図14に示す態様において、香味成形体60におけるエア流通溝610は、香味成形体60の軸方向に沿って、その側面(外面)に設けられた溝であり、香味成形体60の上流端(前端)601から下流端(後端)602にわたって形成されている。本変形例においては、エア流通路61及びエア流通溝610を通じてエアを円滑に流通させることができ、香味成形体60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。なお、本変形例において、香味成形体60の側面(外面)に設けられるエア流通溝610の数は特に限定されない。但し、図14に示すように、香味成形体60の側面(外面)に複数のエア流通溝610を形成することによって、エアの流通と、当該エアに対する香味の付与と、をより効率的に行うことができる。また、本変形例に係る香味成形体60において、その内部を軸方向に貫通するエア流通路61を省略し、エア流通溝610のみを形成してもよい。
<Modification 5>
FIG. 14 is a cross-sectional view of the atomization unit 12 according to the fifth modification of the first embodiment. The flavor molded body 60 of the atomization unit 12 according to the fifth modification has an air flow passage 61 as a through hole penetrating in the axial direction, and an air flow groove 610 as an air flow passage formed on the side surface (outer surface). It is different from the flavor molded body 60 described in FIGS. 2 to 4 in that it is In the embodiment shown in FIG. 14, the air circulation groove 610 in the flavor molded body 60 is a groove provided on the side surface (outer surface) of the flavor molded body 60 along the axial direction. It is formed from a front end (front end) 601 to a downstream end (rear end) 602. In this modification, air can be smoothly circulated through the air flow path 61 and the air flow groove 610, and the flavor components of the flavor material contained in the flavor molded body 60 can be suitably imparted to the air. can. In this modification, the number of air circulation grooves 610 provided on the side surface (outer surface) of the flavor molded body 60 is not particularly limited. However, as shown in FIG. 14, by forming a plurality of air circulation grooves 610 on the side surface (outer surface) of the flavor molded body 60, air circulation and flavor imparting to the air can be performed more efficiently. be able to. Further, in the flavor molded body 60 according to this modification, the air flow passage 61 that passes through the inside thereof in the axial direction may be omitted, and only the air flow groove 610 may be formed.
 <変形例6>
 図15は、実施形態1の変形例6に係る霧化ユニット12の模式的断面図である。具体的には、図15は、本変形例に係る霧化ユニット12の主要部の厚み方向の切断面を模式的に図示している。本変形例に係る霧化ユニット12のエア通路20は、上流通路部を一つのみ備えている(上流通路部21aのみを備えている)点と、上流通路部21aが霧化ユニット12の厚み方向で液体収容部50に隣接して配置されている点において、主として、図2及び図3で説明した霧化ユニット12のエア通路20と異なっている。
<Modification 6>
FIG. 15 is a schematic cross-sectional view of the atomization unit 12 according to the sixth modification of the first embodiment. Specifically, FIG. 15 schematically illustrates a cross section in the thickness direction of the main part of the atomization unit 12 according to this modification. The air passage 20 of the atomization unit 12 according to this modification has only one upstream passage part (only the upstream passage part 21a is provided), and the upstream passage part 21a is the atomization unit. The air passage 20 of the atomization unit 12 is mainly different from the air passage 20 of the atomization unit 12 described with reference to FIGS. 2 and 3 in that it is disposed adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12 .
 本変形例において、上流通路部21aには、図4で説明したように、長手軸方向にエア流通路61が貫通形成された香味成形体60が配置されている。本変形例においても、前述した実施形態1に係る霧化ユニット12及びこれを備えた吸引具10と同様の作用効果を奏することができる。なお、本変形例に係る霧化ユニット12において、図4に示す香味成形体60に代えて、変形例1乃至5で説明した各種の香味成形体60を適用してもよい。 In this modification, the flavor molded body 60 having an air flow passage 61 formed therethrough in the longitudinal axis direction is disposed in the upstream passage portion 21a, as described in FIG. 4. Also in this modification, the same effects as the atomization unit 12 and the suction tool 10 including the atomization unit 12 according to the first embodiment described above can be achieved. In addition, in the atomization unit 12 according to this modification, the various flavor molded bodies 60 described in Modifications 1 to 5 may be applied instead of the flavor molded body 60 shown in FIG.
 <変形例7>
 図16は、実施形態1の変形例7に係る霧化ユニット12の縦断面図である。図17は、実施形態1の変形例7に係る霧化ユニット12の横断面図であり、図16のA5-A5線断面を示している。
<Modification 7>
FIG. 16 is a longitudinal sectional view of the atomization unit 12 according to the seventh modification of the first embodiment. FIG. 17 is a cross-sectional view of the atomization unit 12 according to Modification Example 7 of Embodiment 1, and shows a cross section taken along line A5-A5 in FIG. 16.
 本変形例に係る霧化ユニット12は、上流通路部21a,21b及び下流通路部23の双方に香味成形体60が配置されている点で、上述までの実施形態と相違する。下流通路部23に配置される香味成形体60は、一例として、筒形状を有し、その軸方向に沿ってエア流通路61が貫通形成されている。 The atomization unit 12 according to this modification differs from the embodiments described above in that flavor molded bodies 60 are disposed in both the upstream passage sections 21a, 21b and the downstream passage section 23. The flavor molded body 60 disposed in the downstream passage section 23 has, for example, a cylindrical shape, and an air flow passage 61 is formed therethrough along the axial direction.
 ここで、下流通路部23には、負荷通路部22(霧化部)で生成されたエアロゾルを含むエアが流入する。エアロゾルを含むエアは、負荷通路部22に配置された香味成形体60のエア流通路61を流通した後、最終的に排出口13を介してユーザに吸引される。本変形例によれば、負荷通路部22に配置された香味成形体60のエア流通路61を、エアロゾルを含むエアが流通する際にも、香味成形体60に含まれる香味材料によって当該エアに香味を付与できる。したがって、霧化ユニット12によって生成されるエアロゾルに対して、より一層十分に香味を付与することが可能となる。 Here, air containing the aerosol generated in the load passage section 22 (atomization section) flows into the downstream passage section 23. After the air containing the aerosol flows through the air flow passage 61 of the flavor molded body 60 disposed in the load passage section 22, it is finally sucked into the user via the discharge port 13. According to this modification, even when air containing aerosol flows through the air flow passage 61 of the flavor molded body 60 disposed in the load passage section 22, the flavor material contained in the flavor molded body 60 is used to circulate the air. Can add flavor. Therefore, it becomes possible to more fully impart flavor to the aerosol generated by the atomization unit 12.
 なお、霧化ユニット12の負荷通路部22に配置された香味成形体60は、変形例1乃至5で説明した各種の香味成形体60を適用することができる。また、上述した通気性を有する支持材25A,25Bを用いて、負荷通路部22の適所に香味成形体60を位置決め固定してもよい。また、本変形例においては、霧化ユニット12における上流通路部21a,21b及び下流通路部23の双方に香味成形体60を配置する例を説明したが、例えば、上流通路部21a,21bに香味成形体60を設置せずに、下流通路部23のみに香味成形体60を配置してもよい。 Note that the various flavor molded bodies 60 described in Modifications 1 to 5 can be applied to the flavor molded body 60 disposed in the load passage section 22 of the atomization unit 12. Further, the flavor molded body 60 may be positioned and fixed at a proper position in the load passage section 22 using the above-mentioned support materials 25A and 25B having air permeability. In addition, in this modification, an example in which the flavor molded body 60 is arranged in both the upstream passage parts 21a, 21b and the downstream passage part 23 in the atomization unit 12 has been described. The flavor molded body 60 may be arranged only in the downstream passage section 23 without installing the flavor molded body 60 in the downstream passage section 23 .
<実施形態2>
 次に、実施形態2に係る霧化ユニット12を説明する。図18は、実施形態2に係る霧化ユニット12の縦断面図である。実施形態2に係る霧化ユニット12は、エア通路20が上流通路部を備えておらず、香味成形体60が下流通路部23に充填されている。
<Embodiment 2>
Next, the atomization unit 12 according to the second embodiment will be explained. FIG. 18 is a longitudinal cross-sectional view of the atomization unit 12 according to the second embodiment. In the atomization unit 12 according to the second embodiment, the air passage 20 does not have an upstream passage part, and the flavor molded body 60 is filled in the downstream passage part 23.
 なお、実施形態2に係る霧化ユニット12において、負荷通路部22の壁部71cには、霧化ユニットハウジング120の内部にエアを外部から取り入れるための孔である流入口72eが設けられている。本実施形態では、例えば、吸引具10における電源ユニット11のハウジング(電源ユニットハウジング)にも、その内部に外部からエアを取り入れるための流入口を形成してもよい。そして、電源ユニットハウジングの内部に、電源ユニットハウジング側の流入口と霧化ユニットハウジング120側の流入口72eとを連通する内部通路を形成し、当該内部通路を通じて供給されるエアを、流入口72eから霧化ユニットハウジング120の内部に取り入れてもよい。流入口72eから霧化ユニットハウジング120内に取り入れられたエアは負荷通路部22に流入し、負荷通路部22を通過した後に下流通路部23を通過して、排出口13から排出される。 In the atomization unit 12 according to the second embodiment, the wall 71c of the load passage section 22 is provided with an inlet 72e, which is a hole for introducing air into the atomization unit housing 120 from the outside. . In this embodiment, for example, the housing of the power supply unit 11 in the suction tool 10 (power supply unit housing) may also have an inflow port formed therein for taking in air from the outside. Then, an internal passage is formed inside the power supply unit housing to communicate the inflow port on the power supply unit housing side and the inflow port 72e on the atomization unit housing 120 side, and the air supplied through the internal passage is transferred to the inflow port 72e. It may also be incorporated into the atomization unit housing 120 from within the atomization unit housing 120. Air taken into the atomization unit housing 120 from the inflow port 72e flows into the load passage section 22, passes through the load passage section 22, passes through the downstream passage section 23, and is discharged from the discharge port 13.
 実施形態2に係る下流通路部23は、拡径部24aを有している。この拡径部24aは、下流通路部23の一部に設けられて、下流通路部23の「他の部位24b(すなわち、非拡径部)」よりも拡径した部位である。具体的には、実施形態2に係る下流通路部23は、全体的に液体収容部50の内部に配置されている。そして、拡径部24aは、下流通路部23の通路途中の部分に配置されている。具体的には、拡径部24aよりも上流側に他の部位24bが配置され、拡径部24aよりも下流側にも他の部位24bが配置されている(すなわち、拡径部24aは他の部位24bに挟まれている)。 The downstream passage section 23 according to the second embodiment has an enlarged diameter section 24a. The enlarged diameter portion 24a is provided in a part of the downstream passage portion 23, and is a portion whose diameter is enlarged more than “the other portion 24b (that is, the non-expanded diameter portion)” of the downstream passage portion 23. Specifically, the downstream passage section 23 according to the second embodiment is entirely disposed inside the liquid storage section 50. The enlarged diameter portion 24a is disposed in the middle of the downstream passage portion 23. Specifically, another part 24b is arranged upstream of the enlarged diameter part 24a, and another part 24b is arranged downstream of the enlarged diameter part 24a (that is, the enlarged diameter part 24a is ).
 そして、実施形態2に係る香味成形体60は、この拡径部24aに配置されている。なお、拡径部24aに配置される香味成形体60は、図18に示すようにエアの流動方向に沿ってエア流通路61が貫通するように形成されている。そのため、エアロゾルを含むエアは、香味成形体60のエア流通路61を通過する際、香味成形体60に含まれる香味材料によって香味が付与される。なお、香味成形体60に形成されるエア流通路61の数は特に限定されない。図18に示す例では、香味成形体60に複数のエア流通路61が形成されているが、単一のエア流通路61を形成してもよい。また、本実施形態においても、上述の変形例1乃至5で説明した各種の香味成形体60を適用してもよい。 The flavor molded body 60 according to the second embodiment is arranged in this enlarged diameter portion 24a. Note that the flavor molded body 60 disposed in the enlarged diameter portion 24a is formed so that an air flow passage 61 passes through it along the flow direction of air, as shown in FIG. Therefore, when the air containing the aerosol passes through the air flow path 61 of the flavor molded body 60, the flavor material contained in the flavor molded body 60 imparts flavor. Note that the number of air flow passages 61 formed in the flavor molded body 60 is not particularly limited. In the example shown in FIG. 18, a plurality of air flow passages 61 are formed in the flavor molded body 60, but a single air flow passage 61 may be formed. Also in this embodiment, the various flavor molded bodies 60 described in the above-mentioned Modifications 1 to 5 may be applied.
 以上のように、本実施形態においても、実施形態1に係る霧化ユニット12と同様の作用効果を奏することができる。具体的には、実施形態2においても、エア通路20を通過するエアに、エアロゾル生成液Leに含まれる香味成分と香味成形体60に含まれる香味成分とを付加することができる。その結果、霧化ユニット12によって生成されるエアロゾルに対する香味付けを十分に行うことができる。したがって、エアロゾル生成液Leに含まれる香味成分のみや、香味成形体60に含まれる香味成分のみでは表現しきれない深みのある香味をエアロゾルに付与することができる。 As described above, this embodiment can also achieve the same effects as the atomization unit 12 according to the first embodiment. Specifically, in the second embodiment as well, the flavor component contained in the aerosol generation liquid Le and the flavor component contained in the flavor molded body 60 can be added to the air passing through the air passage 20. As a result, the aerosol generated by the atomization unit 12 can be sufficiently flavored. Therefore, a deep flavor that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the flavor molded body 60 can be imparted to the aerosol.
 また、本実施形態によれば、香味成形体60が拡径部24aに充填されているので、例えば、香味成形体60が他の部位24bに充填される場合に比較して、香味成形体60を通過するエアの通気抵抗値(エアが通過するときのエアの通過し難さを示す指標)を低く抑えることができる。 Further, according to the present embodiment, since the flavor molded body 60 is filled in the enlarged diameter portion 24a, the flavor molded body 60 is It is possible to keep the ventilation resistance value of air passing through (an index indicating how difficult it is for air to pass through) to a low level.
 また、本実施形態によれば、負荷40を通過することで温度が上昇したエアが香味成形体60を通過するので、香味成形体60に含まれるたばこ葉の香味成分をより効果的に、下流通路部23を流通するエアに付加することができる(すなわち、エアロゾルを含むエアに香味成分を効果的に付与することができる)。 Further, according to the present embodiment, since the air whose temperature has increased by passing through the load 40 passes through the flavor molded body 60, the flavor components of tobacco leaves contained in the flavor molded body 60 are more effectively absorbed downstream. It is possible to add a flavor component to the air flowing through the passage section 23 (that is, it is possible to effectively impart a flavor component to air containing aerosol).
 なお、図18に示す例では、下流通路部23が全体的に液体収容部50の内部に配置されているが、この態様に限定されるものではない。例えば、下流通路部23は、霧化ユニット12の厚み方向に関して、液体収容部50に隣接配置されていてもよい。 Note that in the example shown in FIG. 18, the downstream passage section 23 is entirely disposed inside the liquid storage section 50, but it is not limited to this embodiment. For example, the downstream passage section 23 may be arranged adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12.
<実施形態3>
 次に、実施形態3に係る霧化ユニット12を説明する。図19は、実施形態3に係る霧化ユニット12の縦断面図である。実施形態3に係る霧化ユニット12は、下流通路部23の「他の部位24b」が液体収容部50の内部を貫通するように設けられており、拡径部24aが、この「他の部位24b」よりもエアの流動方向で下流側に配置されている点で上述した実施形態2と相違している。すなわち、実施形態3に係る下流通路部23は、上流側に他の部位24bを有し、この他の部位24bの下流側に拡径部24aを有している。なお、本実施形態に係る拡径部24aは、液体収容部50よりもエア流動方向で下流側に延在した下流延在部としての機能も有している。
<Embodiment 3>
Next, the atomization unit 12 according to the third embodiment will be explained. FIG. 19 is a longitudinal cross-sectional view of the atomization unit 12 according to the third embodiment. The atomization unit 12 according to the third embodiment is provided such that the "other part 24b" of the downstream passage section 23 penetrates the inside of the liquid storage part 50, and the enlarged diameter part 24a is connected to this "other part 24b". This embodiment is different from the second embodiment described above in that it is disposed downstream of "24b" in the air flow direction. That is, the downstream passage section 23 according to the third embodiment has another section 24b on the upstream side, and has an enlarged diameter section 24a on the downstream side of this other section 24b. Note that the enlarged diameter portion 24a according to the present embodiment also has a function as a downstream extending portion that extends downstream of the liquid storage portion 50 in the air flow direction.
 図19に示すように、香味成形体60は、エアの流動方向に沿ってエア流通路61が貫通するように形成されている。また、図19の一部拡大図に例示するように、拡径部24aのZ軸方向に延在する内周壁面に、拡径部24aの周方向に延在する「少なくとも1つの溝24c(図19では、複数の溝24cが例示されている)」が設けられている。また、図19の一部拡大図(「A1」で図示する斜視図)に示すように、拡径部24aのX軸方向に延在する内周壁面(X-Y平面を面方向とする内周壁面)には、X軸方向に延在する「少なくとも1つの溝24c(図19では、複数の溝24cが例示されている)」が設けられている。このような溝24cによれば、拡径部24aを通過するエアを、拡径部24aの横断面方向に拡散するように流動させることができる。 As shown in FIG. 19, the flavor molded body 60 is formed so that an air flow passage 61 passes through it along the flow direction of air. Further, as illustrated in the partially enlarged view of FIG. 19, "at least one groove 24c ( In FIG. 19, a plurality of grooves 24c are illustrated. In addition, as shown in a partially enlarged view (perspective view indicated by "A1") in FIG. The peripheral wall surface is provided with "at least one groove 24c (a plurality of grooves 24c are illustrated in FIG. 19)" extending in the X-axis direction. According to such a groove 24c, the air passing through the enlarged diameter portion 24a can be made to flow so as to be diffused in the cross-sectional direction of the enlarged diameter portion 24a.
 また、本実施形態に係る香味成形体60は、その横断面方向(エア流通路61を流通するエアの流動方向に直交する方向)に、複数のエア流通路61が並んで配置されている。そのため、上述した拡径部24aの内周壁面に形成された溝24cの作用によって拡径部24aの横断面方向に拡散されたエアを、香味成形体60の上流端601から各エア流通路61に効率よく導くことができる。そのため、香味成形体60のエア流通路61を通過するエアロゾルを含むエアに対して、香味成形体60に含まれる香味材料から効率良く香味を付与することができる。但し、香味成形体60に形成されるエア流通路61の数は特に限定されない。 Further, in the flavor molded body 60 according to the present embodiment, a plurality of air flow passages 61 are arranged side by side in its cross-sectional direction (direction perpendicular to the flow direction of air flowing through the air flow passages 61). Therefore, the air diffused in the cross-sectional direction of the enlarged diameter portion 24a by the action of the groove 24c formed on the inner circumferential wall surface of the enlarged diameter portion 24a described above is transferred from the upstream end 601 of the flavor molded body 60 to each air flow path 61. can be efficiently guided. Therefore, the flavor material contained in the flavor molded product 60 can efficiently impart flavor to the air containing the aerosol passing through the air flow path 61 of the flavor molded product 60. However, the number of air flow passages 61 formed in the flavor molded body 60 is not particularly limited.
 また、図19に示すように、香味成形体60の下流端602は、通気性を有する支持材25Bによって支持されており、これによって、霧化ユニットハウジング120における壁部71aと香味成形体60の下流端602との間に通気性を有する支持材25Bが介在している。これにより、香味成形体60における各エア流通路61の下流端から流出するエアを、通気性を有する支持材25Bを通じて、円滑に排出口13へと導くことができる。なお、本実施形態においても、上述の変形例1乃至5で説明した各種の香味成形体60を適用してもよい。 Further, as shown in FIG. 19, the downstream end 602 of the flavor molded body 60 is supported by a support material 25B having air permeability. A supporting material 25B having air permeability is interposed between the downstream end 602 and the downstream end 602. Thereby, the air flowing out from the downstream end of each air flow path 61 in the flavor molded body 60 can be smoothly guided to the discharge port 13 through the breathable support material 25B. Note that, also in this embodiment, the various flavor molded bodies 60 described in the above-mentioned Modifications 1 to 5 may be applied.
 また、本実施形態に係る拡径部24aは、液体収容部50の幅及び厚みと同じ大きさの幅及び厚みを有するように、拡径している。但し、拡径部24aの形状はこれに限定されるものではない。 Further, the diameter of the enlarged diameter portion 24a according to the present embodiment is enlarged so that it has the same width and thickness as the width and thickness of the liquid storage portion 50. However, the shape of the enlarged diameter portion 24a is not limited to this.
 本実施形態においても、前述した実施形態2に係る霧化ユニット12と同様の作用効果を奏することができる。 Also in this embodiment, the same effects as the atomization unit 12 according to the second embodiment described above can be achieved.
 また、本実施形態によれば、拡径部24aが液体収容部50の内部に配置されていないので(又は、霧化ユニット12の厚み方向で液体収容部50と隣接していないので)、拡径部24aの断面積や、拡径部24aにおけるエア流動方向の長さ(Z方向の長さ)等を調整することが容易である。これにより、香味成形体60を通過するエアの通気抵抗値を所望の値に容易に調整できる。 Further, according to the present embodiment, since the enlarged diameter portion 24a is not disposed inside the liquid storage portion 50 (or is not adjacent to the liquid storage portion 50 in the thickness direction of the atomization unit 12), the enlarged diameter portion 24a It is easy to adjust the cross-sectional area of the diameter portion 24a, the length of the enlarged diameter portion 24a in the air flow direction (the length in the Z direction), etc. Thereby, the ventilation resistance value of air passing through the flavor molded body 60 can be easily adjusted to a desired value.
 また、下流通路部23の他の部位24bは、図19に例示するような、液体収容部50の内部を貫通する構成に限定されるものではない。他の一例を挙げると、他の部位24bは、霧化ユニット12の厚み方向で、液体収容部50に隣接するように設けられていてもよい。 Further, the other portion 24b of the downstream passage portion 23 is not limited to the configuration that penetrates the inside of the liquid storage portion 50 as illustrated in FIG. 19. To give another example, the other portion 24b may be provided adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12.
 また、本実施形態に係る拡径部24aの内壁面に設けられた溝24cは、前述した実施形態2に係る霧化ユニット12の拡径部24aに形成されていてもよい。 Further, the groove 24c provided in the inner wall surface of the enlarged diameter portion 24a according to the present embodiment may be formed in the enlarged diameter portion 24a of the atomization unit 12 according to the second embodiment described above.
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。また、本実施形態に開示された各態様は、本実施形態に開示された他の態様と自由に組み合わせることができる。 Although the embodiments and modified examples of the present invention have been described in detail above, the present invention is not limited to such specific embodiments and modified examples, and within the scope of the gist of the present invention as described in the claims. , various modifications and changes are possible. Moreover, each aspect disclosed in this embodiment can be freely combined with other aspects disclosed in this embodiment.
10・・・吸引具
11・・・電源ユニット
12・・・霧化ユニット
20・・・エア通路
21a,21b・・・上流通路部
22・・・負荷通路部
23・・・下流通路部
30・・・ウィック
40・・・負荷
50・・・液体収容部
60・・・香味成形体
Le・・・エアロゾル生成液
10... Suction tool 11... Power supply unit 12... Atomization unit 20... Air passages 21a, 21b... Upstream passage section 22... Load passage section 23... Downstream passage section 30 ...Wick 40...Load 50...Liquid storage section 60...Flavored molded body Le...Aerosol generation liquid

Claims (9)

  1.  ニコチンを含むエアロゾル生成液を収容する液体収容部と、
     エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
     前記エア通路のうち、前記負荷よりもエアの流動方向で上流側の箇所及び下流側の箇所の少なくとも何れか一方に配置された、香味成形体と、
     を備え、
     前記香味成形体は非たばこ基材及び香味材料を含み、且つ、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下である、
     吸引具の霧化ユニット。
    a liquid storage section that stores an aerosol-generating liquid containing nicotine;
    an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
    A flavor molded body disposed in at least one of a location upstream and downstream of the load in the air flow direction in the air passage;
    Equipped with
    The flavor molded body includes a non-tobacco base material and a flavor material, and the flavor material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less.
    Atomization unit of suction tool.
  2.  前記エア通路は、前記負荷が配置された負荷通路部と、前記負荷通路部に連通するとともに前記負荷通路部よりもエアの流動方向で上流側に配置された上流通路部と、前記負荷通路部に連通するとともに前記負荷通路部よりもエアの流動方向で下流側に配置された下流通路部と、を有し、
     前記香味成形体は、前記上流通路部及び前記下流通路部の少なくとも何れか一方に配置されている、請求項1に記載の吸引具の霧化ユニット。
    The air passage includes a load passage section in which the load is arranged, an upstream passage section that communicates with the load passage section and is arranged upstream of the load passage section in the air flow direction, and the load passage section. a downstream passage section that communicates with the load passage section and is disposed downstream of the load passage section in the air flow direction;
    The atomization unit of the suction tool according to claim 1, wherein the flavor molded body is disposed in at least one of the upstream passage section and the downstream passage section.
  3.  前記香味成形体は、前記上流通路部及び前記下流通路部の双方に配置されている、請求項2に記載の吸引具の霧化ユニット。 The atomization unit of the suction tool according to claim 2, wherein the flavor molded body is disposed in both the upstream passage section and the downstream passage section.
  4.  前記香味成形体は、前記エア通路におけるエアの流動方向に沿って延在する棒形状を有し、且つ、その内部及び側面の少なくとも何れか一方に、当該香味成形体の軸方向に延びるとともにエアを流通させるエア流通路を有している、
     請求項1から3の何れか一項に記載の吸引具の霧化ユニット。
    The flavor molded body has a rod shape extending along the flow direction of air in the air passage, and has air extending in the axial direction of the flavor molded body at least on either the inside or the side surface thereof. It has an air flow path that circulates the
    The atomization unit of the suction tool according to any one of claims 1 to 3.
  5.  前記香味成形体は、前記エア通路におけるエアの流動方向に沿って延在する棒形状を有しており、
     前記エア通路におけるエアの流動方向と直交する横断面方向に沿って、複数の前記香味成形体が並列して配置されており、
     並列配置される前記香味成形体同士の間にエアを流通させるエア流通路が形成されている、
     請求項1から4の何れか一項に記載の吸引具の霧化ユニット。
    The flavor molded body has a rod shape extending along the flow direction of air in the air passage,
    A plurality of flavor molded bodies are arranged in parallel along a cross-sectional direction perpendicular to the flow direction of air in the air passage,
    An air flow path for circulating air is formed between the flavor molded bodies arranged in parallel.
    The atomization unit of the suction tool according to any one of claims 1 to 4.
  6.  前記香味成形体は、全体として蛇腹シート形状を有しており、且つ、前記エア通路におけるエアの流動方向に沿って延在する複数のシート部と、各シート部同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部と、を含んで構成され、
     前記稜線部を介して接続される前記シート部同士の間にエアを流通させるエア流通路が形成されている、
     請求項1から3の何れか一項に記載の吸引具の霧化ユニット。
    The flavor molded body has a bellows sheet shape as a whole, and has a plurality of sheet portions extending along the flow direction of air in the air passage, and connecting the sheet portions to each other in a bellows shape. A ridgeline extending along the flow direction of the air,
    An air flow path for circulating air is formed between the sheet parts connected via the ridge line part,
    The atomization unit of the suction tool according to any one of claims 1 to 3.
  7.  前記香味成形体は、前記エア通路におけるエアの流動方向に沿って延在する板形状を有しており、
     前記エア通路におけるエアの流動方向と直交する横断面に沿って、複数の前記香味成形体が互いに間隔をおいて対向するように並んで配置されており、
     対向配置される前記香味成形体同士の間にエアを流通させるエア流通路が形成されている、
     請求項1から3の何れか一項に記載の吸引具の霧化ユニット。
    The flavor molded body has a plate shape extending along the flow direction of air in the air passage,
    A plurality of flavor molded bodies are arranged in a row so as to face each other at intervals along a cross section perpendicular to the flow direction of the air in the air passage,
    An air flow path for circulating air is formed between the flavor molded bodies arranged oppositely,
    The atomization unit of the suction tool according to any one of claims 1 to 3.
  8.  請求項1から7の何れか一項に記載の霧化ユニットと、
     前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、
     を備える、吸引具。
    The atomization unit according to any one of claims 1 to 7,
    a power supply unit having a power supply that supplies power to the load, and to which the atomization unit is detachable;
    A suction device equipped with.
  9.  吸引具の霧化ユニットの製造方法であって、
     液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、ニコチンを含むエアロゾル生成液と、非たばこ基材及び香味材料を含む香味成形体と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、を準備する準備工程と、
     前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記香味成形体及び前記負荷を配置する組立工程と、
     を有し、
     前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下であり、
     前記組立工程において、
     前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、
     前記香味成形体を、前記負荷よりもエアの流動方向で上流側の箇所及び下流側の箇所の少なくとも何れか一方に配置する、
     吸引具の霧化ユニットの製造方法。
    A method for manufacturing an atomization unit of a suction tool, the method comprising:
    an atomizing unit housing in which a liquid storage part and an air passage are formed; an aerosol generating liquid containing nicotine; a flavor molding containing a non-tobacco base material and a flavoring material; and atomizing the aerosol generating liquid to produce an aerosol. an electrical load to be generated; a preparation process for preparing;
    an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the flavor molded body and the load in the air passage;
    has
    The flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded body is 10% by weight or less,
    In the assembly process,
    The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and
    arranging the flavor molded body at at least one of a location upstream and a location downstream of the load in the air flow direction;
    A method for manufacturing an atomizing unit of a suction tool.
PCT/JP2022/016813 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device WO2023188372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016813 WO2023188372A1 (en) 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016813 WO2023188372A1 (en) 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device

Publications (1)

Publication Number Publication Date
WO2023188372A1 true WO2023188372A1 (en) 2023-10-05

Family

ID=88200408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016813 WO2023188372A1 (en) 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device

Country Status (1)

Country Link
WO (1) WO2023188372A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121143A1 (en) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 Non-combustible flavor inhaler, flavor source unit, and method for manufacturing non-combustible flavor inhaler member
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
JP2020505041A (en) * 2017-01-31 2020-02-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator
WO2020183780A1 (en) * 2019-03-08 2020-09-17 日本たばこ産業株式会社 Vapor generation unit for non-combustion-type flavor inhaler and production method for vapor generation unit for non-combustion-type flavor inhaler
WO2020234916A1 (en) * 2019-05-17 2020-11-26 日本たばこ産業株式会社 Tobacco rod for flavor inhaler
JP2022033996A (en) * 2017-06-22 2022-03-02 日本たばこ産業株式会社 Flavor generating segment, and flavor generating article and flavor inhalation system which are equipped therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121143A1 (en) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 Non-combustible flavor inhaler, flavor source unit, and method for manufacturing non-combustible flavor inhaler member
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
JP2020505041A (en) * 2017-01-31 2020-02-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator
JP2022033996A (en) * 2017-06-22 2022-03-02 日本たばこ産業株式会社 Flavor generating segment, and flavor generating article and flavor inhalation system which are equipped therewith
WO2020183780A1 (en) * 2019-03-08 2020-09-17 日本たばこ産業株式会社 Vapor generation unit for non-combustion-type flavor inhaler and production method for vapor generation unit for non-combustion-type flavor inhaler
WO2020234916A1 (en) * 2019-05-17 2020-11-26 日本たばこ産業株式会社 Tobacco rod for flavor inhaler

Similar Documents

Publication Publication Date Title
CA3104663C (en) Aerosol generating article and aerosol generating device comprising same
JPWO2018122978A1 (en) Heating type flavor suction device
CN109688855A (en) Container
JP7139451B2 (en) Non-combustion heating smoking article, electrically heated smoking system, and method of manufacturing non-combustion heating smoking article
WO2023188372A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188373A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188375A1 (en) Atomizing unit and method for manufacturing same, and inhaler
WO2023188376A1 (en) Atomization unit, method for manufacturing same, and inhalation apparatus
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188374A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188327A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188328A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023248475A1 (en) Atomization unit and method for manufacturing same, and inhalation tool
WO2023188329A1 (en) Atomization unit, inhalation implement, and method for producing atomization unit
WO2023248476A1 (en) Atomizing unit and method for manufacturing same, and enhaler
WO2023112292A1 (en) Atomization unit, inhalation device, and atomization unit production method
WO2023162197A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935511

Country of ref document: EP

Kind code of ref document: A1