WO2023182400A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2023182400A1
WO2023182400A1 PCT/JP2023/011391 JP2023011391W WO2023182400A1 WO 2023182400 A1 WO2023182400 A1 WO 2023182400A1 JP 2023011391 W JP2023011391 W JP 2023011391W WO 2023182400 A1 WO2023182400 A1 WO 2023182400A1
Authority
WO
WIPO (PCT)
Prior art keywords
frost
retardant
heat exchanger
fins
oil
Prior art date
Application number
PCT/JP2023/011391
Other languages
English (en)
French (fr)
Inventor
はるか 小名
陽介 土中
大輔 松隈
駿介 大村
聡一郎 小林
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023182400A1 publication Critical patent/WO2023182400A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus

Definitions

  • the present invention relates to a heat exchanger.
  • Patent Document 1 reports that frost formation can be delayed by applying a hydrophobic coating such as silicone or fluororesin to aluminum fins.
  • the present inventors conducted various studies on frost delay treatment for the fins of a heat exchanger. However, in all of the treatments reported to date for fins, only a slight frost retardation effect was observed, and it was found that they were far from being practical.
  • the present invention has been completed in view of the above, and its object is to provide a heat exchanger including fins with improved frost retardation effect.
  • a heat exchanger including plate-shaped fins The fin includes a main surface and a side surface, A heat exchanger, wherein at least a portion of the side surface is coated with a frost retardant containing 20% by mass or more of one or more selected from siloxane resins and hydrocarbon resins.
  • a frost retardant containing 20% by mass or more of one or more selected from siloxane resins and hydrocarbon resins.
  • the oil includes an oil that can exude from the frost retardant when the temperature drops below a predetermined value, an oil that can exude from the frost retarder when moisture is attached, and an antifreeze oil.
  • the heat exchanger of the present invention includes plate-shaped fins (hereinafter also simply referred to as "fins”), the fins including a main surface and a side surface, and at least a portion of the side surface.
  • a frost retardant containing 20% by mass or more of one or more selected from , siloxane resins, and hydrocarbon resins is coated.
  • the heat exchanger of the present invention is a cross-fin type heat exchanger in which a plurality of fins are stacked around a straight pipe portion of a heat transfer tube that meander through a plurality of folded portions. It is preferable.
  • the number of meandering times, tube diameter, constituent material, etc. can be within the range of general heat exchangers.
  • the heat exchanger of the present invention includes plate-shaped fins, and the fins include a main surface and side surfaces.
  • the main surface refers to the surface with the largest area among the plurality of surfaces on the outer surface of the fin.
  • the side surface refers to a surface other than the main surface among a plurality of surfaces on the outer surface of the fin.
  • the shape of the main surface of the fin is not particularly limited, and examples thereof include square, rectangular, circular, elliptical, polygonal, and the like. Among these, for economical reasons, the shape of the main surface of the fin is preferably square or rectangular, more preferably rectangular. When the main surface of the fin has a square or rectangular shape, the fin has four side surfaces. Further, when the main surface of the fin is rectangular, the fin has two first side surfaces having a relatively large area and two second side surfaces having a relatively small area.
  • the plate-shaped fins that can be used in the present invention include fins made of a plate-shaped body, fins formed by deforming or processing a plate-shaped body, and the like. Examples of such fins include flat fins, corrugated fins, slit-shaped fins, and the like.
  • the main surface of the fin refers to the entire outer surface of the fin that originates from the main surface of the plate-like body before deformation or processing;
  • the side surface refers to the entire surface of the outer surface of the fin that originates from the side surface of the plate-shaped body before deformation or processing.
  • the surface created by cutting the slit portion can be said to be a new surface that the plate-like body before processing does not have, and therefore does not hit either the main surface or the side surface of the fin.
  • the main surface and side surfaces of fins directly formed into a corrugate shape, slit shape, etc. using a metal mold or the like are defined in the same way as those created by deforming or processing a plate-like body.
  • the material constituting the fins there is no particular restriction on the material constituting the fins, and materials within the range of general heat exchangers can be employed.
  • the material constituting the fins include stainless steel, aluminum, aluminum alloy, copper, titanium, nickel, Hastelloy, resin, and ceramics, with metal materials being preferred for reasons such as thermal conductivity and workability. .
  • the dimensions of the fins in the present invention are not particularly limited and can be within the range of general heat exchangers.
  • the area of the main surface of the fin can be, for example, 5 cm 2 to 1000 cm 2 , and for practical reasons, it is preferably 5 cm 2 to 700 cm 2 , and more preferably 5 cm 2 to 500 cm 2 . , 5 cm 2 to 300 cm 2 is more preferable.
  • the thickness of the fins in the present invention is, the distance between the main surfaces, and a thickness within the range of a general heat exchanger can be adopted.
  • the thickness of the fin can be, for example, 50 ⁇ m to 1000 ⁇ m, and for reasons of workability and strength, it is preferably 150 ⁇ m to 1000 ⁇ m, more preferably 150 ⁇ m to 500 ⁇ m, and 150 ⁇ m to 300 ⁇ m. It is even more preferable.
  • the fins may be arranged so that the heat exchanger tubes penetrate through the main surfaces of the fins, or may be arranged so that they are wrapped around the main surfaces of the fins.
  • the distance between the fins can be, for example, 0.5 mm to 100 mm, preferably 0.5 mm to 50 mm, and more preferably 0.5 mm to 30 mm for thermal conductivity reasons.
  • the thickness is preferably 0.5 mm to 10 mm, and more preferably 0.5 mm to 10 mm.
  • a frost retardant containing 20% by mass or more of one or more selected from siloxane resins and hydrocarbon resins is coated on at least a portion of the side surfaces of the fins.
  • frost retardant containing 20% by mass or more of one or more selected from siloxane resin and hydrocarbon resin to at least part of the side surface of the fin included in the heat exchanger of the present invention, the fin It is not necessarily clear why frost delay treatment can be applied to.
  • the present inventors have considered that the siloxane resin and the hydrocarbon resin are hydrophobic, and the contact area between the dew condensation water and the cooling surface can be reduced, so that frost retardation treatment can be applied to the fins.
  • siloxane resin and hydrocarbon resin Any suitable siloxane resin may be used as the siloxane resin as long as the effects of the present invention are not impaired.
  • the number of siloxane resins may be one, or two or more.
  • Such a siloxane resin may be a condensed type siloxane resin or an addition type siloxane resin.
  • such a siloxane resin may be a one-component siloxane resin that is dried alone (for example, a one-component room temperature curable (RTV) resin), or a two-component siloxane resin (for example, a one-component room temperature curable (RTV) resin). , two-component room temperature curable (RTV) resin).
  • examples of the siloxane resin include one-component RTV rubber manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896) , KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-4898, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE -1151, KE-1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-3498, KE-3493, KE-3466, KE-3467 , KE-1862, KE-1867, KE-3491, KE-3492, KE-3417, KE-3418, KE-3427,
  • KEG-2000-40A/B KEG-2000-50A/B, KEG-2000-60A/B
  • KEG-2000-70A/B KEG-2001-40A/B
  • KEG-2001-50A/B KEG-2001-50A/B
  • KE-1950-10A/B KEG-1950-20A/B
  • KE-1950-30A/B KEG -1950-35A/B
  • KE-1950-40A/B KEG-1950-50A/B
  • KE-1950-60A/B KE-1950-70A/B
  • KE-1935A/B KE-1987A/B
  • KE-1988A/B KE-2019-40A/B
  • KE-2019-50A/B KE-2019-60A/B
  • KE-2017-30A/B KE-2017-40A/B
  • KE-2017 -50A/B KE-2090-40A/B
  • KE-2090-50A/B KE-2090-60A/B
  • KE-1950-10A/B, KE-1950-20A/B, KE-1950-30A/B, KE-1950-35A/B, KE-1950-40A are /B, KE-1950-50A/B, KE-1950-60A/B, KE-1950-70A/B, KE-1935A/B, KE-118, HC2000, etc. are more preferred.
  • hydrocarbon resin examples include EPDM (ethylene propylene diene rubber), EPT (ethylene propylene rubber), PE (polyethylene), PP (polypropylene), SBR (styrene butadiene rubber), SEBS (hydrogenated styrene plastic elastomer), Examples include SBS (styrene plastic elastomer) and PC (polycarbonate).
  • EPDM ethylene propylene diene rubber
  • EPT ethylene propylene rubber
  • PE polyethylene
  • PP polypropylene
  • PC polycarbonate
  • EPDM ethylene propylene diene rubber
  • EPT ethylene propylene rubber
  • PE polyethylene
  • PP polypropylene
  • PC polycarbonate
  • hydrocarbon resin examples include, for example, the product name "APEC (registered trademark) 1803” manufactured by Covestro AG; the product names “3092PM” and “3072EPM” manufactured by Mitsui Chemicals Co., Ltd.; and Prime Polymer Co., Ltd.
  • Examples include “Prime Polypro”, “Polyfine”, “Hi-Zex”, and “Neozex”, manufactured by Nippon Polypro Co., Ltd.; and “Novatec”, manufactured by Nippon Polypro Co., Ltd.
  • the frost retarder in the present invention can contain both a siloxane resin and a hydrocarbon resin, or can contain either a hydrocarbon resin or a siloxane resin.
  • the frost retardant in the present invention contains 20% by mass or more of one or more selected from siloxane resins and hydrocarbon resins. If the content of one or more selected from siloxane resins and hydrocarbon resins is less than 20% by mass, the fins cannot be subjected to frost retardation treatment.
  • the amount of the frost retardant in the present invention containing one or more selected from siloxane resins and hydrocarbon resins is preferably 25% by mass or more, and preferably 30% by mass or more. More preferred.
  • the upper limit of the amount of the frost retarder in the present invention containing one or more selected from siloxane resins and hydrocarbon resins can be 100% by mass.
  • the amount of the frost retardant in the present invention containing one or more selected from siloxane resins and hydrocarbon resins is 99% by mass or less, 98% by mass or less, or 97% by mass or less. I can do it.
  • the frost retarder in the present invention may contain one or more types of oil. Any suitable oil may be used as long as it does not impair the effects of the present invention.
  • the frost retardant of the present invention prevents dew condensation on the fins that causes frost formation, delays freezing of dew condensed water, improves water sliding properties, or suppresses the growth of dew condensed water. Therefore, it is preferable from the viewpoint of achieving a frost formation delay effect.
  • oils include oils that can ooze out from the frost retarder when the temperature drops below a predetermined value due to their compatibility with resins (hereinafter also referred to as “low-temperature bleed oil”). , an oil that can ooze out from the frost retardant when moisture adheres thereto (hereinafter also referred to as “water bleed oil”), and an antifreeze oil. preferable.
  • the number of oils that can exude from the frost retardant when the temperature drops below a predetermined value may be one or two or more.
  • the above predetermined value or below means, for example, below the freezing point (0° C.).
  • the oil that can be leached from the frost retardant when the temperature drops below a predetermined value acts to delay the freezing of condensed water and improve the water sliding property when leached to the surface of the heat exchanger. This has the effect of further delaying frost formation on the fins.
  • oils that can exude from the frost retardant when the temperature drops below a predetermined value examples include silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, and phosphorus compound oil. Oil, mineral oil, alcohol, etc. can be used.
  • silicone oil examples include silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF -56A, KF-6000, KF-6001, KF-6002, KF-6003, etc.), silicone oil manufactured by Momentive Corporation (e.g. Element14*PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series, TSF433 series) , TSF437 series, TSF4420 series, TSF4421 series, etc.), silicone oil manufactured by Dow Corning Toray Co., Ltd.
  • silicone oil manufactured by Shin-Etsu Chemical Co., Ltd. for example, KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, K
  • WACKER registered trademark
  • SILICONE FLUID AK series WACKER (registered trademark) SILICONE FLUID AP series
  • WACKER registered trademark
  • SILICONE FLUID AR series WACKER (registered trademark) SILICONE FLUID AR series
  • WACKER registered trademark
  • SILICONE FLUID AS series WACKER (registered trademark)
  • WACKER registered trademark
  • TN series WACKER (registered trademark) TN series
  • WACKER registered trademark) L series
  • WA CKER registered trademark Liquid paraffin such as AF series
  • the number of oils that can exude from the frost retardant when moisture is attached may be only one, or two or more.
  • the oil that can ooze out from the frost retardant when moisture adheres to it acts to suppress the growth of condensation water in an environment where condensation occurs, so it prevents frost formation on the fins of the heat exchanger. Demonstrates the effect of further delaying.
  • silicone oil or the like can be used as the oil that can ooze out from the frost retardant when moisture adheres to it.
  • the silicone oil preferably includes polyether-modified silicone oil. There may be only one type of polyether-modified silicone oil, or two or more types may be used.
  • Polyether-modified silicone oil is a polysiloxane whose main chain has a siloxane bond, and has one or more polyoxyalkylene groups as a substituent.
  • the main chain may form a ring.
  • the bonding position of the polyoxyalkylene group in the polyether-modified silicone oil may be any suitable bonding position.
  • a polyoxyalkylene group may be bonded to both ends of the main chain, a polyoxyalkylene group may be bonded to one end of the main chain, or a polyoxyalkylene group may be bonded to a side chain. You can leave it there.
  • a side chain type (linear type) polyether modified silicone oil in which a polyoxyalkylene group is bonded to the side chain is preferable to select a side chain type (linear type) polyether modified silicone oil in which a polyoxyalkylene group is bonded to the side chain.
  • the side chain type (linear type) polyether-modified silicone oil is preferably represented by general formula (1).
  • R each independently represents an alkyl group having 1 to 3 carbon atoms
  • R 1 represents an alkylene group having 1 to 4 carbon atoms
  • R 2 represents a hydrogen atom or an alkylene group having 1 to 15 carbon atoms.
  • R 3 is a polyoxyalkylene group represented by -(C 2 H 4 O) a -(C 3 H 6 O) b -, a is 1 to 50, and b is 0 to 30, m is 1-7000, and n is 1-50.
  • R is preferably a methyl group.
  • polyether-modified silicone oil examples include product names "KF-6011” (HLB: 14.5), “KF-6011P” (HLB: 14.5), and “KF-6012” manufactured by Shin-Etsu Silicone Co., Ltd. ” (HLB: 7.0), “KF-6013” (HLB: 10.0), “KF-6015” (HLB: 4.5), “KF-6016” (HLB: 4.5), “KF -6017” (HLB: 4.5), “KF-6017P” (HLB: 4.5), “KF-6043” (HLB: 14.5), “KF-6004” (HLB: 9.0), Side chain type (linear type ) Polyether-modified silicone oil; side-chain type (branched-chain Type) Polyether-modified silicone oil: Side chain type (branched chain type, alkyl co-modified type) polyether-modified silicone oil, such as product name "KF-6038" (HLB: 3.0) manufactured by Shin-Etsu Silicone Co.,
  • the silicone oil may contain non-reactive silicone oil other than polyether-modified silicone oil.
  • the number of non-reactive silicone oils other than the polyether-modified silicone oil may be one, or two or more.
  • Non-reactive silicone oils other than polyether-modified silicone oils include polysiloxanes whose main chain consists of siloxane bonds, and which may have substituents. The main chain may form a ring.
  • Examples of non-reactive silicone oils other than polyether-modified silicone oils include straight silicone oils and modified silicone oils (excluding polyether-modified silicone oils).
  • the substituent in the straight silicone oil is preferably a methyl group or a phenyl group.
  • the bonding position of the substituent in the straight silicone oil may be any suitable bonding position.
  • a substituent may be bonded to both ends of the main chain, a substituent may be bonded to one end of the main chain, or a substituent may be bonded to a side chain.
  • the non-reactive silicone oil other than polyether-modified silicone oil is preferably represented by general formula (2).
  • R 1 is the same or different and represents an alkyl group, aryl group, aralkyl group, fluoroalkyl group, polyether group, or hydroxyl group having 1 to 10 carbon atoms
  • R 2 is the same or different; Differently, it represents an alkyl group, aryl group, aralkyl group, polyether group, or fluoroalkyl group having 1 to 10 carbon atoms, and n represents an integer of 0 to 150.
  • R 1 in general formula (2) is preferably a methyl group, a phenyl group, or a hydroxyl group.
  • R 2 in general formula (2) is preferably a methyl group, phenyl group, or 4-trifluorobutyl group.
  • the silicone oil represented by general formula (2) preferably has a number average molecular weight of 180 to 20,000, more preferably 1,000 to 10,000.
  • the silicone oil represented by general formula (2) preferably has a viscosity of 10 centistokes to 10,000 centistokes, more preferably 100 centistokes to 5,000 centistokes.
  • the silicone oil represented by the general formula (2) includes, for example, terminal hydroxyl group-containing dimethyl silicone oil in which R 1 at both ends or one end is a hydroxyl group, and R 1 and R 2 all having methyl groups. and phenylmethyl silicone oil in which some of the methyl groups of these dimethyl silicone oils are substituted with phenyl groups.
  • Non-reactive silicone oils other than polyether-modified silicone oils include, for example, product names "KF96L”, “KF96”, “KF69”, “KF99”, “KF50”, and “KF54” manufactured by Shin-Etsu Silicone Co., Ltd. , “KF410”, “KF412”, “KF414", “FL”, “KF-6104”, “KF-6100”; manufactured by Dow Toray Industries, Inc., product names "BY16-846”, “SF8416”, “ SH200,” “SH203,” “SH230,” “SF8419,” “FS1265,” “SH510,” “SH550,” “SH710,” “FZ-2110,” “FZ-2203,” and the like.
  • antifreeze oil In the present invention, only one type of antifreeze oil may be used, or two or more types may be used.
  • Antifreeze oil has the effect of suppressing the freezing of condensed water when it oozes out onto the surface, so it exhibits the effect of further delaying frost formation on the fins of the heat exchanger.
  • antifreeze oil examples include polyhydric alcohols such as ethylene glycol, diethylene glycol, polyethylene glycol (PEG), propylene glycol, dipropylene glycol, polypropylene glycol, and glycerin.
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, polyethylene glycol (PEG), propylene glycol, dipropylene glycol, polypropylene glycol, and glycerin.
  • polyethylene glycol is preferred because of its ease of exudation onto the surface.
  • the number average molecular weight of polyethylene glycol is not particularly limited, but is preferably from 180 to 1,100, more preferably from 180 to 440, even more preferably from 180 to 220.
  • polyethylene glycol examples include the product name "PEG200” manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • oils An oil that can be leached from the frost retardant when the temperature drops below a predetermined value, an oil that can be leached from the frost retarder when moisture is attached, which can be used in the present invention;
  • oils other than antifreeze oil include compatible oils that make it easier for the oil to ooze out from the frost retardant.
  • compatible oils examples include products such as “KF-96-50CS” and “KF-96-100CS” manufactured by Shin-Etsu Chemical Co., Ltd.
  • the amount of one or more oils contained in the frost retardant in the present invention is not particularly limited, but for the reason of the frost retardation effect, it is preferably 1% by mass or more, more preferably 5% by mass or more.
  • the content is preferably 10% by mass or more, and more preferably 10% by mass or more.
  • the amount of one or more oils contained in the frost retardant in the present invention is preferably 90% by mass or less, more preferably 80% by mass or less, and 70% by mass. It is more preferable that it is the following. Note that the frost retarder of the present invention can exhibit the desired frost retarding effect even when it does not contain oil.
  • the frost retardant may contain other components depending on the intended use within a range that does not impair the effects of the present invention.
  • other components include thickeners, solvents, surfactants, antibacterial agents, ultraviolet absorbers, fillers, crosslinking agents, and catalysts. These may be used alone or in combination of two or more.
  • the thickener examples include silica particles, amide wax, and layered silicates. Adding a thickener imparts thixotropy to the frost retardant, making it less likely that dripping will occur. This is preferable because it suppresses dripping and bridging of the coating film between the fins during drying. Furthermore, by adding a thickener, it is possible to thicken the coating film and increase the amount of oil per unit area, so it is expected that the frost retarding effect will extend the life of the coating. Furthermore, by adding a thickener, it is expected that the number of areas where the paint is not covering the fins due to dripping will be reduced, and the frost retardation effect will be enhanced.
  • the content of the thickener is not particularly limited, but for reasons of workability, it is preferably 1 part by mass or more based on 100 parts by mass of the resin. , more preferably 2 parts by mass or more, and still more preferably 4 parts by mass or more. Further, for reasons of frost retardation effect and workability, the content of the thickener is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and 5 parts by mass or less, based on 100 parts by mass of the resin. It is more preferably less than parts by mass.
  • silica particles are preferred as the thickener.
  • silica particles examples include the product names "AEROSIL 50”, “AEROSIL 90 G”, “AEROSIL 130”, “AEROSIL 200”, “AEROSIL 200 CF”, and “AEROSIL 200” manufactured by Nippon Aerosil Co., Ltd.
  • solvent examples include ethyl acetate, and liquid hydrocarbons such as hexane, heptane, benzene, toluene, xylene, and 1-tetradecene.
  • surfactant examples include anionic surfactants, nonionic surfactants, amphoteric surfactants, and cationic surfactants.
  • anionic surfactants include alkylbenzene sulfonates, alkyl or alkenyl ether sulfates, alkyl or alkenyl sulfates, ⁇ -olefin sulfonates, ⁇ -sulfo fatty acids or ester salts, alkanesulfonates, saturated or Examples include unsaturated fatty acid salts, alkyl or alkenyl ether carboxylic acid salts, amino acid type surfactants, N-acylamino acid type surfactants, alkyl or alkenyl phosphate esters or salts thereof.
  • nonionic surfactants include polyoxyalkylene alkyl or alkenyl ether, polyoxyethylene alkylphenyl ether, higher fatty acid alkanolamide or its alkylene oxide adduct, sucrose fatty acid ester, alkyl glycoside, fatty acid glycerin monoester, alkyl Examples include amine oxide.
  • examples of the amphoteric surfactant include carboxy type or sulfobetaine type amphoteric surfactants.
  • cationic surfactants include quaternary ammonium salts.
  • antibacterial agents examples include azoxystrobin, benalaxyl, benomyl, bitertanol, bromuconazole, captafol, captan, carbendazim, chinomethionate, chlorothalonil, clozolinate, cyprodinil, dichlofluanid, diclofen, diclomedine, dichlorane, diethofencarb.
  • examples of natural antibacterial agents include Chinese herbal ingredients such as Moso bamboo extract, hinokitiol, garlic extract, and licorice.
  • Other examples include inorganic antibacterial agents such as silver, copper, zinc, tin, lead, and gold. If necessary, zeolite, hydroxyapatite, calcium carbonate, silica gel, calcium aluminum silicate, polysiloxane compounds, zirconium phosphate, zirconium sulfate, ion exchangers, zinc oxide, etc. are used as carriers for these inorganic antibacterial agents. can.
  • Examples of synthetic antibacterial agents include 2-pyridinethiol-1-oxide, p-chloro-m-cresol, polyhexamethylenehiguanide, hydrochloride, benzethonium chloride, alkylpolyaminoethylglycine, benzisothiazoline, 5- Examples include chloro-2-methyl-4-isothiazolin-3-one, 1,2-benzisothiazolin-3-one, and 2,2'-dithio-bis-(pyridine-1-oxide).
  • UV absorber examples include TINUVIN571, TINUVIN460, TINUVIN213, TINUVIN234, TINUVIN329, and TINUVIN326 manufactured by BASF.
  • the filler examples include silica particles, diatomaceous earth, and the like. Furthermore, from the viewpoint of dispersibility, particles whose surfaces have been subjected to hydrophobic treatment are preferable as the filler. Examples of such surface treatment methods include methods of surface treatment with dimethylpolysiloxane, dimethyldichlorosilane, hexamethylenedisilazane, cyclic dimethylsiloxane, and the like.
  • the average particle size of such particles whose surfaces have been subjected to hydrophobic treatment is preferably 5 nm to 300 nm.
  • crosslinking agent examples include silane compounds, isocyanate compounds, epoxy compounds, melamine compounds, metal chelate compounds, oxazoline compounds, aziridine compounds, and ethyleneimine.
  • crosslinking agent examples include “Ethylsilicate 40” (trade name) manufactured by Colcoat Co., Ltd.; “Tetraethoxysilane” (trade name) manufactured by Tokyo Chemical Industry Co., Ltd.; and the like.
  • the catalyst examples include metal catalysts (tin, bismuth), organic catalysts, and the like.
  • Examples of the catalyst include “Neostan U-130” (trade name) manufactured by Nitto Kasei Co., Ltd.; “CAT-PL-50T” (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
  • the amount of one or more other components contained in the frost retardant in the present invention is preferably 50% by mass or less, and preferably 30% by mass or less. is more preferable, and even more preferably 20% by mass or less.
  • frost retarder on the fins there is no particular restriction on the manner in which the frost retardant is applied as long as it can be applied to at least a portion of the side surface of the fin.
  • the ratio of the area of the side surface of the fin to which the frost retardant is applied is preferably 30% or more with respect to 100% of the total area of the side surface of the fin, It is more preferably 50% or more, even more preferably 70% or more, and particularly preferably 90% or more. Further, the upper limit of the area ratio of the side surface of the fin to which the frost retardant is applied can be 100%.
  • the fin has four side surfaces.
  • the above-mentioned frost retardant is applied to at least a portion of all four sides.
  • the fin When the main surface of the fin is rectangular, the fin has two first side surfaces having a relatively large area and two second side surfaces having a relatively small area. In this case as well, in order to further increase the frost retardation effect, it is preferable to apply the above-mentioned frost retardant to at least a portion of all four sides.
  • the main surface of the fin When the main surface of the fin is rectangular, the two side surfaces perpendicular to the ventilation direction of the heat exchanger are generally the first side surfaces, so the above-mentioned attachment is applied only to the two first side surfaces. It is also possible to apply a frost retarder to at least a portion.
  • the above-mentioned frost retardant may be applied to the main surfaces of the fins.
  • the above-mentioned frost retardant can be applied to at least a portion of the main surface of the fin.
  • the ratio of the area of the main surface of the fin to which the above-mentioned frost retardant is applied is based on 100% of the total area of the main surface of the fin. It is preferably 30% or more, more preferably 50% or more, even more preferably 70% or more, and particularly preferably 90% or more.
  • the upper limit of the area ratio of the main surface of the fin coated with the above-mentioned frost retardant can be 100%.
  • the above-mentioned frost retardant does not need to be applied to the main surfaces of the fins.
  • a component different from the above-mentioned frost retardant may be applied to the main surface, and the main surface may not be treated.
  • the term "the main surface is not treated” means that nothing is coated on the main surface and the main surface is not subjected to any treatment such as hydrophilic treatment.
  • Components different from the above-mentioned frost retardant that can be applied to the main surface of the fin include, for example, a hydrophilic component, a water repellent component, an anticorrosion component, and the like.
  • a component different from the frost retardant described above can be applied to at least a portion of the main surface of the fin.
  • the proportion of the area of the fin's main surface coated with the above-mentioned frost retardant is equal to It is preferably 30% or more, more preferably 50% or more, even more preferably 70% or more, and particularly preferably 90% or more of the total area of 100%. Further, the upper limit of the ratio of the area of the main surface of the fin coated with a component different from the above-mentioned frost retardant can be 100%.
  • hydrophilic treatment refers to treatment such that the water contact angle is 90° or less, preferably 70° or less, more preferably 60° or less.
  • hydrophilic treatment examples include application of a hydrophilic agent, plasma treatment, and the like.
  • hydrophilic agent examples include the product name "Adtech Coat” manufactured by Trade Service Co., Ltd.
  • the side surface and main surface of the fin can have different functions. This is preferable because it becomes possible to further increase the frost formation delay effect.
  • frost retardant there is no particular restriction on the method of applying the above-mentioned frost retardant. Examples include a method of applying by dipping the fin or a heat exchanger including the fin in a tank filled with a frost retardant, a method of applying using a brush, and a method of applying using a spray.
  • the frost retardant may be applied to the fins before the fins are incorporated into the heat exchanger, or may be applied while the fins are incorporated into the heat exchanger.
  • the method of applying the frost retarder by dipping the fin in a tank filled with the frost retardant allows the above-mentioned frost retardant to be easily applied to the entire fin, resulting in a frost retardant effect. Therefore, it is preferable.
  • the application method using a brush and the application method using a spray it is possible to apply the above-mentioned frost retardant to at least a part of the side surface of the fin, and the frost retardant effect can be obtained. It is preferable because In particular, when the above-mentioned frost retarder is applied to at least a part of the side surface of the fin, and when a component different from the above-mentioned frost retardant is applied to the main surface of the fin, or when the fin If the main surface of is not treated, it can be suitably employed.
  • the method of applying using a spray suppresses coating unevenness and improves the frost formation described above. This is preferable because the retarder can be applied uniformly.
  • the present invention as long as at least a portion of the side surfaces of the fins are coated with the above-mentioned frost retardant, there is no significant change in the frost retardation effect of the heat exchanger due to the difference in the above-mentioned application methods. .
  • the fins of commercially available heat exchangers are generally made by applying a hydrophilic coating agent to an aluminum roll and then press-molding the aluminum roll. This is designed with emphasis on drainage, and it has been confirmed that frost resistance is comparable to that of aluminum (untreated).
  • frost retardant is applied as a coating agent to an aluminum roll and then press-molded to form a fin, the press cut surface to which the frost retardant is not applied becomes the side surface of the fin, and the frost retardant is applied only to the main surface. Fins coated with frost retarder are obtained.
  • the fins obtained in this way cannot be used as they are as fins of the heat exchanger of the present invention.
  • the treatment after applying the frost retardant examples include curing treatment of each resin contained in the frost retardant.
  • the conditions for the curing treatment can be appropriately selected depending on the type of each resin contained in the frost retardant, and examples thereof include curing treatment at room temperature or under heated conditions. Examples of the heating temperature for the curing treatment include 50 to 200°C.
  • the layer thickness of the layer coated with the above-mentioned frost retardant may be determined as appropriate depending on the application, but is 0.1 ⁇ m. It is preferably 3 mm.
  • the lower limit of the layer thickness of the frost retarder-containing layer is more preferably 1 ⁇ m or more, even more preferably 5 ⁇ m or more, and the upper limit is more preferably 2.5 mm or less, even more preferably 2 mm or less, and even more preferably It is 1 mm or less, even more preferably 500 ⁇ m or less, particularly preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, particularly preferably 30 ⁇ m or less, particularly preferably 20 ⁇ m or less, and most preferably 15 ⁇ m or less.
  • the thermal conductivity of the heat exchanger can be maintained by having a layer thickness of the frost retarder-containing layer of 3 mm or less.
  • the state of application of the frost retardant to the side surfaces of the fins can be confirmed by evaluating the glossiness of the heat exchanger. More specifically, for example, when the above-mentioned frost retardant is applied to the side surface of an aluminum fin, the gloss level decreases compared to the state before application. Therefore, if the gloss of the side surface of the fin is reduced, it can be confirmed that the frost retardant has been applied.
  • a commercially available gloss meter can be used for such gloss evaluation, such as the one manufactured by BYK under the trade name "micro-gloss".
  • a heat exchanger including plate-shaped fins The fin includes a main surface and a side surface, A heat exchanger, wherein at least a portion of the side surface is coated with a frost retardant containing 20% by mass or more of one or more selected from siloxane resins and hydrocarbon resins.
  • a frost retardant containing 20% by mass or more of one or more selected from siloxane resins and hydrocarbon resins.
  • the oil includes an oil that can exude from the frost retardant when the temperature drops below a predetermined value, an oil that can exude from the frost retarder when moisture is attached, and an antifreeze oil.
  • the heat exchanger according to ⁇ 3> which is one or more types selected from the group consisting of:
  • the resulting mixed solution was stirred for 60 seconds at a speed of about 120 rpm with a spatula, and stirred for 5 minutes at a speed of 2000 rpm using a disper (Labo Solution, manufactured by Primix Co., Ltd.) to dissolve the liquid frost retardant 1. I got it.
  • the resulting mixed solution was stirred for 5 minutes at a speed of 2500 rpm using a disper (manufactured by Primix Co., Ltd., Labo Solution), and then 4 parts by mass of Neostan U-130 (manufactured by Nitto Kasei Co., Ltd.) was added, and the mixture was stirred at about 120 rpm with a spatula. The mixture was stirred for 60 seconds at a speed of 2, to obtain a liquid frost retardant 2.
  • a disper manufactured by Primix Co., Ltd., Labo Solution
  • Neostan U-130 manufactured by Nitto Kasei Co., Ltd.
  • the resulting mixed solution was stirred for 60 seconds at a speed of about 120 rpm with a spatula, and stirred for 5 minutes at a speed of 2000 rpm using a disper (Labo Solution, manufactured by Primix Co., Ltd.) to dissolve the liquid frost retardant 9. I got it.
  • Example 1 A flat aluminum fin with a main surface measuring 130 mm x 17 mm and a thickness of 250 ⁇ m was prepared. Holes were made on the main surface of the fin, and the straight portions of the serpentine heat exchanger tubes (diameter: 8 mm) were penetrated at five locations at equal intervals. A cross-fin type heat exchanger was created by providing a plurality of similar fins at 1.5 mm intervals over a 100 mm straight portion of the heat exchanger tube. Frost retardant 1 was applied to the entire side surface of the fins of the obtained heat exchanger using a brush, and then a hardening treatment was performed at 150° C. for 10 minutes to obtain the heat exchanger of Example 1. Ta. Note that no treatment was performed on the main surface of the fin.
  • Example 2 and Example 2 were prepared in the same manner as in Example 1, except that frost retardant 2 and 5 to 6 were used in place of frost retardant 1, and the curing treatment was performed at 23°C for 24 hours. Five to six heat exchangers were obtained.
  • Examples 3-4, 14-15 Heat exchangers of Examples 3 to 4 and 14 to 15 were obtained in the same manner as in Example 1 except that frost retardants 3 to 4 and 14 to 15 were used in place of frost retardant 1. Ta.
  • Example 7 A heat exchanger (for outdoor unit) of a commercially available air conditioner was cut into a size of 140 x 120 x 20 mm.
  • the fins of the resulting heat exchanger were corrugated, and the main surfaces were treated with hydrophilic treatment.
  • the fins have holes, through which straight heat transfer tubes (diameter: 8 mm) penetrate at six locations, and multiple similar fins are provided at 1.0 mm intervals over the 120 mm straight portion of the heat transfer tube. ing.
  • the frost retardant 7 was applied to the entire side surface of the fins of the obtained heat exchanger using a brush, and then a hardening treatment was performed at 23° C. for 24 hours to obtain the heat exchanger of Example 7. Ta.
  • Example 8 A cross-fin type heat exchanger was created by the same method as in Example 1.
  • Frost retardant 8 was applied to the entire side surface of the fins of the obtained heat exchanger using a spray gun (manufactured by ANEST IWATA CO., LTD., WINDER2-15K1G) at an air pressure of 0.35 MPa, and then The heat exchanger of Example 8 was obtained through a curing treatment at 23° C. for 24 hours.
  • Example 9-10 Heat exchangers of Examples 9 and 10 were obtained in the same manner as in Example 8, except that frost retardants 9 and 10 were used in place of frost retardant 8, respectively.
  • Example 11 A cross-fin type heat exchanger was created by the same method as in Example 1. Put the frost retarder 11 into a 250 mm x 200 mm x 40 mm stainless steel container, immerse the obtained heat exchanger there to apply the frost retarder 11 all over, and then harden at 150°C for 10 minutes. Through this process, a heat exchanger of Example 11 was obtained.
  • Example 12 A heat exchanger of Example 12 was obtained in the same manner as in Example 11, except that frost retardant 12 was used instead of frost retardant 11, and the curing treatment was performed at 23° C. for 24 hours.
  • Example 13 A heat exchanger of Example 13 was obtained in the same manner as in Example 11 except that frost retarder 13 was used instead of frost retarder 11.
  • Example 2 A heat exchanger of Comparative Example 2 was obtained in the same manner as in Example 7 except that the frost retardant was not applied to the entire side surface and the hardening treatment thereof was not performed.
  • the fins of the heat exchanger in Comparative Example 2 correspond to conventional fins obtained by applying a hydrophilic coating agent to an aluminum roll, followed by press molding and corrugating.
  • a wind tunnel with a fan (manufactured by OMRON R87T-A1A15H-WR) was installed in a constant temperature room with a temperature of 2°C and a humidity of 85% RH (Wind tunnel opening (inlet) size: height 135 mm x width 107 mm, closed (exit: fan side) part Size: height 135 mm x width 130 mm, length 200 mm), the heat exchangers of the example and comparative example were installed so that the opening of the wind tunnel was covered with multiple fins, and the heat exchanger was heated at a wind speed of 1.8 m/s. The fan's air volume was adjusted to allow air to pass through.
  • micro differential pressure sensors Keyence AP-48, AP-V41A
  • ethanol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • the pressure difference ⁇ P between the front and back sides of the heat exchanger measured by the differential pressure sensor reaches 70 Pa, it is determined that the entire heat exchanger has frosted (total frosting), and the time required for complete frosting is determined. was defined as the frost formation time (total frost formation) [s].
  • the time until the pressure difference ⁇ P reached 35 Pa was defined as the frost formation time (half frost formation) [s]. Note that the frost formation delay effect was evaluated based on the time required for complete frost formation. The results are shown in Tables 1 to 4.
  • hydrocarbon resin hydrocarbon resin
  • APIEC registered trademark 1803: Manufactured by Covestro AG, PC (polycarbonate) resin, pellets ⁇ 3092PM: Manufactured by Mitsui Chemicals, Inc., EPDM (ethylene propylene diene rubber) resin, pellets
  • Oil (Oil 1: Low temperature bleed oil, water bleed oil or antifreeze oil)
  • TSF-437 Momentive Performance Materials Japan LLC, phenyl oil, low temperature bleed oil
  • PEG200 Fujifilm Wako Pure Chemical Industries, Ltd.
  • polyethylene glycol polyethylene glycol
  • antifreeze oil ⁇ KF-6015: Shin-Etsu Chemical Co., Ltd.
  • the heat exchangers of Examples 1 to 6 and 8 to 15 in which the predetermined frost retardant was applied to the side surfaces of the fins Compared to the heat exchanger of Comparative Example 1, which was not coated with frosting, it exhibited a frosting retardation effect.
  • the heat exchanger of Example 7 in which the side surfaces of the fins are coated with a predetermined frost retardant and the main surfaces are subjected to hydrophilic treatment the side surfaces of the fins are coated with a predetermined frost retarder.
  • the heat exchanger of Comparative Example 2 in which the main surface was hydrophilized the heat exchanger showed a frost formation retarding effect.
  • the fins are subjected to frost delay treatment, and it is possible to prevent a decrease in outside air passing between the fins due to frost formation and a decrease in efficiency due to a decrease in the amount of heat exchanged by the refrigerant. It became clear.
  • the present invention can provide a heat exchanger including fins with improved frost retardation effect, and such a heat exchanger can be applied to, for example, an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、着霜遅延効果が向上したフィンを含む熱交換器を提供することである。本発明は、板状のフィンを含む熱交換器であって、前記フィンは主面と側面とを含み、前記側面の少なくとも一部に、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤が塗布されてなる、熱交換器に関する。

Description

熱交換器
 本発明は、熱交換器に関する。
 空調機、冷凍冷蔵庫等の多くは温度勾配による熱移動を利用したヒートポンプシステムが採用されている。これらの中で、例えば空調機における暖房運転では、室外機の熱交換器のフィン表面で水蒸気が結露し、凍結することで霜が成長する。霜が熱交換器のフィンを閉塞させるとフィン間を通過する外気が減少し、冷媒の熱交換量が減少するため効率低下を招くことが知られており、定期的な除霜運転が実施されている。除霜運転中は暖房運転が停止して快適性が損なわれるため、除霜運転の頻度、時間を減らす技術が求められている。
 例えば、特許文献1では、アルミのフィンにシリコーンやフッ素樹脂などの疎水性コーティングを施すことで、霜の生成を遅延可能であることが報告されている。
日本国特開2010-185598号公報
 本発明者らは、熱交換器のフィンに対する着霜遅延処理について様々な検討を行った。しかしながら、これまでに報告されたフィンへの処理はいずれも着霜遅延効果がわずかしか認められず、実用化にはほど遠いことが判明した。
 本発明は、上記に鑑みて完成されたものであり、その課題は、着霜遅延効果が向上したフィンを含む熱交換器を提供することである。
 本発明者らは、鋭意研究を重ねた結果、下記の構成により上記課題を解決できることを見出した。
 すなわち、本発明は以下のとおりである。
〔1〕
 板状のフィンを含む熱交換器であって、
 前記フィンは主面と側面とを含み、
 前記側面の少なくとも一部に、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤が塗布されてなる、熱交換器。
〔2〕
 前記主面に対して前記着霜遅延剤が塗布されていない、〔1〕に記載の熱交換器。
〔3〕
 前記着霜遅延剤が1種類以上のオイルを含有する、〔1〕又は〔2〕に記載の熱交換器。
〔4〕
 前記オイルは、温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイル、水分が付着したときに前記着霜遅延剤から滲出することができるオイル、及び、不凍液オイルからなる群から選択される1種以上である、〔3〕に記載の熱交換器。
 本発明により、着霜遅延効果が向上したフィンを含む熱交換器を提供することができる。
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。なお、本明細書において「~」という表現を用いる場合は、その前後の数値又は物性値を含む表現として用いる。
<熱交換器>
 本発明の熱交換器は、板状のフィン(以下、単に「フィン」ともいう。)を含む熱交換器であって、前記フィンは主面と側面とを含み、前記側面の少なくとも一部に、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤が塗布されてなる。
 本発明の熱交換器の態様には特に制限がないが、複数の折返し部を介して蛇行する伝熱管の直管部の周りに複数のフィンを積層してなるクロスフィン型熱交換器であることが好ましい。前記伝熱管に関し、蛇行の回数、管径及び構成する材料等は、一般的な熱交換器の範囲内のものを採用することができる。
[フィン]
 本発明の熱交換器は板状のフィンを含み、前記フィンは主面と側面とを含む。本明細書において、主面とは、フィンの外表面における複数の面のうち最も面積の大きい面を指す。また、本明細書において、側面とは、フィンの外表面における複数の面のうち、主面以外の面を指す。後述するとおり、フィンが板状体を変形又は加工してなる場合は、変形又は加工前の板状体における主面及び側面がフィンの主面及び側面としてそれぞれ定義づけられる。
 フィンの主面の形状には特に制限がなく、例えば、正方形状、長方形状、円形状、楕円形状、多角形状などを挙げることができる。これらのうち、経済性の理由から、フィンの主面の形状は、正方形状又は長方形状であることが好ましく、長方形状であることがより好ましい。フィンの主面の形状が正方形状又は長方形状である場合、前記フィンは4つの側面を有する。また、フィンの主面が長方形状である場合は、前記フィンは、面積が相対的に大きい第1の側面を2つと、面積が相対的に小さい第2の側面を2つ有する。
 本発明において用いられ得る板状のフィンには、板状体からなるフィン、板状体が変形又は加工されてなるフィン等も包含される。このようなフィンとしては、例えば、平板状のフィン、コルゲート状のフィン、スリット状のフィン等を挙げることができる。
 板状体が変形又は加工されてなるフィンの場合、フィンの主面とは、フィンの外表面のうち、変形又は加工前の板状体の主面に由来する面全体を指し、他方、フィンの側面とは、フィンの外表面のうち、変形又は加工前の板状体の側面に由来する面全体を指す。例えば、スリット状のフィンの場合、スリット部の切れ込み加工により生じる面は加工前の板状体が有しない新たな面といえるため、フィンの主面及び側面のいずれにも当たらない。
 なお、本発明においては、金属鋳型等によりコルゲート状、スリット状等に直接成形されたフィンについても、板状体を変形又は加工して作成したものと同様に主面及び側面が定義される。
 本発明において、フィンを構成する材料には特に制限がなく、一般的な熱交換器の範囲内のものを採用することができる。フィンを構成する材料としては、例えば、ステンレスやアルミニウム、アルミニウム合金、銅、チタン、ニッケル、ハステロイ、樹脂、セラミックス、などを挙げることができ、熱伝導性や加工性等の理由から金属材料が好ましい。
 本発明におけるフィンの寸法には特に制限がなく、一般的な熱交換器の範囲内のものを採用することができる。フィンの主面の面積としては、例えば、5cm~1000cmとすることができ、実用性の理由から、5cm~700cmとすることが好ましく、5cm~500cmとすることがより好ましく、5cm~300cmとすることがさらに好ましい。
 また、本発明におけるフィンの厚さ、すなわち、主面間の距離にも特に制限がなく、一般的な熱交換器の範囲内のものを採用することができる。フィンの厚さとしては、例えば、50μm~1000μmとすることができ、加工性・強度の理由から、150μm~1000μmとすることが好ましく、150μm~500μmとすることがより好ましく、150μm~300μmとすることがさらに好ましい。
 そして、本発明におけるフィンの配置にも特に制限がなく、一般的な熱交換器の範囲内のものを採用することができる。例えば、フィンの主面に対して伝熱管が貫通するようにフィンを配置してもよく、巻き付けるように配置してもよい。
 さらに、本発明におけるフィンとフィンとの間隔にも特に制限がなく、一般的な熱交換器の範囲内のものを採用することができる。フィンとフィンとの間隔としては、例えば、0.5mm~100mmとすることができ、熱伝導性の理由から、0.5mm~50mmとすることが好ましく、0.5mm~30mmとすることがより好ましく、0.5mm~10mmとすることがさらに好ましい。
<着霜遅延剤>
 本発明の熱交換器は、フィンの側面の少なくとも一部に、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤が塗布されてなる。
 本発明の熱交換器に含まれるフィンの側面の少なくとも一部に対して、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤を塗布することにより、フィンに対する着霜遅延処理を施すことができる理由は必ずしも定かではない。本発明者らは、シロキサン樹脂及び炭化水素樹脂が疎水性であり、結露水と冷却面の接触面積を小さくできるため、フィンに対する着霜遅延処理を施すことができると考察している。
 かかる着霜遅延処理が施されたフィンを含む熱交換器を用いることにより、フィンへの着霜による熱交換器の効率低下を防ぐことができる。例えば、本発明の熱交換器をエアコンに使用した場合、暖房運転の停止及び除霜運転の頻度を低減することができるため、熱交換器のエネルギーロスの低減及び暖房運転の快適性の向上が可能となる。
[シロキサン樹脂及び炭化水素樹脂]
(シロキサン樹脂)
 シロキサン樹脂は、本発明の効果を損なわない範囲で、任意の適切なシロキサン樹脂を採用し得る。シロキサン樹脂は、1種のみであってもよいし、2種以上であってもよい。このようなシロキサン樹脂としては、縮合型のシロキサン樹脂であってもよいし、付加型のシロキサン樹脂であってもよい。また、このようなシロキサン樹脂としては、単独で乾燥させる1液型のシロキサン樹脂(例えば、1液型の室温硬化性(RTV)樹脂)であってもよいし、2液型のシロキサン樹脂(例えば、2液型の室温硬化性(RTV)樹脂)であってもよい。
 シロキサン樹脂としては、具体的には、例えば、信越化学工業株式会社製の1液型RTVゴム(例えば、KE-3423、KE-347、KE-3475、KE-3495、KE-4895、KE-4896、KE-1830、KE-1884、KE-3479、KE-348、KE-4897、KE-4898、KE-1820、KE-1825、KE-1831、KE-1833、KE-1885、KE-1056、KE-1151、KE-1842、KE-1886、KE-3424G、KE-3494、KE-3490、KE-40RTV、KE-4890、KE-3497、KE-3498、KE-3493、KE-3466、KE-3467、KE-1862、KE-1867、KE-3491、KE-3492、KE-3417、KE-3418、KE-3427、KE-3428、KE-41、KE-42、KE-44、KE-45、KE-441、KE-445、KE-45S等)、信越化学工業株式会社製の2液型RTVゴム(例えば、KE-1800T-A/B、KE-66、KE-1031-A/B、KE-200、KE-108、KE-118、KE-103、KE-108、KE-119、KE-109E-A/B、KE-1051J-A/B、KE-1012-A/B、KE-106、KE-1282-A/B、KE-1283-A/B、KE-1800-A/B/C、KE-1801-A/B/C、KE-1802-A/B/C、KE-1281-A/B、KE-1204-A/B、KE-1204-AL/BL、KE-1280-A/B、KE-513-A/B、KE-521-A/B、KE-1285-A/B、KE-1861-A/B、KE-12、KE-14、KE-17、KE-113、KE-24、KE-26、KE-1414、KE-1415、KE-1416、KE-1417、KE-1300T、KE-1310ST、KE-1314-2、KE-1316、KE-1600、KE-1603-A/B、KE-1606、KE-1222-A/B、KE-1241等)、信越化学工業株式会社製のシリコーンシーラント(例えば、KE-42AS、KE-420、KE-450等)、信越化学工業株式会社製のゴムコンパウンド(例えば、KE-655-U、KE-675-U、KE-931-U、KE-941-U、KE-951-U、KE-961-U、KE-971-U、KE-981-U、KE-961T-U、KE-971T-U、KE-871C-U、KE-9410-U、KE-9510-U、KE-9610-U、KE-9710-U、KE-742-U、KE-752-U、KE-762-U、KE-772-U、KE-782-U、KE-850-U、KE-870-U、KE-880-U、KE-890-U、KE-9590-U、KE-5590-U、KE-552-U、KE-582-U、KE-552B-U、KE-555-U、KE-575-U、KE-541-U、KE-551-U、KE-561-U、KE-571-U、KE-581-U、KE-520-U、KE-530B-2-U、KE-540B-2-U、KE-1551-U、KE-1571-U、KE-152-U、KE-174-U、KE-3601SB-U、KE-3711-U、KE-3801M-U、KE-5612G-U、KE-5620BL-U、KE-5620W-U、KE-5634-U、KE-7511-U、KE-7611-U、KE-765-U、KE-785-U、KE-7008-U、KE-7005-U、KE-503-U、KE-5042-U、KE-505-U、KE-6801-U、KE-136Y-U等)、信越化学工業株式会社製のLIMS(液状シリコーンゴム射出成形システム)(例えば、KEG-2000-40A/B、KEG-2000-50A/B、KEG-2000-60A/B、KEG-2000-70A/B、KEG-2001-40A/B、KEG-2001-50A/B、KE-1950-10A/B、KE-1950-20A/B、KE-1950-30A/B、KE-1950-35A/B、KE-1950-40A/B、KE-1950-50A/B、KE-1950-60A/B、KE-1950-70A/B、KE-1935A/B、KE-1987A/B、KE-1988A/B、KE-2019-40A/B、KE-2019-50A/B、KE-2019-60A/B、KE-2017-30A/B、KE-2017-40A/B、KE-2017-50A/B、KE-2090-40A/B、KE-2090-50A/B、KE-2090-60A/B、KE-2090-70A/B、KE-2096-40A/B、KE-2096-50A/B、KE-2096-60A/B等)、旭化成ワッカーシリコーン株式会社製のLR7665シリーズ、旭化成ワッカーシリコーン株式会社製のLR3033シリーズ、モメンティブ株式会社製のTSE3032シリーズ、ダウ・東レ株式会社製のシルガード184、HC2000等が挙げられる。
 これらの中でも、硬化性やハンドリング性の観点から、KE-1950-10A/B、KE-1950-20A/B、KE-1950-30A/B、KE-1950-35A/B、KE-1950-40A/B、KE-1950-50A/B、KE-1950-60A/B、KE-1950-70A/B、KE-1935A/B、KE-118、HC2000等がより好ましい。
(炭化水素樹脂)
 炭化水素樹脂としては、例えば、EPDM(エチレンプロピレンジエンゴム)、EPT(エチレンプロピレンゴム)、PE(ポリエチレン)、PP(ポリプロピレン)、SBR(スチレンブタジエンゴム)、SEBS(水添スチレン系可塑性エラストマー)、SBS(スチレン系可塑性エラストマー)、PC(ポリカーボネート)等が挙げられる。これらの中でも、被着物への汚染を低減する観点から、EPDM(エチレンプロピレンジエンゴム)、EPT(エチレンプロピレンゴム)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)が好ましく、EPDM(エチレンプロピレンジエンゴム)、PC(ポリカーボネート)がより好ましい。
 これらは各々単独で、または2種以上組み合わせて用いられる。
 炭化水素樹脂としては、具体的には、例えば、Covestro AG社製の、商品名「APEC(登録商標)1803」;三井化学株式会社製の、商品名「3092PM」「3072EPM」;株式会社プライムポリマー製の、商品名「プライムポリプロ」「ポリファイン」「ハイゼックス」「ネオゼックス」;日本ポリプロ株式会社製の、商品名「ノバテック」等が挙げられる。
(含有量)
 本発明における着霜遅延剤は、シロキサン樹脂及び炭化水素樹脂の両方を含むことができ、炭化水素樹脂又はシロキサン樹脂のいずれか一方を含むことができる。
 本発明における着霜遅延剤は、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む。シロキサン樹脂及び炭化水素樹脂から選択される1種以上の含有量が20質量%未満であると、フィンに対する着霜遅延処理を施すことができない。
 塗膜強度の理由から、本発明における着霜遅延剤がシロキサン樹脂及び炭化水素樹脂から選択される1種以上を含む量は25質量%以上であることが好ましく、30質量%以上であることがより好ましい。本発明における着霜遅延剤がシロキサン樹脂及び炭化水素樹脂から選択される1種以上を含む量の上限は、100質量%であることができる。また、特に限定されないが、本発明における着霜遅延剤がシロキサン樹脂及び炭化水素樹脂から選択される1種以上を含む量は99質量%以下、98質量%以下、又は97質量%以下とすることができる。
[オイル]
 本発明における着霜遅延剤は、1種類以上のオイルを含有してもよい。本発明の効果を損なわない範囲で、任意の適切なオイルを採用し得る。
 本発明における着霜遅延剤が1種類以上のオイルを含有することにより、着霜の原因となるフィン上の結露を防止、または結露水の凍結遅延、または滑水性向上、または結露水成長を抑制させることができるため、着霜遅延効果を達成する観点から好ましい。
 このようなオイルとしては、樹脂との相溶性の理由から、温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイル(以下、「低温ブリードオイル」ともいう。)、水分が付着したときに前記着霜遅延剤から滲出することができるオイル(以下、「水ブリードオイル」ともいう。)、及び、不凍液オイルからなる群から選択される1種以上であることが好ましい。
(低温ブリードオイル)
 本発明において、温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイルは、1種のみであってもよいし、2種以上であってもよい。
 なお、上記所定値以下とは、例えば、氷点(0℃)以下を意味する。
 温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイルは、表面に滲出されたときに結露水の凍結遅延および滑水性を向上させる働きを示すため、熱交換器のフィンに対する着霜をより遅延させる効果を発揮する。
 温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイルとしては、例えば、シリコーンオイル、フッ素オイル、炭化水素系オイル、ポリエーテル系オイル、エステル系オイル、リン化合物系オイル、鉱油系オイル、アルコール等を用いることができる。
 シリコーンオイルとしては、例えば、信越化学工業株式会社製のシリコーンオイル(例えば、KF96Lシリーズ、KF96シリーズ、KF69シリーズ、KF99シリーズ、KF50シリーズ、KF54シリーズ、KF410シリーズ、KF412シリーズ、KF414シリーズ、FLシリーズ、KF-56A、KF-6000、KF-6001、KF-6002、KF-6003等)、モメンティブ株式会社製のシリコーンオイル(例えば、Element14*PDMSシリーズ、TSF404シリーズ、TSF410シリーズ、TSF4300シリーズ、TSF431シリーズ、TSF433シリーズ、TSF437シリーズ、TSF4420シリーズ、TSF4421シリーズ等)、東レダウコーニング株式会社製のシリコーンオイル(例えば、BY16-846シリーズ、SF8416シリーズ、SF8427シリーズ、SF-8428シリーズ、SH200シリーズ、SH203シリーズ、SH230シリーズ、SF8419シリーズ、FS1265シリーズ、SH510シリーズ、SH550シリーズ、SH710シリーズ、FZ-2110シリーズ、FZ-2203シリーズ、BY16-201等)、旭化成ワッカーシリコーン社製のシリコーンオイル(WACKER(登録商標)SILICONE FLUID AKシリーズ、WACKER(登録商標)SILICONE FLUID APシリーズ、WACKER(登録商標)SILICONE FLUID ARシリーズ、WACKER(登録商標)SILICONE FLUID ASシリーズ、WACKER(登録商標)TNシリーズ、WACKER(登録商標)Lシリーズ、WACKER(登録商標)AFシリーズ等)等、流動パラフィンを用いることができる。
(水ブリードオイル)
 本発明において、水分が付着したときに前記着霜遅延剤から滲出することができるオイルは、1種のみであってもよいし、2種以上であってもよい。
 水分が付着したときに前記着霜遅延剤から滲出することができるオイルは、結露が生じる環境となったときに結露水の成長を抑制する働きを示すため、熱交換器のフィンに対する着霜をより遅延させる効果を発揮する。
 水分が付着したときに前記着霜遅延剤から滲出することができるオイルとしては、例えば、シリコーンオイル等を用いることができる。
 シリコーンオイルとしては、好ましくは、ポリエーテル変性シリコーンオイルを含む。ポリエーテル変性シリコーンオイルは、1種のみであっても良いし、2種以上であっても良い。
 ポリエーテル変性シリコーンオイルは、主鎖がシロキサン結合を有するポリシロキサンであり、1個以上のポリオキシアルキレン基を置換基として有するものである。主鎖は環を形成していても良い。
 ポリエーテル変性シリコーンオイルにおけるポリオキシアルキレン基の結合位置は、任意の適切な結合位置であり得る。例えば、ポリオキシアルキレン基が主鎖の両末端に結合されていても良いし、ポリオキシアルキレン基が主鎖の片末端に結合されていても良いし、ポリオキシアルキレン基が側鎖に結合されていても良い。
 本発明の効果をより発現させるためには、ポリエーテル変性シリコーンオイルとして、ポリオキシアルキレン基が側鎖に結合された、側鎖型(直鎖タイプ)ポリエーテル変性シリコーンオイルを選択することが好ましい。
 側鎖型(直鎖タイプ)ポリエーテル変性シリコーンオイルは、好ましくは、一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rはそれぞれ独立して炭素数1~3のアルキル基を表し、Rは炭素数1~4のアルキレン基を表し、Rは水素原子または炭素数1~15のアルキル基を表し、Rは-(CO)-(CO)-で表されるポリオキシアルキレン基であり、aは1~50であり、bは0~30であり、mは1~7000であり、nは1~50である。
 一般式(1)中、Rは、好ましくはメチル基である。
 ポリエーテル変性シリコーンオイルとしては、例えば、信越シリコーン(株)製の、商品名「KF-6011」(HLB:14.5)、「KF-6011P」(HLB:14.5)、「KF-6012」(HLB:7.0)、「KF-6013」(HLB:10.0)、「KF-6015」(HLB:4.5)、「KF-6016」(HLB:4.5)、「KF-6017」(HLB:4.5)、「KF-6017P」(HLB:4.5)、「KF-6043」(HLB:14.5)、「KF-6004」(HLB:9.0)、KF351A、KF352A、KF353、KF354L、KF355A、KF615A、KF945、KF-640、KF-642、KF-643、KF-644、KF-6020、KF-6204、X22-4515等の側鎖型(直鎖タイプ)ポリエーテル変性シリコーンオイル;信越シリコーン(株)製の、商品名「KF-6028」(HLB:4.0)、「KF-6028P」(HLB:4.0)等の側鎖型(分岐鎖タイプ)ポリエーテル変性シリコーンオイル;信越シリコーン(株)製の、商品名「KF-6038」(HLB:3.0)等の側鎖型(分岐鎖タイプ、アルキル共変性タイプ)ポリエーテル変性シリコーンオイル;などが挙げられる。
 シリコーンオイルは、ポリエーテル変性シリコーンオイル以外の非反応性シリコーンオイルを含んでいても良い。このようなポリエーテル変性シリコーンオイル以外の非反応性シリコーンオイルは、1種のみであっても良いし、2種以上であっても良い。
 ポリエーテル変性シリコーンオイル以外の非反応性シリコーンオイルとしては、主鎖がシロキサン結合からなるポリシロキサンであり、置換基を有していてもよい。主鎖は環を形成していても良い。ポリエーテル変性シリコーンオイル以外の非反応性シリコーンオイルとしては、例えば、ストレートシリコーンオイル、変性シリコーンオイル(ポリエーテル変性シリコーンオイルを除く)が挙げられる。
 ストレートシリコーンオイルにおける置換基は、好ましくは、メチル基、フェニル基である。
 ストレートシリコーンオイルにおける置換基の結合位置は、任意の適切な結合位置であり得る。例えば、置換基が主鎖の両末端に結合されていても良いし、置換基が主鎖の片末端に結合されていても良いし、置換基が側鎖に結合されていても良い。
 ポリエーテル変性シリコーンオイル以外の非反応性シリコーンオイルは、好ましくは、一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、Rは、同一または異なって、炭素数1~10のアルキル基、アリール基、アラルキル基、フルオロアルキル基、ポリエーテル基、または水酸基を表し、Rは、同一または異なって、炭素数1~10のアルキル基、アリール基、アラルキル基、ポリエーテル基、フルオロアルキル基を表し、nは0~150の整数を表す。一般式(2)中のRとしては、好ましくは、メチル基、フェニル基、水酸基である。一般式(2)中のRとしては、好ましくは、メチル基、フェニル基、4-トリフルオロブチル基である。
 一般式(2)で表されるシリコーンオイルは、数平均分子量が、好ましくは180~20000であり、より好ましくは1000~10000である。
 一般式(2)で表されるシリコーンオイルは、粘度が、好ましくは10センチストークス~10000センチストークスであり、より好ましくは100センチストークス~5000センチストークスである。
 一般式(2)で表されるシリコーンオイルとしては、具体的には、例えば、両末端または片末端のRが水酸基である末端水酸基含有ジメチルシリコーンオイル、RおよびRの全てがメチル基であるジメチルシリコーンオイル、これらのジメチルシリコーンオイルのメチル基の一部がフェニル基に置換されたフェニルメチルシリコーンオイルなどが挙げられる。
 ポリエーテル変性シリコーンオイル以外の非反応性シリコーンオイルとしては、例えば、信越シリコーン(株)製の、商品名「KF96L」、「KF96」、「KF69」、「KF99」、「KF50」、「KF54」、「KF410」、「KF412」、「KF414」、「FL」、「KF-6104」、「KF-6100」;ダウ・東レ株式会社製の、商品名「BY16-846」、「SF8416」、「SH200」、「SH203」、「SH230」、「SF8419」、「FS1265」、「SH510」、「SH550」、「SH710」、「FZ-2110」、「FZ-2203」;などが挙げられる。
(不凍液オイル)
 本発明において、不凍液オイルは、1種のみであってもよいし、2種以上であってもよい。
 不凍液オイルは、表面に滲出されたときに結露水の凍結を抑制する働きを示すため、熱交換器のフィンに対する着霜をより遅延させる効果を発揮する。
 不凍液オイルとしては、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール(PEG)、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類を挙げることができる。
 これらの中でも、表面への滲出しやすさの理由から、ポリエチレングリコールが好ましい。ポリエチレングリコールの数平均分子量は、特に限定されないが180~1100が好ましく、180~440がより好ましく、180~220がさらに好ましい。
 ポリエチレングリコールとしては、例えば、富士フイルム和光純薬株式会社製の、商品名「PEG200」などが挙げられる。
(その他のオイル)
 本発明において使用し得る、温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイル、水分が付着したときに前記着霜遅延剤から滲出することができるオイル、及び、不凍液オイル以外のオイルとしては、例えば、上記オイルを前記着霜遅延剤から滲出しやすくするための相溶オイル等を挙げることができる。
 相溶オイルとしては、例えば、信越化学工業株式会社製の、商品名「KF-96-50CS」及び「KF-96-100CS」などが挙げられる。
(含有量)
 本発明における着霜遅延剤が1種以上のオイルを含む量は、特に限定されないが、着霜遅延効果の理由から、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。
 また、塗膜強度の理由から、本発明における着霜遅延剤が1種以上のオイルを含む量は90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 なお、本発明の着霜遅延剤は、オイルを含有しない場合であっても所望の着霜遅延効果を発揮することができる。
[その他の成分]
 また、着霜遅延剤には、本発明の効果を損なわない範囲で用途に応じてその他の成分を含有させてもよい。その他の成分としては、例えば、増粘剤、溶剤、界面活性剤、抗菌剤、紫外線吸収剤、フィラー、架橋剤、触媒等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、シリカ粒子、アマイドワックス、層状ケイ酸塩等が挙げられる。
 増粘剤を添加することにより、着霜遅延剤にチキソ性が付与されて液垂れが起こりにくくなり、後述する塗布方法に共通して生じ得る、塗膜が一定以上の厚さとなった場合の液垂れ、及び乾燥中にフィン間で塗膜がブリッジングすることが抑制されるため好ましい。また、増粘剤を添加することにより塗膜を厚くすることが可能になり、単位面積当たりのオイル量を増加させることができるため、着霜遅延効果の長寿命化が期待できる。さらに、増粘剤を添加することにより、液垂れで塗料がフィンに被覆できていない箇所が減少し、着霜遅延効果が高まることが期待できる。
 本発明における着霜遅延剤が増粘剤を含む場合、増粘剤の含有量は特に限定されないが、施工性の理由から、樹脂100質量部に対して、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、4質量部以上であることがさらに好ましい。
 また、着霜遅延効果及び施工性の理由から、増粘剤の含有量は樹脂100質量部に対して、15質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。
 着霜遅延剤にチキソ性を付与させ、良好な施工性を得るという観点から、増粘剤としてはシリカ粒子が好ましい。
 シリカ粒子としては、例えば、日本アエロジル株式会社製の、商品名「AEROSIL 50」、「AEROSIL 90 G」、「AEROSIL 130」、「AEROSIL 200」、「AEROSIL 200 CF」、「AEROSIL 200 V」、「AEROSIL 200 FAD」、「AEROSIL 300」、「AEROSIL 300 CF」、「AEROSIL 380」、「AEROSIL OX 50」、「AEROSIL TT 600」、「AEROSIL R 972」、「AEROSIL R 972 CF」、「AEROSIL R 972 V」、「AEROSIL R 974」、「AEROSIL R 976」、「AEROSIL R 976 S」、「AEROSIL R 9200」、「AEROSIL RY 50」、「AEROSIL RY 51」、「AEROSIL NY 50」、「AEROSIL NY 50 L」、「AEROSIL RY 200 S」、「AEROSIL RY 200」、「AEROSIL RY 200 L」、「AEROSIL RY 300」、「AEROSIL R 202」及び「AEROSIL R 805」などが挙げられる。
 溶剤としては、例えば、酢酸エチルや、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、1-テトラデセン等の液状炭化水素等が挙げられる。
 界面活性剤としては、例えば、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、カチオン系界面活性剤等が挙げられる。
 アニオン系界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルまたはアルケニルエーテル硫酸塩、アルキルまたはアルケニル硫酸塩、α-オレフィンスルホン酸塩、α-スルホ脂肪酸またはエステル塩、アルカンスルホン酸塩、飽和または不飽和脂肪酸塩、アルキルまたはアルケニルエーテルカルボン酸塩、アミノ酸型界面活性剤、N-アシルアミノ酸型界面活性剤、アルキルまたはアルケニルリン酸エステルまたはその塩等が挙げられる。ノニオン系界面活性剤としては、例えば、ポリオキシアルキレンアルキルまたはアルケニルエーテル、ポリオキシエチレンアルキルフェニルエーテル、高級脂肪酸アルカノールアミドまたはそのアルキレンオキサイド付加物、ショ糖脂肪酸エステル、アルキルグリコシド、脂肪酸グリセリンモノエステル、アルキルアミンオキサイド等が挙げられる。両性界面活性剤としては、例えば、カルボキシ型またはスルホベタイン型両性界面活性剤等が挙げられる。カチオン系界面活性剤としては、例えば、第4級アンモニウム塩等が挙げられる。
 抗菌剤としては、例えば、アゾキシストロビン、ベナラキシル、ベノミル、ビテルタノール、ブロムコナゾール、キャプタホール、キャプタン、カルベンダジム、キノメチオネート、クロロタロニル、クロゾリナート、シプロジニル、ジクロフルアニド、ジクロフェン、ジクロメジン、ジクロラン、ジエトフェンカルブ、ジメトモルフ、ジニコナゾール、ジチアノン、エポキシコナゾール、ファモキサドン、フェナリモル、フェンブコナゾール、フェンフラム、フェンピクロニル、フェンチン、フルアジナム、フルジオキソニル、フルオルイミド、フルキンコナゾール、フルスルファミド、フルトラニル、ホルペット、ヘキサクロロベンゼン、ヘキサコナゾール、イミベンコナゾール、イポコナゾール、イプロジオン、クレソキシムメチル、マンゼブ、マンネブ、メパニピリム、メプロニル、メトコナゾール、メチラム、ニッケルビス(ジメチルジチオカルバメート)、ヌアリモル、オキシン銅、オキソリン酸、ペンシクロン、フタリド、プロシミドン、プロピネブ、キントゼン、硫黄、テブコナゾール、テクロフタラム、テクナゼン、チフルザミド、チオフェネートメチル、チラム、トルクロホスメチル、トリルフルアニド、トリアジメホン、トリアジメノール、トリアゾキシド、トリホリン、トリチコナゾール、ビンクロゾリン、ジネブ、ジラム等が挙げられる。また、天然物の抗菌剤として、例えば、孟宗竹抽出物、ヒノキチオール、ニンニクエキス、カンゾウ等の漢方成分が挙げられる。また、銀、銅、亜鉛、錫、鉛、金等の無機抗菌剤が挙げられる。また、必要に応じて、これら無機抗菌剤の担体として、ゼオライト、ヒドロキシアパタイト、炭酸カルシウム、シリカゲル、ケイ酸アルミニウムカルシウム、ポリシロキサン化合物、リン酸ジルコニウム、硫酸ジルコニウム、イオン交換体、酸化亜鉛等が使用できる。合成物の抗菌剤としては、例えば、2-ピリジンチオール-1-オキサイド、p-クロロ-m-クレゾール、ポリヘキサメチレンヒグアナイド、ハイドロクロライド、塩化ベンゼトニウム、アルキルポリアミノエチルグリシン、ベンズイソチアゾリン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、1,2-ベンズイソチアゾリン-3-オン、2,2’-ジチオ-ビス-(ピリジン-1-オキサイド)等が挙げられる。
 紫外線吸収剤としては、例えば、BASF社製のTINUVIN571、TINUVIN460、TINUVIN213、TINUVIN234、TINUVIN329、TINUVIN326等が挙げられる。
 フィラーとしては、例えば、シリカ粒子、珪藻土等が挙げられる。また、フィラーとしては、分散性の観点から、表面が疎水性処理された粒子が好ましい。このような表面処理方法としては、ジメチルポリシロキサン、ジメチルジクロロシラン、ヘキサメチレンジシラザン、環状ジメチルシロキサン等で表面処理する方法が挙げられる。このような表面が疎水性処理された粒子の大きさとしては、好ましくは、平均粒径が5nm~300nmである。
 架橋剤としては、例えば、シラン系化合物、イソシアネート系化合物、エポキシ系化合物、メラミン系化合物、金属キレート化合物、オキサゾリン系化合物、アジリジン系化合物、エチレンイミン等が挙げられる。
 架橋剤としては、例えば、コルコート株式会社製の、商品名「エチルシリケート40」;東京化成工業株式会社製の、商品名「テトラエトキシシラン」;などが挙げられる。
 触媒としては、例えば、金属系触媒(スズ、ビスマス)、有機系触媒などが挙げられる。
 触媒としては、例えば、日東化成株式会社製の、商品名「ネオスタンU-130」;信越化学工業株式会社製の、商品名「CAT-PL-50T」などが挙げられる。
 着霜遅延効果を阻害する可能性がある理由から、本発明における着霜遅延剤が1種以上のその他の成分を含む量は50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
<フィンに対する着霜遅延剤の塗布>
 本発明において、上述の着霜遅延剤がフィンの側面の少なくとも一部に塗布することが可能である限り、その塗布の態様には特に制限がない。
(着霜遅延剤が塗布される箇所)
 上述の着霜遅延剤がフィンの側面の少なくとも一部に塗布されることにより、フィンに対する着霜遅延処理が可能となる。着霜遅延効果をより大きくするために、着霜遅延剤が塗布されたフィンの側面の面積の割合は、フィンの側面の面積の合計100%に対して、30%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることがさらに好ましく、90%以上であることが特に好ましい。また、着霜遅延剤が塗布されたフィンの側面の面積の割合の上限は100%とすることができる。
 フィンの主面の形状が正方形状又は長方形状である場合、前記フィンは4つの側面を有する。この場合、着霜遅延効果をより大きくするために、4つの側面の全てに対して上述の着霜遅延剤が少なくとも一部に塗布されることが好ましい。
 また、4つの側面のうち、熱交換器の通風方向に垂直な2つの側面に対してのみ、上述の着霜遅延剤を少なくとも一部に塗布することも可能である。
 フィンの主面が長方形状である場合は、前記フィンは、面積が相対的に大きい第1の側面を2つと、面積が相対的に小さい第2の側面を2つ有する。この場合においても、着霜遅延効果をより大きくするために、4つの側面の全てに対して上述の着霜遅延剤を少なくとも一部に塗布することが好ましい。
 フィンの主面が長方形状である場合、熱交換器の通風方向に垂直な2つの側面は一般的に第1の側面であるため、第1の側面の2つに対してのみ、上述の着霜遅延剤を少なくとも一部に塗布することも可能である。
 本発明の熱交換器は、フィンの主面に対して上述の着霜遅延剤が塗布されていてもよい。この場合、フィンの主面の少なくとも一部に対して上述の着霜遅延剤を塗布することができる。
 フィンの主面に対して上述の着霜遅延剤を塗布する場合、上述の着霜遅延剤が塗布されたフィンの主面の面積の割合は、フィンの主面の面積の合計100%に対して、30%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることがさらに好ましく、90%以上であることが特に好ましい。また、上述の着霜遅延剤が塗布されたフィンの主面の面積の割合の上限は100%とすることができる。
 本発明の熱交換器は、フィンの主面に対して上述の着霜遅延剤が塗布されていなくてもよい。この場合、前記主面に対して上述の着霜遅延剤とは異なる成分が塗布されていてもよく、また、前記主面が処理されていなくてもよい。ここで、本明細書において、前記主面が処理されていないとは、主面に対してなにも塗布されておらず、かつ、親水処理等の処理もされていないことをいう。
 フィンの主面に対して塗布することができる上述の着霜遅延剤とは異なる成分としては、例えば、親水成分、撥水成分、防食成分等を挙げることができる。上述の着霜遅延剤とは異なる成分は、フィンの主面の少なくとも一部に対して塗布することができる。
 フィンの主面に対して上述の着霜遅延剤とは異なる成分を塗布する場合、上述の着霜遅延剤とは異なる成分が塗布されたフィンの主面の面積の割合は、フィンの主面の面積の合計100%に対して、30%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることがさらに好ましく、90%以上であることが特に好ましい。また、上述の着霜遅延剤とは異なる成分が塗布されたフィンの主面の面積の割合の上限は100%とすることができる。
 上述の着霜遅延剤とは異なる成分として、フィンの主面に対してシリカゾルゲル、エポキシ樹脂、ウレタン樹脂等を塗布することにより、フィンの主面を親水処理することができる。ここで、本明細書において、親水処理とは、水接触角が90°以下、好ましくは70°以下、より好ましくは60°以下となるように処理することをいう。
 親水処理の方法としては、例えば、親水化剤の塗布や、プラズマ処理などを挙げることができる。親水化剤としては、例えば、株式会社トレードサービス社製の、商品名「アドテックコート」などが挙げられる。
 本発明において、フィンの側面の少なくとも一部に上述の着霜遅延剤を塗布し、他方、フィンの主面の少なくとも一部に対して上述の着霜遅延剤とは異なる成分を塗布した場合、フィンの側面と主面とで異なる機能を具備させることができる。これにより、着霜遅延効果をより一層増大させることが可能となるため、好ましい。
(着霜遅延剤の塗布方法)
 本発明において、上述の着霜遅延剤を塗布する方法には特に制限がない。例えば、着霜遅延剤を満たした槽にフィン、または、フィンを含む熱交換器を浸漬させることにより塗布する方法、刷毛を用いて塗布する方法、スプレーを用いて塗布する方法などが挙げられる。
 フィンに対する着霜遅延剤の塗布は、フィンを熱交換器に組み込む前に行ってもよく、また、フィンが熱交換器に組み込まれた状態で行ってもよい。
 着霜遅延剤を満たした槽にフィンを浸漬することにより塗布する方法は、フィンの全体に対して簡便に上述の着霜遅延剤を塗布することが可能であり、着霜遅延効果が得られるため、好ましい。
 また、刷毛を用いて塗布する方法及びスプレーを用いて塗布する方法は、フィンの側面の少なくとも一部に対して上述の着霜遅延剤を塗布することが可能であり、着霜遅延効果が得られるため、好ましい。特に、フィンの側面の少なくとも一部に対して上述の着霜遅延剤を塗布し、かつ、フィンの主面に対しては上述の着霜遅延剤とは異なる成分を塗布する場合、または、フィンの主面は処理しない場合、に好適に採用され得る。
 さらに、スプレーを用いて塗布する方法は、着霜遅延剤を満たした槽にフィンを浸漬することにより塗布する方法及び刷毛を用いて塗布する方法と比べて、塗布ムラを抑えて上述の着霜遅延剤を均一に塗布することができるため好ましい。
 ただし、本発明においては、上述の着霜遅延剤によりフィンの側面の少なくとも一部が被覆されていれば、上記各塗布方法の違いによる熱交換器の着霜遅延効果の大きな変化は認められない。
 なお、従来の方法として、コーティング剤をアルミロール時に施したのちプレス成型加工し、フィンを形成する方法がある。例えば、市販品の熱交換器のフィンは、親水性のコーティング剤をアルミロール時に施したのちプレス成型加工により作成することが一般的である。これは水はけ性を重視した設計となっており、霜に関してはアルミニウム製(未処理品)と同程度である事が確認されている。
 コーティング剤として上述の着霜遅延剤をアルミロール時に施したのちプレス成型加工し、フィンを形成した場合、着霜遅延剤が塗布されていないプレス裁断面がフィンの側面となり、主面のみに着霜遅延剤が塗布されたフィンが得られる。このため、このようにして得られたフィンをそのまま本発明の熱交換器のフィンとして用いることができない。本発明の熱交換器のフィンを得るためには、プレス成型加工後に、フィンの側面に対して上述の着霜遅延剤を塗布する必要がある。
 上述の着霜遅延剤を塗布した後の処理には特に制限がないが、例えば、着霜遅延剤に含まれる各樹脂の硬化処理等が挙げられる。硬化処理の条件は着霜遅延剤に含まれる各樹脂のタイプによって適宜選択することが可能であり、例えば、常温又は加温条件下での硬化処理などを挙げることができる。硬化処理のための加熱温度としては、例えば、50~200℃等が挙げられる。
 本発明において、上述の着霜遅延剤が塗布されてなる層(以下、「着霜遅延剤含有層」ともいう。)の層厚は、用途に応じて適宜決定すればよいが、0.1μm~3mmであることが好ましい。着霜遅延剤含有層の層厚は、下限は、より好ましくは1μm以上、更に好ましく5μm以上であり、また、上限は、より好ましくは2.5mm以下、よりいっそう好ましくは2mm以下、更に好ましくは1mm以下、更にいっそう好ましくは500μm以下、特に好ましくは100μm以下、特にいっそう好ましくは50μm以下、とりわけ好ましくは30μm以下、とりわけいっそう好ましくは20μm以下、最も好ましくは15μm以下である。着霜遅延剤含有層の層厚が3mm以下であることにより熱交換器の熱伝導性を維持することができる。
 本発明において、フィンの側面に対する着霜遅延剤の塗布の状態は、熱交換器の光沢度評価で確認することができる。より詳細には、例えば、アルミニウム製のフィンの側面に上述の着霜遅延剤が塗布された場合、塗布前の状態と比較して光沢度が低下する。このため、フィンの側面の光沢度が低下していれば着霜遅延剤が塗布されていると確認することができる。
 このような光沢度評価には市販の光沢度計を用いることができ、例えば、BYK社製の、商品名「micro-gloss」等が挙げられる。
 以上説明したように、本明細書には次の事項が開示されている。
<1>
 板状のフィンを含む熱交換器であって、
 前記フィンは主面と側面とを含み、
 前記側面の少なくとも一部に、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤が塗布されてなる、熱交換器。
<2>
 前記主面に対して前記着霜遅延剤が塗布されていない、<1>に記載の熱交換器。
<3>
 前記着霜遅延剤が1種類以上のオイルを含有する、<1>又は<2>に記載の熱交換器。
<4>
 前記オイルは、温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイル、水分が付着したときに前記着霜遅延剤から滲出することができるオイル、及び、不凍液オイルからなる群から選択される1種以上である、<3>に記載の熱交換器。
 以下、本発明を実施例および比較例により更に説明するが、本発明は以下の実施例に限定されるものではない。
[製造例1:着霜遅延剤1の作製]
 KE-1935A/KE-1935B(信越化学工業株式会社製)を質量比1:1で混合したシリコーン樹脂(ビニル基を有するシロキサン樹脂、ハイドロジェンシリコーン及び触媒含有) 100質量部、TSF-437 フェニルオイル(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製) 75質量部、KF-96-50CS ジメチルシロキサンオイル(信越化学工業株式会社製) 75質量部を、25℃、101kPaの条件下で混合した。得られた混合液をスパチュラで約120rpmの速さで60秒間撹拌し、ディスパー(プライミクス株式会社製、ラボ・リューション)で2000rpmの速さで5分間撹拌し、液体状の着霜遅延剤1を得た。
[製造例2:着霜遅延剤2の作製]
 KE-118(信越化学工業株式会社製)100質量部、エチルシリケート40(コルコート株式会社製)16質量部、PEG200(富士フイルム和光純薬株式会社製)4質量部を、25℃、101kPaの条件下で混合した。得られた混合液をディスパー(プライミクス株式会社製、ラボ・リューション)で2500rpmの速さで5分間撹拌、その後ネオスタンU-130(日東化成株式会社製)4質量部を添加しスパチュラで約120rpmの速さで60秒間撹拌し、液体状の着霜遅延剤2を得た。
[製造例3~8、11~15:着霜遅延剤3~8、11~15の作製]
 表1~3に記載した各配合成分とした以外は製造例1と同様の手順により、液体状の着霜遅延剤3~8、11~15を得た。
[製造例9:着霜遅延剤9の作製]
 HC2000(ダウ・東レ株式会社製)100質量部、KF-6015 ポリエーテル変性シリコーンオイル(信越化学工業株式会社製)60質量部、AEROSIL 200(日本アエロジル株式会社製)1質量部を、25℃、101kPaの条件下で混合した。得られた混合液をスパチュラで約120rpmの速さで60秒間撹拌し、ディスパー(プライミクス株式会社製、ラボ・リューション)で2000rpmの速さで5分間撹拌し、液体状の着霜遅延剤9を得た。
[製造例10:着霜遅延剤10の作製]
 表2に記載した各配合成分とした以外は製造例9と同様の手順により、液体状の着霜遅延剤10を得た。
[実施例1]
 主面が130mm×17mmの寸法を有し、厚さが250μmの、平板状のアルミニウム製フィンを用意した。フィンの主面に孔を空け、蛇管型伝熱管(直径:8mm)の直線部を5か所で等間隔に貫通させた。伝熱管の直線部100mmにわたり1.5mm間隔で同様のフィンを複数設け、クロスフィン型熱交換器を作成した。
 得られた熱交換器のフィンの側面全体に対して、刷毛を用いて着霜遅延剤1を塗布し、その後、150℃で10分間の硬化処理を経て、実施例1の熱交換器を得た。
 なお、フィンの主面に対する処理は行わなかった。
[実施例2、5~6]
 着霜遅延剤1に代えて着霜遅延剤2及び5~6を用い、かつ、23℃で24時間の硬化処理を行った以外は実施例1と同様の方法により、それぞれ、実施例2及び5~6の熱交換器を得た。
[実施例3~4、14~15]
 着霜遅延剤1に代えて着霜遅延剤3~4及び14~15を用いた以外は実施例1と同様の方法により、それぞれ、実施例3~4及び14~15の熱交換器を得た。
[実施例7]
 市販エアコンの熱交換器(室外機用)を140×120×20mmサイズに切り出した。得られた熱交換器のフィンにはコルゲート加工が施されており、主面には親水処理されていた。フィンには孔が空いており、そこに直線状の伝熱管(直径:8mm)が6か所で貫通しており、伝熱管の直線部120mmにわたり1.0mm間隔で同様のフィンが複数設けられている。
 得られた熱交換器のフィンの側面全体に対して、刷毛を用いて着霜遅延剤7を塗布し、その後、23℃で24時間の硬化処理を経て、実施例7の熱交換器を得た。
[実施例8]
 実施例1と同様の方法により、クロスフィン型熱交換器を作成した。
 得られた熱交換器のフィンの側面全体に対して、スプレーガン(アネスト岩田株式会社製、WINDER2-15K1G)を用いて、空気圧力0.35MPaの条件で着霜遅延剤8を塗布し、その後、23℃で24時間の硬化処理を経て、実施例8の熱交換器を得た。
[実施例9~10]
 着霜遅延剤8に代えて着霜遅延剤9~10用いた以外は実施例8と同様の方法により、それぞれ、実施例9~10の熱交換器を得た。
[実施例11]
 実施例1と同様の方法により、クロスフィン型熱交換器を作成した。
 250mm×200mm×40mmのステンレス容器に着霜遅延剤11を入れ、得られた熱交換器をここに浸漬させて全体に着霜遅延剤11を塗布し、その後、150℃で10分間の硬化処理を経て、実施例11の熱交換器を得た。
[実施例12]
 着霜遅延剤11に代えて着霜遅延剤12用い、かつ、23℃で24時間の硬化処理を行った以外は実施例11と同様の方法により、実施例12の熱交換器を得た。
[実施例13]
 着霜遅延剤11に代えて着霜遅延剤13用いた以外は実施例11と同様の方法により、実施例13の熱交換器を得た。
[比較例1]
 側面全体に対する着霜遅延剤の塗布及びその硬化処理を行わなかったこと以外は実施例1と同様の方法により、比較例1の熱交換器を得た。
[比較例2]
 側面全体に対する着霜遅延剤の塗布及びその硬化処理を行わなかったこと以外は実施例7と同様の方法により、比較例2の熱交換器を得た。なお、比較例2における熱交換器のフィンは、親水性のコーティング剤をアルミロール時に施したのちにプレス成型加工及びコルゲート加工することにより得られる、従来のフィンに相当する。
[着霜遅延効果の評価]
 温度2℃、湿度85%RHの恒温室内にファン(オムロン社製 R87T-A1A15H-WR)付き風洞を設け(風洞 開口部(入口)サイズ:高さ135mm×幅107mm 閉口(出口:ファン側)部サイズ:高さ135mm×幅130mm 長さ200mm)、風洞の開口部を複数設けられたフィンで覆うように実施例及び比較例の熱交換器を設置し、風速1.8m/sで熱交換器に空気が通過するようにファンの風量を調節した。また、熱交換器を空気が通過する際の圧力損失が測定できるように、熱交換器の表側(風洞と反対側)と裏側(風洞側)に微差圧センサー(キーエンス社製 AP-48、AP-V41A)を設置した。さらに、熱交換器の伝熱管中に冷媒としてエタノール(富士フイルム和光純薬株式会社製)を導入し、冷媒温度-10℃で循環させた。
 微差圧センサーによる熱交換器の表側と裏側の圧力差ΔPの測定値が70Paとなった時点で熱交換器全体が着霜した(全着霜)と判断し、全着霜までに要する時間を着霜時間(全着霜)[s]とした。また、圧力差ΔPが35Paとなるまでの時間を着霜時間(半着霜)[s]とした。
 なお、着霜遅延効果は、全着霜に要する時間に基づき評価を行った。結果を表1~4に示す。
[光沢度]
 光沢度計(micro-gloss BYK社製)を用いて実施例及び比較例の熱交換器に含まれるフィンの側面を入射角60°で測定し、着霜遅延剤の塗布の有無を確認した。結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~3に記載した各成分の詳細を、以下に示す。
[樹脂成分]
(シロキサン樹脂)
・KE-1935A/B:KE-1935A(信越化学工業株式会社製)とKE-1935B(信越化学工業株式会社製)とを質量比1:1で混合したシロキサン樹脂、ビニル基を有するシロキサン樹脂、ハイドロジェンシリコーン及び触媒含有、加熱硬化型
・KE-118:信越化学工業株式会社製、2液硬化型シロキサン樹脂、常温硬化型
・HC2000:ダウ・東レ株式会社製、1液硬化型シロキサン樹脂、常温硬化型
(炭化水素樹脂)
・APEC(登録商標)1803:Covestro AG社製、PC(ポリカーボネート)樹脂、ペレット
・3092PM:三井化学株式会社製、EPDM(エチレンプロピレンジエンゴム)樹脂、ペレット
[オイル]
(オイル1:低温ブリードオイル、水ブリードオイル又は不凍液オイル)
・TSF-437:モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、フェニルオイル、低温ブリードオイル
・PEG200:富士フイルム和光純薬株式会社製、ポリエチレングリコール、不凍液オイル
・KF-6015:信越化学工業株式会社製、ポリエーテル変性シリコーンオイル、水ブリードオイル
(オイル2:その他のオイル)
・KF-96-50CS:信越化学工業株式会社製、ジメチルシロキサンオイル、相溶オイル
・KF-96-100CS:信越化学工業株式会社製、ジメチルシロキサンオイル、相溶オイル
[シリカ粒子]
・AEROSIL 200(日本アエロジル株式会社製)
[触媒]
・ネオスタンU-130:日東化成株式会社製、有機錫系触媒
・CAT-PL-50T:信越化学工業株式会社製、白金触媒
[架橋剤]
・エチルシリケート40:コルコート株式会社製、Si(OEt)12(平均5量体)
[溶剤]
・トルエン:富士フイルム和光純薬株式会社製
 表1~4に示されるように、フィンの側面に所定の着霜遅延剤が塗布されている実施例1~6及び8~15の熱交換器は、フィンの側面に所定の着霜遅延剤が塗布されていない比較例1の熱交換器に比して、着霜遅延効果を示した。同様に、フィンの側面に所定の着霜遅延剤が塗布され、かつ、主面が親水処理されている実施例7の熱交換器は、フィンの側面に所定の着霜遅延剤が塗布されておらず、かつ、主面が親水処理されている比較例2の熱交換器に比して、着霜遅延効果を示した。
 また、表2に示されるように、着霜遅延剤を塗布する方法が異なる実施例6(刷毛)及び8(スプレー)を比較しても、熱交換器の着霜遅延効果に大きな変化は認められなかった。
 さらに、表2に示されるように、シリカ粒子を含む着霜遅延剤を用いた実施例10の熱交換器は、シリカ粒子を含まない着霜遅延剤を用いた実施例8の熱交換器に比して、約1.3倍の着霜遅延効果を示した。実施例10の熱交換器は、シリカ粒子を含む着霜遅延剤を用いたことにより液垂れが防止され、フィンの側面における塗料が被覆できていない箇所が減ったことで、着霜遅延効果が向上したと推察される。
 これにより、本発明の熱交換器は、フィンに対して着霜遅延処理が施され、着霜によるフィン間を通過する外気の減少や、冷媒の熱交換量の減少による効率低下を防止できることが明らかとなった。
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2022年3月25日出願の日本特許出願(特願2022-050319)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明は着霜遅延効果が向上したフィンを含む熱交換器を提供することが可能であり、このような熱交換器は、例えばエアコン等に適用することができる。

Claims (4)

  1.  板状のフィンを含む熱交換器であって、
     前記フィンは主面と側面とを含み、
     前記側面の少なくとも一部に、シロキサン樹脂及び炭化水素樹脂から選択される1種以上を20質量%以上含む着霜遅延剤が塗布されてなる、熱交換器。
  2.  前記主面に対して前記着霜遅延剤が塗布されていない、請求項1に記載の熱交換器。
  3.  前記着霜遅延剤が1種類以上のオイルを含有する、請求項1又は2に記載の熱交換器。
  4.  前記オイルは、温度が所定値以下に低下したときに前記着霜遅延剤から滲出することができるオイル、水分が付着したときに前記着霜遅延剤から滲出することができるオイル、及び、不凍液オイルからなる群から選択される1種以上である、請求項3に記載の熱交換器。
PCT/JP2023/011391 2022-03-25 2023-03-23 熱交換器 WO2023182400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-050319 2022-03-25
JP2022050319 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182400A1 true WO2023182400A1 (ja) 2023-09-28

Family

ID=88101563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011391 WO2023182400A1 (ja) 2022-03-25 2023-03-23 熱交換器

Country Status (2)

Country Link
TW (1) TW202346783A (ja)
WO (1) WO2023182400A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300270A (ja) * 1998-04-27 1999-11-02 Matsushita Electric Ind Co Ltd 撥水性被膜とその製造方法及び撥水性塗料組成物
JP2002323298A (ja) * 2001-04-26 2002-11-08 Sumitomo Light Metal Ind Ltd 難着霜性の機能性装置
JP2006046695A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
JP2011163646A (ja) * 2010-02-09 2011-08-25 Sumitomo Light Metal Ind Ltd 熱交換器用アルミニウムフィン及び熱交換器
WO2020153376A1 (ja) * 2019-01-21 2020-07-30 日東電工株式会社 フィルム
JP2021151781A (ja) * 2020-03-23 2021-09-30 日東電工株式会社 シート体
WO2022130620A1 (ja) * 2020-12-18 2022-06-23 三菱電機株式会社 熱交換器および熱交換器の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300270A (ja) * 1998-04-27 1999-11-02 Matsushita Electric Ind Co Ltd 撥水性被膜とその製造方法及び撥水性塗料組成物
JP2002323298A (ja) * 2001-04-26 2002-11-08 Sumitomo Light Metal Ind Ltd 難着霜性の機能性装置
JP2006046695A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
JP2011163646A (ja) * 2010-02-09 2011-08-25 Sumitomo Light Metal Ind Ltd 熱交換器用アルミニウムフィン及び熱交換器
WO2020153376A1 (ja) * 2019-01-21 2020-07-30 日東電工株式会社 フィルム
JP2021151781A (ja) * 2020-03-23 2021-09-30 日東電工株式会社 シート体
WO2022130620A1 (ja) * 2020-12-18 2022-06-23 三菱電機株式会社 熱交換器および熱交換器の製造方法

Also Published As

Publication number Publication date
TW202346783A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US20220145028A1 (en) Film
ES2500242T3 (es) Composición de revestimiento, intercambiador de calor y aire acondicionado
US9505934B2 (en) Super-hydrorepellent coating composition, super-hydrorepellent coating layer including cured product of the super-hydrorepellent coating composition, and heat exchanger including the super-hydrorepellent coating layer
EP2112207A1 (en) Coating composition, coating method, heat exchanger and air conditioner
CN101726046B (zh) 空气调节器及涂层组合物
TW201247802A (en) Composition for coating film formation purposes
KR102045881B1 (ko) 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판
JP5202467B2 (ja) 送風装置
WO2011142137A1 (ja) 熱交換器用アルミニウムフィン材
JP6887366B2 (ja) プレコートフィン材
US20200032109A1 (en) Coating film forming composition, coating film, and adhesive sheet
WO2023182400A1 (ja) 熱交換器
AU2016244532A1 (en) Adhesive tape for preventing adhesion of aquatic organisms
CN1432612A (zh) 水性涂料
CA2932502C (en) Composition for coating
JP2011208937A (ja) 空気調和機及びコーティング組成物
JP2005154520A (ja) 非付着性表面構造
US20220389238A1 (en) Peelable coating film, coating-material set, and coating material for hydrophilic-coating-film formation
EP2785770B1 (en) New coated elastomers and processes for their preparation
JP6627040B2 (ja) 消泡剤
JP2017155973A (ja) 熱交換器用フィン材及び熱交換器
JP2834228B2 (ja) 撥水性コーティング用組成物及び撥水性コーティング用組成物を用いた熱交換器
JP2584109B2 (ja) 撥水性コーティング用塗料及びその塗料を塗布した熱交換器
JP7493206B2 (ja) 耐紫外線抗菌防カビコーティング剤及び抗菌防カビ処理方法
KR100675858B1 (ko) 친수처리 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774994

Country of ref document: EP

Kind code of ref document: A1