WO2023185672A1 - 一种防雾涂层及其制备方法、及产品 - Google Patents

一种防雾涂层及其制备方法、及产品 Download PDF

Info

Publication number
WO2023185672A1
WO2023185672A1 PCT/CN2023/083655 CN2023083655W WO2023185672A1 WO 2023185672 A1 WO2023185672 A1 WO 2023185672A1 CN 2023083655 W CN2023083655 W CN 2023083655W WO 2023185672 A1 WO2023185672 A1 WO 2023185672A1
Authority
WO
WIPO (PCT)
Prior art keywords
fog coating
formula
coating according
monomer
plasma
Prior art date
Application number
PCT/CN2023/083655
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技股份有限公司 filed Critical 江苏菲沃泰纳米科技股份有限公司
Publication of WO2023185672A1 publication Critical patent/WO2023185672A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/054Forming anti-misting or drip-proofing coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present disclosure relates to the field of plasma chemistry, and in particular to an anti-fog coating, its preparation method, and products.
  • Transparent materials such as glass, plastic
  • Transparent materials are widely used in industrial and agricultural production, daily life and military fields, such as goggles, laser protective goggles, telescopes and lenses of various camera equipment, observation windows of various machinery, sports Diving goggles, bathroom glass, chemical or biological protective masks, vehicle windshields and rearview mirrors, EOD protection equipment, helmets, solar panels, observation windows of measuring instruments, glass covers, glass walls of greenhouses, etc.
  • goggles laser protective goggles, telescopes and lenses of various camera equipment, observation windows of various machinery, sports Diving goggles, bathroom glass, chemical or biological protective masks, vehicle windshields and rearview mirrors, EOD protection equipment, helmets, solar panels, observation windows of measuring instruments, glass covers, glass walls of greenhouses, etc.
  • glasses will make us “see through the fog” when we breathe; in the cold winter, fogging on the surface of the windshield will greatly affect our visibility and even cause accidents.
  • the fog problem brings a lot of inconvenience to people's work and life.
  • an anti-fog coating on the surface of a transparent material is a common anti-fog method.
  • the first is to form a hydrophobic surface on the surface of a transparent material, and water droplets roll down on the hydrophobic surface.
  • the disadvantage of the latter is that atomization will still occur when a large amount of water vapor condenses rapidly.
  • the former forms a uniform water film to eliminate the diffuse reflection of light and achieve the purpose of anti-fog.
  • hydrophilic anti-fog coatings mainly focuses on traditional liquid phase processing methods, including gel-sol method, layer-by-layer self-assembly method, free radical solution polymerization method, etc. These methods generally use spraying or spin coating to apply the glue to the surface of the substrate, and then cure it using heating or UV irradiation.
  • liquid phase treatment method there is a disadvantage: the presence of solvents and reaction media may react with the substrate, destroy the substrate structure, and cause potential harm.
  • PECVD Plasma enhanced chemical vapor deposition
  • CN111501023A The applicant's previous research, such as disclosed in CN111501023A, found that by utilizing acrylic acid monomers, PECVD was used to prepare hydrophilic coatings.
  • a hydrophilic anti-fog coating can be prepared.
  • the hydrophilic properties of this coating need to be improved; on the other hand, the monomers of the coating contain double bonds, which will inevitably lead to unstable double bonds after the reaction. Bond residue may affect the performance of the coating during long-term use.
  • Embodiments of the present disclosure provide an anti-fog coating that does not have residual double bonds and at the same time has excellent hydrophilic properties, light transmittance, and good wear resistance.
  • the plan is as follows:
  • R is a C 1 -C 30 alkylene group or a C 1 -C 30 substituted alkylene group, and X 1 and X 2 are independently selected from hydroxyl, amino or carboxyl; the substituted alkylene
  • the substituent of the base is hydroxyl, amino or carboxyl; the carbon-carbon bond of the C 1 -C 30 alkylene group or the C 1 -C 30 substituted alkylene group may or may not have -NH-; and the formula In (1), at most one of the amino groups or hydroxyl groups is connected to the same carbon atom.
  • the monomer of formula (1) has the structure shown in formula (2),
  • R 1 and R 2 are each independently selected from a C 1 -C 10 alkylene group or a C 1 -C 10 substituted alkylene group.
  • the monomer of formula (1) has the structure shown in formula (3),
  • X 3 and X 4 are independently selected from hydrogen atoms, methyl, hydroxyl, hydroxymethyl, amino or carboxyl; n 1 is 0, 1, 2, 3, 4, 5, 6, 7 or 8; n 2 is 0, 1, 2, 3, 4, 5, 6, 7 or 8.
  • X 3 and X 4 are both hydrogen atoms, and X 1 and X 2 are the same group.
  • the R is a C 1 -C 16 alkylene group or a substituted alkylene group.
  • the monomer of formula (1) has the structure shown in formula (4),
  • X 5 and X 6 are both hydrogen atoms, and X 1 and X 2 are the same group.
  • the monomer of formula (1) is selected from monomers with structures shown in formula (1-1) to formula (1-48),
  • the substrate is an optical instrument, metal, ceramic, plastic, glass or electronic device.
  • the optical instrument is a lens, a reflector or a lens.
  • the base material is a transparent material.
  • the light transmittance of the anti-fog coating is above 90%.
  • the measured water contact angle of the anti-fog coating is below 10°.
  • the measured water contact angle is below 10°.
  • Specific embodiments of the present disclosure also provide a method for preparing an anti-fog coating, which is used to prepare the above-mentioned anti-fog coating.
  • the method for preparing an anti-fog coating includes the following steps: providing a substrate; Place it in a plasma reactor, pass the monomer vapor of the formula (1) into the plasma reactor, cause plasma discharge, and generate plasma on the surface of the substrate. Polymerize to form the anti-fog coating.
  • the plasma source gas is first introduced, and the plasma device is turned on for continuous discharge to pretreat the surface of the substrate.
  • the plasma source gas is one or a mixture of several of helium, argon, nitrogen, oxygen, and hydrogen.
  • the plasma discharge is a pulse plasma discharge, wherein the pulse power is 10W ⁇ 300W, the pulse duty cycle is 20% ⁇ 90%, and the discharge time of the pulse output is 30s ⁇ 36000s.
  • the monomer of formula (1) is first added to an alcohol solvent to form a solution, and then vaporized and passed into the plasma reactor.
  • the alcohol is one or more of methanol, ethanol or propanol.
  • the anti-fog coating is formed by plasma polymerization of a saturated chain monomer having at least hydroxyl, amino or carboxyl groups at both ends as shown in the substrate contact formula (1), using
  • the anti-fog coating formed by plasma polymerization of monomers of the structure has excellent hydrophilic properties, small color difference, excellent light transmittance, and good wear resistance.
  • the monomer does not contain double bonds, it avoids This method eliminates the possible adverse effects on the performance of the anti-fog coating during long-term use caused by unstable double bond residues in the anti-fog coating.
  • the anti-fog coating according to the specific embodiment of the present disclosure is particularly suitable for use as a hydrophilic anti-fog coating on the surface of a transparent substrate.
  • the inventor has discovered through research that the anti-fog coating formed by plasma polymerization of the saturated chain monomer shown in formula (1) has excellent hydrophilic properties, light transmittance and good wear resistance. At the same time, due to the single There are no double bonds in the body, thereby avoiding the adverse effects on the performance of the anti-fog coating that may be caused by unstable double bond residues in the anti-fog coating during long-term use.
  • the anti-fog coating according to the specific embodiment of the present disclosure is particularly suitable for use as a hydrophilic anti-fog coating on the surface of a transparent substrate.
  • the anti-fog coating is a plasma polymerization coating formed by contacting a substrate with a plasma containing a monomer of formula (1),
  • R is a C 1 -C 30 alkylene group or a substituted alkylene group, and X 1 and X 2 are independently selected from hydroxyl, amino or carboxyl; the substituent of the substituted alkylene is hydroxyl , amino or carboxyl; the carbon-carbon bond of the C 1 -C 30 alkylene or substituted alkylene may or may not have -NH-; and in formula (1), the same carbon atom is connected to at most One of the amino or hydroxyl groups.
  • X 1 and X 2 are independent of each other, and X 1 and X 2 can be the same group.
  • X 1 and 2 can also be different groups, for example, X 1 is a hydroxyl group and X 2 is a carboxyl group, for example, X 1 is a hydroxyl group and X 2 is an amino group.
  • the same carbon atom is connected to at most one of amino groups or hydroxyl groups, which means: the same carbon atom is connected to only one hydroxyl group, the same carbon atom is connected to only one amino group, or the same carbon atom is connected to only one amino group. There is neither a hydroxyl group nor an amino group on the carbon atom.
  • the C 1 -C 30 alkylene group or the C 1 -C 30 substituted alkylene group may be a linear or branched alkylene group, but considering more Good wear resistance and hydrophilic properties.
  • the C 1 -C 30 alkylene group or C 1 -C 30 substituted alkylene group is a linear C 1 -C 30 Alkylene or substituted alkylene.
  • the carbon-carbon bond of the C 1 -C 30 alkylene group or substituted alkylene group has -NH- between them.
  • the monomer of formula (1) has the structure shown in formula (2),
  • R 1 and R 2 are independently selected from C 1 -C 10 alkylene or substituted alkylene.
  • the monomer of formula (1) has the structure shown in formula (3),
  • n 2 is 0, 1, 2, 3, 4, 5, 6, 7 or 8.
  • n 1 is 0, 1 or 2
  • n 2 is 0, 1 or 2.
  • X 3 and X 4 are both hydrogen atoms, and X 1 and X 2 At the same time, it is a hydroxyl group, an amino group, or a carboxyl group.
  • R is a C 1 -C 16 alkylene group or a substituted alkylene group. base.
  • the monomer of formula (1) has the structure shown in formula (4),
  • n 3 is 0, 1, 2, 3 or 4.
  • X 5 and X 6 are both hydrogen atoms, and X 1 and X 2 At the same time, it is a hydroxyl group, an amino group, or a carboxyl group.
  • the monomer of formula (1) is selected from the monomers with the structures shown in formula (1-1) to formula (1-48),
  • the substituent of the substituted alkylene group is a hydroxyl group, an amino group or a carboxyl group.
  • the substrate is optical instruments, metals, ceramics, plastics, glass or electronic equipment, etc.
  • the water contact angle measured according to GB/T 30447-2013 is below 10°, and water droplets can spread on the anti-fog coating.
  • the surface of the fog coating forms a relatively uniform water film, thereby reducing diffuse reflection of light to achieve an anti-fog function. Therefore, in some embodiments, the anti-fog coating is particularly suitable as a transparent material.
  • the substrate is glasses lenses, goggles, laser protective glasses, telescopes and lenses of various camera equipment, various mechanical observation windows, sports diving goggles , bathroom glass, chemical or biological protective masks, vehicle windshields and rearview mirrors, explosion protection equipment, helmets, solar panels, observation windows of measuring instruments, glass covers, glass walls of greenhouses, etc.
  • the anti-fog coating of specific embodiments of the present disclosure has excellent wear resistance and hydrophilicity.
  • the anti-fog coating is used with a lint-free cloth under a load of 1N. After 500 times of rubbing, the water contact angle measured according to GB/T 30447-2013 is below 10°.
  • the light transmittance of the anti-fog coating is above 90%, which will not have an excessive impact on the light transmittance performance of the transparent substrate. .
  • the anti-fog coating of specific embodiments of the present disclosure is a plasma polymerization coating formed by the plasma of a monomer with a structure shown in formula (1), in addition
  • the anti-fog coating is a plasma polymerization coating formed from the plasma of a monomer with a structure shown in formula (1) and other monomers.
  • the thickness of the anti-fog coating is 1-1000 nm.
  • the thickness of the anti-fog coating is 1-100nm, specifically such as 49nm, 54nm, 56nm, 61nm, 73nm, 79nm, 82nm, 87nm, 92nm, 93nm, 96nm or 98nm.
  • Specific embodiments of the present disclosure also provide a method for preparing the above anti-fog coating, including the following steps: providing a substrate, placing the substrate in a plasma reactor, and converting the monomer of formula (1) Steam is introduced into the plasma reactor, plasma is discharged, and plasma polymerizes on the surface of the substrate to form the anti-fog coating.
  • the preparation method of the anti-fog coating according to the specific embodiment of the present disclosure is as described above for the monomer and the substrate.
  • the anti-fog coating is prepared before monomer vapor is introduced into the substrate.
  • the material is made of continuous
  • the plasma source gas is continuously used for pretreatment.
  • the specific pretreatment method is, for example, in the atmosphere of the plasma source gas, the plasma discharge power is 20 ⁇ 500W, the discharge mode is continuous, and the continuous discharge time is 10s ⁇ 3600s.
  • the plasma source gas is introduced while monomer vapor is introduced to perform pretreatment and coating pre-deposition.
  • the plasma source gas introduced is one or more of helium, argon, nitrogen, oxygen, and hydrogen. mixture.
  • the plasma of the monomer is a plasma excited in a pulse manner, and the monomer flow rate is 10 to 500 ⁇ L/min.
  • the monomer flow rate is 10 to 500 ⁇ L/min.
  • Specific examples include 10 ⁇ L/min, 50 ⁇ L/min, 100 ⁇ L/min, 150 ⁇ L/min, 200 ⁇ L/min, 300 ⁇ L/min, or 400 ⁇ L/min, etc.
  • the temperature in the cavity is controlled at 20°C-80°C, for example, it can be 20°C, 25°C, 30°C, 35°C °C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C or 80°C, etc.; the pressure in the cavity is below 1000 mTorr, further below 500 mTorr, and further is less than 100 mTorr.
  • the monomer vaporization temperature is 50°C to 200°C.
  • Specific examples may be 50°C, 60°C, 70°C, or 80°C. , 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, etc., and the vaporization occurs under vacuum conditions.
  • Pulsed plasma is generated by applying pulse voltage discharge, where the pulse power is 10W to 300W.
  • the pulse power is 30W ⁇ 100W;
  • the pulse duty cycle is 0.1% ⁇ 90%, Specific examples include 0.1%, 0.5%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65 %, 70%, 75%, 80%, 85% or 90%, etc., in some specific embodiments, considering better hydrophilicity, the pulse duty cycle is 20% to 90%, and further the pulse The duty cycle is 40% to 80%, and further the pulse duty cycle is 45% to 75%; the plasma discharge time of the pulse output is 30s to 36000s, specifically, it can be 100s, 500s,
  • the plasma discharge method can be various existing discharge methods, specifically, for example, electrodeless discharge (such as radio frequency inductive coupling) discharge, microwave discharge), single-electrode discharge (such as corona discharge, plasma jet formed by unipolar discharge), double-electrode discharge (such as dielectric barrier discharge, exposed electrode radio frequency glow discharge) and multi-electrode discharge (such as floating electrode as the discharge of the third electrode).
  • electrodeless discharge such as radio frequency inductive coupling
  • microwave discharge such as single-electrode discharge (such as corona discharge, plasma jet formed by unipolar discharge)
  • double-electrode discharge such as dielectric barrier discharge, exposed electrode radio frequency glow discharge
  • multi-electrode discharge such as floating electrode as the discharge of the third electrode.
  • the preparation method of the anti-fog coating according to the specific embodiments of the present disclosure in some specific embodiments, first adds the monomer of formula (1) to an alcohol solvent to prepare a solution, and then vaporizes it into a plasma reactor, and passes through the This method can lower the vaporization temperature of the monomer and is more conducive to the vaporization of the monomer.
  • the alcohol is one or more of methanol, ethanol or propanol.
  • Specific embodiments of the present disclosure also provide a product, at least part of the surface of the product has any of the above-mentioned anti-fog coatings. In some specific embodiments, part or all of the surface of the device is deposited with the above-mentioned anti-fog coating. anti-fog coating.
  • Coating thickness test Use the American Filmetrics F20-UV-film thickness measuring instrument for testing.
  • Coating water contact angle tested according to GB/T 30447-2013 standard.
  • Coating transmittance and color difference Calculated according to GB11186.3-1989 standard, and tested using a spectrophotometer. In the test results, ⁇ E represents color difference.
  • T represents the light transmittance;
  • L, a, and b represent the three color channels in the Lab color model.
  • L represents the brightness.
  • the value range is [0, 100], which represents from pure black to pure white; a represents from red to green.
  • the range of b represents the range from yellow to blue, and the value range is [127, -128]; b represents the range from yellow to blue, and the value range is [127, -128].
  • Friction performance test Use a reciprocating abrasion machine to rub 500 times with a dust-free cloth under 1N load, and test the change in water contact angle before and after friction.
  • the reaction chamber is continuously evacuated to a vacuum degree of 80 mTorr, the internal temperature of the chamber is 45°C, and helium is introduced with a flow rate of 40 sccm;
  • the radio frequency energy output mode is continuous discharge, the discharge time is 30 seconds, and the discharge power is 300w.
  • the monomer with the structure shown in formula (1-6) is introduced, the monomer flow rate is 50 ⁇ L/min, the monomer vaporization temperature is 90°C, the chamber pressure is maintained at 80 mTorr, and the helium flow rate is maintained at 40 sccm.
  • the radio frequency energy output mode is pulse, the discharge power is 40w, the pulse duty cycle is 75%, the pulse frequency is 50Hz, the discharge time is 3600s, and a coating is formed on the surface of the transparent glass plate;
  • Example 1 The monomer with the structure shown in the formula (1-6) in Example 1 is replaced with the monomer with the structure shown in the following formula (1-4).
  • the vaporization temperature of the monomer with the structure shown in the formula (1-4) is 90°C, and other processes are consistent with Example 1.
  • the prepared coating is tested for thickness, transmittance, chromaticity value, water contact angle and friction resistance. The test results are listed in Table 1 below.
  • Example 1 The monomer with the structure shown in the formula (1-6) in Example 1 is replaced with the monomer with the structure shown in the following formula (1-19).
  • the vaporization temperature of the monomer with the structure shown in the formula (1-19) is 110°C, and other processes are consistent with Example 1.
  • the prepared coating is tested for thickness, transmittance, chromaticity value, water contact angle and friction resistance. The test results are listed in Table 1 below.
  • Example 1 The transparent glass plate base material in Example 1 was replaced with a transparent PC (polycarbonate) plate base material.
  • the other processes were consistent with Example 1.
  • the prepared coating was tested for thickness, light transmittance, chromaticity value, water content, etc. Contact angle and friction resistance testing, the test results are listed in Table 1 below.
  • Example 2 The transparent glass plate base material in Example 2 was replaced with a transparent PC (polycarbonate) plate base material.
  • the other processes were consistent with Example 2.
  • the prepared coating was tested for thickness, light transmittance, chromaticity value, water content, etc. Contact angle and friction resistance testing, the test results are listed in Table 1 below.
  • Example 3 The transparent glass plate substrate in Example 3 was replaced with a transparent PC (polycarbonate) plate substrate.
  • the other processes were consistent with Example 3.
  • the prepared coating was tested for thickness, light transmittance, chromaticity value, water content, etc. Contact angle and friction resistance testing, the test results are listed in Table 1 below.
  • the substrate transparent glass plate (length: 75mm, width: 26mm, thickness 1mm) in the 500L plasma vacuum reaction chamber, and continuously evacuate the reaction chamber to achieve a vacuum degree of 80 mTorr, and the internal temperature of the chamber is 45°C , introduce helium gas, the flow rate is 40sccm;
  • the radio frequency energy output mode is continuous discharge, the discharge time is 30 seconds, and the discharge power is 300w;
  • Example 7 The monomer with the structure shown in formula (1-43) in Example 7 is replaced with the monomer with the structure shown in the following formula (1-21). The other processes are consistent with Example 7.
  • the thickness of the obtained coating is measured. , transmittance, chromaticity value, water contact angle and friction resistance test, the test results are listed in Table 1 below.
  • Example 7 The transparent glass plate base material in Example 7 was replaced with a transparent PC (polycarbonate) plate base material.
  • the other processes were consistent with Example 7.
  • the prepared coating was tested for thickness, light transmittance, chromaticity value, water content, etc. Contact angle and friction resistance testing, the test results are listed in Table 1 below.
  • Example 8 The transparent glass plate base material in Example 8 was replaced with a transparent PC (polycarbonate) plate base material.
  • the other processes were consistent with Example 8.
  • the prepared coating was tested for thickness, light transmittance, chromaticity value, water content, etc. Contact angle and friction resistance testing, the test results are listed in Table 1 below.
  • Example 1 The monomer with the structure shown in the formula (1-6) in Example 1 is replaced with the hexanol monomer with the structure shown in the following formula (5).
  • the vaporization temperature of the hexanol monomer with the structure shown in the formula (5) is: 110°C.
  • the other processes are consistent with Example 1.
  • the prepared coating is tested for thickness, light transmittance, chromaticity value, water contact angle and friction resistance. The test results are listed in Table 1.
  • Example 4 The monomer with the structure shown in the formula (1-6) in Example 4 is replaced with the caproic acid monomer with the structure shown in the following formula (6).
  • the vaporization temperature of the caproic acid monomer with the structure shown in the formula (6) is: 110°C, other processes were consistent with Example 5, and the prepared coating was The thickness, light transmittance, chromaticity value, water contact angle and friction resistance were tested, and the test results are listed in Table 1.
  • the coatings of Examples 1 to 10 before rubbing all have water contact angles of 5° to 6°, which are much lower than the water contact angles of 77° and 72° for the coatings of Comparative Examples 1 and 2.
  • the contact angle further shows that compared with the monomers of Comparative Examples 1 and 2 having one hydrophilic group, the coating formed by plasma polymerization of the monomers with two hydrophilic groups in Examples 1 to 10 is layer, with better hydrophilic properties and anti-fog properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)

Abstract

本公开的具体实施方式的防雾涂层,所述涂层由饱和链单体等离子体聚合形成,其中,所述饱和链单体至少在两端具有亲水基团,所述亲水基团为羟基、氨基或羧基;所述饱和链单体中的碳碳连接键之间具有或不具有亚氨基;所述饱和链单体具有或不具有取代基,所述取代基为羟基、氨基或羧基;所述饱和链单体中同一个碳原子上至多连接氨基或羟基中的一个。采用所述饱和链单体等离子体聚合形成的防雾涂层具有优异的亲水性能,且色差小,透光率优异,具有良好的耐磨性能,同时,由于单体中不含双键从而避免了涂层中不稳定的双键残留所导致的在长期使用过程中可能对涂层性造成的不良影响。本公开的具体实施方式的防雾涂层,适合用于透明基材表面的防雾涂层。

Description

一种防雾涂层及其制备方法、及产品
本申请要求于2022年3月29日提交中国专利局、申请号为202210319342.4、发明名称为“一种防雾涂层及其制备方法、及产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及等离子化学领域,特别涉及一种防雾涂层及其制备方法、及产品。
背景技术
透明材料(如玻璃,塑料)在工农业生产和口常生活以及军事领域中有着广泛的用途,例如护目镜、激光防护镜、望远镜及各种摄像设备的镜头、各种机械的观察窗、运动潜水镜、浴室玻璃、化学或生物防护面具、车辆挡风玻璃及后视镜、排爆处理防护设备、头盔、太阳能电池板、测量仪器的观察窗、玻璃罩、温室的玻璃墙等。然而,在冬天哈气时眼镜会让我们“雾里看花”;在寒冷的冬天由于挡风玻璃表面结雾会大大影响我们的能见度,甚至造成事故。雾化问题给人们的工作和生活带来诸多不便,防雾技术与防雾材料的研究与开发倍受科学界和企业界的关注。
在透明材料表面设置防雾涂层是一种常见防雾手段,防雾涂层通常有两种类型,一种是在透明材料表面形成亲水表面,水滴在亲水表面铺展成膜,另一种是在透明材料表面形成疏水表面,水滴在疏水表面成珠滚落。后者存在的缺点是在有大量水汽迅速冷凝时,仍会出现雾化现象。前者形成均匀的水膜,以消除光线的漫反射现象而到达防雾的目的。
目前,亲水防雾涂层的技术改进主要集中在于传统液相处理法,包括凝胶-溶胶法、层层自组装法、自由基溶液聚合法等。这些方法一般使用喷涂或旋涂的方法,将胶水涂布到基材表面,然后使用加热或UV辐照的方法固化。在液相处理方法中,存在一个缺点:溶剂、反应介质的存在,可能与基材发生反应,破坏基材结构,产生潜在的危害。
等离子体增强化学气相沉积(PECVD)是一种化学气相沉积工艺,在低压下使用辉光放电产生的等离子体活化单体,产生高活性的单体自由基或离子片段,沉积到基材表面反 应成膜。PECVD具有:沉积速率快,成膜质量好,针孔较少,不易龟裂的优点,反应过程中不需要液相溶剂,不会对基材产生破坏。因此,使用PECVD技术为亲水防雾涂层的制备提供了更好的选择,本申请人在之前的研究,如CN111501023A中公开所发现,通过利用丙烯酸单体,采用PECVD制备亲水涂层,可制备获得亲水防雾涂层,该涂层一方面,其亲水性能有待提高;另一方面,所述的涂层的单体包含双键,在反应后不可避免会有不稳定的双键残留,在长期使用过程中,可能会对涂层的性能造成影响。
发明内容
本公开的实施方式提供一种防雾涂层,所述防雾涂层不具有残留双键,同时所述防雾涂层具有优异的亲水性能、透光率、良好的耐磨性,具体方案如下:
一种防雾涂层,所述防雾涂层由基材接触包含式(1)的单体的等离子体形成;
X2—R—X1
(1)
式(1)中,R为C1-C30的亚烷基或C1-C30的取代亚烷基,X1和X2分别独立的选自羟基、氨基或羧基;所述取代亚烷基的取代基为羟基、氨基或羧基;所述C1-C30的亚烷基或C1-C30的取代亚烷基的碳碳连接键之间具有或者不具有-NH-;且式(1)中,同一个碳原子上至多连接氨基或羟基中的一个。
可选的,式(1)的单体具有式(2)所示的结构,
式(2)中,R1和R2分别独立的选自C1-C10的亚烷基或C1-C10的取代亚烷基。
可选的,式(1)的单体具有式(3)所示的结构,
式(3)中,X3和X4分别独立的选自氢原子、甲基、羟基、羟甲基、氨基或羧基;n1 为0、1、2、3、4、5、6、7或8;n2为0、1、2、3、4、5、6、7或8。
可选的,X3和X4均为氢原子,X1和X2为相同的基团。
可选的,所述R为C1-C16的亚烷基或取代亚烷基。
可选的,式(1)的单体具有式(4)所示的结构,
式(4)中,X5和X6分别独立的选自氢原子、甲基、羟基、羟甲基、氨基或羧基;n3为0、1、2、3、4、5、6、7或8。
可选的,X5和X6均为氢原子,X1和X2为相同的基团。
可选的,式(1)的单体选自于式(1-1)~式(1-48)所示结构的单体,


可选的,所述基材为光学仪器、金属、陶瓷、塑料、玻璃或电子设备。
可选的,所述光学仪器为镜头、反光镜或镜片。
可选的,所述基材为透明材料。
可选的,所述防雾涂层的透光率在90%以上。
可选的,所述防雾涂层测得的水接触角在10°以下。
可选的,所述防雾涂层在1N载荷下用无尘布摩擦500次后,测得的水接触角在10°以下。
本公开的具体实施方式还提供一种防雾涂层的制备方法,用于制备以上所述的防雾涂层,所述防雾涂层的制备方法包括以下步骤:提供基材,将基材置于等离子体反应器中,将所述式(1)的单体蒸汽通入等离子反应器,等离子体放电,在所述基材表面等离子体 聚合形成所述防雾涂层。
可选的,在所述式(1)的单体蒸汽通入等离子反应器之前,先通入等离子体源气体,开启等离子装置连续放电,对基材表面进行预处理。
可选的,所述等离子体源气体为氦气、氩气、氮气、氧气、氢气中的一种或若干种的混合物。
可选的,所述等离子体放电为脉冲等离子体放电,其中,脉冲功率为10W~300W,脉冲占空比为20%~90%,所述脉冲输出的放电时间为30s~36000s。
可选的,首先将式(1)的单体加入醇溶剂配置成溶液,然后汽化并通入等离子体反应器。
可选的,所述醇为甲醇、乙醇或丙醇中的一种或几种。
一种产品,所述产品的至少部分表面具有以上所述的防雾涂层。
与现有技术相比,本公开实施例的技术方案具有以下有益效果:
本公开的具体实施方式的防雾涂层,所述防雾涂层由基材接触式(1)所示的至少在两端具有羟基、氨基或羧基的饱和链单体等离子体聚合形成,采用所述结构的单体等离子体聚合形成的防雾涂层具有优异的亲水性能,并且色差小,透光率优异,具有良好的耐磨性能,同时,由于单体中不含双键从而避免了防雾涂层中不稳定双键残留所导致的在长期使用过程中可能对防雾涂层性能造成的不良影响。本公开的具体实施方式的防雾涂层,特别适合用于透明基材表面的亲水防雾涂层。
具体实施方式
本发明人研究发现,通过采用式(1)所示的饱和链单体等离子体聚合形成的防雾涂层,具有优异的亲水性能、透光率和良好的耐磨性能,同时,由于单体中不含双键从而避免了防雾涂层中不稳定双键残留所导致的在长期使用过程中可能对防雾涂层性能造成的不良影响。本公开的具体实施方式的防雾涂层,特别适合用于透明基材表面的亲水防雾涂层。
本公开提供一种如下具体实施方式的防雾涂层,所述防雾涂层为由基材接触包含式(1)的单体的等离子体形成的等离子体聚合涂层,
X2—R—X1
(1)
式(1)中,R为C1-C30的亚烷基或取代亚烷基,X1和X2分别独立的选自羟基、氨基或羧基;所述取代亚烷基的取代基为羟基、氨基或羧基;所述C1-C30的亚烷基或取代亚烷基的碳碳连接键之间具有或者不具有-NH-;且式(1)中,同一个碳原子上至多连接氨基或羟基中的一个。
本公开的具体实施方式的防雾涂层,X1和X2相互独立,X1和X2可以为相同的基团,例如X1和X2均为羟基、羧基或者氨基;X1和X2也可以为不同的基团,例如X1为羟基、X2为羧基,例如X1为羟基、X2为氨基。
本公开的具体实施方式的防雾涂层,同一个碳原子上至多连接氨基或羟基中的一个,是指:同一个碳原子只连接一个羟基、同一个碳原子只连接一个氨基、或者同一个碳原子上既不具有羟基也不具有氨基。
本公开的具体实施方式的防雾涂层,所述C1-C30的亚烷基或C1-C30的取代亚烷基可以为直链或支链的亚烷基,但考虑到更好的耐磨性能和亲水性能,在一些具体的实施例中,所述C1-C30的亚烷基或C1-C30的取代亚烷基为直链的C1-C30的亚烷基或取代亚烷基。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述C1-C30的亚烷基或取代亚烷基的碳碳连接键之间具有-NH-。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述式(1)的单体具有式(2)所示的结构,
式(2)中,R1和R2分别独立的选自C1-C10的亚烷基或取代亚烷基。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述式(1)的单体具有式(3)所示的结构,
式(3)中,X3和X4分别独立的选自氢原子、甲基、羟基、羟甲基、氨基或羧基;n1为0、1、2、3、4、5、6、7或8;n2为0、1、2、3、4、5、6、7或8。
本公开的具体实施方式的防雾涂层,考虑到更好的亲水性能,在一些具体的实施例中,式(3)中,n1为0、1或2,n2为0、1或2。
本公开的具体实施方式的防雾涂层,考虑到更好的亲水性能,在一些具体的实施例中,式(3)中,X3和X4均为氢原子,X1和X2同时为羟基、氨基、或羧基。
本公开的具体实施方式的防雾涂层,考虑到更好的亲水性能,在一些具体的实施例中,式(1)中,R为C1-C16的亚烷基或取代亚烷基。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述C1-C30的亚烷基或取代亚烷基的碳碳连接键之间不具有-NH-。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述式(1)的单体具有式(4)所示的结构,
式(4)中,X5和X6分别独立的选自氢原子、甲基、羟基、羟甲基、氨基或羧基;n3为0、1、2、3、4、5、6、7或8。
本公开的具体实施方式的防雾涂层,考虑到更好的亲水性能,在一些具体的实施例中,式(4)中,n3为0、1、2、3或4。
本公开的具体实施方式的防雾涂层,考虑到更好的亲水性能,在一些具体的实施例中,式(4)中,X5和X6均为氢原子,X1和X2同时为羟基、氨基、或羧基。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,式(1)的单体选自于式(1-1)~式(1-48)所示结构的单体,


本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述取代亚烷基的取代基为羟基、氨基或羧基。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述基材为光学仪器、金属、陶瓷、塑料、玻璃或电子设备等。
本公开的具体实施方式的防雾涂层,在一些具体的实施例中,所述防雾涂层根据GB/T 30447-2013测得水接触角在10°以下,水滴能够铺展在所述防雾涂层的表面并且形成一层相对均匀的水膜,从而减少光线漫反射,以起到防雾的功能,因此,在一些具体实施方式中,所述防雾涂层特别适用于作为透明材料的防雾涂层,例如,在一些具体实施方式中,所述基材为眼镜的镜片、护目镜、激光防护镜、望远镜及各种摄像设备的镜头、各种机械的观察窗、运动潜水镜、浴室玻璃、化学或生物防护面具、车辆挡风玻璃及后视镜、排爆处理防护设备、头盔、太阳能电池板、测量仪器的观察窗、玻璃罩、温室的玻璃墙等。
本公开的具体实施方式的防雾涂层,在一些具体实施方式中,所述防雾涂层具有优异的耐磨性和亲水性,所述防雾涂层在1N的载荷用无尘布摩擦500次后,根据GB/T 30447-2013测得水接触角在10°以下。
本公开的具体实施方式的防雾涂层,在一些具体实施方式中,所述防雾涂层的透光率在90%以上,这样不会对于透明基材的透光性能造成过多的影响。
本公开的具体实施方式的防雾涂层,在一些具体实施方式中,所述防雾涂层为由式(1)所示结构的单体的等离子体形成的等离子体聚合涂层,在另外一些具体实施方式中,由于具体实际需要,所述防雾涂层为由式(1)所示结构的单体和其它单体的等离子体形成的等离子体聚合涂层。
本公开的具体实施方式的防雾涂层,在一些具体实施方式中,所述防雾涂层的厚度为1-1000nm。在一些具体实施方式中,作为超薄的透明纳米涂层,所述防雾涂层的厚度为1-100nm,具体的例如49nm、54nm、56nm、61nm、73nm、79nm、82nm、87nm、92nm、93nm、96nm或98nm。
本公开的具体实施方式还提供一种以上所述防雾涂层的制备方法,包括以下步骤:提供基材,将基材置于等离子体反应器中,将所述式(1)的单体蒸汽通入等离子反应器,等离子体放电,在所述基材表面等离子体聚合形成所述防雾涂层。
本公开的具体实施方式的所述防雾涂层的制备方法,对于所述单体及基材如前所述。
本公开的具体实施方式的所述防雾涂层的制备方法,为进一步增强等离子体涂层与基材的结合力,在一些具体实施方式中,在通入单体蒸汽前,对所述基材为采用连 续等离子体源气体进行预处理,具体预处理方式例如,在等离子体源气体的氛围下,采用等离子体放电功率为20~500W,放电方式为连续式,持续放电时间10s~3600s。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,通入等离子体源气体的同时通入单体蒸汽,进行预处理和涂层预沉积。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,通入的等离子体源气体为氦气、氩气、氮气、氧气、氢气中的一种或若干种的混合物。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,所述单体的等离子体是以脉冲方式激发的等离子体,单体流量为10~500μL/min,具体例如可以是10μL/min、50μL/min、100μL/min、150μL/min、200μL/min、300μL/min或400μL/min等等。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,腔体内的温度控制在20℃-80℃,具体例如可以是20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等等;腔体内的压力在1000毫托以下,进一步为500毫托以下,更进一步为100毫托以下。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,单体汽化温度为50℃~200℃,具体例如可以是50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃等等,且是在真空条件下发生汽化,所述脉冲等离子体通过施加脉冲电压放电产生,其中,脉冲功率为10W~300W,具体例如可以是10W、20W、30W、40W、50W、70W、80W、100W、120W、140W、160W、180W、190W、200W、210W、220W、230W、240W、250W、260W、270W、280W、290W或300W等等,在一些具体实施方式中,所述脉冲功率为30W~100W;脉冲占空比为0.1%~90%,具体例如可以是0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或90%等等,在一些具体实施方式中,考虑到更好的亲水性,脉冲占空比为20%~90%,进一步所述脉冲占空比为40%~80%,进一步所述脉冲占空比为45%~75%;所述脉冲输出的等离子放电时间为30s~36000s,具体例如可以是100s、500s、1000s、1800s、2000s、1000s、2000s、3000s、3600s、4000s、5000s、6000s、7000s、7200s、10800s、14400s、18000s、21600s、25200s、28800s、32400s或36000s 等等。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,所述等离子放电方式可以是现有的各种放电方式,具体例如,无电极放电(如射频电感耦合放电、微波放电)、单电极放电(如电晕放电、单极放电所形成的等离子体射流)、双电极放电(如介质阻挡放电、裸露电极射频辉光放电)以及多电极放电(如采用浮动电极作为第三个电极的放电)。
本公开的具体实施方式的所述防雾涂层的制备方法,在一些具体实施方式中,首先将式(1)的单体加入醇溶剂配制成溶液,然后汽化进入等离子体反应器,通过该方式可降低单体的气化温度,更有利于所述单体的气化。在一些具体实施方式中,所述醇为甲醇、乙醇或丙醇中的一种或几种。
本公开的具体实施方式还提供一种产品,所述产品的至少部分表面具有任一以上所述的防雾涂层,在一些具体实施方式中,所述器件的部分表面或全部表面沉积有上述的防雾涂层。
以下通过具体实施例对本公开做进一步说明。
实施例
测试方法说明
涂层厚度测试:使用美国Filmetrics F20-UV-薄膜厚度测量仪进行检测。
涂层水接触角:根据GB/T 30447-2013标准进行测试。
涂层透光率及色差:根据GB11186.3-1989标准进行计算,使用分光测色计检测,测试结果中ΔE表示色差,T表示透光率;L、a、b表示Lab颜色模型中的三个颜色通道,L表示亮度,取值范围是[0,100],表示从纯黑到纯白;a表示从红色到绿色的范围,取值范围是[127,-128];b表示从黄色到蓝色的范围,取值范围是[127,-128]。
摩擦性能测试:使用往复式磨耗机在1N载荷下用无尘布摩擦500次,测试摩擦前后的水接触角变化。
实施例1
将基材透明玻璃板(长:75mm,宽:26mm,厚1mm)放置于500L等离子体真 空反应腔体内,对反应腔体连续抽真空使真空度达到80毫托,腔体内部温度为45℃,通入氦气,流量为40sccm;
保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电,射频的能量输出方式为连续放电,放电时间30s,放电功率300w。
然后,通入式(1-6)所示结构的单体,单体流量为50μL/min,单体气化温度为90℃,保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电,射频的能量输出方式为脉冲,放电功率40w,脉冲占空比75%,脉冲频率50Hz,放电时间3600s,在透明玻璃板表面形成涂层;
涂层制备结束后,通入空气,使反应腔体恢复至常压,打开腔体,取出透明玻璃板进行涂层的厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例2
将实施例1中的式(1-6)所示结构的单体替换为下式(1-4)所示结构的单体,式(1-4)所示结构的单体气化温度为90℃,其他过程与实施例1一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例3
将实施例1中的式(1-6)所示结构的单体替换为下式(1-19)所示结构的单体,式(1-19)所示结构的单体气化温度为110℃,其他过程与实施例1一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例4
将实施例1中的透明玻璃板基材替换为透明PC(聚碳酸酯)板基材,其它过程与实施例1一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例5
将实施例2中的透明玻璃板基材替换为透明PC(聚碳酸酯)板基材,其它过程与实施例2一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例6
将实施例3中的透明玻璃板基材替换为透明PC(聚碳酸酯)板基材,其它过程与实施例3一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例7
将基材透明玻璃板(长:75mm,宽:26mm,厚1mm)放置于500L等离子体真空反应腔体内,对反应腔体连续抽真空使真空度达到80毫托,腔体内部温度为45℃,通入氦气,流量为40sccm;
保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电,射频的能量输出方式为连续放电,放电时间30s,放电功率300w;
然后将20g下式(1-43)所示结构的单体和100mL乙醇配制成溶液,将所述溶液在150℃下汽化以后以150μL/min的流量通入反应腔体中,保持腔体气压为80毫托,保持氦气流量为160sccm,开启射频等离子体放电,射频的能量输出方式为脉冲,放电功率40w,脉冲频率50Hz,脉冲占空比45%,放电时间3600s,在透明玻璃板表面形成涂层;
涂层制备结束后,通入空气,使反应腔体恢复至常压,打开腔体,取出透明玻璃 板进行涂层的厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入表1中。
实施例8
将实施例7中的式(1-43)所示结构的单体替换为下式(1-21)所示结构的单体,其他过程与实施例7一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例9
将实施例7中的透明玻璃板基材替换为透明PC(聚碳酸酯)板基材,其它过程与实施例7一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
实施例10
将实施例8中的透明玻璃板基材替换为透明PC(聚碳酸酯)板基材,其它过程与实施例8一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入下表1中。
对比例1
将实施例1中的式(1-6)所示结构的单体替换为下式(5)所示结构的己醇单体,式(5)所示结构的己醇单体气化温度为110℃,其他过程与实施例1一致,将制得的涂层进行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入表1中。
对比例2
将实施例4中的式(1-6)所示结构的单体替换为下式(6)所示结构的己酸单体,式(6)所示结构的己酸单体气化温度为110℃,其他过程与实施例5一致,将制得的涂层进 行厚度、透光率、色度值、水接触角和耐摩擦性能测试,测试结果列入表1中。
表1实施例1-10和对比例1-2的性能测试结果
根据表1的结果可知,实施例1~10的摩擦前的涂层均具有5°~6°的水接触角,远低于对比例1和对比例2的涂层77°和72°的水接触角,从而进一步表明,相比于具有一个亲水基团的对比例1和对比例2的单体,实施例1~10中具有两个亲水基团的单体等离子体聚合形成的涂层,具有更好的亲水性能和防雾性能。
同时根据表1的结果可知,实施例1~10的由两端具有羟基、氨基或羧基的饱和链单体等离子体聚合形成的涂层具有良好的耐磨性能,使用往复式磨耗机在1N载荷下用无尘布摩擦500次后,其水接触角变化不超过4°,并且涂层的色差很小,为0.5~0.6之间,以及涂层透光率非常好,相比对比例1、对比例2以及未沉积涂层的透明玻璃板和PC板具有更高的透光率,在一定程度上反而还具有增透作用。
另外,由实施例7~10可知,对于沸点较高的单体,通过加入乙醇可降低单体沸点,最终获得的涂层同样具有优异的亲水性、耐磨性,并且色差小,透光率优异。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公 开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。

Claims (21)

  1. 一种防雾涂层,其特征在于,所述防雾涂层由基材接触包含式(1)的单体的等离子体形成;
    X2-R-X1
    (1)
    式(1)中,R为C1-C30的亚烷基或C1-C30的取代亚烷基,X1和X2分别独立的选自羟基、氨基或羧基;
    所述取代亚烷基的取代基为羟基、氨基或羧基;
    所述C1-C30的亚烷基或C1-C30的取代亚烷基的碳碳连接键之间具有或者不具有-NH-;
    且式(1)中,同一个碳原子上至多连接氨基或羟基中的一个。
  2. 根据权利要求1所述的防雾涂层,其特征在于,式(1)的单体具有式(2)所示的结构,
    式(2)中,R1和R2分别独立的选自C1-C10的亚烷基或C1-C10的取代亚烷基。
  3. 根据权利要求2所述的防雾涂层,其特征在于,式(1)的单体具有式(3)所示的结构,
    式(3)中,X3和X4分别独立的选自氢原子、甲基、羟基、羟甲基、氨基或羧基;n1为0、1、2、3、4、5、6、7或8;n2为0、1、2、3、4、5、6、7或8。
  4. 根据权利要求3所述的防雾涂层,其特征在于,X3和X4均为氢原子,X1和X2为相同的基团。
  5. 根据权利要求1所述的防雾涂层,其特征在于,所述R为C1-C16的亚烷基或取代亚烷基。
  6. 根据权利要求5所述的防雾涂层,其特征在于,式(1)的单体具有式(4)所示的结构,
    式(4)中,X5和X6分别独立的选自氢原子、甲基、羟基、羟甲基、氨基或羧基;n3为0、1、2、3、4、5、6、7或8。
  7. 根据权利要求6所述的防雾涂层,其特征在于,X5和X6均为氢原子,X1和X2为相同的基团。
  8. 根据权利要求1所述的防雾涂层,其特征在于,式(1)的单体选自于式(1-1)~式(1-48)所示结构的单体,


  9. 根据权利要求1所述的防雾涂层,其特征在于,所述基材为光学仪器、金属、陶瓷、塑料、玻璃或电子设备。
  10. 根据权利要求9所述的防雾涂层,其特征在于,所述光学仪器为镜头、反光镜或镜片。
  11. 根据权利要求9所述的防雾涂层,其特征在于,所述基材为透明材料。
  12. 根据权利要求1所述的防雾涂层,其特征在于,所述防雾涂层的透光率在90%以上。
  13. 根据权利要求1所述的防雾涂层,其特征在于,所述防雾涂层测得的水接触角在10°以下。
  14. 根据权利要求13所述的防雾涂层,其特征在于,所述防雾涂层在1N载荷下用无尘布摩擦500次后,测得的水接触角在10°以下。
  15. 一种如权利要求1-14任意一项所述的防雾涂层的制备方法,其特征在于,包括以下步骤:
    提供基材,将基材置于等离子体反应器中,将所述式(1)的单体蒸汽通入等离子反应器,等离子体放电,在所述基材表面等离子体聚合形成所述防雾涂层。
  16. 根据权利要求15所述的防雾涂层的制备方法,其特征在于,在所述式(1)的单体蒸汽通入等离子反应器之前,先通入等离子体源气体,开启等离子装置连续放电,对基材表面进行预处理。
  17. 根据权利要求16所述的防雾涂层的制备方法,其特征在于,所述等离子体源气体为氦气、氩气、氮气、氧气、氢气中的一种或若干种的混合物。
  18. 根据权利要求15所述的防雾涂层的制备方法,其特征在于,所述等离子体放电为脉冲等离子体放电,其中,脉冲功率为10W~300W,脉冲占空比为20%~90%,所述脉冲输出的放电时间为30s~36000s。
  19. 根据权利要求15所述的防雾涂层的制备方法,其特征在于,首先将式(1)的单体加入醇溶剂配置成溶液,然后汽化并通入等离子体反应器。
  20. 根据权利要求19所述的防雾涂层的制备方法,其特征在于,所述醇为甲醇、乙醇或丙醇中的一种或几种。
  21. 一种产品,其特征在于,所述产品的至少部分表面具有权利要求1-14任一项所述的防雾涂层。
PCT/CN2023/083655 2022-03-29 2023-03-24 一种防雾涂层及其制备方法、及产品 WO2023185672A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210319342.4A CN116925628A (zh) 2022-03-29 2022-03-29 一种防雾涂层及其制备方法、及产品
CN202210319342.4 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023185672A1 true WO2023185672A1 (zh) 2023-10-05

Family

ID=88199392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083655 WO2023185672A1 (zh) 2022-03-29 2023-03-24 一种防雾涂层及其制备方法、及产品

Country Status (2)

Country Link
CN (1) CN116925628A (zh)
WO (1) WO2023185672A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270768A (ja) * 1988-05-25 1990-03-09 Fsk Corp プラズマ重合による基体表面コーティング法
US4955901A (en) * 1988-05-31 1990-09-11 Canon Kabushiki Kaisha Intraocular implant having coating layer
EP0396329A1 (en) * 1989-04-27 1990-11-07 The British Petroleum Company p.l.c. Method for reducing fouling
CN1254102A (zh) * 1998-10-20 2000-05-24 庄臣及庄臣视力产品有限公司 生物医学装置的涂层
WO2002032591A2 (en) * 2000-10-19 2002-04-25 Picosep A/S A material useful for the separation of organic compounds, processes for its preparation and use of the material
CN103160786A (zh) * 2013-03-07 2013-06-19 苏州睿研纳米医学科技有限公司 一种纳米涂层的制备方法及由其制备的抗菌纳米涂层
US20170199306A1 (en) * 2016-01-13 2017-07-13 Xiaoxi Kevin Chen Optically clear biocompatible and durable hydrophilic coating process for contact lenses

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270768A (ja) * 1988-05-25 1990-03-09 Fsk Corp プラズマ重合による基体表面コーティング法
US4955901A (en) * 1988-05-31 1990-09-11 Canon Kabushiki Kaisha Intraocular implant having coating layer
EP0396329A1 (en) * 1989-04-27 1990-11-07 The British Petroleum Company p.l.c. Method for reducing fouling
CN1254102A (zh) * 1998-10-20 2000-05-24 庄臣及庄臣视力产品有限公司 生物医学装置的涂层
WO2002032591A2 (en) * 2000-10-19 2002-04-25 Picosep A/S A material useful for the separation of organic compounds, processes for its preparation and use of the material
CN103160786A (zh) * 2013-03-07 2013-06-19 苏州睿研纳米医学科技有限公司 一种纳米涂层的制备方法及由其制备的抗菌纳米涂层
US20170199306A1 (en) * 2016-01-13 2017-07-13 Xiaoxi Kevin Chen Optically clear biocompatible and durable hydrophilic coating process for contact lenses

Also Published As

Publication number Publication date
CN116925628A (zh) 2023-10-24
TW202338061A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
KR100195774B1 (ko) 플라스틱 광학제품
ES2351435T3 (es) Elemento óptico que tiene una pelicula anti-reflexión.
AU2002313976B2 (en) Hybrid film, antireflection film comprising it, optical product, and method for restoring the defogging property of hybrid film
WO2021219115A1 (zh) 亲水防雾膜层及其制备方法、应用和产品
Petersen et al. Nano-ordered thin films achieved by soft atmospheric plasma polymerization
JP3938636B2 (ja) 高屈折率プラスチックレンズ及びその製造方法
JP2016146310A (ja) バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物
WO2023185672A1 (zh) 一种防雾涂层及其制备方法、及产品
WO2010001763A1 (ja) 光学部材及びグリッド偏光フィルム
TWI846402B (zh) 一種防霧塗層及其製備方法、及產品
JP7231663B2 (ja) 抗菌性組成物、抗菌膜、抗菌膜付き基材
JP3726241B2 (ja) プラスチック光学物品とその製造方法
JPH08262228A (ja) 耐熱性偏光子
WO2023185465A1 (zh) 一种亲水涂层、制备方法及器件
JP6847243B2 (ja) 塗布組成物、積層体及び太陽電池モジュール、並びに積層体の製造方法
TWI846563B (zh) 一種親水塗層、製備方法及器件
WO2024037567A1 (zh) 一种亲水涂层、制备方法及器件
JP2004155930A (ja) 透明フィルム、透明導電性フィルム、該透明導電性フィルムを基板とした液晶ディスプレイ、有機elディスプレイ、タッチパネル及び該透明フィルムの製造方法
JP4066292B2 (ja) 自動車用プラスチック部品の保護膜形成方法
TW202412948A (zh) 一種親水塗層、製備方法及器件
JPH0735913A (ja) プラスチック光学物品
JP3389663B2 (ja) カラーフィルター
Pawde et al. Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment
JPH06148402A (ja) 紫外線吸収性反射防止膜を有するプラスチック光学物品
WO2024131537A1 (zh) 一种亲水涂层、制备方法及器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778041

Country of ref document: EP

Kind code of ref document: A1