WO2023185537A1 - 一种提高单晶产出的工艺 - Google Patents

一种提高单晶产出的工艺 Download PDF

Info

Publication number
WO2023185537A1
WO2023185537A1 PCT/CN2023/082630 CN2023082630W WO2023185537A1 WO 2023185537 A1 WO2023185537 A1 WO 2023185537A1 CN 2023082630 W CN2023082630 W CN 2023082630W WO 2023185537 A1 WO2023185537 A1 WO 2023185537A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
heater
range
melting
power
Prior art date
Application number
PCT/CN2023/082630
Other languages
English (en)
French (fr)
Inventor
菅向红
Original Assignee
Tcl中环新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl中环新能源科技股份有限公司 filed Critical Tcl中环新能源科技股份有限公司
Publication of WO2023185537A1 publication Critical patent/WO2023185537A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present application belongs to the field of process technology for improving single crystal output in the solar photovoltaic material manufacturing industry, and particularly relates to a process for increasing single crystal output.
  • Quartz crucible is the main consumable for pulling single crystal silicon. Since silicon is highly chemically active in the molten state, it will react with the quartz crucible, that is, SiO 2 +Si ⁇ 2SiO, and the silicon oxide produced during this period will enter the molten silicon. Within, the growing crystal structure changes and dislocations are generated, which affects the crystallization of single crystals and makes the quality of single crystals poor.
  • the upper edge and R angle of the crucible Since the initial crystallization of the quartz crucible is slow, the upper edge and R angle of the crucible have the greatest impact on the crystallization probability. A dense protective layer cannot be formed in time during operation. If the upper edge and R angle of the quartz crucible can crystallize quickly, then It can form a dense protective layer with wider coverage and reduce heterogeneous nucleation and breakage caused by the reaction between molten silicon and the transparent layer, thereby improving crystallization and increasing output. At present, there is a common problem in the industry of difficulty in crystallization when drawing the first single crystal. It often requires one expansion break before the crystallization occurs or short bud problems occur.
  • the problem to be solved by this application is to provide a process for improving the output of single crystals, effectively reacting the upper edge of the crucible with the silicon solution, and the generated silicon oxide enters the molten silicon, causing the growing crystal structure to change. Dislocations are generated, which affects the crystallization of single crystals, resulting in poor quality single crystals.
  • the technical solution adopted in the embodiment of the present application is to provide a process for improving single crystal output, including:
  • the main heater of the single crystal furnace is maintained at 65kw-75kw.
  • the sub-heater of the single crystal furnace is maintained within the range of 8kw-12kw;
  • the power of the main heater of the single crystal furnace is increased to the range of 95kw-105kw; the power of the sub-heater of the single crystal furnace is increased to 88kw-92kw. Within the range, the power of the main heater and the sub-heater will remain unchanged until re-commissioning is performed.
  • the preferred power range of the main heater of the single crystal furnace is 68kw-72kw; the preferred power range of the auxiliary heater of the single crystal furnace is 9kw-11kw.
  • the preferred power range of the single crystal furnace main heater is 68kw-72kw; the preferred power range of the single crystal furnace auxiliary heater is 9kw -11kw.
  • the preferred power range of the main heater of the single crystal furnace is 98kw-102kw; the preferred power range of the secondary heater of the single crystal furnace is 89kw -91kw.
  • the rotational speed of the crucible is maintained within a rotational speed range of 0.4rpm/min-0.6rpm/min from the start of melting to the initial re-injection.
  • the position of the crucible is maintained at the lower limit position from the start of melting to the initial re-injection.
  • the flow rate of the inert gas introduced into the crucible is maintained in a flow range of 60-90 L/min from the start of melting to the initial re-injection.
  • the embodiment of the present application adopts the above technical solution, which slows down the melting rate of the silicon raw material, so that the upper edge of the crucible is exposed.
  • the baking time and temperature of the exposed upper edge are higher than those of the conventional process, and the inner wall of the upper edge of the crucible can be Carry out sufficient phase change to achieve the effect of improving crystallization.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two elements.
  • a fixed connection a detachable connection, or an integral connection
  • it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two elements.
  • barium carbonate decomposes to form barium oxide, which reacts with the transparent layer on the inner wall of the quartz crucible to form barium silicate.
  • the barium silicate is a layer of dense and tiny cristobalite crystals (crystallization layer).
  • the crystal layer can reduce the corrosion of the inner wall of the quartz crucible by the silicon solution, enhance the strength of the quartz crucible, reduce its thermal deformation, and reduce heterogeneous nucleation and breakage caused by the reaction between the molten silicon and the transparent layer, thereby improving crystallization and increasing output.
  • the molten silicon will react with the transparent layer to obtain amorphous silica particles, that is, SiO 2 +Si ⁇ 2SiO, the generated silicon oxide enters the molten silicon, causing the growing crystal structure to change and generating dislocations, which affects the crystallization of single crystals, leading to expansion and bud breakage. Therefore, combined with the changing characteristics of the environment of the quartz crucible during the crystal pulling process, the changes in negative physical and chemical properties and its adverse effects caused by it are analyzed, and the adverse effects can be avoided in advance based on the molten material used in the crucible process.
  • This application proposes A process to increase single crystal yield, including:
  • the power of the main heater and sub-heater of the single crystal furnace is reduced, and the power increase rate of the main heater and sub-heater of the single crystal furnace is slowed down, so that the overall silicon material melting rate is reduced;
  • the preferred power range of the main heater of the single crystal furnace is 68kw-72kw, and more preferably, the power of the main heater is maintained at 70kw; the preferred power range of the auxiliary heater of the single crystal furnace is 9kw-11kw, and more preferably, the power of the auxiliary heater is 9kw-11kw.
  • the power remains at 10kw; compared with the power used in the current period, the power in this application is reduced, while This plays a role in slowing down the melting speed of silicon material;
  • the preferred power range of the main heater of the single crystal furnace is 98kw-102kw, and more preferably, the power of the main heater is increased to 100kw; the preferred power range of the auxiliary heater of the single crystal furnace is 89kw-91kw, and more preferably, the auxiliary heater The power is increased to 90kw.
  • the rotational speed of the crucible is maintained within the range of 0.4rpm/min-0.6rpm/min from the beginning of melting to the initial re-investment; the position of the crucible is consistent from the start of melting to the initial re-investment. Keep it at the lower limit position, which is the lowest position that the crucible can be adjusted; the flow rate of the inert gas introduced into the crucible is maintained within the flow range of 60-90L/min from the beginning of melting to the initial re-injection. Reducing the adjustment of other parameters can simplify the process flow and achieve the purpose of melting materials at the same time.
  • the liquid level position of the melting material in this application after 13 hours is 100mm-120mm lower than that of the conventional melting material after 13h.
  • the upper edge of the crucible is fully exposed and baked to ensure that the upper edge of the quartz crucible can reach the temperature of quartz phase change before re-throwing, and to ensure that the upper edge of the quartz crucible undergoes high-temperature baking to the maximum extent, so that the upper edge of the quartz crucible can quickly generate phase on the inner wall.
  • Transform and form dense cristobalite to prevent the quartz crucible from reacting with the silicon liquid produce a crystallization layer as early as possible, speed up the formation of the crystallization layer on the upper edge of the crucible, promote the formation of a dense crystallization layer in advance during the melting process of the quartz crucible, and prevent the formation of amorphous crystallization layer
  • silica particles enter the heterogeneous nucleation caused by dissolved silicon it can also improve the formation of the first crystal and increase the probability of the first crystal.
  • the probability of crystal formation can be increased by about 10%. .
  • the power of the main heater and sub-heater of the single crystal furnace is reduced, and the power increase rate of the main heater and sub-heater of the single crystal furnace is slowed down, so that the overall silicon material melting rate is reduced;
  • the rotational speed of the crucible is maintained at 0.4 rpm/min from the start of melting to the initial re-dosing; the position of the crucible is maintained at the lower limit position from the start of melting to the initial re-dosing; the internal flow of the crucible
  • the flow rate of the inert gas is maintained at 60L/min from the start of melting to the initial re-injection. Reducing the adjustment of other parameters can simplify the process flow and achieve the purpose of melting materials at the same time.
  • the liquid level position after 13 hours of melting is 100mm lower than that of conventional melting after 13 hours.
  • the upper edge of the crucible is fully exposed during the melting process. Baking ensures that the upper edge of the quartz crucible can reach the temperature of quartz phase change before re-investment, and ensures that the upper edge of the quartz crucible undergoes high-temperature baking to the maximum extent, so that the upper edge of the quartz crucible can quickly undergo phase change and form dense cristobalite on the inner wall.
  • the crystal formation probability can be increased by 8%.
  • the rotational speed of the crucible is maintained at 0.6 rpm/min from the start of melting to the initial re-dosing; the position of the crucible is maintained at the lower limit position from the start of melting to the initial re-dosing; the internal flow of the crucible The flow rate of the inert gas is maintained at 90L/min from the start of melting to the initial re-injection. Reducing the adjustment of other parameters can simplify the process flow and achieve the purpose of melting materials at the same time.
  • the liquid level position after 13 hours of melting is 120mm lower than that of conventional melting after 13 hours.
  • the upper edge of the crucible is fully exposed during the melting process. Baking ensures that the upper edge of the quartz crucible can reach the temperature of quartz phase change before re-investment, and ensures that the upper edge of the quartz crucible undergoes high-temperature baking to the maximum extent, so that the upper edge of the quartz crucible can quickly undergo phase change and form dense cristobalite on the inner wall.
  • the crystal formation probability can be increased by 10.5%.
  • the rotation speed of the crucible is maintained at 0.5 rpm/min from the start of melting to the initial re-dosing; the position of the crucible is maintained at the lower limit position from the start of melting to the initial re-dosing;
  • the flow rate of the inert gas is maintained at 80L/min from the start of melting to the initial re-injection. Reducing the adjustment of other parameters can simplify the process flow and achieve the purpose of melting materials at the same time.
  • the liquid level position after 13 hours of melting is 105mm lower than that of conventional melting after 13 hours.
  • the upper edge of the crucible is fully exposed during the melting process. Baking ensures that the upper edge of the quartz crucible can reach the temperature of quartz phase change before re-investment, and ensures that the upper edge of the quartz crucible undergoes high-temperature baking to the maximum extent, so that the upper edge of the quartz crucible can quickly undergo phase change and form dense cristobalite on the inner wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

公开了一种提高单晶产出的工艺,包括:开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至65kw-75kw的范围内,同时副加热器从0kw逐渐上升至8kw-12kw的范围内;在熔料的0.5h-6.5h的时间内,单晶炉的主加热器保持在65kw-75kw的范围内,同时副加热器保持在8kw-12kw的范围内;在熔料6.5h-初始复投的时间内,单晶炉的主加热器的功率提升至95kw-105kw的范围内;副加热器的功率提升至88kw-92kw的范围内。本申请延缓了硅原料的熔融速率,坩埚上沿裸露在外,裸露烘烤时间及温度较常规工艺高,坩埚上沿内壁能够进行充分相变,达到改善成晶的效果。

Description

一种提高单晶产出的工艺
本申请要求于2022年03月31日提交中国专利局、申请号为202210331427.4、发明名称为“一种提高单晶产出的工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于太阳能光伏材料制造业中提高单晶产出的工艺技术领域,尤其是涉及一种提高单晶产出的工艺。
背景技术
石英坩埚是拉制单晶硅的主要耗材,由于硅在熔融状态下具有高度的化学活泼性,它会与石英坩埚发生反应,即SiO2+Si→2SiO,这期间产生的氧化硅进入熔硅内,使得正在生长中的晶体结构发生改变,产生位错,从而影响单晶成晶,使得单晶质量差。
由于石英坩埚初始析晶较慢,以坩埚上沿及R角对成晶概率的影响最大,运行过程中未能及时形成致密保护层,若石英坩埚上沿及R角部位能够快速析晶,则可形成覆盖面更广的致密保护层,减少由于熔硅与透明层反应导致的异质成核断苞,从而改善成晶,提高产出。目前行业内部拉制第一颗单晶普遍存在成晶困难的问题,往往需要扩断一次后成晶或发生短断苞问题。
技术问题
本申请要解决的问题是:提供一种提高单晶产出的工艺,有效的解坩埚上沿与硅溶液进行反应,产生的氧化硅进入熔硅内,使得正在生长中的晶体结构发生改变,产生位错,从而影响单晶成晶,使得单晶质量差的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是提供一种提高单晶产出的工艺,包括:
将原料置入坩埚中,开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至65kw-75kw的范围内,同时所述单晶炉的副加热器从0kw逐渐上升至8kw-12kw的范围内;
在熔料的0.5h-6.5h的时间内,所述单晶炉的主加热器保持在65kw-75kw的 范围内,同时所述单晶炉的副加热器保持在8kw-12kw的范围内;
在熔料6.5h-初始复投的时间内,所述单晶炉的主加热器的功率提升至95kw-105kw的范围内;所述单晶炉的副加热器的功率提升至88kw-92kw的范围内,随后所述主加热器和所述副加热器功率保持不变,直至进行复投。
在一些实施例中,开始熔料的0-0.5h内,所述单晶炉主加热器的优选功率范围为68kw-72kw;所述单晶炉副加热器的优选功率范围为9kw-11kw。
在一些实施例中,在熔料的0.5h-6.5h的时间内,所述单晶炉主加热器的优选功率范围为68kw-72kw;所述单晶炉副加热器的优选功率范围为9kw-11kw。
在一些实施例中,在熔料6.5h-初始复投的时间内,所述单晶炉主加热器的优选功率范围为98kw-102kw;所述单晶炉副加热器的优选功率范围为89kw-91kw。
在一些实施例中,所述坩埚的转速从开始熔料至初始复投前均保持在0.4rpm/min-0.6rpm/min的转速范围内。
在一些实施例中,所述坩埚的位置从开始熔料至初始复投前均保持在下限位置处。
在一些实施例中,所述坩埚内通入惰性气体的流量从开始熔料至初始复投前均保持在60-90L/min的流量范围内。
有益效果
相较于现有技术,本申请实施例由于采用上述技术方案,延缓了硅原料的熔融速率,使得坩埚上沿裸露在外,上沿裸露烘烤时间及温度较常规工艺高,坩埚上沿内壁能够进行充分相变,达到改善成晶的效果。
本发明的实施方式
本申请提供一种提高单晶产出的工艺。下面结合实施例对本申请作进一步说明:
在本申请实施例的描述中,需要理解的是,术语“顶部”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解, 例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
石英坩埚在熔料过程中,碳酸钡分解形成氧化钡,与石英坩埚内壁的透明层发生反应生成硅酸钡,该硅酸钡为一层致密微小的方石英结晶(析晶层),该析晶层可减少硅溶液对石英坩埚内壁的腐蚀,增强石英坩埚的强度,减少其受热变形,减少由于熔硅与透明层反应导致的异质成核断苞,从而改善成晶,提高产出。
通过分析石英坩埚相变的条件,需要将石英坩埚加热至1470℃以上方可达到相变条件,结合单晶实际拉制过程分析,行业内为降低熔料工时,未待石英坩埚形成致密析晶层已完成熔料步骤,石英坩埚被硅液覆盖,无法达到更高的温度,从而影响石英坩埚相变速度,熔硅会与透明层反应得到的无定型二氧化硅颗粒,即SiO2+Si→2SiO,产生的氧化硅进入熔硅使得正在生长中的晶体结构发生改变,产生位错,从而影响单晶成晶,导致扩断、断苞。因此结合拉晶过程中石英坩埚所处环境变化特性,分析其所引发的负面理化特性的变化及其不良影响,从用埚工艺过程中的熔料出发,提前规避其不良影响,本申请提出了一种提高单晶产出的工艺,包括:
S1:将原料置入坩埚中,开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至65kw-75kw的范围内,同时单晶炉的副加热器从0kw逐渐上升至8kw-12kw的范围内;其中,单晶炉主加热器的优选功率范围为68kw-72kw,更优选的,主加热器将功率从0kw提升至70kw;单晶炉副加热器的优选功率范围为9kw-11kw,更优选的,副加热器将功率从0kw提升至10kw;
相较于现有技术,减小单晶炉主加热器和副加热器的功率,同时减缓单晶炉主加热器和副加热器的功率上升速度,使得整体硅料融化速率降低;
S2:在熔料的0.5h-6.5h的时间内,单晶炉的主加热器保持在65kw-75kw的范围内,同时单晶炉的副加热器保持在8kw-12kw的范围内;其中,
单晶炉主加热器的优选功率范围为68kw-72kw,更优选的,主加热器的功率保持70kw;单晶炉副加热器的优选功率范围为9kw-11kw,更优选地,副加热器的功率保持10kw;相较于现有时间段内使用的功率,本申请中的功率降低,同 样起到延缓硅料熔融速度的作用;
S3:在熔料6.5h-初始复投的时间内,单晶炉的主加热器的功率提升至95kw-105kw的范围内;单晶炉的副加热器的功率提升至88kw-92kw的范围内,随后主加热器和副加热器功率保持不变,直至进行复投;其中,
单晶炉主加热器的优选功率范围为98kw-102kw,更优选的,主加热器的功率提升至100kw;单晶炉副加热器的优选功率范围为89kw-91kw,更优选的,副加热器的功率提升至90kw。
在S1、S2、S3中,坩埚的转速从开始熔料至初始复投前均保持在0.4rpm/min-0.6rpm/min的转速范围内;坩埚的位置从开始熔料至初始复投前均保持在下限位置处,下限位置即坩埚能够调整的最低位置处;坩埚内通入惰性气体的流量从开始熔料至初始复投前均保持在60-90L/min的流量范围内。减少对其他参数的调整,能够简化工艺流程,同时能够达到熔料的目的。
本申请通过适当降低熔料功率,延长熔料时间,相较于现有技术,本申请熔料13h后的液面位置比常规熔料13h后液面位置降低100mm-120mm,在化料过程中坩埚上沿进行充分裸露烘烤,确保石英坩埚上沿在复投前即可达到石英相变的温度,保证石英坩埚上沿最大限度的经过高温烘烤,以使石英坩埚上沿内壁快速产生相变、形成致密方石英,避免石英坩埚与硅液反应,及早产生析晶层,加快坩埚上沿析晶层形成速度,促进石英坩埚在熔料过程中提前形成致密析晶层,阻止因无定型二氧化硅颗粒进入溶硅引起的异质成核断苞,同时能够改善第一颗成晶,提高第一颗成晶概率,目前进行若干次实验,得出能够提高10%左右的成晶概率。
下面列举几个具体实施例:
实施例1
S1:将原料置入坩埚中,开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至65kw,同时单晶炉的副加热器从0kw逐渐上升至8kw;
相较于现有技术,减小单晶炉主加热器和副加热器的功率,同时减缓单晶炉主加热器和副加热器的功率上升速度,使得整体硅料融化速率降低;
S2:在熔料的0.5h-6.5h的时间内,单晶炉的主加热器保持在65kw同时单晶炉的副加热器保持在8kw;
S3:在熔料6.5h-初始复投的时间内,单晶炉的主加热器的功率提升至95kw;单晶炉的副加热器的功率提升至88kw,随后主加热器和副加热器功率保持不变,直至进行复投;其中,
在S1、S2、S3中,坩埚的转速从开始熔料至初始复投前均保持在0.4rpm/min;坩埚的位置从开始熔料至初始复投前均保持在下限位置处;坩埚内通入惰性气体的流量从开始熔料至初始复投前均保持在60L/min。减少对其他参数的调整,能够简化工艺流程,同时能够达到熔料的目的。
通过适当降低熔料功率,延长熔料时间,相较于现有技术,熔料13h后的液面位置比常规熔料13h后液面位置降低100mm,在化料过程中坩埚上沿进行充分裸露烘烤,确保石英坩埚上沿在复投前即可达到石英相变的温度,保证石英坩埚上沿最大限度的经过高温烘烤,以使石英坩埚上沿内壁快速产生相变、形成致密方石英,避免石英坩埚与硅液反应,及早产生析晶层,加快坩埚上沿析晶层形成速度,促进石英坩埚在熔料过程中提前形成致密析晶层,阻止因无定型二氧化硅颗粒进入溶硅引起的异质成核断苞,同时能够改善第一颗成晶,提高第一颗成晶概率,通过多次试验,得出能够提高8%的成晶概率。
实施例2
S1:将原料置入坩埚中,开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至75kw,同时单晶炉的副加热器从0kw逐渐上升至12kw;相较于现有技术,减小单晶炉主加热器和副加热器的功率,同时减缓单晶炉主加热器和副加热器的功率上升速度,使得整体硅料融化速率降低;
S2:在熔料的0.5h-6.5h的时间内,单晶炉的主加热器保持在75kw,同时单晶炉的副加热器保持在12kw;
S3:在熔料6.5h-初始复投的时间内,单晶炉的主加热器的功率提升至105kw;单晶炉的副加热器的功率提升至92kw,随后主加热器和副加热器功率保持不变,直至进行复投;
在S1、S2、S3中,坩埚的转速从开始熔料至初始复投前均保持在0.6rpm/min;坩埚的位置从开始熔料至初始复投前均保持在下限位置处;坩埚内通入惰性气体的流量从开始熔料至初始复投前均保持在90L/min。减少对其他参数的调整,能够简化工艺流程,同时能够达到熔料的目的。
通过适当降低熔料功率,延长熔料时间,相较于现有技术,熔料13h后的液面位置比常规熔料13h后液面位置降低120mm,在化料过程中坩埚上沿进行充分裸露烘烤,确保石英坩埚上沿在复投前即可达到石英相变的温度,保证石英坩埚上沿最大限度的经过高温烘烤,以使石英坩埚上沿内壁快速产生相变、形成致密方石英,避免石英坩埚与硅液反应,及早产生析晶层,加快坩埚上沿析晶层形成速度,促进石英坩埚在熔料过程中提前形成致密析晶层,阻止因无定型二氧化硅颗粒进入溶硅引起的异质成核断苞,同时能够改善第一颗成晶,提高第一颗成晶概率,通过多次试验,得出能够提高10.5%的成晶概率。
实施例3
S1:将原料置入坩埚中,开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至70kw,同时单晶炉的副加热器从0kw逐渐上升至10kw;相较于现有技术,减小单晶炉主加热器和副加热器的功率,同时减缓单晶炉主加热器和副加热器的功率上升速度,使得整体硅料融化速率降低;
S2:在熔料的0.5h-6.5h的时间内,单晶炉的主加热器保持在70kw,同时单晶炉的副加热器保持在10kw;其中,
S3:在熔料6.5h-初始复投的时间内,单晶炉的主加热器的功率提升至100kw;单晶炉的副加热器的功率提升至90kw,随后主加热器和副加热器功率保持不变,直至进行复投;
在S1、S2、S3中,坩埚的转速从开始熔料至初始复投前均保持在0.5rpm/min;坩埚的位置从开始熔料至初始复投前均保持在下限位置处;坩埚内通入惰性气体的流量从开始熔料至初始复投前均保持在80L/min。减少对其他参数的调整,能够简化工艺流程,同时能够达到熔料的目的。
通过适当降低熔料功率,延长熔料时间,相较于现有技术,熔料13h后的液面位置比常规熔料13h后液面位置降低105mm,在化料过程中坩埚上沿进行充分裸露烘烤,确保石英坩埚上沿在复投前即可达到石英相变的温度,保证石英坩埚上沿最大限度的经过高温烘烤,以使石英坩埚上沿内壁快速产生相变、形成致密方石英,避免石英坩埚与硅液反应,及早产生析晶层,加快坩埚上沿析晶层形成速度,促进石英坩埚在熔料过程中提前形成致密析晶层,阻止因无定型二氧化硅颗粒进入溶硅引起的异质成核断苞,同时能够改善第一颗成晶,提高第一颗成晶 概率,通过多次试验,得出能够提高9.8%的成晶概率。
以上对本申请的实施例进行了详细说明,但所述内容仅为本申请的较佳实施例,不能被认为用于限定本申请的实施范围。凡依本申请范围所作的均等变化与改进等,均应仍归属于本申请的专利涵盖范围之内。

Claims (14)

  1. 一种提高单晶产出的工艺,其特征在于,包括:
    将原料置入坩埚中,开始熔料的0-0.5h内,使单晶炉的主加热器从0kw逐渐上升至65kw-75kw的范围内,同时所述单晶炉的副加热器从0kw逐渐上升至8kw-12kw的范围内;
    在熔料的0.5h-6.5h的时间内,所述单晶炉的主加热器保持在65kw-75kw的范围内,同时所述单晶炉的副加热器保持在8kw-12kw的范围内;
    在熔料6.5h-初始复投的时间内,所述单晶炉的主加热器的功率提升至95kw-105kw的范围内;所述单晶炉的副加热器的功率提升至88kw-92kw的范围内,随后所述主加热器和所述副加热器功率保持不变,直至进行复投。
  2. 根据权利要求1所述的一种提高单晶产出的工艺,其特征在于:开始熔料的0-0.5h内,所述单晶炉主加热器的优选功率范围为68kw-72kw;所述单晶炉副加热器的优选功率范围为9kw-11kw。
  3. 根据权利要求1或2所述的一种提高单晶产出的工艺,其特征在于:开始熔料的0-0.5h内,所述主加热器将功率从0kw提升至70kw。
  4. 根据权利要求1-3任一项所述的一种提高单晶产出的工艺,其特征在于:开始熔料的0-0.5h内,所述副加热器将功率从0kw提升至10kw。
  5. 根据权利要求1-4任一项所述的一种提高单晶产出的工艺,其特征在于:在熔料的0.5h-6.5h的时间内,所述单晶炉主加热器的优选功率范围为68kw-72kw;所述单晶炉副加热器的优选功率范围为9kw-11kw。
  6. 根据权利要求1-5任一所述的一种提高单晶产出的工艺,其特征在于:在熔料的0.5h-6.5h的时间内,所述主加热器的功率保持70kw。
  7. 根据权利要求1-6任一所述的一种提高单晶产出的工艺,其特征在于:在熔料的0.5h-6.5h的时间内,所述副加热器的功率保持10kw。
  8. 根据权利要求1-7任一所述的一种提高单晶产出的工艺,其特征在于:在熔料6.5h-初始复投的时间内,所述单晶炉主加热器的优选功率范围为98kw-102kw;所述单晶炉副加热器的优选功率范围为89kw-91kw。
  9. 根据权利要求1-8任一所述的一种提高单晶产出的工艺,其特征在于:在熔料6.5h-初始复投的时间内,所述主加热器的功率提升至100kw。
  10. 根据权利要求1-9任一所述的一种提高单晶产出的工艺,其特征在于:在熔料6.5h-初始复投的时间内,所述副加热器的功率提升至90kw。
  11. 根据权利要求1-10任一所述的一种提高单晶产出的工艺,其特征在于:所述坩埚的转速从开始熔料至初始复投前均保持在0.4rpm/min-0.6rpm/min的转速范围内。
  12. 根据权利要求1-11任一所述的一种提高单晶产出的工艺,其特征在于:所述坩埚的位置从开始熔料至初始复投前均保持在下限位置处。
  13. 根据权利要求12所述的一种提高单晶产出的工艺,其特征在于:所述下限位置为坩埚能够调整的最低位置处。
  14. 根据权利要求1-13任一所述的一种提高单晶产出的工艺,其特征在于:所述坩埚内通入惰性气体的流量从开始熔料至初始复投前均保持在60-90L/min的流量范围内。
PCT/CN2023/082630 2022-03-31 2023-03-20 一种提高单晶产出的工艺 WO2023185537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210331427.4 2022-03-31
CN202210331427.4A CN116926658A (zh) 2022-03-31 2022-03-31 一种提高单晶产出的工艺

Publications (1)

Publication Number Publication Date
WO2023185537A1 true WO2023185537A1 (zh) 2023-10-05

Family

ID=88199104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082630 WO2023185537A1 (zh) 2022-03-31 2023-03-20 一种提高单晶产出的工艺

Country Status (2)

Country Link
CN (1) CN116926658A (zh)
WO (1) WO2023185537A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074682A (zh) * 2013-02-17 2013-05-01 英利集团有限公司 一种生产单晶硅的熔料工艺
CN103233264A (zh) * 2013-05-03 2013-08-07 江苏海翔化工有限公司 避免直拉法石英坩埚渗硅的硅料融化加热工艺
CN103343387A (zh) * 2013-07-17 2013-10-09 英利能源(中国)有限公司 一种多晶硅铸锭炉及其铸锭方法
CN104499048A (zh) * 2014-12-07 2015-04-08 海安县石油科研仪器有限公司 一种连续加料的单晶硅生长工艺
CN106521624A (zh) * 2016-12-13 2017-03-22 晶澳太阳能有限公司 一种硅太阳能低氧、低光衰单晶热场
CN206385277U (zh) * 2016-12-13 2017-08-08 晶澳太阳能有限公司 一种硅太阳能低氧、低光衰单晶热场
CN109750350A (zh) * 2019-03-20 2019-05-14 丽江隆基硅材料有限公司 一种调整单晶炉加热器功率的方法及单晶炉
CN110629281A (zh) * 2019-10-11 2019-12-31 内蒙古中环协鑫光伏材料有限公司 一种新型石英坩埚的制备方法
WO2020253032A1 (zh) * 2019-06-17 2020-12-24 宁夏隆基硅材料有限公司 拉晶方法、单晶炉
CN112553683A (zh) * 2020-11-03 2021-03-26 上海新昇半导体科技有限公司 一种用于晶体生长的化料方法
CN114232079A (zh) * 2021-11-25 2022-03-25 华坪隆基硅材料有限公司 拉晶方法和单晶硅片

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074682A (zh) * 2013-02-17 2013-05-01 英利集团有限公司 一种生产单晶硅的熔料工艺
CN103233264A (zh) * 2013-05-03 2013-08-07 江苏海翔化工有限公司 避免直拉法石英坩埚渗硅的硅料融化加热工艺
CN103343387A (zh) * 2013-07-17 2013-10-09 英利能源(中国)有限公司 一种多晶硅铸锭炉及其铸锭方法
CN104499048A (zh) * 2014-12-07 2015-04-08 海安县石油科研仪器有限公司 一种连续加料的单晶硅生长工艺
CN106521624A (zh) * 2016-12-13 2017-03-22 晶澳太阳能有限公司 一种硅太阳能低氧、低光衰单晶热场
CN206385277U (zh) * 2016-12-13 2017-08-08 晶澳太阳能有限公司 一种硅太阳能低氧、低光衰单晶热场
CN109750350A (zh) * 2019-03-20 2019-05-14 丽江隆基硅材料有限公司 一种调整单晶炉加热器功率的方法及单晶炉
WO2020253032A1 (zh) * 2019-06-17 2020-12-24 宁夏隆基硅材料有限公司 拉晶方法、单晶炉
CN110629281A (zh) * 2019-10-11 2019-12-31 内蒙古中环协鑫光伏材料有限公司 一种新型石英坩埚的制备方法
CN112553683A (zh) * 2020-11-03 2021-03-26 上海新昇半导体科技有限公司 一种用于晶体生长的化料方法
CN114232079A (zh) * 2021-11-25 2022-03-25 华坪隆基硅材料有限公司 拉晶方法和单晶硅片

Also Published As

Publication number Publication date
CN116926658A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN102877117B (zh) 基于多加热器的铸锭炉热场结构及运行方法
WO2016082525A1 (zh) 一种多晶硅铸锭炉底部小保温板活动装置及多晶硅铸锭炉
TWI808884B (zh) 坩堝元件、拉晶爐及拉制單晶矽棒的方法
JP4814855B2 (ja) シリカガラスルツボ
WO2023185537A1 (zh) 一种提高单晶产出的工艺
CN102409402A (zh) 650kg多晶硅铸锭工艺
TWI726505B (zh) 一種晶體生長爐的導流筒和晶體生長爐
WO2017082112A1 (ja) シリコン単結晶の製造方法
JP2018104248A (ja) シリコン単結晶引上げ用石英ガラスルツボ
WO2023051616A1 (zh) 一种用于拉制单晶硅棒的拉晶炉
US20240125005A1 (en) Method for crystal pulling
JP6855358B2 (ja) シリコン単結晶引上げ用石英ガラスルツボ
CN116377579A (zh) 一种提高单晶硅首棒成晶率的长寿命石英坩埚
CN115198350A (zh) 一种可降低硅晶体氧含量的热场系统及工艺方法
CN102212871A (zh) 蓝宝石晶体的生长方法及蓝宝石晶体生长用的长晶炉结构
US20220005766A1 (en) Composite heat insulation structure for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
TWI815688B (zh) 一種用於生產單晶矽棒的石英坩堝、坩堝元件及拉晶爐
CN112011823A (zh) 一种硅晶体生长炉
US20220002900A1 (en) Thin-film heat insulation sheet for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
JP2021107315A (ja) 耐熱性合成石英ルツボ
JP2007277026A (ja) シリコン単結晶の引上げ方法
CN117364228A (zh) 一种提高单晶产出的工艺
CN112941615B (zh) 一种区熔硅单晶的收尾方法
CN220079247U (zh) 一种水冷屏及单晶炉
CN220335361U (zh) 一种热场结构、单晶炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 523450486

Country of ref document: SA