WO2023188007A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2023188007A1
WO2023188007A1 PCT/JP2022/015566 JP2022015566W WO2023188007A1 WO 2023188007 A1 WO2023188007 A1 WO 2023188007A1 JP 2022015566 W JP2022015566 W JP 2022015566W WO 2023188007 A1 WO2023188007 A1 WO 2023188007A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
region
cutting tool
rake face
tool
Prior art date
Application number
PCT/JP2022/015566
Other languages
English (en)
French (fr)
Inventor
聡史 久保田
昭洋 門司
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to PCT/JP2022/015566 priority Critical patent/WO2023188007A1/ja
Publication of WO2023188007A1 publication Critical patent/WO2023188007A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools

Definitions

  • the present disclosure relates to a cutting tool used to cut an object to be cut.
  • a reamer including a finishing blade for cutting the inner wall of a prepared hole formed in a workpiece for example, see Patent Document 1.
  • the finishing blade of this reamer includes a rake face formed to form an acute angle with the inner wall (sheared surface) of the prepared hole of the workpiece, and a negative land portion and a non-negative land portion formed at the axial tip of the rake face.
  • the negative land portion is provided on the central axis side of the reamer so as to form an obtuse angle with the sheared surface of the workpiece.
  • the non-negative land portion is provided on the outer peripheral side of the reamer so as to form an acute angle with the sheared surface of the workpiece. According to such a reamer, the chips cut out by the negative land portion can be easily bent and divided into pieces. Furthermore, the non-negative land portion on the outer peripheral side can suppress deterioration of the roughness of the inner wall surface after cutting.
  • chips may be divided in the vertical direction at the boundary between the negative land portion and the non-negative land portion, and there is also a risk that relatively long chips may be generated. Further, when re-polishing the finishing blade, it is necessary to polish both the negative land portion and the non-negative land portion, which increases the labor and cost of polishing.
  • the main purpose of the present disclosure is to provide a cutting tool that can finely divide chips and reduce the effort and cost of re-polishing.
  • a cutting tool of the present disclosure includes a cutting edge for cutting an object to be cut, and a rake face continuous with the cutting edge, wherein the rake face is a first cutting tool located on the outer peripheral side of the cutting tool. and a second region adjacent to the first region on the central axis side of the cutting tool, and the second region is configured to prevent chips generated by cutting the object to be cut by the cutting edge from the second region. This area is formed to provide greater chip evacuation resistance than one area.
  • chips are produced in a row within the range of the cutting allowance due to the cutting of the object by the cutting edge, and the chips are distributed in the first region and the second region of the rake face. It is ejected by sliding on top.
  • chip evacuation resistance which is resistance to the flow of chips
  • chips are transferred to the second region of the rake face where the chip ejection resistance, which is resistance to the flow of chips, is greater than that given in the first region.
  • the portion on the first region is pulled by the portion on the second region, causing curling. This makes it possible to further reduce the curl radius of the chips and promote the fragmentation of the chips.
  • the cutting tool of the present disclosure it is possible to finely divide chips and reduce the effort and cost of re-polishing.
  • FIG. 1 is a schematic configuration diagram showing a cutting tool of the present disclosure. 1 is an enlarged view of a cutting tool of the present disclosure; FIG. FIG. 2 is a schematic diagram showing how the cutting tool of the present disclosure is used. It is a chart showing the relationship between the position of the boundary between the first and second regions on the rake face and the size of chips.
  • FIG. 1 is a schematic configuration diagram showing a cutting tool 1 of the present disclosure.
  • a cutting tool 1 shown in the same figure is driven to rotate around a central axis A as a rotating shaft and is moved in the axial direction to cut a pilot hole formed in a workpiece W (see FIG. 2), which is an object to be cut.
  • the cutting tool 1 includes a rod-shaped tool body 2 and a cutting tip 5 fixed to the tool body 2.
  • the tool body 2 is made of metal and includes a shank 3 and a processing portion 4 extending coaxially with the shank 3.
  • the shank 3 is fixed to the main shaft of a machine tool (not shown) such as a machining center.
  • the processing section 4 is a section that performs cutting on the workpiece W as the cutting tool 1 rotates.
  • the machining section 4 includes a single chip discharge groove 4g, and a single cutting tip 5 is attached, for example, by brazing, to the tip of the chip discharge groove 4g (the end opposite to the shank 3). It is fixed by etc.
  • the outer circumferential surface of the machining section 4 (a portion other than the chip discharge groove 4g) is a cylindrical surface with the central axis A as the axis, and the outer circumferential surface of the machining section 4 is It plays the role of aligning the tool body 2 (cutting tool 1) with respect to the pilot hole whose diameter has been expanded by the cutting tip 5.
  • the cutting tip 5 is made of, for example, sintered diamond (PCD), and has a cutting edge 50 and a rake face 55 continuous to the cutting edge 50, as shown in FIG.
  • the cutting edge 50 includes first and second inclined portions 51 and 52 that extend linearly and are inclined with respect to a direction perpendicular to the central axis A of the cutting tool 1 (tool main body 2).
  • the first inclined portion 51 gradually increases from the inner side edge 5i of the cutting tip 5 located on the central axis A side of the cutting tool 1 toward the outer side edge 5o of the cutting tip 5 located on the outer peripheral side of the cutting tool 1. It is formed so as to be close to the shank 3 (base end).
  • the angle of inclination of the first inclined portion 51 with respect to the direction perpendicular to the central axis A is, for example, about 5°.
  • the second inclined portion 52 of the cutting edge 50 is formed so as to gradually move away from the shank 3 (base end) as it goes from the outer side edge 5o of the cutting tip 5 toward the inner side edge 5i of the cutting tip 5. .
  • the angle of inclination of the second inclined portion 52 with respect to the direction perpendicular to the central axis A is set to be larger than the angle of inclination of the first inclined portion 51 with respect to the direction perpendicular to the central axis A. Thereby, it is possible to smoothly connect the cutting edge 50 and the outer side edge 5o and suppress chipping that occurs at the boundary between the cutting edge 50 (second inclined portion 52) and the outer side edge 5o.
  • the rake face 55 of the cutting tip 5 includes a first region 56 located on the outer peripheral side of the cutting tool 1 and a second region 57 adjacent to the first region 56 on the central axis A side of the cutting tool 1.
  • the first region 56 of the rake face 55 extends along the outer side edge 5o of the cutting tip 5 extending parallel to the central axis A, and is formed smoothly.
  • the second region 57 of the rake face 55 extends along the inner side edge 5i of the cutting tip 5 extending parallel to the central axis A, and includes a plurality of grooves 58.
  • the plurality of grooves 58 are formed in the second region 57 so as to be inclined in a direction intersecting the first and second inclined parts 51 and 52 of the cutting edge 50, respectively, and to extend parallel to each other. Further, in this embodiment, the plurality of grooves 58 are formed by irradiating the second region 57 of the rake face 55 with a laser, and each has a depth of, for example, about 15 ⁇ m and a width of, for example, about 60 ⁇ m. Furthermore, in the present embodiment, the first and second regions 56, 57 have a boundary (border line) B between the two regions at the outer peripheral end 50e (outer side edge) of the cutting edge 50 (second inclined portion 52). 5o) is formed on the rake face 55 so as to be included in a range X spaced apart from 40% to 60% of the cutting allowance MS of the workpiece W by the cutting edge 50.
  • the cutting tool 1 When forming a machined hole in the workpiece W using the cutting tool 1 configured as described above, the cutting tool 1 is rotated around the central axis A by a machine tool and fed into the prepared hole formed in the workpiece W. .
  • the cutting edge 50 of the cutting tip 5 cuts the workpiece W, resulting in a series of chips C within the range of the cutting allowance MS, and the chips C are formed in the first area of the rake face 55. 56 and the second area 57 to be discharged.
  • chip discharge resistance which is resistance to the flow of chips, is greater than in the first region 56.
  • the chips C are pulled by the portion on the second region 57 that has received greater chip ejection resistance than that given by the first region 56, so that the chips C are Curl as shown. Thereby, it becomes possible to further reduce the curl radius of the chips C and promote the fragmentation of the chips C.
  • the present inventors calculated the distance from the outer peripheral end 50e (outer side edge 5o) of the cutting edge 50 (second inclined part 52) to the boundary B between the first and second regions 56, 57.
  • a plurality of different cutting tips 5 were prepared, and an average value of the lengths of chips C obtained when the workpiece W was cut using the plurality of cutting tips 5 was obtained.
  • FIG. 4 shows the relationship between the ratio ⁇ (%) of the distance from the end portion 50e to the boundary B to the cutting allowance MS and the average value (size) of the length of the chips C.
  • the length of the chip C is the longest length of the lengths obtained by measuring the curled chip C straight along an arbitrary direction.
  • the ratio ⁇ is 10% and the cutting tip 5 in which the second region 57 of the rake face 55 is expanded to the vicinity of the outer side edge 5o of the cutting chip 5 is used.
  • the average value of the length of the chips C was smaller than when using the cutting tip 5 in which the rake face 55 was 100% smooth and the entire first region 56 was smooth. Further, even when using a cutting tip 5 in which the ratio ⁇ is 80% and the area of the second region 57 on the rake face 55 is relatively narrow, the ratio ⁇ is 100% and the entire rake face 55 is smooth. Compared to the case where the cutting tip 5 in the first region 56 was used, the average length of the chips C was smaller.
  • first and second regions 56 and 57 are formed adjacent to the rake face 55 so as to be parallel to each other when the cutting tip 5 is viewed from the outer side edge 5o side.
  • the angle at which the cutting tip 5 is re-polished from the flank side is constant, the angle of the rake face 55 with respect to the flank surface will be constant even when re-polishing. 57 can be eliminated.
  • the cutting tool 1 it becomes possible to finely divide the chips C and reduce the effort and cost of re-polishing.
  • the cutting tool 1 can be used for a long time by re-polishing the cutting tip 5. Can be used across the board.
  • the cutting tool 1 rotates around a central axis A as a predetermined rotation axis, and the cutting edge 50 of the cutting tip 5 is inclined with respect to a direction perpendicular to the central axis A. It includes first and second inclined parts 51 and 52.
  • the first region 56 of the rake face 55 of the cutting tip 5 extends along the central axis A and is formed smoothly, and the second region 57 of the rake face 55 extends along the central axis A. , and includes a plurality of grooves 58 that are inclined in a direction intersecting the first and second inclined portions 51 and 52 of the cutting edge 50, respectively.
  • the plurality of grooves 58 inclined in the direction intersecting the first and second inclined parts 51 and 52 can promote the discharge of chips C and provide sufficient discharge resistance to the chips C, so that a stable curl radius can be achieved. It becomes possible to obtain chips C with .
  • the cutting tool 1 (cutting tip 5) suitable for cutting can stably reduce the curl radius of the chips C, promote the fragmentation of the chips C, and reduce the effort and cost of re-polishing. It becomes possible to obtain.
  • the plurality of grooves 58 (second region 57) may be formed in a range corresponding to the cutting allowance MS of the workpiece W on the rake face 55, and as shown in FIG. It is not necessary to reach part 5i.
  • the cutting tool 1 of the present disclosure includes the cutting tip 5 that has the cutting edge 50 that cuts the workpiece W as the object to be cut, and the rake face 55 that is continuous with the cutting edge 50. Further, the rake face 55 includes a first region 56 located on the outer peripheral side of the cutting tool 1 and a second region 57 adjacent to the first region 56 on the central axis A side of the cutting tool 1. are formed so as to provide greater chip discharge resistance to chips C than in the first region 56. Thereby, according to the cutting tool 1, it becomes possible to finely divide the chips C and reduce the effort and cost of re-polishing.
  • the cutting edge 50 and the rake face 55 may be formed directly on the tool body 2 (processing section 4) by polishing with a grindstone, or directly on the tool body 2 (processing section 4) by laser irradiation. It may be formed.
  • the cutting tool 1 may include a plurality of cutting tips 5 fixed to the tool body 2 (processing section 4), and each cutting tool 1 may include a plurality of cutting chips 5, each of which is formed directly on the tool body 2 (processing section 4). It may include a blade and a rake face.
  • the cutting tool 1 may be fixed to a tool post of a machine tool such as an NC lathe so as to cut a cutting object rotating around a predetermined rotation axis.
  • the cutting tool 1 may be configured to be used for lathe processing. Further, either one of the first and second inclined portions 51 and 52 may be omitted from the cutting edge 50 of the cutting tip 5 (cutting tool 1), and the cutting edge 50 is connected to the central axis (rotation axis) A. They may be formed to extend in orthogonal directions.
  • the cutting tool (1) of the present disclosure includes a cutting edge (50) that cuts the object (W) to be cut, and a rake face (55) continuous with the cutting edge (50). ), wherein the rake face (55) has a first region (56) located on the outer peripheral side of the cutting tool (1) and a first region (56) located on the central axis (A) side of the cutting tool (1). a second region (57) adjacent to the region (56), and the second region (57) is configured to handle chips (C) generated by cutting the object (W) with the cutting edge (50). On the other hand, it is formed so as to provide greater chip discharge resistance than the first region (56).
  • chips are produced in a row within the range of the cutting allowance due to the cutting of the object by the cutting edge, and the chips are distributed in the first region and the second region of the rake face. It is ejected by sliding on top.
  • chip evacuation resistance which is resistance to the flow of chips
  • chips are transferred to the second region of the rake face where the chip ejection resistance, which is resistance to the flow of chips, is greater than that given in the first region.
  • the portion on the first region is pulled by the portion on the second region, causing curling. This makes it possible to further reduce the curl radius of the chips and promote the fragmentation of the chips.
  • the cutting tool of the present disclosure it is possible to finely divide chips and reduce the effort and cost of re-polishing.
  • first and second regions (56, 57) of the rake face (55) may each extend along the central axis (A).
  • one of the cutting tool (1) and the object to be cut (W) may rotate around a rotation axis (A) that is predetermined relative to the other, and the cutting edge (50 ) may include an inclined portion (51, 52) inclined with respect to a direction perpendicular to the rotation axis (A), and the first region (56) of the rake face (55) may include:
  • the second region (57) of the rake face (55) may have a plurality of grooves each inclined in a direction intersecting the inclined portions (51, 52) of the cutting edge (50). (58) may be included.
  • chips generated by cutting the object to be cut by the cutting edge are discharged onto the first or second region of the rake face, and flow in a direction intersecting the slope of the cutting edge. Therefore, it is possible to provide sufficient ejection resistance to the chips while promoting the evacuation of the chips by the plurality of grooves inclined in the direction intersecting the inclined portion, making it possible to obtain chips with a stable curl radius. . As a result, it is possible to obtain a cutting tool suitable for cutting, which can stably reduce the curl radius of chips, promote fragmentation of the chips, and reduce the effort and cost of re-grinding.
  • boundary (B) between the first region (56) and the second region (57) is defined by the boundary (B) between the outer circumferential end (50e) of the cutting edge (50) and the edge of the cutting edge (50). It may be included within a range separated by 40% to 60% of the cutting stock (MS) of the object to be cut (W).
  • the cutting tool (1) may include a tool body (2) fixed to the main shaft of a machine tool, the cutting edge (50) and the first and second regions (56,
  • the rake face (55) including 57) may be a cutting tip (5) fixed to the tool body (2), or may be formed on the tool body (2).
  • the invention of the present disclosure can be used in the field of manufacturing cutting tools used to cut objects to be cut.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

本開示の切削工具は、切削対象物を切削する切れ刃と、切れ刃に連続するすくい面とを含むものであり、すくい面は、切削工具の外周側に位置する第1領域と、切削工具の中心軸側で第1領域に隣り合う第2領域とを含み、第2領域は、切れ刃による切削対象物の切削により生じた切屑に対して第1領域に比べて大きな切屑排出抵抗を与えるように形成されている。これにより、切屑を良好に細分化すると共に、再研磨の手間やコストを削減することが可能となる。

Description

切削工具
 本開示は、切削対象物を切削するのに用いられる切削工具に関する。
 従来、この種の切削工具として、ワークに形成された下穴の内壁を切削するための仕上刃を含むリーマが知られている(例えば、特許文献1参照)。このリーマの仕上刃は、ワークの下穴の内壁(せん断面)と鋭角をなすように形成されたすくい面と、すくい面の軸線方向先端に形成されたネガランド部および非ネガランド部とを含む。ネガランド部は、ワークのせん断面と鈍角をなすようにリーマの中心軸側に設けられる。また、非ネガランド部は、ワークのせん断面と鋭角をなすようにリーマの外周側に設けられる。かかるリーマによれば、ネガランド部により切り出された切屑を折れ曲がり易くして細分化することができる。更に、外周側の非ネガランド部により切削後の内壁面の粗さの悪化を抑制することができる。
特開2017-042870号公報
 しかしながら、上記従来のリーマを用いた場合、ネガランド部と非ネガランド部との境界部で切屑が縦方向に分断されることがあり、比較的長い切屑が生じてしまうおそれもある。また、仕上刃の再研磨に際しては、ネガランド部と非ネガランド部との双方を研磨する必要が生じ、研磨の手間やコストアップを招いてしまう。
 そこで、本開示は、切屑を良好に細分化可能であると共に、再研磨の手間やコストを削減することができる切削工具の提供を主目的とする。
 本開示の切削工具は、切削対象物を切削する切れ刃と、前記切れ刃に連続するすくい面とを含む切削工具であって、前記すくい面が、前記切削工具の外周側に位置する第1領域と、前記切削工具の中心軸側で前記第1領域に隣り合う第2領域とを含み、前記第2領域が、前記切れ刃による前記切削対象物の切削により生じた切屑に対して前記第1領域に比べて大きな切屑排出抵抗を与えるように形成されたものである。
 本開示の切削工具により切削対象物が切削される際、切れ刃による切削対象物の切削により切屑が切削代の範囲内で連なって生じ、当該切屑は、すくい面の第1領域並びに第2領域上を滑るようにして排出される。そして、すくい面の第2領域では、第1領域に比べて切屑の流れに対する抵抗である切屑排出抵抗が大きくなり、切屑は、第1領域で与えられるものよりも大きな切屑排出抵抗を受けた第2領域上の部分に第1領域上の部分が引っ張られることでカールする。これにより、切屑のカール半径をより小さくして当該切屑の細分化を促進させることが可能となる。更に、第1および第2領域をすくい面に隣り合わせに形成することで、切削工具の再研磨に際して、第1および第2領域に対する処理を無くすることができる。この結果、本開示の切削工具によれば、切屑を良好に細分化すると共に、再研磨の手間やコストを削減することが可能となる。
本開示の切削工具を示す概略構成図である。 本開示の切削工具を示す拡大図である。 本開示の切削工具の使用状態を示す模式図である。 すくい面における第1および第2領域の境界の位置と、切屑のサイズとの関係を示す図表である。
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
 図1は、本開示の切削工具1を示す概略構成図である。同図に示す切削工具1は、回転軸としての中心軸Aの周りに回転駆動されると共に軸方向に移動させられて切削対象物であるワークW(図2参照)に形成された下穴を拡げて加工穴を形成するリーマである。図示するように、切削工具1は、棒状の工具本体2と、当該工具本体2に固定された切削チップ5とを含む。工具本体2は、金属により形成されており、シャンク3と、シャンク3と同軸に延在する加工部4とを含む。
 シャンク3は、マシニングセンタといった図示しない工作機械の主軸に固定される。加工部4は、切削工具1の回転に伴ってワークWに切削加工を施す部分である。本実施形態において、加工部4は、単一の切屑排出溝4gを含み、当該切屑排出溝4gの先端部(シャンク3とは反対側の端部)に単一の切削チップ5が例えばろう付け等により固定される。また、加工部4(切屑排出溝4g以外の部分)の外周面は、中心軸Aを軸線とした円柱面であり、当該加工部4の外周面は、切削工具1による加工穴の形成に際して、工具本体2(切削工具1)を切削チップ5により拡径された下穴に対して調心する役割を担う。
 切削チップ5は、例えばダイヤモンド焼結体(PCD)からなるものであり、図2に示すように、切れ刃50と、当該切れ刃50に連続するすくい面55とを有する。切れ刃50は、それぞれ切削工具1(工具本体2)の中心軸Aと直交する方向に対して傾斜した直線状に延びる第1および第2傾斜部51,52を含む。第1傾斜部51は、切削工具1の中心軸A側に位置する切削チップ5の内側側縁部5iから切削工具1の外周側に位置する切削チップ5の外側側縁部5oに向かうにつれて徐々にシャンク3(基端)に接近するように形成されている。第1傾斜部51の中心軸Aと直交する方向に対する傾斜角度は、例えば5°程度である。
 切れ刃50の第2傾斜部52は、切削チップ5の外側側縁部5oから切削チップ5の内側側縁部5iに向かうにつれて徐々にシャンク3(基端)から離間するように形成されている。第2傾斜部52の中心軸Aと直交する方向に対する傾斜角度は、第1傾斜部51の中心軸Aと直交する方向に対する傾斜角度よりも大きく定められている。これにより、切れ刃50と外側側縁部5oとをなだらかに繋いで当該切れ刃50(第2傾斜部52)と外側側縁部5oとの境界で発生するチッピングを抑制することができる。
 また、切削チップ5のすくい面55は、切削工具1の外周側に位置する第1領域56と、切削工具1の中心軸A側で第1領域56に隣り合う第2領域57とを含む。すくい面55の第1領域56は、中心軸Aと平行に延在する切削チップ5の外側側縁部5oに沿って延在すると共に、平滑に形成されている。また、すくい面55の第2領域57は、中心軸Aと平行に延在する切削チップ5の内側側縁部5iに沿って延在すると共に、複数の溝58を含む。このように複数の溝58が形成されることで、すくい面55の第2領域57の動摩擦係数は、第1領域56の動摩擦係数よりも大きくなる。
 複数の溝58は、それぞれ切れ刃50の第1および第2傾斜部51,52と交差する方向に傾斜すると共に、互い平行に延在するように第2領域57に形成される。また、本実施形態において、複数の溝58は、すくい面55の第2領域57にレーザーを照射することにより形成され、それぞれ例えば15μm程度の深さと例えば60μm程度の幅とを有する。更に、本実施形態において、第1および第2領域56,57は、両者の境界(境界線)Bが、切れ刃50(第2傾斜部52)の外周側の端部50e(外側側縁部5o)から切れ刃50によるワークWの切削代MSの40%~60%だけ離間した範囲X内に含まれるようにすくい面55に形成される。
 上述のように構成される切削工具1によりワークWに加工穴を形成する際には、工作機械により切削工具1を中心軸Aの周りに回転させながら、ワークWに形成された下穴に送り込む。切削工具1が下穴に送り込まれると、切削チップ5の切れ刃50によるワークWの切削により切屑Cが切削代MSの範囲内で連なって生じ、当該切屑Cは、すくい面55の第1領域56並びに第2領域57上を滑るようにして排出される。この際、すくい面55の第2領域57では、第1領域56に比べて切屑の流れに対する抵抗である切屑排出抵抗が大きくなる。このため、切屑Cは、第1領域56で与えられるものよりも大きな切屑排出抵抗を受けた第2領域57上の部分に第1領域56上の部分が引っ張られることで、図3において点線で示すようにカールする。これにより、切屑Cのカール半径をより小さくして当該切屑Cの細分化を促進させることが可能となる。
 ここで、本発明者らは、切れ刃50(第2傾斜部52)の外周側の端部50e(外側側縁部5o)から第1および第2領域56,57の境界Bまでの距離を変化させた複数の切削チップ5を用意し、当該複数の切削チップ5を用いてワークWを切削した際に得られた切屑Cの長さの平均値を取得した。図4に、端部50eから境界Bまでの距離の切削代MSに対する割合δ(%)と、切屑Cの長さの平均値(サイズ)との関係を示す。なお、切屑Cの長さは、カールした切屑Cを任意の方向に沿ってまっすぐに測って得られた長さのうちの最長の長さである。
 図4に示すように、割合δが10%であって、すくい面55の切削チップ5の外側側縁部5o付近まで第2領域57を拡げられた切削チップ5を用いた場合、割合δが100%であってすくい面55の全体が平滑な第1領域56である切削チップ5を用いた場合に比べて、切屑Cの長さの平均値が小さくなった。また、割合δが80%であって、すくい面55における第2領域57の面積が比較的狭い切削チップ5を用いた場合も、割合δが100%であってすくい面55の全体が平滑な第1領域56である切削チップ5を用いた場合に比べて、切屑Cの長さの平均値が小さくなった。
 更に、図4に示すように、割合δが40%または60%である切削チップ5を用いた場合には、割合δが10%または80%である切削チップ5を用いた場合に比べて、切屑Cの長さの平均値がより小さくなった。かかる図4の解析結果より、すくい面55に上述のような第1および第2領域56,57の双方を形成することは、切屑Cのサイズを小さくする上で有効であり、境界Bを端部50eから切れ刃50によるワークWの切削代MSの40%~60%だけ離間した範囲X内に含まれるようにすくい面55に形成すれば、切れ刃50によるワークWの切削により生じる切屑Cのサイズをより小さくし得ることが理解されよう。
 また、第1および第2領域56,57をすくい面55に形成することで、切削チップ5(切削工具1)の再研磨に際して、第1および第2領域56,57に対する処理は不要となる。すなわち、第1および第2領域56,57は、切削チップ5を外側側縁部5o側からみて互いに平行になるようにすくい面55に隣り合わせにして形成されている。これにより、逃げ面側から切削チップ5を再研磨する角度を一定にすれば、再研磨しても当該逃げ面に対するすくい面55のなす角度が一定となるため、第1および第2領域56,57に対する処理を無くすことができる。この結果、切削工具1によれば、切屑Cを良好に細分化すると共に、再研磨の手間やコストを削減することが可能となる。加えて、第1および第2領域56,57をそれぞれ切削工具1の中心軸Aに沿って延在するようにすくい面55に形成することで、切削チップ5の再研磨により切削工具1を長期にわたって使用することができる。
 更に、切削工具1は、ワークWの切削に際して、予め定められた回転軸としての中心軸Aの周りに回転し、切削チップ5の切れ刃50は、中心軸Aと直交する方向に対して傾斜した第1および第2傾斜部51,52を含む。加えて、切削工具1において、切削チップ5のすくい面55の第1領域56は、中心軸Aに沿って延在すると共に平滑に形成され、すくい面55の第2領域57は、中心軸Aに沿って延在すると共に、それぞれ切れ刃50の第1および第2傾斜部51,52と交差する方向に傾斜した複数の溝58を含む。
 これにより、切削チップ5の切れ刃50の第1および第2傾斜部51,52によるワークWの切削により生じる切屑Cは、図2からわかるように、すくい面55の第1または第2領域56,57上に排出されると共に、第1および第2傾斜部51,52と交差する方向に流れていく。従って、第1および第2傾斜部51,52と交差する方向に傾斜した複数の溝58によって切屑Cの排出を促しつつ当該切屑Cに充分な排出抵抗を与えることができるので、安定したカール半径をもった切屑Cを得ることが可能となる。この結果、切屑Cのカール半径を安定により小さくして当該切屑Cの細分化を促進させると共に、再研磨の手間やコストを削減することができる切削加工に好適な切削工具1(切削チップ5)を得ることが可能となる。なお、複数の溝58(第2領域57)は、すくい面55のワークWの切削代MSに対応した範囲に形成されればよく、図2に示すように、必ずしも切削チップ5の内側側縁部5iに達している必要はない。
 以上説明したように、本開示の切削工具1は、切削対象物としてのワークWを切削する切れ刃50と、切れ刃50に連続するすくい面55とを有する切削チップ5を含む。また、すくい面55は、切削工具1の外周側に位置する第1領域56と、切削工具1の中心軸A側で第1領域56に隣り合う第2領域57とを含み、第2領域57は、切屑Cに対して第1領域56に比べて大きな切屑排出抵抗を与えるように形成されている。これにより、切削工具1によれば、切屑Cを良好に細分化すると共に、再研磨の手間やコストを削減することが可能となる。
 ただし、切れ刃50およびすくい面55は、砥石を用いた研磨により工具本体2(加工部4)に直接形成されたものであってもよく、レーザー照射により工具本体2(加工部4)に直接形成されたものであってもよい。また、切削工具1は、工具本体2(加工部4)に固定された複数の切削チップ5を含むものであってもよく、工具本体2(加工部4)に直接形成されたそれぞれ複数の切れ刃およびすくい面を含むものであってもよい。更に、切削工具1は、予め定められた回転軸の周りに回転する切削対象物を切削するように、NC旋盤といった工作機械の刃物台に固定されてもよい。すなわち、切削工具1は、旋盤加工に用いられるように構成されてもよい。また、切削チップ5(切削工具1)の切れ刃50から、第1および第2傾斜部51,52の何れか一方が省略されてもよく、切れ刃50は、中心軸(回転軸)Aと直交する方向に延在するように形成されてもよい。
 以上説明したように、本開示の切削工具は、切削対象物(W)を切削する切れ刃(50)と、前記切れ刃(50)に連続するすくい面(55)とを含む切削工具(1)であって、前記すくい面(55)が、前記切削工具(1)の外周側に位置する第1領域(56)と、前記切削工具(1)の中心軸(A)側で前記第1領域(56)に隣り合う第2領域(57)とを含み、前記第2領域(57)が、前記切れ刃(50)による前記切削対象物(W)の切削により生じた切屑(C)に対して前記第1領域(56)に比べて大きな切屑排出抵抗を与えるように形成されたものである。
 本開示の切削工具により切削対象物が切削される際、切れ刃による切削対象物の切削により切屑が切削代の範囲内で連なって生じ、当該切屑は、すくい面の第1領域並びに第2領域上を滑るようにして排出される。そして、すくい面の第2領域では、第1領域に比べて切屑の流れに対する抵抗である切屑排出抵抗が大きくなり、切屑は、第1領域で与えられるものよりも大きな切屑排出抵抗を受けた第2領域上の部分に第1領域上の部分が引っ張られることでカールする。これにより、切屑のカール半径をより小さくして当該切屑の細分化を促進させることが可能となる。更に、第1および第2領域をすくい面に隣り合わせに形成することで、切削工具の再研磨に際して、第1および第2領域に対する処理を無くすることができる。この結果、本開示の切削工具によれば、切屑を良好に細分化すると共に、再研磨の手間やコストを削減することが可能となる。
 また、前記すくい面(55)の前記第1および第2領域(56,57)は、それぞれ前記中心軸(A)に沿って延在するものであってもよい。
 これにより、切削工具を再研磨することで、当該切削工具を長期にわたって使用することが可能となる。
 更に、前記切削工具(1)および前記切削対象物(W)の一方は、他方に対して予め定められた回転軸(A)の周りに回転するものであってもよく、前記切れ刃(50)は、前記回転軸(A)と直交する方向に対して傾斜した傾斜部(51,52)を含むものであってもよく、前記すくい面(55)の前記第1領域(56)は、平滑に形成されてもよく、前記すくい面(55)の前記第2領域(57)は、それぞれ前記切れ刃(50)の前記傾斜部(51,52)と交差する方向に傾斜した複数の溝(58)を含むものであってもよい。
 これにより、切れ刃による切削対象物の切削によって生じる切屑は、すくい面の第1または第2領域上に排出されると共に、切れ刃の傾斜部と交差する方向に流れていく。従って、傾斜部と交差する方向に傾斜した複数の溝によって切屑の排出を促しつつ当該切屑に充分な排出抵抗を与えることができるので、安定したカール半径をもった切屑を得ることが可能となる。この結果、切屑のカール半径を安定により小さくして当該切屑の細分化を促進させると共に、再研磨の手間やコストを削減することができる切削加工に好適な切削工具を得ることが可能となる。
 また、前記第1領域(56)と前記第2領域(57)との境界(B)は、前記切れ刃(50)の前記外周側の端部(50e)から前記切れ刃(50)による前記切削対象物(W)の切削代(MS)の40%~60%だけ離間した範囲内に含まれてもよい。
 これにより、切れ刃による切削対象物の切削により生じる切屑のサイズをより小さくすることが可能となる。
 更に、前記切削工具(1)は、工作機械の主軸に固定される工具本体(2)を含むものであってもよく、前記切れ刃(50)と、前記第1および第2領域(56,57)を含む前記すくい面(55)とは、前記工具本体(2)に固定される切削チップ(5)、または前記工具本体(2)に形成されてもよい。
 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、切削対象物を切削するのに用いられる切削工具の製造分野等において利用可能である。

Claims (5)

  1.  切削対象物を切削する切れ刃と、前記切れ刃に連続するすくい面とを含む切削工具であって、
     前記すくい面は、前記切削工具の外周側に位置する第1領域と、前記切削工具の中心軸側で前記第1領域に隣り合う第2領域とを含み、
     前記第2領域は、前記切れ刃による前記切削対象物の切削により生じた切屑に対して前記第1領域に比べて大きな切屑排出抵抗を与えるように形成されている切削工具。
  2.  請求項1に記載の切削工具において、
     前記すくい面の前記第1および第2領域は、それぞれ前記中心軸に沿って延在する切削工具。
  3.  請求項2に記載の切削工具において、
     前記切削工具および前記切削対象物の一方は、他方に対して予め定められた回転軸の周りに回転し、
     前記切れ刃は、前記回転軸と直交する方向に対して傾斜した傾斜部を含み、
     前記すくい面の前記第1領域は、平滑に形成され、
     前記すくい面の前記第2領域は、それぞれ前記切れ刃の前記傾斜部と交差する方向に傾斜した複数の溝を含む切削工具。
  4.  請求項1から3の何れか一項に記載の切削工具において、
     前記第1領域と前記第2領域との境界は、前記切れ刃の前記外周側の端部から前記切れ刃による前記切削対象物の切削代の40%~60%だけ離間した範囲内に含まれる切削工具。
  5.  請求項1から4の何れか一項に記載の切削工具において、
     工作機械の主軸に固定される工具本体を備え、
     前記切れ刃と、前記第1および第2領域を含む前記すくい面とは、前記工具本体に固定される切削チップ、または前記工具本体に形成される切削工具。
PCT/JP2022/015566 2022-03-29 2022-03-29 切削工具 WO2023188007A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015566 WO2023188007A1 (ja) 2022-03-29 2022-03-29 切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015566 WO2023188007A1 (ja) 2022-03-29 2022-03-29 切削工具

Publications (1)

Publication Number Publication Date
WO2023188007A1 true WO2023188007A1 (ja) 2023-10-05

Family

ID=88200028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015566 WO2023188007A1 (ja) 2022-03-29 2022-03-29 切削工具

Country Status (1)

Country Link
WO (1) WO2023188007A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030882A (ja) * 2012-08-06 2014-02-20 Aisin Aw Co Ltd 切削工具
WO2017090297A1 (ja) * 2015-11-26 2017-06-01 住友電工ハードメタル株式会社 回転工具
WO2020090372A1 (ja) * 2018-10-30 2020-05-07 兼房株式会社 回転工具
JP2021058941A (ja) * 2019-10-03 2021-04-15 旭ダイヤモンド工業株式会社 回転切削工具
WO2021192629A1 (ja) * 2020-03-23 2021-09-30 株式会社アライドマテリアル 回転切削工具
JP2022072622A (ja) * 2020-10-30 2022-05-17 株式会社アイシン 切削工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014030882A (ja) * 2012-08-06 2014-02-20 Aisin Aw Co Ltd 切削工具
WO2017090297A1 (ja) * 2015-11-26 2017-06-01 住友電工ハードメタル株式会社 回転工具
WO2020090372A1 (ja) * 2018-10-30 2020-05-07 兼房株式会社 回転工具
JP2021058941A (ja) * 2019-10-03 2021-04-15 旭ダイヤモンド工業株式会社 回転切削工具
WO2021192629A1 (ja) * 2020-03-23 2021-09-30 株式会社アライドマテリアル 回転切削工具
JP2022072622A (ja) * 2020-10-30 2022-05-17 株式会社アイシン 切削工具

Similar Documents

Publication Publication Date Title
US7909545B2 (en) Ballnose end mill
US6056485A (en) Ramp plunge and feed milling cutter
JP6999546B2 (ja) 旋削によって金属加工品を機械加工する方法
CN101032766B (zh) 切削刀具
JPS6111729B2 (ja)
JP2000084708A (ja) 切り屑を形成する機械加工用の切削チップ
JPH01252314A (ja) 工具
WO2018123133A1 (ja) 切削工具及びその製造方法
WO2021192629A1 (ja) 回転切削工具
WO2021066046A1 (ja) 回転切削工具
JP2017087373A (ja) 回転切削工具
JP2017080864A (ja) 刃先交換式リーマおよびリーマ用インサート
JP2008062369A (ja) 穴あけ工具に取り付けられるチップの製造方法、並びに穴あけ工具の製造方法および穴あけ工具
JP2022072622A (ja) 切削工具
WO2023188007A1 (ja) 切削工具
JPH03245914A (ja) 穴明け工具
US11059110B2 (en) Mirror finishing method and mirror finishing tool
US11229957B2 (en) Method for producing a cutting tool for the machining of workpieces and cutting tool
JP3166426B2 (ja) 穴明け工具
JP4401495B2 (ja) 1枚刃リーマ
JPS63283809A (ja) ニック付ドリルリ−マ
RU2743703C1 (ru) Роторный режущий инструмент с пространством для стружки, пропорциональным подаче на зуб
WO2023054574A1 (ja) 回転工具、及び切削加工物の製造方法
KR101861953B1 (ko) 라우터 엔드밀 구조
JPH06170640A (ja) リーマ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935155

Country of ref document: EP

Kind code of ref document: A1