WO2023188374A1 - Atomization unit and method for manufacturing same, and inhalation device - Google Patents

Atomization unit and method for manufacturing same, and inhalation device Download PDF

Info

Publication number
WO2023188374A1
WO2023188374A1 PCT/JP2022/016815 JP2022016815W WO2023188374A1 WO 2023188374 A1 WO2023188374 A1 WO 2023188374A1 JP 2022016815 W JP2022016815 W JP 2022016815W WO 2023188374 A1 WO2023188374 A1 WO 2023188374A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
droplet trapping
atomization unit
trapping material
droplet
Prior art date
Application number
PCT/JP2022/016815
Other languages
French (fr)
Japanese (ja)
Inventor
光史 松本
貴久 工藤
友一 渡辺
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/016815 priority Critical patent/WO2023188374A1/en
Publication of WO2023188374A1 publication Critical patent/WO2023188374A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors

Definitions

  • the present invention relates to an atomization unit of a suction tool, a method for manufacturing the same, and a suction tool.
  • an atomization unit used in a non-combustion heating type suction device, a liquid storage part for storing an aerosol generation liquid, the aerosol generation liquid in the liquid storage part is introduced, and the introduced aerosol generation liquid is atomized.
  • An atomization unit is known that includes an electrical load that generates an aerosol and a flavor source that imparts a flavor component to the aerosol (for example, see Patent Document 1).
  • Patent Document 2 can be cited as another prior art document.
  • Patent Document 2 discloses information regarding tobacco leaf extract.
  • the aerosol generated in the atomization unit may contain excessive droplets.
  • the aerosol containing excessive droplets may give the user an undesirable taste such as a rough taste. In this respect, there is room for improvement in conventional atomization units.
  • the present invention has been made in view of the above, and one of its objects is to provide a technique for removing excessive droplets contained in the aerosol generated by the atomization unit in the suction tool.
  • an atomization unit of a suction device is arranged in a liquid storage part that contains an aerosol generating liquid containing a tobacco extract component and an air passage through which air passes,
  • an electric load is provided to atomize the introduced aerosol-generating liquid to generate an aerosol
  • a droplet capturing material is provided to capture droplets contained in the aerosol.
  • a droplet trapping material disposed in a downstream passage portion of the air passage located downstream of the load in the air flow direction.
  • the droplet trapping material may be formed as a molded body having a droplet trapping surface that is exposed to the downstream passage and traps droplets contained in the aerosol.
  • the droplet trapping material may be a flavor molded article containing a non-tobacco base material and a flavor material.
  • the droplet trapping material has a rod shape that extends along the downstream passage section, and extends inside the droplet trapping material in the axial direction of the droplet trapping material. It may also have a hollow aerosol flow path through which the aerosol flows, and the inner surface of the aerosol flow path may be formed as the droplet trapping surface.
  • the droplet trapping material has a rod shape that extends along the downstream passage, and has a side surface thereof that extends in the axial direction of the droplet trapping material. It may also have an aerosol distribution groove for distributing the aerosol, and a surface of the aerosol distribution groove may be formed as the droplet trapping surface.
  • the droplet trapping material has a rod shape extending along the downstream passage, and a cross section perpendicular to the flow direction of the aerosol in the downstream passage.
  • a plurality of the droplet trapping materials are arranged in parallel along the direction, and an aerosol flow path is formed between the outer surfaces of the droplet trapping materials arranged in parallel, and an aerosol flow path is formed to allow the aerosol to flow.
  • the droplet trapping surface may be formed by an outer surface of the droplet trapping material facing the road.
  • the droplet trapping material has a bellows sheet shape as a whole, and includes a plurality of sheet portions extending along the flow direction of air in the downstream passage portion, and each An aerosol configured to include a ridgeline section that connects the sheet sections in a bellows-like manner and extends along the air flow direction, and that distributes the aerosol between the sheet sections that are connected via the ridgeline section.
  • a flow path may be formed, and the droplet trapping surface may be formed by an outer surface of the sheet portion facing the aerosol flow path.
  • the droplet trapping material has a plate shape extending along the flow direction of air in the downstream passage, and is orthogonal to the flow direction of air in the downstream passage.
  • an aerosol flow path in which a plurality of the droplet trapping materials are arranged side by side so as to face each other at intervals along a cross section, and the aerosol flows between the droplet trapping materials arranged to face each other; may be formed, and the droplet trapping surface may be formed by an outer surface of the droplet trapping material facing the aerosol flow path.
  • a suction tool includes the atomizing unit according to any one of aspects 1 to 8 above, and a power source that supplies power to the load, and a power source unit to which the atomizing unit is detachably attached. and.
  • a method for manufacturing an atomization unit of a suction tool includes: an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a droplet trapping material for trapping the droplets, and a preparation step for preparing the droplet trapping material; an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the droplet trapping material in the air passage; has In the assembly process, The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the droplet trapping material is arranged in a downstream passage part located downstream of the load in the air flow direction. do.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG.
  • FIG. 4 is a schematic perspective view of the droplet trapping material according to the first embodiment.
  • FIG. 5 is a flow diagram for explaining the method for manufacturing the atomization unit according to the first embodiment.
  • FIG. 6 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment.
  • FIG. 3 is a
  • FIG. 7 is a longitudinal cross-sectional view of the atomization unit according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the atomization unit according to the second embodiment.
  • FIG. 9 is a longitudinal cross-sectional view of the atomization unit according to the third embodiment.
  • FIG. 10 is a cross-sectional view of the atomization unit according to the third embodiment.
  • FIG. 11 is a longitudinal cross-sectional view of the atomization unit according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view of the atomization unit according to the fourth embodiment.
  • FIG. 13 is a longitudinal cross-sectional view of the atomization unit according to the fifth embodiment.
  • FIG. 14 is a cross-sectional view of the atomization unit according to the fifth embodiment.
  • FIG. 15 is a cross-sectional view of the atomization unit according to the sixth embodiment.
  • FIG. 16 is a cross-sectional view of the atomization unit according to Embodiment 7.
  • FIG. 17 is a longitudinal cross-sectional view of the atomization unit according to Embodiment 8.
  • FIG. 18 is a cross-sectional view of the atomization unit according to Embodiment 8.
  • the atomization unit is a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components; an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol; A droplet trapping material that traps droplets contained in an aerosol, the droplet trapping material being disposed in a downstream passage portion of the air passageway that is located downstream of the load in the air flow direction.
  • the droplet trapping material may be formed as a molded body having a droplet trapping surface that is exposed to the downstream passage and traps droplets contained in the aerosol.
  • the droplet trapping material may be a flavor molded body containing a non-tobacco base material and a flavor material.
  • the flavor material may include a tobacco material, and the content of the tobacco material in the flavor molded body may be 10% by weight or less.
  • the method for manufacturing the atomization unit includes: An atomization unit housing having a liquid storage portion and an air passage formed therein, an aerosol generation liquid containing tobacco extract components, an electrical load for atomizing the aerosol generation liquid to generate an aerosol, and a liquid contained in the aerosol.
  • a droplet trapping material for trapping the droplets, and a preparation step for preparing the droplet trapping material
  • an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the droplet trapping material in the air passage has In the assembly process, The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the droplet trapping material is arranged in a downstream passage part located downstream of the load in the air flow direction. You may.
  • FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to the first embodiment.
  • the suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10.
  • the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
  • the suction tool 10 has a power supply unit 11 and an atomization unit 12.
  • the power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the reference numeral 120 in FIG. 1 is an atomization unit housing that houses various elements constituting the atomization unit 12, and a part of the housing also serves as a mouthpiece that the user holds in his or her mouth for suction.
  • the atomization unit housing 120 of the atomization unit 12 has inflow ports 72a and 72b, which are holes for introducing air into the atomization unit housing 120 from the outside, and inlets 72a and 72b for introducing aerosol from the inside of the atomization unit housing 120 to the outside.
  • a discharge port 13 is provided for discharging the air contained therein.
  • the user of the suction tool 10 can inhale air containing aerosol discharged from the outlet 13. That is, the discharge port 13 formed in the atomization unit housing 120 of the atomization unit 12 functions as a suction port through which the user sucks the aerosol.
  • a sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13.
  • a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, and notifies the control device of this, and the control device ends the energization of the load 40.
  • the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives this suction start request or suction end request starts or ends energization to the load 40.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 12 taken along a plane including the central axis CL.
  • FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a cross section normal to the central axis CL, also referred to as a "cross section").
  • the atomization unit 12 will be explained with reference to FIGS. 2 and 3.
  • the atomization unit 12 (atomization unit housing 120) according to the present embodiment includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and has a width It includes a plurality of wall portions (wall portions 71a to 71c) extending in the direction. Further, the atomization unit 12 includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid storage section 50 , and a droplet trapping material 60 disposed in the air passage 20 .
  • the air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23.
  • the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a (i.e., "first upstream passage section") and an upstream passage section 21b ( In other words, it includes a "second upstream passage section").
  • the air passage may have a single upstream passage, or may have three or more upstream passages.
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction).
  • the downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22.
  • the load passage section 22 is a passage section in which a load 40 is disposed.
  • the downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
  • the upstream passage section 21a is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c.
  • the downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
  • the wall portion 71a of the atomization unit housing 120 is provided with inflow ports 72a and 72b. Air outside the housing flows into the upstream passage section 21a through the inlet 72a, and flows into the upstream passage section 21b through the inlet 72b. Further, the wall portion 71b is provided with a communication hole 72c and a communication hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the communication hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the communication hole 72d.
  • the direction of flow of air (flow direction) in the upstream passages 21a and 21b is opposite to the direction of flow of air in the downstream passage 23.
  • the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction
  • the direction of air flow in the downstream passage section 23 is the Z direction.
  • the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
  • the upstream passage section 21a is configured to accommodate liquid in a cross-sectional view (i.e., a cross-sectional view) taken along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction) with the section 50 interposed therebetween. On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • a cross-sectional view i.e., a cross-sectional view
  • the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12. 50.
  • cross-sectional shapes of the upstream passage portion 21a and the upstream passage portion 21b are not limited to the polygonal shape illustrated in FIG. (For example, it may be circular.)
  • the liquid storage section 50 is a part for storing the aerosol generation liquid Le.
  • the liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the aforementioned downstream passage section 23 is provided, as an example, so as to penetrate the liquid storage section 50 in the direction of the central axis CL.
  • the configuration is not limited to this, and, for example, the downstream passage section 23 may be provided adjacent to the liquid storage section 50 in the thickness direction (Y-axis direction) of the suction tool 10.
  • the wick 30 is a member for introducing an aerosol generating liquid Le, which will be described later, stored in the liquid storage section 50 into the load 40 of the load passage section 22.
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. While absorbing and holding the aerosol generating liquid Le of 50, the aerosol generating liquid Le is introduced into the load 40.
  • the wick 30 can be made of, for example, glass fiber or porous ceramic, but is not limited thereto.
  • the load 40 is an electrical load for introducing the aerosol generation liquid Le from the liquid storage section 50 and for atomizing the introduced aerosol generation liquid Le to generate an aerosol.
  • "introducing" the aerosol generation liquid Le has substantially the same meaning as "supplying”.
  • the specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used.
  • a heater is used as an example of the load 40.
  • a heating resistor that is, a heating wire
  • a ceramic heater a dielectric heater, or the like can be used.
  • a heating resistor is used as an example of this heater, and a heating resistor having a coil shape is used as an example of this heating resistor. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
  • the load 40 is arranged in the wick 30 inside the load passage section 22, for example.
  • the load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device.
  • the load 40 heats and atomizes the aerosol-generating liquid Le in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
  • Suction of aerosol using the suction tool 10 is performed as follows. First, when a user starts a suction operation while holding the discharge port 13 of the suction tool 10 in his or her mouth, external air flows from each inlet port 72a, 72b in the atomization unit 12 to the air passage 20 (upstream passage portion 21a, 21b). Further, when the control device provided in the power supply unit 11 detects the user's suction operation, it issues a command to the battery and starts energizing the load 40 in the atomization unit 12 . The air flowing into the air passage 20 from each inlet 72a, 72b passes through the upstream passage parts 21a, 21b, and then passes through each communication hole 72c, 72d to the load passage part where the wick 30 and the load 40 are arranged. 22.
  • the wick 30 disposed in the load passage section 22 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 50. Therefore, when electricity starts to be applied from the battery to the load 40, the aerosol generation liquid Le held in the wick 30 evaporates. Then, the vapor of the aerosol generating liquid Le generated in the load passage section 22 is mixed with the air that has flowed into the load passage section 22 around the wick 30 (also referred to as the "atomization section"), and as a result, aerosol is generated. be done. In this way, the air containing the aerosol generated in the load passage section 22 (atomization section) flows into the downstream passage section 23 and is then discharged through the discharge port 13 located at the downstream end of the downstream passage section 23. It is eventually sucked into the user's oral cavity.
  • the aerosol generating liquid Le is one in which a tobacco extract component is contained in a predetermined solvent.
  • the aerosol generation liquid Le is not particularly limited as long as it contains tobacco extract components.
  • the aspect of the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and can be obtained, for example, by extracting tobacco materials such as tobacco leaves. In this specification, components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
  • Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance.
  • the aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains tobacco extract components" may also be referred to as "contains natural nicotine.”
  • the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc.
  • tobacco leaves may be used. It is preferable.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
  • the method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco materials in the aerosol generation liquid, or a method of dissolving the tobacco extract component in a solvent and then adding nicotine to the aerosol.
  • Examples include a method of mixing with the product liquid Le.
  • the tobacco extract can be used as it is as the aerosol generation liquid Le.
  • examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the tobacco extract component contains natural nicotine
  • natural nicotine extracted and purified from tobacco leaves can be used.
  • a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
  • the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials.
  • natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • the content of nicotine (particularly natural nicotine) in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it is, for example, 0.1% by weight or more and 10% by weight or less. It may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • tobacco extract can be used as a source of nicotine.
  • the content of the tobacco extract in the aerosol-generating liquid Le is not particularly limited, but may be, for example, 0.1% by weight or more and 10% by weight or less, from the viewpoint of enabling a sufficient supply of nicotine. , may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • the type of predetermined solvent contained in the aerosol generation liquid Le is not particularly limited, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and one or more substances selected from the group consisting of water.
  • the content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
  • the type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances, or liquids containing the substances, can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • tobacco extract can be used as is as an aerosol generation liquid, but tobacco extract does not contain components that can cause charring when heated (for example, lipids, metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation.
  • the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
  • the aerosol generation liquid Le contains at least a tobacco extract component as a component for imparting nicotine, but from the viewpoint of aroma and taste, it may further contain synthetic nicotine obtained by synthesis or the like.
  • the synthetic nicotine may exist as nicotine or as a nicotine-containing compound such as a nicotine salt.
  • nicotine obtained by synthesis is also referred to as "synthetic nicotine,” which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances.
  • the method for producing synthetic nicotine is not particularly limited, and any known production method can be used. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the type of nicotine-containing compound is not particularly limited, and examples include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, and nicotine fumarate.
  • nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, and nicotine fumarate.
  • the production method is not particularly limited, and any known production method can be used.
  • the aerosol generation liquid Le may have components other than the tobacco extract component and the aerosol base material (other components), for example, flavor components other than the tobacco extract component (including the tobacco extract component other than the above-mentioned nicotine). may contain
  • Flavor components other than tobacco extract components include, for example, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum).
  • natural vegetable flavorings e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum.
  • vetiver oil rose oil, lovage oil
  • esters e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.
  • ketones e.g., menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadecalactone, etc.
  • neophytadiene, solanone, solanesol, or the like which can be tobacco extract components, may be contained in the aerosol generation liquid Le as a synthetically obtained substance rather than as a tobacco extract component.
  • the droplet trapping material 60 of the atomization unit 12 is a member for trapping droplets contained in the aerosol generated by the load 40, and is disposed in the downstream passage section 23.
  • the droplet trapping material 60 is formed as a molded body having a droplet trapping surface that traps droplets contained in an aerosol. More specifically, in this embodiment, an embodiment in which the droplet trapping material 60 is formed as a flavor molded body containing a non-tobacco base material and a flavor material will be exemplified.
  • FIG. 4 is a schematic perspective view of the droplet trapping material 60 according to the first embodiment.
  • the droplet trapping material 60 shown in FIG. 4 has a rod shape along the extending direction of the downstream passage section 23 (the air flow direction, that is, the Z direction). More specifically, the droplet trapping material 60 has a cylindrical shape and has a central axis X1 extending along the extending direction of the downstream passage section 23 (air flow direction, ie, Z direction). Further, as shown in FIG. 4, a hollow aerosol flow path (hollow path) 61 is formed in the droplet trapping material 60 along the central axis X1, passing through the droplet trapping material 60.
  • the hollow aerosol flow path (hollow path)
  • the aerosol flow path 61 is arranged coaxially with the central axis X1 of the droplet trapping material 60, but the invention is not limited thereto. Further, the number of aerosol flow passages 61 formed in the droplet trapping material 60 is not particularly limited, and for example, a plurality of aerosol flow passages 61 may be arranged side by side along the central axis X1 of the droplet trapping material 60. Good too. Further, in the example shown in FIG. 4, the cross-sectional shape of the aerosol flow path 61 is circular, but the cross-sectional shape of the aerosol flow path 61 is not particularly limited.
  • reference numeral 65 is the inner surface of the aerosol flow path 61, and in this embodiment, it is formed as a droplet trapping surface for trapping droplets contained in the aerosol.
  • the droplet trapping material 60 is provided in the downstream passage section 23 such that the droplet trapping surface 65 of the aerosol flow path 61 is exposed to the downstream passage section 23 .
  • the inner surface of each aerosol flow passage 61 forms the droplet trapping surface 65.
  • the droplet trapping material 60 may have a honeycomb structure in which a plurality of aerosol flow passages 61 are partitioned from each other by partition walls.
  • the central axis X1 is an axis extending along the longitudinal direction of the droplet trapping material 60, but the present invention is not limited to this.
  • the shape of the droplet trapping material 60 is not particularly limited.
  • the length dimension (dimension in the central axis X1 direction) of the droplet trapping material 60 and the diameter dimension perpendicular to this may be equal, or the diameter dimension may be larger than the length dimension.
  • the shape of the cross section perpendicular to the central axis X1 is not particularly limited, and may be, for example, an ellipse or a polygon, or may have a shape other than these. Good too.
  • the droplet trapping material 60 also has an aerosol distribution groove along the side surface of the droplet trapping material 60, instead of or in addition to the aerosol flow path 61 passing through the inside thereof in the central axis X1 direction. may be extended.
  • the aerosol flow groove can function as a concave aerosol flow path for circulating aerosol.
  • a plurality of rod-shaped droplet trapping materials 60 may be arranged in a bundle in the downstream passage section 23.
  • the individual droplet trapping materials 60 may or may not be integrated with each other.
  • the droplet trapping material 60 having a sheet shape
  • a sheet made of a mixture of a non-tobacco base material and a flavoring material a cast sheet of a mixture of a non-tobacco base material and a flavoring material, or a cast sheet of a mixture of a non-tobacco base material and a flavoring material is used.
  • the droplet trapping material 60 can be formed of a rolled sheet of a mixture with a non-tobacco base material, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying on the surface of the sheet.
  • the droplet trapping material 60 may be arranged in the downstream passage section 23 in a state in which a single sheet is folded into an arbitrary shape such as a bellows shape or a spiral shape. Further, the downstream passage portion 23 may be filled with a plurality of strip sheet pieces obtained by cutting the sheet into strips as the droplet trapping material 60. In this case, the strip sheet pieces serving as the droplet trapping material 60 may be arranged in alignment along the downstream passage section 23, or may be arranged randomly without being aligned in a specific direction.
  • the droplet trapping material 60 may have a plate shape. Further, the droplet trapping material 60 may have a shape other than a rod shape, a plate shape, or a sheet shape.
  • the droplet trapping material 60 may be in the form of granules, and the downstream passage portion 23 may be filled with a plurality of granules forming the droplet trapping material 60.
  • the shape of the granules forming the droplet trapping material 60 is not particularly limited.
  • the droplet trapping material 60 configured as described above is arranged in the downstream passage in such a manner that the ventilation resistance of the air containing aerosol flowing through the downstream passage section 23 does not become excessively large, that is, in a manner that the smooth circulation of the air is not inhibited. It is arranged in section 23.
  • the aerosol flow path 61 passes through the droplet trapping material 60 along the axis X1 direction, air containing aerosol can be smoothly circulated through the aerosol flow path 61.
  • the droplet trapping material 60 in this embodiment is formed as a flavor molded body.
  • the droplet trapping material 60 includes a non-tobacco base material, a flavor material, etc., which are hardened and molded into a predetermined shape.
  • the flavor material contained in the flavor molded article may include tobacco material.
  • the amount of tobacco material in the flavor molded article may be 10% by weight or less.
  • the flavor material may contain, in addition to the tobacco material, various flavor components not derived from the tobacco material.
  • the type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be.
  • tobacco materials specifically, tobacco plants
  • ceramics include alumina, zirconia, aluminum nitride, and silicon carbide.
  • synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH.
  • plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves.
  • the non-tobacco base material may be the main material of the flavor molded product, particularly the main material that ensures the molding of the flavor molded product.
  • the content of the non-tobacco base material in the flavor molded product is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, and 50% by weight. % or more and 80% by weight or less.
  • the form of the flavor material contained in the flavor molded body is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and the flavor component may be a flavor component itself.
  • the imparting material include tobacco materials that impart nicotine.
  • the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material.
  • the flavor material is not the nicotine contained in the tobacco material, but the tobacco material.
  • the form of the tobacco material is not particularly limited; for example, it may contain tissues such as leaves, stems, flowers, roots, reproductive organs, or embryos of tobacco plants, and tobacco materials using these tobacco plant tissues may also be used.
  • Processed products for example, tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in known tobacco products
  • tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
  • the flavoring material contains tobacco material does not mean that the flavoring material contains tobacco material, but rather that it contains tobacco material as one of the types of flavoring material.
  • the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less” means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less”. The content of the material is 10% by weight or less.”
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the content of the flavor material in the flavor molded body is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight or more. % or more and 50% by weight or less.
  • the content of the tobacco material in the flavor molded body is not particularly limited, but from the viewpoint of imparting flavor to the air (aerosol) flowing through the downstream passage section 23 as a flavor spice. It is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 7% by weight or more.
  • the content of the tobacco material in the flavor molded product is preferably 10% by weight or less, and preferably 7% by weight or less.
  • the content is more preferably 3% by weight or less, and even more preferably 3% by weight or less.
  • the flavor molded product may contain a binder for adhering materials included in the flavor molded product, such as a non-tobacco base material.
  • a binder for adhering materials included in the flavor molded product such as a non-tobacco base material.
  • the type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, polyvinyl acetate, or alkylhydroxyalkylcellulose can be used.
  • the content of the binder in the flavor molded product may be 1% by weight or more and 20% by weight or less, and may be 3% by weight or more and 15% by weight or less, from the viewpoint of ensuring sufficient adhesiveness. , 5% by weight or more and 10% by weight or less.
  • the flavor molded body may contain components other than the above-mentioned various components, for example, potassium carbonate, potassium hydrogen carbonate (for pH adjustment), etc.
  • the surface of the flavor molded object may be coated with a coating material such as resin.
  • a coating material such as resin.
  • the surface of the flavor molded object does not need to be coated with the coating material.
  • the coating material include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
  • the density (mass per unit volume) of the flavor molded object may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg/cm 3 or more. cm 3 or less.
  • the density of the flavor molded body is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 .
  • the density can be determined as the total mass relative to the total volume of the flavor molded bodies.
  • the aerosol generating liquid Le containing nicotine is stored in the liquid storage section 50. Therefore, when an aerosol is generated by the operation of the load 40 disposed in the load passage section 22, a flavor component derived from the tobacco extract component contained in the aerosol generation liquid Le can be imparted to the aerosol. Furthermore, in the atomization unit 12 in this embodiment, the droplet trapping material 60 is arranged in the downstream passage section 23. A hollow aerosol flow passage 61 extending along the extending direction of the downstream passage portion 23 (air flow direction) is formed through the droplet trapping material 60 .
  • the droplet trapping material 60 is formed as a flavor molded object, when the air containing the aerosol flows through the aerosol flow path 61, the flavor material contained in the droplet trapping material 60 (flavor molded object) is absorbed. Flavor is imparted by (for example, flavor components of tobacco materials, etc.).
  • the atomization unit 12 in the present embodiment supplies the generated aerosol with the flavor components derived from the tobacco extract components contained in the aerosol generation liquid Le and the flavor components contained in the droplet trapping material 60 (flavor molded body). Flavor components can be added in two stages. Thereby, the aerosol can be sufficiently flavored. In other words, according to the present embodiment, the aerosol is given a deep flavor that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the droplet trapping material 60 (flavor molded body). can do.
  • the droplet trapping material 60 (flavor molded object) is configured to include a non-tobacco base material, so that the amount of liquid absorbed by the droplet trapping material 60 (flavor molded object) can be controlled.
  • a non-tobacco base material so that the amount of liquid absorbed by the droplet trapping material 60 (flavor molded object) can be controlled.
  • the flavor molded body forming the droplet trapping material 60 contains tobacco material as one type of flavor material
  • the content of the tobacco material in the flavor molded body may be 10% by weight or less. In this way, by including a small amount of tobacco material in the flavor molded body, it is possible to impart a spice-like flavor to the aerosol generated in the atomization unit 12.
  • the amount of tobacco material contained in the flavor molded body does not increase excessively, there is an advantage that the tobacco material is difficult to separate from the non-tobacco base material.
  • the flavor source that adds flavor to the air containing the aerosol passing through the downstream passage section 23 is arranged in the form of a molded body, the droplet trapping material 60 when assembling the atomization unit 12 (flavor molded product) is easy to handle.
  • the inner surface of the aerosol flow path 61 is formed as a droplet trapping surface 65 for trapping droplets contained in the aerosol flowing through the droplet trapping surface 65, and
  • the capture surface 65 is arranged to be exposed to the downstream passage section 23. According to this, the droplet trapping surface 65 is exposed to the aerosol passing through the aerosol flow path 61 of the droplet trapping material 60, so that droplets contained in the aerosol are efficiently captured by the droplet trapping surface 65. can do.
  • the aerosol containing excess droplets may be a factor that imparts an undesirable taste, such as a rough taste, to the user in some cases.
  • the aerosol is cooled during the process in which the aerosol flows through the downstream passage section 23 (aerosol flow path) of the atomization unit 12, and thus the aerosol contains excessive droplets. Even in the case where the droplet is removed, the droplet can be efficiently removed by the droplet trapping surface 65 of the droplet trapping material 60. As described above, according to the atomization unit 12 in this embodiment, the user can inhale the aerosol after the excess droplets have been suitably removed. Therefore, it is possible to provide the atomization unit 12 and the suction tool 10 including the atomization unit 12 that can suppress deterioration of the flavor of the aerosol.
  • the droplet trapping material 60 may have a density of 1 g/cm 3 or less. According to this, droplets contained in the aerosol can be captured more efficiently by the droplet capturing material 60.
  • the arithmetic surface roughness Sa of the droplet trapping surface 65 in the droplet trapping material 60 may be 30 ⁇ m or more and 1000 ⁇ m or less. Further, the arithmetic surface roughness Sa of the droplet trapping surface 65 is preferably 30 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • droplets By adjusting the arithmetic surface roughness Sa of the droplet trapping surface 65 within this range, droplets can be easily held on the droplet trapping surface 65, and droplets contained in aerosol can be collected more efficiently by the droplet trapping surface 65. Can be captured well.
  • FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first embodiment.
  • An electrical load 40, a wick 30, and a droplet trapping material 60 (flavor molded body) for trapping droplets contained in the aerosol are prepared.
  • the atomization unit housing referred to here is the atomization unit housing 120 described with reference to FIGS. 2 and 3, in which the load 40, wick 30, droplet trapping material 60, etc. are not yet arranged in the air passage 20, and Moreover, it refers to the housing in a state before the liquid storage section 50 is filled with the aerosol generation liquid Le.
  • the specific method for preparing the aerosol generation liquid Le containing tobacco extract components in the preparation step is not particularly limited, and any known method can be adopted.
  • a method may be mentioned in which a component obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
  • an alkaline substance is applied to tobacco leaves (referred to as alkali treatment).
  • alkali treatment for example, a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • heat treatment for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group. Two or more kinds of substances are brought into contact with tobacco leaves.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • the aerosol generation liquid Le may be produced without using the above-mentioned collection solvent.
  • the components released from the tobacco leaves into the gas phase can be condensed by cooling them using a condenser or the like.
  • the flavor components may be extracted.
  • the aerosol generation liquid Le may be produced without performing the alkali treatment described above.
  • one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment).
  • Add substance the tobacco leaf to which the above substance has been added is heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • an aerosol in which one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or
  • the aerosol formed by two or more substances selected from this group is passed through tobacco leaves (tobacco leaves that have not been treated with alkali), and the aerosol that has passed through the tobacco leaves is captured in a collection solvent. You may collect them. Flavor components can also be extracted by such a process.
  • a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250 ° C.") that may be included in the flavor components extracted by the method described above is reduced. (also referred to as “reduction processing”) may be performed.
  • amount of carbonized components that become carbide when heated to 250° C.” adhesion of carbonized components to the load 40 can be effectively suppressed.
  • occurrence of burnt on the load 40 can be effectively suppressed.
  • the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), tobacco extract components are subjected to distillation treatment or vacuum distillation treatment to eliminate charring. It is preferable to remove the causative substance. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • components that can cause charring when heated e.g., lipids, metal ions, sugars, or proteins
  • tobacco extract components are subjected to distillation treatment or vacuum distillation treatment to eliminate charring. It is preferable to remove the causative substance. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • the method for producing the flavored molded body is not particularly limited, but for example, a non-tobacco base material such as a ceramic, a synthetic polymer, or a pulp derived from a plant other than tobacco plants (it may be a melt of a non-tobacco base material) is used. , a flavor material and a binder such as a binder are mixed to obtain a mixture, and then the mixture is molded into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer molding, compression molding, or casting molding.
  • a non-tobacco base material such as a ceramic, a synthetic polymer, or a pulp derived from a plant other than tobacco plants (it may be a melt of a non-tobacco base material) is used.
  • a flavor material and a binder such as a binder are mixed to obtain a mixture, and then the mixture is molded into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer
  • the non-tobacco base material is a polymer
  • flavor molding into a predetermined shape is performed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining a body. Furthermore, after obtaining a composite material in any solid shape containing a non-tobacco base material, the composite material may be processed into a predetermined shape by cutting, grinding, or the like.
  • non-tobacco base material which may be a melt of the non-tobacco base material
  • flavor molding is performed by applying or spraying a flavor material onto the surface of the non-tobacco base material. You can also manufacture bodies.
  • the surface of the flavor molded object may be coated with a coating material.
  • a coating material it is possible to produce a flavor molded object in which the surface of a non-tobacco base material hardened into a predetermined shape is covered with a coating material.
  • wax can be used as this coating material.
  • this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
  • corn protein can also be used as a coating material.
  • a specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd.
  • polyvinyl acetate can also be used as a coating material.
  • tobacco residue may be included in the non-tobacco base material. Further, when obtaining a tobacco extract liquid in the production of an aerosol production liquid containing tobacco extract components, it is preferable to use tobacco residue obtained by extraction when obtaining the tobacco extract.
  • the aerosol generation liquid Le is accommodated in the liquid storage part 50 of the atomization unit housing 120, and the droplet trapping material 60, the wick 30, and the load 40 are placed in the air passage 20. Place each.
  • the wick 30 and the load 40 are arranged in the load passage section 22 of the atomization unit housing 120, and the droplet trapping material 60 is arranged in the downstream passage section 23.
  • the load 40 is arranged in such a manner that the aerosol generating liquid Le is introduced from the liquid storage section 50.
  • the wick 30 may be installed in the load passage section 22 so as to communicate with the inside of the liquid storage section 50, and the load 40 may be installed in the load passage section 22 in a state in which it is in contact with the wick 30.
  • the droplet trapping material 60 is disposed at a location downstream of the load 40 in the air passage 20 in the air flow direction, that is, at the downstream passage section 23 .
  • the atomization unit 12 of the suction tool 10 can be suitably manufactured.
  • the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le stored in the liquid storage part 50 is preferably 6 mg or less, and preferably 3 mg or less. It is more preferable.
  • the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
  • the "carbonized component” contained in 1 g of aerosol-generating liquid specifically refers to "component that becomes carbide when heated to 250°C.”
  • the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • This "amount (mg) of carbonized components contained in 1 g of aerosol generating liquid” can be measured, for example, by the following method. First, a predetermined amount (g) of aerosol generation liquid Le is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured.
  • the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid ( That is, the amount (mg) of carbonized components can be calculated.
  • Figure 6 shows the TPM reduction rate measured with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as an aerosol generating liquid containing nicotine. It is a figure showing a result.
  • the horizontal axis of FIG. 6 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 6 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Step 3 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at °C. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
  • the standing time that is, the immersion time in the immersion liquid
  • the amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) shown in FIG. 6 was measured by the above method.
  • R TPM (%) (1-TPM (201puff ⁇ 250puff) / TPM (1puff ⁇ 50puff)) x 100... (1)
  • TPM Total Particle Molecule
  • TPM (1puff to 50puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
  • TPM (201puff to 250puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
  • FIG. 7 is a longitudinal cross-sectional view of the atomization unit 12 according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the atomization unit 12 according to the second embodiment, and shows a cross section taken along the line A2-A2 in FIG. 7.
  • the air passage 20 does not include an upstream passage section.
  • the wall portion 71c of the load passage portion 22 is provided with an inlet 72e, which is a hole for introducing air into the atomization unit housing 120 from the outside.
  • the housing of the power supply unit 11 in the suction tool 10 may also have an inflow port formed therein for taking in air from the outside. Then, an internal passage is formed inside the power supply unit housing to communicate the inflow port on the power supply unit housing side and the inflow port 72e on the atomization unit housing 120 side, and the air supplied through the internal passage is transferred to the inflow port 72e.
  • the downstream passage section 23 according to the second embodiment has an enlarged diameter section 24a.
  • the enlarged diameter portion 24a is provided in a part of the downstream passage portion 23, and is a portion whose diameter is enlarged more than “the other portion 24b (that is, the non-expanded diameter portion)” of the downstream passage portion 23.
  • the downstream passage section 23 according to the second embodiment is entirely disposed inside the liquid storage section 50.
  • the enlarged diameter portion 24a is disposed in the middle of the downstream passage portion 23.
  • another part 24b is arranged upstream of the enlarged diameter part 24a, and another part 24b is arranged downstream of the enlarged diameter part 24a (that is, the enlarged diameter part 24a is ).
  • the droplet trapping material 60 in the second embodiment is arranged in the enlarged diameter portion 24a of the downstream passage portion 23.
  • the enlarged diameter portion 24a has a rectangular cross section perpendicular to the air flow direction.
  • the droplet trapping material 60 in this embodiment has a cross section that is substantially congruent with the enlarged diameter portion 24a, and has a rectangular parallelepiped bar shape extending along the extending direction (Z direction) of the enlarged diameter portion 24a.
  • the droplet trapping material 60 in this embodiment is also formed of, for example, a flavor molded body.
  • the droplet trapping material 60 has a plurality of hollow aerosol flow passages 61 extending therethrough along the axial direction of the droplet trapping material 60.
  • Each aerosol flow passage 61 extends along the extending direction (Z direction) of the enlarged diameter portion 24a, and the air containing the aerosol that has flowed from the load passage portion 22 to the downstream passage portion 23 passes through the droplet trapping material.
  • 60 aerosol flow passages 61 each. According to this, when the aerosol passes through each aerosol flow path 61 of the droplet trapping material 60, flavor can be imparted to the aerosol by the flavor material contained in the droplet trapping material 60.
  • the droplet trapping surface 65 is formed by the inner surface of each aerosol flow path 61 in the droplet trapping material 60, excess droplets contained in the aerosol flowing through each aerosol flow path 61 are removed from the droplet trapping surface 65. can be captured and removed by That is, in this embodiment as well, the same effects as in the first embodiment described above can be achieved.
  • the number of aerosol flow passages 61 formed in the droplet trapping material 60 is not particularly limited.
  • the droplet trapping material 60 is disposed in the downstream passage section 23, the droplet trapping material 60 is arranged in the downstream passage section 23, so the droplet trapping material 60 is arranged in the downstream passage section 23.
  • the ventilation resistance value of air containing aerosol passing through the capture material 60 (an index indicating the difficulty of air passage) can be kept low.
  • the flavor components of the flavor material contained in the droplet trapping material 60 are more effectively absorbed. , it is possible to add a flavor component to the air flowing through the downstream passage section 23 (that is, it is possible to effectively impart a flavor component to the air containing the aerosol).
  • downstream passage section 23 is entirely disposed inside the liquid storage section 50, but the embodiment is not limited to this embodiment.
  • the downstream passage section 23 may be arranged adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12.
  • FIG. 9 is a longitudinal cross-sectional view of the atomization unit 12 according to the third embodiment.
  • FIG. 10 is a cross-sectional view of the atomization unit 12 according to the third embodiment, and shows a cross section taken along line A3-A3 in FIG.
  • the atomization unit 12 according to the third embodiment differs from the second embodiment only in the aspect of the droplet trapping material 60 disposed in the enlarged diameter section 24a of the downstream passage section 23. Also in this embodiment, the droplet trapping material 60 is formed of a flavor molded body.
  • a plurality of rod-shaped droplet trapping materials 60 are arranged in parallel along the cross-sectional direction (X direction, Y direction) of the enlarged diameter portion 24a of the downstream passage portion 23.
  • each droplet trapping material 60 has a solid cylindrical shape extending along the extending direction (Z direction) of the enlarged diameter portion 24a.
  • 20 droplet trapping materials 60 are arranged in a pattern of 4 rows and 5 columns with respect to the enlarged diameter portion 24a. The number and arrangement pattern thereof are not particularly limited.
  • an aerosol flow passage 61 for circulating aerosol is formed between each of the droplet trapping materials 60 arranged in parallel in the enlarged diameter part 24a of the downstream passage part 23.
  • a droplet trapping surface 65 is formed by the outer surface of the droplet trapping material 60 facing the flow path 61 .
  • reference numeral 25A shown in FIG. 9 is an air-permeable support material that supports the upstream end 601 of each droplet trapping material 60.
  • Reference numeral 25B is an air-permeable support material that supports the downstream end 602 of each droplet trapping material 60.
  • the upstream end and downstream end herein mean an upstream end and a downstream end with respect to the flow direction of air.
  • the supporting members 25A and 25B cooperate to support the upstream end 601 and downstream end 602 of each droplet trapping material 60 while sandwiching them in the axial direction. Thereby, even when a plurality of droplet trapping materials 60 are arranged in the enlarged diameter portion 24a of the downstream passage section 23, the plurality of droplet trapping materials 60 can be maintained in an aligned state and at a regular position. Further, since the supporting materials 25A and 25B have air permeability, it is possible to suppress the flow of air (aerosol) along the enlarged diameter portion 24a of the downstream passage portion 23 from being obstructed.
  • the aerosol flow path 61 is formed between each of the droplet trapping materials 60 arranged in parallel in the enlarged diameter portion 24a of the downstream passage portion 23, and the aerosol flow path 61 is Since the droplet trapping surface 65 is formed by the facing outer surface of the droplet trapping material 60, the aerosol passing through the aerosol flow path 61 can be flavored by the flavor material of the droplet trapping material 60, and the flavor material contained in the aerosol can be flavored. Excess droplets can be removed.
  • the droplet trapping material 60 in this embodiment may also have a hollow aerosol flow path extending in the axial direction formed therein, as in the first embodiment.
  • FIG. 11 is a longitudinal cross-sectional view of the atomization unit 12 according to the fourth embodiment.
  • FIG. 12 is a cross-sectional view of the atomization unit 12 according to the fourth embodiment, and shows a cross section taken along the line A4-A4 in FIG. 11.
  • the atomization unit 12 according to the fourth embodiment differs from the third embodiment only in the aspect of the droplet trapping material 60 disposed in the enlarged diameter section 24a of the downstream passage section 23. Also in this embodiment, the droplet trapping material 60 is formed of a flavor molded body.
  • a plurality of droplet trapping materials 60 having a plate shape are arranged in the enlarged diameter portion 24a of the downstream passage portion 23.
  • Each droplet trapping material 60 extends along the extending direction of the enlarged diameter portion 24a (the air flow direction, that is, the Z direction).
  • each droplet trapping material 60 has an elongated flat plate shape along the enlarged diameter portion 24a, and extends in the cross-sectional direction of the enlarged diameter portion 24a (orthogonal to the air flow direction). (that is, the XY plane direction).
  • each droplet trapping material 60 is positioned and fixed in a state where they are sandwiched in the axial direction by the above-mentioned air-permeable supporting materials 25A and 25B.
  • each of the plurality of droplet trapping materials 60 is arranged side by side so as to face each other at intervals.
  • An aerosol flow path 61 for distributing the aerosol is formed by a gap formed between the droplet trapping materials 60 that are arranged to face each other.
  • a droplet trapping surface 65 is formed by the outer surface of the droplet trapping material 60 facing the aerosol flow path 61 .
  • the flavor of the droplet trapping material 60 is applied to the aerosol passing through the aerosol flow path 61 formed between the droplet trapping materials 60. Flavor can be imparted depending on the material, and excess droplets contained in the aerosol can be removed by the droplet trapping surface 65.
  • FIG. 13 is a longitudinal cross-sectional view of the atomization unit 12 according to the fifth embodiment.
  • FIG. 14 is a cross-sectional view of the atomization unit 12 according to the fifth embodiment, and shows a cross section taken along the line A5-A5 in FIG. 13.
  • the atomization unit 12 according to the fifth embodiment differs from the third and fourth embodiments only in the aspect of the droplet trapping material 60 disposed in the enlarged diameter section 24a of the downstream passage section 23. Also in this embodiment, the droplet trapping material 60 is formed of a flavor molded body.
  • a droplet trapping material 60 having an overall bellows sheet shape is disposed in the enlarged diameter portion 24a of the downstream passage portion 23.
  • the droplet trapping material 60 having a bellows sheet shape includes a plurality of sheet portions (panel portions) 62 extending along the extending direction of the enlarged diameter portion 24a (air flow direction, that is, Z direction), and each sheet portion. 62 in a bellows-like manner, and a ridgeline portion 63 extending along the air flow direction.
  • an aerosol flow path 61 for circulating aerosol is formed between the sheet portions 62 connected via the ridgeline portions 63.
  • This aerosol flow passage 61 extends along the downstream passage portion 23 (that is, along the air flow direction). Therefore, when the air (aerosol) that has flowed into the downstream passage section 23 passes through the aerosol flow passage 61, the flavor components of the flavor material contained in the flavor molded body constituting the droplet trapping material 60 are suitably transferred to the air. can be granted. Further, in the droplet trapping material 60 in this embodiment, a droplet trapping surface 65 is formed by the outer surface of the sheet portion 62 facing the aerosol flow path 61. Thereby, excess droplets contained in the aerosol flowing through the aerosol flow path 61 can be efficiently removed by the droplet trapping surface 65.
  • the upstream end 601 and downstream end 602 of the droplet trapping material 60 having the bellows sheet form are positioned and fixed by the breathable support materials 25A and 25B. .
  • the droplet trapping material 60 can be fixed at a regular position without obstructing the flow of air containing aerosol along the enlarged diameter portion 24a of the downstream passage portion 23.
  • FIG. 15 is a cross-sectional view of the atomization unit 12 according to the sixth embodiment.
  • the downstream passage portion 23 is filled with a large number of droplet trapping materials 60 in the form of strip-shaped sheet pieces.
  • the droplet trapping materials 60 are arranged so that their longitudinal directions extend along the downstream passage section 23 (that is, along the flow direction of air (aerosol)).
  • the upstream and downstream ends thereof may be positioned by supporting members 25A and 25B as described in FIG. 11.
  • an aerosol flow path 61 is formed by a gap between each droplet trapping material 60 (rectangular sheet piece), and each droplet trapping material 60 (rectangular sheet piece) defining the aerosol flow path 61 Therefore, when the air (aerosol) flowing into the downstream passage section 23 passes through the aerosol flow passage 61, the flavor components of the flavor material contained in the droplet trapping material 60 are transferred to the air (aerosol) by the side surface (outer surface) of the sheet piece). ) can be suitably provided. Furthermore, excess droplets contained in the aerosol flowing through the aerosol flow path 61 can be efficiently removed by the droplet trapping surface 65. Note that the strip sheet pieces serving as the droplet trapping material 60 may be arranged randomly and filled without being aligned along the downstream passage section 23.
  • FIG. 16 is a cross-sectional view of the atomization unit 12 according to the seventh embodiment.
  • the droplet trapping material 60 of the atomization unit 12 according to the seventh embodiment has, in addition to an aerosol flow passage 61 as a through hole penetrating in the axial direction, an aerosol flow groove 610 as an aerosol flow passage on the side surface (outer surface). It is different from the droplet trapping material 60 described in FIGS. 2 to 4 in that it is formed.
  • the aerosol distribution groove 610 in the droplet trapping material 60 is a groove provided on the side surface (outer surface) of the droplet trapping material 60 along the axial direction.
  • the aerosol distribution groove 610 is formed from the upstream end (front end) 601 to the downstream end (rear end) 602 of the droplet trapping material 60, and the surface of the aerosol distribution groove 610 forms a droplet trapping surface 65.
  • air can be smoothly circulated through the aerosol flow path 61 and the aerosol flow groove 610, and the flavor components of the flavor material contained in the droplet trapping material 60 can be suitably imparted to the air. I can do it.
  • the number of aerosol distribution grooves 610 provided on the side surface (outer surface) of the droplet trapping material 60 is not particularly limited. However, as shown in FIG.
  • the distribution of the aerosol and the imparting of flavor to the aerosol can be made more efficient. It can be carried out. Furthermore, in the droplet trapping material 60 according to the present embodiment, the aerosol flow path 61 passing through the inside thereof in the axial direction may be omitted, and only the aerosol flow groove 610 may be formed.
  • FIG. 17 is a longitudinal cross-sectional view of the atomization unit 12 according to the eighth embodiment.
  • FIG. 18 is a cross-sectional view of the atomization unit 12 according to the eighth embodiment, and shows a cross section taken along the line A6-A6 in FIG. 17.
  • the atomization unit 12 in this embodiment is different from the first embodiment in an atomization unit housing 120. Below, differences from Embodiment 1 will be mainly explained.
  • a cylindrical wall portion 70g defining the downstream passage portion 23 has a small diameter wall portion 710 located on the upstream side in the flow direction of air, and a small diameter wall portion 710 located on the downstream side of the small diameter wall portion 710. It is configured to include a large diameter wall section 720 located therein, and a boundary wall section 730 located between the small diameter wall section 710 and the large diameter wall section 720.
  • the small diameter wall 710 and the large diameter wall 720 are walls having a cylindrical shape, and the large diameter wall 720 has a relatively larger diameter than the small diameter wall 710.
  • the boundary wall 730 is a circular wall that connects the small diameter wall 710 and the large diameter wall 720, and extends along the XY plane direction perpendicular to the Z direction.
  • the downstream passage section 23 formed inside the wall section 70g configured as described above has a cross-sectional area enlarged at an intermediate position in the air flow direction (position of the boundary wall section 730), so that the air flow can be improved.
  • An expanded diameter portion 24a is formed on the downstream side in the direction.
  • a droplet trapping material 60 is arranged in the enlarged diameter portion 24a of the downstream passage portion 23.
  • the droplet trapping material 60 in this embodiment has a cylindrical shape, similar to the droplet trapping material 60 described in FIG. 4, and has a hollow aerosol flow path that penetrates the droplet trapping material 60 along the central axis A (hollow passage) 61 is formed inside, and the inner surface of the aerosol flow passage 61 forms a droplet trapping surface 65.
  • the outer diameter of the droplet trapping material 60 is equal to or slightly larger than the inner diameter of the enlarged diameter portion 24a (that is, the inner diameter of the large diameter wall portion 720), and the outer diameter of the droplet trapping material 60 is The droplet trapping material 60 is fixed to the enlarged diameter portion 24 a with its surface in contact with the inner circumferential surface of the large diameter wall portion 720 . Further, the inner diameter of the droplet trapping material 60 (the diameter of the aerosol flow path 61) is set to be approximately equal to the inner diameter of the small diameter wall portion 710.
  • the atomization unit 12 in this embodiment also provides the same effects as in each of the embodiments described above. That is, it is possible to impart flavor to the air containing the aerosol passing through the downstream passage section 23 and to remove excess droplets contained in the aerosol.
  • the aspect of the droplet trapping material 60 in this embodiment is not particularly limited, and for example, the aspects described in Embodiments 2 to 7 may be applied.
  • a flavor molded body containing a non-tobacco base material and a flavor material was described as one form of the droplet trapping material 60 disposed in the downstream passage section 23 of the atomization unit 12.
  • the droplet trapping material 60 can adopt various forms as long as it can remove excess droplets from the aerosol flowing through the downstream passage section 23.
  • the droplet trapping material 60 may be configured as a molded body that does not contain flavoring material.
  • the droplet trapping material 60 may be formed of a non-tobacco base material such as ceramic, synthetic polymer, pulp, or the like.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Provided is a technique for removing excessive liquid droplets contained in an aerosol generated by an atomization unit of an inhalation device. An atomization unit of an inhalation device, said atomization unit being equipped with: a liquid housing part in which an aerosol-producing liquid containing a tobacco extract ingredient is housed; an electrical load which is placed in an air passage for flowing air therethrough, into which the aerosol-producing liquid in the liquid housing part is introduced, and by which the aerosol-producing liquid is atomized to generate an aerosol; and a liquid droplet capturing member for capturing liquid droplets contained in the aerosol, which is placed in the downstream passage part of the air passage located downstream from the load in the air flow direction.

Description

霧化ユニット及びその製造方法、並びに吸引具Atomization unit and its manufacturing method, and suction tool
 本発明は、吸引具の霧化ユニット及びその製造方法、並びに吸引具に関する。 The present invention relates to an atomization unit of a suction tool, a method for manufacturing the same, and a suction tool.
 従来、非燃焼加熱型の吸引具に用いる霧化ユニットとして、エアロゾル生成液を収容する液体収容部と、液体収容部のエアロゾル生成液が導入されるとともに、この導入されたエアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに香味成分を付与する香味源と、を備える霧化ユニットが知られている(例えば、特許文献1参照)。 Conventionally, as an atomization unit used in a non-combustion heating type suction device, a liquid storage part for storing an aerosol generation liquid, the aerosol generation liquid in the liquid storage part is introduced, and the introduced aerosol generation liquid is atomized. An atomization unit is known that includes an electrical load that generates an aerosol and a flavor source that imparts a flavor component to the aerosol (for example, see Patent Document 1).
 なお、他の先行技術文献として、特許文献2が挙げられる。特許文献2には、たばこ葉の抽出液に関する情報が開示されている。 Note that Patent Document 2 can be cited as another prior art document. Patent Document 2 discloses information regarding tobacco leaf extract.
特開2020-141705号公報Japanese Patent Application Publication No. 2020-141705 国際公開第2015/129679号International Publication No. 2015/129679
 上述したような従来の霧化ユニットは、霧化ユニットで生成したエアロゾルが流路を流通する過程で冷却される等した場合、エアロゾルに過剰な液滴が含まれてしまう場合がある。そして、過剰な液滴を含むエアロゾルは、雑味などといった好ましくない味覚をユーザに付与する要因となり得る。この点において、従来の霧化ユニットには改善の余地があった。 In the conventional atomization unit as described above, if the aerosol generated in the atomization unit is cooled while flowing through the flow path, the aerosol may contain excessive droplets. The aerosol containing excessive droplets may give the user an undesirable taste such as a rough taste. In this respect, there is room for improvement in conventional atomization units.
 本発明は、上記のことを鑑みてなされたものであり、吸引具における霧化ユニットによって生成したエアロゾルに含まれる過剰な液滴を取り除く技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of its objects is to provide a technique for removing excessive droplets contained in the aerosol generated by the atomization unit in the suction tool.
 (態様1)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットは、たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに含まれる液滴を捕捉する液滴捕捉材であって、前記エア通路のうち、前記負荷よりもエアの流動方向で下流側に位置する下流通路部に配置された、液滴捕捉材と、を備える。
(Aspect 1)
In order to achieve the above object, an atomization unit of a suction device according to one aspect of the present invention is arranged in a liquid storage part that contains an aerosol generating liquid containing a tobacco extract component and an air passage through which air passes, When the aerosol-generating liquid in the liquid storage section is introduced, an electric load is provided to atomize the introduced aerosol-generating liquid to generate an aerosol, and a droplet capturing material is provided to capture droplets contained in the aerosol. and a droplet trapping material disposed in a downstream passage portion of the air passage located downstream of the load in the air flow direction.
 (態様2)
 上記の態様1において、前記液滴捕捉材は、前記下流通路部に露出されるとともにエアロゾルに含まれる液滴を捕捉する液滴捕捉面、を有する成形体として形成されていてもよい。
(Aspect 2)
In the above aspect 1, the droplet trapping material may be formed as a molded body having a droplet trapping surface that is exposed to the downstream passage and traps droplets contained in the aerosol.
 (態様3)
 上記の態様2において、前記液滴捕捉材は、非たばこ基材及び香味材料を含む香味成形体であってもよい。
(Aspect 3)
In the above-mentioned embodiment 2, the droplet trapping material may be a flavor molded article containing a non-tobacco base material and a flavor material.
 (態様4)
 上記の態様2又は3において、前記液滴捕捉材は、前記下流通路部に沿って延在する棒形状を有し、且つ、その内部に、当該液滴捕捉材の軸方向に貫通して延びるとともにエアロゾルを流通させる中空状のエアロゾル流通路を有し、前記エアロゾル流通路の内面が前記液滴捕捉面として形成されていていてもよい。
(Aspect 4)
In the above aspect 2 or 3, the droplet trapping material has a rod shape that extends along the downstream passage section, and extends inside the droplet trapping material in the axial direction of the droplet trapping material. It may also have a hollow aerosol flow path through which the aerosol flows, and the inner surface of the aerosol flow path may be formed as the droplet trapping surface.
 (態様5)
 上記の態様2から4の何れかにおいて、前記液滴捕捉材は、前記下流通路部に沿って延在する棒形状を有し、且つ、その側面に、当該液滴捕捉材の軸方向に延びるとともにエアロゾルを流通させるエアロゾル流通溝を有し、前記エアロゾル流通溝の表面が前記液滴捕捉面として形成されていてもよい。
(Aspect 5)
In any of the above aspects 2 to 4, the droplet trapping material has a rod shape that extends along the downstream passage, and has a side surface thereof that extends in the axial direction of the droplet trapping material. It may also have an aerosol distribution groove for distributing the aerosol, and a surface of the aerosol distribution groove may be formed as the droplet trapping surface.
 (態様6)
 上記の態様2から5の何れかにおいて、前記液滴捕捉材は、前記下流通路部に沿って延在する棒形状を有しており、前記下流通路部におけるエアロゾルの流動方向と直交する横断面方向に沿って、複数の前記液滴捕捉材が並列して配置されており、並列配置される前記液滴捕捉材の外面間にエアロゾルを流通させるエアロゾル流通路が形成されており、前記エアロゾル流通路に面する前記液滴捕捉材の外面によって前記液滴捕捉面が形成されていてもよい。
(Aspect 6)
In any of the above aspects 2 to 5, the droplet trapping material has a rod shape extending along the downstream passage, and a cross section perpendicular to the flow direction of the aerosol in the downstream passage. A plurality of the droplet trapping materials are arranged in parallel along the direction, and an aerosol flow path is formed between the outer surfaces of the droplet trapping materials arranged in parallel, and an aerosol flow path is formed to allow the aerosol to flow. The droplet trapping surface may be formed by an outer surface of the droplet trapping material facing the road.
 (態様7)
 上記の態様2又は3において、前記液滴捕捉材は、全体として蛇腹シート形状を有しており、且つ、前記下流通路部におけるエアの流動方向に沿って延在する複数のシート部と、各シート部同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部と、を含んで構成され、前記稜線部を介して接続される前記シート部同士の間にエアロゾルを流通させるエアロゾル流通路が形成され、前記エアロゾル流通路に面する前記シート部の外面によって前記液滴捕捉面が形成されていてもよい。
(Aspect 7)
In the above aspect 2 or 3, the droplet trapping material has a bellows sheet shape as a whole, and includes a plurality of sheet portions extending along the flow direction of air in the downstream passage portion, and each An aerosol configured to include a ridgeline section that connects the sheet sections in a bellows-like manner and extends along the air flow direction, and that distributes the aerosol between the sheet sections that are connected via the ridgeline section. A flow path may be formed, and the droplet trapping surface may be formed by an outer surface of the sheet portion facing the aerosol flow path.
 (態様8)
 上記の態様2又は3において、前記液滴捕捉材は、前記下流通路部におけるエアの流動方向に沿って延在する板形状を有しており、前記下流通路部におけるエアの流動方向と直交する横断面に沿って、複数の前記液滴捕捉材が互いに間隔をおいて対向するように並んで配置されており、対向配置される前記液滴捕捉材同士の間にエアロゾルを流通させるエアロゾル流通路が形成されており、前記エアロゾル流通路に面する前記液滴捕捉材の外面によって前記液滴捕捉面が形成されていてもよい。
(Aspect 8)
In the above aspect 2 or 3, the droplet trapping material has a plate shape extending along the flow direction of air in the downstream passage, and is orthogonal to the flow direction of air in the downstream passage. an aerosol flow path in which a plurality of the droplet trapping materials are arranged side by side so as to face each other at intervals along a cross section, and the aerosol flows between the droplet trapping materials arranged to face each other; may be formed, and the droplet trapping surface may be formed by an outer surface of the droplet trapping material facing the aerosol flow path.
 (態様9)
 また、本発明の一態様に係る吸引具は、上記の態様1から8の何れかにおける霧化ユニットと、前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、を備える。
(Aspect 9)
Further, a suction tool according to one aspect of the present invention includes the atomizing unit according to any one of aspects 1 to 8 above, and a power source that supplies power to the load, and a power source unit to which the atomizing unit is detachably attached. and.
 (態様10)
 また、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、
 液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに含まれる液滴を捕捉するための液滴捕捉材と、を準備する準備工程と、
 前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記負荷及び前記液滴捕捉材を配置する組立工程と、
 を有し、
 前記組立工程において、
 前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、前記液滴捕捉材を、前記負荷よりもエアの流動方向で下流側に位置する下流通路部に配置する。
(Aspect 10)
Further, a method for manufacturing an atomization unit of a suction tool according to one aspect of the present invention includes:
an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a droplet trapping material for trapping the droplets, and a preparation step for preparing the droplet trapping material;
an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the droplet trapping material in the air passage;
has
In the assembly process,
The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the droplet trapping material is arranged in a downstream passage part located downstream of the load in the air flow direction. do.
 本発明の態様によれば、吸引具における霧化ユニットによって生成したエアロゾルに含まれる過剰な液滴を取り除く技術を提供できる。 According to an aspect of the present invention, it is possible to provide a technique for removing excessive droplets contained in an aerosol generated by an atomization unit in a suction tool.
図1は、実施形態1に係る吸引具の外観を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the appearance of a suction tool according to a first embodiment. 図2は、実施形態1に係る吸引具の霧化ユニットの主要部を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to the first embodiment. 図3は、図2のA1-A1線断面を模式的に示す図である。FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 図4は、実施形態1に係る液滴捕捉材の模式的な斜視図である。FIG. 4 is a schematic perspective view of the droplet trapping material according to the first embodiment. 図5は、実施形態1に係る霧化ユニットの製造方法を説明するためのフロー図である。FIG. 5 is a flow diagram for explaining the method for manufacturing the atomization unit according to the first embodiment. 図6は、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 6 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine. 図7は、実施形態2に係る霧化ユニットの縦断面図である。FIG. 7 is a longitudinal cross-sectional view of the atomization unit according to the second embodiment. 図8は、実施形態2に係る霧化ユニットの横断面図である。FIG. 8 is a cross-sectional view of the atomization unit according to the second embodiment. 図9は、実施形態3に係る霧化ユニットの縦断面図である。FIG. 9 is a longitudinal cross-sectional view of the atomization unit according to the third embodiment. 図10は、実施形態3に係る霧化ユニットの横断面図である。FIG. 10 is a cross-sectional view of the atomization unit according to the third embodiment. 図11は、実施形態4に係る霧化ユニットの縦断面図である。FIG. 11 is a longitudinal cross-sectional view of the atomization unit according to the fourth embodiment. 図12は、実施形態4に係る霧化ユニットの横断面図である。FIG. 12 is a cross-sectional view of the atomization unit according to the fourth embodiment. 図13は、実施形態5に係る霧化ユニットの縦断面図である。FIG. 13 is a longitudinal cross-sectional view of the atomization unit according to the fifth embodiment. 図14は、実施形態5に係る霧化ユニットの横断面図である。FIG. 14 is a cross-sectional view of the atomization unit according to the fifth embodiment. 図15は、実施形態6に係る霧化ユニットの横断面図である。FIG. 15 is a cross-sectional view of the atomization unit according to the sixth embodiment. 図16は、実施形態7に係る霧化ユニットの横断面図である。FIG. 16 is a cross-sectional view of the atomization unit according to Embodiment 7. 図17は、実施形態8に係る霧化ユニットの縦断面図である。FIG. 17 is a longitudinal cross-sectional view of the atomization unit according to Embodiment 8. 図18は、実施形態8に係る霧化ユニットの横断面図である。FIG. 18 is a cross-sectional view of the atomization unit according to Embodiment 8.
 以下、本発明に係る霧化ユニット及びこれを備えた吸引具の実施形態を、図面を参照して説明するが、これらの説明は本発明の実施形態の一例であり、本発明はその要旨を超えない限りこれらの内容に限定されない。また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。また、実施形態に記載されている構成要素の寸法、材質、形状、対応その相対配置等は一例である。また、本願明細書では、各実施形態について必要に応じて図面を参照して説明するが、これらの図面は実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。 Hereinafter, embodiments of an atomization unit and a suction tool equipped with the same according to the present invention will be described with reference to the drawings, but these descriptions are merely examples of the embodiments of the present invention, and the gist of the present invention is not limited to the following. It is not limited to these contents as long as they do not exceed. Furthermore, although a plurality of embodiments will be described in this specification, various conditions in each embodiment may be applied to each other within an applicable range. Furthermore, the dimensions, materials, shapes, relative arrangements, etc. of the constituent elements described in the embodiments are merely examples. In addition, in this specification, each embodiment will be described with reference to drawings as necessary, but these drawings are schematically illustrated to facilitate understanding of the features of the embodiments, and each configuration is The dimensional ratios of elements etc. are not necessarily the same as the actual ones. Further, in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary.
 ここで、実施形態に係る霧化ユニットは、
 たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、
 エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
 エアロゾルに含まれる液滴を捕捉する液滴捕捉材であって、前記エア通路のうち、前記負荷よりもエアの流動方向で下流側に位置する下流通路部に配置された、液滴捕捉材と、
 を備える。
Here, the atomization unit according to the embodiment is
a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components;
an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
A droplet trapping material that traps droplets contained in an aerosol, the droplet trapping material being disposed in a downstream passage portion of the air passageway that is located downstream of the load in the air flow direction. ,
Equipped with
 ここで、前記液滴捕捉材は、前記下流通路部に露出されるとともにエアロゾルに含まれる液滴を捕捉する液滴捕捉面、を有する成形体として形成されていてもよい。この場合、前記液滴捕捉材は、非たばこ基材及び香味材料を含む香味成形体であってもよい。また、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下であってもよい。 Here, the droplet trapping material may be formed as a molded body having a droplet trapping surface that is exposed to the downstream passage and traps droplets contained in the aerosol. In this case, the droplet trapping material may be a flavor molded body containing a non-tobacco base material and a flavor material. Further, the flavor material may include a tobacco material, and the content of the tobacco material in the flavor molded body may be 10% by weight or less.
 また、実施形態に係る霧化ユニットの製造方法は、
 液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、たばこ抽出成分含むエアロゾル生成液と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに含まれる液滴を捕捉するための液滴捕捉材と、を準備する準備工程と、
 前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記負荷及び前記液滴捕捉材を配置する組立工程と、
 を有し、
 前記組立工程において、
 前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、前記液滴捕捉材を、前記負荷よりもエアの流動方向で下流側に位置する下流通路部に配置してもよい。
Further, the method for manufacturing the atomization unit according to the embodiment includes:
An atomization unit housing having a liquid storage portion and an air passage formed therein, an aerosol generation liquid containing tobacco extract components, an electrical load for atomizing the aerosol generation liquid to generate an aerosol, and a liquid contained in the aerosol. a droplet trapping material for trapping the droplets, and a preparation step for preparing the droplet trapping material;
an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the droplet trapping material in the air passage;
has
In the assembly process,
The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and the droplet trapping material is arranged in a downstream passage part located downstream of the load in the air flow direction. You may.
<実施形態1>
 図1は、実施形態1に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の香味吸引具である。
<Embodiment 1>
FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to the first embodiment. The suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, a non-combustion heating type flavor suction device.
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 As an example, the suction tool 10 according to the present embodiment extends in the direction of the central axis CL of the suction tool 10. Specifically, the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction" perpendicular to the long axis direction, and a "thickness" perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order. In this embodiment, among the orthogonal coordinates of X-Y-Z, the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction, and the X-axis direction (X direction or -X direction) corresponds to the width direction, and the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
 吸引具10は、電源ユニット11と、霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。 The suction tool 10 has a power supply unit 11 and an atomization unit 12. The power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged. When the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
 ここで、図1における符号120は、霧化ユニット12を構成する各種要素を収容する霧化ユニットハウジングであるとともに、その一部は、ユーザが吸引のために咥えるマウスピースを兼ねている。霧化ユニット12の霧化ユニットハウジング120には、霧化ユニットハウジング120の内部にエアを外部から取り入れるための孔である流入口72a,72bと、霧化ユニットハウジング120の内部から外部にエアロゾルを含むエアを排出するための排出口13が設けられている。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアロゾルを含むエアを吸い込むことができる。つまり、霧化ユニット12の霧化ユニットハウジング120に形成される排出口13は、ユーザがエアロゾルを吸引する吸い口として機能する。 Here, the reference numeral 120 in FIG. 1 is an atomization unit housing that houses various elements constituting the atomization unit 12, and a part of the housing also serves as a mouthpiece that the user holds in his or her mouth for suction. The atomization unit housing 120 of the atomization unit 12 has inflow ports 72a and 72b, which are holes for introducing air into the atomization unit housing 120 from the outside, and inlets 72a and 72b for introducing aerosol from the inside of the atomization unit housing 120 to the outside. A discharge port 13 is provided for discharging the air contained therein. When using the suction tool 10, the user of the suction tool 10 can inhale air containing aerosol discharged from the outlet 13. That is, the discharge port 13 formed in the atomization unit housing 120 of the atomization unit 12 functions as a suction port through which the user sucks the aerosol.
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、これを制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、これを制御装置に伝え、制御装置が負荷40への通電を終了させる。 A sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13. When the user starts suctioning air, a sensor detects the start of suctioning air, transmits this to the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, and notifies the control device of this, and the control device ends the energization of the load 40.
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、この吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。 Note that the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation. In this case, the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch. The control device that receives this suction start request or suction end request starts or ends energization to the load 40.
 なお、上述したような電源ユニット11の構成は、特許文献1に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。 Note that the configuration of the power supply unit 11 as described above is similar to the power supply unit of a known suction tool as exemplified in Patent Document 1, so a more detailed explanation will be omitted.
 図2は、実施形態1に係る吸引具10の霧化ユニット12の主要部を示す模式的断面図である。具体的には、図2は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面(以下、「縦断面」ともいう)を模式的に図示している。図3は、図2のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面であり、「横断面」ともいう)を模式的に示す図である。図2及び図3を参照しつつ、霧化ユニット12について説明する。 FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 according to the first embodiment. Specifically, FIG. 2 schematically shows a cross section (hereinafter also referred to as a "longitudinal cross section") of the main part of the atomization unit 12 taken along a plane including the central axis CL. FIG. 3 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a cross section normal to the central axis CL, also referred to as a "cross section"). The atomization unit 12 will be explained with reference to FIGS. 2 and 3.
 本実施形態に係る霧化ユニット12(霧化ユニットハウジング120)は、長軸方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、エア通路20に配置された液滴捕捉材60を備えている。 The atomization unit 12 (atomization unit housing 120) according to the present embodiment includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and has a width It includes a plurality of wall portions (wall portions 71a to 71c) extending in the direction. Further, the atomization unit 12 includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid storage section 50 , and a droplet trapping material 60 disposed in the air passage 20 .
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、複数の上流通路部、具体的には、上流通路部21a(すなわち、「第1の上流通路部」)、及び、上流通路部21b(すなわち、「第2の上流通路部」)を備えている。但し、エア通路は、単一の上流通路部を有していてもよいし、3本以上の上流通路部を有していてもよい。 The air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol). The air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23. The upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a (i.e., "first upstream passage section") and an upstream passage section 21b ( In other words, it includes a "second upstream passage section"). However, the air passage may have a single upstream passage, or may have three or more upstream passages.
 上流通路部21a,21bは、負荷通路部22よりも上流側(エアの流動方向で上流側)に配置されている。上流通路部21a,21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エアの流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。 The upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction). The downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22. The load passage section 22 is a passage section in which a load 40 is disposed. The downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。 Specifically, the upstream passage section 21a according to the present embodiment is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. There is. Further, the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. The load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c. The downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
 霧化ユニットハウジング120における壁部71aには、流入口72a,72bが設けられている。ハウジング外部のエアは、流入口72aから上流通路部21aに流入し、流入口72bから上流通路部21bに流入する。また、壁部71bには、連通孔72c及び連通孔72dが設けられている。上流通路部21aを通過したエアは、連通孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、連通孔72dから負荷通路部22に流入する。 The wall portion 71a of the atomization unit housing 120 is provided with inflow ports 72a and 72b. Air outside the housing flows into the upstream passage section 21a through the inlet 72a, and flows into the upstream passage section 21b through the inlet 72b. Further, the wall portion 71b is provided with a communication hole 72c and a communication hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the communication hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the communication hole 72d.
 本実施形態において、上流通路部21a,21bにおけるエアの流動方向(流通方向)は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。 In the present embodiment, the direction of flow of air (flow direction) in the upstream passages 21a and 21b is opposite to the direction of flow of air in the downstream passage 23. Specifically, in this embodiment, the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction, and the direction of air flow in the downstream passage section 23 is the Z direction.
 また、図2及び図3に示すように、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。 Further, as shown in FIGS. 2 and 3, the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
 具体的には、本実施形態に係る上流通路部21aは、図3に示すように、中心軸線CLを法線とする切断面で切断した断面視(すなわち、横断面視)で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、霧化ユニット12の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、霧化ユニット12の幅方向で、液体収容部50の他方の側に配置されている。 Specifically, as shown in FIG. 3, the upstream passage section 21a according to the present embodiment is configured to accommodate liquid in a cross-sectional view (i.e., a cross-sectional view) taken along a cut plane normal to the central axis CL. It is arranged on one side (the side in the -X direction) with the section 50 interposed therebetween. On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view. In other words, the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the atomization unit 12. 50.
 なお、上流通路部21a及び上流通路部21bの横断面形状は、図3に例示するような多角形(図3では、一例として四角形)に限定されるものではなく、多角形以外の形状(例えば円形等)であってもよい。 Note that the cross-sectional shapes of the upstream passage portion 21a and the upstream passage portion 21b are not limited to the polygonal shape illustrated in FIG. (For example, it may be circular.)
 液体収容部50はエアロゾル生成液Leを収容するための部位である。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、一例として、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。但し、この構成に限定されるものではなく、例えば、下流通路部23は、吸引具10の厚み方向(Y軸の方向)で液体収容部50に隣接するように設けられていてもよい。 The liquid storage section 50 is a part for storing the aerosol generation liquid Le. The liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Furthermore, in this embodiment, the aforementioned downstream passage section 23 is provided, as an example, so as to penetrate the liquid storage section 50 in the direction of the central axis CL. However, the configuration is not limited to this, and, for example, the downstream passage section 23 may be provided adjacent to the liquid storage section 50 in the thickness direction (Y-axis direction) of the suction tool 10.
 ウィック30は、液体収容部50に収容された、後述するエアロゾル生成液Leを負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象を利用して、液体収容部50のエアロゾル生成液Leを吸液保持するとともに、エアロゾル生成液Leを負荷40に導入している。ウィック30は、例えば、ガラス繊維や多孔質セラミックなどによって構成することができるが、これらには限定されない。 The wick 30 is a member for introducing an aerosol generating liquid Le, which will be described later, stored in the liquid storage section 50 into the load 40 of the load passage section 22. Although the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. While absorbing and holding the aerosol generating liquid Le of 50, the aerosol generating liquid Le is introduced into the load 40. The wick 30 can be made of, for example, glass fiber or porous ceramic, but is not limited thereto.
 負荷40は、液体収容部50のエアロゾル生成液Leが導入されるとともに、この導入されたエアロゾル生成液Leを霧化してエアロゾルを発生させるための電気的な負荷である。なお、本明細書において、エアロゾル生成液Leが「導入される」とは、「供給される」と実質的に同義である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータを用いている。このヒータとしては、発熱抵抗体(すなわち、電熱線)や、セラミックヒータ、誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体を用いており、この発熱抵抗体の一例として、コイル形状を有する発熱抵抗体を用いている。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータである。このコイルヒータは、ウィック30に巻き付けられている。 The load 40 is an electrical load for introducing the aerosol generation liquid Le from the liquid storage section 50 and for atomizing the introduced aerosol generation liquid Le to generate an aerosol. In addition, in this specification, "introducing" the aerosol generation liquid Le has substantially the same meaning as "supplying". The specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 40. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater, and a heating resistor having a coil shape is used as an example of this heating resistor. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50のエアロゾル生成液Leを加熱することで霧化して、エアロゾルを発生させる。 Further, the load 40 according to the present embodiment is arranged in the wick 30 inside the load passage section 22, for example. The load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device. The load 40 heats and atomizes the aerosol-generating liquid Le in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
 なお、このウィック30や負荷40の構成は、特許文献1に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 Note that the configurations of the wick 30 and the load 40 are similar to those used in known suction tools such as those exemplified in Patent Document 1, so a detailed description thereof will be omitted.
 吸引具10を用いたエアロゾルの吸引は以下のように行われる。まず、ユーザが吸引具10の排出口13を咥えた状態での吸引動作を開始した場合、外部のエアが霧化ユニット12における各流入口72a,72bからエア通路20(上流通路部21a,21b)に流入する。また、電源ユニット11に設けられた制御装置が、上記ユーザの吸引動作を検知すると、バッテリに指令を出し、霧化ユニット12における負荷40への通電を開始させる。各流入口72a,72bからエア通路20に流入したエアは、上流通路部21a,21bを通過した後、各連通孔72c,72dを介して、ウィック30及び負荷40が配置された負荷通路部22に流入する。 Suction of aerosol using the suction tool 10 is performed as follows. First, when a user starts a suction operation while holding the discharge port 13 of the suction tool 10 in his or her mouth, external air flows from each inlet port 72a, 72b in the atomization unit 12 to the air passage 20 ( upstream passage portion 21a, 21b). Further, when the control device provided in the power supply unit 11 detects the user's suction operation, it issues a command to the battery and starts energizing the load 40 in the atomization unit 12 . The air flowing into the air passage 20 from each inlet 72a, 72b passes through the upstream passage parts 21a, 21b, and then passes through each communication hole 72c, 72d to the load passage part where the wick 30 and the load 40 are arranged. 22.
 ここで、負荷通路部22に配置されているウィック30には、液体収容部50から供給されたエアロゾル生成液Leが吸液保持されている。そのため、バッテリから負荷40への通電が開始されると、ウィック30に保持されているエアロゾル生成液Leが蒸発する。そして、負荷通路部22において生成されたエアロゾル生成液Leの蒸気は、負荷通路部22に流入したエアと、ウィック30の周辺(「霧化部」ともいえる)で混合される結果、エアロゾルが生成される。このようにして、負荷通路部22(霧化部)で生成されたエアロゾルを含むエアは下流通路部23に流入した後、当該下流通路部23の下流端に位置する排出口13を通じて排出され、最終的にユーザの口腔内に吸引される。 Here, the wick 30 disposed in the load passage section 22 absorbs and holds the aerosol generation liquid Le supplied from the liquid storage section 50. Therefore, when electricity starts to be applied from the battery to the load 40, the aerosol generation liquid Le held in the wick 30 evaporates. Then, the vapor of the aerosol generating liquid Le generated in the load passage section 22 is mixed with the air that has flowed into the load passage section 22 around the wick 30 (also referred to as the "atomization section"), and as a result, aerosol is generated. be done. In this way, the air containing the aerosol generated in the load passage section 22 (atomization section) flows into the downstream passage section 23 and is then discharged through the discharge port 13 located at the downstream end of the downstream passage section 23. It is eventually sucked into the user's oral cavity.
[エアロゾル生成液]
 本実施形態では、エアロゾル生成液Leとして、所定の溶媒に、たばこ抽出成分が含有されたものを用いている。エアロゾル生成液Leはたばこ抽出成分を含んでいれば特段制限されない。エアロゾル生成液Leに含まれるたばこ抽出成分の態様は特段制限されず、例えば、たばこ葉等のたばこ材料を抽出することにより得られる。本明細書では、たばこ材料を抽出することにより得られる成分をたばこ抽出成分(少なくともニコチンを含む)と称する。
[Aerosol generation liquid]
In the present embodiment, the aerosol generating liquid Le is one in which a tobacco extract component is contained in a predetermined solvent. The aerosol generation liquid Le is not particularly limited as long as it contains tobacco extract components. The aspect of the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and can be obtained, for example, by extracting tobacco materials such as tobacco leaves. In this specification, components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
 たばこ抽出成分は、たばこ植物に含まれるニコチン等の物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。エアロゾル生成液Leは、たばこ抽出物として特にニコチンを少なくとも含んでいることが好ましく、この態様においては「たばこ抽出成分を含む」を「天然ニコチンを含む」と換言してもよい 。ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル%未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。なお、エアロゾル生成液Leに含まれるニコチンは、天然ニコチン及び後述する合成ニコチンのいずれにおいても、ニコチン塩等のニコチン化合物として存在していてもよい。 Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance. The aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains tobacco extract components" may also be referred to as "contains natural nicotine." There are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually the S-form, with the R-form accounting for less than 1 mol%. On the other hand, in synthetic nicotine, the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%). For example, it can be assumed that the nicotine in the oral composition is synthetic nicotine. The target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable. The embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like. Note that the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
 エアロゾル生成液Leにニコチンを含有させる方法は特段制限されず、例えば、たばこ材料の抽出により得られるたばこ抽出成分をエアロゾル生成液に溶解させる方法、又は当該たばこ抽出成分を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。また、たばこ材料の抽出に用いられる溶媒として、エアロゾル基材にもなり得る物質を用いた場合には、たばこ抽出液をそのままエアロゾル生成液Leとして用いることもでき、このような物質としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。 The method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco materials in the aerosol generation liquid, or a method of dissolving the tobacco extract component in a solvent and then adding nicotine to the aerosol. Examples include a method of mixing with the product liquid Le. In addition, when a substance that can also be used as an aerosol base material is used as a solvent for extracting tobacco materials, the tobacco extract can be used as it is as the aerosol generation liquid Le. Examples of such substances include, for example. , glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 たばこ抽出成分が天然ニコチンを含む場合、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When the tobacco extract component contains natural nicotine, specifically, natural nicotine extracted and purified from tobacco leaves can be used. For such a method for producing natural nicotine, a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
 また、たばこ抽出成分が天然ニコチンを含む場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。 In addition, when tobacco extract components contain natural nicotine, the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials. , natural nicotine with increased purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
 エアロゾル生成液Le中のニコチン(特には天然ニコチン)の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。エアロゾル生成液Leにおいて、ニコチンの供給源としてたばこ抽出液を用いることができる。この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。 The content of nicotine (particularly natural nicotine) in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it is, for example, 0.1% by weight or more and 10% by weight or less. It may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less. In the aerosol generation liquid Le, tobacco extract can be used as a source of nicotine. In this case, the content of the tobacco extract in the aerosol-generating liquid Le is not particularly limited, but may be, for example, 0.1% by weight or more and 10% by weight or less, from the viewpoint of enabling a sufficient supply of nicotine. , may be 0.5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
 エアロゾル生成液Leに含まれる所定の溶媒、例えば、エアロゾル基材(エアロゾルを生成するための基材)の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。 The type of predetermined solvent contained in the aerosol generation liquid Le, such as the type of aerosol base material (base material for generating aerosol), is not particularly limited, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and one or more substances selected from the group consisting of water.
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。 The content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル基材としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液として利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、減圧蒸留等の手段を用いて焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含んでいてもよく、その具体例としては、例えばネオフィタジエン等が挙げられる。 The type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances, or liquids containing the substances, can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent. In addition, if the solvent also acts as an aerosol base material, tobacco extract can be used as is as an aerosol generation liquid, but tobacco extract does not contain components that can cause charring when heated (for example, lipids, metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching using means such as vacuum distillation. Note that the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
 エアロゾル生成液Leは、ニコチンを付与するための成分としてたばこ抽出成分を少なくとも含むが、香喫味の観点から、さらに、合成等により得られる合成ニコチンを含んでいてもよい。なお、合成ニコチンは、ニコチンとして存在してもよく、ニコチン塩等のニコチン含有化合物として存在していてもよい。本明細書では、合成により得られたニコチンを「合成ニコチン」とも称するが、これは化学合成によって生成されたニコチンである。すなわち、合成ニコチンは、たばこ材料を抽出することで得られるニコチン(天然ニコチン)ではなく、化学物質を用いて化学合成することで得られるニコチンである。合成ニコチンの生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。 The aerosol generation liquid Le contains at least a tobacco extract component as a component for imparting nicotine, but from the viewpoint of aroma and taste, it may further contain synthetic nicotine obtained by synthesis or the like. Note that the synthetic nicotine may exist as nicotine or as a nicotine-containing compound such as a nicotine salt. In this specification, nicotine obtained by synthesis is also referred to as "synthetic nicotine," which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances. The method for producing synthetic nicotine is not particularly limited, and any known production method can be used. The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン等のニコチン塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。 The type of nicotine-containing compound is not particularly limited, and examples include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, and nicotine fumarate. When a nicotine-containing compound such as a nicotine salt is synthesized, the production method is not particularly limited, and any known production method can be used.
 エアロゾル生成液Leは、たばこ抽出成分及びエアロゾル基材以外の成分(その他の成分)を有していてもよく、例えば、たばこ抽出成分以外の香味成分(上述したニコチン以外のたばこ抽出成分を含む)を含んでいてもよい The aerosol generation liquid Le may have components other than the tobacco extract component and the aerosol base material (other components), for example, flavor components other than the tobacco extract component (including the tobacco extract component other than the above-mentioned nicotine). may contain
 たばこ抽出成分以外の香味成分しては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。なお、たばこ抽出成分となり得るネオフィタジエン、ソラノン、又はソラネソール等を、たばこ抽出成分としてではなく、合成により得られた物質としてエアロゾル生成液Leに含有させてもよい。 Flavor components other than tobacco extract components include, for example, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum). , vetiver oil, rose oil, lovage oil), esters (e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g., menthone, ionone, ethyl maltol, etc.) , alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadecalactone, etc.) etc. Note that neophytadiene, solanone, solanesol, or the like, which can be tobacco extract components, may be contained in the aerosol generation liquid Le as a synthetically obtained substance rather than as a tobacco extract component.
[液滴捕捉材]
 次に、霧化ユニット12の液滴捕捉材60について説明する。本実施形態において、液滴捕捉材60は、負荷40によって生成されたエアロゾルに含まれる液滴を捕捉するための部材であり、下流通路部23に配置されている。ここでは、液滴捕捉材60を、エアロゾルに含まれる液滴を捕捉する液滴捕捉面を有する成形体として形成する例について説明する。より詳しくは、本実施形態においては、液滴捕捉材60を、非たばこ基材及び香味材料を含む香味成形体として形成する態様について例示的に説明する。
[Droplet capture material]
Next, the droplet trapping material 60 of the atomization unit 12 will be explained. In this embodiment, the droplet trapping material 60 is a member for trapping droplets contained in the aerosol generated by the load 40, and is disposed in the downstream passage section 23. Here, an example will be described in which the droplet trapping material 60 is formed as a molded body having a droplet trapping surface that traps droplets contained in an aerosol. More specifically, in this embodiment, an embodiment in which the droplet trapping material 60 is formed as a flavor molded body containing a non-tobacco base material and a flavor material will be exemplified.
 図4は、実施形態1に係る液滴捕捉材60の模式的な斜視図である。図4に示す液滴捕捉材60は、下流通路部23の延在方向(エアの流動方向、すなわちZ方向)に沿って棒形状を有している。より詳しくは、液滴捕捉材60は、円筒形状を有し、下流通路部23の延在方向(エアの流動方向、すなわちZ方向)に沿って延びる中心軸X1を有している。また、図4に示すように、液滴捕捉材60には、中心軸X1に沿って、液滴捕捉材60を貫通する中空状のエアロゾル流通路(中空路)61が形成されている。なお、図4に示す例では、エアロゾル流通路61が液滴捕捉材60の中心軸X1と同軸に配置されているが、これには限定されない。また、液滴捕捉材60に形成されるエアロゾル流通路61の数については特に限定されず、例えば複数のエアロゾル流通路61が液滴捕捉材60の中心軸X1に沿って並んで配置されていてもよい。また、図4に示す例では、エアロゾル流通路61の横断面が円形状を有しているが、エアロゾル流通路61の横断面形状は特に限定されない。なお、符号65は、エアロゾル流通路61の内面であり、本実施形態においてはエアロゾルに含まれる液滴を捕捉するための液滴捕捉面として形成されている。そして、液滴捕捉材60は、エアロゾル流通路61の液滴捕捉面65が下流通路部23に露出するように、下流通路部23に設けられる。例えば、液滴捕捉材60を軸X1方向に沿って貫通するエアロゾル流通路61が複数形成される場合、各エアロゾル流通路61の内面によって液滴捕捉面65が形成される。また、液滴捕捉材60は、隔壁によって複数のエアロゾル流通路61を互いに区画するハニカム構造を有していてもよい。 FIG. 4 is a schematic perspective view of the droplet trapping material 60 according to the first embodiment. The droplet trapping material 60 shown in FIG. 4 has a rod shape along the extending direction of the downstream passage section 23 (the air flow direction, that is, the Z direction). More specifically, the droplet trapping material 60 has a cylindrical shape and has a central axis X1 extending along the extending direction of the downstream passage section 23 (air flow direction, ie, Z direction). Further, as shown in FIG. 4, a hollow aerosol flow path (hollow path) 61 is formed in the droplet trapping material 60 along the central axis X1, passing through the droplet trapping material 60. In the example shown in FIG. 4, the aerosol flow path 61 is arranged coaxially with the central axis X1 of the droplet trapping material 60, but the invention is not limited thereto. Further, the number of aerosol flow passages 61 formed in the droplet trapping material 60 is not particularly limited, and for example, a plurality of aerosol flow passages 61 may be arranged side by side along the central axis X1 of the droplet trapping material 60. Good too. Further, in the example shown in FIG. 4, the cross-sectional shape of the aerosol flow path 61 is circular, but the cross-sectional shape of the aerosol flow path 61 is not particularly limited. Note that reference numeral 65 is the inner surface of the aerosol flow path 61, and in this embodiment, it is formed as a droplet trapping surface for trapping droplets contained in the aerosol. The droplet trapping material 60 is provided in the downstream passage section 23 such that the droplet trapping surface 65 of the aerosol flow path 61 is exposed to the downstream passage section 23 . For example, when a plurality of aerosol flow passages 61 passing through the droplet trapping material 60 along the axis X1 direction are formed, the inner surface of each aerosol flow passage 61 forms the droplet trapping surface 65. Further, the droplet trapping material 60 may have a honeycomb structure in which a plurality of aerosol flow passages 61 are partitioned from each other by partition walls.
 なお、図4に示す例では、中心軸X1が液滴捕捉材60の長手方向に沿って延びる軸となっているが、これには限定されない。液滴捕捉材60の形状は、特に限定されるものではない。例えば、液滴捕捉材60の長さ寸法(中心軸X1方向の寸法)と、これに直交する直径寸法が等しくてもよいし、長さ寸法に比べて直径寸法の方が大きくてもよい。勿論、液滴捕捉材60において、中心軸X1に直交する横断面の形状は特に限定されず、例えば楕円形や、多角形であってもよいし、これら以外の他の形状を有していてもよい。 Note that in the example shown in FIG. 4, the central axis X1 is an axis extending along the longitudinal direction of the droplet trapping material 60, but the present invention is not limited to this. The shape of the droplet trapping material 60 is not particularly limited. For example, the length dimension (dimension in the central axis X1 direction) of the droplet trapping material 60 and the diameter dimension perpendicular to this may be equal, or the diameter dimension may be larger than the length dimension. Of course, in the droplet trapping material 60, the shape of the cross section perpendicular to the central axis X1 is not particularly limited, and may be, for example, an ellipse or a polygon, or may have a shape other than these. Good too.
 また、液滴捕捉材60は、その内部を中心軸X1方向に貫通するエアロゾル流通路61に代えて、或いは当該エアロゾル流通路61に加えて、液滴捕捉材60の側面に沿ってエアロゾル流通溝が延びていてもよい。エアロゾル流通溝は、エアロゾルを流通させるための凹状のエアロゾル流通路として機能することができる。 The droplet trapping material 60 also has an aerosol distribution groove along the side surface of the droplet trapping material 60, instead of or in addition to the aerosol flow path 61 passing through the inside thereof in the central axis X1 direction. may be extended. The aerosol flow groove can function as a concave aerosol flow path for circulating aerosol.
 また、本実施形態においては、複数の棒状の液滴捕捉材60が束となって下流通路部23に配置されていてもよい。この場合、個々の液滴捕捉材60は、互いに一体化していてもよいし、一体化していなくともよい。 Furthermore, in the present embodiment, a plurality of rod-shaped droplet trapping materials 60 may be arranged in a bundle in the downstream passage section 23. In this case, the individual droplet trapping materials 60 may or may not be integrated with each other.
 また、シート形状を有する液滴捕捉材60を用いる場合、非たばこ基材と香味材料との混合物の抄造シート、非たばこ基材と香味材料との混合物のキャストシート、又は非たばこ基材と香味材料との混合物の圧延シート等、又は、非たばこ基材のシートの表面に塗布又は噴霧等により香味材料を付与したシート等によって液滴捕捉材60を形成することができる。また、液滴捕捉材60は、単一のシートを蛇腹形態や渦巻形態等、任意の形態に折り込んだ状態で下流通路部23に配置されてもよい。また、上記シートを短冊状に裁断した複数の短冊シート片を液滴捕捉材60として下流通路部23に充填してもよい。この場合、液滴捕捉材60としての短冊シート片は、下流通路部23に沿って整列配置されてもよいし、特定の方向に沿って整列させないランダム配置としてもよい。 In addition, when using the droplet trapping material 60 having a sheet shape, a sheet made of a mixture of a non-tobacco base material and a flavoring material, a cast sheet of a mixture of a non-tobacco base material and a flavoring material, or a cast sheet of a mixture of a non-tobacco base material and a flavoring material is used. The droplet trapping material 60 can be formed of a rolled sheet of a mixture with a non-tobacco base material, or a sheet of a non-tobacco base material to which a flavoring material is applied by coating or spraying on the surface of the sheet. Further, the droplet trapping material 60 may be arranged in the downstream passage section 23 in a state in which a single sheet is folded into an arbitrary shape such as a bellows shape or a spiral shape. Further, the downstream passage portion 23 may be filled with a plurality of strip sheet pieces obtained by cutting the sheet into strips as the droplet trapping material 60. In this case, the strip sheet pieces serving as the droplet trapping material 60 may be arranged in alignment along the downstream passage section 23, or may be arranged randomly without being aligned in a specific direction.
 また、液滴捕捉材60は板形状を有していてもよい。また、液滴捕捉材60は、棒形状、板形状、シート形状以外の形状を有していてもよい。例えば、液滴捕捉材60は顆粒の形態を呈しており、液滴捕捉材60を形成する複数の顆粒が下流通路部23に充填されてもよい。勿論、液滴捕捉材60を形成する顆粒の形状は特に限定されない。 Furthermore, the droplet trapping material 60 may have a plate shape. Further, the droplet trapping material 60 may have a shape other than a rod shape, a plate shape, or a sheet shape. For example, the droplet trapping material 60 may be in the form of granules, and the downstream passage portion 23 may be filled with a plurality of granules forming the droplet trapping material 60. Of course, the shape of the granules forming the droplet trapping material 60 is not particularly limited.
 上記のように構成される液滴捕捉材60は、下流通路部23を流通するエアロゾルを含むエアの通気抵抗が過度に大きくならない態様、すなわち、当該エアの円滑な流通が阻害されない態様で下流通路部23に配置される。図4に示す例では、液滴捕捉材60の軸X1方向に沿ってエアロゾル流通路61が貫通しているため、このエアロゾル流通路61を通じてエアロゾルを含むエアを円滑に流通させることができる。 The droplet trapping material 60 configured as described above is arranged in the downstream passage in such a manner that the ventilation resistance of the air containing aerosol flowing through the downstream passage section 23 does not become excessively large, that is, in a manner that the smooth circulation of the air is not inhibited. It is arranged in section 23. In the example shown in FIG. 4, since the aerosol flow path 61 passes through the droplet trapping material 60 along the axis X1 direction, air containing aerosol can be smoothly circulated through the aerosol flow path 61.
 また、本実施形態における液滴捕捉材60は香味成形体として形成されている。例えば、液滴捕捉材60(香味成形体)は、非たばこ基材及び香味材料等を含み、これらが固められて所定形状に成形されている。香味成形体に含まれる香味材料には、たばこ材料が含まれていてもよい。この場合、香味成形体中におけるたばこ材料は10重量%以下にしてもよい。勿論、香味材料は、たばこ材料に加えて、たばこ材料に由来しない種々の香味成分を含んでいてもよい。 Furthermore, the droplet trapping material 60 in this embodiment is formed as a flavor molded body. For example, the droplet trapping material 60 (flavor molded body) includes a non-tobacco base material, a flavor material, etc., which are hardened and molded into a predetermined shape. The flavor material contained in the flavor molded article may include tobacco material. In this case, the amount of tobacco material in the flavor molded article may be 10% by weight or less. Of course, the flavor material may contain, in addition to the tobacco material, various flavor components not derived from the tobacco material.
 非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材は、香味成形体の主たる材料、特に、香味成形体の成形を担保する主たる材料であってよい。 The type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Further, the non-tobacco base material may be the main material of the flavor molded product, particularly the main material that ensures the molding of the flavor molded product.
 香味成形体中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、100重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。 The content of the non-tobacco base material in the flavor molded product is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, and 50% by weight. % or more and 80% by weight or less.
 香味成形体に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、ニコチンを付与するたばこ材料が挙げられる。なお、本明細書において、香味成形体に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、香味成形体がたばこ材料を含む場合、香味材料は、たばこ材料に含まれるニコチンでなく、たばこ材料である。 The form of the flavor material contained in the flavor molded body is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and the flavor component may be a flavor component itself. Examples of the imparting material include tobacco materials that impart nicotine. In addition, in this specification, when a flavor component imparting material is contained in a flavor molded object, the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material. For example, when the flavor molded article contains a tobacco material, the flavor material is not the nicotine contained in the tobacco material, but the tobacco material.
 たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。 The form of the tobacco material is not particularly limited; for example, it may contain tissues such as leaves, stems, flowers, roots, reproductive organs, or embryos of tobacco plants, and tobacco materials using these tobacco plant tissues may also be used. Processed products (for example, tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in known tobacco products) may be included, but from the viewpoint of ensuring a sufficient amount of use and ease of processing, Tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
 本明細書において、「香味材料がたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに香味成形体中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに前記香味成形体中の前記たばこ材料は10重量%以下である」の表現に換言することができる。 As used herein, "the flavoring material contains tobacco material" does not mean that the flavoring material contains tobacco material, but rather that it contains tobacco material as one of the types of flavoring material. , the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less" means "the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body is 10% by weight or less". The content of the material is 10% by weight or less."
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。 Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadeca), lactone, etc.).
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。 The method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
 香味成形体中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。また、香味成形体がたばこ材料を含む場合、香味成形体中のたばこ材料の含有量は特段制限されないが、香味のスパイスとしての下流通路部23を流通するエア(エアロゾル)に香味を付与する観点からは、1重量%以上であることが好ましく、3重量%以上であることがより好ましく、7重量%以上であることがさらに好ましい。一方、香味成形体に含まれるたばこ材料の量が多すぎると、たばこ材料が非たばこ基材から分離しやすくなり得る。そこで、非たばこ基材からたばこ材料が分離すること等を抑制する観点からは、香味成形体中におけるたばこ材料の含有量が10重量%以下であることが好ましく、7重量%以下であることがより好ましく、3重量%以下であることがさらにより好ましい。 The content of the flavor material in the flavor molded body is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, and 3% by weight or more. % or more and 50% by weight or less. In addition, when the flavor molded body contains a tobacco material, the content of the tobacco material in the flavor molded body is not particularly limited, but from the viewpoint of imparting flavor to the air (aerosol) flowing through the downstream passage section 23 as a flavor spice. It is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 7% by weight or more. On the other hand, if the amount of tobacco material contained in the flavor molded body is too large, the tobacco material may easily separate from the non-tobacco base material. Therefore, from the viewpoint of suppressing the separation of the tobacco material from the non-tobacco base material, the content of the tobacco material in the flavor molded product is preferably 10% by weight or less, and preferably 7% by weight or less. The content is more preferably 3% by weight or less, and even more preferably 3% by weight or less.
 香味成形体は、非たばこ基材等といった香味成形体に含まれる材料を接着するためのバインダーを含んでいてもよい。バインダーの種類は特段制限されず、例えば、澱粉、ヒドロキシアルキルセルロース、ポリ酢酸ビニル、又はアルキルヒドロキシアルキルセルロース等を用いることができる。また、香味成形体中のバインダーの含有量は、十分な接着性を確保する観点から、1重量%以上、20重量%以下であってよく、3重量%以上、15重量%以下であってよく、5重量%以上、10重量%以下であってよい。 The flavor molded product may contain a binder for adhering materials included in the flavor molded product, such as a non-tobacco base material. The type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, polyvinyl acetate, or alkylhydroxyalkylcellulose can be used. In addition, the content of the binder in the flavor molded product may be 1% by weight or more and 20% by weight or less, and may be 3% by weight or more and 15% by weight or less, from the viewpoint of ensuring sufficient adhesiveness. , 5% by weight or more and 10% by weight or less.
 香味成形体は、上記の各種成分以外の成分を含んでいてもよく、例えば、炭酸カリウム、炭酸水素カリウム(pH調整のため)等を含んでいてもよい。 The flavor molded body may contain components other than the above-mentioned various components, for example, potassium carbonate, potassium hydrogen carbonate (for pH adjustment), etc.
 また、香味成形体の表面は、樹脂等のコーティング材でコーティングされていてもよい。勿論、香味成形体の表面がコーティング材によってコーティングされていなくてもよい。但し、香味成形体の表面がコーティング材によってコーティングされていることにより、成形体の形状を保つことが容易になる。コーティング材としては、例えば、ポリエチレン、ポリエチレンワックス、マイクロクリスタリンワックス、みつろう、又はツェイン等が挙げられる。 Additionally, the surface of the flavor molded object may be coated with a coating material such as resin. Of course, the surface of the flavor molded object does not need to be coated with the coating material. However, since the surface of the flavor molded product is coated with a coating material, it becomes easier to maintain the shape of the molded product. Examples of the coating material include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
 また、本実施形態において、香味成形体の密度(単位体積当たりの質量)は、一例として、1000mg/cm以上、1450mg/cm以下であってよく、また、1100mg/cm以上、1450mg/cm以下であってもよい。但し、香味成形体の密度は、これに限定されるものではなく、1000mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよく、また、1100mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよい。香味成形体が複数個で存在する場合には、この密度は、香味成形体の総体積に対する総質量として求めることができる。 Further, in the present embodiment, the density (mass per unit volume) of the flavor molded object may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg/cm 3 or more. cm 3 or less. However, the density of the flavor molded body is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies are present, the density can be determined as the total mass relative to the total volume of the flavor molded bodies.
 以上のように構成される霧化ユニット12によれば、液体収容部50にニコチンを含むエアロゾル生成液Leが収容されている。そのため、負荷通路部22に配置された負荷40の動作によってエアロゾルを生成する際、エアロゾル生成液Leに含まれるたばこ抽出成分に由来する香味成分をエアロゾルに付与することができる。更に、本実施形態における霧化ユニット12は、液滴捕捉材60が下流通路部23に配置されている。そして、液滴捕捉材60は、下流通路部23の延在方向(エアの流動方向)に沿って延びる中空状のエアロゾル流通路61が貫通形成されている。そのため、霧化ユニット12の負荷通路部22から下流通路部23に流入したエアロゾルを含むエアは、液滴捕捉材60のエアロゾル流通路61を流通する。ここで、液滴捕捉材60は、香味成形体として形成されているため、エアロゾルを含むエアは、エアロゾル流通路61を流通する際に液滴捕捉材60(香味成形体)に含まれる香味材料(例えば、たばこ材料の香味成分等)によって香味が付与される。このように、本実施形態における霧化ユニット12は、生成するエアロゾルに対して、エアロゾル生成液Leに含まれるたばこ抽出成分に由来する香味成分と、液滴捕捉材60(香味成形体)に含まれる香味成分とを2段階で付与することができる。これにより、エアロゾルに対する香味付けを十分に行うことができる。つまり、本実施形態によれば、エアロゾル生成液Leに含まれる香味成分のみや、液滴捕捉材60(香味成形体)に含まれる香味成分のみでは表現しきれない深みのある香味をエアロゾルに付与することができる。 According to the atomization unit 12 configured as described above, the aerosol generating liquid Le containing nicotine is stored in the liquid storage section 50. Therefore, when an aerosol is generated by the operation of the load 40 disposed in the load passage section 22, a flavor component derived from the tobacco extract component contained in the aerosol generation liquid Le can be imparted to the aerosol. Furthermore, in the atomization unit 12 in this embodiment, the droplet trapping material 60 is arranged in the downstream passage section 23. A hollow aerosol flow passage 61 extending along the extending direction of the downstream passage portion 23 (air flow direction) is formed through the droplet trapping material 60 . Therefore, the air containing the aerosol that has flowed into the downstream passage section 23 from the load passage section 22 of the atomization unit 12 flows through the aerosol flow passage 61 of the droplet trapping material 60 . Here, since the droplet trapping material 60 is formed as a flavor molded object, when the air containing the aerosol flows through the aerosol flow path 61, the flavor material contained in the droplet trapping material 60 (flavor molded object) is absorbed. Flavor is imparted by (for example, flavor components of tobacco materials, etc.). In this way, the atomization unit 12 in the present embodiment supplies the generated aerosol with the flavor components derived from the tobacco extract components contained in the aerosol generation liquid Le and the flavor components contained in the droplet trapping material 60 (flavor molded body). Flavor components can be added in two stages. Thereby, the aerosol can be sufficiently flavored. In other words, according to the present embodiment, the aerosol is given a deep flavor that cannot be expressed only by the flavor components contained in the aerosol generation liquid Le or the flavor components contained in the droplet trapping material 60 (flavor molded body). can do.
 また、本実施形態において、液滴捕捉材60(香味成形体)が、非たばこ基材を含んで構成されることで、液滴捕捉材60(香味成形体)の吸液量をコントロールすることが容易となるという利点がある。また、液滴捕捉材60を形成する香味成形体が香味材料の1種としてたばこ材料を含む場合、香味成形体中のたばこ材料の含有量が10重量%以下としてもよい。このように、香味成形体に、少量のたばこ材料を含ませることによって、霧化ユニット12で生成するエアロゾルに対して、スパイス的な香味を付与することができる。また、香味成形体に含まれるたばこ材料の量が過度に多くならないため、たばこ材料が非たばこ基材から分離しにくくなるという利点がある。また、本実施形態においては、下流通路部23を通過するエアロゾルを含むエアに付香する香味源を成形体の形態で配置するようにしたため、霧化ユニット12の組み立て時における液滴捕捉材60(香味成形体)の取り扱いが容易である。 In addition, in this embodiment, the droplet trapping material 60 (flavor molded object) is configured to include a non-tobacco base material, so that the amount of liquid absorbed by the droplet trapping material 60 (flavor molded object) can be controlled. This has the advantage that it is easy to do. Further, when the flavor molded body forming the droplet trapping material 60 contains tobacco material as one type of flavor material, the content of the tobacco material in the flavor molded body may be 10% by weight or less. In this way, by including a small amount of tobacco material in the flavor molded body, it is possible to impart a spice-like flavor to the aerosol generated in the atomization unit 12. Furthermore, since the amount of tobacco material contained in the flavor molded body does not increase excessively, there is an advantage that the tobacco material is difficult to separate from the non-tobacco base material. In addition, in this embodiment, since the flavor source that adds flavor to the air containing the aerosol passing through the downstream passage section 23 is arranged in the form of a molded body, the droplet trapping material 60 when assembling the atomization unit 12 (flavor molded product) is easy to handle.
 更に、液滴捕捉材60は、エアロゾル流通路61の内面が、液滴捕捉面65を流通するエアロゾルに含まれる液滴を捕捉するための液滴捕捉面65として形成されており、当該液滴捕捉面65が下流通路部23に露出するように配置されている。これによれば、液滴捕捉材60のエアロゾル流通路61を通過するエアロゾルに対して液滴捕捉面65が晒されることにより、エアロゾルに含まれる液滴を液滴捕捉面65によって効率的に捕捉することができる。ここで、余剰な液滴を含むエアロゾルは、場合によっては雑味などといった好ましくない味覚をユーザに付与する要因となり得る。本実施形態における霧化ユニット12によれば、霧化ユニット12の下流通路部23(エアロゾル流路)をエアロゾルが流れる過程で当該エアロゾルが冷却される等して、エアロゾルに過剰な液滴が含まれている場合においても、その液滴を液滴捕捉材60の液滴捕捉面65によって効率的に取り除くことができる。以上のように、本実施形態における霧化ユニット12によれば、余剰な液滴を好適に除去した後のエアロゾルをユーザに吸引させることができる。よって、エアロゾルの香味が悪化することを抑制可能な霧化ユニット12及びこれを有する吸引具10を提供できる。 Further, in the droplet trapping material 60, the inner surface of the aerosol flow path 61 is formed as a droplet trapping surface 65 for trapping droplets contained in the aerosol flowing through the droplet trapping surface 65, and The capture surface 65 is arranged to be exposed to the downstream passage section 23. According to this, the droplet trapping surface 65 is exposed to the aerosol passing through the aerosol flow path 61 of the droplet trapping material 60, so that droplets contained in the aerosol are efficiently captured by the droplet trapping surface 65. can do. Here, the aerosol containing excess droplets may be a factor that imparts an undesirable taste, such as a rough taste, to the user in some cases. According to the atomization unit 12 in this embodiment, the aerosol is cooled during the process in which the aerosol flows through the downstream passage section 23 (aerosol flow path) of the atomization unit 12, and thus the aerosol contains excessive droplets. Even in the case where the droplet is removed, the droplet can be efficiently removed by the droplet trapping surface 65 of the droplet trapping material 60. As described above, according to the atomization unit 12 in this embodiment, the user can inhale the aerosol after the excess droplets have been suitably removed. Therefore, it is possible to provide the atomization unit 12 and the suction tool 10 including the atomization unit 12 that can suppress deterioration of the flavor of the aerosol.
 なお、液滴捕捉材60は、その密度が1g/cm以下であってもよい。これによれば、エアロゾルに含まれる液滴を液滴捕捉材60によって、より効率よく捕捉することができる。液滴捕捉材60における液滴捕捉面65の算術表面粗度Saは、30μm以上1000μm以下であってもよい。また、液滴捕捉面65の算術表面粗度Saは、30μm以上500μm以下であることが好ましく、30μm以上100μm以下であることが更に好ましい。液滴捕捉面65の算術表面粗度Saをこの範囲に調整することで、液滴捕捉面65に液滴を保持しやすくなり、エアロゾルに含まれる液滴を液滴捕捉面65によってより一層効率よく捕捉できる。 Note that the droplet trapping material 60 may have a density of 1 g/cm 3 or less. According to this, droplets contained in the aerosol can be captured more efficiently by the droplet capturing material 60. The arithmetic surface roughness Sa of the droplet trapping surface 65 in the droplet trapping material 60 may be 30 μm or more and 1000 μm or less. Further, the arithmetic surface roughness Sa of the droplet trapping surface 65 is preferably 30 μm or more and 500 μm or less, and more preferably 30 μm or more and 100 μm or less. By adjusting the arithmetic surface roughness Sa of the droplet trapping surface 65 within this range, droplets can be easily held on the droplet trapping surface 65, and droplets contained in aerosol can be collected more efficiently by the droplet trapping surface 65. Can be captured well.
 次に、霧化ユニット12の製造方法について説明する。図5は、実施形態1に係る霧化ユニット12の製造方法を説明するためのフロー図である。 Next, a method for manufacturing the atomization unit 12 will be explained. FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first embodiment.
[準備工程]
 ステップS10に係る準備工程において、液体収容部50とエア通路20が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液Leと、エアロゾル生成液Leを霧化してエアロゾルを発生させる電気的な負荷40と、ウィック30と、エアロゾルに含まれる液滴を捕捉するための液滴捕捉材60(香味成形体)を準備する。ここでいう霧化ユニットハウジングは、図2及び図3等で説明した霧化ユニットハウジング120のうち、エア通路20に負荷40、ウィック30、液滴捕捉材60等が未だ配置されておらず、且つ、液体収容部50にエアロゾル生成液Leが充填される前の状態のハウジングを指す。
[Preparation process]
In the preparation process related to step S10, the atomization unit housing in which the liquid storage section 50 and the air passage 20 are formed, the aerosol generation liquid Le containing tobacco extract components, and the aerosol generation liquid Le are atomized to generate an aerosol. An electrical load 40, a wick 30, and a droplet trapping material 60 (flavor molded body) for trapping droplets contained in the aerosol are prepared. The atomization unit housing referred to here is the atomization unit housing 120 described with reference to FIGS. 2 and 3, in which the load 40, wick 30, droplet trapping material 60, etc. are not yet arranged in the air passage 20, and Moreover, it refers to the housing in a state before the liquid storage section 50 is filled with the aerosol generation liquid Le.
 準備工程でたばこ抽出成分を含むエアロゾル生成液Leを準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、たばこ材料の抽出により得られる成分をエアロゾル生成液Leに溶解させる方法等が挙げられる。 The specific method for preparing the aerosol generation liquid Le containing tobacco extract components in the preparation step is not particularly limited, and any known method can be adopted. For example, a method may be mentioned in which a component obtained by extraction of tobacco material is dissolved in the aerosol generation liquid Le.
 以下、エアロゾル生成液Leを製造する方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合する方法について具体的に説明する。 Hereinafter, as an example of the method for producing the aerosol-generating liquid Le, a method in which an extract obtained by dissolving tobacco leaves in a solvent is mixed with an aerosol base material will be specifically described.
 上記製造方法は、まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。 In the above manufacturing method, first, an alkaline substance is applied to tobacco leaves (referred to as alkali treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous potassium carbonate solution can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種の物質、または、この群の中から選択される2種類以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment). During this heat treatment, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group. Two or more kinds of substances are brought into contact with tobacco leaves.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used. As a result, a collection solvent containing flavor components such as nicotine (hereinafter also simply referred to as "flavor components") can be obtained (that is, flavor components can be extracted from tobacco leaves).
 なお、上述した捕集溶媒を使用せずにエアロゾル生成液Leを製造してもよい。この場合、例えば、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出してもよい。 Note that the aerosol generation liquid Le may be produced without using the above-mentioned collection solvent. In this case, for example, after applying the above heat treatment to tobacco leaves that have been treated with alkali, the components released from the tobacco leaves into the gas phase can be condensed by cooling them using a condenser or the like. The flavor components may be extracted.
 また、上述したアルカリ処理を行わずにエアロゾル生成液Leを製造してもよい。この場合、例えば、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、上記物質が添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させ、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Additionally, the aerosol generation liquid Le may be produced without performing the alkali treatment described above. In this case, for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are added to tobacco leaves (tobacco leaves that have not been subjected to alkali treatment). Add substance. Next, the tobacco leaf to which the above substance has been added is heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 また、エアロゾル生成液Leを製造する際、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させてもよい。このような工程によっても、香味成分を抽出することができる。 Further, when producing the aerosol generation liquid Le, an aerosol in which one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or The aerosol formed by two or more substances selected from this group is passed through tobacco leaves (tobacco leaves that have not been treated with alkali), and the aerosol that has passed through the tobacco leaves is captured in a collection solvent. You may collect them. Flavor components can also be extracted by such a process.
 また、エアロゾル生成液Leを製造する際、上述した手法で抽出された香味成分に含まれ得る「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)を行ってもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。なお、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、ニコチンの供給源としてたばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。 In addition, when producing the aerosol generation liquid Le, a process (hereinafter simply referred to as "amount of carbonized components that become carbonized when heated to 250 ° C.") that may be included in the flavor components extracted by the method described above is reduced. (also referred to as "reduction processing") may be performed. By reducing "the amount of carbonized components that become carbide when heated to 250° C.", adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed. Furthermore, since the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 The specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced. The amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
 ここで、たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分を蒸留処理又は減圧蒸留処理に供し、焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を蒸留処理又は減圧蒸留処理に供することが好ましい。 Here, since tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), tobacco extract components are subjected to distillation treatment or vacuum distillation treatment to eliminate charring. It is preferable to remove the causative substance. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
 次に、液滴捕捉材60を構成する香味成形体の製造方法について説明する。香味成形体の製造方法は特に限定されないが、例えば、セラミック、合成ポリマー、又は、たばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)と、香味材料と、バインダー等の結合剤を混合して混合物を得た後、プレス加圧成形、押出成形、射出成形、転写成形、圧縮成形、又は鋳込成形等の方法により、当該混合物を所定の形状に成形してもよい。ここで、非たばこ基材がポリマーである場合には、ポリマーを溶媒に溶解させて得られた溶液から加熱等により溶媒を揮発させる方法、又はモノマーを重合させる方法等により所定の形状の香味成形体を得る方法を採用することもできる。また、非たばこ基材を含む任意の固体形状の複合材料を得た後に、切削又は研削等により該複合材料を所定の形状となるように加工してもよい。或いは、上述した非たばこ基材(非たばこ基材の溶融物であってもよい)を所定の形状に成形した後、非たばこ基材の表面に香味材料を塗布又は噴霧する等して香味成形体を製造してもよい。 Next, a method for manufacturing the flavor molded body constituting the droplet trapping material 60 will be described. The method for producing the flavored molded body is not particularly limited, but for example, a non-tobacco base material such as a ceramic, a synthetic polymer, or a pulp derived from a plant other than tobacco plants (it may be a melt of a non-tobacco base material) is used. , a flavor material and a binder such as a binder are mixed to obtain a mixture, and then the mixture is molded into a predetermined shape by a method such as press molding, extrusion molding, injection molding, transfer molding, compression molding, or casting molding. It may be molded into the shape of Here, when the non-tobacco base material is a polymer, flavor molding into a predetermined shape is performed by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc. It is also possible to adopt a method of obtaining a body. Furthermore, after obtaining a composite material in any solid shape containing a non-tobacco base material, the composite material may be processed into a predetermined shape by cutting, grinding, or the like. Alternatively, after forming the above-mentioned non-tobacco base material (which may be a melt of the non-tobacco base material) into a predetermined shape, flavor molding is performed by applying or spraying a flavor material onto the surface of the non-tobacco base material. You can also manufacture bodies.
 なお、香味成形体を製造する際、香味成形体の表面をコーティング材でコーティングしてもよい。これにより、香味成形体として、所定形状に固められた非たばこ基材の表面がコーティング材で覆われた香味成形体を製造することができる。 Note that when manufacturing the flavor molded object, the surface of the flavor molded object may be coated with a coating material. Thereby, it is possible to produce a flavor molded object in which the surface of a non-tobacco base material hardened into a predetermined shape is covered with a coating material.
 このコーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。 For example, wax can be used as this coating material. Examples of this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
 あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。 Alternatively, corn protein can also be used as a coating material. A specific example of this is Zein (model number: Kobayashi Zein DP-N) manufactured by Kobayashi Perfume Co., Ltd. Alternatively, polyvinyl acetate can also be used as a coating material.
 また、香味成形体を製造する際、非たばこ基材にたばこ残渣を含ませてもよい。また、たばこ抽出成分を含むエアロゾル生成液の製造においてたばこ抽出液を得る場合には、該たばこ抽出物を得る際の抽出で得られたたばこ残渣を用いることが好ましい。 Furthermore, when producing a flavor molded article, tobacco residue may be included in the non-tobacco base material. Further, when obtaining a tobacco extract liquid in the production of an aerosol production liquid containing tobacco extract components, it is preferable to use tobacco residue obtained by extraction when obtaining the tobacco extract.
[組立工程]
 上記の準備工程が終わると、ステップS20に係る組立工程において、霧化ユニットハウジング120の液体収容部50にエアロゾル生成液Leを収容し、エア通路20に液滴捕捉材60、ウィック30、負荷40をそれぞれ配置する。ここでは、霧化ユニットハウジング120の負荷通路部22にウィック30及び負荷40を配置し、下流通路部23に液滴捕捉材60を配置する。その際、負荷40は、エアロゾル生成液Leが液体収容部50から導入される態様で配置される。例えば、液体収容部50の内部に連通するようにウィック30を負荷通路部22に設置し、当該ウィック30と接触した状態で負荷40を負荷通路部22に設置してもよい。本実施形態では、組立工程において、液滴捕捉材60を、エア通路20における負荷40よりもエアの流動方向で下流側の箇所、すなわち、下流通路部23に配置する。
[Assembly process]
After the above preparation process is completed, in the assembly process related to step S20, the aerosol generation liquid Le is accommodated in the liquid storage part 50 of the atomization unit housing 120, and the droplet trapping material 60, the wick 30, and the load 40 are placed in the air passage 20. Place each. Here, the wick 30 and the load 40 are arranged in the load passage section 22 of the atomization unit housing 120, and the droplet trapping material 60 is arranged in the downstream passage section 23. At this time, the load 40 is arranged in such a manner that the aerosol generating liquid Le is introduced from the liquid storage section 50. For example, the wick 30 may be installed in the load passage section 22 so as to communicate with the inside of the liquid storage section 50, and the load 40 may be installed in the load passage section 22 in a state in which it is in contact with the wick 30. In this embodiment, in the assembly process, the droplet trapping material 60 is disposed at a location downstream of the load 40 in the air passage 20 in the air flow direction, that is, at the downstream passage section 23 .
 以上説明したような製造方法によれば、吸引具10の霧化ユニット12を好適に製造できる。 According to the manufacturing method as described above, the atomization unit 12 of the suction tool 10 can be suitably manufactured.
 なお、本実施形態において、液体収容部50に収容されるエアロゾル生成液Leは、このエアロゾル生成液1g中に含まれる炭化成分の量(mg)が6mg以下であることが好ましく、3mg以下であることがより好ましい。 In addition, in this embodiment, the amount (mg) of carbonized components contained in 1 g of the aerosol generation liquid Le stored in the liquid storage part 50 is preferably 6 mg or less, and preferably 3 mg or less. It is more preferable.
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。 According to this configuration, the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
 なお、エアロゾル生成液1g中に含まれる「炭化成分」とは、具体的には、「250℃に加熱された場合に炭化物になる成分」をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 Note that the "carbonized component" contained in 1 g of aerosol-generating liquid specifically refers to "component that becomes carbide when heated to 250°C." Specifically, the "carbonized component" refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
 この「エアロゾル生成液1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、エアロゾル生成液Leを所定量(g)、準備する。次いで、このエアロゾル生成液Leを180℃に加熱して、エアロゾル生成液Leに含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液Leに含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 This "amount (mg) of carbonized components contained in 1 g of aerosol generating liquid" can be measured, for example, by the following method. First, a predetermined amount (g) of aerosol generation liquid Le is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured. By the above method, it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid ( That is, the amount (mg) of carbonized components can be calculated.
 続いて、ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図6は、ニコチンを含むエアロゾル生成液としてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図6の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。 Next, the relationship between the amount of carbonized components contained in 1 g of aerosol generating liquid containing nicotine and the TPM reduction rate will be explained. Figure 6 shows the TPM reduction rate measured with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") was used as an aerosol generating liquid containing nicotine. It is a figure showing a result. The horizontal axis of FIG. 6 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
 図6のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニットのサンプルを準備した。具体的には、この複数の霧化ユニットのサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM :%) in FIG. 6 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at ℃. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of immersion liquid (extract liquid) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, the multiple samples prepared in the above steps were subjected to automatic smoking using an automatic smoking machine (“Analytical Vaping Machine” manufactured by Borgwaldt) under “CRM (Coresta Recommended Method) 81 smoking conditions”. Ta. Incidentally, the smoking condition of CRM81 is that 55 cc of aerosol is inhaled over 3 seconds multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図6のTPM減少率(RTPM)は測定された。 The amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) shown in FIG. 6 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1) R TPM (%) = (1-TPM (201puff ~ 250puff) / TPM (1puff ~ 50puff)) x 100... (1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。 Here, TPM (Total Particle Molecule) indicates the total particulate matter collected by the Cambridge filter of the automatic smoking machine. "TPM (1puff to 50puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201puff to 250puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 In other words, the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
 図6から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図6の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 6, there is a proportional relationship between the amount of carbonized components contained in 1 g of extract and the TPM reduction rate. As can be seen from samples SA1 to SA4 in FIG. 6, when the amount of carbonized components contained in 1 g of extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
 次に、霧化ユニット12の他の実施形態について説明する。なお、以下の実施形態において、上述した実施形態1と同一又は対応する構成について、同一の符号を付して説明を適宜省略する場合がある。 Next, other embodiments of the atomization unit 12 will be described. In the following embodiments, the same or corresponding configurations as those in the first embodiment described above may be given the same reference numerals and the description thereof may be omitted as appropriate.
<実施形態2>
 図7は、実施形態2に係る霧化ユニット12の縦断面図である。図8は、実施形態2に係る霧化ユニット12の横断面図であり、図7のA2-A2線断面を示している。
<Embodiment 2>
FIG. 7 is a longitudinal cross-sectional view of the atomization unit 12 according to the second embodiment. FIG. 8 is a cross-sectional view of the atomization unit 12 according to the second embodiment, and shows a cross section taken along the line A2-A2 in FIG. 7.
 実施形態2に係る霧化ユニット12は、エア通路20が上流通路部を備えていない。また、実施形態2に係る霧化ユニット12において、負荷通路部22の壁部71cには、霧化ユニットハウジング120の内部にエアを外部から取り入れるための孔である流入口72eが設けられている。本実施形態では、例えば、吸引具10における電源ユニット11のハウジング(電源ユニットハウジング)にも、その内部に外部からエアを取り入れるための流入口を形成してもよい。そして、電源ユニットハウジングの内部に、電源ユニットハウジング側の流入口と霧化ユニットハウジング120側の流入口72eとを連通する内部通路を形成し、当該内部通路を通じて供給されるエアを、流入口72eから霧化ユニットハウジング120の内部に取り入れてもよい。流入口72eから霧化ユニットハウジング120内に取り入れられたエアは負荷通路部22に流入し、負荷通路部22を通過した後に下流通路部23を通過して、排出口13から排出される。 In the atomization unit 12 according to the second embodiment, the air passage 20 does not include an upstream passage section. Further, in the atomization unit 12 according to the second embodiment, the wall portion 71c of the load passage portion 22 is provided with an inlet 72e, which is a hole for introducing air into the atomization unit housing 120 from the outside. . In this embodiment, for example, the housing of the power supply unit 11 in the suction tool 10 (power supply unit housing) may also have an inflow port formed therein for taking in air from the outside. Then, an internal passage is formed inside the power supply unit housing to communicate the inflow port on the power supply unit housing side and the inflow port 72e on the atomization unit housing 120 side, and the air supplied through the internal passage is transferred to the inflow port 72e. It may also be incorporated into the atomization unit housing 120 from within the atomization unit housing 120. Air taken into the atomization unit housing 120 from the inflow port 72e flows into the load passage section 22, passes through the load passage section 22, passes through the downstream passage section 23, and is discharged from the discharge port 13.
 実施形態2に係る下流通路部23は、拡径部24aを有している。この拡径部24aは、下流通路部23の一部に設けられて、下流通路部23の「他の部位24b(すなわち、非拡径部)」よりも拡径した部位である。具体的には、実施形態2に係る下流通路部23は、全体的に液体収容部50の内部に配置されている。そして、拡径部24aは、下流通路部23の通路途中の部分に配置されている。具体的には、拡径部24aよりも上流側に他の部位24bが配置され、拡径部24aよりも下流側にも他の部位24bが配置されている(すなわち、拡径部24aは他の部位24bに挟まれている)。 The downstream passage section 23 according to the second embodiment has an enlarged diameter section 24a. The enlarged diameter portion 24a is provided in a part of the downstream passage portion 23, and is a portion whose diameter is enlarged more than “the other portion 24b (that is, the non-expanded diameter portion)” of the downstream passage portion 23. Specifically, the downstream passage section 23 according to the second embodiment is entirely disposed inside the liquid storage section 50. The enlarged diameter portion 24a is disposed in the middle of the downstream passage portion 23. Specifically, another part 24b is arranged upstream of the enlarged diameter part 24a, and another part 24b is arranged downstream of the enlarged diameter part 24a (that is, the enlarged diameter part 24a is ).
 実施形態2における液滴捕捉材60は、下流通路部23における拡径部24aに配置されている。図8に示す例では、拡径部24aは、エアの流動方向に直交する横断面が矩形状を有している。本実施形態における液滴捕捉材60は、拡径部24aと略合同な横断面を有し、拡径部24aの延在方向(Z方向)に沿って延びる直方体の棒形状を有している。また、実施形態1と同様、本実施形態における液滴捕捉材60も例えば香味成形体によって形成されている。 The droplet trapping material 60 in the second embodiment is arranged in the enlarged diameter portion 24a of the downstream passage portion 23. In the example shown in FIG. 8, the enlarged diameter portion 24a has a rectangular cross section perpendicular to the air flow direction. The droplet trapping material 60 in this embodiment has a cross section that is substantially congruent with the enlarged diameter portion 24a, and has a rectangular parallelepiped bar shape extending along the extending direction (Z direction) of the enlarged diameter portion 24a. . Further, like the first embodiment, the droplet trapping material 60 in this embodiment is also formed of, for example, a flavor molded body.
 図7に示すように、液滴捕捉材60は、その内部に、当該液滴捕捉材60の軸方向に沿って貫通して延びる中空状のエアロゾル流通路61を複数有している。各エアロゾル流通路61は、拡径部24aの延在方向(Z方向)に沿って延在しており、負荷通路部22から下流通路部23に流入したエアロゾルを含むエアは、液滴捕捉材60の各エアロゾル流通路61を通過することが可能である。これによれば、液滴捕捉材60の各エアロゾル流通路61をエアロゾルが通過する際、液滴捕捉材60に含まれる香味材料によって香味をエアロゾルに付与することができる。また、液滴捕捉材60における各エアロゾル流通路61の内面によって液滴捕捉面65が形成されているため、各エアロゾル流通路61を流通するエアロゾルに含まれる余剰な液滴を液滴捕捉面65によって捕捉し、取り除くことができる。すなわち、本実施形態においても、上述した実施形態1と同様な作用効果を奏することができる。なお、本実施形態において、液滴捕捉材60に形成されるエアロゾル流通路61の数は特に限定されない。 As shown in FIG. 7, the droplet trapping material 60 has a plurality of hollow aerosol flow passages 61 extending therethrough along the axial direction of the droplet trapping material 60. Each aerosol flow passage 61 extends along the extending direction (Z direction) of the enlarged diameter portion 24a, and the air containing the aerosol that has flowed from the load passage portion 22 to the downstream passage portion 23 passes through the droplet trapping material. 60 aerosol flow passages 61 each. According to this, when the aerosol passes through each aerosol flow path 61 of the droplet trapping material 60, flavor can be imparted to the aerosol by the flavor material contained in the droplet trapping material 60. In addition, since the droplet trapping surface 65 is formed by the inner surface of each aerosol flow path 61 in the droplet trapping material 60, excess droplets contained in the aerosol flowing through each aerosol flow path 61 are removed from the droplet trapping surface 65. can be captured and removed by That is, in this embodiment as well, the same effects as in the first embodiment described above can be achieved. Note that in this embodiment, the number of aerosol flow passages 61 formed in the droplet trapping material 60 is not particularly limited.
 また、本実施形態によれば、液滴捕捉材60が下流通路部23に配置されているため、例えば、液滴捕捉材60が他の部位24bに充填される場合に比較して、液滴捕捉材60を通過するエアロゾルを含むエアの通気抵抗値(エアが通過するときのエアの通過し難さを示す指標)を低く抑えることができる。 Further, according to the present embodiment, since the droplet trapping material 60 is disposed in the downstream passage section 23, the droplet trapping material 60 is arranged in the downstream passage section 23, so the droplet trapping material 60 is arranged in the downstream passage section 23. The ventilation resistance value of air containing aerosol passing through the capture material 60 (an index indicating the difficulty of air passage) can be kept low.
 また、本実施形態によれば、負荷40を通過することで温度が上昇したエアが液滴捕捉材60を通過するので、液滴捕捉材60に含まれる香味材料の香味成分をより効果的に、下流通路部23を流通するエアに付加することができる(すなわち、エアロゾルを含むエアに香味成分を効果的に付与することができる)。 Further, according to the present embodiment, since the air whose temperature has increased by passing through the load 40 passes through the droplet trapping material 60, the flavor components of the flavor material contained in the droplet trapping material 60 are more effectively absorbed. , it is possible to add a flavor component to the air flowing through the downstream passage section 23 (that is, it is possible to effectively impart a flavor component to the air containing the aerosol).
 なお、図7に示す例では、下流通路部23が全体的に液体収容部50の内部に配置されているが、この態様に限定されるものではない。例えば、下流通路部23は、霧化ユニット12の厚み方向に関して、液体収容部50に隣接配置されていてもよい。 Note that in the example shown in FIG. 7, the downstream passage section 23 is entirely disposed inside the liquid storage section 50, but the embodiment is not limited to this embodiment. For example, the downstream passage section 23 may be arranged adjacent to the liquid storage section 50 in the thickness direction of the atomization unit 12.
<実施形態3>
 次に、実施形態3に係る霧化ユニット12を説明する。図9は、実施形態3に係る霧化ユニット12の縦断面図である。図10は、実施形態3に係る霧化ユニット12の横断面図であり、図9のA3-A3線断面を示している。実施形態3に係る霧化ユニット12は、下流通路部23の拡径部24aに配置される液滴捕捉材60の態様のみが実施形態2と相違している。また、本実施形態においても、液滴捕捉材60が香味成形体によって形成されている。
<Embodiment 3>
Next, the atomization unit 12 according to the third embodiment will be explained. FIG. 9 is a longitudinal cross-sectional view of the atomization unit 12 according to the third embodiment. FIG. 10 is a cross-sectional view of the atomization unit 12 according to the third embodiment, and shows a cross section taken along line A3-A3 in FIG. The atomization unit 12 according to the third embodiment differs from the second embodiment only in the aspect of the droplet trapping material 60 disposed in the enlarged diameter section 24a of the downstream passage section 23. Also in this embodiment, the droplet trapping material 60 is formed of a flavor molded body.
 実施形態3においては、棒形状を有する複数の液滴捕捉材60が、下流通路部23の拡径部24aの横断面方向(X方向、Y方向)に沿って並列配置されている。図9及び図10に示す例では、各液滴捕捉材60が拡径部24aの延在方向(Z方向)に沿って延びる中実な円柱形状を有している。図9に示す例では、拡径部24aに対して20個の液滴捕捉材60が4行5列のパターンで配置されているが、拡径部24aに配置される液滴捕捉材60の数や、その配置パターンは特に限定されない。 In the third embodiment, a plurality of rod-shaped droplet trapping materials 60 are arranged in parallel along the cross-sectional direction (X direction, Y direction) of the enlarged diameter portion 24a of the downstream passage portion 23. In the example shown in FIGS. 9 and 10, each droplet trapping material 60 has a solid cylindrical shape extending along the extending direction (Z direction) of the enlarged diameter portion 24a. In the example shown in FIG. 9, 20 droplet trapping materials 60 are arranged in a pattern of 4 rows and 5 columns with respect to the enlarged diameter portion 24a. The number and arrangement pattern thereof are not particularly limited.
 図10に示すように、下流通路部23の拡径部24aに並列配置される各液滴捕捉材60同士の間には、エアロゾルを流通させるためのエアロゾル流通路61が形成されており、エアロゾル流通路61に面する液滴捕捉材60の外面によって液滴捕捉面65が形成されている。また、図9に示す符号25Aは、各液滴捕捉材60の上流端601を支持する通気性の支持材である。符号25Bは、各液滴捕捉材60の下流端602を支持する通気性の支持材である。ここでいう上流端、下流端とは、エアの流動方向を基準とした場合の上流側の端部、下流側の端部を意味する。支持材25A,25Bは、協働して、各液滴捕捉材60の上流端601及び下流端602を軸方向に挟み込んだ状態でこれを支持している。これにより、下流通路部23の拡径部24aに複数の液滴捕捉材60を配置する場合においても、これら複数の液滴捕捉材60を整列した状態で正規の位置に保持できる。また、支持材25A,25Bは通気性を有しているため、下流通路部23の拡径部24aに沿ったエア(エアロゾル)の流れが阻害されることを抑制できる。 As shown in FIG. 10, an aerosol flow passage 61 for circulating aerosol is formed between each of the droplet trapping materials 60 arranged in parallel in the enlarged diameter part 24a of the downstream passage part 23. A droplet trapping surface 65 is formed by the outer surface of the droplet trapping material 60 facing the flow path 61 . Further, reference numeral 25A shown in FIG. 9 is an air-permeable support material that supports the upstream end 601 of each droplet trapping material 60. Reference numeral 25B is an air-permeable support material that supports the downstream end 602 of each droplet trapping material 60. The upstream end and downstream end herein mean an upstream end and a downstream end with respect to the flow direction of air. The supporting members 25A and 25B cooperate to support the upstream end 601 and downstream end 602 of each droplet trapping material 60 while sandwiching them in the axial direction. Thereby, even when a plurality of droplet trapping materials 60 are arranged in the enlarged diameter portion 24a of the downstream passage section 23, the plurality of droplet trapping materials 60 can be maintained in an aligned state and at a regular position. Further, since the supporting materials 25A and 25B have air permeability, it is possible to suppress the flow of air (aerosol) along the enlarged diameter portion 24a of the downstream passage portion 23 from being obstructed.
 以上のように、本実施形態においても、下流通路部23の拡径部24aに並列配置される各液滴捕捉材60同士の間にエアロゾル流通路61が形成され、且つ、エアロゾル流通路61に面する液滴捕捉材60の外面によって液滴捕捉面65が形成されているため、エアロゾル流通路61を通過するエアロゾルに液滴捕捉材60の香味材料によって香味を付与できるとともに、エアロゾルに含まれる余剰な液滴を取り除くことができる。 As described above, also in this embodiment, the aerosol flow path 61 is formed between each of the droplet trapping materials 60 arranged in parallel in the enlarged diameter portion 24a of the downstream passage portion 23, and the aerosol flow path 61 is Since the droplet trapping surface 65 is formed by the facing outer surface of the droplet trapping material 60, the aerosol passing through the aerosol flow path 61 can be flavored by the flavor material of the droplet trapping material 60, and the flavor material contained in the aerosol can be flavored. Excess droplets can be removed.
 なお、本実施形態における液滴捕捉材60においても、実施形態1と同様、軸方向に沿って延びる中空状のエアロゾル流通路が内部に形成されていてもよい。 Note that the droplet trapping material 60 in this embodiment may also have a hollow aerosol flow path extending in the axial direction formed therein, as in the first embodiment.
<実施形態4>
 次に、実施形態4に係る霧化ユニット12を説明する。図11は、実施形態4に係る霧化ユニット12の縦断面図である。図12は、実施形態4に係る霧化ユニット12の横断面図であり、図11のA4-A4線断面を示している。実施形態4に係る霧化ユニット12は、下流通路部23の拡径部24aに配置される液滴捕捉材60の態様のみが実施形態3と相違している。また、本実施形態においても、液滴捕捉材60が香味成形体によって形成されている。
<Embodiment 4>
Next, the atomization unit 12 according to the fourth embodiment will be explained. FIG. 11 is a longitudinal cross-sectional view of the atomization unit 12 according to the fourth embodiment. FIG. 12 is a cross-sectional view of the atomization unit 12 according to the fourth embodiment, and shows a cross section taken along the line A4-A4 in FIG. 11. The atomization unit 12 according to the fourth embodiment differs from the third embodiment only in the aspect of the droplet trapping material 60 disposed in the enlarged diameter section 24a of the downstream passage section 23. Also in this embodiment, the droplet trapping material 60 is formed of a flavor molded body.
 下流通路部23の拡径部24aには、板形状を有する複数の液滴捕捉材60が配置されている。各液滴捕捉材60は、拡径部24aの延在方向(エアの流動方向、すなわちZ方向)に沿って延在している。図11及び図12に示す例において、各液滴捕捉材60は、拡径部24aに沿って長尺な平板形状を有し、拡径部24aの横断面方向(エアの流動方向と直交する方向、すなわちXY平面方向)に沿って並んで配置されている。より具体的には、各液滴捕捉材60の上流端601及び下流端602は、上述した通気性を有する支持材25A,25Bによって軸方向に挟み込まれた状態で位置決め固定されている。その結果、複数の液滴捕捉材60の各々は、互いに間隔をおいて対向するように並んで配置されている。そして、互いに対向配置される液滴捕捉材60同士の間に形成された隙間によって、エアロゾルを流通させるためのエアロゾル流通路61が形成されている。また、エアロゾル流通路61に面する液滴捕捉材60の外面によって液滴捕捉面65が形成される。 A plurality of droplet trapping materials 60 having a plate shape are arranged in the enlarged diameter portion 24a of the downstream passage portion 23. Each droplet trapping material 60 extends along the extending direction of the enlarged diameter portion 24a (the air flow direction, that is, the Z direction). In the example shown in FIGS. 11 and 12, each droplet trapping material 60 has an elongated flat plate shape along the enlarged diameter portion 24a, and extends in the cross-sectional direction of the enlarged diameter portion 24a (orthogonal to the air flow direction). (that is, the XY plane direction). More specifically, the upstream end 601 and downstream end 602 of each droplet trapping material 60 are positioned and fixed in a state where they are sandwiched in the axial direction by the above-mentioned air- permeable supporting materials 25A and 25B. As a result, each of the plurality of droplet trapping materials 60 is arranged side by side so as to face each other at intervals. An aerosol flow path 61 for distributing the aerosol is formed by a gap formed between the droplet trapping materials 60 that are arranged to face each other. Furthermore, a droplet trapping surface 65 is formed by the outer surface of the droplet trapping material 60 facing the aerosol flow path 61 .
 上記のように構成される本実施形態に係る霧化ユニット12においても、各液滴捕捉材60同士の間に形成されるエアロゾル流通路61を通過するエアロゾルに対し、液滴捕捉材60の香味材料によって香味を付与でき、しかも、エアロゾルに含まれる余剰な液滴を液滴捕捉面65によって取り除くことができる。 Also in the atomization unit 12 according to the present embodiment configured as described above, the flavor of the droplet trapping material 60 is applied to the aerosol passing through the aerosol flow path 61 formed between the droplet trapping materials 60. Flavor can be imparted depending on the material, and excess droplets contained in the aerosol can be removed by the droplet trapping surface 65.
<実施形態5>
 次に、実施形態5に係る霧化ユニット12を説明する。図13は、実施形態5に係る霧化ユニット12の縦断面図である。図14は、実施形態5に係る霧化ユニット12の横断面図であり、図13のA5-A5線断面を示している。実施形態5に係る霧化ユニット12は、下流通路部23の拡径部24aに配置される液滴捕捉材60の態様のみが実施形態3及び4と相違している。また、本実施形態においても、液滴捕捉材60が香味成形体によって形成されている。
<Embodiment 5>
Next, the atomization unit 12 according to the fifth embodiment will be explained. FIG. 13 is a longitudinal cross-sectional view of the atomization unit 12 according to the fifth embodiment. FIG. 14 is a cross-sectional view of the atomization unit 12 according to the fifth embodiment, and shows a cross section taken along the line A5-A5 in FIG. 13. The atomization unit 12 according to the fifth embodiment differs from the third and fourth embodiments only in the aspect of the droplet trapping material 60 disposed in the enlarged diameter section 24a of the downstream passage section 23. Also in this embodiment, the droplet trapping material 60 is formed of a flavor molded body.
 本実施形態においては、下流通路部23の拡径部24aには、全体として蛇腹シート形状を有する液滴捕捉材60が配置されている。蛇腹シート形状を有する液滴捕捉材60は、拡径部24aの延在方向(エアの流動方向、すなわちZ方向)に沿って延在する複数のシート部(パネル部)62と、各シート部62同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部63と、を含んで構成されている。上記のような蛇腹シート形態の液滴捕捉材60においては、稜線部63を介して接続されるシート部62同士の間には、エアロゾルを流通させるためのエアロゾル流通路61が形成される。そして、このエアロゾル流通路61は、下流通路部23に沿って(すなわち、エアの流動方向に沿って)延在する。そのため、下流通路部23に流入したエア(エアロゾル)がエアロゾル流通路61を通過する際、液滴捕捉材60を構成する香味成形体に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。また、本実施形態における液滴捕捉材60は、エアロゾル流通路61に面するシート部62の外面によって液滴捕捉面65が形成されている。これにより、エアロゾル流通路61を流れるエアロゾルに含まれる余剰な液滴を液滴捕捉面65によって効率的に取り除くことができる。 In this embodiment, a droplet trapping material 60 having an overall bellows sheet shape is disposed in the enlarged diameter portion 24a of the downstream passage portion 23. The droplet trapping material 60 having a bellows sheet shape includes a plurality of sheet portions (panel portions) 62 extending along the extending direction of the enlarged diameter portion 24a (air flow direction, that is, Z direction), and each sheet portion. 62 in a bellows-like manner, and a ridgeline portion 63 extending along the air flow direction. In the droplet trapping material 60 in the form of a bellows sheet as described above, an aerosol flow path 61 for circulating aerosol is formed between the sheet portions 62 connected via the ridgeline portions 63. This aerosol flow passage 61 extends along the downstream passage portion 23 (that is, along the air flow direction). Therefore, when the air (aerosol) that has flowed into the downstream passage section 23 passes through the aerosol flow passage 61, the flavor components of the flavor material contained in the flavor molded body constituting the droplet trapping material 60 are suitably transferred to the air. can be granted. Further, in the droplet trapping material 60 in this embodiment, a droplet trapping surface 65 is formed by the outer surface of the sheet portion 62 facing the aerosol flow path 61. Thereby, excess droplets contained in the aerosol flowing through the aerosol flow path 61 can be efficiently removed by the droplet trapping surface 65.
 なお、図13に示すように、本実施形態においても、蛇腹シート形態を有する液滴捕捉材60の上流端601及び下流端602が、通気性を有する支持材25A,25Bによって位置決め固定されている。これにより、下流通路部23の拡径部24aに沿ったエアロゾルを含むエアの流れを阻害することなく、液滴捕捉材60を正規の位置に固定できる。 Note that, as shown in FIG. 13, also in this embodiment, the upstream end 601 and downstream end 602 of the droplet trapping material 60 having the bellows sheet form are positioned and fixed by the breathable support materials 25A and 25B. . Thereby, the droplet trapping material 60 can be fixed at a regular position without obstructing the flow of air containing aerosol along the enlarged diameter portion 24a of the downstream passage portion 23.
<実施形態6>
 図15は、実施形態6に係る霧化ユニット12の横断面図である。実施形態6においては、短冊状シート片の形態を有する多数の液滴捕捉材60が下流通路部23に充填されている。各液滴捕捉材60(短冊状シート片)は、例えば、長手方向が下流通路部23に沿って(すなわち、エア(エアロゾル)の流動方向に沿って)延在するように整列配置されており、その上流端及び下流端が図11で説明したような支持材25A,25Bによって位置決めされていてもよい。本実施形態においては、各液滴捕捉材60(短冊状シート片)同士の隙間によってエアロゾル流通路61が形成されており、エアロゾル流通路61を規定している各液滴捕捉材60(短冊状シート片)の側面(外面)によってそのため、下流通路部23に流入したエア(エアロゾル)がエアロゾル流通路61を通過する際、液滴捕捉材60に含まれる香味材料の香味成分を当該エア(エアロゾル)に対して好適に付与することができる。また、エアロゾル流通路61を流れるエアロゾルに含まれる余剰な液滴を液滴捕捉面65によって効率的に取り除くことができる。なお、液滴捕捉材60としての短冊シート片は、下流通路部23に沿って整列させることなく充填するランダム配置としてもよい。
<Embodiment 6>
FIG. 15 is a cross-sectional view of the atomization unit 12 according to the sixth embodiment. In the sixth embodiment, the downstream passage portion 23 is filled with a large number of droplet trapping materials 60 in the form of strip-shaped sheet pieces. For example, the droplet trapping materials 60 (rectangular sheet pieces) are arranged so that their longitudinal directions extend along the downstream passage section 23 (that is, along the flow direction of air (aerosol)). , the upstream and downstream ends thereof may be positioned by supporting members 25A and 25B as described in FIG. 11. In this embodiment, an aerosol flow path 61 is formed by a gap between each droplet trapping material 60 (rectangular sheet piece), and each droplet trapping material 60 (rectangular sheet piece) defining the aerosol flow path 61 Therefore, when the air (aerosol) flowing into the downstream passage section 23 passes through the aerosol flow passage 61, the flavor components of the flavor material contained in the droplet trapping material 60 are transferred to the air (aerosol) by the side surface (outer surface) of the sheet piece). ) can be suitably provided. Furthermore, excess droplets contained in the aerosol flowing through the aerosol flow path 61 can be efficiently removed by the droplet trapping surface 65. Note that the strip sheet pieces serving as the droplet trapping material 60 may be arranged randomly and filled without being aligned along the downstream passage section 23.
<実施形態7>
 図16は、実施形態7に係る霧化ユニット12の横断面図である。実施形態7に係る霧化ユニット12の液滴捕捉材60は、その軸方向に貫通する貫通孔としてのエアロゾル流通路61に加えて、側面(外面)にエアロゾル流通路としてのエアロゾル流通溝610が形成されている点で図2~4で説明した液滴捕捉材60と相違している。図16に示す態様において、液滴捕捉材60におけるエアロゾル流通溝610は、液滴捕捉材60の軸方向に沿って、その側面(外面)に設けられた溝である。エアロゾル流通溝610は液滴捕捉材60の上流端(前端)601から下流端(後端)602にわたって形成されており、エアロゾル流通溝610の表面によって液滴捕捉面65が形成されている。本変形例においては、エアロゾル流通路61及びエアロゾル流通溝610を通じてエアを円滑に流通させることができ、液滴捕捉材60に含まれる香味材料の香味成分を当該エアに対して好適に付与することができる。なお、本変形例において、液滴捕捉材60の側面(外面)に設けられるエアロゾル流通溝610の数は特に限定されない。但し、図16に示すように、液滴捕捉材60の側面(外面)に複数のエアロゾル流通溝610を形成することによって、エアロゾルの流通と、当該エアロゾルに対する香味の付与と、をより効率的に行うことができる。また、本実施形態に係る液滴捕捉材60において、その内部を軸方向に貫通するエアロゾル流通路61を省略し、エアロゾル流通溝610のみを形成してもよい。
<Embodiment 7>
FIG. 16 is a cross-sectional view of the atomization unit 12 according to the seventh embodiment. The droplet trapping material 60 of the atomization unit 12 according to the seventh embodiment has, in addition to an aerosol flow passage 61 as a through hole penetrating in the axial direction, an aerosol flow groove 610 as an aerosol flow passage on the side surface (outer surface). It is different from the droplet trapping material 60 described in FIGS. 2 to 4 in that it is formed. In the embodiment shown in FIG. 16, the aerosol distribution groove 610 in the droplet trapping material 60 is a groove provided on the side surface (outer surface) of the droplet trapping material 60 along the axial direction. The aerosol distribution groove 610 is formed from the upstream end (front end) 601 to the downstream end (rear end) 602 of the droplet trapping material 60, and the surface of the aerosol distribution groove 610 forms a droplet trapping surface 65. In this modification, air can be smoothly circulated through the aerosol flow path 61 and the aerosol flow groove 610, and the flavor components of the flavor material contained in the droplet trapping material 60 can be suitably imparted to the air. I can do it. In addition, in this modification, the number of aerosol distribution grooves 610 provided on the side surface (outer surface) of the droplet trapping material 60 is not particularly limited. However, as shown in FIG. 16, by forming a plurality of aerosol distribution grooves 610 on the side surface (outer surface) of the droplet trapping material 60, the distribution of the aerosol and the imparting of flavor to the aerosol can be made more efficient. It can be carried out. Furthermore, in the droplet trapping material 60 according to the present embodiment, the aerosol flow path 61 passing through the inside thereof in the axial direction may be omitted, and only the aerosol flow groove 610 may be formed.
<実施形態8>
 次に、実施形態8に係る霧化ユニット12を説明する。図17は、実施形態8に係る霧化ユニット12の縦断面図である。図18は、実施形態8に係る霧化ユニット12の横断面図であり、図17のA6-A6線断面を示している。本実施形態における霧化ユニット12は、霧化ユニットハウジング120が実施形態1と相違している。以下では、実施形態1との相違点を中心に説明する。
<Embodiment 8>
Next, the atomization unit 12 according to the eighth embodiment will be explained. FIG. 17 is a longitudinal cross-sectional view of the atomization unit 12 according to the eighth embodiment. FIG. 18 is a cross-sectional view of the atomization unit 12 according to the eighth embodiment, and shows a cross section taken along the line A6-A6 in FIG. 17. The atomization unit 12 in this embodiment is different from the first embodiment in an atomization unit housing 120. Below, differences from Embodiment 1 will be mainly explained.
 本実施形態における霧化ユニットハウジング120は、下流通路部23を規定する筒状の壁部70gが、エアの流動方向において上流側に位置する小径壁部710と、小径壁部710の下流側に位置する大径壁部720と、小径壁部710及び大径壁部720の間に位置する境界壁部730を含んで構成されている。小径壁部710及び大径壁部720は円筒形状を有する壁体であり、大径壁部720は小径壁部710に比べて相対的に直径が大きい。また、境界壁部730は、小径壁部710及び大径壁部720を接続する円形状を有する壁体であり、Z方向に直交するXY平面方向に沿って延在している。 In the atomization unit housing 120 according to the present embodiment, a cylindrical wall portion 70g defining the downstream passage portion 23 has a small diameter wall portion 710 located on the upstream side in the flow direction of air, and a small diameter wall portion 710 located on the downstream side of the small diameter wall portion 710. It is configured to include a large diameter wall section 720 located therein, and a boundary wall section 730 located between the small diameter wall section 710 and the large diameter wall section 720. The small diameter wall 710 and the large diameter wall 720 are walls having a cylindrical shape, and the large diameter wall 720 has a relatively larger diameter than the small diameter wall 710. Further, the boundary wall 730 is a circular wall that connects the small diameter wall 710 and the large diameter wall 720, and extends along the XY plane direction perpendicular to the Z direction.
 上記のように構成される壁部70gの内側に形成される下流通路部23は、エアの流動方向の途中位置(境界壁部730の位置)で横断面積が拡大されることで、エアの流動方向下流側に拡径部24aが形成されている。 The downstream passage section 23 formed inside the wall section 70g configured as described above has a cross-sectional area enlarged at an intermediate position in the air flow direction (position of the boundary wall section 730), so that the air flow can be improved. An expanded diameter portion 24a is formed on the downstream side in the direction.
 本実施形態においては、図17に示すように、下流通路部23の拡径部24aに液滴捕捉材60が配置されている。本実施形態における液滴捕捉材60は、図4で説明した液滴捕捉材60と同様、円筒形状を有し、中心軸X1に沿って液滴捕捉材60を貫通する中空状のエアロゾル流通路(中空路)61が内側に形成されており、エアロゾル流通路61の内面によって液滴捕捉面65が形成されている。 In this embodiment, as shown in FIG. 17, a droplet trapping material 60 is arranged in the enlarged diameter portion 24a of the downstream passage portion 23. The droplet trapping material 60 in this embodiment has a cylindrical shape, similar to the droplet trapping material 60 described in FIG. 4, and has a hollow aerosol flow path that penetrates the droplet trapping material 60 along the central axis A (hollow passage) 61 is formed inside, and the inner surface of the aerosol flow passage 61 forms a droplet trapping surface 65.
 本実施形態においては、例えば、液滴捕捉材60の外径が、拡径部24aの内径(すなわち、大径壁部720の内径)と等しいか、僅かに大きく、液滴捕捉材60の外周面が大径壁部720の内周面に接触した状態で拡径部24aに液滴捕捉材60が固定されている。また、液滴捕捉材60の内径(エアロゾル流通路61の直径)は、小径壁部710の内径と略等しい寸法に設定されている。上記のように、エアの流路面積が拡大された拡径部24aに液滴捕捉材60を配置することで、下流通路部23を流通するエアロゾルを含むエアの通気抵抗を低減することができる。なお、本実施形態における霧化ユニット12においても、上述までの各実施形態と同様の効果を奏する。すなわち、下流通路部23を通過するエアロゾルを含むエアに対して香味を付与するとともに、エアロゾルに含まれる余剰な液滴を取り除くことができる。なお、本実施形態における液滴捕捉材60の態様は特に限定されず、例えば実施形態2~7で説明した態様を適用してもよい。 In this embodiment, for example, the outer diameter of the droplet trapping material 60 is equal to or slightly larger than the inner diameter of the enlarged diameter portion 24a (that is, the inner diameter of the large diameter wall portion 720), and the outer diameter of the droplet trapping material 60 is The droplet trapping material 60 is fixed to the enlarged diameter portion 24 a with its surface in contact with the inner circumferential surface of the large diameter wall portion 720 . Further, the inner diameter of the droplet trapping material 60 (the diameter of the aerosol flow path 61) is set to be approximately equal to the inner diameter of the small diameter wall portion 710. As described above, by arranging the droplet trapping material 60 in the enlarged diameter portion 24a where the air flow path area is expanded, the ventilation resistance of air containing aerosol flowing through the downstream passage portion 23 can be reduced. . Note that the atomization unit 12 in this embodiment also provides the same effects as in each of the embodiments described above. That is, it is possible to impart flavor to the air containing the aerosol passing through the downstream passage section 23 and to remove excess droplets contained in the aerosol. Note that the aspect of the droplet trapping material 60 in this embodiment is not particularly limited, and for example, the aspects described in Embodiments 2 to 7 may be applied.
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。 Although the embodiments and modified examples of the present invention have been described in detail above, the present invention is not limited to such specific embodiments and modified examples, and within the scope of the gist of the present invention as described in the claims. , various modifications and changes are possible.
 例えば、上述までの各実施形態において、霧化ユニット12における下流通路部23に配置する液滴捕捉材60の一形態として、非たばこ基材及び香味材料を含む香味成形体を例に説明したが、これには限られない。すなわち、液滴捕捉材60は、下流通路部23を流れるエアロゾルから余剰な液滴を取り除くことができる限りにおいて種々の形態を採用することができる。例えば、液滴捕捉材60は、香味材料を含まない成形体として構成されていてもよい。この場合、液滴捕捉材60は、例えば、セラミック、合成ポリマー、パルプ等といった非たばこ基材によって形成する態様が一例として挙げられる。 For example, in each of the embodiments described above, a flavor molded body containing a non-tobacco base material and a flavor material was described as one form of the droplet trapping material 60 disposed in the downstream passage section 23 of the atomization unit 12. , but not limited to this. That is, the droplet trapping material 60 can adopt various forms as long as it can remove excess droplets from the aerosol flowing through the downstream passage section 23. For example, the droplet trapping material 60 may be configured as a molded body that does not contain flavoring material. In this case, for example, the droplet trapping material 60 may be formed of a non-tobacco base material such as ceramic, synthetic polymer, pulp, or the like.
 また、本実施形態に開示された各態様は、本実施形態に開示された他の態様と自由に組み合わせることができる。 Furthermore, each aspect disclosed in this embodiment can be freely combined with other aspects disclosed in this embodiment.
10・・・吸引具
11・・・電源ユニット
12・・・霧化ユニット
20・・・エア通路
21a,21b・・・上流通路部
22・・・負荷通路部
23・・・下流通路部
30・・・ウィック
40・・・負荷
50・・・液体収容部
60・・・液滴捕捉材
61・・・エアロゾル流通路
65・・・液滴捕捉面
Le・・・エアロゾル生成液
10... Suction tool 11... Power supply unit 12... Atomization unit 20... Air passages 21a, 21b... Upstream passage section 22... Load passage section 23... Downstream passage section 30 ...Wick 40...Load 50...Liquid storage section 60...Droplet capture material 61...Aerosol flow path 65...Droplet capture surface Le...Aerosol generation liquid

Claims (10)

  1.  たばこ抽出成分を含むエアロゾル生成液を収容する液体収容部と、
     エアが通過するエア通路に配置されて、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
     エアロゾルに含まれる液滴を捕捉する液滴捕捉材であって、前記エア通路のうち、前記負荷よりもエアの流動方向で下流側に位置する下流通路部に配置された、液滴捕捉材と、
     を備える、
     吸引具の霧化ユニット。
    a liquid storage section that accommodates an aerosol generation liquid containing tobacco extract components;
    an electrical load disposed in an air passage through which air passes, into which the aerosol-generating liquid in the liquid storage section is introduced, and which atomizes the introduced aerosol-generating liquid to generate an aerosol;
    A droplet trapping material that traps droplets contained in an aerosol, the droplet trapping material being disposed in a downstream passage portion of the air passageway that is located downstream of the load in the air flow direction. ,
    Equipped with
    Atomization unit of suction tool.
  2.  前記液滴捕捉材は、前記下流通路部に露出されるとともにエアロゾルに含まれる液滴を捕捉する液滴捕捉面、を有する成形体として形成されている、
     請求項1に記載の吸引具の霧化ユニット。
    The droplet trapping material is formed as a molded body having a droplet trapping surface that is exposed to the downstream passage and traps droplets contained in the aerosol.
    The atomization unit of the suction tool according to claim 1.
  3.  前記液滴捕捉材は、非たばこ基材及び香味材料を含む香味成形体である、
     請求項2に記載の吸引具の霧化ユニット。
    The droplet trapping material is a flavor molded article containing a non-tobacco base material and a flavor material.
    The atomization unit of the suction tool according to claim 2.
  4.  前記液滴捕捉材は、前記下流通路部に沿って延在する棒形状を有し、且つ、その内部に、当該液滴捕捉材の軸方向に貫通して延びるとともにエアロゾルを流通させる中空状のエアロゾル流通路を有し、
     前記エアロゾル流通路の内面が前記液滴捕捉面として形成されている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The droplet trapping material has a rod shape extending along the downstream passage section, and has a hollow hole therein that extends through the droplet trapping material in the axial direction and allows the aerosol to flow therethrough. having an aerosol flow path;
    an inner surface of the aerosol flow path is formed as the droplet trapping surface;
    The atomization unit of the suction tool according to claim 2 or 3.
  5.  前記液滴捕捉材は、前記下流通路部に沿って延在する棒形状を有し、且つ、その側面に、当該液滴捕捉材の軸方向に延びるとともにエアロゾルを流通させるエアロゾル流通溝を有し、
     前記エアロゾル流通溝の表面が前記液滴捕捉面として形成されている、
     請求項2から4の何れか一項に記載の吸引具の霧化ユニット。
    The droplet trapping material has a rod shape extending along the downstream passage, and has an aerosol distribution groove on a side surface thereof extending in the axial direction of the droplet trapping material and allowing the aerosol to flow. ,
    the surface of the aerosol distribution groove is formed as the droplet trapping surface;
    The atomization unit of the suction tool according to any one of claims 2 to 4.
  6.  前記液滴捕捉材は、前記下流通路部に沿って延在する棒形状を有しており、
     前記下流通路部におけるエアロゾルの流動方向と直交する横断面方向に沿って、複数の前記液滴捕捉材が並列して配置されており、
     並列配置される前記液滴捕捉材の外面間にエアロゾルを流通させるエアロゾル流通路が形成されており、
     前記エアロゾル流通路に面する前記液滴捕捉材の外面によって前記液滴捕捉面が形成されている、
     請求項2から5の何れか一項に記載の吸引具の霧化ユニット。
    The droplet trapping material has a rod shape extending along the downstream passage,
    A plurality of the droplet trapping materials are arranged in parallel along a cross-sectional direction perpendicular to the flow direction of the aerosol in the downstream passage section,
    An aerosol flow path is formed between the outer surfaces of the droplet trapping materials arranged in parallel to allow the aerosol to flow,
    the droplet trapping surface is formed by an outer surface of the droplet trapping material facing the aerosol flow path;
    The atomization unit of the suction tool according to any one of claims 2 to 5.
  7.  前記液滴捕捉材は、全体として蛇腹シート形状を有しており、且つ、前記下流通路部におけるエアの流動方向に沿って延在する複数のシート部と、各シート部同士を蛇腹状に接続するとともにエアの流動方向に沿って延伸する稜線部と、を含んで構成され、
     前記稜線部を介して接続される前記シート部同士の間にエアロゾルを流通させるエアロゾル流通路が形成され、前記エアロゾル流通路に面する前記シート部の外面によって前記液滴捕捉面が形成されている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The droplet trapping material has a bellows sheet shape as a whole, and has a plurality of sheet portions extending along the flow direction of air in the downstream passage portion, and each sheet portion is connected to each other in a bellows shape. and a ridgeline extending along the flow direction of the air,
    An aerosol flow path for circulating aerosol is formed between the sheet parts connected via the ridgeline, and the droplet trapping surface is formed by an outer surface of the sheet part facing the aerosol flow path. ,
    The atomization unit of the suction tool according to claim 2 or 3.
  8.  前記液滴捕捉材は、前記下流通路部におけるエアの流動方向に沿って延在する板形状を有しており、
     前記下流通路部におけるエアの流動方向と直交する横断面に沿って、複数の前記液滴捕捉材が互いに間隔をおいて対向するように並んで配置されており、
     対向配置される前記液滴捕捉材同士の間にエアロゾルを流通させるエアロゾル流通路が形成されており、
     前記エアロゾル流通路に面する前記液滴捕捉材の外面によって前記液滴捕捉面が形成されている、
     請求項2又は3に記載の吸引具の霧化ユニット。
    The droplet trapping material has a plate shape extending along the flow direction of air in the downstream passage section,
    A plurality of the droplet trapping materials are arranged side by side so as to face each other at intervals along a cross section perpendicular to the flow direction of the air in the downstream passage section,
    An aerosol flow path is formed between the droplet trapping materials arranged to face each other, and the aerosol flow path allows the aerosol to flow.
    the droplet trapping surface is formed by an outer surface of the droplet trapping material facing the aerosol flow path;
    The atomization unit of the suction tool according to claim 2 or 3.
  9.  請求項1から8の何れか一項に記載の霧化ユニットと、
     前記負荷に電力を供給する電源を有し、前記霧化ユニットが着脱自在な電源ユニットと、
     を備える、吸引具。
    The atomization unit according to any one of claims 1 to 8,
    a power supply unit having a power supply that supplies power to the load, and to which the atomization unit is detachable;
    A suction device equipped with.
  10.  吸引具の霧化ユニットの製造方法であって、
     液体収容部とエア通路が内部に形成された霧化ユニットハウジングと、たばこ抽出成分を含むエアロゾル生成液と、前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、エアロゾルに含まれる液滴を捕捉するための液滴捕捉材と、を準備する準備工程と、
     前記液体収容部に前記エアロゾル生成液を収容し、前記エア通路に前記負荷及び前記液滴捕捉材を配置する組立工程と、
     を有し、
     前記組立工程において、
     前記負荷を、前記エアロゾル生成液が前記液体収容部から導入される態様で配置し、且つ、
     前記液滴捕捉材を、前記負荷よりもエアの流動方向で下流側に位置する下流通路部に配置する、
     吸引具の霧化ユニットの製造方法。
    A method for manufacturing an atomization unit of a suction tool, the method comprising:
    an atomization unit housing in which a liquid storage part and an air passage are formed; an aerosol generation liquid containing tobacco extract components; an electrical load for atomizing the aerosol generation liquid to generate an aerosol; a droplet trapping material for trapping the droplets, and a preparation step for preparing the droplet trapping material;
    an assembling step of accommodating the aerosol generating liquid in the liquid accommodating section and arranging the load and the droplet trapping material in the air passage;
    has
    In the assembly process,
    The load is arranged in such a manner that the aerosol generating liquid is introduced from the liquid storage part, and
    disposing the droplet trapping material in a downstream passage located downstream of the load in the air flow direction;
    A method for manufacturing an atomizing unit of a suction tool.
PCT/JP2022/016815 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device WO2023188374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016815 WO2023188374A1 (en) 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016815 WO2023188374A1 (en) 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device

Publications (1)

Publication Number Publication Date
WO2023188374A1 true WO2023188374A1 (en) 2023-10-05

Family

ID=88200389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016815 WO2023188374A1 (en) 2022-03-31 2022-03-31 Atomization unit and method for manufacturing same, and inhalation device

Country Status (1)

Country Link
WO (1) WO2023188374A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041654A (en) * 1998-08-04 2000-02-15 Japan Tobacco Inc Electric heating control system for flavor-productive article
WO2016121143A1 (en) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 Non-combustible flavor inhaler, flavor source unit, and method for manufacturing non-combustible flavor inhaler member
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
JP2020505041A (en) * 2017-01-31 2020-02-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator
WO2020183780A1 (en) * 2019-03-08 2020-09-17 日本たばこ産業株式会社 Vapor generation unit for non-combustion-type flavor inhaler and production method for vapor generation unit for non-combustion-type flavor inhaler
WO2020234916A1 (en) * 2019-05-17 2020-11-26 日本たばこ産業株式会社 Tobacco rod for flavor inhaler
JP2022033996A (en) * 2017-06-22 2022-03-02 日本たばこ産業株式会社 Flavor generating segment, and flavor generating article and flavor inhalation system which are equipped therewith

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000041654A (en) * 1998-08-04 2000-02-15 Japan Tobacco Inc Electric heating control system for flavor-productive article
WO2016121143A1 (en) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 Non-combustible flavor inhaler, flavor source unit, and method for manufacturing non-combustible flavor inhaler member
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
WO2018037562A1 (en) * 2016-08-26 2018-03-01 日本たばこ産業株式会社 Non-combustion flavor inhaler
JP2020505041A (en) * 2017-01-31 2020-02-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator
JP2022033996A (en) * 2017-06-22 2022-03-02 日本たばこ産業株式会社 Flavor generating segment, and flavor generating article and flavor inhalation system which are equipped therewith
WO2020183780A1 (en) * 2019-03-08 2020-09-17 日本たばこ産業株式会社 Vapor generation unit for non-combustion-type flavor inhaler and production method for vapor generation unit for non-combustion-type flavor inhaler
WO2020234916A1 (en) * 2019-05-17 2020-11-26 日本たばこ産業株式会社 Tobacco rod for flavor inhaler

Similar Documents

Publication Publication Date Title
JP7215811B2 (en) Aerosol-generating article and aerosol-generating device including the same
CN109688855A (en) Container
JP7139451B2 (en) Non-combustion heating smoking article, electrically heated smoking system, and method of manufacturing non-combustion heating smoking article
WO2023188374A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188375A1 (en) Atomizing unit and method for manufacturing same, and inhaler
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188373A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188372A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188376A1 (en) Atomization unit, method for manufacturing same, and inhalation apparatus
WO2023188327A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188328A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023248475A1 (en) Atomization unit and method for manufacturing same, and inhalation tool
WO2023248476A1 (en) Atomizing unit and method for manufacturing same, and enhaler
WO2023188329A1 (en) Atomization unit, inhalation implement, and method for producing atomization unit
WO2023112292A1 (en) Atomization unit, inhalation device, and atomization unit production method
WO2023112191A1 (en) Tobacco molded article, atomization unit for inhalation device, inhalation device, method for manufacturing tobacco molded article, and method for manufacturing atomization unit for inhalation device
WO2023162197A1 (en) Inhalation device atomization unit, inhalation device, and manufacturing method for inhalation device atomization unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935513

Country of ref document: EP

Kind code of ref document: A1