WO2023184634A1 - 一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法 - Google Patents

一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法 Download PDF

Info

Publication number
WO2023184634A1
WO2023184634A1 PCT/CN2022/089449 CN2022089449W WO2023184634A1 WO 2023184634 A1 WO2023184634 A1 WO 2023184634A1 CN 2022089449 W CN2022089449 W CN 2022089449W WO 2023184634 A1 WO2023184634 A1 WO 2023184634A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polishing
liquid
thin film
spherical crown
Prior art date
Application number
PCT/CN2022/089449
Other languages
English (en)
French (fr)
Inventor
朱美萍
刘天宝
杜文云
李静平
邵建达
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2023184634A1 publication Critical patent/WO2023184634A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment

Definitions

  • the present invention relates to optical films, in particular to a polishing method for removing spherical crown bulges on the surface of optical film nodules.
  • nodule defects are one of the main factors that reduce the laser damage threshold of thin film components such as highly reflective films in nanosecond laser systems (Light Sci. Appl. 2013, 2, e80).
  • the nodule defect is an inverted cone-shaped defect with a spherical crown that is grown from particles.
  • the spherical crown protruding from the surface of the film will change the incident angle of the local incident light and cause a change in transmittance, thereby causing the nodule defect and
  • the electric field distribution of the nearby film layer changes, resulting in an increase in local electric field intensity.
  • a higher electric field intensity in a local location of the laser irradiation area will more easily induce film damage, thus lowering the laser damage threshold of thin film components.
  • the following two methods are mainly used to improve the laser damage threshold of films:
  • One is to reduce the generation of nodule defects or inhibit the eruption of nodule defects by optimizing the coating process.
  • using hafnium metal instead of hafnium oxide as the initial coating material can reduce the density of nodule defects in the film layer, but this method can only reduce the source of defects to a certain extent, and the nodule defects still limit the film threshold.
  • ion beam thin film smoothing technology the convex defects of the substrate can be effectively smoothed through multiple cycles of deposition and etching to suppress the generation of nodule defects.
  • this method is complex and time-consuming, and it is difficult to achieve uniform etching of large-diameter components. eclipse.
  • processes such as optimizing the electric field distribution at the nodule defect through film system design and improving the boundary continuity of the nodule defect through ion beam-assisted deposition can also inhibit the eruption of the nodule defect, but the nodule defect still limits the damage threshold of thin film components. The key to improvement.
  • nanosecond laser pretreatment technology can reduce the probability of film damage induced by nodule defects.
  • nodule defects with poor boundary bonding force will spontaneously erupt during the laser pretreatment process, leaving relatively stable nodule pits, which reduces the possibility of serious damage to the film caused by nodule defects during use;
  • the thermal effect of nanosecond laser irradiation may improve the boundary condition of poor continuity of nodule defects to a certain extent.
  • the nodule defects are thermally strengthened, thus their eruption is suppressed.
  • laser pretreatment has problems such as incomplete removal of low-threshold defects, different pretreatment processes for different films, large differences in pretreatment effects, and long pretreatment process.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a method for improving the damage threshold of optical films based on removing the spherical crown protrusions on the surface of nodule defects.
  • the method provided by the invention includes: using a smooth surface with a roughness smaller than that of the film element as the polishing surface; using a liquid with good wettability to form a liquid film between the polishing surface and the film surface, and the capillary force generated by the liquid film acts as a force acting on the film surface. Positive pressure; the nodules on the film surface are removed by friction during the relative sliding process between the polished surface and the film surface.
  • the present invention uses a smooth surface and a liquid with good wettability to remove the nodules on the film surface, thereby reducing the electric field enhancement caused by the nodule defects and improving the laser damage threshold of the thin film element without affecting the spectral performance of the film.
  • the present invention has the characteristics of simple operation, low cost and wide application range.
  • the technical solution of the present invention is as follows:
  • a polishing method for removing spherical crown bulges on the surface of optical film nodules which is characterized by: using a smooth surface with a roughness smaller than that of the film element as the polishing surface; using a liquid with good wettability to form a liquid between the polishing surface and the film surface
  • the capillary force generated by the film and liquid film acts as a positive pressure acting on the surface of the film; the nodules on the film surface are removed by friction during the relative sliding process between the polished surface and the film surface.
  • the smooth surface is a smooth surface of crystal or glass.
  • the contact angle between the liquid with good wettability and the film surface and the polished surface is less than 90°, and does not chemically react with the film surface and the polished surface.
  • the capillary force originates from the pressure difference (additional pressure) between the inside and outside of the liquid film, and increases as the thickness of the liquid film becomes thinner.
  • the preparation method includes the following steps:
  • 3Main polishing Place the film surface on the polishing surface. A uniform liquid film is formed between the film surface and the polishing surface. The film element is pushed to rotate at a uniform speed on the polishing surface. During the rotation, the liquid film gradually becomes thinner. The capillary force gradually increases, and the nodules on the surface of the film are gradually removed by friction during the rotation process;
  • Fine polishing Place the film surface on the polishing surface under the water flow, and push the film element to rotate at a uniform speed on the polishing surface.
  • the abrasive particles adsorbed on the film surface during the main polishing process are gradually removed during the rotation process;
  • the present invention uses a smooth surface and a liquid with good wettability to remove the nodules on the film surface, reducing the electric field enhancement caused by the nodule defects and significantly improving the laser damage threshold of the thin film element.
  • the method of the present invention is economical and easy to operate, and is suitable for optical thin film components of different sizes and prepared by different deposition processes.
  • the present invention has a wide scope of application. It is not only suitable for highly reflective films whose thresholds are greatly affected by nodule defects, but also for other optical film elements whose damage thresholds are greatly affected by nodule defects.
  • Figure 1 is an electron micrograph of the nodule defect and the nodule defect with the corona bulge removed.
  • Figure 1 (a) is an electron microscopic morphology of the nodule defect;
  • Figure 1 (b) is an electron microscopic morphology of the nodule defect with the spherical crown protrusion removed.
  • Figure 2 is the laser damage probability curve of the film sample and the untreated sample using the method of the present invention to remove the nodule defective spherical crown bulge.
  • the laser wavelength is 355nm.
  • Figure 3 is a cross-sectional view of the nodule defect and a cross-sectional view of the nodule defect after removing the spherical crown protrusion.
  • FIG. 1 is an electron micrograph of the nodule defect and the nodule defect with the corona bulge removed. The method includes the following steps:
  • Fine polishing Place the film surface on the polishing surface of the silicon wafer under the water flow, and push the film element to rotate at a uniform speed on the polishing surface of the silicon wafer.
  • the abrasive particles adsorbed on the surface of the film during the main polishing process are gradually removed during the rotation process;
  • a Lambda 1050 spectrophotometer was used to conduct spectral measurements on the optical films treated and untreated by the method of the present invention.
  • the incident angle is 45°, s polarization component, measurement wavelength: 300nm ⁇ 1200nm, test quantity: transmittance value.
  • the reflectance value is calculated by subtracting the transmittance value from 100%.
  • test results show that the spectral performance of the thin film element remains unchanged after being processed by the method of the present invention.
  • the 1-on-1 test method is used to test the optical films treated and untreated by the method of the present invention. Pulse width: 8ns, incident angle: 45°, spot area: 0.30mm 2 , polarization state: s component.
  • Figure 2 is the laser damage probability curve of the film sample and the untreated sample using the method of the present invention to remove the nodule defective spherical crown bulge.
  • the laser wavelength is 355nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

本发明涉及光学薄膜领域,主要针对降低光学薄膜损伤阈值的节瘤缺陷,具体涉及一种基于去除节瘤缺陷表面球冠状凸起提高薄膜激光损伤阈值的方法。本发明提供的方法包括:使用粗糙度小于薄膜元件的光滑表面作为抛光面;利用润湿性良好的液体在抛光面和薄膜表面间形成液膜,液膜产生的毛细力作为作用在薄膜表面的正压力;膜面的节瘤凸起在抛光面和膜面的相对滑动过程中由摩擦力去除。本发明利用光滑表面和润湿性良好的液体去除薄膜表面的节瘤凸起,降低了节瘤缺陷引起的电场增强,在不影响薄膜光谱性能的前提下提升了薄膜元件的激光损伤阈值。与现有的提高光学薄膜激光损伤阈值的方法相比,本发明具有操作简单、成本低和适用范围广等特点。

Description

一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法 技术领域
本发明涉及光学薄膜,尤其是一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法。
背景技术
随着激光技术的不断发展,光学薄膜在激光系统中有着越来越广泛和重要的应用。然而,光学薄膜是激光系统中最容易损伤的薄弱环节,是限制激光系统功率提高的关键因素。国内神光系列激光装置及美国国家点火装置(NIF)等高功率激光系统不断对光学薄膜的抗激光损伤性能提出更高要求。国内外研究人员开展的大量理论和实验研究表明,节瘤缺陷是降低纳秒激光系统高反射薄膜等薄膜元件激光损伤阈值的主要因素之一(Light Sci.Appl.2013,2,e80)。节瘤缺陷是由颗粒生长而成的具有球冠状凸起的倒置锥形缺陷,凸出于薄膜表面的球冠会改变局部入射光的入射角从而引起透射率的变化,进而引起节瘤缺陷及其附近膜层的电场分布发生变化,导致局部电场强度增强。激光辐照区域局部位置出现更高的电场强度会更易诱发薄膜损伤,从而降低薄膜元件的激光损伤阈值。目前,针对节瘤缺陷对薄膜抗损伤性能的降低,主要采用以下两类方法来提升薄膜的激光损伤阈值:
一是通过优化镀膜工艺减少节瘤缺陷的生成或抑制节瘤缺陷的喷发。例如,以金属铪代替氧化铪作为初始镀膜材料可以降低膜层内节瘤缺陷的密度,但该方法只能在一定程度上减少缺陷的种子源,节瘤缺陷对薄膜阈值的限制仍存在。采用离子束薄膜平滑技术,通过沉积-刻蚀多次循环的方法可以有效平滑基底的凸缺陷实现抑制节瘤缺陷的生成,但该方法工艺复杂、耗时较长且大口径元件不易实现均匀刻蚀。此外,通过膜系设计优化节瘤缺陷处的电场分布和通过离子束辅助沉积改善节瘤缺陷边界连续性等工艺也可以抑制节瘤缺陷的喷发,但节瘤缺陷仍是限制薄膜元件损伤阈值进一步提升的关键。
二是采用纳秒激光预处理技术可以降低节瘤缺陷诱发薄膜损伤的几率。一方面,边界结合力较差的节瘤缺陷会在激光预处理过程中自发喷发,留下较稳定的节瘤坑,降低了使用过程中节瘤缺陷诱发薄膜严重损伤的可能;另一方面,纳秒激光辐照的热效应可能在一定程度上改善节瘤缺陷连续性较差的边界状况,节瘤缺陷被热加固, 因而其喷发受到抑制。但是,激光预处理存在着低阈值缺陷去除不完全、不同薄膜预处理工艺不同、预处理效果差异较大且预处理过程耗时较长等问题。
发明内容
本发明要解决的技术问题在于克服上述现有技术的不足,提供一种基于去除节瘤缺陷表面球冠状凸起提高光学薄膜损伤阈值的方法。本发明提供的方法包括:使用粗糙度小于薄膜元件的光滑表面作为抛光面;利用润湿性良好的液体在抛光面和薄膜表面间形成液膜,液膜产生的毛细力作为作用在薄膜表面的正压力;膜面的节瘤凸起在抛光面和膜面的相对滑动过程中由摩擦力去除。本发明利用光滑表面和润湿性良好的液体去除薄膜表面的节瘤凸起,降低了节瘤缺陷引起的电场增强,在不影响薄膜光谱性能的前提下提升了薄膜元件的激光损伤阈值。与现有的提高光学薄膜激光损伤阈值的方法相比,本发明具有操作简单、成本低和适用范围广等特点。本发明的技术解决方案如下:
一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法,其特点在于:使用粗糙度小于薄膜元件的光滑表面作为抛光面;利用润湿性良好的液体在抛光面和薄膜表面间形成液膜,液膜产生的毛细力作为作用在薄膜表面的正压力;膜面的节瘤凸起在抛光面和膜面的相对滑动过程中由摩擦力去除。
根据上述去除节瘤缺陷表面球冠状凸起的方法,所述光滑表面是晶体或玻璃的光滑表面。
根据上述去除节瘤缺陷表面球冠状凸起的方法,所述润湿性良好的液体与薄膜表面及抛光面间的接触角都小于90°,且不与薄膜表面和抛光面发生化学反应。
根据上述去除节瘤缺陷表面球冠状凸起的方法,所述毛细力来源于液膜内外的压强差(附加压强),且随液膜厚度变薄而增大。
根据上述去除节瘤缺陷表面球冠状凸起的方法,该制备方法包括以下步骤:
①清洗:在去离子水中超声清洗抛光面,去除抛光面上吸附的杂质颗粒;
②润湿:向抛光面滴加润湿性良好的液体,液体在抛光面上迅速扩散;
③主抛光:将薄膜表面置于抛光面上,薄膜表面和抛光面间形成均匀的液膜,推动薄膜元件在抛光面上匀速转动,转动过程中液膜逐渐变薄,薄膜表面和抛光面间的毛细力逐渐增大,薄膜表面的节瘤凸起在转动过程中逐渐由摩擦力去除;
④清洗:在去离子水中超声清洗抛光面,用去离子水冲洗薄膜表面,去除主抛 光过程中产生的大部分磨屑颗粒;
⑤精抛光:在水流下将薄膜表面置于抛光面上,推动薄膜元件在抛光面上匀速转动,主抛光过程中吸附在薄膜表面的磨屑颗粒在转动过程中被逐渐去除;
⑥干燥:将薄膜元件置于高温烘烤灯下烤干。
本发明的技术效果:
1.本发明利用光滑表面和润湿性良好的液体去除薄膜表面的节瘤凸起,降低了节瘤缺陷引起的电场增强,显著提升了薄膜元件的激光损伤阈值。
2.本发明在去除节瘤凸起的过程中未引入磨料颗粒且无化学反应发生,仅节瘤凸起被有效去除,不会对薄膜元件的光谱性能等造成影响。
3.本发明方法经济易行,操作简单,适用于不同尺寸、不同沉积工艺制备的光学薄膜元件。
4.本发明适用范围广,不仅适用于阈值受节瘤缺陷影响较大的高反射薄膜,还适用于损伤阈值受节瘤缺陷影响的其它光学薄膜元件。
附图说明
图1是节瘤缺陷和去除球冠状凸起的节瘤缺陷的电子显微形貌图。图1(a)是节瘤缺陷的电子显微形貌图;图1(b)是去除球冠状凸起的节瘤缺陷电子显微形貌图。
图2是采用本发明方法去除节瘤缺陷球冠状凸起的薄膜样品和未处理样品的激光损伤几率曲线,激光波长为355nm。
图3是节瘤缺陷剖面图和去除球冠状凸起的节瘤缺陷剖面图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例
以45度角入射,355nm处s偏振分量反射率>99.5%,预植节瘤缺陷种子源为粒径550nm二氧化硅微球的紫外反射薄膜(粗糙度约2nm)为例,说明本发明基于去除节瘤缺陷表面球冠状凸起提高薄膜激光损伤阈值的方法。光滑表面选用直径为8英寸的硅片抛光面(粗糙度小于0.5nm),润湿性良好的液体选用无水乙醇。图1是节瘤缺陷和去除球冠状凸起的节瘤缺陷的电子显微形貌图。该方法包括下列步骤:
①清洗:在去离子水中超声清洗硅片5min,去除硅片上吸附的杂质颗粒;
②润湿:向硅片抛光面滴加无水乙醇,乙醇在抛光面上迅速扩散;
③主抛光:将薄膜表面置于硅片抛光面上,薄膜表面和硅片抛光面间形成均匀的乙醇液膜,推动薄膜元件在硅片抛光面上匀速转动,转动过程中乙醇液膜逐渐变薄,薄膜表面和硅片抛光面间的毛细力逐渐增大,薄膜表面的节瘤凸起在转动过程中逐渐由摩擦力去除;
④清洗:在去离子水中超声清洗硅片5min,用去离子水冲洗薄膜表面5min,去除主抛光过程中产生的大部分磨屑颗粒;
⑤精抛光:在水流下将薄膜表面置于硅片抛光面上,推动薄膜元件在硅片抛光面上匀速转动,主抛光过程中吸附在薄膜表面的磨屑颗粒在转动过程中被逐渐去除;
⑥干燥:将薄膜元件置于高温烘烤灯下烘烤约5min。
⑦光谱性能测量:
采用Lambda 1050分光光度计分别对经过本发明方法处理和未处理的光学薄膜进行光谱测量。入射角度为45°,s偏振分量,测量波长:300nm~1200nm,测试量:透射率值。反射率值由100%减去透射率值而得。
测试结果表明,薄膜元件经本发明方法处理后光谱性能不变。
⑧激光损伤阈值测量:
根据ISO21254测试标准,采用1-on-1的测试方法分别对经过本发明方法处理和未处理的光学薄膜进行测试。脉冲宽度:8ns,入射角度:45°,光斑面积:0.30mm 2,偏振态:s分量。
测试结果表明:本发明方法处理后的光学薄膜损伤阈值显著提升。图2是采用本发明方法去除节瘤缺陷球冠状凸起的薄膜样品和未处理样品的激光损伤几率曲线,激光波长为355nm。

Claims (5)

  1. 一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法,其特征在于:使用粗糙度小于薄膜元件的光滑表面作为抛光面;利用润湿性良好的液体在抛光面和薄膜表面间形成液膜,液膜产生的毛细力作为作用在薄膜表面的正压力;膜面的节瘤凸起在抛光面和膜面的相对滑动过程中由摩擦力去除。
  2. 根据权利要求1所述的去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法,其特征在于,所述抛光面是晶体或玻璃的光滑表面。
  3. 根据权利要求1所述的去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法,其特征在于,所述润湿性良好的液体与薄膜表面及抛光面间的接触角都小于90°,且不与薄膜表面和抛光面发生化学反应。
  4. 根据权利要求3所述的去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法,其特征在于,所述毛细力来源于液膜内外的压强差(附加压强),且随液膜厚度变薄而增大。
  5. 根据权利要求1-4任一所述的去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法,其特征在于,该方法包括以下步骤:
    ①清洗:在去离子水中超声清洗抛光面,去除抛光面上吸附的杂质颗粒;
    ②润湿:向抛光面滴加润湿性良好的液体,液体在抛光面上迅速扩散;
    ③主抛光:将薄膜表面置于抛光面上,薄膜表面和抛光面间形成均匀的液膜,推动薄膜元件在抛光面上匀速转动,转动过程中液膜逐渐变薄,薄膜表面和抛光面间的毛细力逐渐增大,薄膜表面的节瘤凸起在转动过程中逐渐由摩擦力去除;
    ④清洗:在去离子水中超声清洗抛光面,用去离子水冲洗薄膜表面,去除主抛光过程中产生的大部分磨屑颗粒;
    ⑤精抛光:在水流下将薄膜表面置于抛光面上,推动薄膜元件在抛光面上匀速转动,主抛光过程中吸附在薄膜表面的磨屑颗粒在转动过程中被逐渐去除;
    ⑥干燥:将薄膜元件置于高温烘烤灯下烤干。
PCT/CN2022/089449 2022-03-28 2022-04-27 一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法 WO2023184634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210329698.6 2022-03-28
CN202210329698.6A CN116855913A (zh) 2022-03-28 2022-03-28 一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法

Publications (1)

Publication Number Publication Date
WO2023184634A1 true WO2023184634A1 (zh) 2023-10-05

Family

ID=88198728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089449 WO2023184634A1 (zh) 2022-03-28 2022-04-27 一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法

Country Status (2)

Country Link
CN (1) CN116855913A (zh)
WO (1) WO2023184634A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632023A (zh) * 2004-11-24 2005-06-29 中国科学院上海微系统与信息技术研究所 硫系相变材料化学机械抛光的无磨料抛光液及其应用
CN101310922A (zh) * 2008-02-29 2008-11-26 哈尔滨工业大学 磷酸二氢钾晶体潮解抛光方法
CN104498887A (zh) * 2014-12-02 2015-04-08 中国航天科工集团第三研究院第八三五八研究所 一种超低损耗反射镜镀膜基板节瘤缺陷预处理方法
US20150276993A1 (en) * 2012-10-12 2015-10-01 Lawrence Livermore National Security, Llc Planarization of optical substrates
CN105200389A (zh) * 2015-10-30 2015-12-30 西安工业大学 一种提高氧化物薄膜激光损伤阈值的热处理设备与方法
CN106903424A (zh) * 2017-02-20 2017-06-30 温州大学 一种基于激光冲击波提高光学元件力学性能的后处理方法
CN111379009A (zh) * 2020-04-30 2020-07-07 中国电子科技集团公司第五十五研究所 一种薄膜铌酸锂光波导芯片抛光装置及其抛光方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632023A (zh) * 2004-11-24 2005-06-29 中国科学院上海微系统与信息技术研究所 硫系相变材料化学机械抛光的无磨料抛光液及其应用
CN101310922A (zh) * 2008-02-29 2008-11-26 哈尔滨工业大学 磷酸二氢钾晶体潮解抛光方法
US20150276993A1 (en) * 2012-10-12 2015-10-01 Lawrence Livermore National Security, Llc Planarization of optical substrates
CN104498887A (zh) * 2014-12-02 2015-04-08 中国航天科工集团第三研究院第八三五八研究所 一种超低损耗反射镜镀膜基板节瘤缺陷预处理方法
CN105200389A (zh) * 2015-10-30 2015-12-30 西安工业大学 一种提高氧化物薄膜激光损伤阈值的热处理设备与方法
CN106903424A (zh) * 2017-02-20 2017-06-30 温州大学 一种基于激光冲击波提高光学元件力学性能的后处理方法
CN111379009A (zh) * 2020-04-30 2020-07-07 中国电子科技集团公司第五十五研究所 一种薄膜铌酸锂光波导芯片抛光装置及其抛光方法

Also Published As

Publication number Publication date
CN116855913A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
Deckman et al. Applications of surface textures produced with natural lithography
JP5059620B2 (ja) シリコン電極アセンブリのエッチング速度及びエッチング均一性を回復する方法
KR101510578B1 (ko) 태양전지용 표면처리 도전성 유리 제조 방법
TWI680168B (zh) 碳化矽晶片
CN109290875B (zh) 背面有凹坑的磷化铟晶片、制法和制备其的腐蚀液
Jia et al. Preparation and properties of five-layer graded-refractive-index antireflection coating nanostructured by solid and hollow silica particles
CN103922601A (zh) 一种湿法-干法刻蚀结合提升熔石英元件阈值的表面处理方法
CN107706093A (zh) 一种铝衬垫的制造方法
Dzhafarov et al. Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells
WO2023184634A1 (zh) 一种去除光学薄膜节瘤缺陷表面球冠状凸起的抛光方法
Du et al. Effect of subsurface impurity defects on laser damage resistance of beam splitter coatings
CN102744234B (zh) 一种改善k9玻璃基底表面质量的清洗方法
Zhao et al. Research to improve the optical performance and laser-induced damage threshold of hafnium oxide/silica dichroic coatings
Wang et al. Etch-back silicon texturing for light-trapping in electron beam evaporated thin-film polycrystalline silicon solar cells
WO2010004811A1 (ja) 薄膜太陽電池およびその製造方法
CN101140868B (zh) 外延晶片及其制造方法
CN100521109C (zh) 一种低介电常数电介质的金属单镶嵌结构制作方法
KR20150090333A (ko) 기판상에 증착된 초발수성 ptfe 박막 및 그 제조방법
JP5608133B2 (ja) 磁気記録媒体用アルミニウム基板の製造方法
CN114107890A (zh) 一种用于红外光学窗口表面的高硬度SiCN增透保护薄膜及其制备方法
JP2013216542A (ja) ガラス用エッチング液およびテクスチャー付きガラス基板の製造方法
TWI400534B (zh) 薄膜電晶體光感測器以及製作氟矽氧碳氫化合物介電層之方法
TWI838704B (zh) 真空鍍膜設備及方法
Liang et al. Light trapping PMMA planar ridged waveguide on a laser textured silicon substrate for ultra-low reflectivity
JPH08279491A (ja) 絶縁膜のエッチング方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934460

Country of ref document: EP

Kind code of ref document: A1