WO2010001763A1 - 光学部材及びグリッド偏光フィルム - Google Patents

光学部材及びグリッド偏光フィルム Download PDF

Info

Publication number
WO2010001763A1
WO2010001763A1 PCT/JP2009/061408 JP2009061408W WO2010001763A1 WO 2010001763 A1 WO2010001763 A1 WO 2010001763A1 JP 2009061408 W JP2009061408 W JP 2009061408W WO 2010001763 A1 WO2010001763 A1 WO 2010001763A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
concavo
convex
protective layer
film
Prior art date
Application number
PCT/JP2009/061408
Other languages
English (en)
French (fr)
Inventor
貢 上島
恵美 藤田
慎太郎 垣井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2010519003A priority Critical patent/JPWO2010001763A1/ja
Publication of WO2010001763A1 publication Critical patent/WO2010001763A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles

Abstract

 周期が900nm以下の凹凸構造を有する凹凸面を、その表面の少なくとも一部に有する凹凸基材、及び前記凹凸面上に設けられた保護層を有する光学部材であって、前記保護層が、有機材料及び平均粒径100nm以下の無機微粒子を含むことを特徴とする光学部材;並びに前記光学部材からなるグリッド偏光フィルムが提供される。

Description

光学部材及びグリッド偏光フィルム
 本発明は、光学部材及びグリッド偏光フィルムに関する。
 表面に微細な凹凸構造を有する光学部材は、その構造に応じた特徴的な光学特性を示すことから、近年注目されている。例えば、表面に多数の微細な突起を設けることにより表面の反射を低減したモスアイと呼ばれる部材、及びサブ波長構造を利用した波長板などの光学部材が提案されている。しかしながら、光学部材の表面に構造が形成されていることから、耐擦傷性が悪いといった問題を有している。
 特許文献1(特開2003-302532号公報)では、微細な反射防止構造上に、ハードコート層を形成した反射防止部材が提案されている。しかしながら、この構成では耐擦傷性が十分とは言えず、光学部材として十分とは言えない。
 本発明の目的は、光学的に有用な微細構造を有し、且つ耐久性に優れた光学部材を提供することにある。
 本発明者は上記課題に鑑み検討した結果、微細構造を被覆する層として、特定径の無機微粒子を含有する有機層を採用することにより上記課題を解決しうることを見出し、本発明を解決するに至った。即ち、本発明によれば、以下のものが提供される。
〔1〕 周期が900nm以下の凹凸構造を有する凹凸面を、その表面の少なくとも一部に有する凹凸基材、及び前記凹凸面上に設けられた保護層を有する光学部材であって、
 前記保護層が、有機材料及び平均粒径100nm以下の無機微粒子を含むことを特徴とする、光学部材。
〔2〕 前記保護層の厚さが50nm以下である、前記光学部材。
〔3〕 前記凹凸構造が、平行に延びた畝状の構造である、前記光学部材。
〔4〕 前記凹凸基材が透明樹脂層及び前記畝に沿って延長する金属層を有する、前記光学部材。
〔5〕 前記保護層の前記有機材料が、熱硬化性樹脂、エネルギー線硬化性樹脂、又はこれらの混合物からなる群より選択される、前記光学部材。
〔6〕 前記光学部材からなるグリッド偏光フィルム。
 本発明の光学部材は、特徴的な光学特性を発揮しうる微細な構造を有しながら、耐擦傷性に優れるため、低反射部材、グリッド偏光子等の各種の光学部材として有用である。
図1は、本発明の光学部材における、透明樹脂層及び金属層を有する凹凸基材の一例を概略的に示す斜視図である。 図2は、図1に示す凹凸基材の縦断面図である。 図3は、本発明の光学部材における、透明樹脂層及び金属層を有する凹凸基材の別の一例を概略的に示す縦断面図である。 図4は、本発明の光学部材における、凹凸基材及び保護層の態様の一例を概略的に示す縦断面図である。
 本発明の光学部材は、所定構造の凹凸基材、及び所定の成分を含む保護層を有する。
1.凹凸基材
 (1-1.凹凸基材の材質)
 凹凸基材の材質は、光学部材として機能しうる任意の材質、例えば入射した光の一部を反射又は透過させる材質とすることができる。具体的には、透明樹脂等の有機材料とすることが、光透過性能と加工の容易さの観点から好ましい。
 かかる透明樹脂は、熱可塑性樹脂であってもよいし、硬化性樹脂を硬化させたものであってもよいが、少なくとも後述する畝部分に関しては、畝を容易に形成できると言う点から硬化性樹脂を硬化させたものが好ましい。
 透明な熱可塑性樹脂としては、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、ポリアクリレート樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、二酢酸セルロース、三酢酸セルロース、脂環式オレフィンポリマーなどが挙げられる。これらのうち、転写性の観点から、脂環式オレフィンポリマーが好適である。
 硬化性樹脂としては、熱硬化性のものと、エネルギー線硬化性のものとがある。なお、エネルギー線とは、可視光線、紫外線、電子線、X線などのことをいう。
 熱硬化性樹脂の具体例としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、珪素樹脂、ポリシロキサン樹脂等が挙げられる。
 エネルギー線硬化性樹脂としては、ラジカル重合性不飽和基及び/又はカチオン重合性基を有する低分子量化合物、又は樹脂等が挙げられる。なお、ラジカル重合性不飽和基及び/又はカチオン重合性基は、1分子中に2以上含んでいてもよい。
 前記ラジカル重合性不飽和基を有する低分子量化合物としては、エチレン、プロピレン等のα-オレフィン;ブタジエン、イソプレン等の共役ジエン化合物;スチレン、α-メチルスチレン、t-ブチルスチレン、ジビニルベンゼン、ビニルナフタレン、4-ビニルピリジン等のラジカル反応性芳香族化合物;アクリル酸、メタクリル酸、フマール酸、マレイン酸、エンド-ビシクロ[2.2.1]-5-ヘプテン-2,8-ジカルボン酸(エンディック酸)、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸等の不飽和カルボン酸;アクリル酸クロライド、メタクリル酸クロライド、マレイン酸クロライド等の不飽和カルボン酸のハライド;アクリルアミド、メタクリルアミド、マレイミド等の不飽和カルボン酸のアミド若しくはイミド誘導体;無水マレイン酸、無水エンディック酸、無水シトラコン酸等の不飽和カルボン酸の無水物;マレイン酸モノメチル、マレイン酸ジメチル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アリル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フエノキシエチル(メタ)アクリレート、へキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピオン酸・ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸・ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールへキサ(メタ)アクリレート等の不飽和カルボン酸のエステル誘導体; ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシトリエトキシシラン等のラジカル反応不飽和基を有するシラン化合物;等が挙げられる。
 前記カチオン重合性基を有する低分子量化合物としては、ジシクロペンタジエンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキサンカルボキシレート、ビス(2,3-エポキシシクロペンチル)エーテル、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、(3,4-エポキシ-6-メチルシクロヘキシル)メチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アセタール、エチレングリコールのビス(3,4-エポキシシクロヘキシル)エーテル、エチレングリコールの3,4-エポキシシクロヘキサンカルボン酸ジエステル等の脂環式エポキシ基を含有する化合物;エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジグリセリンテトラグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、スピログリコールジグリシジルエーテル等のグリシジル基を含有するエポキシ化合物;3-エチル-3-メトキシメチルオキセタン、3-エチル-3-エトキシメチルオキセタン、3-エチル-3-ブトキシメチルオキセタン、3-エチル-3-アリルオキシメチルオキセタン、3-メチル-3-ヒドロキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2’-ヒドロキシエチル)オキシメチルオキセタン、3-エチル-3-(2’-ヒドロキシ-3’-フェノキシプロピル)オキシメチルオキセタン、3-エチル-3-(2’-ヒドロキシ-3’-ブトキシプロピル)オキシメチルオキセタン、3-エチル-3-[2’-(2”-エトキシエチル)オキシメチル]オキセタン等のオキセタン環を含有する化合物;等が挙げられる。
 前記ラジカル重合性不飽和基又はカチオン重合性基を有する樹脂としては、低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等の側鎖にラジカル重合性不飽和基又はカチオン重合性基を有する樹脂が挙げられる。
 エネルギー線として紫外線や可視光線を用いる場合には、硬化性樹脂の中に光重合開始剤、光増感剤などを含ませる。光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチウラムモノサルファイド、チオキサントン類等が挙げられる。光増感剤としてn-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等が挙げられる。
 凹凸基材を構成する透明樹脂は、加工性の観点からガラス転移温度が60~200℃であることが好ましく、100~180℃であることがより好ましい。なお、ガラス転移温度は示差走査熱量分析(DSC)により測定することができる。
 前記透明樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤、溶剤などの配合剤が適宜配合されたものであってもよい。
 前記透明樹脂は、耐久性の観点から、100℃で2時間真空乾燥した後の重量W0から、80℃の温水に24時間浸漬し次いで100℃で2時間真空乾燥した後の重量W1への重量減量が、W0の1%以下であることが好ましく、0.8%以下であることがより好ましい。
 本発明において、凹凸基材は、上に説明した透明樹脂のみからなっていてもよく、透明樹脂に加えて他の材料と組み合わされて構成されていてもよい。例えば、後に詳述するグリッド偏光子のように、透明樹脂の層に加えて金属層を有し、これらの組み合わせにより構成されていてもよい。
 (1-2.凹凸基材の形状)
 本発明において、凹凸基材は、周期が900nm以下の凹凸構造を有する凹凸面を、その表面の少なくとも一部に有する。
 ここで、凹凸構造の周期とは、凹凸面上の一方向に沿って観察した際に、複数の同一形状の凹凸が繰り返し現れる場合における、一つの凹凸の幅(即ち当該一方向に沿った長さ)ということを意味することができる。
 凹凸面上の複数方向において凹凸構造の周期が存在する場合は、それらのうち最も短いものが900nm以下の場合、本発明の範疇に包含され、本発明の好ましい効果を得ることができる。以下においては、特に断らない限り、最も短い周期を単に周期という。
 例えば、後に詳述する、図1及び図2に示す平行に延びた畝状の構造を有する凹凸基材310の場合、図2に示す凸部310Pが繰り返し現れる凹凸構造における周期は、矢印P2で示される距離となる。図2が、畝の延長方向に垂直な断面である場合において、図2で観察される凹凸形状の周期P2が900nm以下の場合、本発明の範疇に包含される。
 凹凸構造の周期は、作製する光学部材の性能により変動するため特に限定されないが、好ましくは20~800nm、より好ましくは50~800nm、さらにより好ましくは100~400nmとすることができる。これにより、良好な光学特性と耐擦傷性とを付与することができる。
 凹凸基材の形状は、その表面の少なくとも一部において前記凹凸面を有する限りにおいて特に限定されないが、通常フィルム又は板状の形状とすることができ、当該フィルム又板の表裏の主面のうちの片面又は両面の少なくとも一部において、前記凹凸構造を有する凹凸面が設けられることが好ましい。
 凹凸基材がフィルムの形状である場合における平均厚さは、取り扱い性の観点から通常5μm~10mm、好ましくは20~500μmである。凹凸基材は、波長400~700nmの可視光線領域の光の透過率が80%以上であるものが好ましい。
 本発明に用いられる光学部材を製造するにあたって、凹凸基材として長尺状のものが好ましく用いられる。長尺とは、幅に対し少なくとも5倍程度以上の長さを有するものを言い、好ましくは10倍もしくはそれ以上の長さを有するものを言い、具体的にはロール状に巻回されて保管または運搬される程度の長さを有するものを言う。
 長尺状の凹凸基材の幅は、好ましくは500mm以上、より好ましくは1000mm以上である。凹凸基材は、その製造工程の途中において、任意に、その幅方向の両端を切り落とす(トリミング)ことがある。この場合、前記凹凸基材の幅は、両端を切り落とした後の寸法とすることができる。
 本発明に用いられる凹凸基材は、前記透明樹脂を公知の方法で成形することによって得ることができる。成形法としては、キャスト成形法、押出成形法、インフレーション成形法などが挙げられる。
 本発明において、凹凸構造の具体的な形状は、光学的な特性を発揮しうる様々な微細な構造とすることができるが、表面に多数の突起を有するモスアイ構造、構造複屈折波長板又は以下に詳述する、グリッド偏光子として機能しうる畝状の凹凸構造を例示することができる。
 (1-3.畝状の凹凸構造)
 前記畝状の凹凸構造は、凹凸基材の少なくとも一方の表面に略平行に並ぶ複数の畝を有するものである。畝の周期は、可視光線の波長よりも短いことが好ましい。該畝は、稜線が略直線状に延びるものである。畝の垂直断面形状は特に限定されないが、矩形、台形、菱形、山形などが挙げられる。
 畝の高さHは、好ましくは5~3000nm、より好ましくは20~1000nm、特に好ましくは50~300nmである。
 畝間に形成される溝の幅は、好ましくは200nm以下、好ましくは20~100nmである。
 畝の幅は、好ましくは25~300nmであり、畝(稜線)の長さは、好ましくは800nm以上である。
 また、畝の中心間距離(ピッチ)即ち畝の周期P2は、好ましくは20~500nm、より好ましくは30~300nmである。
 畝のアスペクト比(畝の高さ/畝の幅)は、好ましくは0.1~5.0、より好ましくは0.4~3.0、特に好ましくは0.8~2.0である。
 偏光分離性能などの光学特性を考慮すると、畝が略平行に周期的に(同一ピッチで)並んだものが好ましい。なお、本発明において、略平行とは、平行方向から±5°の範囲内にあることをいう。
 上記のような畝を有する凹凸基材は、リソグラフィー法と現像エッチング法との組み合わせによって、または転写型または転写ロールを用いた転写法によって、得ることができる。具体的には、エネルギー線硬化性樹脂を流延して塗膜を得、該塗膜に畝に対応するパターンでエネルギー線を照射して、該パターンを現像することによって畝を有する凹凸基材を得ることができる。また、エネルギー線硬化性樹脂を流延して塗膜を得、該塗膜に畝に対応した凹凸を有する金型またはロールを、塗膜に押し当て、該押し当てている状態でエネルギー線を照射し、エネルギー線硬化性樹脂を硬化させることによって畝を有する凹凸基材を得ることができる。
 本発明において、畝状の凹凸構造は、上に述べた透明樹脂の層に加えて、畝の頂に在る金属層A及び/又は前記畝間に形成される溝の底に在る金属層Bによって構成することができる。かかる金属層A及び/又は金属層Bをさらに含むことにより、本発明の光学部材をグリッド偏光フィルムとすることができる。
 グリッド偏光フィルムの金属層(グリッド線)に用いる材料としては、導電性のものが好ましく、具体的には、アルミニウム、インジウム、マグネシウム、ロジウム、スズ等の金属が挙げられる。
 金属層は、前記材料を物理蒸着(PVD法)することによって形成することができる。
 PVD法は、蒸着材料を蒸発・イオン化し、被膜を形成させる方法である。具体的には、真空蒸着法、スパッタリング法、イオンプレーティング(イオンめっき)法、イオンビームデポジション法等が挙げられる。これらのうち表面粗さを小さくすることが容易という観点から真空蒸着法が好ましい。真空蒸着法は、真空にした容器の中で、蒸着材料を加熱し気化もしくは昇華して、離れた位置に置かれた基材の表面に付着させ、薄膜を形成する方法である。加熱手段としては、抵抗加熱、電子ビーム、高周波誘導、レーザーなどが挙げられる。物理蒸着を行う装置内の雰囲気は、好ましくは絶対圧1×10-2Pa以下、より好ましくは絶対圧8×10-3Pa以下である。
 物理蒸着による製膜速度は、好ましくは1.0nm/秒以上、より好ましくは2.5nm/秒以上、特に好ましくは4.0nm/秒以上である。なお、製膜速度の上限は、製膜装置の性能による限界があるのみで、表面粗さを小さくするという観点においては特に制限されない。製膜速度をこの範囲に調整することによって、表面粗さを小さくすることができる。
 畝を有する透明樹脂基材にPVD法により金属層を形成させた場合、前記畝の頂および/または前記畝間に形成される溝の底に金属層が積層される。
 畝の頂に積層された金属層Aの形状は特に制限されず、通常は矩形、台形、円形、山形などである。金属層Aの厚さは耐擦傷性の観点から、好ましくは100nm以下、より好ましくは30~100nm、特に好ましくは50~90nmである。前記範囲にすることにより、グリッド偏光フィルムの耐擦傷性を向上することができる。金属層Aの幅および長さは、通常、畝の頂面の形状にしたがってほぼ決まる。
 畝間に形成される溝の底に積層された金属層Bの形状は、特に制限されず、通常は矩形、台形、円形、山形などであるが、光学性能の観点から山形の形状が好ましい。金属層Bの厚さは、好ましくは100nm以下、より好ましくは30~90nm、特に好ましくは50~80nmである。金属層Bの幅および長さは、通常、溝の底面の形状にしたがってほぼ決まる。
 また、必要に応じて、望ましい金属層の形状を形成するために、金属層の形成前に、無機誘電体で透明性がある材料を化学蒸着法(CVD法)又は物理蒸着法(PVD法)により形成して、その後に金属層を形成する方法がある。ここで、無機誘電体で透明性がある材料としては、二酸化ケイ素、二酸化チタン、酸化アルミニウム等を使用することができる。
 さらに、基材と無機誘電体、無機誘電体と金属層との密着性を向上するために、無機誘電体をスパッタリングする前に、前処理として、基材表面にプラズマ処理を施し、その表面を改質することができる。プラズマ処理としては、マグネトロン放電を利用したイオンボンバードによる処理、もしくはプラズマイオンシャワーにより処理があげられる。この処理によって、光学部材の耐擦傷性を向上することができる。
 図1及び図2は、本発明における、透明樹脂層及び金属層を有する凹凸基材の一例を示す斜視図及び断面図である。図1及び図2に示す通り、矩形の畝310Pの頂部及び畝間部の両方に、それぞれ断面概略矩形の金属層311A及び311Bが積層された構造とすることができる。又は、図3に示す通り、畝間部の金属層311B2を、断面概略三角形の形状とすることもできる。かかる311B2のような断面形状の金属層は、金属層311Bの如く形成した金属層を、以下に詳述するエッチング等の手段により変形させることにより得ることができる。
 前記のような畝形成面に積層された金属層の一部は、湿式エッチングによって除去することが好ましい。除去される金属層の一部とは、畝の側壁に形成された部分、畝の頂の幅からはみ出した部分などである。湿式エッチングは、金属層にエッチング液を接触させる工程と、リンス液で洗浄する工程、およびリンス液を除去する工程を少なくとも含む。
 金属層にエッチング液を接触させる工程の前に、除去されないようにしたい部分の金属層の上にマスク層を設けてもよい。マスク層には、通常、無機化合物膜が用いられる。このマスク層によって金属層の厚さの減少を少なくして金属層の幅を狭くすることができる。
 マスキング用の無機化合物は、後述の湿式エッチングに耐えるものであれば特に限定されず、例えば、二酸化ケイ素、窒化ケイ素、炭化ケイ素または窒化酸化ケイ素などの化合物が挙げられる。これらの中では特に二酸化ケイ素が好ましい。積層される無機化合物膜の厚さは、特に制限されないが、通常1~100nm、好ましくは2~50nm、より好ましくは3~20nmである。無機化合物膜はPVD法によって形成できる。
 金属層にエッチング液を接触させる工程の前に、略平行に並んだ畝に直交する方向に延伸することができる。この延伸によって畝の中心間距離が広がり、金属層A間のピッチ間隔が広がり、結果として光線透過率が高くなる。また溝の底面に形成されていた金属層Bの端が、延伸によって、畝の基部から離れ、隙間ができる。後述する湿式エッチング液がこの隙間に入り込み、金属層Bの両端を優先的に除去し、図3のように、金属層Bの断面における中央部分よりも両端部分を薄くし、概略三角形の断面形状とすることができる。
 延伸方法は特に限定されないが、畝に直交する方向の延伸倍率を好ましくは1.05~5倍、より好ましくは1.1~3倍、畝に平行な方向の延伸倍率を好ましくは0.9~1.1倍、より好ましくは0.95~1.05倍にするとよい。このような延伸を行うために、テンター延伸機による連続的な横一軸延伸が好適である。
 金属層にエッチング液を接触させる工程の前に、金属層の表面改質処理を行うことが好ましい。表面改質処理としては、プラズマ処理、コロナ放電処理、UV照射処理および有機溶剤処理からなる群から選ばれる少なくとも一つの処理が好適なものとして挙げられる。金属層の表面改質処理を行うことによって、光学性能のバラツキが小さくなる。
 湿式エッチングに用いられるエッチング液は、透明樹脂フィルムを腐食等させずに金属層の一部を除去できる液であれば良く、マスク層(無機化合物膜)、金属層、透明樹脂基材の材質に応じて適宜選択される。エッチング液としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属化合物を含有する溶液;硫酸、燐酸、硝酸、酢酸、フッ化水素、塩酸などを含有する溶液;過硫酸アンモニウム、過酸化水素、フッ化アンモニウム等やそれらの混合液からなる溶液などが挙げられる。また、エッチング液には界面活性剤などの添加剤が含まれていても良い。
 金属層にエッチング液を接触させる方法は、特に制限されないが、ディップ法、スプレー法およびコーティング法からなる群から選ばれる少なくとも一つの方法が好ましい。
 湿式エッチングに用いられるリンス液は、エッチング液を金属層に接触させたときに発生した残渣を取り除く液である。残渣が残ると金属層の表面が荒れ、光学性能に影響を及ぼすことがある。また、残渣が透明樹脂基材の好ましく無い場所に付着することがある。
 リンス液としては、水(例えば、純水など)、界面活性剤を含有する溶液、などが挙げられる。
 リンス液で金属層を洗浄する方法は、金属層に接触したエッチング液およびエッチング残渣を取り除くことができる方法であれば、特に制限されない。
 リンス液で洗浄した後、リンス液を除去する。リンス液の除去方法は特に制限されないが、エアーブローによる方法が好ましい。
 凹凸基材における金属層には、腐食防止処理を施して腐食防止膜を設けても良い。腐食防止膜は、グリッド偏光性能の観点から、単分子膜もしくはそれに準じる厚さ、具体的には、10nm以下の厚さであることが好ましい。
2.保護層
 本発明の光学部材は、前記凹凸基材の凹凸面上に設けられた保護層を有する。
 保護層は、凹凸基材の凹凸面の少なくとも一部の上に設けることができるが、好ましくは凹凸面全面の上に設け、凹凸面を保護することができる。
 本発明において、保護層は、有機材料及び平均粒径100nm以下の無機微粒子を含むことができる。
 (2-1.有機材料)
 前記有機材料は、透明樹脂が好ましい。透明樹脂は、前述の透明樹脂基材を構成するものとして示した、熱硬化性樹脂、エネルギー線硬化性樹脂、およびこれらの混合物として用いることができる。
 透明樹脂からなる有機材料は、前述の透明樹脂基材同様に、前記同様の方法で測定した重量減量が1%以下であることが好ましく、0.8%以下であることがより好ましい。
 透明樹脂からなる有機材料は、厚さ10μmでの鉛筆硬度がF以上であることが好ましく、2H以上であることがより好ましい。なお、鉛筆硬度はJIS K5600に準じ測定することができる。
 (2-2.無機微粒子)
 本発明において、無機微粒子は、その粒径が、平均粒径として100nm以下、好ましくは5~100nmのものとすることができる。
 本発明における平均粒径は、レーザー回折法、遠心沈降光透過法、X線透過法、電気的検知帯法、遮光法、超音波減衰分光法、画像処理法など、動的散乱法など一般的に知られる粒度分布の測定方法により各々求めることができるが、中でも、レーザー回折法、画像処理法および動的散乱法が好適に使用される。なお、本発明における平均粒径は、個数平均粒径を示す。無機微粒子は、平均粒径が100nm以下でかつアスペクト比が10以下であることが好ましく、平均粒径50nm以下でアスペクト比が5以下であることがさらに好ましい。無機微粒子として、上記の範囲にあるものを用いることにより、得られる樹脂組成物の透明性及び機械的強度を向上させることができる。
 また、無機微粒子の粒径分布は、分散性の視点からなるべく狭いこと、すなわち単分散あるいは単分散に近いことが好ましい。また、無機微粒子の形状は、特に制限はなく、球状、楕円状、破砕状、多面体状の微粒子を用いることができるが、球状、楕円状であることが好ましい。
 無機微粒子は、金属単体からなる無機微粒子、又は金属の酸化物または硫化物からなる無機微粒子が挙げられるが、製造の観点から金属の酸化物もしくは硫化物からなる無機微粒子であることが好ましい。
 金属単体としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Au、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Al、Sn、Fe、In、Ti、Zn、Zr及びSiがさらに好ましい。また、二種類以上の金属を含む無機化合物を用いてもよい。金属の酸化物または硫化物の具体例としては、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)、酸化錫、二硫化錫、酸化亜鉛、酸化ジルコニウム、二酸化チタン、二硫化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化インジウム、および酸化鉄などが挙げることができる。
 無機微粒子は、これらの金属の酸化物または硫化物を主成分とし、さらに他の元素を不純物として微量含んでもよい。ここで、主成分とは、粒子を構成する成分の中で最も含有量(重量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、PおよびSが含まれる。不純物は、金属単体として入っていてもよいし、酸化物等として入っていてもよい。
 無機微粒子は、ゾル-ゲル法(特開昭53-112732号、特公昭57-9051号の各公報記載)または析出法(APPLIED OPTICS、27、3356頁(1998)記載)により、分散物として直接合成することができる。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることもできる。また、市販の無機微粒子 (例えば、二酸化ケイ素ゾル)を用いることもできる。
 保護層中の無機化合物の配合量は特に限定は無く、使用目的に応じて適宜調整することができるが、好ましくは1~50重量%、より好ましくは5~20重量%である。無機化合物の添加量がこの範囲にあることにより、機械的強度や成形加工性が高度にバランスされ好適である。
 また、これら無機化合物は分散性を高めるために分散剤を含んでも良い。分散剤としては、特に限定されないが、脂肪酸、界面活性剤、カップリング剤が挙げられる。脂肪酸の例としては、ステアリン酸などの炭素数4~30の飽和脂肪酸、オレイン酸、リノール酸、リノレイン酸などの炭素数4~30の不飽和脂肪酸が挙げられる。界面活性剤の例としては、ステアリン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ジオクチルスルホコハク酸ナトリウム等のアニオン界面活性剤;N-ラウリルエタノールアミン、セチルトリメチルアンモニウムクロライド等のカチオン界面活性剤;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリン酸エステル、ソルビタンステアリン酸エステル、ポリオキシエチレンソルビタンステアリン酸エステル等のノニオン界面活性剤;アルキルアミノカルボン酸、ヒドロキシエチルイミダゾリン硫酸エステル、イミダゾリンスルホン酸等の両性界面活性剤;フッ素系界面活性剤;シリコーン系界面活性剤;(メタ)アクリル酸系界面活性剤;等が挙げられる。
 カップリング剤の例としては、γ-メタクリロキシプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン等のシラン系カップリング剤;トリイソステアロイルイソプロピルチタネート、ジ(ジオクチルホスフェート)ジイソプロピルチタネート等のチタネート系カップリング剤;モノイソプロポキシアルミニウムモノメタクリレートモノオレイルアセトアセテート、ジイソプロポキシアルミニウムモノオレイルアセトアセテート等のアルミナート系カップリング剤;等が挙げられる。
 (2-3.保護層の特性)
 凹凸基材の凹凸面上に形成した保護層の例を、図4に示す。図4は、図3に示す畝状の凹凸構造上に設けた保護層420を図示している。図4に示す例において、保護層420の厚さは凹凸構造の畝間の空隙の幅421G1の半分より十分に薄く、その結果、幅421G2の空隙を有した凹凸構造が、保護層420面上に形成されている。このように、保護層により凹凸構造を埋めることなく、保護層が凹凸構造に追従した形状とすることにより、凹凸構造の光学的性能を損ねることなく、凹凸構造を効果的に保護することが可能となる。
 保護層の平均厚さは、上記の通り凹凸構造の光学的性能を損ねることなく凹凸構造を保護するため、50nm以下であることが好ましく、さらに好ましくは2~40nmである。なお、保護層の平均厚さとは、無機微粒子の一部が保護層表面から凸部として表れている場合は、かかる無機微粒子の凸部を除外した平均厚さである。保護層の厚さは、光学部材をウルトラミクロトーム等を用いて切断し、その断面を透過型電子顕微鏡等を用いて観察することにより測定できる。
 保護層は、波長400~700nmの可視光線領域の光の透過率が、厚さ5μmで80%以上であるものが好ましい。
 また、保護層の平均厚さ(t)と、保護層に含まれる無機微粒子の平均直径(pd)との関係は、t:pd=1:1.01~1:10であることが、良好な保護特性を発揮する上で好ましく、さらにt:pd=1:1.04~1:7であることがさらに好ましい。上記関係において、保護層の平均厚さ(t)に比べて保護層に含まれる無機粒子の平均直径(Pd)が大きすぎると、無機粒子が欠落しやすくなり、長期耐久性が低下するため、好ましくない。また、保護層の平均厚さ(t)に比べて、保護層に含まれる無機微粒子の平均直径(Pd)が小さすぎると、耐擦傷性が低下するため好ましくない。
 また、保護層は、本発明の効果を阻害しない範囲で顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、塩素捕捉剤、難燃剤、結晶化核剤、防曇剤、離型剤、有機又は無機の充填剤、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止剤、蛍光増白剤、抗菌剤、その他の配合剤が適宜配合されたものであってもよい。
 (2-4.保護層形成法)
 本発明の保護層は、前記有機材料、無機粒子を有機溶剤に溶解、又は分散させた塗布液を、凹凸基材上に塗布し、乾燥、必要により硬化させることにより形成させることができる。
 保護層を形成する凹凸基材は、保護層を均一に形成させるという観点から、保護層形成前に表面に残存する有機物を除去する工程(表面改質処理)を有することが好ましい。前記表面改質処理としては、エネルギー線照射処理や薬品処理等が挙げられる。エネルギー線照射処理としては、コロナ処理、プラズマ処理、電子線照射処理、紫外線照射処理等が挙げられる。処理効率の点等から、コロナ処理、プラズマ処理が好ましく、コロナ処理が特に好ましい。薬品処理としては、重クロム酸カリウム溶液、濃硫酸等の酸化剤水溶液、又は水酸化ナトリウム等のアルカリ性水溶液中に浸漬し、その後、水で洗浄する方法等が挙げられる。
 前記有機溶剤としては、例えばブタン、ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロヘキサン、デカン、ドデカン;等の脂肪族系溶媒、トルエン、プロピルベンゼン、ベンゾニトリル;等の芳香族系溶媒、ブチルクロライド、アミルクロライド、アリルクロライド、クロロトルエン;等のハロゲン系溶媒、ジエチルケトン、ジイソプロピルケトン、メチルヘキシルケトン、ジイソブチルケトン、ブチルアルデヒド、プロピルアセテート、ブチルアセテート、アミルアセテート;等のケトン系溶媒、エチルプロピオネート、エチルイソブチレート、ブチルブチレート;等のエステル系溶媒、ジメチルエーテル、ジヘキシルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル;等のエーテル系溶媒等が挙げられる。これら溶媒は2種類以上の溶媒を混合して用いてもよい。
 前記有機材料、無機粒子及び有機溶剤を溶解又は分散させる方法は特に制限が無く、ホモジナイザー、ヘンシェルミキサー、ボールミル、ディスパー、タービン型攪拌羽根、ヘリカルリボン型攪拌羽根を用いることができる。
 前記塗布としては、スピンコート法、ディッピング法、ロールコート法、スプレー法、ベーパー法、グラビアコータやブレードコータなどのコータ法、スクリーン印刷法、インクジェット法等の塗布法を用いることができる。
3.本発明の光学部材の用途(本発明のグリッド偏光子)
 本発明の光学部材は、その凹凸構造の光学的特性に対応した種々の用途に用いることができるが、好ましくは、グリッド偏光子として用いることができる。この場合、さらに好ましくは、凹凸基材として上で述べた畝状の凹凸構造を有するものを用い、グリッドの周期を所望の偏光性能を得られる幅とすることにより、グリッド偏光子として用いうる光学部材を得ることができる。さらに好ましくは、上で述べたエッチング処理を施し、図4に示すような断面構造を有するグリッド偏光子とすることにより、さらに良好な性能を付与することができる。
 以下、実施例に基づき、本発明についてさらに詳細に説明する。ただし、本発明は下記実施例に限定されるものではない。
 下記実施例において、耐スクラッチ試験は下記の通り行なった。
 (耐スクラッチ試験)
 ガラス板上に、保護層を有する面を上にして試験サンプルを固定し、その上にプリズムシート(3M社製、BEFII)を、その構造体を有する面を下にして、プリズムシート上から荷重200g/cmをかけて、ストローク幅25mm、速度30mm/secで10往復プリズムシートを動かし、スクラッチ処理した。なお、試験サンプルがグリッド偏光フィルムの場合、試験サンプルの凹凸構造及びプリズムシートの構造体の長手方向が同じ向きになるように配置し、面に平行な方向かつ、構造体の長手方向と直角をなす方向にプリズムシートを動かし、スクラッチ処理した。スクラッチ処理後の表面において、無作為に2μmの面積で10箇所を抽出し、電解放出形走査電子顕微鏡S-4700(日立製作所製)で観察し、耐擦傷性試験後の凹凸構造の変化を以下の基準で評価した。
 優良:凹凸構造が全く変化していない(変化していない観察点が、10/10)。
 良:凹凸構造が全く変化していない観察点が、9/10~6/10。
 中:凹凸構造が全く変化していない観察点が、5/10~3/10以上。
 不可:凹凸構造が全く変化していない観察点が、2/10以下。
 <実施例1>
 (1-1:凹凸基材の調製)
 4インチシリコンウェハーに電子線レジスト(日本ゼオン製、ZEP7000)を膜厚300nmで塗布した。電子線描画装置ELS-5700(エリオニクス製)を使用して、レジスト層表面上の30mm×30mmの領域に、高さ250nm、底面直径200nmの円錐形状を正方格子状に周期300nmで配列した凹凸構造を描画し、レジスト層を現像した。
 凹凸構造がパターニングされた面上にニッケル電鋳加工を行って、凹凸構造が反転した形状を表面に有するスタンパを作製した。そのスタンパをプレス機の鏡板に取り付けた。1mm厚みの脂環式構造重合体(日本ゼオン製、ZNR1060R)のシートを、前記スタンパが取り付けられたプレス機を用い200℃にて熱プレス加工し、シート表面に凹凸構造を転写することにより、凹凸面を有する凹凸基材を得た。
 (1-2:保護層の形成-光学部材1の製造)
 反応容器に、3-イソシアネートプロピルトリエトキシシラン(信越シリコーン製、KBE-9007)50重量部を入れ撹拌しながら、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(信越シリコーン製、KBE-603)50重量部を添加して、FT-IRの測定において2250cm-1のピーク(イソシアネート基のシグナル)の高さに変化が無くなるまで反応させた。次いで、上記反応生成物を、イソプロピルアルコールで固形分濃度2重量%となるよう希釈し、前記希釈液100重量部に対して、イソプロピルアルコールのシリカゾルスラリー(日産化学工業製、IPA-ST-L、固形分濃度:30重量%、平均粒径(窒素吸着法による測定):45nm)1.4重量部を添加し、ホモジナイザーで混合することにより、塗工液を作製した。
 次いで、(1-1)で作製した凹凸基材の凹凸面に対し、コロナ処理装置(春日電機製)を用いて、出力200W、直径1.2mmのワイヤー電極、電極長240mm、ワーク電極間1.0mm、搬送速度5m/minの条件で1回放電処理を実施した。その後凹凸基材を前記塗工液に30秒間浸漬した後、100℃の乾燥機で10分間乾燥することにより、光学部材1を得た。
 (1-3:光学部材1の評価)
 作製した光学部材1の550nmの波長に対する5°反射率を、分光光度計V-570(日本分光製)を用いて測定した結果、反射率は1.5%であった。
 また、作製した光学部材1の透過電子顕微鏡(TEM)用観察断面を、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して作製した。透過電子顕微鏡H-7500(日立製作所製)を用いて当該断面を観察して塗工層の厚みを測定した結果、厚さは43nmであった。
 光学部材1の耐スクラッチ試験を実施した結果、凹凸構造の変化の評価は「良」であった。さらに、耐スクラッチ試験後の光学部材1の反射率を、上記と同様に測定した結果、耐スクラッチ試験後の反射率は1.9%であり、耐スクラッチ試験前後の光学特性にほとんど変化は見られなかった。
 <実施例2>
 (2-1:金属モールドの作製)
 8mm×8mm×60mmのSUS製シャンクにろう付けされた寸法0.2mm×1mm×1mmの直方体単結晶ダイヤモンドの0.2mm×1mmの面に、集束イオンビーム加工装置SMI3050(セイコーインスツルメンツ製)を用いてアルゴンイオンビームを用いた集束イオンビーム加工を行い、切削工具を作製した。得られた切削工具上の直方体単結晶ダイヤモンドの0.2mm×1mmの面には、長さ1mmの辺に平行な、幅90nm、深さ70nmの断面矩形形状の溝が、周期160nmのパターンで彫り込まれていた。
 直径200mmで長さ500mmのステンレス鋼SUS430製円筒の曲面全面に、厚さ100μmのニッケル-リン無電解メッキを施した。次いで、精密円筒研削盤S30-1(スチューダ社製)を用いて、前記円筒を回転させながらニッケル-リン無電解メッキ面に、前記切削工具のバイトを押し当て、幅1mmで曲面を一回りする凹凸条を形成した。切削工具を円筒の長さ方向に1mm平行移動し、上記同様にして曲面を一回りする幅1mmの凹凸条を形成した。この切削操作を繰返し、SUS製円筒曲面表層のニッケル-リン無電解メッキ面に幅450mmの凹凸条を形成して、転写ロールを得た。
 なお、集束イオンビーム加工による切削工具の作製と、ニッケル-リン無電解メッキ面の切削加工は、振動制御システム(昭和サイエンス社製)により0.5Hz以上の振動の変位が10μm以下に管理された、温度20.0±0.2℃の恒温低振動室内で行った。
 (2-2:凹凸基材の調製)
 直径70mmのゴム製ニップロール(表面温度100℃)及び上記転写ロール(表面温度160℃)の間に100μmのシクロオレフィンポリマーフィルム(ZF-14、オプテス社製)を、搬送テンション0.1kgf/mm、ニップ圧0.5kgf/mmの条件で挟み、フィルム面に転写ロール面の形状を転写した。形状が転写されたフィルムをロール状に巻き取ることで、フィルム(2-A)を得た。フィルム(2-A)を所定のサイズに切り出し、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用してフィルム(2-A)のTEM用観察断面を作製した。断面は、フィルム(2-A)の面上の溝の延長方向に垂直な面における断面とした。透過電子顕微鏡H-7500(日立製作所製)にてフィルム(2-A)の断面を観察した結果、フィルム(2-A)上の凹凸のパターンは、開口部の幅90nm、深さ70nm、周期160nmの矩形形状であった。
 フィルム(2-A)の凹凸面側に、マグネトロン放電を利用したイオンボンバード処理ユニットを備えた蒸着装置(加熱方式:EB加熱)を用いて無機誘電体層の製膜を行った。蒸着装置にSiOのターゲットを設置し、アルゴンを処理ガスとし、処理ユニット圧力10Pa、処理時間10秒、放電電圧400Vの条件でイオンボンバード処理を行った後、連続してSiOを5nm蒸着し、フィルムをロール状に巻き取った。次いで、蒸着装置のターゲットをアルミニウムに交換し、先と同様の条件でイオンボンバード処理を行った後、連続してアルミニウムを蒸着し、フィルムをロール状に巻き取ることで長尺のアルミニウム蒸着フィルム(2-B)を得た。
 次いで、加熱装置と攪拌装置を備えたエッチング槽に硝酸5.2重量%、リン酸73.0重量%、酢酸3.4重量%、及び残部が水からなる組成(酸成分相当濃度:81.6重量%)のエッチング液を溜め入れ、エッチング液の温度を33℃に調整したエッチング浴に、長尺のアルミニウム蒸着フィルム(2-B)を25秒間浸漬した後、純水を用いて洗浄し、エアーブロワーによる乾燥空気の送風でリンス液を除去することにより、長尺の凹凸基材(2-C)を得た。
 作製した凹凸基材(2-C)を所定のサイズに切り出し、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して凹凸基材(2-C)のTEM用観察断面を作製した。透過電子顕微鏡H-7500(日立製作所製)にて凹凸基材(2-C)の断面を観察をしたところ、凹凸基材(2-C)の凹凸面の凸部、凹部共にアルミ層が形成され、グリッド偏光フィルムとして機能しうる構造となっていることが確認された。
 (2-3:保護層の形成-光学部材(2-D)の製造)
 次いで、(2-2)で作製した凹凸基材(2-C)を10cm角に切り出し、凹凸基材(2-C)の凹凸面に対し、コロナ処理装置(春日電機製)を用いて、出力50W、直径1.2mmのワイヤー電極、電極長240mm、ワーク電極間1.0mm、搬送速度5m/minの条件で1回放電処理を実施した。その後、切り出した凹凸基材(2-C)を実施例1の(1-2)で作製した塗工液に5秒間浸漬した後、100℃の乾燥機で10分間乾燥することにより、光学部材(2-D)を得た。
 (2-4:光学部材(2-D)の評価)
 作製した光学部材(2-D)の波長550nmにおける偏光透過率および偏光反射率を、分光光度計V-570(日本分光製)を用いてそれぞれ測定した。なお、偏光透過率および偏光反射率の測定には直線偏光を使用し、偏光透過率は光学部材の透過軸と入射する光の偏光方向を平行にして透過率を測定することによって、偏光反射率は光学部材の透過軸と入射する光の偏光方向を直交させ入射角5°における反射率を測定した。その結果、偏光透過率は80%、偏光反射率は81%であった。
 また、作製した光学部材(2-D)の透過電子顕微鏡(TEM)用観察断面を、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して作製した。透過電子顕微鏡H-7500(日立製作所製)を用いて当該断面を観察して塗工層の厚みを測定した結果、厚さは20nmであった。
 次に、光学部材(2-D)の耐スクラッチ試験を実施した結果、凹凸構造の変化は「優良」であった。さらに、耐スクラッチ試験後の光学部材(2-D)の光学特性を、上記と同様に測定した結果、耐スクラッチ試験後の偏光透過率は80%、偏光反射率は81%であり、スクラッチ試験前後で光学特性に変化は見られなかった。
 <実施例3>
 (3-1:金属モールドの調製)
 8mm×8mm×60mmのSUS製シャンクにろう付けされた寸法0.2mm×1mm×1mmの直方体単結晶ダイヤモンドの0.2mm×1mmの面に、集束イオンビーム加工装置SMI3050(セイコーインスツルメンツ製)を用いてアルゴンイオンビームを用いた集束イオンビーム加工を行い、切削工具を作製した。得られた切削工具上の直方体単結晶ダイヤモンドの0.2mm×1mmの面には、長さ1mmの辺に平行な、幅100nm、深さ80nmの断面矩形形状の溝が、周期200nmのパターンで彫り込まれていた。
 寸法50mm×50mm、厚さ10mmのステンレス鋼SUS430の表面に、厚さ100μmのニッケル-リン無電解メッキを施し、精密微細加工機(ナガセインテグレックス製、超精密微細加工機NIC200)と上記の切削工具を用いて、ニッケル-リン無電解メッキ面に、切削工具上のパターンを切削加工することにより、所定のパターンを有する金属モールドを得た。なお、集束イオンビーム加工による切削工具の作製と、ニッケル-リン無電解メッキ面の切削加工は、温度20.0±0.2℃、振動制御システム(昭和サイエンス製)により0.5Hz以上の振動の変位が10μm以下に管理された恒温低振動室内で行った。
 (3-2:凹凸基材の調製)
 イソボルニルアクリレート86.6重量部、ジメチロールトリシクロデカンジアクリレート9.6重量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ製、イルガキュアー184)3.8重量部からなる塗布液を、コロナ処理を行った表面改質済みの厚さ100μmのシクロオレフィンポリマーフィルム(ZF-14、日本ゼオン製)表面上に5μmの厚みで塗布し、塗膜を有するフィルム(3-A)を得た。
 このフィルム(3-A)と前記金属モールドとを、塗膜面とパターン面とが接触するように合わせ、次いでフィルム側から紫外線照射することにより、塗膜を硬化させた後、金属モールドからフィルムを剥離して、金属モールド上のパターンが転写された硬化塗膜を有するフィルム(3-B)を得た。フィルム(3-B)を所定のサイズに切り出し、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用してフィルム(3-B)のTEM用観察断面を作製した。断面は、フィルム3の面上の溝の延長方向に垂直な面における断面とした。透過電子顕微鏡H-7500(日立製作所製)にてフィルム(3-B)の断面を観察をした結果、フィルム(3-B)の硬化塗膜上の凹凸のパターンは、開口部の幅100nm、深さ80nm、周期200nmの矩形形状であった。
 次いで、フィルム(3-B)のパターン形成面に、アルゴンガス存在下にて出力400Wの条件でスパッタリングによりSiOをフィルムの厚さ方向より70度傾いた方向(傾ける方向はパターン上の溝の延長方向に対して直交する方向の一方とした)から斜方成膜し、さらに傾ける方向を逆方向(即ちパターン上の溝の延長方向に対して直交する方向のもう一方)として70度傾いた方向から同様にSiOを斜方製膜した後、真空蒸着によりアルミニウムをフィルムの鉛直方向から成膜し、フィルム(3-C)とした。
 次いで、加熱装置と攪拌装置を備えたエッチング槽に硝酸5.2重量%、リン酸73.0重量%、酢酸3.4重量%、及び残部が水からなる組成(酸成分相当濃度:81.6重量%)のエッチング液を溜め入れ、エッチング液の温度を33℃に調整したエッチング浴に、フィルム(3-C)を25秒間浸漬した後、純水を用いて洗浄し、エアーブロワーによる乾燥空気の送風でリンス液を除去することにより、凹凸基材(3-D)を得た。
 作製した凹凸基材(3-D)を所定のサイズに切り出し、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して凹凸基材(3-D)のTEM用観察断面を作製した。透過電子顕微鏡H-7500(日立製作所製)にて凹凸基材(3-D)の断面を観察をしたところ、凹凸基材(3-D)の凹凸面の凸部、凹部共にアルミ層が形成され、グリッド偏光フィルムとして機能しうる構造となっていることが確認された。
 (3-3:保護層の形成-光学部材(3-E)の製造)
 6官能ウレタンアクリレートオリゴマー(新中村化学製、NKオリゴ U-6HA)3重量部、光重合開始剤(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)0.5重量部、及びメチルエチルケトン296.5重量部を混合し、メチルエチルケトンのシリカゾルスラリー(日産化学工業製、MEK-ST、固形分濃度:30重量%、平均粒径(窒素吸着法による測定):14nm)0.7重量部を添加した後、ホモジナイザーで混合することにより、塗工液を作製した。
 次いで、(3-2)で作製した凹凸基材(3-D)を、リモート式大気圧プラズマ処理装置((株)イー・スクエア製)を用いて、出力0.8kW、窒素流量200L/min、搬送速度1m/minの条件で表面処理を実施し、前記塗工液に30秒間浸漬した後、80℃の乾燥機で1分間乾燥し、出力300mW/cmの紫外線に5秒間照射することにより、光学部材(3-E)を得た。
 (3-4:光学部材(3-E)の評価)
 作製した光学部材(3-E)の光学特性を、実施例2の(2-4)と同様に測定した結果、偏光透過率は82%、偏光反射率は83%であった。
 また、作製した光学部材(3-E)のTEM用観察断面を、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して作製した。透過電子顕微鏡H-7500(日立製作所製)を用いて当該断面を観察して塗工層の厚みを測定した結果、厚さは13nmであった。
 光学部材(3-E)の耐スクラッチ試験を実施した結果、凹凸構造の変化は「良」であった。さらに、耐スクラッチ試験後の光学部材(3-E)の光学特性を、実施例2の(2-4)と同様に測定した結果、耐スクラッチ試験後の偏光透過率は82%、偏光反射率は82%であり、光学特性に変化は見られなかった。
 <実施例4>
 温度計、攪拌機、窒素導入管及び冷却管を備えた2000mlの四つ口フラスコに、ポリエーテルポリオールであるエクセノール2020(商品名、旭硝子製、水酸基価56mgKOH/g)840重量部、トリレンジイソシアネート119重量部及びメチルエチルケトン200重量部を入れ、窒素を導入しながら75℃で1時間反応させた。反応終了後、60℃まで冷却し、ジメチロールプロピオン酸35.6重量部を加え、75℃で反応させて、全ての末端のうち末端-NCOの占める割合が0.5%のウレタン樹脂溶液であるプレポリマーを得た。
 次いで、このプレポリマーを40℃まで冷却し、水1500重量部、モノエタノールアミン(沸点:171℃)3.3重量部及びトリエチルアミン(沸点:89℃)21.3重量部を加え、ホモミキサーで高速撹拌することにより乳化を行った。この乳化液から加熱減圧下によりメチルエチルケトンを留去し、固形分40%の水性ウレタン樹脂の水溶液を得た。次いで、作製した水性ウレタン樹脂溶液2.5重量部に、カルボジイミド化合物であるカルボジライトV-02(日清紡績製)0.1重量部および水97.4重量部を加え攪拌した後、シリカゾルスラリー(日産化学工業製、スノーテックスZL、固形分濃度:40重量%、平均粒径(窒素吸着法による測定):98nm)0.25重量部を加え、ホモジナイザーで混合することにより、塗工液を調製した。
 次いで、実施例3の(3-2)で作製した凹凸基材(3-D)を、コロナ処理装置(春日電機製)を用いて、出力30W、直径1.2mmのワイヤー電極、電極長240mm、ワーク電極間1.0mm、搬送速度1m/minの条件で1回放電処理を実施し、前記塗工液に30秒間浸漬した後、120℃の乾燥機で10分間乾燥することにより、光学部材4を得た。作製した光学部材4のTEM用観察断面を、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して作製した。透過電子顕微鏡H-7500(日立製作所製)を用いて当該断面を観察して塗工層の厚みを測定した結果、厚さは13nmであった。
 光学部材4の耐スクラッチ試験を実施した結果、凹凸構造の変化は「良」であった。さらに耐スクラッチ試験前後の光学部材4の光学特性を、実施例2の(2-4)と同様に測定した結果、耐スクラッチ試験前の偏光透過率は82%、偏光反射率は82%であり、一方耐スクラッチ試験後の偏光透過率は81%、偏光反射率は81%であり、光学特性にほとんど変化は見られなかった。
 <実施例5>
 実施例4の塗工液の調製において、シリカゾルスラリーに代えてアルミナゾル(日産化学工業製、アルミナゾル520、固形分濃度:20重量%、平均粒径(窒素吸着法による測定):18nm)0.25重量部を添加し、実施例4の凹凸基材の表面処理を、バイア放電エキシマランプ(ウシオ電機製)を用いて窒素中で254nm(4.9eV)の光を照射距離1mm、照射時間360秒間の条件で表面処理を実施した以外は、実施例4と同様の操作により光学部材を製造し、光学部材5とした。作製した光学部材5のTEM用観察断面を、集束イオンビーム加工観察装置FB-2100(日立製作所製)のマイクロサンプリング装置を使用して作製した。透過電子顕微鏡H-7500(日立製作所製)を用いて当該断面を観察して塗工層の厚みを測定した結果、厚さは14nmであった。
 光学部材5の耐スクラッチ試験を実施した結果、凹凸構造の変化は「良」であった。さらに耐スクラッチ試験前後の光学部材5の光学特性を、実施例2の(2-4)と同様に測定した結果、耐スクラッチ試験前の偏光透過率は82%、偏光反射率は82%であり、一方耐スクラッチ試験後の偏光透過率は82%、偏光反射率は81%であり、光学特性にほとんど変化は見られなかった。
 <比較例1>
 塗工液の調製において、シリカゾルスラリーを添加しなかった以外は、実施例1と同様の操作により光学部材を製造し、光学部材C1とした。
 光学部材C1の保護層の厚みを実施例1の(1-3)と同様に測定した結果、保護層の厚みは、40nmであった。
 光学部材C1の耐スクラッチ試験を実施した結果、凹凸構造の変化は「不可」であった。さらに耐スクラッチ試験後の光学部材C1の反射率を、実施例1の(1-3)と同様に測定した結果、耐スクラッチ試験後の反射率は3.6%であり、光学特性に大きな変化が見られた。
 <比較例2>
 塗工液の調製において、シリカゾルスラリーを添加しなかった以外は、実施例3と同様の操作により光学部材を製造し、光学部材C2とした。
 光学部材C2の保護層の厚みを、実施例2の(2-4)と同様に測定した結果、保護層の厚みは、12nmであった。
 光学部材C2の耐スクラッチ試験を実施した結果、凹凸構造の変化は「可」であった。さらに耐スクラッチ試験前後の光学部材C2の反射率を、実施例2の(2-4)と同様に測定した結果、耐スクラッチ試験前の偏光透過率は82%、偏光反射率は83%であり、一方耐スクラッチ試験後の偏光透過率は83%、偏光反射率は36%であり、偏光反射率の大幅な低下が見られた。
 <比較例3>
 (3-3)中の塗工液の調整において、メチルエチルケトンの配合割合を96.5重量部とした以外は、実施例3と同様の操作により光学部材を製造し、光学部材C3とした。
 光学部材C3の保護層の厚みを、実施例2の(2-4)と同様に測定した結果、保護層の厚みは、25nmであった。光学部材C3の耐スクラッチ試験を実施した結果、凹凸構造の変化は「可」であった。さらに耐スクラッチ試験前後の光学部材C3の光学特性を、実施例2の(2-4)と同様に測定した結果、耐スクラッチ試験前の偏光透過率は82%、偏光反射率は83%であり、一方耐スクラッチ試験後の偏光透過率は82%、偏光反射率は42%であり、偏光反射率の大幅な低下が見られた。
 310 凹凸基材
 310P 凸部
 311A、311B、311B2 金属層
 420 保護層

Claims (6)

  1.  周期が900nm以下の凹凸構造を有する凹凸面を、その表面の少なくとも一部に有する凹凸基材、及び前記凹凸面上に設けられた保護層を有する光学部材であって、
     前記保護層が、有機材料及び平均粒径100nm以下の無機微粒子を含むことを特徴とする、光学部材。
  2.  前記保護層の厚さが50nm以下である、請求項1に記載の光学部材。
  3.  前記凹凸構造が、平行に延びた畝状の構造である、請求項1に記載の光学部材。
  4.  前記凹凸基材が透明樹脂層及び前記畝に沿って延長する金属層を有する、請求項3に記載の光学部材。
  5.  前記保護層の前記有機材料が、熱硬化性樹脂、エネルギー線硬化性樹脂、およびこれらの混合物からなる群より選択される、請求項1に記載の光学部材。
  6.  請求項1に記載の光学部材からなるグリッド偏光フィルム。
PCT/JP2009/061408 2008-07-01 2009-06-23 光学部材及びグリッド偏光フィルム WO2010001763A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519003A JPWO2010001763A1 (ja) 2008-07-01 2009-06-23 光学部材及びグリッド偏光フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008172759 2008-07-01
JP2008-172759 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001763A1 true WO2010001763A1 (ja) 2010-01-07

Family

ID=41465863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061408 WO2010001763A1 (ja) 2008-07-01 2009-06-23 光学部材及びグリッド偏光フィルム

Country Status (2)

Country Link
JP (1) JPWO2010001763A1 (ja)
WO (1) WO2010001763A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242803A (ja) * 2011-05-24 2012-12-10 Dainippon Printing Co Ltd 光学部材積層体の製造方法および光学的機能を有する部材の製造方法
JP2013190744A (ja) * 2012-03-15 2013-09-26 Hitachi Consumer Electronics Co Ltd 光学素子およびその製造方法
WO2015056191A1 (en) * 2013-10-15 2015-04-23 Eulitha A.G. Polarizer and a method for forming the same
JP2018163253A (ja) * 2017-03-24 2018-10-18 大日本印刷株式会社 偏光子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6935229B2 (ja) * 2017-05-16 2021-09-15 日東電工株式会社 円偏光フィルム、粘着剤層付円偏光フィルムおよび画像表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302532A (ja) * 2002-04-12 2003-10-24 Mitsubishi Chemicals Corp 偏光板およびその製造方法
JP2007284622A (ja) * 2006-04-19 2007-11-01 Asahi Kasei Corp 表面保護層用塗布組成物
JP2008145581A (ja) * 2006-12-07 2008-06-26 Cheil Industries Inc ワイヤーグリッド偏光子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302532A (ja) * 2002-04-12 2003-10-24 Mitsubishi Chemicals Corp 偏光板およびその製造方法
JP2007284622A (ja) * 2006-04-19 2007-11-01 Asahi Kasei Corp 表面保護層用塗布組成物
JP2008145581A (ja) * 2006-12-07 2008-06-26 Cheil Industries Inc ワイヤーグリッド偏光子及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242803A (ja) * 2011-05-24 2012-12-10 Dainippon Printing Co Ltd 光学部材積層体の製造方法および光学的機能を有する部材の製造方法
JP2013190744A (ja) * 2012-03-15 2013-09-26 Hitachi Consumer Electronics Co Ltd 光学素子およびその製造方法
WO2015056191A1 (en) * 2013-10-15 2015-04-23 Eulitha A.G. Polarizer and a method for forming the same
JP2018163253A (ja) * 2017-03-24 2018-10-18 大日本印刷株式会社 偏光子

Also Published As

Publication number Publication date
JPWO2010001763A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
Raut et al. Anti-reflective coatings: A critical, in-depth review
JP6199864B2 (ja) ナノ構造物品及びそれを製造するための方法
EP2380045B1 (en) Antireflective articles and methods of making the same
Ting et al. Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology
KR101719009B1 (ko) 나노구조 용품 및 나노구조 용품의 제조 방법
WO2010001763A1 (ja) 光学部材及びグリッド偏光フィルム
US7517617B2 (en) Mask blank for use in EUV lithography and method for its production
JP2006335881A (ja) 中空状SiO2を含有する分散液、塗料組成物及び反射防止塗膜付き基材
EP2686389A1 (en) Nanostructured articles
JP2006215542A (ja) 反射防止膜及びこれを有する撮像系光学素子
US10151863B2 (en) Optical grating
Tagliabue et al. Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films
WO2015011009A1 (en) Thin film broadband plasmonic absorber
JP2007199522A (ja) 光学積層体の製造方法
Park et al. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles
JP2010181831A (ja) グリッド偏光子及び製造方法
JP6948369B2 (ja) モスアイ転写型及びモスアイ転写型の製造方法
WO2021090130A1 (en) Optical film
JP6611113B1 (ja) 表面に微細凹凸構造を備えたプラスチック素子の製造方法
JP2008266505A (ja) コーティング組成物及び光学部材
JP2010097130A (ja) 光学部材、製造方法及びグリッド偏光フィルム
JP2010014822A (ja) グリッド偏光フィルムの製造方法
TW202208883A (zh) 附防汙層之光學膜
Schulz Coating on plastics
CA3132787A1 (en) Optical transmission element, having a super-hydrophobic nanostructured surface having an anti-reflective property and covered with a conformal high-hardness thin film deposit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519003

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773341

Country of ref document: EP

Kind code of ref document: A1