WO2023186001A1 - 一种传感器组件 - Google Patents

一种传感器组件 Download PDF

Info

Publication number
WO2023186001A1
WO2023186001A1 PCT/CN2023/085034 CN2023085034W WO2023186001A1 WO 2023186001 A1 WO2023186001 A1 WO 2023186001A1 CN 2023085034 W CN2023085034 W CN 2023085034W WO 2023186001 A1 WO2023186001 A1 WO 2023186001A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
sensor
sensor assembly
sliding
detection port
Prior art date
Application number
PCT/CN2023/085034
Other languages
English (en)
French (fr)
Inventor
吴康伟
张雪川
宋和平
Original Assignee
经纬恒润(天津)研究开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210329305.1A external-priority patent/CN116923267A/zh
Priority claimed from CN202220725184.8U external-priority patent/CN217294412U/zh
Application filed by 经纬恒润(天津)研究开发有限公司 filed Critical 经纬恒润(天津)研究开发有限公司
Publication of WO2023186001A1 publication Critical patent/WO2023186001A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for

Definitions

  • the present disclosure relates to the technical field of sensor devices, and in particular to a sensor assembly.
  • Embodiments of the present disclosure provide a sensor assembly to overcome at least one technical problem existing in the related art.
  • a sensor assembly which is applied to a carrier and includes: a casing.
  • the casing is fixedly installed on the carrier.
  • a detection port is provided on one side of the casing.
  • the casing is close to the carrier and the casing.
  • a chute is provided on the inner surface of the mounting surface. The chute extends in the Y direction from the side surface of the housing with the detection port to the opposite side surface of the housing with the detection port.
  • the sliding component is slidably disposed in the chute.
  • the moving base plate is disposed on the surface of the sliding component away from the chute and is rotationally connected to the sliding component.
  • the first driving motor is connected to the moving base plate through a driving connector, and the driving connector is rotationally connected to the moving base plate.
  • the sensor assembly is fixedly installed on the moving base plate.
  • the first drive motor transmits rotational torque to the moving base plate through the drive connector, driving the moving base plate to rotate, and at the same time causing the sliding parts to slide in the chute, and the moving base plate and the sliding parts are linked. , to realize the curved motion of each point on the moving base plate, thereby realizing the curved sliding of the sensor assembly.
  • the chute includes one or more linear chute.
  • the first driving motor works, the first driving motor transmits rotational torque to the moving base plate through the driving connection piece, so that the moving base plate moves relative to the driving connecting piece to move the base plate and
  • the rotation axis that drives the rotation of the connecting piece is the rotation center, so that the moving base plate rotates relative to the sliding part with the rotation axis of the moving base plate and the sliding part being the rotation center, and the sliding part slides in the linear chute, driving the moving base plate along the line
  • the linear chute moves, and the moving base plate and the sliding part are linked to make the moving base plate rotate and move linearly along the linear chute, realizing the curved motion of each point on the moving base plate, thereby realizing the curved sliding of the sensor assembly.
  • the sensor assembly includes a sensor casing, a sensor, a bracket, a cleaning fluid pipeline and a control valve.
  • the sensor casing is assembled at one end of the sensor's installation lens.
  • a cleaning fluid flow channel is provided inside the sensor casing, and the cleaning fluid flows The outlet of the flow channel faces the mirror surface of the lens of the sensor.
  • the opposite end of the installation lens of the sensor is fixedly installed on the moving base plate.
  • the moving base plate surrounds the first surface, the second surface, and the third surface of the sensor.
  • the bracket is installed on the third surface of the sensor. On the four surfaces, it is fixedly connected with the sensor and the moving base plate.
  • the first surface, the second surface, the third surface and the fourth surface of the sensor are connected end to end in order.
  • the outlet end of the cleaning liquid pipe is connected to the flow channel inlet of the cleaning liquid flow channel.
  • the cleaning fluid pipeline is provided with a control valve, and the control valve and cleaning fluid pipeline are fixed on the bracket.
  • a protrusion is provided on the periphery of one end of the sensor package away from the lens of the sensor extending in a direction away from the sensor.
  • the protrusion is placed in the housing to limit the sensor. The movement of the cladding seals the detection port.
  • a cover plate movement mechanism which is disposed inside the housing at one end close to the detection port, and is located on two inner surfaces of the housing adjacent to the side surface where the detection port is opened, the cover plate, The cover plate is connected to the cover plate motion mechanism, and the second drive motor is connected to the cover plate motion mechanism.
  • the drive cover plate motion mechanism drives the cover plate to move in the direction of the side surface of the housing where the detection port is opened.
  • the sensor assembly retracts to the inside of the casing, and the cover plate is located at the detection port to block the detection port.
  • the cover plate moves away from the detection port along the side surface of the casing with the detection port. direction movement, the sensor casing extends to the outside of the housing through the detection port, and the protrusion is placed in the housing to block the detection port.
  • the outer shell includes a fixed shell and a cladding shell.
  • the cladding shell is fixedly connected to one side surface of the fixed shell.
  • the fixed shell is installed on the carrier, and the chute is opened between the fixed shell and the carrier.
  • a detection port is provided at one end of the casing close to the mounting surface of the carrier and the fixed shell, and the height of the sensor assembly corresponds to the height of the detection port.
  • the sensor assembly The housing is extended through the detection port. When in the non-working state, the sensor assembly retracts to the inside of the housing. When in the working state, the sensor assembly moves to the detection port through the first drive motor, the sliding part and the moving base plate.
  • the sensor casing extends to the outside of the housing through the detection port, and the protrusion is placed in the housing to block the detection port.
  • the fixed housing is a housing with one side open.
  • the lower end of the opening side of the fixed housing is perpendicular to the surface of the fixed housing close to the mounting surface of the carrier and the fixed housing.
  • the upper end of the open side of the housing is inclined at a preset angle toward the direction of the sensor assembly relative to the lower end of the open side of the fixed housing, and the casing is fastened to the open side of the fixed housing, so that the casing and the fixed housing form an internal accommodation.
  • the shell of other components, wherein the cross-section of the surface of the open side of the shell used to close the fixed shell is a polyline shape, and the Z direction is perpendicular to the Y direction.
  • the casing includes a lower end and an upper end bent and connected to the lower end, the angle between the lower end and the upper end is equal to the preset angle, and the lower end is opposite to the lower end of the opening side of the fixed shell.
  • Matching the upper end matches the upper end of the open side of the fixed housing, and the detection port is opened on the lower end.
  • the sensor uses the first drive motor, sliding parts and moving bottom plate to extend to the housing through the detection port
  • the sensor uses the first drive motor, the sliding part and the moving bottom plate to retract into the housing to realize the extension and reset functions of the sensor.
  • the casing is fastened to one side surface of the fixed housing through a buckle structure.
  • the buckle structure includes a male buckle and a female buckle.
  • the surface of the fixed housing adjacent to the opening side is provided with multiple buckles.
  • a plurality of male buckles are arranged along the fastening line of the casing and the fixed shell.
  • the casing is provided with a plurality of female buckles that match the multiple male buckles one by one.
  • the female buckles are fastened to the male buckles.
  • the cladding is fixedly connected to the fixed shell.
  • a through hole is provided on a side surface of the fixed housing away from the cladding, and a soft connection for closing the through hole is provided at the through hole, and the soft connection is compressed when the sensor assembly is assembled.
  • a limiting component is also included.
  • the limiting component is disposed on the inner surface of the fixed housing close to the mounting surface of the carrier and the fixed housing, and is located on the side surface of the chute close to the housing where the detection port is opened.
  • the limiting component includes a limiting body and two clamping blocks.
  • the two clamping blocks are arranged at both ends of the limiting body close to the two inner surfaces of the housing adjacent to the side surface where the detection port is opened, and the housing is fixed.
  • the inner surface close to the mounting surface of the carrier and the fixed shell is provided with a buckle groove that matches the clamp block.
  • the limiting component is clamped in the buckle groove through the clamp block and is fixed on the fixed shell. Limit the sliding of sliding parts.
  • a plurality of positioning holes are provided on one side of the limiting body facing the sliding part.
  • the plurality of positioning holes are equidistantly distributed along the longitudinal direction of the limiting body.
  • a plurality of positioning holes are provided on the side of the sliding part facing the limiting part. Positioning posts that match the positioning holes.
  • a plurality of elastic protrusions are provided on the side of the sliding component facing away from the limiting component.
  • the plurality of elastic protrusions are longitudinally distributed along the sliding component.
  • the elastic protrusions include a linear portion and a semi-arc portion.
  • the semi-arc portion One end of the shaped part is connected to one end of the linear part, and the other end of the semi-arc part is connected to the other end of the linear part.
  • the opening is provided, and when the sensor is in a non-working state, the sliding part and the housing are in contact through deformed elastic protrusions.
  • a sliding latch and a driving connector latch are provided on the surface of the moving base plate away from the sensor assembly.
  • a first sleeve is provided in the middle of the sliding component. The sliding latch is inserted into the first sleeve, and the sliding latch is located away from the moving base plate. One end of the sliding latch is inserted outside the first bushing. The end of the sliding latch away from the moving base plate is provided with a sliding retaining ring for axial positioning. The end of the driving connector close to the moving base plate is provided with a third bushing. The driving connecting piece latch The third bushing is inserted, and the end of the drive connector pin away from the moving base plate is inserted outside the third bushing. The end of the drive connector pin away from the moving base plate is provided with a drive connector retaining ring for axial positioning.
  • the first drive motor is installed on the inner surface of the housing close to the mounting surface of the carrier and the fixed housing, and a second bushing is provided on the inner surface of the housing close to the mounting surface of the carrier and the fixed housing,
  • the setting position of the second sleeve corresponds to the setting position of the output shaft of the first driving motor.
  • the driving connector is provided with a motor driving pin at one end close to the first driving motor.
  • the motor driving pin is provided at an end close to the first driving motor.
  • the output shaft of the first drive motor is inserted into the groove structure to connect the first drive motor to the drive connector.
  • the motor drive pin is away from the first drive motor. Insert one end of the second bushing.
  • Figure 1 is a schematic structural diagram of a sensor component in a non-working state according to an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of the sensor component in a working state according to an embodiment of the present disclosure
  • Figure 3 shows the internal structure of the housing of the sensor assembly provided by the embodiment of the present disclosure in a non-working state.
  • Figure 4 is a schematic diagram of the internal structure of the housing of the sensor assembly provided by the embodiment of the present disclosure when the cover is raised during initial operation;
  • Figure 5 is a schematic diagram of the internal structure of the housing of the sensor assembly provided by the embodiment of the present disclosure in a working state
  • Figure 6 is a cross-sectional view of a sensor casing in a sensor assembly provided by an embodiment of the present disclosure
  • Figure 7 is a schematic structural diagram of the fixed housing and sensor movement mechanism assembly in the sensor assembly provided by the embodiment of the present disclosure
  • Figure 8 is a schematic top view of the fixed housing in the sensor assembly provided by an embodiment of the present disclosure.
  • Figure 9 is a top view of the sliding component in the sensor assembly provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of the limiting component in the sensor assembly provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a sensor and a sensor motion mechanism assembly in a sensor assembly provided by an embodiment of the present disclosure
  • Figure 12 is a schematic structural diagram of the first drive motor and the drive connector in the sensor assembly provided by an embodiment of the present disclosure
  • Figure 13 is an exploded view of a partial structure of the sensor and sensor motion mechanism assembly in the sensor assembly provided by the embodiment of the present disclosure
  • Figure 14 is a schematic structural diagram of a sensor assembly provided by an embodiment of the present disclosure.
  • Figure 15 is a side view of the sensor assembly provided by the embodiment of the present disclosure, wherein (b) is a side view of the soft connection in an expanded state, and (a) is a side view of the soft connection in a compressed state.
  • embodiments of the present disclosure disclose a sensor assembly that is applied to a carrier to realize the extension and reset functions of the sensor in a limited space, and the sensor assembly has the function of cleaning the sensor lens.
  • the vehicle in the embodiment of this disclosure is a general term for transportation, including but not limited to cars, aircraft, etc. Detailed description will be given below in conjunction with Figures 1 to 15.
  • the sensor assembly includes a housing 1 and a sensor assembly 4.
  • the housing 1 serves as the housing assembly of the sensor assembly. It is fixedly installed on the carrier and is used to fix the sensor assembly on the carrier. , the sensor assembly 4 is accommodated in the housing 1, and the housing 1 plays a role in protecting it.
  • a detection port 2 is provided on one side surface 45 of the housing 1, and a sensor movement mechanism assembly is provided in the housing 1.
  • part of the sensor assembly 4 extends through the detection port 2, and when transmitting
  • the sensor assembly 4 uses the sensor movement mechanism assembly to retract to the inside of the housing 1, thereby realizing the extension and reset functions of the sensor assembly 4 in a limited space.
  • the sensor movement mechanism assembly mainly includes a sliding component 13 , a movement bottom plate 12 and a first drive motor 14 .
  • the first drive motor 14 serves as a driver for driving the sensor assembly 4 to move.
  • the motor is connected to the moving base 12 through a driving connection 15 (for example, a connecting rod).
  • the driving connection 15 transmits the rotational torque generated by the first driving motor 14 to the moving base 12.
  • the sliding component 13 is rotationally connected to the moving base 12.
  • the sensor assembly 4 is installed on the moving base plate 12, and the sliding component 13 and the moving base plate 12 cooperate to realize the curve sliding function of the sensor assembly 4.
  • a chute 16 is provided on the inner surface 44 of the housing 1 close to the mounting surface 43 of the carrier 41 and the housing 1 .
  • the chute 16 extends from the housing 1 along the Y direction.
  • the one side surface 45 where the detection port 2 is opened extends to the opposite side surface 46 of the housing 1 where the detection port 2 is opened.
  • the sliding member 13 is slidably installed in the chute 16.
  • the sliding member 13 slides in the housing 1, and its sliding route is limited by the chute 16.
  • the moving bottom plate 12 is disposed on the surface of the sliding member 13 away from the chute 16, and is in contact with the sliding member 13.
  • the component 13 is rotationally connected, and the moving bottom plate 12 and the sliding part 13 can rotate with each other, and the sliding route defined by the sliding part 13 on the chute 16 can be used to constrain the sliding of the moving bottom plate 12.
  • the first driving motor 14 The driving connector 15 is connected to the moving base plate 12 through a driving connection piece 15.
  • the driving connecting piece 15 is rotationally connected to the moving base plate 12.
  • the first driving motor 14 and the driving connecting piece 15 are used to transmit rotational torque to the moving base plate 12 to drive the moving base plate 12 to move.
  • the sensor assembly 4 in the housing 1 is fixedly installed on the moving base plate 12, and the extension and reset functions of the sensor assembly 4 in the limited space inside the housing 1 are realized through the sliding of the moving base plate 12.
  • the first driving motor 14 When the first driving motor 14 operates, the first driving motor 14 transmits rotational torque to the moving base plate 12 through the driving connector 15, driving the moving base plate 12 to rotate, and at the same time causing the sliding component 13 to slide in the chute 16.
  • the moving base plate 12 and the sliding The components 13 are linked to realize the curved motion of each point on the moving bottom plate 12, thereby realizing the curved sliding of the sensor assembly 4. That is to say, the sensor movement mechanism assembly uses a special crank slider transmission mechanism to realize the movement of the sensor assembly 4. Sliding in the housing 1 enables the sensor assembly 4 to move in a limited space extension and reset functions.
  • chute 16 may include one or more linear chute.
  • the chute 16 includes two linear chute that are parallel to each other. Each linear chute moves from the side surface 45 of the housing 1 where the detection port 2 is opened to the side surface 45 of the housing 1 where the detection port 2 is opened.
  • the opposite side surface 46 of the port 2 extends, that is, the length direction of the linear slide is parallel to the Y direction.
  • the first driving motor 14 When the first driving motor 14 is working, the first driving motor 14 transmits a rotational torque to the moving base plate 12 through the driving connecting piece 15 , so that the moving base plate 12 rotates relative to the driving connecting piece 15 along the rotation axis of the moving base plate 12 and the driving connecting piece 15 .
  • the center rotates as the center of rotation, thereby causing the moving bottom plate 12 to rotate relative to the sliding part 13 with the rotation axis of the moving bottom plate 12 and the sliding part 13 as the rotation center, and the sliding part 13 slides in the linear chute 16, driving the moving bottom plate 12 along the line
  • the linear chute 16 moves, that is to say, the moving base plate 12 and the sliding component 13 are linked to cause the moving base plate 12 to rotate and move linearly along the linear chute 16 to realize the curved motion of each point on the moving base plate 12, thereby realizing the sensor assembly. 4 curve slide.
  • the sensor assembly 4 includes a sensor housing 5 , a sensor 47 , a bracket 11 , a cleaning fluid pipeline 10 and a control valve 9 .
  • the opposite end 52 of the mounting lens 48 of the sensor 47 is fixedly installed on the moving base plate 12.
  • the moving base plate 12 surrounds the first surface 471, the second surface 472, and the third surface 473 of the sensor 47 to ensure that the sensor 47 Fixed stability on the movement base 12.
  • the sensor casing 5 is assembled on one end 51 of the lens 48 of the sensor 47.
  • a cleaning liquid flow channel 56 is provided inside the sensor casing 5.
  • the flow channel outlet 34 of the cleaning liquid flow channel 56 faces the sensor 47.
  • the mirror surface 49 of the lens 48, the outlet end of the cleaning liquid pipe 10 is connected with the flow channel inlet of the cleaning liquid flow channel 56, the cleaning liquid is transported from the cleaning liquid pipe 10 to the cleaning liquid flow channel 56, and is sprayed through the flow channel outlet 34 Clean the lens 48 of the sensor 47 toward the mirror 49 of the lens 48 of the sensor 47 to ensure the cleanliness of the lens 48 of the sensor 47 in any working environment, thereby ensuring the working function of the sensor 47.
  • a control valve 9 is provided on the cleaning fluid pipeline 10. The control valve 9 is used to control the on-off of the cleaning fluid pipeline 10 and the flow rate of the cleaning fluid in the cleaning fluid pipeline 10 to realize automatic cleaning of the lens 48 of the sensor 47, and to perform automatic cleaning on the sensor.
  • a bracket 11 is installed on the fourth surface 474 of 47, and the bracket 11 is fixedly connected to the sensor 47 and the motion bottom plate 12.
  • the control valve 9 and the cleaning fluid pipeline 10 are fixed on the bracket 11 , so that the control valve 9 and the cleaning fluid pipeline 10 are fixed in the housing 1 by using the bracket 11 .
  • the sensor 47 includes a first surface 471 , a second surface 472 , a third surface 473 and a fourth surface 474 .
  • the first surface 471 , the second surface 472 , the third surface 473 and the fourth surface 474 Connect them end to end.
  • a solenoid valve can be used as the control valve 9 to control the start and stop of the cleaning operation and the amount of cleaning fluid used. Its small size saves space, is light and beautiful, and is more responsive.
  • the sensor movement mechanism assembly extends one end 51 of the mounting lens 48 of the sensor 47 equipped with the sensor housing 5 out of the housing 1.
  • the periphery of one end 53 of the sensor package 5 away from the lens 48 of the sensor 47 is provided with a protrusion 42 extending in a direction away from the sensor 47 .
  • the protruding portion 42 When the sensor package 5 extends to the outside of the housing 1 through the detection port 2 , the protruding portion 42 is placed in the housing 1 and contacts the inner surface of one side surface 45 of the housing 1 near the detection port 2, restricting the movement of the sensor package 5 and blocking the detection port 2, so that the sensor package 5 It protects the sensor 47 and seals the detection port 2 in combination with the protrusion 42 to ensure the sealing inside the housing 1 in the working state.
  • the sensor assembly also includes a cover movement mechanism 6, a cover 3 and a second drive motor 7.
  • the cover movement mechanism 6 is disposed inside the housing 1 close to the detection port.
  • One end of 2 is located on the two inner surfaces (inner surface 54, inner surface 55) of the housing 1 adjacent to the side surface 45 where the detection port 2 is opened, and is used to drive the cover 3 to move.
  • the cover 3 and the cover movement mechanism 6 connection that is, the two ends of the cover 3 close to the inner surface 54 and the inner surface 55 of the housing 1 are respectively connected to the cover movement mechanism 6 provided on the inner surface 54 and the inner surface 55 of the housing 1, and the second driving motor 7 is connected to The cover movement mechanism 6 is connected and drives the cover movement mechanism 6 to drive the cover 3 to move in the direction of the side surface 45 of the housing 1 where the detection port 2 is opened.
  • the sensor assembly 4 retracts to the inside of the housing 1, and the cover plate 3 is located at the detection port 2 to block the detection port 2 to ensure the sealing inside the housing 1 in the non-working state.
  • the cover 3 moves in a direction away from the detection port 2 along the side surface 45 of the housing 1 where the detection port 2 is opened, that is, the cover 3 moves from the initial position in Figure 3 to the raised position in Figure 4, and then , the sensor housing 5 passes through the detection port 2 Extending to the outside of the casing 1, the protruding portion 42 is placed inside the casing 1 to block the detection port 2 to ensure the sealing inside the casing 1 during the working state, thereby utilizing the cover plate 3, the sensor casing 5, and the protruding portion 42 Ensure the sealing inside the housing 1 as much as possible, and design the sensor to be retractable and hidden in combination with the sensor motion mechanism assembly.
  • the housing 1 includes a fixed shell 27 and a cladding shell 28.
  • the cladding shell 28 is fixedly connected to one side surface of the fixed shell 27.
  • the cladding shell 28 and the fixed shell 27 are assembled together.
  • the housing assembly that makes up the sensor assembly.
  • the fixed housing 27 is installed on the carrier 41 to fix the housing 1 as a whole on the carrier 41.
  • the fixed housing 27 serves as the connection part between the housing 1 and the carrier 41.
  • the chute 16 is opened in the fixed housing.
  • the cladding 28 is close to the carrier 41 and the fixed shell 27.
  • One end of the mounting surface 43 of the housing 27 is provided with a detection port 2, and the height of the sensor assembly 4 corresponds to the opening height of the detection port 2, so that the sensor assembly 4 can extend out of the housing 1 through the detection port 2.
  • the sensor assembly 4 retracts to the inside of the housing 1.
  • the sensor assembly 4 moves to the detection port 2 through the first drive motor 14, the sliding part 13 and the moving base plate 12.
  • the sensor package The shell 5 extends to the outside of the housing 1 through the detection port 2, and the protruding portion 42 is placed in the housing 1 to block the detection port 2.
  • the fixed housing 27 is a housing with one side open. It should be noted and understood that the open side of the fixed housing 27 here refers to the above-mentioned side.
  • One side surface 45 of the housing 1, in the Z direction, is the lower end of the opening side of the fixed housing 27 (that is, the end where the inner surface 54 and the inner surface 55 are located close to the mounting surface 43 of the carrier 41 and the fixed housing 27) and
  • the surface of the fixed housing 27 close to the carrier 41 is perpendicular to the mounting surface 43 of the fixed housing 27 (that is, the surface where the inner surface 44 is located), and the upper end of the opening side of the fixed housing 27 (that is, the surface where the inner surface 54 and the inner surface 55 are located)
  • the end away from the mounting surface 43 of the carrier 41 and the fixed housing 27 is tilted at a preset angle toward the direction of the sensor assembly 4 relative to the lower end of the opening side of the fixed housing 27, thereby minimizing the space occupied by the entire sensor assembly.
  • the casing 28 is used to close the surface of the opening side of the fixed housing 27 and snap into the open side of the fixed housing 27, so that the casing 28 and the fixed housing 27 form an interior to house other components.
  • the shell 1, in which the cross section of the surface of the opening side of the cladding shell 28 used to close the fixed shell 27 is a polyline shape, and the shape and size of the cladding shell 28 corresponds to the shape and size of the open side of the fixed shell 27 to ensure that the shell 28 is used to close the opening side of the fixed shell 27.
  • the relative tightness of the housing 1 formed by the shell 28 and the fixed shell 27 is a polyline shape, and the shape and size of the cladding shell 28 corresponds to the shape and size of the open side of the fixed shell 27 to ensure that the shell 28 is used to close the opening side of the fixed shell 27.
  • the Z direction is perpendicular to the Y direction.
  • the casing 28 includes a lower end 57 and an upper end 58 that is bent and connected to the lower end 57 .
  • the included angle between the lower end 57 and the upper end 58 is equal to the preset angle to ensure that the package is
  • the included angle of the broken line shape of the shell 28 is the same as the included angle between the upper and lower ends of the opening side of the fixed shell 27 , and the lower end 57 matches the lower end of the open side of the fixed shell 27 , and the upper end 58 is consistent with the fixed shell 27
  • the upper end of the opening side matches, further ensuring that the shape and size of the casing 28 matches the opening side of the fixed shell 27, so that the casing 28 snaps on the open side of the fixed shell 27, and completely closes the opening of the fixed shell 27 side surface.
  • the detection port 2 is opened on the lower end 57 of the casing 28.
  • the sensor 47 uses the first drive motor 14, the sliding part 13 and the moving bottom plate 12 to extend to the casing through the detection port 2.
  • the sensor 47 retracts into the housing 1 using the first drive motor 14, the sliding component 13 and the moving bottom plate 12 to realize the extension and reset functions of the sensor 47.
  • the casing 28 is buckled on one side surface of the fixed housing 27 through the buckle structure 50 to achieve a fixed connection between the casing 28 and the fixed housing 27 .
  • the buckle structure 50 includes a male buckle 29 and a female buckle 30 .
  • a plurality of male buckles 29 are provided on the surface of the fixed housing 27 adjacent to the opening side.
  • the plurality of male buckles 29 are provided along the
  • the casing 28 and the fixed shell 27 are provided with a fastening line.
  • the casing 28 is provided with a plurality of female buckles 30 that match a plurality of male buckles 29 one by one, so that the female buckles 30 are locked on the male buckles 29.
  • the cladding 28 is fixedly connected to the fixed shell 27, which has a simple structure and is easy to install and disassemble.
  • a passage 271 is provided, and a soft connection 26 for closing the passage 271 is provided at the passage 271.
  • the soft connection 26 can be compressed when the sensor component is assembled, temporarily reducing the size of the sensor component in the Y direction.
  • the soft connection 26 is formed by a larger Made of soft, compressible materials, such as silicone, TPU, etc.
  • a mounting bracket 40 for installing the sensor assembly is provided in the carrier 41.
  • the mounting bracket 40 is provided inside the body of a car, or installed inside the body of an aircraft.
  • the bracket 40 as shown in FIG. 4, is provided with mounting ears 35 at the outer lower ends of the inner surface 54 and the inner surface 55 of the fixed housing 27.
  • the fixed housing 27 is fixedly connected to the carrier through the mounting ears 35. 41 on the mounting surface 43 of the mounting bracket 40 .
  • the shape of the mounting bracket 40 is "L"-shaped, and in the Y direction, the mounting bracket 40 and the carrier 41 (for example, the body or the aircraft body) When the distance between them is not greater than the width of the sensor assembly body in the Y direction in the normal state, during assembly, the entire sensor assembly needs to reach the position (b) from position (a) through the dotted line in Figure 15. From Figure 15 It can be seen that the assembly space from position (a) to position (b) is relatively narrow, and the distance between the mounting bracket 40 and the carrier 41 is not greater than the width of the entire sensor assembly in the Y direction in the normal state, which is not conducive to the sensor assembly.
  • the soft connection 26 can be compressed or folded into the housing 1 at position (a) to reduce the size of the sensor component in the Y direction, so that the sensor component can easily pass through the narrow assembly space to reach (b) ) position, when the sensor assembly is upwardly assembled and fixedly installed at the (b) position, the backward pushing force of the sensor 47 can be used to expand the soft connection 26.
  • the sensor assembly further includes a limiting component 8 , which is disposed on the inner surface 44 of the fixed housing 27 close to the mounting surface 43 of the carrier 41 and the fixed housing 27 on, and is located at one end of the chute 16 close to the side surface 45 of the housing 1 where the detection port 2 is opened.
  • the limiting component 8 is used to fix the sensor assembly 4 in the working position. Limit it from extending further.
  • a buckle groove 17 matching the limiting component 8 is provided on the inner surface 44 of the fixed housing 27 close to the mounting surface 43 of the carrier 41 and the fixed housing 27 and close to the detection port 2. The component 8 is engaged in the buckle groove 17 and fixed on the inner surface 44 of the fixed housing 27 to limit the sliding movement of the sliding component 13 .
  • the limiting component 8 includes a limiting body 36 and two blocking blocks 37.
  • the two blocking blocks 37 are disposed on the limiting body 36 close to the housing 1 and have a detection port.
  • the snap groove 17 is opened at the two ends (one end 361 of the limiting body 36 and the other end 362 of the limiting body 36) of the two adjacent inner surfaces (the inner surface 54 and the inner surface 55) of the one side surface 45 of 2, the snap groove 17 is opened at The inner surface 44 of the fixed housing 27 close to the carrier 41 and the mounting surface 43 of the fixed housing 27 cooperates with the blocking block 37.
  • the blocking block 37 is buckled into the fixed housing 27.
  • the limiting component 8 is fixedly connected to the fixed housing 27.
  • one or more through slots 38 are opened on the limiting body 36 to reduce the overall weight of the sensor assembly as much as possible. It should be noted and understood that each of the slots 38 provided is The shapes and sizes of the through-slots 38 may be the same or different, and the through-slots 38 cannot affect other structural designs of the limiting component 8, and the structural strength of the limiting component 8 itself must be ensured.
  • a plurality of positioning holes 31 are opened on the side of the limiting member 8 facing the sliding member 13 , that is, the positioning holes 31 are opened on the side of the limiting body 36 facing the sliding member 13 .
  • a plurality of positioning holes 31 are distributed equidistantly along the longitudinal direction of the limiting body 36.
  • a plurality of positioning posts 32 matching the positioning holes 31 are provided on the side of the sliding component 13 facing the limiting component 8. Through the positioning posts 32 Inserted into the positioning hole 31, the limiting component 8 blocks the sliding component 13 from continuing to slide, thereby fixing the sensor assembly 4 at the designated working position.
  • the chute 16 since the chute 16 is opened on one end of the inner surface 44 of the housing 1 close to the detection port 2, the chute 16 is connected to the rear side surface of the housing 1 (that is, the opposite side surface 46 of the housing 1 where the detection port 2 is opened). ) has a preset distance between them. That is to say, when the sliding component 13 moves the sensor assembly 4 back to the inside of the housing 1, the chute 16 has a structural limit in the non-working position, so no additional limit is needed in the non-working position. bit parts.
  • a plurality of elastic protrusions 33 are provided on the side of the sliding member 13 facing away from the limiting member 8 .
  • the plurality of elastic protrusions 33 are distributed longitudinally along the sliding member 13 .
  • the elastic protrusion 33 includes a linear portion 331 and a semi-arc portion 332 .
  • the linear portion 331 is fixedly connected to a side surface of the sliding component 13 close to the sliding component 13 .
  • the semi-arc portion 332 One end of the semi-arc portion 332 is connected to the end of the side surface of the linear portion 331 away from the sliding member 13 , and the other end of the semi-arc portion 332 is open to the other end of the linear portion 331 away from the side surface of the sliding member 13 .
  • the sliding component 13 In the non-working state, the sliding component 13 is in contact with the housing 1 through the deformed semi-arc portion 332 .
  • the driving connector 15 can be integrated with the output shaft 39 of the first drive motor 14.
  • the drive connector 15 and the output shaft 39 of the first drive motor 14 are integrally formed to reduce the number of parts and components. Assembly steps.
  • the sliding member 13 since the sliding member 13 has sliding friction with the fixed housing 27 when the sensor assembly 4 moves, the sliding member 13 can be made of a material with an extremely low friction coefficient, such as polytetrafluoroethylene, polyoxymethylene, etc.
  • a sliding latch 22 and a driving connector latch 21 are provided on the surface 121 of the moving bottom plate 12 away from the sensor assembly 4 .
  • a first sleeve 24 is provided in the middle of the sliding component 13.
  • the sliding latch 22 is inserted into the first sleeve 24, and the end of the sliding latch 22 away from the moving bottom plate 12 is inserted outside the first sleeve 24.
  • the sliding latch 22 moves away from the first sleeve 24.
  • a sliding retaining ring 25 for axial positioning is provided on one end of the bottom plate 12 .
  • the sliding latch 22 is interference-pressed with the moving base plate 12 .
  • the sliding latch 22 can be integrated into the same component as the moving base plate 12 .
  • the first sleeve 24 is in interference compression contact with the sliding member 13.
  • the sliding part 13 is made of self-lubricating material, and the first sleeve 24 and the sliding part 13 can be integrated into the same component.
  • the sliding retaining ring 25 is used to prevent the sliding component 13 and the moving bottom plate 12 from facing each other in the vertical direction after they are assembled. Movement, it can also be replaced by a circlip.
  • a third sleeve 19 is provided at one end of the drive connector 15 close to the moving base plate 12 .
  • the drive connector pin 21 is inserted into the third sleeve 19 , and the end of the drive connector pin 21 away from the moving base plate 12 is inserted into the third sleeve 19 .
  • a drive connection retaining ring 23 for axial positioning is provided on one end of the drive connection pin 21 away from the moving bottom plate 12 .
  • the third bushing 19 is interference-pressed on the driving connector 15. If the driving connector 15 is made of a material with extremely low friction coefficient, such as polytetrafluoroethylene, polyformaldehyde, etc., the third bushing 19 can be connected with the driving connector 15.
  • the drive connection 15 is integrated into one component.
  • the driving connector pin 21 is interference-crimped with the moving base plate 12. If the production process of the moving base plate 12 is injection molding or die casting, the driving connecting piece pin 21 can be integrated into the same component as the moving base plate 12.
  • the drive connector retaining ring 23 is used to prevent relative movement in the vertical direction after the drive connector 15 and the drive connector pin 21 are assembled. It can be replaced by a retaining spring.
  • the first drive motor 14 is installed on the inner surface 44 of the housing 1 close to the mounting surface 43 of the carrier 41 and the fixed housing 27 .
  • a second bushing 18 is provided on the inner surface 44 of the housing 1 close to the mounting surface 43 of the carrier 41 and the fixed housing 27 .
  • the second bushing 18 is located in the same position as the output shaft 39 of the first drive motor 14
  • the drive connector 15 is provided with a motor drive pin 20 at one end close to the first drive motor 14.
  • the motor drive pin 20 is provided with an output shaft connected to the first drive motor 14 at one end close to the first drive motor 14.
  • the output shaft 39 of the first driving motor 14 is inserted into the groove structure 201, connecting the first driving motor 14 with the driving connector 15, and the motor driving pin 20 is away from the first driving motor 14
  • the second sleeve 18 is interference-pressed on the fixed shell 27 and is made of materials with extremely low friction coefficient, such as polytetrafluoroethylene, polyformaldehyde, etc., or is coated with polytetrafluoroethylene or polyformaldehyde. layer of metal parts.
  • the motor drive pin 20 is interference-crimped with the drive connector 15, and the groove structure 201 of the motor drive pin 20 is matched with the output shaft 39 of the first drive motor 14. If the production process of the drive connector 15 is injection molding or die-casting, the motor The drive pin 20 can be integrated into the same component as the drive connection 15 .
  • the structure of the sensor component when the sensor 47 is in the non-working state, the structure of the sensor component is shown in Figure 1; when the sensor 47 is in the working state, the structure of the sensor component is shown in Figure 2.
  • the initial position of the components in the housing 1 of the sensor assembly is as shown in Figure 3.
  • the cover 3 is at the bottom end of the cover movement mechanism 6, and the sensor assembly 4 is in a retracted state.
  • the second driving motor 7 operates, the cover plate movement mechanism 6 is driven to operate, driving the cover plate 3 to move to the raised position, as shown in Figure 4 .
  • the first driving motor 14 starts and transmits a rotational torque to the moving base plate 12 through the driving connection member 15.
  • the rotational torque causes the moving base plate 12 to rotate relative to the driving connection member 15 at the rotation axis (( That is, the axis of the connecting member latch 21 is driven to rotate as the center of rotation, thereby causing the moving base plate 12 to rotate relative to the sliding component 13 with the axis of rotation of the moving base plate 12 and the sliding component 13 (ie, the axis of the sliding latch 22 ) as the center of rotation. .
  • the direction and angle of rotation of the moving bottom plate 12 depend on the relative positional relationship between the driving connector pin 21 and the sliding pin 22 .
  • two positioning posts 32 are provided on one side of the sliding component 13 facing the limiting component 8.
  • two positioning holes are provided on one side of the limiting component 8 facing the sliding component 13.
  • the positioning post 32 is inserted into the positioning hole 31, and the sensor 47 reaches the working position.
  • the first drive motor 14 has a self-locking function, so that when the carrier 41 vibrates, the sensor 47 can be fixed in the working position, and the working performance is more stable and reliable.
  • the control valve 9 controls the cleaning fluid to enter the cleaning fluid flow channel 56 of the sensor casing 5 through the cleaning fluid pipeline 10 .
  • the cleaning fluid is sprayed from the flow channel outlet 34 of the sensor casing 5 near the lens 48 of the sensor 47 to clean the lens 48.
  • the first drive motor 14 When the sensor assembly 4 needs to be reset, the first drive motor 14 is started and transmits reverse rotation torque to the moving bottom plate 12 through the drive connection 15 .
  • the sliding component 13 moves the sensor assembly 4 according to the original path. Move back to non-working position.
  • the rotational torque provided by the first drive motor 14 causes the sliding component 13 to
  • the elastic protrusions 33 are squeezed and deformed.
  • the deformation of the elastic protrusion 33 and the self-locking of the first driving motor 14 fix the sensor 47 in the non-working position, and will not shake or make abnormal noise when the carrier 41 vibrates.
  • the output shaft 39 of the first drive motor 14 mates with the groove structure 201 of the motor drive pin 20 .
  • the other end of the driving connection member 15 makes a circular arc motion with the axis center of the output shaft 39 of the first driving motor 14 as the center of rotation.
  • the drive connector retaining ring 23 allows only relative rotation between the drive connector 15 and the moving bottom plate 12 with the axis center of the drive connector pin 21 as the rotation center. There is sliding friction between the drive connector 15 and the drive connector pin 21 during the movement of the sensor assembly 4, and the third sleeve 19 plays a lubricating role.
  • the sliding retaining ring 25 allows only relative rotation between the sliding component 13 and the moving bottom plate 12 with the axis of the sliding latch 22 as the rotation center.
  • the sliding component 13 and the sliding latch 22 have sliding friction during the movement of the sensor assembly 4, and the first sleeve 24 plays a lubricating role.
  • the second sleeve 18 plays a lubricating role.
  • embodiments of the present disclosure disclose a sensor assembly that utilizes a special crank slider transmission mechanism and a cover plate movement mechanism to realize the extension and reset functions of the sensor in a limited space, reduce the wind resistance and noise of the vehicle, and It protects the sensor, and the sensor component also has the function of cleaning the sensor lens, ensuring that the sensor continues to work normally and in the best working condition for a long time.
  • the embodiment of the present disclosure discloses a sensor assembly, and the technical effects at least include:
  • a special crank slider transmission mechanism and a drive motor that generates rotational torque are used to realize the curved sliding function of the sensor, which is one of the technical effects of the embodiments of the present disclosure.
  • the automatic cleaning function of the sensor lens is realized using the control valve, the cleaning fluid pipeline, and the cleaning fluid flow channel inside the sensor casing, which is one of the technical effects of the embodiments of the present disclosure.
  • the size of the sensor component can be temporarily reduced during assembly, which is one of the technical effects of the embodiments of the present disclosure.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种传感器组件,其中,外壳(1)的一侧表面上开设有探测口(2),外壳(1)的靠近载具(41)与外壳(1)的安装面(43)的内表面(44)上开设有滑槽(16),运动底板(12)设置于滑动部件(13)的远离滑槽(16)的表面上与滑动部件(13)转动连接,第一驱动电机(14)通过驱动连接件(15)与运动底板(12)连接,第一驱动电机(14)通过驱动连接件(15)传递旋转力矩至运动底板(12),带动运动底板(12)转动,同时使滑动部件(13)在滑槽(16)内滑动,运动底板(12)和滑动部件(13)联动,实现运动底板(12)上每个点的曲线运动,从而实现传感器总成(4)的曲线滑动。

Description

一种传感器组件
相关申请的交叉引用
本公开要求享有于2022年03月31日提交的名称为“一种传感器组件”的中国专利申请202220725184.8的优先权,该申请的全部内容通过引用并入本文中。
本公开要求享有于2022年03月31日提交的名称为“一种传感器组件”的中国专利申请202210329305.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本公开涉及传感器设备技术领域,具体涉及一种传感器组件。
背景技术
随着人工智能技术的迅猛发展,汽车、飞行器等越来越智能化,例如汽车上的很多功能都由电脑来控制完成,比如发动机系统、变速箱系统、悬架系统、制动系统、空调系统、车身控制系统等。电脑要控制这些系统,必须要得到正确的信息来确认系统的状态,然后发出正确的指令来控制系统工作,从而执行驾驶员的意图,正确地控制汽车。而这些反应系统状态的信息是由传感器完成的,越智能越高级的汽车所需的传感器的种类和数量也便越多。
实用新型内容
本公开实施例提供一种传感器组件,用以克服相关技术中存在的至少一个技术问题。
根据本公开实施例,提供了一种传感器组件,应用于载具上,包括:外壳,外壳固定安装于载具上,外壳的一侧表面上开设有探测口,外壳的靠近载具与外壳的安装面的内表面上开设有滑槽,滑槽沿Y方向自外壳的开设探测口的一侧表面向外壳的开设探测口的相对侧表面延伸,滑动部件,滑动部件滑设于滑槽内,运动底板,运动底板设置于滑动部件的远离滑槽的表面上,与滑动部件转动连接,第一驱动电机,第一驱动电机通过驱动连接件与运动底板连接,驱动连接件与运动底板转动连接,传感器总成,传感器总成固定安装于运动底板上,第一驱动电机通过驱动连接件传递旋转力矩至运动底板,带动运动底板转动,同时使滑动部件在滑槽内滑动,运动底板和滑动部件联动,实现运动底板上每个点的曲线运动,从而实现传感器总成的曲线滑动。
可选地,滑槽包括一个或多个线性滑槽,当第一驱动电机工作时,第一驱动电机通过驱动连接件传递旋转力矩至运动底板,使运动底板相对于驱动连接件以运动底板和驱动连接件转动的转动轴心为旋转中心转动,进而使运动底板相对于滑动部件以运动底板和滑动部件的转动轴心为旋转中心转动,以及滑动部件在线性滑槽内滑动,带动运动底板沿线性滑槽移动,运动底板和滑动部件联动,使运动底板转动并沿线性滑槽线性移动,实现运动底板上每个点的曲线运动,从而实现传感器总成的曲线滑动。
可选地,传感器总成包括传感器包壳、传感器、支架、清洗液管道以及控制阀,传感器包壳装配于传感器的安装镜头的一端,传感器包壳的内部开设有清洗液流道,清洗液流道的流道出口朝向传感器的镜头的镜面,传感器的安装镜头的相对一端固定安装在运动底板上,运动底板围设传感器的第一表面、第二表面、第三表面,支架安装于传感器的第四表面上,与传感器、运动底板固定连接,其中,传感器的第一表面、第二表面、第三表面、第四表面依次首尾连接,清洗液管道的出口端与清洗液流道的流道入口相连通,清洗液管道上设置有控制阀,且控制阀、清洗液管道固定于支架上。
进一步可选地,传感器包壳远离传感器的镜头的一端周缘向远离传感器的方向延伸设置有突起部,当传感器包壳通过探测口伸出至外壳的外部时,突起部置于外壳内,限制传感器包壳的运动并对探测口进行封堵。
再进一步可选地,还包括:盖板运动机构,盖板运动机构设置于外壳的内部靠近探测口的一端,位于外壳的与开设探测口的一侧表面相邻的两内侧表面,盖板,盖板与盖板运动机构连接,第二驱动电机,第二驱动电机与盖板运动机构相连,驱动盖板运动机构带动盖板沿外壳的开设探测口的一侧表面的方向运动,当在非工作状态时,传感器总成回缩至外壳的内部,盖板位于探测口处,对探测口进行封堵,当在工作状态时,盖板沿外壳的开设探测口的一侧表面向远离探测口的方向运动,传感器包壳通过探测口伸出至外壳的外部,突起部置于外壳内,对探测口进行封堵。
再进一步可选地,外壳包括固定壳体和包壳,包壳固定连接于固定壳体的一侧表面上,固定壳体安装于载具上,滑槽开设于固定壳体的靠近载具与固定壳体的安装面的内表面上,包壳的靠近载具与固定壳体的安装面的一端开设有探测口,且传感器总成的设置高度与探测口的开设高度相对应,传感器总成通过探测口伸出外壳,当在非工作状态时,传感器总成回缩至外壳的内部,当在工作状态时,传感器总成通过第一驱动电机、滑动部件和运动底板移动至探测口处,传感器包壳通过探测口伸出至外壳的外部,突起部置于外壳内,对探测口进行封堵。
再进一步可选地,固定壳体为一侧开口的壳体,在Z方向上,固定壳体的开口侧的下端与固定壳体的靠近载具与固定壳体的安装面的表面垂直,固定壳体的开口侧的上端相对固定壳体的开口侧的下端向传感器总成的方向倾斜预设角度,包壳扣合于固定壳体的开口侧,从而包壳和固定壳体形成内部容置其他部件的外壳,其中,包壳用于封闭固定壳体的开口侧的表面的截面为折线形状,Z方向与Y方向垂直。
再进一步可选地,包壳包括下端部和与下端部弯折连接的上端部,下端部与上端部之间的夹角与预设角度相等,下端部与固定壳体的开口侧的下端相匹配,上端部与固定壳体的开口侧的上端相匹配,探测口开设在下端部上,在传感器的工作状态下,传感器利用第一驱动电机、滑动部件和运动底板通过探测口伸出至外壳处,在传感器的非工作状态下,传感器利用第一驱动电机、滑动部件和运动底板回缩至外壳内,实现传感器的伸出及复位功能。
再进一步可选地,包壳通过卡扣结构扣合于固定壳体的一侧表面上,卡扣结构包括公扣和母扣,固定壳体的与开口侧相邻的表面上均设置有多个公扣,多个公扣沿包壳和固定壳体的扣合线设置,包壳上设置有与多个公扣一一相配合的多个母扣,通过母扣卡设于公扣上,包壳固定连接在固定壳体上。
再进一步可选地,固定壳体的远离包壳的一侧表面上开设有通口,通口处设置有用于封闭通口的软连接,软连接在传感器组件装配时被压缩。
再进一步可选地,还包括限位部件,限位部件设置于固定壳体的靠近载具与固定壳体的安装面的内表面上,且位于滑槽靠近外壳的开设探测口的一侧表面的一端,限位部件包括限位本体和两个卡块,两个卡块设置于限位本体的靠近外壳的与开设探测口的一侧表面相邻的两内侧表面的两端,固定壳体的靠近载具与固定壳体的安装面的内表面上开设有与卡块相配合的卡扣凹槽,限位部件通过卡块卡接于卡扣凹槽内,固定于固定壳体上,对滑动部件的滑动进行限位。
再进一步可选地,限位本体朝向滑动部件的一侧面上开设有多个定位孔,多个定位孔沿限位本体纵向等距离分布,滑动部件朝向限位部件的一侧面上设置有多个与定位孔相匹配的定位柱。
再进一步可选地,滑动部件背向限位部件的一侧面上设置有多个弹性凸起,多个弹性凸起沿滑动部件纵向分布,弹性凸起包括线性部和半弧形部,半弧形部的一端与线性部的一端相连,半弧形部的另一端与线性部的另一端 开口设置,在传感器的非工作状态时,滑动部件与外壳之间通过形变的弹性凸起相接触。
可选地,运动底板的远离传感器总成的表面上设置有滑动插销和驱动连接件插销,滑动部件的中部设置有第一轴套,滑动插销插入第一轴套,且滑动插销的远离运动底板的一端穿设至第一轴套外,滑动插销的远离运动底板的一端上设置有用于轴向定位的滑动挡圈,驱动连接件靠近运动底板的一端设置有第三轴套,驱动连接件插销插入第三轴套,且驱动连接件插销的远离运动底板的一端穿设至第三轴套外,驱动连接件插销的远离运动底板的一端上设置有用于轴向定位的驱动连接件挡圈。
可选地,第一驱动电机安装于外壳的靠近载具与固定壳体的安装面的内表面上,外壳的靠近载具与固定壳体的安装面的内表面上设置有第二轴套,第二轴套的设置位置与第一驱动电机的输出轴的设置位置相对应,驱动连接件靠近第一驱动电机的一端设置有电机驱动插销,电机驱动插销的靠近第一驱动电机的一端上设置有与第一驱动电机的输出轴相配合的凹槽结构,通过第一驱动电机的输出轴插入凹槽结构内,将第一驱动电机与驱动连接件相连,电机驱动插销的远离第一驱动电机的一端插入第二轴套。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的传感器组件在非工作状态下的结构示意图;
图2为本公开实施例提供的传感器组件在工作状态下的结构示意图;
图3为本公开实施例提供的传感器组件在非工作状态下的外壳内部结构 示意图;
图4为本公开实施例提供的传感器组件在初始工作时盖板升起状态下的外壳内部结构示意图;
图5为本公开实施例提供的传感器组件在工作状态下的外壳内部结构示意图;
图6为本公开实施例提供的传感器组件中传感器包壳的剖视图;
图7为本公开实施例提供的传感器组件中固定壳体与传感器运动机构总成的结构示意图;
图8为本公开实施例提供的传感器组件中固定壳体的俯视示意图;
图9为本公开实施例提供的传感器组件中滑动部件的俯视图;
图10为本公开实施例提供的传感器组件中限位部件的结构示意图;
图11为本公开实施例提供的传感器组件中传感器和传感器运动机构总成的结构示意图;
图12为本公开实施例提供的传感器组件中第一驱动电机和驱动连接件的结构示意图;
图13为本公开实施例提供的传感器组件中传感器和传感器运动机构总成的部分结构爆炸图;
图14为本公开实施例提供的传感器组件的结构示意图;
图15为本公开实施例提供的传感器组件的侧视图,其中,(b)为软连接展开状态下的侧视图,(a)为软连接压缩状态下的侧视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不 是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,本公开实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前,固定式传感器或固定式组件结构安装于汽车、飞行器的外壳上,一方面,传感器在工作状态下,镜头通常暴露在外界环境中,其在泥泞道路或风沙环境下极易由于周围环境因素的影响而被污染,进而影响传感器的功能和用户体验;另一方面,此种设计对车辆或飞行器的外饰造成较大的影响,影响外饰的平整性和美观度,另外,相关技术中有采用隐藏式的设计,但移动机构的路径一般为直线,直线路径的移动机构对于伸缩方向上的空间要求大,故较难应用在伸缩方向上空间相对局限的场合。
为了解决现有技术问题,本公开实施例公开了一种传感器组件,应用于载具上,以实现传感器在局限空间下的伸出及复位功能,且该传感器组件具有清洗传感器镜头的功能。本公开实施例中的载具为交通工具的统称,包括但不限于汽车、飞行器等。以下结合图1–图15进行详细说明。
图1–图8示出了根据本公开实施例提供的一种传感器组件。如图1–图8所示,该传感器组件包括外壳1和传感器总成4,外壳1作为传感器组件的壳体总成,其固定安装于载具上,用于传感器组件在载具上的固定,传感器总成4容置于外壳1内,外壳1对其起到保护的作用。
在一实施例中,如图2所示,在外壳1的一侧表面45上开设有探测口2,并在外壳1内设置传感器运动机构总成,在传感器总成4的工作状态下,利用传感器运动机构总成,传感器总成4的部分结构通过探测口2伸出,在传 感器总成4的非工作状态下,传感器总成4利用传感器运动机构总成回缩至外壳1的内部,从而实现传感器总成4在局限空间下的伸出及复位功能。
进一步的,在一实施例中,如图7所示,该传感器运动机构总成主要包括滑动部件13、运动底板12以及第一驱动电机14,第一驱动电机14作为驱动传感器总成4移动的电机,通过驱动连接件15(例如,连接杆)与运动底板12连接,驱动连接件15将第一驱动电机14产生的旋转扭矩传递给运动底板12,同时,滑动部件13与运动底板12转动连接,传感器总成4安装于运动底板12上,滑动部件13和运动底板12配合实现传感器总成4的曲线滑动功能。
详细的,如图4所示,在外壳1的靠近载具41与外壳1的安装面43的内表面44上开设有滑槽16,结合图8所示,滑槽16沿Y方向自外壳1的开设探测口2的一侧表面45向外壳1的开设探测口2的相对侧表面46延伸。滑动部件13滑设于滑槽16内,滑动部件13在外壳1内滑动,利用滑槽16对其滑动路线进行限定,运动底板12设置于滑动部件13的远离滑槽16的表面上,与滑动部件13转动连接,运动底板12和滑动部件13两者之间可相互转动,且可利用滑动部件13在滑槽16上限定的滑动路线,对运动底板12的滑动进行约束,第一驱动电机14通过驱动连接件15与运动底板12连接,驱动连接件15与运动底板12转动连接,利用第一驱动电机14和驱动连接件15向运动底板12传递旋转力矩,驱动运动底板12运动,容置于外壳1内的传感器总成4固定安装于运动底板12上,通过运动底板12的滑动实现传感器总成4在外壳1内部局限空间下的伸出及复位功能。当第一驱动电机14作业时,第一驱动电机14通过驱动连接件15传递旋转力矩至运动底板12,带动运动底板12转动,同时使滑动部件13在滑槽16内滑动,运动底板12和滑动部件13联动,实现运动底板12上每个点的曲线运动,从而实现传感器总成4的曲线滑动,也就是说,该传感器运动机构总成利用特殊的曲柄滑块传动机构实现传感器总成4在外壳1内的滑动,实现传感器总成4在局限空 间下的伸出及复位功能。
例如,在一个具体的实施例中,滑槽16可包括一个或多个线性滑槽。例如,如图8所示,滑槽16包括两个相互平行的线性滑槽,每个线性滑槽均分别沿Y方向自外壳1的开设探测口2的一侧表面45向外壳1的开设探测口2的相对侧表面46延伸,即线性滑槽的长度方向与Y方向平行。当第一驱动电机14工作时,第一驱动电机14通过驱动连接件15传递旋转力矩至运动底板12,使运动底板12相对于驱动连接件15以运动底板12和驱动连接件15转动的转动轴心为旋转中心转动,进而使运动底板12相对于滑动部件13以运动底板12和滑动部件13的转动轴心为旋转中心转动,以及滑动部件13在线性滑槽16内滑动,带动运动底板12沿线性滑槽16移动,也就是说,运动底板12和滑动部件13联动,使运动底板12转动并沿线性滑槽16线性移动,实现运动底板12上每个点的曲线运动,从而实现传感器总成4的曲线滑动。
在一实施例中,如图5所示,传感器总成4包括传感器包壳5、传感器47、支架11、清洗液管道10以及控制阀9。结合图13所示,传感器47的安装镜头48的相对一端52固定安装在运动底板12上,运动底板12围设传感器47的第一表面471、第二表面472、第三表面473,以确保传感器47在运动底板12上固定的稳定性。传感器包壳5装配于传感器47的安装镜头48的一端51,如图6所示,在传感器包壳5的内部开设有清洗液流道56,清洗液流道56的流道出口34朝向传感器47的镜头48的镜面49,清洗液管道10的出口端与清洗液流道56的流道入口相连通,清洗液由清洗液管道10输送至清洗液流道56内,并经流道出口34喷向传感器47的镜头48的镜面49,对传感器47的镜头48进行清洗作业,保证在任何工作环境中传感器47的镜头48的清洁度,进而保证传感器47的作业功能。此外,在清洗液管道10上设置有控制阀9,利用控制阀9控制清洗液管道10的通断及清洗液管道10内清洗液的流量,实现传感器47的镜头48的自动清洗,并在传感器47的第四表面474上安装有支架11,支架11与传感器47、运动底板12固定连接, 控制阀9、清洗液管道10固定于支架11上,从而利用支架11实现控制阀9、清洗液管道10在外壳1内的固定。其中,如图13所示,传感器47包括第一表面471、第二表面472、第三表面473和第四表面474,第一表面471、第二表面472、第三表面473、第四表面474依次首尾连接。在一个具体的实施过程中,控制阀9可选用电磁阀,控制清洗作业的开始与停止,并控制清洗液的使用量,其外形尺寸小,既节省空间,又轻巧美观,且反应更灵敏。
在传感器总成4的工作状态(即传感器47的工作状态)下,传感器运动机构总成将装配有传感器包壳5的传感器47的安装镜头48的一端51伸出外壳1外。如图5所示,传感器包壳5远离传感器47的镜头48的一端53周缘向远离传感器47的方向延伸设置有突起部42,当传感器包壳5通过探测口2伸出至外壳1的外部时,突起部42置于外壳1内,抵接于外壳1的一侧表面45在探测口2附近的内表面,限制传感器包壳5的运动并对探测口2进行封堵,从而传感器包壳5对传感器47起到保护的作用,并结合突起部42对探测口2进行封堵,以保证工作状态时外壳1内部的密封性。
在一实施例中,如图3–图5所示,该传感器组件还包括盖板运动机构6、盖板3以及第二驱动电机7,盖板运动机构6设置于外壳1的内部靠近探测口2的一端,位于外壳1的与开设探测口2的一侧表面45相邻的两内侧表面(内侧表面54、内侧表面55),用于带动盖板3运动,盖板3与盖板运动机构6连接,即盖板3靠近外壳1的内侧表面54、内侧表面55的两端分别与设置在外壳1的内侧表面54、内侧表面55上的盖板运动机构6连接,第二驱动电机7与盖板运动机构6相连,驱动盖板运动机构6带动盖板3沿外壳1的开设探测口2的一侧表面45的方向运动。当在非工作状态时,传感器总成4回缩至外壳1的内部,盖板3位于探测口2处,对探测口2进行封堵,以保证非工作状态时外壳1内部的密封性,当在工作状态时,盖板3沿外壳1的开设探测口2的一侧表面45向远离探测口2的方向运动,即将盖板3从图3的初始位置移动至图4的升起位置,之后,传感器包壳5通过探测口2 伸出至外壳1的外部,突起部42置于外壳1内,对探测口2进行封堵,以保证工作状态时外壳1内部的密封性,从而利用盖板3以及传感器包壳5、突起部42尽可能保证外壳1内部的密封性,并结合传感器运动机构总成将传感器设计为可伸缩隐藏式。
在一实施例中,如图2所示,外壳1包括固定壳体27和包壳28,包壳28固定连接于固定壳体27的一侧表面上,包壳28与固定壳体27装配共同组成传感器组件的壳体总成。详细的,固定壳体27安装于载具41上,以将外壳1整体固定在载具41上,固定壳体27作为外壳1与载具41之间连接的部分,滑槽16开设于固定壳体27的靠近载具41与固定壳体27的安装面43的内表面44上,包壳28装配在固定壳体27上,形成相对封闭的外壳1,包壳28的靠近载具41与固定壳体27的安装面43的一端开设有探测口2,且传感器总成4的设置高度与探测口2的开设高度相对应,以便于传感器总成4通过探测口2伸出外壳1,当在非工作状态时,传感器总成4回缩至外壳1的内部,当在工作状态时,传感器总成4通过第一驱动电机14、滑动部件13和运动底板12移动至探测口2处,传感器包壳5通过探测口2伸出至外壳1的外部,突起部42置于外壳1内,对探测口2进行封堵。
在一个具体的实施例中,图3–图5所示,固定壳体27为一侧开口的壳体,需注意并理解的是,此处的固定壳体27的开口侧指的是上述中外壳1的一侧表面45,在Z方向上,固定壳体27的开口侧的下端(即内侧表面54、内侧表面55所在面靠近载具41与固定壳体27的安装面43的一端)与固定壳体27的靠近载具41与固定壳体27的安装面43的表面(即内表面44所在面)垂直,固定壳体27的开口侧的上端(即内侧表面54、内侧表面55所在面远离载具41与固定壳体27的安装面43的一端)相对固定壳体27的开口侧的下端向传感器总成4的方向倾斜预设角度,从而尽可能减小传感器组件整体所占空间的大小。包壳28用于封闭固定壳体27的开口侧的表面,扣合于固定壳体27的开口侧,从而包壳28和固定壳体27形成内部容置其他部件 的外壳1,其中,包壳28用于封闭固定壳体27的开口侧的表面的截面为折线形状,包壳28的形状大小与固定壳体27的开口侧的形状大小相对应,以保证包壳28和固定壳体27所形成的外壳1的相对密封性。
在本公开实施例中,Z方向与Y方向垂直。
需要注意并理解的是,本文中的垂直均并不一定指两者之间呈90°,也可以具有一定的倾斜角度。
进一步的,如图2所示,包壳28包括下端部57和与下端部57弯折连接的上端部58,下端部57与上端部58之间的夹角与预设角度相等,以保证包壳28折线形状的夹角与固定壳体27的开口侧的上下端之间的夹角相同,且下端部57与固定壳体27的开口侧的下端相匹配,上端部58与固定壳体27的开口侧的上端相匹配,进一步保证包壳28的形状大小与固定壳体27的开口侧相匹配,使包壳28扣合在固定壳体27的开口侧,完全封闭固定壳体27的开口侧的表面。相对应的,探测口2开设在包壳28的下端部57上,在传感器47的工作状态下,传感器47利用第一驱动电机14、滑动部件13和运动底板12通过探测口2伸出至外壳1处,在传感器47的非工作状态下,传感器47利用第一驱动电机14、滑动部件13和运动底板12回缩至外壳1内,实现传感器47的伸出及复位功能。
在一实施例中,如图2所示,包壳28通过卡扣结构50扣合于固定壳体27的一侧表面上,以实现包壳28与固定壳体27之间的固定连接。具体的,结合图1所示,卡扣结构50包括公扣29和母扣30,固定壳体27的与开口侧相邻的表面上均设置有多个公扣29,多个公扣29沿包壳28和固定壳体27的扣合线设置,包壳28上设置有与多个公扣29一一相配合的多个母扣30,从而通过母扣30卡设于公扣29上,将包壳28固定连接在固定壳体27上,结构简单,且易于安装拆卸。
此外,如图8和图14所示,在固定壳体27的远离包壳28的一侧表面上 开设有通口271,通口271处设置有用于封闭通口271的软连接26,软连接26在传感器组件装配时可被压缩,暂时缩小传感器组件在Y方向上的尺寸,软连接26由较软、可压缩量较大的材料制成,如硅胶、TPU等。
在具体的实施过程中,如图15所示,在载具41内设置有用于安装该传感器组件的安装支架40,例如,在汽车的车身内部设置安装支架40,或在飞行器本体的内部设置安装支架40,再结合图4所示,在固定壳体27的内侧表面54、内侧表面55各自所在面的外侧下端分别设置有安装耳35,通过安装耳35将固定壳体27固定连接在载具41的安装支架40的安装面43上。进一步的,如图15所示,当载具41固定该传感器组件的安装支架40的形状为“L”型,且在Y方向上,安装支架40与载具41(例如,车身或飞行器本体)之间的距离不大于传感器组件体正常状态下在Y方向上的宽度时,在进行装配时,该传感器组件整体需从(a)位置经图15的虚线达到(b)位置,从图15中可看出,从(a)位置到(b)位置的装配空间较为狭窄,安装支架40与载具41之间的距离不大于传感器组件整体正常状态下在Y方向上的宽度,不利于传感器组件的整体安装,此时,可在(a)位置处,将软连接26压缩或折叠入外壳1内,缩小传感器组件在Y方向上的尺寸,从而使传感器组件易于通过狭窄的装配空间达到(b)位置,当传感器组件向上装配到达(b)位置固定安装后,再可利用传感器47的向后推力将软连接26展开。
在一实施例中,如图4所示,该传感器组件还包括限位部件8,限位部件8设置于固定壳体27的靠近载具41与固定壳体27的安装面43的内表面44上,且位于滑槽16靠近外壳1的开设探测口2的一侧表面45的一端,在传感器总成4向外伸出过程中,利用限位部件8将传感器总成4固定在工作位置,限制其继续往外伸出。具体的,在固定壳体27的靠近载具41与固定壳体27的安装面43的内表面44靠近探测口2的一端开设有与限位部件8相配合的卡扣凹槽17,限位部件8通过卡接于卡扣凹槽17内,固定于固定壳体27的内表面44上,对滑动部件13的滑动进行限位。
在一个具体的实施例中,如图10所示,限位部件8包括限位本体36和两个卡块37,两个卡块37设置于限位本体36的靠近外壳1的与开设探测口2的一侧表面45相邻的两内侧表面(内侧表面54、内侧表面55)的两端(限位本体36的一端361、限位本体36的另一端362),卡扣凹槽17开设在固定壳体27的靠近载具41与固定壳体27的安装面43的内表面44上,与卡块37相配合,在装配限位部件8过程中,卡块37扣入固定壳体27的卡扣凹槽17中,使限位部件8与固定壳体27固定连接。
在一实施例中,如图10所示,在限位本体36上开设有一个或多个通槽38,以尽可能减小传感器组件的整体重量,需注意并理解的是,所开设的各个通槽38的形状大小可以相同,也可以不相同,且所开设的通槽38不能影响限位部件8的其他结构设计,且需保证限位部件8本身的结构强度。
进一步的,如图9和图10所示,限位部件8朝向滑动部件13的一侧面上开设有多个定位孔31,即定位孔31开设在限位本体36朝向滑动部件13的一侧面上,多个定位孔31沿限位本体36纵向等距离分布,相应的,滑动部件13朝向限位部件8的一侧面上设置有多个与定位孔31相匹配的定位柱32,通过定位柱32插入定位孔31内,限位部件8阻挡滑动部件13继续滑动,从而将传感器总成4固定在指定的工作位置处。
如图8所示,由于滑槽16开设在外壳1的内表面44靠近探测口2的一端上,滑槽16与外壳1的后侧表面(即外壳1的开设探测口2的相对侧表面46)之间具有预设距离,也就是说,滑动部件13将传感器总成4移动回外壳1的内部时,滑槽16在非工作位置有结构限位,故而在非工作位置不需要额外的限位部件。
进一步的,如图9所示,在滑动部件13背向限位部件8的一侧面上设置有多个弹性凸起33,多个弹性凸起33沿滑动部件13纵向分布,当传感器总成4回到非工作位置时,第一驱动电机14提供的旋转扭矩使滑动部件13的 弹性凸起33受到挤压而形变,一方面,可避免滑动部件13与外壳1之间的碰撞,另一方面,在非工作位置时,滑动部件13与外壳1之间通过形变的弹性凸起33相接触,能够保证在载具震动时其不会晃动发出异响。
在一实施例中,如图9所示,弹性凸起33包括线性部331和半弧形部332,线性部331靠近滑动部件13的一侧表面与滑动部件13固定连接,半弧形部332的一端与线性部331的远离滑动部件13的一侧表面的一端相连,半弧形部332的另一端与线性部331的远离滑动部件13的一侧表面的另一端开口设置,在传感器47的非工作状态时,滑动部件13与外壳1之间通过形变的半弧形部332相接触。
在一个具体的实施过程中,驱动连接件15可与第一驱动电机14的输出轴39集成,例如,驱动连接件15与第一驱动电机14的输出轴39一体成型,减少零部件的数量以及装配步骤。另外,由于在传感器总成4移动时,滑动部件13与固定壳体27滑动摩擦,因此,滑动部件13可使用摩擦系数极低的材料制作,如聚四氟乙烯、聚甲醛等。
在一实施例中,结合图11、图12和图13所示,运动底板12的远离传感器总成4的表面121上设置有滑动插销22和驱动连接件插销21。
滑动部件13的中部设置有第一轴套24,滑动插销22插入第一轴套24,且滑动插销22的远离运动底板12的一端穿设至第一轴套24外,滑动插销22的远离运动底板12的一端上设置有用于轴向定位的滑动挡圈25。其中,滑动插销22与运动底板12过盈压接,例如,当运动底板12的生产工艺为注塑或压铸,滑动插销22可以与运动底板12集成为同一部件。第一轴套24与滑动部件13过盈压接,在运动底板12与滑动部件13有相对旋转时,第一轴套24与滑动插销22滑动摩擦,若摩擦的速度与压力均较小,且滑动部件13由自润滑材料制成,第一轴套24可以与滑动部件13集成为同一部件。滑动挡圈25用于防止滑动部件13与运动底板12装配之后有竖直方向上的相对 运动,其也可用卡簧代替。
驱动连接件15靠近运动底板12的一端设置有第三轴套19,驱动连接件插销21插入第三轴套19,且驱动连接件插销21的远离运动底板12的一端穿设至第三轴套19外,驱动连接件插销21的远离运动底板12的一端上设置有用于轴向定位的驱动连接件挡圈23。其中,第三轴套19过盈压接在驱动连接件15上,若驱动连接件15选用摩擦系数极低的材料制成,如聚四氟乙烯、聚甲醛等,第三轴套19可与驱动连接件15集成为同一部件。驱动连接件插销21与运动底板12过盈压接,若运动底板12的生产工艺为注塑或压铸,驱动连接件插销21可以与运动底板12集成为同一部件。驱动连接件挡圈23用于防止驱动连接件15与驱动连接件插销21装配之后有竖直方向上的相对运动,其可用卡簧代替。
在一实施例中,结合图8、图11、图12和图13所示,第一驱动电机14安装于外壳1的靠近载具41与固定壳体27的安装面43的内表面44上,具体的,外壳1的靠近载具41与固定壳体27的安装面43的内表面44上设置有第二轴套18,第二轴套18的设置位置与第一驱动电机14的输出轴39的设置位置相对应,驱动连接件15靠近第一驱动电机14的一端设置有电机驱动插销20,电机驱动插销20的靠近第一驱动电机14的一端上设置有与第一驱动电机14的输出轴39相配合的凹槽结构201,通过第一驱动电机14的输出轴39插入凹槽结构201内,将第一驱动电机14与驱动连接件15相连,电机驱动插销20的远离第一驱动电机14的一端插入第二轴套18。其中,第二轴套18过盈压接在固定壳体27上,其使用摩擦系数极低的材料制成,如聚四氟乙烯、聚甲醛等,或采用具有聚四氟乙烯、聚甲醛涂层的金属件。电机驱动插销20与驱动连接件15过盈压接,电机驱动插销20的凹槽结构201与第一驱动电机14的输出轴39对配,若驱动连接件15的生产工艺为注塑或压铸,电机驱动插销20可以与驱动连接件15集成为同一部件。
以上是对本实施例提供的传感器组件的各个部件、它们之间的连接关系进行了介绍,下面结合图1–图15,对传感器组件的工作原理进行详述。
在本公开实施例中,传感器47在非工作状态下,传感器组件的结构如图1所示,传感器47在工作状态下,传感器组件的结构如图2所示。传感器组件的外壳1内的部件初始位置如图3所示,此时,盖板3处于盖板运动机构6的底端,传感器总成4处于缩回状态。当第二驱动电机7工作时,驱动盖板运动机构6作业,带动盖板3运动至升起位置,如图4所示。之后,第一驱动电机14启动并通过驱动连接件15传递旋转力矩至运动底板12,旋转力矩使使运动底板12相对于驱动连接件15以运动底板12和驱动连接件15转动的转动轴心(即驱动连接件插销21的轴心)为旋转中心转动,进而使运动底板12相对于滑动部件13以运动底板12和滑动部件13的转动轴心(即滑动插销22的轴心)为旋转中心转动。其中,运动底板12转动的方向与角度取决于驱动连接件插销21与滑动插销22的相对位置关系。如图9与图10所示,滑动部件13朝向限位部件8的一侧面上设置有2个定位柱32,相应的,限位部件8朝向滑动部件13的一侧面上设置有2个定位孔31。当滑动部件13移动至外壳1靠近探测口2的一端与限位部件8接触时,定位柱32插入定位孔31内,传感器47到达工作位置。此外,第一驱动电机14具有自锁功能,使载具41在震动时,传感器47可以固定在工作位置,工作性能更稳定可靠。
当传感器47的镜头48在工作状态下受到污染,需要清洗镜头48时,控制阀9控制清洗液通过清洗液管道10进入传感器包壳5的清洗液流道56内。清洗液从传感器包壳5位于传感器47的镜头48附近的流道出口34喷出,将镜头48清洗干净。
当传感器总成4需要复位时,第一驱动电机14启动并通过驱动连接件15传递反向旋转力矩至运动底板12。滑动部件13依照原路径将传感器总成4移 动回非工作位置。如图9所示,滑动部件13背向限位部件8的一侧面上有2个弹性凸起33,当传感器47回到非工作位置时,第一驱动电机14提供的旋转扭矩使滑动部件13的弹性凸起33受到挤压形变。第一驱动电机14断电后,弹性凸起33的形变与第一驱动电机14的自锁使传感器47固定在非工作位置,在载具41震动时不会晃动发出异响。
第一驱动电机14的输出轴39与电机驱动插销20的凹槽结构201对配。当第一驱动电机14启动之后,驱动连接件15的另一端以第一驱动电机14的输出轴39的轴心为旋转中心做圆弧运动。驱动连接件挡圈23使驱动连接件15与运动底板12之间只允许以驱动连接件插销21轴心为旋转中心的相对转动。驱动连接件15与驱动连接件插销21在传感器总成4运动过程中有滑动摩擦,第三轴套19起到润滑作用。类似的,滑动挡圈25使滑动部件13与运动底板12之间只允许以滑动插销22轴心为旋转中心的相对转动。滑动部件13与滑动插销22在传感器总成4运动过程中有滑动摩擦,第一轴套24起到润滑作用。在传感器总成4运动过程中,电机驱动插销20与固定壳体27有滑动摩擦,第二轴套18起到润滑作用。
综上,本公开实施例公开一种传感器组件,利用特殊的曲柄滑块传动机构和盖板运动机构,实现了传感器在局限空间下的伸出及复位功能,降低载具的风阻和噪声,并对传感器起到保护的作用,且该传感器组件还具有清洗传感器镜头的功能,保证传感器持续长时间的正常工作和最佳的工作状态。
本公开实施例公开一种传感器组件,技术效果至少包括:
1、在一实施例中,利用特殊的曲柄滑块传动机构和产生旋转力矩的驱动电机,实现了传感器的曲线滑动功能,是本公开实施例的技术效果之一。
2、在一实施例中,利用控制阀、清洗液管道以及传感器包壳内部的清洗液流道,实现了传感器的镜头的自动清洗功能,是本公开实施例的技术效果之一。
3、在一实施例中,通过软连接的结构设计,在装配时可暂时缩小传感器组件尺寸,是本公开实施例的技术效果之一。
本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本公开所必须的。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
另外,在本公开实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
最后应说明的是:以上实施例,仅为本公开的具体实施方式,用以说明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵盖在本公开的 保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种传感器组件,应用于载具(41)上,包括:
    外壳(1),所述外壳(1)固定安装于所述载具(41)上,所述外壳(1)的一侧表面(45)上开设有探测口(2),所述外壳(1)的靠近所述载具(41)与所述外壳(1)的安装面(43)的内表面(44)上开设有滑槽(16),所述滑槽(16)沿Y方向自所述外壳(1)的开设所述探测口(2)的一侧表面(45)向所述外壳(1)的开设所述探测口(2)的相对侧表面(46)延伸,滑动部件(13),所述滑动部件(13)滑设于所述滑槽(16)内,运动底板(12),所述运动底板(12)设置于所述滑动部件(13)的远离所述滑槽(16)的表面上,与所述滑动部件(13)转动连接,第一驱动电机(14),所述第一驱动电机(14)通过驱动连接件(15)与所述运动底板(12)连接,所述驱动连接件(15)与所述运动底板(12)转动连接,传感器总成(4),所述传感器总成(4)固定安装于所述运动底板(12)上,所述第一驱动电机(14)通过所述驱动连接件(15)传递旋转力矩至所述运动底板(12),带动所述运动底板(12)转动,同时使所述滑动部件(13)在所述滑槽(16)内滑动,所述运动底板(12)和所述滑动部件(13)联动,实现所述运动底板(12)上每个点的曲线运动,从而实现所述传感器总成(4)的曲线滑动。
  2. 根据权利要求1所述的传感器组件,其中,所述滑槽(16)包括一个或多个线性滑槽(16),当所述第一驱动电机(14)工作时,所述第一驱动电机(14)通过所述驱动连接件(15)传递旋转力矩至所述运动底板(12),使所述运动底板(12)相对于所述驱动连接件(15)以所述运动底板(12)和所述驱动连接件(15)转动的转动轴心为旋转中心转动,进而使所述运动底板(12)相对于所述滑动部件(13)以所述运动底板(12)和所述滑动部件(13)的转动轴心为旋转中心转动,以及所述滑动部件(13)在所述线性滑槽(16)内滑动,带动所述运动底板(12)沿所述线性滑槽(16)移动,所述运动底板 (12)和所述滑动部件(13)联动,使所述运动底板(12)转动并沿所述线性滑槽(16)线性移动,实现所述运动底板(12)上每个点的曲线运动,从而实现所述传感器总成(4)的曲线滑动。
  3. 根据权利要求1或2所述的传感器组件,其中,所述传感器总成(4)包括传感器包壳(5)、传感器、支架(11)、清洗液管道(10)以及控制阀(9),所述传感器包壳(5)装配于所述传感器(47)的安装镜头(48)的一端,所述传感器包壳(5)的内部开设有清洗液流道(56),所述清洗液流道(56)的流道出口(34)朝向所述传感器(47)的镜头(48)的镜面(49),所述传感器(47)的安装镜头(48)的相对一端(52)固定安装在所述运动底板(12)上,所述运动底板(12)围设所述传感器(47)的第一表面(471)、第二表面(472)、第三表面(473),所述支架(11)安装于所述传感器(47)的第四表面(474)上,与所述传感器(47)、运动底板(12)固定连接,其中,所述传感器(47)的第一表面(471)、第二表面(472)、第三表面(473)、第四表面(474)依次首尾连接,所述清洗液管道(10)的出口端与所述清洗液流道(56)的流道入口相连通,所述清洗液管道(10)上设置有所述控制阀(9),且所述控制阀(9)、清洗液管道(10)固定于所述支架(11)上。
  4. 根据权利要求3所述的传感器组件,其中,所述传感器包壳(5)远离所述传感器(47)的镜头(48)的一端周缘向远离所述传感器(47)的方向延伸设置有突起部(42),当所述传感器包壳(5)通过所述探测口(2)伸出至所述外壳(1)的外部时,所述突起部(42)置于所述外壳(1)内,限制所述传感器包壳(5)的运动并对所述探测口(2)进行封堵。
  5. 根据权利要求4所述的传感器组件,还包括:
    盖板运动机构(6),所述盖板运动机构(6)设置于所述外壳(1)的内部靠近所述探测口(2)的一端,位于所述外壳(1)的与开设所述探测口(2)的一侧表面(45)相邻的两内侧表面,盖板(3),所述盖板(3)与盖板运动 机构(6)连接,第二驱动电机(7),所述第二驱动电机(7)与所述盖板运动机构(6)相连,驱动所述盖板运动机构(6)带动所述盖板(3)沿所述外壳(1)的开设所述探测口(2)的一侧表面(45)的方向运动,当在非工作状态时,所述传感器总成(4)回缩至所述外壳(1)的内部,所述盖板(3)位于所述探测口(2)处,对所述探测口(2)进行封堵,当在工作状态时,所述盖板(3)沿所述外壳(1)的开设所述探测口(2)的一侧表面(45)向远离所述探测口(2)的方向运动,所述传感器包壳(5)通过所述探测口(2)伸出至所述外壳(1)的外部,所述突起部(42)置于所述外壳(1)内,对所述探测口(2)进行封堵。
  6. 根据权利要求4或5所述的传感器组件,其中,所述外壳(1)包括固定壳体(27)和包壳(28),所述包壳(28)固定连接于所述固定壳体(27)的一侧表面(45)上,所述固定壳体(27)安装于所述载具(41)上,所述滑槽(16)开设于所述固定壳体(27)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的内表面上,所述包壳(28)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的一端开设有所述探测口(2),且所述传感器总成(4)的设置高度与所述探测口(2)的开设高度相对应,所述传感器总成(4)通过所述探测口(2)伸出所述外壳(1),当在非工作状态时,所述传感器总成(4)回缩至所述外壳(1)的内部,当在工作状态时,所述传感器总成(4)通过所述第一驱动电机(14)、滑动部件(13)和所述运动底板(12)移动至所述探测口(2)处,所述传感器包壳(5)通过所述探测口(2)伸出至所述外壳(1)的外部,所述突起部(42)置于所述外壳(1)内,对所述探测口(2)进行封堵。
  7. 根据权利要求6所述的传感器组件,其中,所述固定壳体(27)为一侧开口的壳体,在Z方向上,所述固定壳体(27)的开口侧的下端与所述固定壳体(27)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的表面垂直,所述固定壳体(27)的开口侧的上端相对所述固定壳体(27)的开 口侧的下端向所述传感器总成(4)的方向倾斜预设角度,所述包壳(28)扣合于所述固定壳体(27)的开口侧,从而所述包壳(28)和所述固定壳体(27)形成内部容置其他部件的所述外壳(1),其中,所述包壳(28)用于封闭所述固定壳体(27)的开口侧的表面的截面为折线形状,所述Z方向与所述Y方向垂直。
  8. 根据权利要求6或7所述的传感器组件,其中,所述包壳(28)包括下端部(57)和与所述下端部(57)弯折连接的上端部(58),所述下端部(57)与所述上端部(58)之间的夹角与所述预设角度相等,所述下端部(57)与所述固定壳体(27)的开口侧的下端相匹配,所述上端部(58)与所述固定壳体(27)的开口侧的上端相匹配,所述探测口(2)开设在所述下端部(57)上,在所述传感器的工作状态下,所述传感器利用所述第一驱动电机(14)、滑动部件(13)和所述运动底板(12)通过所述探测口(2)伸出至所述外壳(1)处,在所述传感器的非工作状态下,所述传感器利用所述第一驱动电机(14)、滑动部件(13)和所述运动底板(12)回缩至所述外壳(1)内,实现所述传感器(47)的伸出及复位功能。
  9. 根据权利要求6或7所述的传感器组件,其中,所述包壳(28)通过卡扣结构(50)扣合于所述固定壳体(27)的一侧表面(45)上,所述卡扣结构(50)包括公扣(29)和母扣(30),所述固定壳体(27)的与开口侧相邻的表面上均设置有多个所述公扣(29),多个所述公扣(29)沿所述包壳(28)和所述固定壳体(27)的扣合线设置,所述包壳(28)上设置有与多个所述公扣(29)一一相配合的多个所述母扣(30),通过所述母扣(30)卡设于所述公扣(29)上,所述包壳(28)固定连接在所述固定壳体(27)上。
  10. 根据权利要求6至9任一项所述的传感器组件,其中,所述固定壳体(27)的远离所述包壳(28)的一侧表面(45)上开设有通口(271),所述通口(271)处设置有用于封闭所述通口(271)的软连接(26),所述软连 接(26)在所述传感器组件装配时被压缩。
  11. 根据权利要求6至10任一项所述的传感器组件,还包括限位部件(8),所述限位部件(8)设置于所述固定壳体(27)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的内表面(44)上,且位于所述滑槽(16)靠近所述外壳(1)的开设所述探测口(2)的一侧表面(45)的一端,所述限位部件(8)包括限位本体(36)和两个卡块(37),两个所述卡块(37)设置于所述限位本体(36)的靠近所述外壳(1)的与开设所述探测口(2)的一侧表面(45)相邻的两内侧表面的两端,所述固定壳体(27)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的内表面(44)上开设有与所述卡块(37)相配合的卡扣凹槽(17),所述限位部件(8)通过所述卡块(37)卡接于所述卡扣凹槽(17)内,固定于所述固定壳体(27)上,对所述滑动部件(13)的滑动进行限位。
  12. 根据权利要求11所述的传感器组件,其中,所述限位本体(36)朝向所述滑动部件(13)的一侧面上开设有多个定位孔(31),多个所述定位孔(31)沿所述限位本体(36)纵向等距离分布,所述滑动部件(13)朝向所述限位部件(8)的一侧面上设置有多个与所述定位孔(31)相匹配的定位柱(32)。
  13. 根据权利要求11或12所述的传感器组件,其中,所述滑动部件(13)背向所述限位部件(8)的一侧面上设置有多个弹性凸起(33),多个所述弹性凸起(33)沿所述滑动部件(13)纵向分布,所述弹性凸起(33)包括线性部(331)和半弧形部(332),所述半弧形部(332)的一端与所述线性部(331)的一端相连,所述半弧形部(332)的另一端与所述线性部(331)的另一端开口设置,在所述传感器(47)的非工作状态时,所述滑动部件(13)与所述外壳(1)之间通过形变的弹性凸起(33)相接触。
  14. 根据权利要求1至13中任一项所述的传感器组件,其中,所述运动底板(12)的远离所述传感器总成(4)的表面上设置有滑动插销(22)和驱 动连接件插销(21),所述滑动部件(13)的中部设置有第一轴套(24),所述滑动插销(22)插入所述第一轴套(24),且所述滑动插销(22)的远离所述运动底板(12)的一端穿设至所述第一轴套(24)外,所述滑动插销(22)的远离所述运动底板(12)的一端上设置有用于轴向定位的滑动挡圈(25),所述驱动连接件(15)靠近所述运动底板(12)的一端设置有第三轴套(19),所述驱动连接件插销(21)插入所述第三轴套(19),且所述驱动连接件插销(21)的远离所述运动底板(12)的一端穿设至所述第三轴套(19)外,所述驱动连接件插销(21)的远离所述运动底板(12)的一端上设置有用于轴向定位的驱动连接件(15)挡圈。
  15. 根据权利要求6至14中任一项所述的传感器组件,其中,所述第一驱动电机(14)安装于所述外壳(1)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的内表面(44)上,所述外壳(1)的靠近所述载具(41)与所述固定壳体(27)的安装面(43)的内表面(44)上设置有第二轴套(18),所述第二轴套(18)的设置位置与所述第一驱动电机(14)的输出轴(39)的设置位置相对应,所述驱动连接件(15)靠近所述第一驱动电机(14)的一端设置有电机驱动插销(20),所述电机驱动插销(20)的靠近所述第一驱动电机(14)的一端上设置有与所述第一驱动电机(14)的输出轴(39)相配合的凹槽结构(201),通过所述第一驱动电机(14)的输出轴(39)插入所述凹槽结构(201)内,将所述第一驱动电机(14)与所述驱动连接件(15)相连,所述电机驱动插销(20)的远离所述第一驱动电机(14)的一端插入所述第二轴套(18)。
PCT/CN2023/085034 2022-03-31 2023-03-30 一种传感器组件 WO2023186001A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210329305.1A CN116923267A (zh) 2022-03-31 2022-03-31 一种传感器组件
CN202220725184.8 2022-03-31
CN202220725184.8U CN217294412U (zh) 2022-03-31 2022-03-31 一种传感器组件
CN202210329305.1 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023186001A1 true WO2023186001A1 (zh) 2023-10-05

Family

ID=88199367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085034 WO2023186001A1 (zh) 2022-03-31 2023-03-30 一种传感器组件

Country Status (1)

Country Link
WO (1) WO2023186001A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217710A1 (en) * 2014-02-06 2015-08-06 Ford Global Technologies, Llc Vehicle sensor assembly with lever assist
US20160009230A1 (en) * 2014-07-10 2016-01-14 Toyota Jidosha Kabushiki Kaisha Attachment Structure for In-Vehicle Camera
KR20190126581A (ko) * 2018-05-02 2019-11-12 아진산업(주) 다기능 adas용 전방 카메라 시스템
CN113043961A (zh) * 2021-03-25 2021-06-29 经纬恒润(天津)研究开发有限公司 一种交通工具及其传感器运动装置
CN215928930U (zh) * 2021-08-26 2022-03-01 经纬恒润(天津)研究开发有限公司 一种零部件移动机构和载运工具
CN217294412U (zh) * 2022-03-31 2022-08-26 经纬恒润(天津)研究开发有限公司 一种传感器组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150217710A1 (en) * 2014-02-06 2015-08-06 Ford Global Technologies, Llc Vehicle sensor assembly with lever assist
US20160009230A1 (en) * 2014-07-10 2016-01-14 Toyota Jidosha Kabushiki Kaisha Attachment Structure for In-Vehicle Camera
KR20190126581A (ko) * 2018-05-02 2019-11-12 아진산업(주) 다기능 adas용 전방 카메라 시스템
CN113043961A (zh) * 2021-03-25 2021-06-29 经纬恒润(天津)研究开发有限公司 一种交通工具及其传感器运动装置
CN215928930U (zh) * 2021-08-26 2022-03-01 经纬恒润(天津)研究开发有限公司 一种零部件移动机构和载运工具
CN217294412U (zh) * 2022-03-31 2022-08-26 经纬恒润(天津)研究开发有限公司 一种传感器组件

Similar Documents

Publication Publication Date Title
US6442795B1 (en) Damper for a pivot door
JP4733889B2 (ja) 軸受装置
JP7356521B2 (ja) 電子膨張弁及びその取り付け方法
WO2023186001A1 (zh) 一种传感器组件
WO2019242609A1 (zh) 铰接式阀门
CN217294412U (zh) 一种传感器组件
CN205559858U (zh) 调温阀
CN213332501U (zh) 一种高灵活度的轨道球阀
CN107314150A (zh) 调温阀
CN103968490A (zh) 用于建筑物的通风装置
CN107939820B (zh) 扭力线性变化的封闭式转轴及电子设备
JP3139940B2 (ja) バルブ
CN116123294A (zh) 阀门
CN114791048A (zh) 止回阀
CN211343156U (zh) 一种液体火箭发动机的阀门机构及火箭发动机
CN2627433Y (zh) 一种冰箱用自动关门装置
JP3625665B2 (ja) エアダンパー
CN111963712B (zh) 一种高灵活度的轨道球阀及其使用方法
JP3099345B2 (ja) 逆止弁
CN114623240A (zh) 阀针组件及具有其的电子膨胀阀
US20050092950A1 (en) Motor brake structure and manufacturing method thereof
CN221423973U (zh) 一种流量阀
JP4315889B2 (ja) ヒンジ及びシート開放装置
JP2550751Y2 (ja) ベローズ式アクチュエータ
JP3252337B2 (ja) ダンパー装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778366

Country of ref document: EP

Kind code of ref document: A1