WO2023188329A1 - Atomization unit, inhalation implement, and method for producing atomization unit - Google Patents

Atomization unit, inhalation implement, and method for producing atomization unit Download PDF

Info

Publication number
WO2023188329A1
WO2023188329A1 PCT/JP2022/016693 JP2022016693W WO2023188329A1 WO 2023188329 A1 WO2023188329 A1 WO 2023188329A1 JP 2022016693 W JP2022016693 W JP 2022016693W WO 2023188329 A1 WO2023188329 A1 WO 2023188329A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
tobacco
bag
liquid
atomization unit
Prior art date
Application number
PCT/JP2022/016693
Other languages
French (fr)
Japanese (ja)
Inventor
光史 松本
毅 長谷川
貴久 工藤
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/016693 priority Critical patent/WO2023188329A1/en
Publication of WO2023188329A1 publication Critical patent/WO2023188329A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present invention relates to an atomization unit, a suction tool, and a method for manufacturing an atomization unit.
  • non-combustion heating type suction tools include a liquid storage section that stores a predetermined liquid, and an electrical load that introduces the liquid into the liquid storage section and atomizes the introduced liquid to generate an aerosol.
  • a suction tool that includes an atomizing unit having the following, and tobacco leaf powder is dispersed in the liquid in the liquid storage portion (see, for example, Patent Document 1).
  • Patent Document 2 discloses a basic configuration of a non-combustion heating type suction tool.
  • Patent Document 3 discloses information regarding tobacco leaf extract.
  • Non-Patent Document 1 discloses a technology related to nicotine.
  • the present invention has been made in view of the above, and one of its objects is to provide a technique that can suppress deterioration of the load on a suction tool.
  • an atomization unit includes a liquid storage section configured to accommodate an aerosol generation liquid containing a tobacco extract component, and a liquid storage section configured to accommodate an aerosol generation liquid containing a tobacco extract component. and an electrical load that atomizes the introduced aerosol-generating liquid to generate an aerosol, and inside the liquid storage section there is a bag and a flavor composition housed in the bag. wherein the flavor composition is disposed in a flavor pouch containing a non-tobacco base material and a flavor material.
  • the atomization unit according to one aspect of the present invention is used in a suction tool.
  • the flavor bag containing the flavor composition is placed in the liquid storage section, the flavor composition and the electrical load of the atomization unit are physically separated by the bag, and the flavor composition is physically separated from the electrical load of the atomization unit. It is possible to prevent the composition from adhering to the load of the atomization unit. Thereby, it is possible to suppress deterioration of the load on the atomization unit.
  • the bag may be made of at least one of vegetable fiber, animal fiber, chemical fiber, and inorganic fiber.
  • the bag may be formed of paper.
  • flavor bags can be manufactured efficiently and at low cost. Paper is easy to process, such as folding, and the flavor composition can be easily contained in the bag.
  • the paper may include at least one of nonwoven fabric, plain paper, waterproof paper, and oilproof paper.
  • flavor bags can be manufactured efficiently and at low cost.
  • the flavor composition may be in the form of granules, powders, or granules.
  • the surface area of the flavor composition becomes relatively large, the flavor components contained in the flavor composition can be efficiently extracted into the solvent in the liquid storage section.
  • the liquid storage portion may contain the tobacco extract liquid that comes into contact with the flavor composition contained in the flavor bag.
  • the flavor can be adjusted by atomizing the components contained in the flavor composition via the liquid. Furthermore, when a suction device is provided that contains an aerosol-generating liquid in advance, the user does not need to introduce the aerosol-generating liquid into the suction device himself.
  • a suction tool includes the atomization unit according to any one of aspects 1 to 6 above, and a power source configured to supply power to the atomization unit. It has a unit.
  • the flavor bag containing the flavor composition is placed in the liquid storage part, the flavor composition and the electrical load of the suction tool are physically separated by the bag, and the flavor composition is It is possible to prevent objects from adhering to the load of the suction tool. Thereby, it is possible to suppress deterioration of the load on the suction tool.
  • a method for manufacturing an atomization unit includes a liquid preparation step of preparing an aerosol generation liquid containing a tobacco extract component, and a flavor composition that is stored in a bag and flavored.
  • a manufacturing process of manufacturing a bag, an assembly process of arranging the flavor bag manufactured in the manufacturing process in a liquid storage part, and a housing process of storing an aerosol generating liquid containing a tobacco extract component in the liquid storage part. include.
  • the flavor bag containing the flavor composition is placed in the liquid storage section, the flavor composition and the electrical load of the atomization unit are physically separated by the bag, and the flavor composition is physically separated from the electrical load of the atomization unit. It is possible to prevent the composition from adhering to the load of the atomization unit. Thereby, it is possible to suppress deterioration of the load on the atomization unit.
  • the aerosol generation liquid may include a liquid containing one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the substance serves as a suitable solvent for the flavor component, so the flavor can be efficiently adjusted. Furthermore, if a suction tool is provided that contains liquid in advance, the user does not need to introduce the liquid into the suction tool himself.
  • the aerosol-generating liquid added to the flavor composition is supplied to the liquid stored in the liquid storage section, and the flavor when the liquid is atomized is improved. Can be adjusted.
  • the accommodation step may include directly supplying the aerosol generation liquid containing the tobacco extract component to the liquid storage section.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to Embodiment 1.
  • 2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1.
  • FIG. 1 is a schematic perspective view of a flavor bag according to Embodiment 1.
  • FIG. 3 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of an aerosol generating liquid containing nicotine.
  • 7 is a flow diagram for explaining a manufacturing method according to a second embodiment.
  • FIG. FIG. 7 is a perspective view schematically showing the appearance of a suction tool according to Embodiment 3.
  • Embodiment 1 a suction tool 10 according to Embodiment 1 of the present invention will be described with reference to the drawings.
  • the drawings of the present application are schematically illustrated to facilitate understanding of the features of the embodiments, and the dimensional ratios of each component are not necessarily the same as the actual ones. Further, in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary.
  • FIG. 1 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 of FIG. 5. Specifically, FIG. 1 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL.
  • FIG. 2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1 (that is, a cross section cut along a plane normal to the central axis CL).
  • the atomization unit 12 will be explained with reference to FIGS. 1 and 2.
  • the atomization unit 12 includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and a plurality of walls (walls 71a to 70g) extending in the width direction. ⁇ wall portion 71c). Further, the atomization unit 12 includes an air passage 20, a wick 30, an electrical load 40, a liquid storage section 50, and a flavor bag 60.
  • the air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23.
  • the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a ("first upstream passage section") and an upstream passage section 21b. (“second upstream passage section").
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction).
  • the downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22.
  • the load passage section 22 is a passage section in which a load 40 is disposed.
  • the downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
  • the upstream passage section 21a is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c.
  • the downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
  • a hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage section 21a through the hole 72a, and flows into the upstream passage section 21b through the hole 72b. Further, the wall portion 71b is provided with a hole 72c and a hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the hole 72d.
  • the direction of air flow in the upstream passages 21a and 21b is opposite to the direction of air flow in the downstream passage 23.
  • the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction
  • the direction of air flow in the downstream passage section 23 is the Z direction.
  • the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
  • the upstream passage section 21a has one side with the liquid storage section 50 in between, in a cross-sectional view taken along a section normal to the central axis CL. side (-X direction side).
  • the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10
  • the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10. placed on the other side.
  • the wick 30 is a member for introducing the aerosol generating liquid in the liquid storage section 50 into the load 40 in the load passage section 22.
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. 50 aerosol generating liquids are introduced into the load 40.
  • the cross section of the flavor bag 60 in FIG. 2 is a general shape, and please refer to FIG. 3 described later for details.
  • the load 40 is an electrical load into which the aerosol generation liquid in the liquid storage section 50 is introduced and which atomizes the introduced aerosol generation liquid to generate an aerosol.
  • the specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used.
  • a heater is used as an example of the load 40.
  • a heating resistor that is, a heating wire
  • a heating resistor is used as an example of this heater.
  • the heater as the load 40 has a coil shape. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
  • the load 40 is arranged in the wick 30 inside the load passage section 22, for example.
  • the load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device.
  • the load 40 heats and atomizes the aerosol-generating liquid in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
  • the liquid storage part 50 is a part for storing an aerosol generating liquid (Le) containing tobacco extract components.
  • the liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Further, in this embodiment, the aforementioned downstream passage section 23 is provided so as to penetrate the liquid storage section 50 in the direction of the central axis CL.
  • the user may be provided with the aerosol generation liquid stored in the liquid storage section 50, or the user may be provided with the aerosol generation liquid stored in the liquid storage section 50, so that the user can enjoy nicotine. It is also possible to use a structure in which a liquid containing liquid is introduced and used.
  • the aerosol generation liquid Le stored in the liquid storage section 50 is not particularly limited as long as it contains tobacco extract components.
  • the method for obtaining the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and it can be obtained by dissolving tobacco materials such as tobacco leaves in a solvent and extracting it.
  • Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance.
  • the aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains a tobacco extract component" may also be referred to as "contains natural nicotine.”
  • the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
  • the method of incorporating the tobacco extract component into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco material in an aerosol base material, or a method of dissolving this tobacco extract component in a solvent.
  • Examples include a method of later mixing with the aerosol generation liquid Le.
  • the tobacco extract can be used as it is as an aerosol generation liquid.
  • examples of such substances include, for example, Examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • the liquid aerosol generation liquid Le containing the tobacco extract component as a supply source of the tobacco extract component, powdered tobacco material that can form deposits as disclosed in Patent Document 1 is removed. It is possible to suppress deterioration of the load 40 of the atomization unit 12 that occurs when using the nicotine supply source as a nicotine supply source.
  • the tobacco extract component contains natural nicotine
  • natural nicotine extracted and purified from tobacco leaves can be used.
  • a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
  • the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials.
  • natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • the content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less.
  • the content of the tobacco extract component in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.1% by weight or more and 10% by weight or less. It may be 5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
  • Tobacco extract can be used as a nicotine supply source.
  • the content of tobacco extract in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, for example, It may be 0.1% by weight or more and 10% by weight or less, 0.5% by weight or more and 7.5% by weight or less, and 1% by weight or more and 5% by weight or less.
  • the predetermined solvent that can be included in the aerosol generation liquid Le is not particularly limited, and for example, an aerosol base material (a base material for generating an aerosol) can be used.
  • the type of aerosol base material is not particularly limited, and for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • the content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
  • the type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances, or liquids containing the substances, can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the solvent also acts as an aerosol-generating base material, the tobacco extract can be used as it is as an aerosol-generating liquid; however, the tobacco extract may contain components that can cause charring when heated (e.g., lipids, etc.).
  • the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
  • the aerosol generation liquid Le contains a tobacco extract component as a component for imparting nicotine, but from the viewpoint of aroma and taste, it may also contain synthetic nicotine obtained by synthesis or the like.
  • nicotine obtained by synthesis is also referred to as "synthetic nicotine,” which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances.
  • the method for producing synthetic nicotine is not particularly limited, and can be carried out by chemical synthesis using chemical substances, and known production methods can be used.
  • the type of nicotine-containing compound is not particularly limited, and includes, for example, nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinate, nicotine benzoate, or nicotine tartrate.
  • a nicotine-containing compound such as a nicotine salt
  • the production method is not particularly limited, and any known production method can be used.
  • the purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the aerosol generation liquid may contain components other than the tobacco extract component and the aerosol base material (other components), such as flavor components other than the tobacco extract component.
  • Flavor components other than tobacco extract components include, for example, menthol, natural vegetable fragrances (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g., menthone, ionone, ethyl maltol, etc.), Alcohols (for example, phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), al
  • FIG. 3 is a schematic perspective view of the flavor bag 60.
  • FIGS. 1 and 2 show the flavor bag 60 having a generally cylindrical shape, as shown in FIG. 3, the flavor bag 60 includes a bag 62, a flavor composition 64 housed in the bag 62, has.
  • two flavor bags 60 according to this embodiment are arranged inside the aerosol generation liquid of the liquid storage section 50.
  • the number of flavor bags 60 is not limited to this, and may be one, or three or more.
  • the material of the bag 62 is not particularly limited as long as it is a material that allows liquid to pass through while preventing the flavor composition 64 from leaking to the outside.
  • the bag 62 may be formed of at least one of vegetable fiber, animal fiber, chemical fiber, and inorganic fiber. By containing these fibers in the bag 62, it is possible to provide a flavor bag 60 that takes advantage of the characteristics of the fibers, such as flexibility and processability.
  • the chemical fiber or inorganic fiber for example, glass fiber, ceramic fiber, or synthetic resin fiber can be used for the bag 62.
  • Bag 62 is preferably formed of paper.
  • paper refers to paper manufactured by adhering plant and other fibers together, and also includes synthetic paper manufactured using synthetic polymers and paper blended with fibrous inorganic materials.
  • the paper used for the bag 62 can include at least one of nonwoven fabric, plain paper, water-resistant paper treated with water resistance, and oil-proof paper treated with oil resistance. These papers have excellent flexibility and processability, and are easy to procure at low cost.
  • the bag includes an embodiment in which the raw material input port is sealed with glue or the like (three-sided or four-sided sealed) to prevent the flavor composition 64 from leaking out after putting the flavor composition 64 therein.
  • nonwoven fabric refers to fabric processed into a cloth without woven fibers.
  • a nonwoven fabric is, for example, a fabric formed by adhering or intertwining fibers by thermal, mechanical, or chemical action.
  • Plain paper is paper whose main component is pulp.
  • Plain paper is made from wood pulps such as softwood pulp or hardwood pulp, as well as non-wood pulps commonly used in wrapping paper for tobacco products, such as flax pulp, hemp pulp, sisal pulp or esparto. It may also be obtained by manufacturing.
  • Plain paper shall be manufactured using chemical pulp, ground pulp, chemical ground pulp, thermomechanical pulp, etc. obtained by kraft cooking method, acidic/neutral/alkaline sulfite cooking method, soda salt cooking method, etc. as raw materials. Can be done.
  • wrapping paper used in cigarettes or paper used in tipping paper may be used as the plain paper.
  • the method for producing plain paper is not particularly limited, and for example, known methods can be used.
  • Plain paper can be produced by using the above-mentioned pulp to prepare and homogenize the texture during the papermaking process, which is carried out using a fourdrinier paper machine, a circular mesh paper machine, a circle-contact composite paper machine, or the like. If necessary, a wet paper strength enhancer can be added to impart water resistance to the plain paper, and a sizing agent can be added to adjust the printing quality of the plain paper.
  • internal additives for papermaking such as sulfuric acid, various anionic, cationic, nonionic, or amphoteric retention improvers, freeness improvers, or paper strength enhancers are used.
  • the basis weight of the base paper is, for example, usually 20 gsm (Grams per Square Meter) or more, preferably 25 gsm or more. On the other hand, the basis weight is usually 65 gsm or less, preferably 50 gsm or less, and more preferably 45 gsm or less.
  • the flavor bag 60 can be manufactured efficiently and at low cost. Paper is easy to process, such as folding, and the flavor composition 64 can be easily accommodated in the bag 62. In the following embodiment, an example in which the bag 62 is made of nonwoven fabric will be described.
  • the bag 62 of the flavor bag 60 is closed to prevent the flavor composition leaf 64 from leaking.
  • the bag 62 has a first end 65a and a second end 65b that are closed to prevent the flavor composition 64 from leaking.
  • the second end 65b is an end opposite to the first end 65a.
  • the bag 62 further includes an adhesive section 66 that adheres the ends of the bag material extending between the first end 65a and the second end 65b.
  • the shape of the flavor bag 60 is not limited to the shape shown in FIG. 3, as long as it is closed so that the flavor composition 64 does not leak.
  • the shape of the flavor bag 60 may be a rod shape (that is, a shape where the length is longer than the width) extending in a predetermined direction, or a cubic shape (a shape with sides of the same length). , or other shapes.
  • the shape of the flavor composition 64 is not particularly limited, but is preferably granular, powdery, or granular. In this case, since the surface area of the flavor composition 64 becomes relatively large, the flavor components contained in the flavor composition 64 can be efficiently extracted into the solvent in the liquid storage section 50.
  • Flavor composition 64 includes a non-tobacco base and a flavor material.
  • the type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, pulp derived from plants other than tobacco plants, etc. It may be.
  • the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide.
  • the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH.
  • plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves.
  • the non-tobacco base material when a synthetic polymer is used as the non-tobacco base material, an ion exchange resin on which nicotine is supported, such as nicotine pracrylex, may be used.
  • the content of the non-tobacco base material in the flavor composition 64 is not particularly limited, and may be, for example, 10% by weight or more and 99% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 99% by weight or less, It may be more than 80% by weight and less than 80% by weight.
  • the form of the flavor material contained in the flavor composition 64 is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component.
  • component-imparting materials include tobacco materials that provide nicotine.
  • tobacco material when a tobacco material is used as a flavoring material, it is possible to impart flavor with tobacco components such as nicotine as a spice.
  • tobacco material is used as the flavor material, the content of the tobacco material in the flavor composition 64 is preferably 10% by weight or less.
  • the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material.
  • flavor composition 64 when flavor composition 64 includes tobacco material, the flavor material is the tobacco material rather than the nicotine contained in the tobacco material.
  • the flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets obtained by pressing, tableting, or extruding tobacco powder used in known tobacco products; Although tobacco tablets, tobacco granules, etc.) may be included, tobacco leaves or processed products using tobacco leaves are preferred from the viewpoint of ensuring a sufficient amount of use and ease of processing.
  • the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture.
  • the flavor material contains tobacco material does not mean that the flavor material contains tobacco material, but rather that tobacco material is included as one of the types of flavor material.
  • the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor composition is 10% by weight or less” means “the flavoring material contains at least a tobacco material and the content of the tobacco material in the flavor composition is 10% by weight or less”.
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generating liquid stored in the liquid storage section 50, and is finally used as an aerosol generated by using the atomization unit. delivered to the person.
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the content of the flavor material in the flavor composition 64 is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, 3 It may be more than 50% by weight and less than 50% by weight.
  • the flavor composition 64 may contain at least a tobacco material as a flavor material, but the content of the tobacco material in the flavor composition is usually 1% by weight from the viewpoint of exerting its role as a flavor spice. It is preferably at least 2% by weight, more preferably at least 3% by weight, and even more preferably at least 3% by weight.
  • the amount is preferably 10% by weight or less, preferably 7% by weight or less, and 5% by weight or less. It is more preferable that
  • Flavor composition 64 may be particulate, powdered, or granular. According to this aspect, since the surface area of the flavor composition becomes relatively large, the flavor components contained in the flavor composition 64 can be efficiently extracted into the solvent in the liquid storage section.
  • the size thereof is not particularly limited. For example, it is preferable that the components of the dried flavor composition satisfy the following classification conditions.
  • the dried flavor composition 64 is preferably one that has been classified using a sieve having the following mesh size.
  • products that pass through a sieve with a sieve opening of 15 mm ( ⁇ 15 mm) are usually passed through a sieve with a sieve opening of 10 mm ( ⁇ 10 mm). It is preferable that it passes through a sieve with a sieve opening of 5 mm ( ⁇ 5 mm), and it is more preferable that it passes through a sieve with a sieve opening of 3.2 mm ( ⁇ 3.2 mm). is even more preferable.
  • the maximum dry particle size of the components of the flavor composition is 3.2 mm or less.
  • it is not necessary to set a lower limit on the particle size of the components of the flavor composition when dried it is usually 3 ⁇ m or more from the viewpoint of preventing leakage from the bag.
  • Suction using the suction tool 10 is performed as follows. First, when the user starts suctioning air, the air passes through the upstream passage sections 21 a and 21 b of the air passage 20 and flows into the load passage section 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage section 22 . This aerosol contains flavor components contained in the aerosol generation liquid and flavor components eluted from the flavor bag 60 placed in the aerosol generation liquid. The air to which this aerosol has been added passes through the downstream passage section 23, is discharged from the discharge port 13, and is sucked into the user.
  • the aerosol generated by the load 40 contains flavor components contained in the flavor bag 60 in addition to nicotine derived from tobacco extract components contained in the aerosol generation liquid. can be added. This allows you to fully enjoy the flavor.
  • the flavor bag 60 containing the flavor composition 64 is placed in the liquid storage section 50, the flavor composition 64 and the atomization unit 12 are electrically connected.
  • the bag 62 physically separates the flavor composition 64 from the load 40 of the atomization unit 12, thereby suppressing the flavor composition 64 from adhering to the load 40 of the atomization unit 12. Thereby, deterioration of the load 40 of the atomization unit 12 can be suppressed.
  • the amount (mg) of the carbonized component contained in 1 g of the aerosol generation liquid with the flavor bag 60 placed therein is preferably 6 mg or less, more preferably 3 mg or less.
  • the flavor of the flavor composition 64 can be enjoyed while suppressing the amount of carbonized components adhering to the electrical load 40 as much as possible. Thereby, it is possible to enjoy the flavor of the flavor composition 64 while suppressing the occurrence of burnt on the load 40 as much as possible.
  • the carbonized component contained in the aerosol generation liquid in the state in which the flavor bag 60 is placed specifically refers to the amount of carbonized component contained in the aerosol generation liquid in the state before the flavor bag 60 is placed. and the amount of carbonized components eluted into the aerosol generation liquid from the flavor bag 60 placed in the aerosol generation liquid.
  • the term "carbonized component” refers to a component that becomes carbide when heated to 250°C. Specifically, the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • this "amount (mg) of carbonized components contained in 1 g of aerosol generation liquid in a state in which the flavor bag 60 is placed” can be measured, for example, by the following method. First, a predetermined amount (g) of the aerosol generation liquid with the flavor bag 60 placed therein is prepared. Next, this aerosol generation liquid is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured.
  • Figure 4 shows the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") is used as the aerosol generation liquid. It is a diagram.
  • the horizontal axis of FIG. 4 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 4 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Step 3 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at °C. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
  • the standing time that is, the immersion time in the immersion liquid
  • the amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) shown in FIG. 4 was measured by the above method.
  • R TPM (%) (1-TPM (201puff ⁇ 250puff) / TPM (1puff ⁇ 50puff)) x 100... (1)
  • TPM Total Particle Molecule
  • TPM (1puff to 50puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
  • TPM (201puff to 250puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
  • FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to this embodiment. As shown in FIG.
  • the manufacturing method according to the present embodiment is a manufacturing method of an atomization unit of a suction tool having a liquid storage part, a liquid preparation step of preparing an aerosol generation liquid containing tobacco extract components; a manufacturing process of manufacturing a flavor bag by accommodating a flavor composition in the bag; an assembly step of arranging the flavor bag manufactured in the manufacturing step in a liquid storage section;
  • the method for manufacturing an atomization unit includes the step of storing an aerosol generating liquid containing tobacco extract components in the liquid storage section.
  • the manufacturing method according to this embodiment may include steps other than the liquid preparation step, molding step, and assembly step described above. Further, the above-mentioned bag can be used as is with the contents explained in the above-mentioned [flavor bag].
  • flavor containing tobacco material is used as a source of nicotine instead of powdered tobacco material that can become deposits as disclosed in Patent Document 1. Since the flavor bag containing the composition is used, the contents do not dissipate, so it is possible to suppress the nicotine supply source from adhering to the load of the atomization unit, and thus to suppress the deterioration of the load.
  • an aerosol generation liquid containing tobacco extract components is prepared.
  • a specific method for preparing an aerosol generation liquid containing tobacco extract components is not particularly limited, and any known method can be employed. For example, a method may be used in which a component obtained by extraction of tobacco material is dissolved in an aerosol-generating liquid.
  • the aerosol generating liquid for containing the above tobacco extract component may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
  • an alkaline substance is applied to tobacco leaves (referred to as alkali treatment).
  • alkali treatment a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • step S10 may be configured without using the collection solvent as described above.
  • the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
  • step S10 may be configured without performing the alkali treatment as described above.
  • tobacco leaves tobacco leaves that have not been subjected to alkali treatment
  • Add one or more selected substances are selected.
  • the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • step S10 one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are aerosolized, or from this group.
  • An aerosol obtained by aerosolizing two or more selected substances is passed through tobacco leaves (tobacco leaves that have not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaves is collected in a collection solvent. Flavor components can also be extracted by such a process.
  • step S10 liquid preparation step calculates the amount of carbonized components that become carbonized when heated to 250° C., which may be contained in the flavor components extracted by the method described above. It may further include reducing processing (hereinafter also simply referred to as "reducing processing"). By reducing "the amount of carbonized components that become carbide when heated to 250° C.”, adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed. Note that the carbonized component that becomes carbonized when heated to 250° C. is mainly derived from tobacco materials such as tobacco leaves, so in the method using tobacco extract, the effect of providing a reduction treatment is particularly large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • Tobacco extract contains components that can cause scorching when heated (e.g., lipids, metal ions, sugars, or proteins), so it is subjected to a concentration treatment to concentrate the tobacco extract components. It is preferable to use this method to remove substances that cause scorching. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to concentration treatment if it contains a substance that causes scorching.
  • the flavor composition includes a non-tobacco base material and a flavoring material, the flavoring material contains a tobacco material, and the content of the tobacco material in the flavor composition is 10% by weight or less.
  • a flavor bag containing the composition is manufactured.
  • the non-tobacco base material and flavor material those explained in Embodiment 1 above can be used.
  • the flavor composition can be prepared by mixing the non-tobacco base material and the flavor material using known methods.
  • the flavor composition 64 is placed in the bag 62 to produce the flavor bag 60.
  • the bag 62 of the flavor bag 60 is closed so that the flavor composition 64 does not leak. Specifically, as shown in FIG.
  • the first end 65a and second end 65b of the bag 62 are closed to prevent the flavor composition 64 from leaking.
  • the second end 65b is an end opposite to the first end 65a.
  • the bag 62 further has an adhesive section 66 that is formed by bonding the ends of the bag material extending between the first end 65a and the second end 65b.
  • step S30 After preparing the flavor bag 60 in step S20, the assembly process in step S30 is executed. Specifically, in step S30, the atomization unit 12 in which no flavor bag 60 is housed is prepared, and the flavor bag 60 after step S20 is housed in the liquid storage section 50 of this atomization unit 12. do.
  • step S40 the aerosol generation liquid containing the tobacco extract component prepared in step S10 is stored in the liquid storage section 50. Specifically, in the storage step, the aerosol generating liquid is directly supplied to the liquid storage section 50.
  • directly supplying means not to store the aerosol-generated liquid in the liquid storage part 50 with the liquid holding member holding the aerosol-generated liquid in the liquid storage part 50. This means pouring it directly into the water. Thereby, the amount of aerosol generating liquid stored in the liquid storage section 50 can be easily adjusted.
  • the aerosol production liquid described in Embodiment 1 can be used.
  • the solvent of the aerosol generation liquid described in Embodiment 1 is a suitable solvent for the flavor component (for example, nicotine), the flavor can be efficiently adjusted. Furthermore, the user does not have to introduce the liquid into the suction tool 10 himself. In this case, a flavor component may be further added to the above-mentioned liquid contained in the liquid storage section 50, in addition to the flavor material added to the flavor bag 60.
  • the atomization unit 12 of the suction tool 10 according to the present embodiment is manufactured. Further, the manufactured atomization unit 12 is connected to the power supply unit 11 (FIG. 6), etc., and the suction tool 10 is manufactured.
  • FIG. 6 is a perspective view schematically showing the appearance of the suction tool 10 according to this embodiment.
  • the suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, is a non-combustion heating type electronic cigarette.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10.
  • the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or ⁇ Y direction) corresponds to the thickness direction.
  • the suction tool 10 includes a power supply unit 11 and the atomization unit 12 described above.
  • the power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the atomization unit 12 is provided with an outlet 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13.
  • air that is, air
  • the user of the suction tool 10 can inhale the air discharged from the outlet 13.
  • a sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13.
  • a sensor detects the start of suctioning air and notifies the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later.
  • the sensor detects the end of the suction of air, notifies the control device, and the control device ends the energization of the load 40.
  • the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives the air suction start request or suction end request starts or ends energization to the load 40.
  • Suction tool 11 Power supply unit 12: Atomization unit 40: Load 50: Liquid storage section 60: Flavor bag 62: Bag 64: Flavor composition

Abstract

Provided is a technique by which deterioration of a load in an inhalation implement can be inhibited. This atomization unit has a liquid-accommodating part configured to accommodate an aerosol-generating liquid containing a tobacco extract component, and an electrical load to which the aerosol-generating liquid in the liquid-accommodating part is introduced and which atomizes the introduced aerosol-generating liquid to generate an aerosol. A flavor bag having a bag and a flavor composition accommodated in the bag is positioned inside the liquid-accommodating part.

Description

霧化ユニット、吸引具、及び霧化ユニットの製造方法Atomization unit, suction tool, and manufacturing method of atomization unit
 本発明は、霧化ユニット、吸引具、及び霧化ユニットの製造方法に関する。 The present invention relates to an atomization unit, a suction tool, and a method for manufacturing an atomization unit.
 従来、非燃焼加熱型の吸引具として、所定の液体を収容する液体収容部と、この液体収容部の液体が導入されるとともに、導入された液体を霧化してエアロゾルを発生させる電気的な負荷と、を有する霧化ユニットを備え、この液体収容部の液体の内部に、たばこ葉の粉体が分散されたことを特徴とする吸引具が知られている(例えば、特許文献1参照)。 Conventionally, non-combustion heating type suction tools include a liquid storage section that stores a predetermined liquid, and an electrical load that introduces the liquid into the liquid storage section and atomizes the introduced liquid to generate an aerosol. There is known a suction tool that includes an atomizing unit having the following, and tobacco leaf powder is dispersed in the liquid in the liquid storage portion (see, for example, Patent Document 1).
 なお、他の先行技術文献として、特許文献2、特許文献3、及び非特許文献1が挙げられる。特許文献2には、非燃焼加熱型の吸引具の基本的な構成態様が開示されている。特許文献3には、たばこ葉の抽出液に関する情報が開示されている。非特許文献1には、ニコチンに関する技術が開示されている。 Note that other prior art documents include Patent Document 2, Patent Document 3, and Non-Patent Document 1. Patent Document 2 discloses a basic configuration of a non-combustion heating type suction tool. Patent Document 3 discloses information regarding tobacco leaf extract. Non-Patent Document 1 discloses a technology related to nicotine.
国際公開第2019/211332号公報International Publication No. 2019/211332 特開2020-141705号公報Japanese Patent Application Publication No. 2020-141705 国際公開第2015/129679号International Publication No. 2015/129679
 特許文献1に例示されるような従来の吸引具の場合、液体収容部の液体の内部に分散されているたばこ葉が、吸引具の電気的な負荷に付着するおそれがある。この場合、吸引具の負荷が劣化するおそれがある。この点において、従来技術は改善の余地があった。 In the case of a conventional suction tool as exemplified in Patent Document 1, there is a risk that tobacco leaves dispersed within the liquid in the liquid storage section may adhere to the electrical load of the suction tool. In this case, the load on the suction tool may deteriorate. In this respect, the conventional technology has room for improvement.
 本発明は、上記のことを鑑みてなされたものであり、吸引具の負荷が劣化することを抑制することができる技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of its objects is to provide a technique that can suppress deterioration of the load on a suction tool.
(態様1)
 上記目的を達成するため、本発明の一態様に係る霧化ユニットは、たばこ抽出成分を含むエアロゾル生成液を収容するように構成される液体収容部と、前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、を有し、前記液体収容部の内部には、袋と、前記袋に収容された香味組成物を含み、前記香味組成物は、非たばこ基材及び香味材料を含む香味袋が配置される。本発明の一態様に係る霧化ユニットは、吸引具に用いられる。
(Aspect 1)
In order to achieve the above object, an atomization unit according to one aspect of the present invention includes a liquid storage section configured to accommodate an aerosol generation liquid containing a tobacco extract component, and a liquid storage section configured to accommodate an aerosol generation liquid containing a tobacco extract component. and an electrical load that atomizes the introduced aerosol-generating liquid to generate an aerosol, and inside the liquid storage section there is a bag and a flavor composition housed in the bag. wherein the flavor composition is disposed in a flavor pouch containing a non-tobacco base material and a flavor material. The atomization unit according to one aspect of the present invention is used in a suction tool.
 この態様によれば、香味組成物が袋に収容された香味袋が液体収容部に配置されるので、香味組成物と霧化ユニットの電気的な負荷とが袋によって物理的に分離され、香味組成物が霧化ユニットの負荷に付着することを抑制することができる。これにより、霧化ユニットの負荷が劣化することを抑制することができる。 According to this aspect, since the flavor bag containing the flavor composition is placed in the liquid storage section, the flavor composition and the electrical load of the atomization unit are physically separated by the bag, and the flavor composition is physically separated from the electrical load of the atomization unit. It is possible to prevent the composition from adhering to the load of the atomization unit. Thereby, it is possible to suppress deterioration of the load on the atomization unit.
(態様2)
 態様1において、前記袋は、植物繊維、動物繊維、化学繊維および無機繊維の少なくとも一つで形成されてもよい。
(Aspect 2)
In embodiment 1, the bag may be made of at least one of vegetable fiber, animal fiber, chemical fiber, and inorganic fiber.
 この態様によれば、柔軟性または加工性等の繊維の特徴を生かした袋を使用した香味袋を提供することができる。 According to this aspect, it is possible to provide a flavor bag using a bag that takes advantage of the characteristics of fibers such as flexibility and processability.
(態様3)
 態様1又は2において、前記袋が紙で形成されてもよい。
(Aspect 3)
In embodiment 1 or 2, the bag may be formed of paper.
 この態様によれば、効率よく低コストで香味袋を製造することができる。紙は折り畳み等の加工がしやすく、袋に香味組成物を容易に収容することができる。 According to this aspect, flavor bags can be manufactured efficiently and at low cost. Paper is easy to process, such as folding, and the flavor composition can be easily contained in the bag.
(態様4)
 態様3において、前記紙は、不織布、普通紙、耐水紙、及び耐油紙の少なくとも一つを含んでもよい。
(Aspect 4)
In aspect 3, the paper may include at least one of nonwoven fabric, plain paper, waterproof paper, and oilproof paper.
 この態様によれば、効率よく低コストで香味袋を製造することができる。 According to this aspect, flavor bags can be manufactured efficiently and at low cost.
(態様5)
 態様1から4のいずれかにおいて、前記香味組成物は、粒状、粉状または顆粒状であってもよい。
(Aspect 5)
In any of aspects 1 to 4, the flavor composition may be in the form of granules, powders, or granules.
 この態様によれば、香味組成物の表面積が比較的大きくなるので、液体収容部内の溶媒に香味組成物に含まれる香味成分を効率よく抽出できる。 According to this aspect, since the surface area of the flavor composition becomes relatively large, the flavor components contained in the flavor composition can be efficiently extracted into the solvent in the liquid storage section.
(態様6)
 態様1から5のいずれかにおいて、前記液体収容部は、前記香味袋に収容された前記香味組成物と接触する前記たばこ抽出液を含んでもよい。
(Aspect 6)
In any one of aspects 1 to 5, the liquid storage portion may contain the tobacco extract liquid that comes into contact with the flavor composition contained in the flavor bag.
 この態様によれば、香味組成物に含まれる成分を、液体を介して霧化することにより、香味を調整することができる。また、あらかじめエアロゾル生成液を収容した吸引具を提供する場合、使用者は自らエアロゾル生成液を吸引具に導入する必要がない。 According to this aspect, the flavor can be adjusted by atomizing the components contained in the flavor composition via the liquid. Furthermore, when a suction device is provided that contains an aerosol-generating liquid in advance, the user does not need to introduce the aerosol-generating liquid into the suction device himself.
(態様7)
 また、上記目的を達成するため、本発明の一態様に係る吸引具は、上記の態様1から6のいずれかの霧化ユニットと、前記霧化ユニットに電力を供給するように構成される電源ユニットと、を有する。
(Aspect 7)
Further, in order to achieve the above object, a suction tool according to one aspect of the present invention includes the atomization unit according to any one of aspects 1 to 6 above, and a power source configured to supply power to the atomization unit. It has a unit.
 この態様によれば、香味組成物が袋に収容された香味袋が液体収容部に配置されるので、香味組成物と吸引具の電気的な負荷とが袋によって物理的に分離され、香味組成物が吸引具の負荷に付着することを抑制することができる。これにより、吸引具の負荷が劣化することを抑制することができる。 According to this aspect, since the flavor bag containing the flavor composition is placed in the liquid storage part, the flavor composition and the electrical load of the suction tool are physically separated by the bag, and the flavor composition is It is possible to prevent objects from adhering to the load of the suction tool. Thereby, it is possible to suppress deterioration of the load on the suction tool.
(態様8)
 また、上記目的を達成するため、本発明の一態様に係る霧化ユニットの製造方法は、たばこ抽出成分を含むエアロゾル生成液を準備する液体準備工程と、香味組成物を袋に収容して香味袋を製造する製造工程と、前記製造工程で製造された前記香味袋を液体収容部に配置する組立工程と、たばこ抽出成分を含むエアロゾル生成液を前記液体収容部に収容する収容工程と、を含む。
(Aspect 8)
In addition, in order to achieve the above object, a method for manufacturing an atomization unit according to one embodiment of the present invention includes a liquid preparation step of preparing an aerosol generation liquid containing a tobacco extract component, and a flavor composition that is stored in a bag and flavored. A manufacturing process of manufacturing a bag, an assembly process of arranging the flavor bag manufactured in the manufacturing process in a liquid storage part, and a housing process of storing an aerosol generating liquid containing a tobacco extract component in the liquid storage part. include.
 この態様によれば、香味組成物が袋に収容された香味袋が液体収容部に配置されるので、香味組成物と霧化ユニットの電気的な負荷とが袋によって物理的に分離され、香味組成物が霧化ユニットの負荷に付着することを抑制することができる。これにより、霧化ユニットの負荷が劣化することを抑制することができる。 According to this aspect, since the flavor bag containing the flavor composition is placed in the liquid storage section, the flavor composition and the electrical load of the atomization unit are physically separated by the bag, and the flavor composition is physically separated from the electrical load of the atomization unit. It is possible to prevent the composition from adhering to the load of the atomization unit. Thereby, it is possible to suppress deterioration of the load on the atomization unit.
(態様9)
 態様8において、前記エアロゾル生成液は、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種類以上の物質を含む液体を含んでもよい。
(Aspect 9)
In aspect 8, the aerosol generation liquid may include a liquid containing one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 この態様によれば、上記物質が香味成分の好適な溶媒となるため、効率よく香味を調整することができる。また、あらかじめ液体を収容した吸引具を提供する場合、使用者は自ら液体を吸引具に導入する必要がない。 According to this aspect, the substance serves as a suitable solvent for the flavor component, so the flavor can be efficiently adjusted. Furthermore, if a suction tool is provided that contains liquid in advance, the user does not need to introduce the liquid into the suction tool himself.
 この態様によれば、香味袋を液体収容部に配置することで、香味組成物に添加した前記エアロゾル生成液を液体収容部に収容される液体に供給し、液体を霧化したときの香味を調整することができる。 According to this aspect, by arranging the flavor bag in the liquid storage section, the aerosol-generating liquid added to the flavor composition is supplied to the liquid stored in the liquid storage section, and the flavor when the liquid is atomized is improved. Can be adjusted.
(態様10)
 態様8または9において、前記収容工程は、前記たばこ抽出成分を含むエアロゾル生成液を前記液体収容部に直接供給することを含んでもよい。
(Aspect 10)
In aspect 8 or 9, the accommodation step may include directly supplying the aerosol generation liquid containing the tobacco extract component to the liquid storage section.
 この態様によれば、液体収容部に収容されるエアロゾル生成液の量を容易に調整することができる。 According to this aspect, it is possible to easily adjust the amount of aerosol-generating liquid stored in the liquid storage section.
実施形態1に係る吸引具の霧化ユニットの主要部を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to Embodiment 1. 図1のA1-A1線断面を模式的に示す図である。2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1. FIG. 実施形態1に係る香味袋の模式的な斜視図である。1 is a schematic perspective view of a flavor bag according to Embodiment 1. FIG. ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。FIG. 3 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of an aerosol generating liquid containing nicotine. 実施形態2に係る製造方法を説明するためのフロー図である。7 is a flow diagram for explaining a manufacturing method according to a second embodiment. FIG. 実施形態3に係る吸引具の外観を模式的に示す斜視図である。FIG. 7 is a perspective view schematically showing the appearance of a suction tool according to Embodiment 3.
(実施形態1)
 以下、本発明の実施形態1に係る吸引具10について、図面を参照しつつ説明する。なお、本願の図面は、実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。
(Embodiment 1)
Hereinafter, a suction tool 10 according to Embodiment 1 of the present invention will be described with reference to the drawings. Note that the drawings of the present application are schematically illustrated to facilitate understanding of the features of the embodiments, and the dimensional ratios of each component are not necessarily the same as the actual ones. Further, in the drawings of the present application, XYZ orthogonal coordinates are illustrated as necessary.
 図1は、図5の吸引具10の霧化ユニット12の主要部を示す模式的断面図である。具体的には図1は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面を模式的に図示している。図2は、図1のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)を模式的に示す図である。図1及び図2を参照しつつ、霧化ユニット12について説明する。 FIG. 1 is a schematic cross-sectional view showing the main parts of the atomization unit 12 of the suction tool 10 of FIG. 5. Specifically, FIG. 1 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL. FIG. 2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1 (that is, a cross section cut along a plane normal to the central axis CL). The atomization unit 12 will be explained with reference to FIGS. 1 and 2.
 霧化ユニット12は、長手方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、香味袋60とを備えている。 The atomization unit 12 includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and a plurality of walls (walls 71a to 70g) extending in the width direction. ~ wall portion 71c). Further, the atomization unit 12 includes an air passage 20, a wick 30, an electrical load 40, a liquid storage section 50, and a flavor bag 60.
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、一例として、複数の上流通路部、具体的には、上流通路部21a(「第1の上流通路部」)、及び、上流通路部21b(「第2の上流通路部」)を備えている。 The air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol). The air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23. As an example, the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a ("first upstream passage section") and an upstream passage section 21b. ("second upstream passage section").
 上流通路部21a,21bは、負荷通路部22よりも上流側(エア流動方向で上流側)に配置されている。上流通路部21a,21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エア流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。 The upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction). The downstream ends of the upstream passage sections 21a and 21b communicate with the load passage section 22. The load passage section 22 is a passage section in which a load 40 is disposed. The downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。 Specifically, the upstream passage section 21a according to the present embodiment is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. There is. Further, the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. The load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c. The downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
 壁部71aには、孔72a及び孔72bが設けられている。エアは、孔72aから上流通路部21aに流入し、孔72bから上流通路部21bに流入する。また、壁部71bには、孔72c及び孔72dが設けられている。上流通路部21aを通過したエアは、孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、孔72dから負荷通路部22に流入する。 A hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage section 21a through the hole 72a, and flows into the upstream passage section 21b through the hole 72b. Further, the wall portion 71b is provided with a hole 72c and a hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the hole 72d.
 本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。 In this embodiment, the direction of air flow in the upstream passages 21a and 21b is opposite to the direction of air flow in the downstream passage 23. Specifically, in this embodiment, the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction, and the direction of air flow in the downstream passage section 23 is the Z direction.
 また、図1及び図2を参照して、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。 Further, with reference to FIGS. 1 and 2, the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
 具体的には、本実施形態に係る上流通路部21aは、図2に示すように、中心軸線CLを法線とする切断面で切断した断面視で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、吸引具10の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、吸引具10の幅方向で、液体収容部50の他方の側に配置されている。 Specifically, as shown in FIG. 2, the upstream passage section 21a according to the present embodiment has one side with the liquid storage section 50 in between, in a cross-sectional view taken along a section normal to the central axis CL. side (-X direction side). On the other hand, the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view. In other words, the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10, and the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10. placed on the other side.
 ウィック30は、液体収容部50のエアロゾル生成液を負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象を利用して、液体収容部50のエアロゾル生成液を負荷40に導入している。なお、図2の香味袋60の断面は概形であり、詳細は後述の図3を参照されたい。 The wick 30 is a member for introducing the aerosol generating liquid in the liquid storage section 50 into the load 40 in the load passage section 22. Although the specific configuration of the wick 30 is not particularly limited as long as it has such a function, the wick 30 according to the present embodiment utilizes capillary phenomenon to connect the liquid storage part. 50 aerosol generating liquids are introduced into the load 40. Note that the cross section of the flavor bag 60 in FIG. 2 is a general shape, and please refer to FIG. 3 described later for details.
 負荷40は、液体収容部50のエアロゾル生成液が導入されるとともに、この導入されたエアロゾル生成液を霧化してエアロゾルを発生させるための電気的な負荷である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータを用いている。このヒータとしては、発熱抵抗体(すなわち、電熱線)や、セラミックヒータ、誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体を用いている。また、本実施形態において、負荷40としてのヒータは、コイル形状を有している。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータである。このコイルヒータは、ウィック30に巻き付けられている。 The load 40 is an electrical load into which the aerosol generation liquid in the liquid storage section 50 is introduced and which atomizes the introduced aerosol generation liquid to generate an aerosol. The specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used. In this embodiment, a heater is used as an example of the load 40. As this heater, a heating resistor (that is, a heating wire), a ceramic heater, a dielectric heater, or the like can be used. In this embodiment, a heating resistor is used as an example of this heater. Moreover, in this embodiment, the heater as the load 40 has a coil shape. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around the wick 30.
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50のエアロゾル生成液を加熱することで霧化して、エアロゾルを発生させる。 Further, the load 40 according to the present embodiment is arranged in the wick 30 inside the load passage section 22, for example. The load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device. The load 40 heats and atomizes the aerosol-generating liquid in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
 なお、このウィック30や負荷40の構成は、例えば特許文献2等に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。 Note that the configurations of the wick 30 and the load 40 are similar to those used in known suction tools such as those exemplified in Patent Document 2, so any further detailed explanation will be omitted.
 液体収容部50は、たばこ抽出成分を含むエアロゾル生成液(Le)を収容するための部位である。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。液体収容部50にエアロゾル生成液が収容されている状態で使用者に提供されてもよいし、液体収容部50にエアロゾル生成液が収容されていない状態で使用者に提供され、使用者がニコチン含有液を導入して使用する構成としてもよい。 The liquid storage part 50 is a part for storing an aerosol generating liquid (Le) containing tobacco extract components. The liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Further, in this embodiment, the aforementioned downstream passage section 23 is provided so as to penetrate the liquid storage section 50 in the direction of the central axis CL. The user may be provided with the aerosol generation liquid stored in the liquid storage section 50, or the user may be provided with the aerosol generation liquid stored in the liquid storage section 50, so that the user can enjoy nicotine. It is also possible to use a structure in which a liquid containing liquid is introduced and used.
[エアロゾル生成液]
液体収容部50に収容されるエアロゾル生成液Leはたばこ抽出成分を含んでいれば特段制限されない。エアロゾル生成液Leに含まれるたばこ抽出成分を得る方法は特段制限されず、たばこ葉等のたばこ材料を溶媒に溶解させて抽出することにより得られる。
[Aerosol generation liquid]
The aerosol generation liquid Le stored in the liquid storage section 50 is not particularly limited as long as it contains tobacco extract components. The method for obtaining the tobacco extract component contained in the aerosol generation liquid Le is not particularly limited, and it can be obtained by dissolving tobacco materials such as tobacco leaves in a solvent and extracting it.
 たばこ抽出成分は、たばこ植物に含まれるニコチン等の物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。エアロゾル生成液Leは、たばこ抽出物として特にニコチンを少なくとも含んでいることが好ましく、この態様においては「たばこ抽出成分を含む」を「天然ニコチンを含む」と換言してもよい。ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル%未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。
 抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。なお、エアロゾル生成液Leに含まれるニコチンは、天然ニコチン及び後述する合成ニコチンおいずれにおいてもニコチン塩等のニコチン化合物として存在していてもよい。
 エアロゾル生成液Leにたばこ抽出成分を含有させる方法は特段制限されず、例えば、たばこ材料の抽出により得られるたばこ抽出成分をエアロゾル基材に溶解させる方法、又はこのたばこ抽出成分を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。また、たばこ材料の抽出に用いられる溶媒として、エアロゾル基材にもなり得る物質を用いた場合には、たばこ抽出液をそのままエアロゾル生成液として用いることもでき、このような物質としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
 本実施形態では、たばこ抽出成分の供給源として上記のたばこ抽出成分を含む液体状のエアロゾル生成液Leを用いることにより、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料をニコチン供給源として用いる場合に生じる霧化ユニット12の負荷40の劣化を抑制することができる。
Tobacco extract components are substances such as nicotine contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and these components other than nicotine are not included even if they are contained. It does not have to be a fragrance, but if it is contained, it can function as a fragrance. The aerosol generation liquid Le preferably contains at least nicotine as a tobacco extract, and in this embodiment, "contains a tobacco extract component" may also be referred to as "contains natural nicotine." There are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually the S-form, with the R-form accounting for less than 1 mol%. On the other hand, in synthetic nicotine, the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method. Therefore, the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%). For example, it can be assumed that the nicotine in the oral composition is synthetic nicotine.
The target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable. The embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like. Note that the nicotine contained in the aerosol generation liquid Le may exist as a nicotine compound such as a nicotine salt in both natural nicotine and synthetic nicotine described below.
The method of incorporating the tobacco extract component into the aerosol generation liquid Le is not particularly limited, and for example, a method of dissolving a tobacco extract component obtained by extraction of tobacco material in an aerosol base material, or a method of dissolving this tobacco extract component in a solvent. Examples include a method of later mixing with the aerosol generation liquid Le. In addition, when a substance that can also be used as an aerosol base material is used as a solvent for extracting tobacco materials, the tobacco extract can be used as it is as an aerosol generation liquid. Examples of such substances include, for example, Examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
In this embodiment, by using the liquid aerosol generation liquid Le containing the tobacco extract component as a supply source of the tobacco extract component, powdered tobacco material that can form deposits as disclosed in Patent Document 1 is removed. It is possible to suppress deterioration of the load 40 of the atomization unit 12 that occurs when using the nicotine supply source as a nicotine supply source.
 たばこ抽出成分が天然ニコチンを含む場合、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。 When the tobacco extract component contains natural nicotine, specifically, natural nicotine extracted and purified from tobacco leaves can be used. For such a method for producing natural nicotine, a known technique such as that exemplified in Non-Patent Document 1 can be applied, so a detailed explanation will be omitted.
 また、たばこ抽出成分が天然ニコチンを含む場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。 In addition, when tobacco extract components contain natural nicotine, the purity of natural nicotine can be increased by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible of components other than natural nicotine from the extract of tobacco materials. , natural nicotine with increased purity may be used. To give a specific numerical example, the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
 エアロゾル生成液Le中のニコチンの含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
 エアロゾル生成液Le中のたばこ抽出成分の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
 ニコチンの供給源としてたばこ抽出液を用いることができるが、この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
The content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less.
The content of the tobacco extract component in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.1% by weight or more and 10% by weight or less. It may be 5% by weight or more and 7.5% by weight or less, and may be 1% by weight or more and 5% by weight or less.
Tobacco extract can be used as a nicotine supply source. In this case, the content of tobacco extract in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, for example, It may be 0.1% by weight or more and 10% by weight or less, 0.5% by weight or more and 7.5% by weight or less, and 1% by weight or more and 5% by weight or less.
 エアロゾル生成液Leに含まれ得る所定の溶媒は特段制限されず、例えば、エアロゾル基材(エアロゾルを生成するための基材)を用いることができる。エアロゾル基材の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。
The predetermined solvent that can be included in the aerosol generation liquid Le is not particularly limited, and for example, an aerosol base material (a base material for generating an aerosol) can be used. The type of aerosol base material is not particularly limited, and for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
The content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル生成基材としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液として利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、濃縮等の手段を用いて焦げの原因となる物質を除去することが好ましい。
 なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含んでいてもよく、その具体例としては、例えばネオフィタジエン等が挙げられる。
The type of solvent used in the extraction to obtain the above-mentioned tobacco extract component is not particularly limited, and is, for example, selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. One or more substances, or liquids containing the substances, can be used. In this embodiment, glycerin and/or propylene glycol is used as an example of the predetermined solvent. Note that if the solvent also acts as an aerosol-generating base material, the tobacco extract can be used as it is as an aerosol-generating liquid; however, the tobacco extract may contain components that can cause charring when heated (e.g., lipids, etc.). metal ions, sugars, proteins, etc.), it is preferable to remove substances that cause scorching by using means such as concentration.
Note that the tobacco extract may contain flavor components in the tobacco material other than nicotine, and specific examples thereof include, for example, neophytadiene.
 エアロゾル生成液Leは、ニコチンを付与し得るための成分としてたばこ抽出成分を含むが、香喫味の観点から、さらに、合成等により得られる合成ニコチンを含ませてもよい。
 本明細書では、合成により得られたニコチンを「合成ニコチン」とも称するが、これは化学合成によって生成されたニコチンである。すなわち、合成ニコチンは、たばこ材料を抽出することで得られるニコチン(天然ニコチン)ではなく、化学物質を用いて化学合成することで得られるニコチンである。
 合成ニコチンの生成方法は、特に限定されるものではなく、化学物質を用いた化学合成を行うことにより行うことができ、公知の生成方法を用いることができる。
The aerosol generation liquid Le contains a tobacco extract component as a component for imparting nicotine, but from the viewpoint of aroma and taste, it may also contain synthetic nicotine obtained by synthesis or the like.
In this specification, nicotine obtained by synthesis is also referred to as "synthetic nicotine," which is nicotine produced by chemical synthesis. That is, synthetic nicotine is not nicotine obtained by extracting tobacco materials (natural nicotine), but nicotine obtained by chemical synthesis using chemical substances.
The method for producing synthetic nicotine is not particularly limited, and can be carried out by chemical synthesis using chemical substances, and known production methods can be used.
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン、ニコチンレブリン酸塩、ニコチン安息香酸塩、又はニコチン酒石酸塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。
 この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。
The type of nicotine-containing compound is not particularly limited, and includes, for example, nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinate, nicotine benzoate, or nicotine tartrate. When a nicotine-containing compound such as a nicotine salt is synthesized, the production method is not particularly limited, and any known production method can be used.
The purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
 エアロゾル生成液は、たばこ抽出成分及びエアロゾル基材以外の成分を(その他の成分)有してよく、例えば、たばこ抽出成分以外の香味成分が挙げられる。
 たばこ抽出成分以外の香味成分としては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。なお、たばこ抽出成分となり得るネオフィタジエン、ソラノン、又はソラネソール等を、たばこ抽出成分としてではなく、合成により得られた物質としてエアロゾル生成液Leに含有させてもよい。
The aerosol generation liquid may contain components other than the tobacco extract component and the aerosol base material (other components), such as flavor components other than the tobacco extract component.
Flavor components other than tobacco extract components include, for example, menthol, natural vegetable fragrances (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g., menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g., menthone, ionone, ethyl maltol, etc.), Alcohols (for example, phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (for example, benzaldehyde, etc.), or lactones (for example, ω-pentadecalactone, etc.), etc. can be mentioned. Note that neophytadiene, solanone, solanesol, or the like, which can be tobacco extract components, may be contained in the aerosol generation liquid Le as a synthetically obtained substance rather than as a tobacco extract component.
[香味袋]
 図3は、香味袋60の模式的な斜視図である。図1及び図2では略円柱状の概形を有する香味袋60を示したが、図3に示すように、香味袋60は、袋62と、袋62に収容された香味組成物64と、を有する。図1に示したように、本実施形態に係る香味袋60は、液体収容部50のエアロゾル生成液の内部に2個配置されている。但し、香味袋60の個数は、これに限定されるものではなく、1個でもよく、3個以上であってもよい。
[Flavor bag]
FIG. 3 is a schematic perspective view of the flavor bag 60. Although FIGS. 1 and 2 show the flavor bag 60 having a generally cylindrical shape, as shown in FIG. 3, the flavor bag 60 includes a bag 62, a flavor composition 64 housed in the bag 62, has. As shown in FIG. 1, two flavor bags 60 according to this embodiment are arranged inside the aerosol generation liquid of the liquid storage section 50. However, the number of flavor bags 60 is not limited to this, and may be one, or three or more.
 袋62は、香味組成物64が外部に漏れることを防止しつつ、液体を通過させる材料であれば、その材料は特に限定されない。例えば、袋62は、植物繊維、動物繊維、化学繊維及び無機繊維の少なくとも一つで形成され得る。袋62がこれらの繊維を含むことにより、柔軟性または加工性等の繊維の特性を生かした香味袋60を提供することができる。化学繊維または無機繊維として、例えばガラス繊維、セラミック繊維または合成樹脂繊維を袋62に用いることができる。袋62は、紙で形成されることが好ましい。ここで、紙とは、植物その他の繊維を膠着させて製造したものを指し、合成高分子を用いて製造した合成紙および繊維状無機材料を配合したものも含まれる。袋62に用いられる紙は、不織布、普通紙、耐水加工が施された耐水紙、及び耐油加工が施された耐油紙の少なくとも一つを含むことができる。これらの紙は、柔軟性及び加工性に優れ、低コストでの調達も容易である。ここで、袋とは、香味組成物64を入れた後、その香味組成物64が外に漏れ出さないように原料投入口を糊等で封止(三方または四方シール)した態様を含むものである。 The material of the bag 62 is not particularly limited as long as it is a material that allows liquid to pass through while preventing the flavor composition 64 from leaking to the outside. For example, the bag 62 may be formed of at least one of vegetable fiber, animal fiber, chemical fiber, and inorganic fiber. By containing these fibers in the bag 62, it is possible to provide a flavor bag 60 that takes advantage of the characteristics of the fibers, such as flexibility and processability. As the chemical fiber or inorganic fiber, for example, glass fiber, ceramic fiber, or synthetic resin fiber can be used for the bag 62. Bag 62 is preferably formed of paper. Here, paper refers to paper manufactured by adhering plant and other fibers together, and also includes synthetic paper manufactured using synthetic polymers and paper blended with fibrous inorganic materials. The paper used for the bag 62 can include at least one of nonwoven fabric, plain paper, water-resistant paper treated with water resistance, and oil-proof paper treated with oil resistance. These papers have excellent flexibility and processability, and are easy to procure at low cost. Here, the bag includes an embodiment in which the raw material input port is sealed with glue or the like (three-sided or four-sided sealed) to prevent the flavor composition 64 from leaking out after putting the flavor composition 64 therein.
 以下の実施形態において、「不織布」とは、繊維を織らずに布状に加工したものを指す。不織布は、例えば、繊維を熱的、機械的または化学的な作用によって接着しまたは絡み合わせることで形成した布である。 In the following embodiments, "nonwoven fabric" refers to fabric processed into a cloth without woven fibers. A nonwoven fabric is, for example, a fabric formed by adhering or intertwining fibers by thermal, mechanical, or chemical action.
 以下の実施形態において、「普通紙」とは、パルプを主成分とする紙である。普通紙は、針葉樹パルプまたは広葉樹パルプなどの木材パルプを用いて抄造されるほか、亜麻パルプ、大麻パルプ、サイザル麻パルプまたはエスパルトなど一般的にたばこ製品用の巻紙に使用される非木材パルプを混抄して製造して得たものでもよい。普通紙は、クラフト蒸解法、酸性・中性・アルカリ亜硫酸塩蒸解法若しくはソーダ塩蒸解法等により得られた化学パルプ、グランドパルプ、ケミグランドパルプまたはサーモメカニカルパルプ等を原料として使用し製造することができる。普通紙として、シガレットで用いられる巻紙またはチップペーパで用いられる紙を用いてもよい。 In the following embodiments, "plain paper" is paper whose main component is pulp. Plain paper is made from wood pulps such as softwood pulp or hardwood pulp, as well as non-wood pulps commonly used in wrapping paper for tobacco products, such as flax pulp, hemp pulp, sisal pulp or esparto. It may also be obtained by manufacturing. Plain paper shall be manufactured using chemical pulp, ground pulp, chemical ground pulp, thermomechanical pulp, etc. obtained by kraft cooking method, acidic/neutral/alkaline sulfite cooking method, soda salt cooking method, etc. as raw materials. Can be done. As the plain paper, wrapping paper used in cigarettes or paper used in tipping paper may be used.
 普通紙の製造方法は特に限定されず、例えば公知の方法を用いることができる。上記パルプを用いて長網抄紙機、円網抄紙機または円短複合抄紙機等により行われ抄紙工程の中で、地合いを整え均一化して普通紙を製造することができる。必要に応じて、湿潤紙力増強剤を添加して普通紙に耐水性を付与したり、サイズ剤を添加して普通紙の印刷具合の調整を行ったりすることができる。さらに、普通紙の製造の際には、硫酸バンド、各種のアニオン性、カチオン性、ノニオン性若しくは、両性の歩留まり向上剤、濾水性向上剤、または紙力増強剤等の抄紙用内添助剤、または、染料、pH調整剤、消泡剤、ピッチコントロール剤、またはスライムコントロール剤等の製紙用添加剤を添加することができる。原紙の坪量は、例えば通常20gsm(Grams per Square Meter)以上であり、好ましくは25gsm以上である。一方、当該坪量は通常65gsm以下、好ましくは50gsm以下、さらに好ましくは45gsm以下、である。 The method for producing plain paper is not particularly limited, and for example, known methods can be used. Plain paper can be produced by using the above-mentioned pulp to prepare and homogenize the texture during the papermaking process, which is carried out using a fourdrinier paper machine, a circular mesh paper machine, a circle-contact composite paper machine, or the like. If necessary, a wet paper strength enhancer can be added to impart water resistance to the plain paper, and a sizing agent can be added to adjust the printing quality of the plain paper. Furthermore, when manufacturing plain paper, internal additives for papermaking such as sulfuric acid, various anionic, cationic, nonionic, or amphoteric retention improvers, freeness improvers, or paper strength enhancers are used. Alternatively, papermaking additives such as dyes, pH adjusters, defoamers, pitch control agents, or slime control agents can be added. The basis weight of the base paper is, for example, usually 20 gsm (Grams per Square Meter) or more, preferably 25 gsm or more. On the other hand, the basis weight is usually 65 gsm or less, preferably 50 gsm or less, and more preferably 45 gsm or less.
 袋62が紙で形成される場合、効率よく低コストで香味袋60を製造することができる。紙は折り畳み等の加工がしやすく、袋62に香味組成物64を容易に収容することができる。以下の実施形態においては、袋62が不織布で形成された例を説明する。 When the bag 62 is made of paper, the flavor bag 60 can be manufactured efficiently and at low cost. Paper is easy to process, such as folding, and the flavor composition 64 can be easily accommodated in the bag 62. In the following embodiment, an example in which the bag 62 is made of nonwoven fabric will be described.
 図3に示すように、香味袋60の袋62は、香味組成物葉64が漏れないように閉止されている。具体的には、袋62は、香味組成物64が漏れないように閉止された第1端部65a及び第2端部65bを有する。第2端部65bは第1端部65aと対向する端部である。袋62は、さらに、第1端部65aと第2端部65bの間を延びる袋材料の端部同士を接着した接着部66を有する。香味袋60の形状は、図3に示す形状に限定されるものではなく、香味組成物64が漏れないように閉止されていればよい。例えば香味袋60の形状は、所定方向に延在する棒状(すなわち、長さが幅よりも長い形状)であってもよく、立方体形状(同じ長さの辺を有する形状)であってもよく、あるいはその他の形状であってもよい。 As shown in FIG. 3, the bag 62 of the flavor bag 60 is closed to prevent the flavor composition leaf 64 from leaking. Specifically, the bag 62 has a first end 65a and a second end 65b that are closed to prevent the flavor composition 64 from leaking. The second end 65b is an end opposite to the first end 65a. The bag 62 further includes an adhesive section 66 that adheres the ends of the bag material extending between the first end 65a and the second end 65b. The shape of the flavor bag 60 is not limited to the shape shown in FIG. 3, as long as it is closed so that the flavor composition 64 does not leak. For example, the shape of the flavor bag 60 may be a rod shape (that is, a shape where the length is longer than the width) extending in a predetermined direction, or a cubic shape (a shape with sides of the same length). , or other shapes.
 香味組成物64の形状は特に限定されるものではないが、粒状、粉状、または顆粒状であることが好ましい。この場合、香味組成物64の表面積が比較的大きくなるので、液体収容部50内の溶媒に香味組成物64に含まれる香味成分を効率よく抽出できる。 The shape of the flavor composition 64 is not particularly limited, but is preferably granular, powdery, or granular. In this case, since the surface area of the flavor composition 64 becomes relatively large, the flavor components contained in the flavor composition 64 can be efficiently extracted into the solvent in the liquid storage section 50.
 本実施形態の香味組成物64について具体的に説明する。香味組成物64は、非たばこ基材及び香味材料を含む。
 非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ 等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材として合成ポリマーを用いる場合、イオン交換樹脂にニコチンが担持されたもの、例えばニコチンポラクリレックスを用いてもよい。
 香味組成物64中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、99重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。
The flavor composition 64 of this embodiment will be specifically explained. Flavor composition 64 includes a non-tobacco base and a flavor material.
The type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, pulp derived from plants other than tobacco plants, etc. It may be. Examples of the ceramic include alumina, zirconia, aluminum nitride, and silicon carbide. Examples of the synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH. Examples of plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves. Furthermore, when a synthetic polymer is used as the non-tobacco base material, an ion exchange resin on which nicotine is supported, such as nicotine pracrylex, may be used.
The content of the non-tobacco base material in the flavor composition 64 is not particularly limited, and may be, for example, 10% by weight or more and 99% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 99% by weight or less, It may be more than 80% by weight and less than 80% by weight.
 香味組成物64に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、ニコチンを付与するたばこ材料が挙げられる。例えば、香味材料としてたばこ材料を用いた場合、スパイスとしてニコチン等のたばこ成分による香味を付与することができる。香味材料としてたばこ材料を用いる場合、香味組成物64におけるたばこ材料の含有量は10重量%以下であることが好ましい。なお、本明細書において、香味組成物64に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、香味組成物64がたばこ材料を含む場合、香味材料は、たばこ材料に含まれるニコチンでなく、たばこ材料である。
 香味材料はたばこ材料を含み得るが、たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用される、たばこ粉、たばこ刻、もしくはたばこ粉を加圧、打錠、または押出することによって得られるたばこシート、たばこ錠剤又はたばこ顆粒等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。本明細書において、「香味材料はたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに香味組成物中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに前記香味組成物中の前記たばこ材料は10重量%以下である」の表現に換言することができる。
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。
The form of the flavor material contained in the flavor composition 64 is not particularly limited, and for example, it may be the flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component. Examples of component-imparting materials include tobacco materials that provide nicotine. For example, when a tobacco material is used as a flavoring material, it is possible to impart flavor with tobacco components such as nicotine as a spice. When tobacco material is used as the flavor material, the content of the tobacco material in the flavor composition 64 is preferably 10% by weight or less. In this specification, when the flavor composition 64 includes a flavor component imparting material, the flavor component imparting material is treated as a flavor material, not the flavor component contained in the flavor component imparting material. For example, when flavor composition 64 includes tobacco material, the flavor material is the tobacco material rather than the nicotine contained in the tobacco material.
The flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets obtained by pressing, tableting, or extruding tobacco powder used in known tobacco products; Although tobacco tablets, tobacco granules, etc.) may be included, tobacco leaves or processed products using tobacco leaves are preferred from the viewpoint of ensuring a sufficient amount of use and ease of processing. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or may be a combination of unextracted tobacco material and tobacco residue, or may be used as a mixed mixture. As used herein, "the flavor material contains tobacco material" does not mean that the flavor material contains tobacco material, but rather that tobacco material is included as one of the types of flavor material. , the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor composition is 10% by weight or less" means "the flavoring material contains at least a tobacco material and the content of the tobacco material in the flavor composition is 10% by weight or less". The content of the material is 10% by weight or less."
Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile). oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.), ketones (e.g. menthone, ionone, ethyl maltol, etc.), alcohols (e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.), aldehydes (e.g., benzaldehyde, etc.), or lactones (e.g., ω-pentadeca), lactone, etc.).
 香味材料中の香味成分(香味成分自体が香味材料であってよい。)は、液体収容部50に収容されるエアロゾル生成液に溶出し、最終的に霧化ユニットの使用により発生するエアロゾルとして使用者にデリバリーされる。 The flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generating liquid stored in the liquid storage section 50, and is finally used as an aerosol generated by using the atomization unit. delivered to the person.
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。 The method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
 香味組成物64中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。
 特に、香味組成物64には香味材料として少なくともたばこ材料が含まれてもよいが、香味組成物中のたばこ材料の含有量は、香味のスパイスとしての役割を発揮する観点から、通常1重量%以上であることが好ましく、2重量%以上であることがより好ましく、3重量%以上であることがさらに好ましい。また、たばこ材料に含まれる加熱により負荷40の焦げの原因となり得る成分の量の抑制の観点から、10重量%以下であることが好ましく、7重量%以下であることが好ましく、5重量%以下であることがより好ましい。
The content of the flavor material in the flavor composition 64 is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, 3 It may be more than 50% by weight and less than 50% by weight.
In particular, the flavor composition 64 may contain at least a tobacco material as a flavor material, but the content of the tobacco material in the flavor composition is usually 1% by weight from the viewpoint of exerting its role as a flavor spice. It is preferably at least 2% by weight, more preferably at least 3% by weight, and even more preferably at least 3% by weight. In addition, from the viewpoint of suppressing the amount of components contained in the tobacco material that may cause scorching of the load 40 due to heating, the amount is preferably 10% by weight or less, preferably 7% by weight or less, and 5% by weight or less. It is more preferable that
 香味組成物64は、粒状、粉状または顆粒状であってもよい。この態様によれば、香味組成物の表面積が比較的大きくなるので、液体収容部内の溶媒に香味組成物64に含まれる香味成分を効率よく抽出できる。
 香味組成物64が粒状、粉状または顆粒状である場合、それらサイズは、特段制限されない。例えば、乾燥させた香味組成物の構成物が下記の分級の条件を充たすものであることが好ましい。
 乾燥した香味組成物64は、以下の篩目を有する篩により分級されたものであることが好ましい。製造時の扱いやすさ、品質のばらつきを制御する観点から、通常15mmの篩目を有する篩を通過するもの(<15mm)であり、10mmの篩目を有する篩を通過するもの(<10mm)であることが好ましく、5mmの篩目を有する篩を通過するもの(<5mm)であることがより好ましく、3.2mmの篩目を有する篩を通過するもの(<3.2mm)であることがさらに好ましい。例えば、乾燥した香味組成物の全てが3.2mmの篩目の篩を通過した場合、香味組成物の構成物の乾燥時の最大粒度が3.2mm以下であることを表す。
 乾燥時の香味組成物の構成物の粒度の下限を設定する必要はないが、袋からの漏れを防ぐ観点から、通常3μm以上である。
Flavor composition 64 may be particulate, powdered, or granular. According to this aspect, since the surface area of the flavor composition becomes relatively large, the flavor components contained in the flavor composition 64 can be efficiently extracted into the solvent in the liquid storage section.
When the flavor composition 64 is in the form of particles, powder, or granules, the size thereof is not particularly limited. For example, it is preferable that the components of the dried flavor composition satisfy the following classification conditions.
The dried flavor composition 64 is preferably one that has been classified using a sieve having the following mesh size. From the viewpoint of ease of handling during manufacturing and control of quality variations, products that pass through a sieve with a sieve opening of 15 mm (<15 mm) are usually passed through a sieve with a sieve opening of 10 mm (<10 mm). It is preferable that it passes through a sieve with a sieve opening of 5 mm (<5 mm), and it is more preferable that it passes through a sieve with a sieve opening of 3.2 mm (<3.2 mm). is even more preferable. For example, if all of the dried flavor composition passes through a sieve with a sieve mesh size of 3.2 mm, this indicates that the maximum dry particle size of the components of the flavor composition is 3.2 mm or less.
Although it is not necessary to set a lower limit on the particle size of the components of the flavor composition when dried, it is usually 3 μm or more from the viewpoint of preventing leakage from the bag.
 吸引具10を用いた吸引は以下のように行われる。まず、ユーザがエアの吸引を開始した場合、エアはエア通路20の上流通路部21a,21bを通過して、負荷通路部22に流入する。負荷通路部22に流入したエアには、負荷40において発生したエアロゾルが付加される。このエアロゾルには、エアロゾル生成液に含まれる香味成分と、エアロゾル生成液に配置された香味袋60から溶出した香味成分と、が含まれている。このエアロゾルが付加されたエアは、下流通路部23を通過して排出口13から排出されて、ユーザに吸引される。 Suction using the suction tool 10 is performed as follows. First, when the user starts suctioning air, the air passes through the upstream passage sections 21 a and 21 b of the air passage 20 and flows into the load passage section 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage section 22 . This aerosol contains flavor components contained in the aerosol generation liquid and flavor components eluted from the flavor bag 60 placed in the aerosol generation liquid. The air to which this aerosol has been added passes through the downstream passage section 23, is discharged from the discharge port 13, and is sucked into the user.
 以上説明したような本実施形態に係る吸引具10によれば、負荷40が発生するエアロゾルに、エアロゾル生成液に含まれるたばこ抽出成分に由来するニコチンに加えて、香味袋60に含まれる香味成分を付加することができる。これにより、香味を十分に味わうことができる。 According to the suction tool 10 according to the present embodiment as described above, the aerosol generated by the load 40 contains flavor components contained in the flavor bag 60 in addition to nicotine derived from tobacco extract components contained in the aerosol generation liquid. can be added. This allows you to fully enjoy the flavor.
 また、本実施形態に係る吸引具10によれば、香味組成物64が袋62に収容された香味袋60が液体収容部50に配置されるので、香味組成物64と霧化ユニット12の電気的な負荷40とが袋62によって物理的に分離され、香味組成物64が霧化ユニット12の負荷40に付着することを抑制することができる。これにより、霧化ユニット12の負荷40が劣化することを抑制することができる。 Further, according to the suction tool 10 according to the present embodiment, since the flavor bag 60 containing the flavor composition 64 is placed in the liquid storage section 50, the flavor composition 64 and the atomization unit 12 are electrically connected. The bag 62 physically separates the flavor composition 64 from the load 40 of the atomization unit 12, thereby suppressing the flavor composition 64 from adhering to the load 40 of the atomization unit 12. Thereby, deterioration of the load 40 of the atomization unit 12 can be suppressed.
 また、香味袋60が配置された状態のエアロゾル生成液1g中に含まれる炭化成分の量(mg)は、6mg以下であることが好ましく、3mg以下であることがより好ましい。 Furthermore, the amount (mg) of the carbonized component contained in 1 g of the aerosol generation liquid with the flavor bag 60 placed therein is preferably 6 mg or less, more preferably 3 mg or less.
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、香味組成物64の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、香味組成物64の香味を味わうことができる。 According to this configuration, the flavor of the flavor composition 64 can be enjoyed while suppressing the amount of carbonized components adhering to the electrical load 40 as much as possible. Thereby, it is possible to enjoy the flavor of the flavor composition 64 while suppressing the occurrence of burnt on the load 40 as much as possible.
 なお、「香味袋60が配置された状態のエアロゾル生成液中に含まれる炭化成分」は、具体的には、香味袋60が配置される前の状態のエアロゾル生成液に含まれる炭化成分の量と、エアロゾル生成液に配置された香味袋60からエアロゾル生成液に溶出した炭化成分の量とを合計した値に相当する。 In addition, "the carbonized component contained in the aerosol generation liquid in the state in which the flavor bag 60 is placed" specifically refers to the amount of carbonized component contained in the aerosol generation liquid in the state before the flavor bag 60 is placed. and the amount of carbonized components eluted into the aerosol generation liquid from the flavor bag 60 placed in the aerosol generation liquid.
 また、本実施形態において、「炭化成分」とは、250℃に加熱された場合に炭化物になる成分をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。 Furthermore, in the present embodiment, the term "carbonized component" refers to a component that becomes carbide when heated to 250°C. Specifically, the "carbonized component" refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
 なお、この「香味袋60が配置された状態のエアロゾル生成液1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、香味袋60が配置された状態のエアロゾル生成液を所定量(g)、準備する。次いで、このエアロゾル生成液を180℃に加熱して、エアロゾル生成液に含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液に含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。 Note that this "amount (mg) of carbonized components contained in 1 g of aerosol generation liquid in a state in which the flavor bag 60 is placed" can be measured, for example, by the following method. First, a predetermined amount (g) of the aerosol generation liquid with the flavor bag 60 placed therein is prepared. Next, this aerosol generation liquid is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured. By the above method, it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid, and based on this measurement value, the amount of carbide contained in 1 g of aerosol generation liquid (i.e. , the amount of carbonized components (mg)).
 続いて、たばこ抽出成分を含むエアロゾル生成液1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図4は、エアロゾル生成液としてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図4の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。 Next, the relationship between the amount of carbonized components contained in 1 g of aerosol generation liquid containing tobacco extract components and the TPM reduction rate will be explained. Figure 4 shows the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") is used as the aerosol generation liquid. It is a diagram. The horizontal axis of FIG. 4 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
 図4のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニットのサンプルを準備した。具体的には、この複数の霧化ユニットのサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。 The TPM reduction rate (R TPM :%) in FIG. 4 was measured by the following method. First, samples of a plurality of atomization units having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples for the plurality of atomization units. These five samples were prepared by the following steps.
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(Step 1)
To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(Step 2)
Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
(Step 3)
Next, 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at ℃. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。 Through the above steps, a plurality of samples with different amounts of carbonized components contained in 1 g of immersion liquid (extract liquid) were prepared.
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。 Next, the multiple samples prepared in the above steps were subjected to automatic smoking using an automatic smoking machine (“Analytical Vaping Machine” manufactured by Borgwaldt) under “CRM (Coresta Recommended Method) 81 smoking conditions”. Ta. Incidentally, the smoking condition of CRM81 is that 55 cc of aerosol is inhaled over 3 seconds multiple times every 30 seconds.
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図4のTPM減少率(RTPM)は測定された。 The amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1). The TPM reduction rate (R TPM ) shown in FIG. 4 was measured by the above method.
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1) R TPM (%) = (1-TPM (201puff ~ 250puff) / TPM (1puff ~ 50puff)) x 100... (1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。 Here, TPM (Total Particle Molecule) indicates the total particulate matter collected by the Cambridge filter of the automatic smoking machine. "TPM (1puff to 50puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine. "TPM (201puff to 250puff)" in equation (1) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。 In other words, the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
 図4から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図4の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。 As can be seen from FIG. 4, there is a proportional relationship between the amount of carbonized components contained in 1 g of extract and the TPM reduction rate. As can be seen from samples SA1 to SA4 in FIG. 4, when the amount of carbonized components contained in 1 g of extract is 6 mg or less, the TPM reduction rate can be suppressed to 20% or less.
(実施形態2)
 続いて、実施形態2について説明する。本実施形態は、吸引具10の霧化ユニット12の製造方法の実施形態である。図5は、本実施形態に係る霧化ユニット12の製造方法を説明するためのフロー図である。
 本実施形態に係る製造方法は、図5に示すように、液体収容部を有する吸引具の霧化ユニットの製造方法であって、
 たばこ抽出成分を含むエアロゾル生成液を準備する液体準備工程と、
 香味組成物を袋に収容して香味袋を製造する製造工程と、
 前記製造工程で製造された前記香味袋を液体収容部に配置する組立工程と、
 たばこ抽出成分を含むエアロゾル生成液を前記液体収容部に収容する収容工程と、を含む、霧化ユニットの製造方法である。
 本実施形態に係る製造方法は、上記の液体準備工程、成形工程、及び組立工程以外の工程を有していてもよい。また、上記袋は、上記[香味袋]で説明した内容をそのまま利用できる。
(Embodiment 2)
Next, Embodiment 2 will be described. This embodiment is an embodiment of a method for manufacturing the atomization unit 12 of the suction tool 10. FIG. 5 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to this embodiment.
As shown in FIG. 5, the manufacturing method according to the present embodiment is a manufacturing method of an atomization unit of a suction tool having a liquid storage part,
a liquid preparation step of preparing an aerosol generation liquid containing tobacco extract components;
a manufacturing process of manufacturing a flavor bag by accommodating a flavor composition in the bag;
an assembly step of arranging the flavor bag manufactured in the manufacturing step in a liquid storage section;
The method for manufacturing an atomization unit includes the step of storing an aerosol generating liquid containing tobacco extract components in the liquid storage section.
The manufacturing method according to this embodiment may include steps other than the liquid preparation step, molding step, and assembly step described above. Further, the above-mentioned bag can be used as is with the contents explained in the above-mentioned [flavor bag].
 本実施形態に係る製造方法により得られた霧化ユニットでは、ニコチンの供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、たばこ材料を含む香味組成物を含む香味袋を用いているため、内容物が散逸しないので、ニコチンの供給源が霧化ユニットの負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。 In the atomization unit obtained by the manufacturing method according to the present embodiment, flavor containing tobacco material is used as a source of nicotine instead of powdered tobacco material that can become deposits as disclosed in Patent Document 1. Since the flavor bag containing the composition is used, the contents do not dissipate, so it is possible to suppress the nicotine supply source from adhering to the load of the atomization unit, and thus to suppress the deterioration of the load.
 霧化ユニットの製造方法のステップS10に係る液体準備工程においては、たばこ抽出成分を含むエアロゾル生成液を準備する。たばこ抽出成分を含むエアロゾル生成液を準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、たばこ材料の抽出により得られる成分をエアロゾル生成液に溶解させる方法等が挙げられる。
 上記のたばこ抽出成分を含有させるためのエアロゾル生成液は、エアロゾル基材を含む液体であってよく、また、エアロゾル基材自体であってもよい。
In the liquid preparation step of step S10 of the atomization unit manufacturing method, an aerosol generation liquid containing tobacco extract components is prepared. A specific method for preparing an aerosol generation liquid containing tobacco extract components is not particularly limited, and any known method can be employed. For example, a method may be used in which a component obtained by extraction of tobacco material is dissolved in an aerosol-generating liquid.
The aerosol generating liquid for containing the above tobacco extract component may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
 エアロゾル生成液を得る方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合して液体を得る方法について具体的に説明する。
 まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。
As an example of methods for obtaining an aerosol-generating liquid, a method for obtaining a liquid by mixing an extract obtained by dissolving tobacco leaves in a solvent with an aerosol base material will be specifically described.
First, an alkaline substance is applied to tobacco leaves (referred to as alkali treatment). As the alkaline substance used here, for example, a basic substance such as an aqueous potassium carbonate solution can be used.
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質をたばこ葉に接触させる。 Next, the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment). During this heat treatment, the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。 By this heat treatment, released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent. As the collection solvent, for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used. As a result, a collection solvent containing flavor components such as nicotine (hereinafter also simply referred to as "flavor components") can be obtained (that is, flavor components can be extracted from tobacco leaves).
 あるいは、ステップS10は、上述したような捕集溶媒を使用しない構成とすることもできる。具体的には、この場合、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後に、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出することもできる。 Alternatively, step S10 may be configured without using the collection solvent as described above. Specifically, in this case, the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
 あるいは、ステップS10は、上述したようなアルカリ処理を行わない構成とすることもできる。具体的には、この場合、ステップS10において、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、これが添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させる、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。 Alternatively, step S10 may be configured without performing the alkali treatment as described above. Specifically, in this case, in step S10, tobacco leaves (tobacco leaves that have not been subjected to alkali treatment) are treated with a mixture of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. Add one or more selected substances. Next, the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
 あるいは、ステップS10において、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させる。このような工程によっても、香味成分を抽出することができる。 Alternatively, in step S10, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are aerosolized, or from this group. An aerosol obtained by aerosolizing two or more selected substances is passed through tobacco leaves (tobacco leaves that have not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaves is collected in a collection solvent. Flavor components can also be extracted by such a process.
 また、本実施形態に係るステップS10(液体準備工程)は、上述したような手法で抽出された香味成分に含まれ得る、「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)をさらに含んでいてもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。
 なお、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、たばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。
Further, step S10 (liquid preparation step) according to the present embodiment calculates the amount of carbonized components that become carbonized when heated to 250° C., which may be contained in the flavor components extracted by the method described above. It may further include reducing processing (hereinafter also simply referred to as "reducing processing"). By reducing "the amount of carbonized components that become carbide when heated to 250° C.", adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed.
Note that the carbonized component that becomes carbonized when heated to 250° C. is mainly derived from tobacco materials such as tobacco leaves, so in the method using tobacco extract, the effect of providing a reduction treatment is particularly large.
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。 The specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced. The amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge. Alternatively, the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
 たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分を濃縮するための濃縮処理に供し、濃縮等の手段を用いて焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を濃縮処理に供することが好ましい。 Tobacco extract contains components that can cause scorching when heated (e.g., lipids, metal ions, sugars, or proteins), so it is subjected to a concentration treatment to concentrate the tobacco extract components. It is preferable to use this method to remove substances that cause scorching. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to concentration treatment if it contains a substance that causes scorching.
 ステップS20に係る製造工程においては、非たばこ基材及び香味材料を含み、且つ、前記香味材料はたばこ材料を含むとともに前記香味組成物中の前記たばこ材料の含有量が10重量%以下である香味組成物を含む香味袋を製造する。
 非たばこ基材及び香味材料は上記の実施形態1で説明したものを用いることができる。非たばこ基材及び香味材料を公知の方法により混合することで香味組成物を準備できる。
 ステップS20においては、香味組成物64を袋62に収容して香味袋60を製造する。香味袋60の製造の際には、実施形態1で説明したように、香味袋60の袋62を、香味組成物64が漏れないように閉止する。具体的には、図3に示すように、香味組成物64が漏れないように袋62の第1端部65a及び第2端部65bを閉止する。第2端部65bは第1端部65aと対向する端部である。袋62は、さらに、第1端部65aと第2端部65bの間を延びる袋材料の端部同士を接着した接着部66を有するものである。
In the manufacturing process according to step S20, the flavor composition includes a non-tobacco base material and a flavoring material, the flavoring material contains a tobacco material, and the content of the tobacco material in the flavor composition is 10% by weight or less. A flavor bag containing the composition is manufactured.
As the non-tobacco base material and flavor material, those explained in Embodiment 1 above can be used. The flavor composition can be prepared by mixing the non-tobacco base material and the flavor material using known methods.
In step S20, the flavor composition 64 is placed in the bag 62 to produce the flavor bag 60. When manufacturing the flavor bag 60, as described in Embodiment 1, the bag 62 of the flavor bag 60 is closed so that the flavor composition 64 does not leak. Specifically, as shown in FIG. 3, the first end 65a and second end 65b of the bag 62 are closed to prevent the flavor composition 64 from leaking. The second end 65b is an end opposite to the first end 65a. The bag 62 further has an adhesive section 66 that is formed by bonding the ends of the bag material extending between the first end 65a and the second end 65b.
 ステップS20で香味袋60を準備した後、ステップS30の組立工程を実行する。具体的には、ステップS30においては、香味袋60が収容されていない状態の霧化ユニット12を準備し、この霧化ユニット12の液体収容部50に、ステップS20の後の香味袋60を収容する。 After preparing the flavor bag 60 in step S20, the assembly process in step S30 is executed. Specifically, in step S30, the atomization unit 12 in which no flavor bag 60 is housed is prepared, and the flavor bag 60 after step S20 is housed in the liquid storage section 50 of this atomization unit 12. do.
 ステップS30の後に、ステップS40に係る収容工程を実行する。ステップS40において、ステップS10で準備したたばこ抽出成分を含むエアロゾル生成液を液体収容部50に収容する。具体的には、収容工程では、エアロゾル生成液を液体収容部50に直接供給する。本明細書において、「直接供給する」ことは、エアロゾル生成液を液保持部材等に保持させた状態で液保持部材を液体収容部50に収容するのではなく、エアロゾル生成液を液体収容部50に直接注ぐことを意味する。これにより、液体収容部50に収容されるエアロゾル生成液の量を容易に調整することができる。エアゾロル生成液は、実施形態1で説明したものを用いることができる。実施形態1で説明したエアロゾル生成液の溶媒が香味成分(例えばニコチン)の好適な溶媒となるため、効率よく香味を調整することができる。また、使用者は自ら液体を吸引具10に導入する必要がない。なお、この場合において、香味袋60に添加された香味材料とは別に、液体収容部50に収容された上記の液体に、香味成分をさらに添加してもよい。以上の工程で、本実施形態に係る吸引具10の霧化ユニット12が製造される。また、製造された霧化ユニット12は、電源ユニット11(図6)等と連結され、吸引具10が製造される。 After step S30, the accommodation process related to step S40 is executed. In step S40, the aerosol generation liquid containing the tobacco extract component prepared in step S10 is stored in the liquid storage section 50. Specifically, in the storage step, the aerosol generating liquid is directly supplied to the liquid storage section 50. In this specification, "directly supplying" means not to store the aerosol-generated liquid in the liquid storage part 50 with the liquid holding member holding the aerosol-generated liquid in the liquid storage part 50. This means pouring it directly into the water. Thereby, the amount of aerosol generating liquid stored in the liquid storage section 50 can be easily adjusted. The aerosol production liquid described in Embodiment 1 can be used. Since the solvent of the aerosol generation liquid described in Embodiment 1 is a suitable solvent for the flavor component (for example, nicotine), the flavor can be efficiently adjusted. Furthermore, the user does not have to introduce the liquid into the suction tool 10 himself. In this case, a flavor component may be further added to the above-mentioned liquid contained in the liquid storage section 50, in addition to the flavor material added to the flavor bag 60. Through the above steps, the atomization unit 12 of the suction tool 10 according to the present embodiment is manufactured. Further, the manufactured atomization unit 12 is connected to the power supply unit 11 (FIG. 6), etc., and the suction tool 10 is manufactured.
<実施形態3>
 本発明の実施形態3に係る吸引具(以下、単に「吸引具」とも称する。)について説明する。図6は、本実施形態に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の電子たばこである。
<Embodiment 3>
A suction tool (hereinafter also simply referred to as "suction tool") according to Embodiment 3 of the present invention will be described. FIG. 6 is a perspective view schematically showing the appearance of the suction tool 10 according to this embodiment. The suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, is a non-combustion heating type electronic cigarette.
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。 As an example, the suction tool 10 according to the present embodiment extends in the direction of the central axis CL of the suction tool 10. Specifically, the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction" perpendicular to the long axis direction, and a "thickness" perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order. In this embodiment, among the orthogonal coordinates of X-Y-Z, the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction, and the X-axis direction (X direction or -X direction) corresponds to the width direction, and the Y-axis direction (Y direction or −Y direction) corresponds to the thickness direction.
 吸引具10は、電源ユニット11と、上述した霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。 The suction tool 10 includes a power supply unit 11 and the atomization unit 12 described above. The power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged. When the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
 霧化ユニット12には、エア(すなわち、空気)を排出するための排出口13が設けられている。エアロゾルを含むエアは、この排出口13から排出される。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアを吸い込むことができる。 The atomization unit 12 is provided with an outlet 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13. When using the suction tool 10, the user of the suction tool 10 can inhale the air discharged from the outlet 13.
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、制御装置に伝え、制御装置が負荷40への通電を終了させる。 A sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13. When the user starts suctioning air, a sensor detects the start of suctioning air and notifies the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Furthermore, when the user finishes suctioning the air, the sensor detects the end of the suction of air, notifies the control device, and the control device ends the energization of the load 40.
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、このエアの吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。 Note that the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation. In this case, the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch. The control device that receives the air suction start request or suction end request starts or ends energization to the load 40.
 なお、上述したような電源ユニット11の構成は、例えば、特許文献2に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。 Note that the configuration of the power supply unit 11 as described above is the same as that of a known suction tool power supply unit as exemplified in Patent Document 2, for example, and therefore a more detailed explanation will be omitted.
 以上、本発明の実施形態について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments or modified examples, and various modifications may be made within the scope of the gist of the present invention as described in the claims. It is possible to transform and change.
10  :吸引具
11  :電源ユニット
12  :霧化ユニット
40  :負荷
50  :液体収容部
60  :香味袋
62  :袋
64  :香味組成物
10: Suction tool 11: Power supply unit 12: Atomization unit 40: Load 50: Liquid storage section 60: Flavor bag 62: Bag 64: Flavor composition

Claims (10)

  1.  たばこ抽出成分を含むエアロゾル生成液を収容するように構成される液体収容部と、
     前記液体収容部の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、を有し、
     前記液体収容部の内部には、袋と、前記袋に収容された香味組成物を含み、前記香味組成物は、非たばこ基材及び香味材料を含み、且つ、前記香味材料はたばこ材料を含むとともに前記香味組成物中の前記たばこ材料の含有量が10重量%以下である、香味袋が配置される、霧化ユニット。
    a liquid storage part configured to contain an aerosol-generating liquid containing a tobacco extract component;
    The aerosol generating liquid in the liquid storage section is introduced, and an electric load is configured to atomize the introduced aerosol generating liquid and generate an aerosol,
    The interior of the liquid storage part includes a bag and a flavor composition contained in the bag, the flavor composition includes a non-tobacco base material and a flavor material, and the flavor material includes a tobacco material. and a flavoring bag in which the content of the tobacco material in the flavoring composition is 10% by weight or less is arranged.
  2.  請求項1に記載された霧化ユニットにおいて、
     前記袋は、植物繊維、動物繊維、化学繊維および無機繊維の少なくとも一つで形成される、霧化ユニット。
    In the atomization unit according to claim 1,
    The bag is an atomizing unit made of at least one of vegetable fiber, animal fiber, chemical fiber, and inorganic fiber.
  3.  請求項1又は2に記載された霧化ユニットにおいて、
     前記袋が紙で形成される、霧化ユニット。
    In the atomization unit according to claim 1 or 2,
    An atomization unit, wherein the bag is formed of paper.
  4.  請求項3に記載された霧化ユニットにおいて、
     前記紙は、不織布、普通紙、耐水紙、及び耐油紙の少なくとも一つを含む、霧化ユニット。
    In the atomization unit according to claim 3,
    The atomizing unit, wherein the paper includes at least one of nonwoven fabric, plain paper, waterproof paper, and oilproof paper.
  5.  請求項1から4のいずれか一項に記載された霧化ユニットにおいて、
     前記たばこ葉は、粒状、粉状または顆粒状である、霧化ユニット。
    The atomization unit according to any one of claims 1 to 4,
    The atomizing unit, wherein the tobacco leaves are in the form of granules, powder, or granules.
  6.  請求項1から5のいずれか一項に記載された霧化ユニットにおいて、
     前記液体収容部は、前記香味袋に収容された前記香味組成物と接触する前記エアロゾル生成液を含む、霧化ユニット。
    The atomization unit according to any one of claims 1 to 5,
    The liquid storage section is an atomization unit containing the aerosol-generating liquid that comes into contact with the flavor composition contained in the flavor bag.
  7.  請求項1から6のいずれか一項に記載された霧化ユニットと、
     前記霧化ユニットに電力を供給するように構成される電源ユニットと、を有する吸引具。
    The atomization unit according to any one of claims 1 to 6,
    and a power supply unit configured to supply power to the atomization unit.
  8.  香味組成物を袋に収容して香味袋を製造する製造工程と、
     前記製造工程で製造された前記香味袋を液体収容部に配置する組立工程と、
     たばこ抽出成分を含むエアロゾル生成液を前記液体収容部に収容する収容工程と、を含む、霧化ユニットの製造方法。
    a manufacturing process of manufacturing a flavor bag by accommodating a flavor composition in the bag;
    an assembly step of arranging the flavor bag manufactured in the manufacturing step in a liquid storage section;
    A method for manufacturing an atomization unit, comprising the step of storing an aerosol generation liquid containing tobacco extract components in the liquid storage section.
  9.  請求項8に記載された霧化ユニットの製造方法において、
     前記エアロゾル生成液は、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種類以上の物質を含む液体を含む、霧化ユニットの製造方法。
    In the method for manufacturing an atomization unit according to claim 8,
    The aerosol generating liquid includes a liquid containing one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  10.  請求項8または9に記載された霧化ユニットの製造方法において、
     前記収容工程は、前記たばこ抽出成分を含むエアロゾル生成液を前記液体収容部に直接供給することを含む、霧化ユニットの製造方法。
    In the method for manufacturing an atomization unit according to claim 8 or 9,
    The method for manufacturing an atomization unit, wherein the storing step includes directly supplying the aerosol generation liquid containing the tobacco extract component to the liquid storage section.
PCT/JP2022/016693 2022-03-31 2022-03-31 Atomization unit, inhalation implement, and method for producing atomization unit WO2023188329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016693 WO2023188329A1 (en) 2022-03-31 2022-03-31 Atomization unit, inhalation implement, and method for producing atomization unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016693 WO2023188329A1 (en) 2022-03-31 2022-03-31 Atomization unit, inhalation implement, and method for producing atomization unit

Publications (1)

Publication Number Publication Date
WO2023188329A1 true WO2023188329A1 (en) 2023-10-05

Family

ID=88200349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016693 WO2023188329A1 (en) 2022-03-31 2022-03-31 Atomization unit, inhalation implement, and method for producing atomization unit

Country Status (1)

Country Link
WO (1) WO2023188329A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530633A (en) * 2011-10-28 2014-11-20 ジェイティーインターナショナル エス.エイ.JT International S.A. Tobacco extract production equipment
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
JP2019501632A (en) * 2015-10-30 2019-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Articles for use with a device for heating smoking material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530633A (en) * 2011-10-28 2014-11-20 ジェイティーインターナショナル エス.エイ.JT International S.A. Tobacco extract production equipment
JP2018523985A (en) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Cartridge and apparatus for aerosol generation system
JP2019501632A (en) * 2015-10-30 2019-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッドBritish American Tobacco (Investments) Limited Articles for use with a device for heating smoking material

Similar Documents

Publication Publication Date Title
CA3104663C (en) Aerosol generating article and aerosol generating device comprising same
JP7350136B2 (en) Non-combustible heated tobacco and electrically heated tobacco products
JP7351977B2 (en) Non-combustible heated tobacco and electrically heated tobacco products
WO2023188329A1 (en) Atomization unit, inhalation implement, and method for producing atomization unit
WO2023188330A1 (en) Atomization unit, inhalation device and method for manufacturing atomization unit
WO2023188328A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188327A1 (en) Flavoring molded body and method for manufacturing same, atomization unit, and inhalation device
WO2023188321A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188325A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188326A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188322A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188323A1 (en) Atomization unit, method for manufacturing same, and inhalation device
WO2023188228A1 (en) Atomization unit, inhalation tool, and atomization unit production method
WO2023188324A1 (en) Atomization unit and production method therefor, and inhalation implement
WO2023188377A1 (en) Atomization unit, method for manufacturing same, and inhalation tool
WO2023188375A1 (en) Atomizing unit and method for manufacturing same, and inhaler
WO2023248475A1 (en) Atomization unit and method for manufacturing same, and inhalation tool
WO2023188376A1 (en) Atomization unit, method for manufacturing same, and inhalation apparatus
WO2023188374A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023188373A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188436A1 (en) Atomization unit, production method therefor, and inhalation device
WO2023188435A1 (en) Atomization unit and method for producing same, and inhalation tool
WO2023248476A1 (en) Atomizing unit and method for manufacturing same, and enhaler
WO2023188372A1 (en) Atomization unit and method for manufacturing same, and inhalation device
WO2023112292A1 (en) Atomization unit, inhalation device, and atomization unit production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935471

Country of ref document: EP

Kind code of ref document: A1