WO2023182195A1 - 空洞形成用組成物 - Google Patents

空洞形成用組成物 Download PDF

Info

Publication number
WO2023182195A1
WO2023182195A1 PCT/JP2023/010519 JP2023010519W WO2023182195A1 WO 2023182195 A1 WO2023182195 A1 WO 2023182195A1 JP 2023010519 W JP2023010519 W JP 2023010519W WO 2023182195 A1 WO2023182195 A1 WO 2023182195A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cavity
forming
repeating unit
forming composition
Prior art date
Application number
PCT/JP2023/010519
Other languages
English (en)
French (fr)
Inventor
和彦 木下
俊 窪寺
登喜雄 西田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023182195A1 publication Critical patent/WO2023182195A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials

Definitions

  • the present invention relates to a cavity forming composition for forming cavities between conductive wiring patterns.
  • the present invention also relates to a method for manufacturing a semiconductor device using the cavity forming composition.
  • Patent Document 1 a method of manufacturing a semiconductor device, a step of selectively coating the surface of a predetermined first insulating film of a semiconductor substrate to form a plurality of interconnects in the same layer, A step of forming an organic resin film on the surface of the covered first insulating film, a step of thinning the organic resin film to expose the surface of the wiring, and a step of depositing a sparse second insulating film over the entire surface. A space is provided between the wirings by the step of removing the organic resin film and the step of depositing a dense third insulating film.
  • O 2 plasma treatment is performed.
  • carbon in the second insulating film organic SOG film
  • the film changes to a sparse film and as a result, O 2 plasma flows through the second insulating film.
  • the organic resin film resist film
  • can be removed by passing through see paragraph [0023] of Patent Document 1).
  • a method for manufacturing an electronic, optoelectronic or electromechanical device has been proposed, in which the sacrificial material layer comprises a crosslinked polymer.
  • a method of removing the organic resin film by heating instead of O 2 plasma treatment may be considered.
  • the restrictions on the second insulating film are relatively small, and the cost of the heating device can be relatively lower than that of an O 2 plasma processing device.
  • the present inventors conducted intensive studies and found that the above-mentioned problems could be solved by incorporating a specific addition polymer into the cavity-forming composition, and completed the present invention. I let it happen.
  • a cavity forming composition for forming cavities between conductive wiring patterns on a semiconductor substrate comprising: Containing an addition polymer of two or more types of monomers having ethylenically unsaturated bonds and a solvent,
  • the addition polymer has a repeating unit (R1) having a thermosetting site and a repeating unit (R2) having a thermally decomposable site,
  • R1 having a thermosetting site
  • R2 having a thermally decomposable site
  • the thermal decomposition temperature of the easily thermally decomposable portion is higher than the thermal curing temperature of the thermosetting portion.
  • the glass transition temperature of the cured film obtained by heating the film formed from the cavity-forming composition is 86°C or higher, The decomposition rate when the cured film is heated at 400° C. for 30 minutes in a nitrogen atmosphere is 95% or more, The cavity-forming composition according to [1].
  • R1 represents a hydrogen atom, a halogen atom, or an alkyl group.
  • L 1 and L 2 each independently represent a single bond or a connecting group.
  • X 1 represents a group having at least one of an epoxy group, an oxetanyl group, a hydroxyalkyl group, an alkoxyalkyl group, a (meth)acryloyl group, a styryl group, and a vinyl group.
  • m1 represents an integer from 1 to 5. When m1 is 2 or more, two or more X1 's may be the same or different.
  • m2 represents an integer from 1 to 5. When m2 is 2 or more, two or more [-L 2 -(X 1 ) m1 ] may be the same or different. ) [4] The cavity-forming composition according to [3], wherein the repeating unit (R1) further includes a repeating unit represented by the following formula (R1-2).
  • X 11 represents a single bond or a divalent organic group.
  • R 11 represents a hydrogen atom, a halogen atom, or an alkyl group.
  • R 12 to R 14 are each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 15 represents an alkyl group having 1 to 10 carbon atoms.
  • R 14 and R 15 are bonded to each other to form a ring.
  • R 21 represents a hydrogen atom or an alkyl group.
  • Y 1 is a group represented by the following formula (R2-1-1), phenyl which may have a substituent group, an optionally halogenated alkyl group, an optionally substituted monovalent alicyclic hydrocarbon group, an optionally halogenated alkylcarbonyloxy group, an optionally halogenated alkoxy group, nitrile group, or halogen atom)
  • R 22 represents a hydrocarbon group that may be substituted with at least one of a halogen atom and a dialkylamino group.
  • a step (B) of forming a cavity-forming cured material formed from the cavity-forming composition After the step (B), a step (C) of forming an insulating layer on the conductive wiring pattern and the cavity-forming hardened material between the conductive wiring patterns; After the step (C), a step (D) in which the semiconductor substrate is heated to a temperature higher than the temperature at which the easily decomposable portion thermally decomposes, and the hardened material for forming the cavity is burned out;
  • a method for manufacturing a semiconductor device including: [9] During the step (B), the cavity-forming hardened material is also formed on the conductive wiring pattern, Before the step (C), the method includes a step (E) in which the cavity-forming hardened material on the conductive wiring pattern is removed.
  • step (A) Between the step (A) and the step (B), the uncured cavity-forming material formed from the cavity-forming composition present on the conductive wiring pattern is removed. Including step (F) The method for manufacturing a semiconductor device according to [8]. [11] The method for manufacturing a semiconductor device according to any one of [8] to [10], wherein in the step (C), the insulating layer is formed by chemical vapor deposition.
  • a cavity-forming composition suitable for forming cavities between conductive wiring patterns on a semiconductor substrate by heating, and a method for manufacturing a semiconductor element using the cavity-forming composition. I can do it.
  • FIG. 1 is a schematic cross-sectional view for explaining an example of a method for manufacturing a semiconductor element (Part 1).
  • FIG. 2 is a schematic cross-sectional view for explaining an example of a method for manufacturing a semiconductor element (Part 2).
  • FIG. 3 is a schematic cross-sectional view for explaining an example of a method for manufacturing a semiconductor element (part 3).
  • FIG. 4 is a schematic cross-sectional view for explaining an example of a method for manufacturing a semiconductor element (part 4).
  • FIG. 5 is a schematic cross-sectional view for explaining an example of a method for manufacturing a semiconductor element (part 5).
  • FIG. 6 is a schematic cross-sectional view for explaining an example of a method for manufacturing a semiconductor element (part 6).
  • the addition polymer is an addition polymer of two or more types of monomers (hereinafter sometimes referred to as "monomers") having ethylenically unsaturated bonds.
  • Addition polymers are obtained by addition polymerizing two or more types of monomers. Note that the ethylenically unsaturated bond means a radically polymerizable carbon-carbon double bond.
  • a preferred embodiment of the addition polymer has a repeating unit (R1) having a thermosetting site and a repeating unit (R2) having a thermally decomposable site.
  • the thermal decomposition temperature of the easily thermally decomposable portion is higher than the thermosetting temperature of the thermosetting portion.
  • a preferred embodiment of the addition polymer includes a repeating unit represented by formula (R1-1) described below and a repeating unit represented by formula (R2-1) described below.
  • the addition polymer may have a crosslinked structure. Or it is a non-crosslinked addition polymer.
  • the mass ratio of monomers having two or more ethylenically unsaturated bonds in the constituent components is preferably from 0% by mass to 10% by mass, and preferably from 0% by mass to 5% by mass. It is more preferable.
  • the cavity forming composition is suitably used for manufacturing a semiconductor device including the following steps (A) to (D).
  • Step (A) A step of applying a cavity forming composition onto a semiconductor substrate on which a conductive wiring pattern is formed.
  • the thickness of the coating film is 40 nm to 50 nm. Then, the coating film is scraped off, and the resulting powder is subjected to differential scanning calorimetry. Differential scanning calorimetry (DSC) is used for measurement. First, after raising the temperature to 140°C to erase the thermal history, the temperature was lowered to 0°C at a cooling rate of 20°C/min, and the thermogram when measured again at a heating rate of 20°C/min showed a staircase. The temperature indicates the inflection point of the transition region that appears as follows. Note that for results in which no inflection point was observed, the glass transition temperature was assumed to be 100°C or higher. The device used is Q2000 manufactured by TA Instruments, and the sample amount is approximately 5 mg. The baking temperature may be, for example, the heating temperature in step (B) above.
  • a cured film obtained by heating a film formed from the cavity forming composition is decomposed when heated at 400°C for 30 minutes in a nitrogen atmosphere.
  • the ratio is 95% or more.
  • the decomposition rate is preferably 96% or more, more preferably 97% or more, and particularly preferably 98% or more.
  • the decomposition rate can be measured, for example, by the following method.
  • the cavity-forming composition is applied by spin coating to form a coating film on a silicon substrate at a predetermined baking temperature (for example, 205° C. or 215° C.).
  • the repeating unit (R1) of the addition polymer is not particularly limited as long as it has a thermosetting site.
  • the thermosetting site may be a site where thermosetting sites of the same type react with each other (e.g., epoxy groups, hydroxyalkyl groups), or sites where thermosetting sites of different types react with each other. Such a site (for example, a combination of an epoxy group and a carboxyl group) may be used.
  • the thermosetting site may be a site that reacts by heating in the presence of a catalyst, or a site that reacts by heating in the absence of a catalyst.
  • the thermosetting site may be a site having a structure (for example, a hemiacetal ester structure) in which a reactive group is generated by the elimination of an elimination component upon heating.
  • the repeating unit (R1) preferably contains a repeating unit represented by the following formula (R1-1).
  • R 1 represents a hydrogen atom, a halogen atom, or an alkyl group.
  • L 1 and L 2 each independently represent a single bond or a connecting group.
  • X 1 represents a group having at least one of an epoxy group, an oxetanyl group, a hydroxyalkyl group, an alkoxyalkyl group, a (meth)acryloyl group, a styryl group, and a vinyl group.
  • m1 represents an integer from 1 to 5.
  • n 2 or more
  • X1 's may be the same or different.
  • m2 represents an integer from 1 to 5.
  • m2 is 2 or more, two or more [-L 2 -(X 1 ) m1 ] may be the same or different.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the repeating unit represented by formula (R1-1) preferably does not contain an aromatic ring from the viewpoint of exhibiting good thermal decomposition properties upon heating.
  • the aromatic ring group may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group. Moreover, it may be monocyclic or polycyclic, and in the case of polycyclic, it may be a condensed ring. An aromatic hydrocarbon ring group and an aromatic heterocyclic group are preferred, and an aromatic hydrocarbon ring group is more preferred. As the aromatic hydrocarbon ring group, a benzene ring group, a naphthalene ring group, and an anthracene ring group are preferable, and a benzene ring group is particularly preferable.
  • aromatic heterocyclic group examples include a thiophene ring group, a furan ring group, a pyrrole ring group, a triazine ring group, an imidazole ring group, a triazole ring group, a thiadiazole ring group, and a thiazole ring group.
  • the aliphatic cyclic group may be an aliphatic hydrocarbon cyclic group or an aliphatic heterocyclic group. Moreover, it may be monocyclic or polycyclic, and in the case of polycyclic, it may be a condensed ring. Examples of the aliphatic hydrocarbon ring group include a cyclohexane group.
  • a group containing XXX also includes a group consisting only of XXX.
  • -L 2 - L 2 is a single bond or a linking group.
  • it is a linking group, it is preferably divalent.
  • at least one of L 1 and L 2 is a linking group.
  • the linking group L 2 is not particularly limited and has the same meaning as the above linking group L 1 , but preferred are the following groups or a combination of groups. That is, preferable groups include alkylene groups, aliphatic cyclic groups, aromatic cyclic groups, and the like.
  • the number of carbon atoms in the alkylene group is preferably 1 to 4, and methylene is particularly preferred.
  • the number of carbon atoms of the alkylene group in the combined group is preferably 1 to 4, and a methylene group or an ethylene group is particularly preferable.
  • L 2 is preferably an alkylene group or an -O-alkylene group.
  • L 2 is preferably an alkylene group
  • L 1 is an aromatic ring group
  • L 2 is preferably an -O-alkylene group.
  • -X 1 - X 1 has at least one of an epoxy group, an oxetanyl group, a hydroxyalkyl group, an alkoxyalkyl group, a (meth)acryloyl group, a styryl group, and a vinyl group.
  • the epoxy group, oxetanyl group, hydroxyalkyl group, alkoxyalkyl group, (meth)acryloyl group, styryl group and vinyl group in X 1 react (cure) by heating in the presence or absence of a curing catalyst, As a result, the addition polymer forms a crosslinked structure.
  • Examples of X 1 include, as a group having an epoxy group, a group represented by the following formula (Ox-1) and a group represented by the following formula (Ox-2).
  • Examples of X 1 include a group having an oxetanyl group, such as a group represented by the following formula (Ox-3).
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group, or an ethyl group.
  • Examples of the group represented by the formula (Ox-2) include a group represented by the following formula (Ox-2-1).
  • Examples of the group represented by the formula (Ox-3) include a group represented by the following formula (Ox-3-1).
  • * represents a bond.
  • R 2 represents a hydrogen atom, a methyl group, or an ethyl group.
  • Examples of the group having a hydroxyalkyl group in X 1 include a hydroxyalkyl group.
  • the hydroxyalkyl group may have one, two, or three or more hydroxy groups.
  • the number of carbon atoms in the hydroxyalkyl group is, for example, 1 to 10.
  • the hydroxyalkyl group may have a substituent.
  • Examples of the substituent include a halogen atom, an alkoxy group, and an acyloxy group.
  • Examples of the alkoxy group include alkoxy groups having 1 to 4 carbon atoms.
  • Examples of the acyloxy group include acyloxy groups having 2 to 4 carbon atoms.
  • Examples of the acyloxy group include a monovalent group obtained by removing the hydrogen atom in --COOH from RCOOH (R represents an alkyl group).
  • Examples of the hydroxyalkyl group include hydroxymethyl group, 2-hydroxyethyl group, and 3-hydroxypropyl group.
  • the alkyl group in the hydroxyalkyl group and the alkoxyalkyl group may be linear, branched, cyclic, or a combination of two or more of these. .
  • Examples of the group having a (meth)acryloyl group in X 1 include an acryloyloxy group and a methacryloyloxy group.
  • m1 is an integer of 1 to 5, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • X 1 is a group having an epoxy group or an oxetanyl group
  • m1 is preferably 1
  • X 1 is a group other than a group having an epoxy group or an oxetanyl group
  • m1 is preferably 2 or 3.
  • m2 is an integer of 1 to 5, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the repeating unit represented by the formula (R1-1) is preferably a repeating unit represented by the following formula (R1-1-1).
  • R 1 represents a hydrogen atom, a halogen atom, or an alkyl group, and has the same meaning as R 1 in formula (R1-1).
  • L 3 represents a single bond or a connecting group.
  • the number of carbon atoms of the alkylene group and the number of carbon atoms of the alkylene group in a group combining an alkylene group and another group are preferably 1 to 4, and a methylene group or an ethylene group is particularly preferable.
  • X 2 has the same meaning as X 1 in formula (R1-1).
  • m3 represents an integer of 1 to 5, has the same meaning as m2 in formula (R1-1), and preferable values are also the same.
  • Examples of the monomer that provides the repeating unit (R1-1) having an epoxy group to the addition polymer include glycidyl acrylate, glycidyl methacrylate, ⁇ -ethyl glycidyl acrylate, ⁇ -n-propyl glycidyl acrylate, ⁇ - Glycidyl n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, ⁇ -3,4-epoxycyclohexylmethyl ethyl acrylate, o-vinylbenzylglycidyl ether, m-vinylbenzylglycidyl ether, p-vinylbenzylglycidyl ether, in paragraph numbers [0031] to [0035] of Patent No
  • a monomer that provides the repeating unit (R1-1) having an oxetanyl group to the addition polymer for example, the monomer having an oxetanyl group described in paragraph numbers [0011] to [0016] of JP-A No. 2001-330953 can be used.
  • Examples include (meth)acrylic esters and compounds described in paragraph number [0027] of JP-A-2012-088459, the contents of which are incorporated into the present specification.
  • the monomer that provides the repeating unit (R1-1) having an epoxy group and an oxetanyl group to the addition polymer may be, for example, a monomer containing a methacrylic ester structure or a monomer containing an acrylic ester structure. preferable.
  • These structural units can be used alone or in combination of two or more.
  • R1-1 Specific examples of the repeating unit represented by formula (R1-1) are shown below.
  • Me represents a methyl group.
  • * represents a bond.
  • the repeating unit represented by formula (R1-1) is preferably one that does not contain an aromatic ring from the viewpoint of exhibiting good thermal decomposition properties upon heating. Among them, particularly preferred ones are shown below. In the following, Me represents a methyl group. * represents a bond.
  • the repeating unit (R1) further includes a repeating unit represented by the following formula (R1-2).
  • X 1 in formula (R1-1) is an epoxy group and an oxetanyl group.
  • X 11 represents a single bond or a divalent organic group.
  • R 11 represents a hydrogen atom, a halogen atom, or an alkyl group.
  • R 12 to R 14 are each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 15 represents an alkyl group having 1 to 10 carbon atoms.
  • R 14 and R 15 are bonded to each other to form a ring.
  • the repeating unit (R1-2) has a hemiacetal ester structure and is easily decomposed in the presence of a catalyst to produce a carboxyl group.
  • a catalyst for example, due to the reaction between the generated carboxyl group and the oxirane ring or oxetane ring, the addition polymer can be easily thermally cured to form a crosslinked structure that is difficult to soften.
  • Examples of the divalent organic group for X 11 include a phenylene group.
  • alkyl group for R 11 examples include alkyl groups having 1 to 10 carbon atoms, and preferably alkyl groups having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 11 to R 15 include methyl group, ethyl group, normal butyl group, normal octyl group, isopropyl group, tert-butyl group, 2-ethylhexyl group, cyclohexyl group, etc. It will be done. Further, R 14 and R 15 may be combined with each other to form a ring, and examples of the ring formed in this way include a tetrahydrofuran ring and a tetrahydropyran ring.
  • the monomer that provides the repeating unit represented by formula (R1-2) to the addition polymer can be synthesized, for example, by the method described in paragraphs [0012] to [0015] of Japanese Patent No. 5077564.
  • Examples of the monomer that provides the repeating unit represented by formula (R1-2) to the addition polymer include methacrylic acid hemiacetal ester compounds and acrylic acid hemiacetal ester compounds.
  • Examples of methacrylic acid hemiacetal ester compounds include 1-methoxyethyl methacrylate, 1-ethoxyethyl methacrylate, 1-isopropoxyethyl methacrylate, 1-n-n-butoxyethyl methacrylate, 1-n-n-hexyloxyethyl methacrylate, and tetrahydro-2H. -pyran-2-yl-methacrylate and the like.
  • acrylic acid hemiacetal ester compounds include 1-methoxyethyl acrylate, 1-tert-butoxyethyl acrylate, 1-isopropoxyethyl acrylate, 1-n-n-butoxyethyl acrylate, and tetrahydro-2H-pyran-2-yl-acrylate. can be mentioned.
  • the repeating unit (R2) of the addition polymer is not particularly limited as long as it has a thermally decomposable site.
  • the repeating unit (R2) preferably contains a repeating unit represented by the following formula (R2-1).
  • R 21 represents an alkyl group.
  • Y 1 represents a group represented by the following formula (R2-1-1), a phenyl group that may have a substituent, a halogen an optionally substituted alkyl group, an optionally substituted monovalent alicyclic hydrocarbon group, an optionally halogenated alkylcarbonyloxy group, an optionally halogenated alkoxy group, a nitrile (represents a group or halogen atom)
  • R 22 represents a hydrocarbon group that may be substituted with at least one of a halogen atom and a dialkylamino group. * represents a bond.
  • R 21 examples include an alkyl group having 1 to 4 carbon atoms. Examples of R 21 include a methyl group.
  • the number of carbon atoms of R 22 in formula (R2-1-1) is, for example, 1 to 15.
  • Examples of the hydrocarbon group for R 22 include an alkyl group, an alkenyl group, an aryl group, and an aralkyl group.
  • the group represented by formula (R2-1-1) is preferably a primary alkyl ester. That is, the group represented by the formula (R2-1-1) is preferably a group represented by the following formula (R2-1-1-1).
  • R 23 represents a hydrogen atom or a hydrocarbon group optionally substituted with a halogen atom or a dialkylamino group. * represents a bond.
  • Examples of the substituent in the phenyl group which may have a substituent in Y 1 include a halogen atom. That is, R 21 may be an optionally halogenated phenyl group.
  • the number of carbon atoms in the optionally halogenated alkyl group in Y 1 is, for example, 1 to 6.
  • Examples of the substituent in the optionally substituted monovalent alicyclic hydrocarbon group in Y 1 include a halogen atom.
  • Examples of the monovalent alicyclic hydrocarbon group include a cyclohexyl group and a cyclopentyl group.
  • the number of carbon atoms of the optionally halogenated alkylcarbonyloxy group in Y 1 is, for example, 2 to 6.
  • the number of carbon atoms of the optionally halogenated alkoxy group in Y 1 is, for example, 1 to 6.
  • the repeating unit (R2) does not contain an aromatic ring from the viewpoint of suitably obtaining the effects of the present invention.
  • Examples of the monomer that provides the repeating unit (R2) to the addition polymer include the following monomers. ⁇ Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, decyl methacrylate, dodecyl methacrylate, tetradecyl methacrylate, hexadecyl methacrylate, methacrylate Octadecyl acid, i-butyl methacrylate, isoamyl methacrylate, cyclohexylmethyl methacrylate, 2-ethylhexyl methacrylate, benzyl methacrylate, phenethyl methacrylate, 2-chloroethyl methacrylate, 2,2-diaminoethyl methacrylate, ⁇ -
  • the addition polymer may have repeating units other than the repeating unit (R1) having a thermosetting site and the repeating unit (R2) having a thermally decomposable site.
  • Examples of monomers providing such repeating units include 9-anthrylmethyl methacrylate.
  • the addition polymer is more preferably one that does not contain aromatic rings from the viewpoint of suitably obtaining the effects of the present invention.
  • the content ratio of the repeating unit (R1) in the addition polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is 5 mol% to 50 mol% with respect to all repeating units of the addition polymer. is preferable, and 10 mol% to 30 mol% is more preferable.
  • the content ratio of the repeating unit (R2) in the addition polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, it is 50 mol% to 95 mol% with respect to all repeating units of the addition polymer. is preferable, and 70 mol% to 90 mol% is more preferable.
  • the total content of repeating units (R1) and repeating units (R2) in the addition polymer is not particularly limited, but from the viewpoint of suitably obtaining the effects of the present invention, , preferably 80 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, particularly preferably 95 mol% to 100 mol%.
  • the weight average molecular weight of the addition polymer is not particularly limited, but is preferably from 1,000 to 100,000, more preferably from 2,000 to 50,000, particularly preferably from 3,000 to 10,000.
  • the content of the addition polymer in the cavity-forming composition is not particularly limited, but is preferably 50% by mass to 100% by mass based on the nonvolatile content (i.e., components excluding the solvent) in the cavity-forming composition. , more preferably 80% by mass to 100% by mass, particularly preferably 95% by mass to 100% by mass.
  • the upper limit of the content of the addition polymer is preferably 99.9% by mass or less.
  • the polymerization method for producing the addition polymer is not particularly limited, but for example, after dissolving a monomer having an ethylenically unsaturated bond and a chain transfer agent added as necessary in an organic solvent, a polymerization initiator is added. It can be produced by adding and performing a polymerization reaction, and then adding a polymerization terminator if necessary.
  • the amount of the polymerization initiator added is, for example, 1 to 10% by weight based on the weight of the monomer.
  • the amount of the polymerization terminator added is, for example, 0.01 to 0.2% by weight based on the weight of the monomer.
  • the organic solvent used is not particularly limited, and examples thereof include propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethyl lactate, and dimethylformamide.
  • chain transfer agents used include dodecanethiol and dodecylthiol.
  • examples of the polymerization initiator used include azobisisobutyronitrile, azobiscyclohexanecarbonitrile, and dimethyl azobis(isobutyrate).
  • Examples of the polymerization terminator used include 4-methoxyphenol. Examples of the reaction temperature include 30 to 100°C. Examples of the reaction time include 1 to 48 hours.
  • the solvent used in the cavity forming composition is not particularly limited as long as it can uniformly dissolve solid components at room temperature, but organic solvents generally used in semiconductor lithography process chemicals are preferred. Specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl Ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, cycloheptanone, 4-methyl-2-pentanol, methyl 2-hydroxyisobutyrate, 2-hydroxyisobutyrate, 2-hydroxyis
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, and cyclohexanone are preferred. Particularly preferred are propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate.
  • the cavity-forming composition may contain a curing catalyst in order to accelerate the reaction of the thermosetting site.
  • the curing catalyst may be, for example, a sulfonic acid compound or a carboxylic acid compound.
  • sulfonic acid compounds include p-toluenesulfonic acid, pyridinium trifluoromethanesulfonate, pyridinium-p-toluenesulfonate, 5-sulfosalicylic acid, 4-chlorobenzenesulfonic acid, 4-hydroxybenzenesulfonic acid, pyridinium-4-hydroxy
  • Examples include benzenesulfonate, n-dodecylbenzenesulfonic acid, 4-nitrobenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid, trifluoromethanesulfonic acid, and camphorsulfonic acid.
  • carboxylic acid compounds include salicylic acid, citric acid, benzoic acid, and hydroxybenzoic acid.
  • curing catalysts include, for example, Hishicorin PX-4C, Hishicorin PX-4B, Hishikolin PX-4MI, Hishikolin PX-412B, Hishikolin PX-416B, Hishikolin PX-2B, Hishikolin PX-82B, Hishikolin (registered trademark) PX-4BT, PX-4MP, PX-4ET, PX-4PB (manufactured by Nihon Kagaku Kogyo Co., Ltd.), Hokuko TPP [registered trademark], TPTP [registered trademark], DPCP [registered trademark], TPP -EB [registered trademark], TPP-ZC [registered trademark], DPPB [registered trademark], EMZ-K [registered trademark], DBNK [registered trademark], TPP-MK [registered trademark], TPP-K [registered trademark] , TPP-S [registered trademark], TPP-SCN [registered trademark], TPP-DCA [
  • crosslinking catalysts include, for example, K-PURE (registered trademark) CXC-1612, CXC-1614, TAG-2172, TAG-2179, TAG-2678, and TAG2689 (manufactured by King Industries). ), and SI-45, SI-60, SI-80, SI-100, SI-110, and SI-150 (manufactured by Sanshin Kagaku Kogyo Co., Ltd.).
  • These curing catalysts may be used alone or in combination of two or more.
  • the content of the curing catalyst in the cavity forming composition is not particularly limited, but is, for example, 0.005% to 10% by mass, preferably 0.1% to 5% by mass, based on the addition polymer. It is.
  • the cavity-forming composition may contain a stabilizer to improve storage stability.
  • Tertiary amines are particularly preferred because they alleviate the effects of acids caused by deterioration of the curing catalyst over time. More preferred examples include tribenzylamine, triethylamine, tripropylamine, tributylamine, trimethanolamine, triethanolamine, and tributanolamine.
  • the content of the stabilizer in the cavity-forming composition is not particularly limited, but is, for example, 3% by mass to 120% by mass, preferably 3% by mass to 35% by mass, based on the curing catalyst.
  • a surfactant can be further added to the cavity-forming composition in order to prevent the occurrence of pinholes, striations, etc., and to further improve the applicability against surface unevenness.
  • surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and polyoxyethylene nonylphenol ether.
  • polyoxyethylene alkyl allyl ethers polyoxyethylene/polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate, etc.
  • sorbitan fatty acid esters polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as fatty acid esters, FTOP EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd., trade name), Megafac F171, F173, R-30, R-40 (manufactured by DIC Corporation) , product name), Florado FC430, FC431 (manufactured by Sumitomo 3M Ltd., product name), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd., product name) ), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • the blending amount of these surfactants is usually 2.0% by mass or less, preferably 1.0% by mass or less, based on the total solid content of the composition for forming a protective film.
  • the nonvolatile content of the cavity-forming composition is, for example, 0.01% by mass to 10% by mass.
  • the method for manufacturing a semiconductor device of the present invention includes the following steps (A) to (D).
  • Step (A) A step in which the cavity forming composition of the present invention is applied onto a semiconductor substrate on which a conductive wiring pattern is formed.
  • a cured cavity-forming material hardened cavity-forming material that is formed from a cavity-forming composition between conductive wiring patterns by being heated to a temperature higher than the temperature at which thermally curing occurs and lower than a temperature at which the easily thermally decomposable portion thermally decomposes.
  • Step (A) is a step in which the cavity forming composition of the present invention is applied onto a semiconductor substrate on which a conductive wiring pattern is formed.
  • Examples of the semiconductor substrate include silicon wafers, germanium wafers, and compound semiconductor wafers such as gallium arsenide, indium phosphide, gallium nitride, indium nitride, and aluminum nitride.
  • the material, size, and shape of the conductive wiring pattern are not particularly limited.
  • Examples of the material of the conductive wiring pattern include copper, cobalt, ruthenium, molybdenum, chromium, tungsten, manganese, rhodium, nickel, palladium, platinum, silver, gold, and aluminum.
  • An insulating layer may be formed on the conductive wiring pattern.
  • Examples of the material of the insulating layer include silicon dioxide, silicon oxycarbide, silicon oxynitride, silicon nitride, silicon carbon nitride (SiCN), aluminum nitride, aluminum oxynitride, and aluminum oxide.
  • An example of a method for forming the insulating layer is vapor deposition.
  • the line width of each wiring in the conductive wiring pattern is not particularly limited, but may be, for example, 3 nm to 50 nm.
  • the width of the space between each wire of the conductive wiring pattern is not particularly limited, but may be, for example, 3 nm to 50 nm.
  • the method for forming the conductive wiring pattern is not particularly limited, and for example, a conventionally known lithography process can be used.
  • the cavity-forming composition is applied onto a semiconductor substrate using an appropriate coating method such as a spinner or a coater.
  • step (B) After step (A), the semiconductor substrate is heated to a temperature higher than or equal to the temperature at which the thermosetting portions are thermoset and lower than the temperature at which the easily thermally decomposable portions are thermally decomposed, so that the semiconductor substrate is heated between the conductive wiring patterns.
  • step (B) After step (A), the semiconductor substrate is heated to a temperature higher than or equal to the temperature at which the thermosetting portions are thermoset and lower than the temperature at which the easily thermally decomposable portions are thermally decomposed, so that the semiconductor substrate is heated between the conductive wiring patterns.
  • a cured cavity-forming material cured cavity-forming material
  • the semiconductor substrate is heated using a heating means such as a hot plate, for example.
  • a heating means such as a hot plate, for example.
  • the thermosetting sites in the addition polymer react by being heated to a temperature above the temperature at which the thermosetting sites are thermoset and below a temperature at which the easily thermally decomposable sites are thermally decomposed.
  • a crosslinked structure of the addition polymer is formed.
  • a cured cavity-forming material (cured cavity-forming material) is obtained from the cavity-forming composition.
  • the heating temperature here can be appropriately selected depending on the type of thermosetting site and the type of curing catalyst optionally contained in the cavity forming composition, but is preferably 180°C to 250°C, and 190°C. C. to 240.degree. C. is more preferable, and 200.degree. C. to 230.degree. C. is particularly preferable.
  • the heating time is not particularly limited, but is preferably from 0.5 minutes to 10 minutes, more preferably from 0.5 minutes to 5 minutes.
  • Step (C) is a step, after step (B), in which an insulating layer is formed on the conductive wiring patterns and the cavity-forming hardened material between the conductive wiring patterns.
  • the material of the insulating layer is not particularly limited, and may be an organic material or an inorganic material.
  • the insulating layer is an inorganic material
  • examples of the material include silicon dioxide, silicon oxycarbide, silicon oxynitride, silicon nitride, silicon carbon nitride (SiCN), aluminum nitride, aluminum oxynitride. , aluminum oxide, tantalum oxide, titanium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, zirconium oxide, and mixtures thereof.
  • the thickness of the insulating layer is not particularly limited, but may be, for example, 0.2 nm to 10 nm.
  • the method for forming the insulating layer is not particularly limited, but a chemical vapor deposition method (CVD method) is preferable. That is, in step (C), the insulating layer is preferably formed by chemical vapor deposition.
  • CVD method chemical vapor deposition method
  • Step (D) is a step, after step (C), in which the semiconductor substrate is heated to a temperature higher than the temperature at which the easily decomposable portion thermally decomposes, and the hardened material for forming the cavity is burned out.
  • the crosslinked product of the addition polymer which is the cured material for forming cavities, decomposes due to the thermal decomposition of the easily decomposable parts. do.
  • the heating temperature here is not particularly limited as long as it is a temperature at which the cured material for cavity formation disappears, and can be appropriately selected depending on the type of addition polymer, etc., but is preferably 300°C to 500°C, and 350°C. -450°C is more preferred, and 370°C - 430°C is particularly preferred.
  • the heating time is not particularly limited, but is preferably from 5 minutes to 120 minutes, more preferably from 10 minutes to 60 minutes.
  • the amount of burnout (decomposition rate) of the hardened material for forming cavities is preferably 100%, but does not need to be 100% and may be 99.9% or less.
  • the decomposition rate is preferably 90% or more, more preferably 95% or more.
  • step (B) the cavity-forming hardened material may also be formed on the conductive wiring pattern.
  • the method for manufacturing a semiconductor device preferably includes a step (E) in which the cavity-forming cured material on the conductive wiring pattern is removed before step (C).
  • Removal of the cavity-forming hardened material on the conductive wiring pattern can be performed, for example, by etching the cavity-forming hardened material.
  • the etching may be wet etching or dry etching.
  • step (F) Between step (A) and step (B), a step (F) is included in which uncured cavity-forming material formed from the cavity-forming composition present on the conductive wiring pattern is removed. It's okay to stay.
  • the uncured cavity-forming material on the conductive wiring pattern can be removed, for example, by etching the uncured cavity-forming material formed from the cavity-forming composition.
  • the etching may be wet etching or dry etching.
  • a semiconductor substrate 1 on which a conductive wiring pattern 2 is formed is prepared.
  • a cavity forming composition is applied onto the semiconductor substrate 1 on which the conductive wiring pattern 2 is formed.
  • uncured cavity forming material 3A is formed on the conductive wiring pattern 2 and in the gaps between the conductive wiring patterns 2 (FIG. 1B).
  • the semiconductor substrate 1 is heated to a temperature higher than or equal to the temperature at which the thermosetting portions are thermally hardened and lower than the temperature at which the thermally decomposable portions are thermally decomposed.
  • step (E) the hardened cavity forming material 3B on the conductive wiring pattern 2 is removed (FIG. 1D).
  • step (C) an insulating layer 4 is formed on the conductive wiring pattern 2 and the hardened cavity forming material 3B in the gap between the conductive wiring pattern 2 (FIG. 1E).
  • step (D) the semiconductor substrate 1 is heated to a temperature higher than the temperature at which the easily decomposable portion thermally decomposes, and the hardened cavity forming material 3B between the conductive wiring patterns 2 is burned out, and the conductive wiring patterns 2 A cavity 3C is formed between them. As a result, cavities are formed between the conductive wiring patterns of the semiconductor substrate.
  • the weight average molecular weights of the polymers shown in the examples below are the results of measurements by gel permeation chromatography (hereinafter abbreviated as GPC).
  • GPC gel permeation chromatography
  • a separate container 42.00 g of propylene glycol monomethyl ether acetate, 15.46 g of methyl methacrylate (product of Tokyo Chemical Industry Co., Ltd.), and dimethyl azobis(isobutyrate) (product of Fuji Film Wako Pure Chemical Industries, Ltd.) 2.
  • Example 1 77.3 g of propylene glycol monomethyl ether acetate was added to 10.0 g of the solution containing the polymer obtained in Synthesis Example 1 (solid content concentration 18.0% by mass) to make a 2.0% by mass solution, and the pore size was 0.05 ⁇ m.
  • a cavity-forming composition was prepared by filtration using a polyethylene microfilter.
  • Example 2 66.6 g of propylene glycol monomethyl ether, 20.4 g of propylene glycol monomethyl ether acetate, and TAG-2689 (King Industries) were added to 10.0 g of the solution containing the polymer obtained in Synthesis Example 2 (solid content concentration 18.9% by mass). After adding 0.06 g of the quaternary ammonium salt of trifluoromethanesulfonic acid (manufactured by Nippon Steel & Co., Ltd.) to make a 2.0% by mass solution, it was filtered using a polyethylene microfilter with a pore size of 0.2 ⁇ m to obtain a cavity-forming composition. Prepared.
  • Example 3 48.6 g of propylene glycol monomethyl ether, 12.5 g of propylene glycol monomethyl ether acetate, and 0.0 g of pyridinium trifluoromethanesulfonate were added to 10.0 g of the solution containing the polymer obtained in Synthesis Example 3 (solid content concentration 16.5% by mass). After adding 0.6 g to make a 2.0% by mass solution, it was filtered using a polyethylene microfilter with a pore size of 0.2 ⁇ m to prepare a cavity-forming composition.
  • Example 4 To 10.0 g of the solution containing the polymer obtained in Synthesis Example 2 (solid content concentration 18.9% by mass), 66.7 g of propylene glycol monomethyl ether, 20.6 g of propylene glycol monomethyl ether acetate, 0.01 g of triethanolamine, and Add 0.06 g of TAG-2689 (manufactured by King Industries, quaternary ammonium salt of trifluoromethanesulfonic acid) to make a 2.0% by mass solution, and then filter using a polyethylene microfilter with a pore size of 0.2 ⁇ m. , prepared a cavity-forming composition.
  • TAG-2689 manufactured by King Industries, quaternary ammonium salt of trifluoromethanesulfonic acid
  • Glass transition temperature measurement test The cavity-forming compositions prepared in Examples 1 to 4 and the cavity-forming compositions prepared in Comparative Examples 1 to 2 were applied by spin coating, and silicon was coated at the baking temperature shown in Table 2. A coating film was prepared on the substrate. The film thickness of the coating film was approximately 43 nm. Then, the coating film was scraped off, and the resulting powder was subjected to differential scanning calorimetry. Table 2 shows the results of the baking temperature during film formation and the glass transition temperature obtained. The details of the measurement conditions for the glass transition temperature are as follows. Differential scanning calorimetry (DSC) was used for the measurement.
  • DSC Differential scanning calorimetry
  • the temperature was lowered to 0°C at a cooling rate of 20°C/min, and the thermogram when measured again at a heating rate of 20°C/min showed a staircase.
  • the temperature was set to indicate the inflection point of the transition region that appears as follows. Note that for results in which no inflection point was observed, the glass transition temperature was determined to be 100°C or higher.
  • the device used was Q2000 manufactured by TA Instruments, and the sample amount was about 5 mg.
  • the cavity-forming composition according to the present invention has both a high glass transition temperature and thermal decomposition properties at high temperatures when formed into a coating film, so that when applied to the process of forming cavities between multilayer wiring, it is possible to uniformly coat the composition.
  • the present invention provides a film that promotes the formation of an insulating layer and has excellent composition removal performance by firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

半導体基板上の導電配線パターン間に空洞を形成するための空洞形成用組成物であって、 エチレン性不飽和結合を有するモノマーの2種以上の付加重合体と、溶剤とを含有し、 前記付加重合体が、熱硬化性部位を有する繰り返し単位(R1)と、易熱分解性部位を有する繰り返し単位(R2)とを有し、 前記易熱分解性部位の熱分解温度が、前記熱硬化性部位の熱硬化温度よりも高い、 空洞形成用組成物。

Description

空洞形成用組成物
 本発明は、導電配線パターン間に空洞を形成するための空洞形成用組成物に関する。また、前記空洞形成用組成物を用いた半導体素子の製造方法に関する。
 近年、半導体素子は高集積化の傾向にあり、それに伴って配線間が微細化されている。配線間が微細化されると、配線間の寄生容量が大きくなる。配線間の寄生容量が大きくなると、電気信号にノイズや遅延が生じる。
 そこで、配線間の寄生容量を小さくする方法として、配線間に空隙を設ける方法が提案されている(特許文献1参照)。この提案の技術では、半導体装置の製造方法において、半導体基板の所定の第1の絶縁膜の表面を選択的に被覆して同一層次の複数の配線を形成する工程と、前記配線で選択的に被覆された第1の絶縁膜表面に有機樹脂膜を形成する工程と、前記有機樹脂膜を薄くして前記配線の表面を露出させる工程と、疎な第2の絶縁膜を全面に堆積する工程と、前記有機樹脂膜を除去する工程と、密な第3の絶縁膜を堆積する工程とにより前記配線相互に空間を設けることが行われる。有機樹脂膜を除去する工程では、Oプラズマ処理が行われる。この工程では、Oプラズマ処理を行うことで、第2の絶縁膜(有機SOG膜)中の炭素が除去され疎な膜に変化して、その結果Oプラズマが第2の絶縁膜中を通過して有機樹脂膜(レジスト膜)を除去できる(特許文献1の段落〔0023〕参照)。
 また、a)犠牲材料層をデバイス基体上に配置するステップと;b)オーバーレイ材料を犠牲材料層上に配置するステップと;次に、c)エアギャップを形成するために犠牲材料層を除去するステップとを含み;犠牲材料層が架橋ポリマーを含む、電子、光電子または電子機械デバイスを製造する方法が提案されている(特許文献2参照)。
特開平09-172068号公報 特開2004-266244号公報
 特許文献1の技術では、有機樹脂膜を除去するためのOプラズマ処理においては、第2の絶縁膜中をOプラズマが通過する必要があるため、第2の絶縁膜の材質の制約が大きい。また、Oプラズマ処理のための装置が必要となる。
 そこで、Oプラズマ処理に代えて加熱により有機樹脂膜を除去する方法が考えられる。加熱であれば、第2の絶縁膜の制約は比較的小さく、かつ加熱装置はOプラズマ処理装置よりもコストを比較的抑えることができる。
 特許文献2の技術では、膜形成後のベークによる分解率が必ずしも満足のいくものではなかった。
 本発明は、前述の事情に鑑みてなされたものであって、半導体基板上の導電配線パターン間に加熱によって空洞を形成するのに適した空洞形成用組成物、及び前記空洞形成用組成物を用いた半導体素子の製造方法を提供することを目的とする。
 本発明者らは、前述の課題を解決する為、鋭意検討を行った結果、空洞形成用組成物に特定の付加重合体を含有させることで前述の課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の態様を包含するものである。
 [1] 半導体基板上の導電配線パターン間に空洞を形成するための空洞形成用組成物であって、
 エチレン性不飽和結合を有するモノマーの2種以上の付加重合体と、溶剤とを含有し、
 前記付加重合体が、熱硬化性部位を有する繰り返し単位(R1)と、易熱分解性部位を有する繰り返し単位(R2)とを有し、
 前記易熱分解性部位の熱分解温度が、前記熱硬化性部位の熱硬化温度よりも高い、
 空洞形成用組成物。
 [2] 前記空洞形成用組成物から形成される膜を加熱して得られる硬化膜のガラス転移温度が、86℃以上であり、
 前記硬化膜を、窒素雰囲気下400℃で30分間加熱した際の分解率が、95%以上である、
 [1]に記載の空洞形成用組成物。
 [3] 前記繰り返し単位(R1)が、下記式(R1-1)で表される繰り返し単位を含む、[1]又は[2]に記載の空洞形成用組成物。
Figure JPOXMLDOC01-appb-C000005
(式(R1-1)中、Rは、水素原子、ハロゲン原子又はアルキル基を表す。
 L及びLは、それぞれ独立して、単結合又は連結基を表す。
 Xは、エポキシ基、オキセタニル基、ヒドロキシアルキル基、アルコキシアルキル基、(メタ)アクリロイル基、スチリル基及びビニル基の少なくともいずれかを有する基を表す。
 m1は、1~5の整数を表す。m1が2以上の場合、2以上のXは同じであってもよいし、異なっていてもよい。
 m2は、1~5の整数を表す。m2が2以上の場合、2以上の[-L-(Xm1]は、同じであってもよいし、異なっていてもよい。)
 [4] 前記繰り返し単位(R1)が、更に、下記式(R1-2)で表される繰り返し単位を含む、[3]に記載の空洞形成用組成物。
Figure JPOXMLDOC01-appb-C000006
(式(R1-2)中、X11は、単結合、又は2価の有機基を表す。R11は、水素原子、ハロゲン原子又はアルキル基を表す。R12~R14は、それぞれ独立して、水素原子、又は炭素原子数1~10のアルキル基を表す。R15は、炭素原子数1~10のアルキル基を表す。R14とR15とは互いに結合して環を形成していてもよい。)
 [5] 前記繰り返し単位(R2)が、下記式(R2-1)で表される繰り返し単位を含む、[1]から[4]のいずれかに記載の空洞形成用組成物。
Figure JPOXMLDOC01-appb-C000007
(式(R2-1)中、R21は、水素原子又はアルキル基を表す。Yは、下記式(R2-1-1)で表される基、置換基を有していてもよいフェニル基、ハロゲン化されていてよいアルキル基、置換基を有していてもよい1価の脂環式炭化水素基、ハロゲン化されていてもよいアルキルカルボニルオキシ基、ハロゲン化されていてもよいアルコキシ基、ニトリル基又はハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000008
(式(R2-1-1)中、R22は、ハロゲン原子及びジアルキルアミノ基の少なくともいずれかで置換されていてもよい炭化水素基を表す。*は結合手を表す。)
 [6] 前記付加重合体中の前記繰り返し単位(R1)が、前記付加重合体の全繰り返し単位に対して、5モル%~50モル%である、[1]から[5]のいずれかに記載の空洞形成用組成物。
 [7] 前記付加重合体中の前記繰り返し単位(R2)が、前記付加重合体の全繰り返し単位に対して、50モル%~95モル%である、[1]から[6]のいずれかに記載の空洞形成用組成物。
 [8] 導電配線パターンが形成された半導体基板上に[1]から[7]のいずれかに記載の空洞形成用組成物が塗布される工程(A)と、
 前記工程(A)の後に、前記半導体基板が、前記熱硬化性部位が熱硬化する温度以上かつ前記易熱分解性部位が熱分解する温度未満に加熱されて、前記導電配線パターンの間に前記空洞形成用組成物から形成される空洞形成用硬化材料が形成される工程(B)と、
 前記工程(B)の後に、前記導電配線パターンと、前記導電配線パターンの間の前記空洞形成用硬化材料との上に絶縁層が形成される工程(C)と、
 前記工程(C)の後に、前記半導体基板が、前記易分解性部位が熱分解する温度以上に加熱されて、前記空洞形成用硬化材料が焼失される工程(D)と、
 を含む、半導体素子の製造方法。
 [9] 前記工程(B)の際に、前記空洞形成用硬化材料が、前記導電配線パターン上にも形成されており、
 前記工程(C)の前に、前記導電配線パターン上の前記空洞形成用硬化材料が除去される工程(E)を含む、
 [8]に記載の半導体素子の製造方法。
 [10] 前記工程(A)と前記工程(B)の間に、前記導電配線パターン上に存在している、前記空洞形成用組成物から形成される未硬化の空洞形成用材料が除去される工程(F)を含む、
 [8]に記載の半導体素子の製造方法。
 [11] 前記工程(C)において、前記絶縁層が、化学気相蒸着により形成される、[8]から[10]のいずれかに記載の半導体素子の製造方法。
 本発明によれば、半導体基板上の導電配線パターン間に加熱によって空洞を形成するのに適した空洞形成用組成物、及び前記空洞形成用組成物を用いた半導体素子の製造方法を提供することができる。
半導体素子の製造方法の一例を説明するための概略断面図である(その1)。 半導体素子の製造方法の一例を説明するための概略断面図である(その2)。 半導体素子の製造方法の一例を説明するための概略断面図である(その3)。 半導体素子の製造方法の一例を説明するための概略断面図である(その4)。 半導体素子の製造方法の一例を説明するための概略断面図である(その5)。 半導体素子の製造方法の一例を説明するための概略断面図である(その6)。
(空洞形成用組成物)
 本発明の空洞形成用組成物は、半導体基板上の導電配線パターン間に空洞を形成するための組成物である。
 空洞形成用組成物は、付加重合体と、溶剤とを含有する。
<付加重合体>
 付加重合体は、エチレン性不飽和結合を有するモノマー(以下、「モノマー」と称することがある)の2種以上の付加重合体である。
 付加重合体は、2種以上のモノマーを付加重合して得られる。
 なお、エチレン性不飽和結合とは、ラジカル重合可能な炭素-炭素二重結合を意味する。
 付加重合体の好適な実施形態は、熱硬化性部位を有する繰り返し単位(R1)と、易熱分解性部位を有する繰り返し単位(R2)とを有する。
 易熱分解性部位の熱分解温度は、熱硬化性部位の熱硬化温度よりも高い。
 付加重合体の好適な実施形態は、後述する式(R1-1)で表される繰り返し単位と、後述する式(R2-1)で表される繰り返し単位を含む。
 空洞形成用組成物から得られる膜の膜硬化性を向上させるために、空洞形成用組成物は、付加重合体中の架橋可能部位と反応する架橋剤を含有していてもよいが、好適な実施形態は、分解率の観点から、付加重合体の量に対する架橋剤の添加量は0質量%~10質量%であることが好ましく、0質量%~5質量%であることがより好ましい。
 また、空洞形成用組成物から得られる膜の膜硬化性を向上させるために、付加重合体は架橋構造を有していてもよいが、好適な実施形態は、分解率の観点から、低架橋又は非架橋の付加重合体である。一態様においては付加重合体は、構成成分における2つ以上のエチレン性不飽和結合を有するモノマーの質量比率が0質量%~10質量%であることが好ましく、0質量%~5質量%であることがより好ましい。
 空洞形成用組成物は、以下のような工程(A)~(D)を含む半導体素子の製造に好適に用いられる。
 工程(A):導電配線パターンが形成された半導体基板上に空洞形成用組成物を塗布する工程
 工程(B):工程(A)の後に、半導体基板を、熱硬化性部位が熱硬化する温度以上かつ易熱分解性部位が熱分解する温度未満に加熱して、導電配線パターンの間に空洞形成用組成物から形成される空洞形成用硬化材料(硬化した空洞形成用材料)を形成する工程
 工程(C):工程(B)の後に、導電配線パターンと、導電配線パターンの間の空洞形成用硬化材料との上に絶縁層を形成する工程、
 工程(D):工程(C)の後に、半導体基板を、易分解性部位が熱分解する温度以上に加熱して、空洞形成用硬化材料を焼失させる工程
 本発明の空洞形成用組成物に含有される付加重合体は、熱硬化性部位を有する繰り返し単位(R1)を有するため、工程(B)によって形成される空洞形成用硬化材料(硬化した空洞形成用材料)は非硬化の空洞形成用材料と比べて熱により軟化しにくい。ここで、工程(C)によって絶縁層が形成される際に空洞形成用材料に熱が加わったときに空洞形成用材料が軟化して、変形すると、均一な絶縁層を形成しにくい。しかし、空洞形成用硬化材料は軟化しにくいため、均一な絶縁層を形成できる。
 加えて、本発明の空洞形成用組成物に含有される付加重合体は、易熱分解性部位を有する繰り返し単位(R2)を有する。そのため、工程(D)によって空洞形成用硬化材料を焼失させる際に、本発明の空洞形成用組成物に含有される付加重合体は、易熱分解性部位を有する繰り返し単位(R2)を有しない付加重合体と比べて高い分解率で空洞形成用硬化材料を焼失させることができる。
 したがって、本発明の空洞形成用組成物は、半導体基板上の導電配線パターン間に加熱によって空洞を形成するのに適している。
 本発明の空洞形成用組成物の好適な実施形態は、空洞形成用組成物から形成される膜を加熱して得られる硬化膜のガラス転移温度が、86℃以上であることである。当該ガラス転移温度が高いほど、均一な絶縁層が形成できる。当該ガラス転移温度は、90℃以上であることがより好ましく、93℃以上であることが特に好ましい。当該ガラス転移温度の上限値としては、特に制限はないが、例えば、当該ガラス転移温度は、130℃以下であってもよいし、120℃以下であってもよい。
 ガラス転移温度は、例えば、以下の方法により測定できる。
 空洞形成用組成物をスピンコートにて塗布し所定のベーク温度(例えば、205℃又は215℃)でシリコン基板上に塗膜を作製する。塗膜の膜厚は40nm~50nmとする。そして、その塗膜を削り、得られた粉体で示差走査熱量測定を実施する。
 測定には示差走査熱量測定(DSC)を用いる。まず、140℃まで温度を上げて熱履歴を消去した後、20℃/分の降温速度で0℃まで温度を降下させ、再び昇温速度20℃/分にて測定した際のサーモグラムに階段状に現れる転移領域の変曲点を示す温度とする。尚、変曲点が見られなかった結果についてはガラス転移温度が100℃以上とする。装置はTA Instruments社製Q2000を用い、サンプル量は約5mgとする。
 ベーク温度は、例えば、上記工程(B)における加熱温度であってもよい。
 また、本発明の空洞形成用組成物の好適な実施形態は、空洞形成用組成物から形成される膜を加熱して得られる硬化膜を、窒素雰囲気下400℃で30分間加熱した際の分解率が、95%以上であることである。当該分解率が大きいほど、形成される空洞(例えば、上記工程(D)で形成される空洞)の誘電率を低くすることができる。当該分解率は、96%以上が好ましく、97%以上がより好ましく、98%以上が特に好ましい。
 分解率は、例えば、以下の方法により測定できる。
 空洞形成用組成物をスピンコートにて塗布し所定のベーク温度(例えば、205℃又は215℃)でシリコン基板上に塗膜を作製する。塗膜の膜厚は40nm~50nmとする。ベーク温度は、例えば、上記工程(B)における加熱温度であってもよい。
 塗膜の厚さをVM-3210((株)SCREENセミコンダクターソリューションズ製)を用いて測定する。その後、空洞形成用組成物を塗布したシリコン基板を窒素雰囲気下において400℃に予め熱したプレートで30分間加熱する。最後に、得られた基板上の塗膜の膜厚をRE-3100及びRE-3500((株)SCREENセミコンダクターソリューションズ製)を用いて再度測定する。得られた結果より下記式1を用いて塗膜の熱分解率を計算する。
 (分解率[%])=100×(1-T/T)  式1
 T=焼成分解前の塗膜の膜厚
 T=焼成分解後の塗膜の膜厚
<<繰り返し単位(R1)>>
 付加重合体の繰り返し単位(R1)は、熱硬化性部位を有する限り、特に制限されない。熱硬化性部位は、同一種類の熱硬化性部位がお互いに反応するような部位(例えば、エポキシ基、ヒドロキシアルキル基)であってもよいし、異なる種類の熱硬化性部位がお互いに反応するような部位(例えば、エポキシ基、及びカルボキシル基の組み合わせ)であってもよい。また、熱硬化性部位は、触媒存在下での加熱により反応する部位であってもよいし、触媒不存在下での加熱によって反応する部位であってもよい。また、熱硬化性部位は、加熱により脱離成分が脱離して反応性基が生成するような構造(例えば、ヘミアセタールエステル構造)を有する部位であってもよい。
<<<式(R1-1)>>>
 本発明の効果を好適に得る観点から、繰り返し単位(R1)は、下記式(R1-1)で表される繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(R1-1)中、Rは、水素原子、ハロゲン原子又はアルキル基を表す。
 L及びLは、それぞれ独立して、単結合又は連結基を表す。
 Xは、エポキシ基、オキセタニル基、ヒドロキシアルキル基、アルコキシアルキル基、(メタ)アクリロイル基、スチリル基及びビニル基の少なくともいずれかを有する基を表す。
 m1は、1~5の整数を表す。m1が2以上の場合、2以上のXは同じであってもよいし、異なっていてもよい。
 m2は、1~5の整数を表す。m2が2以上の場合、2以上の[-L-(Xm1]は、同じであってもよいし、異なっていてもよい。)
 本明細書において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rのアルキル基としては、特に制限されないが、炭素原子数1~6のアルキル基が好ましく、炭素原子数1~4のアルキル基がより好ましく、メチル基又はエチル基がさらに好ましく、メチル基が特に好ましい。
 式(R1-1)で表される繰り返し単位は、加熱時に良好な熱分解性を示す観点から、芳香族環を含まないことが好ましい。
-L
 Lとしては、単結合又は連結基であり、連結基が好ましく、2価の連結基がより好ましい。
 連結基としては、特に制限されないが、好ましくは、カルボニル基、チオカルボニル基、アルキレン基(好ましくは炭素原子数1~10、より好ましくは炭素原子数1~5)、芳香族環基、脂肪族環基、-O-基、スルホニル基、若しくは-NH-基又はこれらを組合わせた基(好ましくは総炭素原子数1~20、より好ましくは総炭素原子数1~10)が挙げられる。
 芳香族環基は、芳香族炭化水素環基であってもよく、芳香族ヘテロ環基であってもよい。また、単環でも多環でもよく、多環の場合は縮合環であってもよい。芳香族炭化水素環基及び芳香環ヘテロ環基が好ましく、芳香族炭化水素環基がより好ましい。
 芳香族炭化水素環基としては、ベンゼン環基、ナフタレン環基、アントラセン環基が好ましく、ベンゼン環基が特に好ましい。芳香環ヘテロ環基は、チオフェン環基、フラン環基、ピロール環基、トリアジン環基、イミダゾール環基、トリアゾール環基、チアジアゾール環基、チアゾール環基等が挙げられる。
 脂肪族環基は、脂肪族炭化水素環基であってもよく、脂肪族ヘテロ環基であってもよい。また、単環でも多環でもよく、多環の場合は縮合環であってもよい。脂肪族炭化水素環基としては、シクロヘキサン基等が挙げられる。
 連結基Lが「組合わせた基」である場合、-C(=O)-O-を含む基、芳香族環基を含む基、-C(=O)-NH-を含む基等が好ましい。
 本発明において、「XXXを含む基」は、XXXのみからなる基も含まれる。
 連結基Lは、なかでも、-C(=O)-O-基又はベンゼン環が特に好ましい。
-L
 Lは、単結合又は連結基である。連結基である場合は2価であるのが好ましい。ここで、L及びLの少なくとも一方が連結基であるのが好ましい。
 連結基Lは、特に制限されず、上記連結基Lと同義であるが、好ましいものは以下の基又は組合わせた基である。すなわち、好ましい基は、アルキレン基、脂肪族環基、芳香環基等が挙げられる。ここで、アルキレン基の炭素原子数は1~4が好ましく、メチレンが特に好ましい。
 一方、「組合わせた基」は、好ましくは、-O-アルキレン基、アルキレン基-O-、-O-C(=O)-基、-O-C(=O)-NH-アルキレン基、-O-アルキレン基-C(=O)-O-芳香族環基、アルキレン基-O-、-アルキレン基-O-芳香族環基、-アルキレン基-C(=O)-O-アルキレン基、-アルキレン基-O-C(=O)-アルキレン基-C(=O)-O-アルキレン基等が挙げられ、Lに結合する-O-基を含む基がより好ましい。ここで、組合わせた基におけるアルキレン基の炭素原子数は1~4が好ましく、メチレン基又はエチレン基が特に好ましい。
 なかでも、Lは、アルキレン基、-O-アルキレン基が好ましい。
 特に、Lが-C(=O)-O-基である場合、Lはアルキレン基が好ましく、Lが芳香族環基である場合、Lは-O-アルキレン基が好ましい。
-X
 Xは、エポキシ基、オキセタニル基、ヒドロキシアルキル基、アルコキシアルキル基、(メタ)アクリロイル基、スチリル基及びビニル基の少なくともいずれかを有する。
 Xにおける、エポキシ基、オキセタニル基、ヒドロキシアルキル基、アルコキシアルキル基、(メタ)アクリロイル基、スチリル基及びビニル基は、硬化触媒の存在下又は不存在下で、加熱により反応(硬化)し、その結果、付加重合体は架橋構造を形成する。
 Xとしては、例えば、エポキシ基を有する基として、下記式(Ox-1)で表される基、下記式(Ox-2)で表される基が挙げられる。
 Xとしては、例えば、オキセタニル基を有する基として、下記式(Ox-3)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式(Ox-1)~(Ox-3)中、*は結合手を表す。R及びRは、それぞれ独立して、水素原子、メチル基又はエチル基を表す。)
 式(Ox-2)で表される基としては、例えば、下記式(Ox-2-1)で表される基が挙げられる。
 式(Ox-3)で表される基としては、例えば、下記式(Ox-3-1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式(Ox-2-1)及び(Ox-3-1)中、*は結合手を表す。Rは、水素原子、メチル基又はエチル基を表す。)
 Xにおけるヒドロキシアルキル基を有する基としては、例えば、ヒドロキシアルキル基が挙げられる。
 ヒドロキシアルキル基が有するヒドロキシ基は、1つであってよいし、2つであってもよいし、3つ以上であってもよい。
 ヒドロキシアルキル基の炭素数としては、例えば、1~10が挙げられる。
 ヒドロキシアルキル基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基が挙げられる。アルコキシ基としては、例えば、炭素数1~4のアルコキシ基が挙げられる。アシルオキシ基としては、炭素数2~4のアシルオキシ基が挙げられる。アシルオキシ基としては、例えば、RCOOH(Rはアルキル基を表す。)から-COOH中の水素原子を除いた1価基が挙げられる。
 ヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基などが挙げられる。
 Xにおけるアルコキシアルキル基を有する基としては、例えば、アルコキシアルキル基が挙げられる。
 アルコキシアルキル基が有するアルコキシ基は、1つであってよいし、2つであってもよいし、3つ以上であってもよい。
 アルコキシアルキル基の炭素数としては、例えば、2~15が挙げられる。
 アルコキシアルキル基は置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アシルオキシ基が挙げられる。アシルオキシ基としては、炭素数2~4のアシルオキシ基が挙げられる。アシルオキシ基としては、例えば、RCOOH(Rはアルキル基を表す。)から-COOH中の水素原子を除いた1価基が挙げられる。
 ヒドロキシアルキル基及びアルコキシアルキル基におけるアルキル基は、直鎖状であってもよいし、分岐状であってもよいし、環状であってもよいし、これらの2以上の組み合わせであってもよい。
 Xにおける(メタ)アクリロイル基を有する基としては、例えば、アクリロイルオキシ基、メタクリロイルオキシ基が挙げられる。
 m1は、1~5の整数であり、好ましくは1~3の整数であり、より好ましくは1又は2である。特に、Xがエポキシ基又はオキセタニル基を有する基である場合、m1は1が好ましく、Xがエポキシ基又はオキセタニル基を有する基以外の基である場合、m1は2又は3が好ましい。
 m2は、1~5の整数であり、好ましくは1~4の整数であり、より好ましくは1又は2である。
 式(R1-1)で表される繰り返し単位は、下記式(R1-1-1)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(R1-1-1)中、Rは水素原子、ハロゲン原子又はアルキル基を表し、式(R1-1)のRと同義である。
 Lは、単結合又は連結基を表す。Lは、連結基が好ましく、アルキレン基、-アルキレン基-O-芳香族環基、-アルキレン基-C(=O)-O-アルキレン基、-アルキレン基-O-C(=O)-アルキレン基-C(=O)-O-アルキレン基等がより好ましく、アルキレン基がさらに好ましい。ここで、アルキレン基の炭素原子数、及びアルキレン基と他の基とを組合わせた基におけるアルキレン基の炭素原子数は、1~4が好ましく、メチレン基又はエチレン基が特に好ましい。
 Xは、式(R1-1)のXと同義である。
 m3は、1~5の整数を表し、式(R1-1)のm2と同義であり、好ましいものも同じである。
 X又はXがエポキシ基又はオキセタニル基を有する基である場合の式(R1-1)及び式(R1-1-1)について、具体的に説明する。
 付加重合体に、エポキシ基を有する繰り返し単位(R1-1)を与えるモノマーとしては、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-3,4-エポキシシクロヘキシルメチル、メタクリル酸-3,4-エポキシシクロヘキシルメチル、α-エチルアクリル酸-3,4-エポキシシクロヘキシルメチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、特許第4168443号公報の段落番号[0031]~[0035]に記載の脂環式エポキシ骨格を含有する化合物等が挙げられ、これらの内容は本願明細書に組み込まれる。
 また、付加重合体に、オキセタニル基を有する繰り返し単位(R1-1)を与えるモノマーとしては、例えば、特開2001-330953号公報の段落番号[0011]~[0016]に記載のオキセタニル基を有する(メタ)アクリル酸エステルや、特開2012-088459公報の段落番号[0027]に記載されている化合物等が挙げられ、これらの内容は本願明細書に組み込まれる。
 さらに、付加重合体に、エポキシ基及びオキセタニル基を有する繰り返し単位(R1-1)を与えるモノマーとしては、例えば、メタクリル酸エステル構造を含有するモノマー、アクリル酸エステル構造を含有するモノマーであることが好ましい。
 これらの中でも、メタクリル酸グリシジル、アクリル酸3,4-エポキシシクロヘキシルメチル、メタクリル酸3,4-エポキシシクロヘキシルメチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アクリル酸(3-エチルオキセタン-3-イル)メチル、及び、メタクリル酸(3-エチルオキセタン-3-イル)メチルが、反応性及び硬化膜の諸特性の向上の観点から好ましい。これらの構成単位は、1種単独又は2種類以上を組み合わせて使用することができる。
 式(R1-1)で表される繰り返し単位の好適例は以下の繰り返し単位である。
Figure JPOXMLDOC01-appb-C000013
(式中、R1aは、式(R1-1)のRと同義である。*は結合手を表す。)
 式(R1-1)で表される繰り返し単位の具体例を以下に示す。以下において、Meはメチル基を表す。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 式(R1-1)で表される繰り返し単位は、加熱時に良好な熱分解性を示す観点から芳香族環を含まないものが好ましい。その中でも、特に好ましいものを以下に示す。以下において、Meはメチル基を表す。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
<<<式(R1-2)>>>
 本発明の効果を好適に得る観点から、繰り返し単位(R1)は、更に、下記式(R1-2)で表される繰り返し単位を含むことが好ましい。
 繰り返し単位(R1)が、式(R1-1)で表される繰り返し単位と式(R1-2)で表される繰り返し単位とを含むとき、式(R1-1)におけるXは、エポキシ基及びオキセタニル基の少なくともいずれかを有する基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
(式(R1-2)中、X11は、単結合、又は2価の有機基を表す。R11は、水素原子、ハロゲン原子又はアルキル基を表す。R12~R14は、それぞれ独立して、水素原子、又は炭素原子数1~10のアルキル基を表す。R15は、炭素原子数1~10のアルキル基を表す。R14とR15とは互いに結合して環を形成していてもよい。)
 繰り返し単位(R1-2)は、ヘミアセタールエステル構造を有し、触媒存在下で容易に分解し、カルボキシル基を生成する。例えば、生成したカルボキシル基と、オキシラン環又はオキセタン環との反応により、付加重合体は容易に熱硬化し、軟化しにくい架橋構造を形成することができる。
 X11における2価の有機基としては、例えば、フェニレン基が挙げられる。
 R11におけるアルキル基としては、例えば、炭素原子数1~10のアルキル基が挙げられ、炭素原子数1~4のアルキル基が好ましい。
 R11~R15における炭素原子数1~10のアルキル基としては、メチル基、エチル基、ノルマルブチル基、ノルマルオクチル基、イソプロピル基、tert-ブチル基、2-エチルヘキシル基、シクロヘキシル基等が挙げられる。
 また、R14とR15は互いに結合して環を形成してもよく、そのようにして形成される環としては、テトラヒドロフラン環、テトラヒドロピラン環などが挙げられる。
 付加重合体に式(R1-2)で表される繰り返し単位を与えるモノマーは、例えば、特許第5077564号公報の段落〔0012〕~〔0015〕に記載の方法により合成することができる。
 付加重合体に式(R1-2)で表される繰り返し単位を与えるモノマーとしては、例えば、メタクリル酸ヘミアセタールエステル化合物、アクリル酸ヘミアセタールエステル化合物などが挙げられる。
 メタクリル酸ヘミアセタールエステル化合物としては、例えば、1-メトキシエチルメタクリレート、1-エトキシエチルメタクリレート、1-イソプロポキシエチルメタクリレート、1-ノルマルブトキシエチルメタリレート、1-ノルマルヘキシルオキシエチルメタリレート、テトラヒドロ-2H-ピラン-2-イル-メタクリレートなどが挙げられる。
 アクリル酸ヘミアセタールエステル化合物としては、例えば、1-メトキシエチルアクリレート、1-tert-ブトキシエチルアクリレート、1-イソプロポキシエチルアクリレート、1-ノルマルブトキシエチルアクリレート、テトラヒドロ-2H-ピラン-2-イル-アクリレートが挙げられる。
<<繰り返し単位(R2)>>
 付加重合体の繰り返し単位(R2)は、易熱分解性部位を有する限り、特に制限されない。
 本発明の効果を好適に得る観点から、繰り返し単位(R2)は、下記式(R2-1)で表される繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000032
(式(R2-1)中、R21は、アルキル基を表す。Yは、下記式(R2-1-1)で表される基、置換基を有していてもよいフェニル基、ハロゲン化されていてよいアルキル基、置換基を有していてもよい1価の脂環式炭化水素基、ハロゲン化されていてもよいアルキルカルボニルオキシ基、ハロゲン化されていてもよいアルコキシ基、ニトリル基又はハロゲン原子を表す。)
Figure JPOXMLDOC01-appb-C000033
(式(R2-1-1)中、R22は、ハロゲン原子及びジアルキルアミノ基の少なくともいずれかで置換されていてもよい炭化水素基を表す。*は結合手を表す。)
 R21としては、例えば、炭素原子数1~4のアルキル基が挙げられる。R21としては、例えば、メチル基が挙げられる。
 式(R2-1-1)中のR22の炭素原子数としては、例えば、1~15が挙げられる。
 R22の炭化水素基としては、例えば、アルキル基、アルケニル基、アリール基、アラルキル基などが挙げられる。
 式(R2-1-1)で表される基は、第1級アルキルエステルであることが好ましい。即ち、式(R2-1-1)で表される基は、下記式(R2-1-1-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000034
(式(R2-1-1-1)中、R23は、水素原子を表すか、又はハロゲン原子若しくはジアルキルアミノ基で置換されていてもよい炭化水素基を表す。*は結合手を表す。)
 R22としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、i-ブチル基、イソアミル基、シクロヘキシル基、2-エチルヘキシル基、ベンジル基、フェネチル基、2-クロロエチル基、2,2-ジアミノエチル基などが挙げられる。
 Yにおける置換基を有していてもよいフェニル基における置換基としては、例えば、ハロゲン原子が挙げられる。即ち、R21は、ハロゲン化されていてもよいフェニル基であってもよい。
 Yにおけるハロゲン化されていてよいアルキル基の炭素原子数としては、例えば、1~6が挙げられる。
 Yにおける置換基を有していてもよい1価の脂環式炭化水素基における置換基としては、例えば、ハロゲン原子が挙げられる。1価の脂環式炭化水素基としては、例えば、シクロヘキシル基、シクロペンチル基などが挙げられる。
 Yにおけるハロゲン化されていてもよいアルキルカルボニルオキシ基の炭素原子数としては、例えば、2~6が挙げられる。
 Yにおけるハロゲン化されていてもよいアルコキシ基の炭素原子数としては、例えば、1~6が挙げられる。
 繰り返し単位(R2)は、本発明の効果を好適に得る観点から、芳香族環を含まないことが好ましい。
 付加重合体に繰り返し単位(R2)を与えるモノマーとしては、例えば、以下のモノマーが挙げられる。
 ・メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸オクチル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸テトラデシル、メタクリル酸ヘキサデシル、メタクリル酸オクタデシル、メタクリル酸i-ブチル、メタクリル酸イソアミル、メタクリル酸シクロヘキシルメチル、メタクリル酸2-エチルヘキシル、メタクリル酸ベンジル、メタクリル酸フェネチル、メタクリル酸2-クロロエチル、メタクリル酸2,2-ジアミノエチル
 ・α-メチルスチレン
 ・イソブテン、ジイソブチレン
 ・α-メチルビニルシクロヘキサン、α-メチルビニルシクロペンタン、リモネン
 ・酢酸イソプロペニル
 ・α-メチルビニルアルキルエーテル
 ・メタクリロニトリル
 付加重合体は、熱硬化性部位を有する繰り返し単位(R1)及び易熱分解性部位を有する繰り返し単位(R2)以外の繰り返し単位を有していてもよい。そのような繰り返し単位を与えるモノマーとしては、例えば、メタクリル酸9-アントリルメチルなどが挙げられる。
 付加重合体は、本発明の効果を好適に得る観点から芳香族環を含まないものがより好ましい。
 付加重合体中の繰り返し単位(R1)の含有割合としては、特に制限されないが、本発明の効果を好適に得る観点から、付加重合体の全繰り返し単位に対して、5モル%~50モル%が好ましく、10モル%~30モル%がより好ましい。
 付加重合体中の繰り返し単位(R2)の含有割合としては、特に制限されないが、本発明の効果を好適に得る観点から、付加重合体の全繰り返し単位に対して、50モル%~95モル%が好ましく、70モル%~90モル%がより好ましい。
 付加重合体中の繰り返し単位(R1)及び繰り返し単位(R2)の合計の含有割合としては、特に制限されないが、本発明の効果を好適に得る観点から、付加重合体の全繰り返し単位に対して、80モル%~100モル%が好ましく、90モル%~100モル%がより好ましく、95モル%~100モル%が特に好ましい。
 付加重合体の重量平均分子量としては、特に制限されないが、1,000~100,000が好ましく、2,000~50,000がより好ましく、3,000~10,000が特に好ましい。
 空洞形成用組成物における付加重合体の含有量としては、特に制限されないが、空洞形成用組成物中の不揮発分(すなわち溶剤を除いた成分)に対して、50質量%~100質量%が好ましく、80質量%~100質量%がより好ましく、95質量%~100質量%が特に好ましい。ただし、空洞形成用組成物が、熱硬化性部位の熱硬化を促進する熱硬化触媒を含有する場合、付加重合体の含有量の上限は、99.9質量%以下であることが好ましい。
<<付加重合体の製造方法>>
 付加重合体を製造するための重合方法としては、特に制限されないが、例えば、有機溶剤にエチレン性不飽和結合を有するモノマー及び必要に応じて添加される連鎖移動剤を溶解した後、重合開始剤を加えて重合反応を行い、その後、必要に応じて重合停止剤を添加することにより製造することができる。
 重合開始剤の添加量としては、例えば、モノマーの質量に対して1~10質量%である。
 重合停止剤の添加量としては、例えば、モノマーの質量に対して0.01~0.2質量%である。
 使用される有機溶剤としては、特に制限されないが、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、乳酸エチル、及びジメチルホルムアミドなどが挙げられる。
 使用される連鎖移動剤としては、例えば、ドデカンチオール及びドデシルチオールなどが挙げられる。
 使用される重合開始剤としては、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル及びアゾビス(イソ酪酸)ジメチルなどが挙げられる。
 使用される重合停止剤としては、例えば、4-メトキシフェノールなどが挙げられる。
 反応温度としては、例えば、30~100℃が挙げられる。
 反応時間としては、例えば、1~48時間が挙げられる。
<溶剤>
 空洞形成用組成物に使用される溶剤は、常温で固体の含有成分を均一に溶解できる溶剤であれば特に限定は無いが、一般的に半導体リソグラフィー工程用薬液に用いられる有機溶剤が好ましい。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、4-メチル-2-ペンタノール、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、エトキシ酢酸エチル、酢酸2-ヒドロキシエチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、メトキシシクロペンタン、アニソール、γ-ブチロラクトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、及びN,N-ジメチルアセトアミドが挙げられる。これらの溶剤は、単独で又は2種以上を組み合わせて用いることができる。
 これらの溶剤の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノンが好ましい。特にプロピレングリコールモノメチルエーテル及びプロピレングリコールモノメチルエーテルアセテートが好ましい。
<硬化触媒>
 空洞形成用組成物は、熱硬化性部位の反応を促進させるために、硬化触媒を含有していてもよい。
 硬化触媒としては、例えば、
 トリフェニルホスフィン、トリブチルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-ノニルフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリフェニルホスフィントリフェニルボラン等のホスフィン類、
 テトラフェニルホスホニウムクロリド、テトラフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ベンジルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムクロリド、エチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート、テトラフェニルホスホニウムテトラ(4-メトキシフェニル)ボレート、テトラフェニルホスホニウムテトラ(4-フルオロフェニル)ボレート等の4級ホスホニウム塩類、
 テトラエチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリエチルアンモニウムブロミド、ベンジルトリプロピルアンモニウムクロリド、ベンジルトリプロピルアンモニウムブロミド、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラプロピルアンモニウムクロリド、テトラプロピルアンモニウムブロミド等の4級アンモニウム塩類、
 2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、
 2-エチル-4-メチルイミダゾールテトラフェニルボレート等のイミダゾリウム塩類、
 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のジアザビシクロアルケン類、及び
 1,8-ジアザビシクロ[5.4.0]-7-ウンデセンのギ酸塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンの2-エチルヘキサン酸塩、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンのp-トルエンスルホン酸塩、1,5-ジアザビシクロ[4.3.0]-5-ノネンの2-エチルヘキサン酸塩等のジアザビシクロアルケンの有機酸塩類
 が挙げられる。
 また、硬化触媒としては、例えば、スルホン酸化合物、カルボン酸化合物であってもよい。
 スルホン酸化合物として、例えば、p-トルエンスルホン酸、ピリジニウムトリフルオロメタンスルホナート、ピリジニウム-p-トルエンスルホナート、5-スルホサリチル酸、4-クロロベンゼンスルホン酸、4-ヒドロキシベンゼンスルホン酸、ピリジニウム-4-ヒドロキシベンゼンスルホナート、n-ドデシルベンゼンスルホン酸、4-ニトロベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸が挙げられる。
 カルボン酸化合物として、例えば、サリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸が挙げられる。
 硬化触媒の市販品としては、例えば、ヒシコーリン〔登録商標〕PX-4C、同PX-4B、同PX-4MI、同PX-412B、同PX-416B、同PX-2B、同PX-82B、同PX-4BT、同PX-4MP、同PX-4ET、同PX-4PB(以上、日本化学工業(株)製)、ホクコーTPP〔登録商標〕、TPTP〔登録商標〕、DPCP〔登録商標〕、TPP-EB〔登録商標〕、TPP-ZC〔登録商標〕、DPPB〔登録商標〕、EMZ-K〔登録商標〕、DBNK〔登録商標〕、TPP-MK〔登録商標〕、TPP-K〔登録商標〕、TPP-S〔登録商標〕、TPP-SCN〔登録商標〕、TPP-DCA〔登録商標〕、TPPB-DCA〔登録商標〕、TPP-PB〔登録商標〕、ホクコーTBP-BB〔登録商標〕、TBPDA〔登録商標〕、TPPO〔登録商標〕、PPQ〔登録商標〕、TOTP〔登録商標〕、TMTP〔登録商標〕、TPAP〔登録商標〕、DPCP〔登録商標〕、TCHP〔登録商標〕、ホクコーTBP〔登録商標〕、TTBuP〔登録商標〕、TOCP〔登録商標〕、DPPST〔登録商標〕、TBPH〔登録商標〕、TPP-MB〔登録商標〕、TPP-EB〔登録商標〕、TPP-BB〔登録商標〕、TPP-MOC〔登録商標〕、TPP-ZC〔登録商標〕、TTBuP-K〔登録商標〕(以上、北興化学工業(株)製)、キュアゾール〔登録商標〕SIZ、同2MZ-H、同C11Z、同1.2DEMZ、同2E4MZ、同2PZ、同2PZ-PW、同2P4MZ、同1B2MZ、同1B2PZ、同2MZ-CN、同C11Z-CN、同2E4MZ-CN、同2PZ-CN、同C11Z-CNS、同2PZCNS-PW、2MZA-PW、C11Z-A、同2E4MZ-A、同2MA-OK、同2PZ-OK、同2PHZ-PW、同2P4MHZ、同TBZ、同SFZ、同2PZL-T(以上、四国化成工業(株)製)、U-CAT〔登録商標〕SA1、同SA102、同SA102-50、同SA106、同SA112、同SA506、同SA603、同SA810、同SA831、同SA841、同SA851、同881、同5002、同5003、同3512T、同3513N、同18X、同410、同1102、同2024、同2026、同2030、同2110、同2313、同651M、同660M、同420A、DBU〔登録商標〕、DBN、POLYCAT8(以上、サンアプロ(株)製)が挙げられる。
 また、架橋触媒の市販品としては、例えば、K-PURE〔登録商標〕CXC-1612、同CXC-1614、同TAG-2172、同TAG-2179、同TAG-2678、同TAG2689(King Industries社製)、及びSI-45、SI-60、SI-80、SI-100、SI-110、SI-150(三新化学工業(株)製)が挙げられる。
 これらの硬化触媒は、単独で使用しても、2種以上を組み合わせて使用してもよい。
 空洞形成用組成物における硬化触媒の含有量としては、特に制限されないが、付加重合体に対し、例えば0.005質量%~10質量%であり、好ましくは、0.1質量%~5質量%である。
<安定化剤>
 空洞形成用組成物は、保存安定性を向上させるために安定化剤を含有していてもよい。これは、硬化触媒の経時的な劣化により生じる酸の効果を緩和するため、特に三級アミン類が好ましい。
 より好ましくは、トリベンジルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリメタノールアミン、トリエタノールアミン、トリブタノールアミンなどが挙げられる。
 空洞形成用組成物における安定化剤の含有量としては、特に制限されないが、硬化触媒に対し、例えば3質量%~120質量%であり、好ましくは、3質量%~35質量%である。
<その他の成分>
 空洞形成用組成物には、ピンホールやストリエーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、さらに界面活性剤を添加することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352((株)トーケムプロダクツ製、商品名)、メガファックF171、F173、R-30、R-40(DIC(株)製、商品名)、フロラードFC430、FC431(住友スリーエム(株)製、商品名)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製、商品名)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤の配合量は、保護膜形成用組成物の全固形分に対して通常2.0質量%以下、好ましくは1.0質量%以下である。これらの界面活性剤は単独で添加してもよいし、また2種以上の組合せで添加することもできる。
 空洞形成用組成物が含む不揮発分、すなわち前記溶剤を除いた成分は例えば0.01質量%~10質量%である。
(半導体素子の製造方法)
 本発明の半導体素子の製造方法は、以下の工程(A)~(D)を含む。
 工程(A):導電配線パターンが形成された半導体基板上に本発明の空洞形成用組成物が塗布される工程
 工程(B):工程(A)の後に、半導体基板が、熱硬化性部位が熱硬化する温度以上かつ易熱分解性部位が熱分解する温度未満に加熱されて、導電配線パターンの間に空洞形成用組成物から形成される空洞形成用硬化材料(硬化した空洞形成用材料)が形成される工程
 工程(C):工程(B)の後に、導電配線パターンと、導電配線パターンの間の空洞形成用硬化材料との上に絶縁層が形成される工程、
 工程(D):工程(C)の後に、半導体基板が、易分解性部位が熱分解する温度以上に加熱されて、空洞形成用硬化材料が焼失される工程
<工程(A)>
 工程(A)は、導電配線パターンが形成された半導体基板上に本発明の空洞形成用組成物が塗布される工程である。
 半導体基板としては、例えば、シリコンウエハ、ゲルマニウムウエハ、及びヒ化ガリウム、リン化インジウム、窒化ガリウム、窒化インジウム、窒化アルミニウム等の化合物半導体ウエハが挙げられる。
 導電配線パターンの材質、大きさ、形状としては、特に制限されない。
 導電配線パターンの材質としては、例えば、銅、コバルト、ルテニウム、モリブデン、クロム、タングステン、マンガン、ロジウム、ニッケル、パラジウム、プラチナ、銀、金、アルミニウムなどが挙げられる。
 導電配線パターンの上には絶縁層が形成されていてもよい。
 絶縁層の材質としては、二酸化ケイ素、オキシ炭化ケイ素(silicon oxycarbide)、酸窒化ケイ素、窒化ケイ素、窒化ケイ素炭素(SiCN:silicon carbon nitride)、窒化アルミニウム、酸窒化アルミニウム、酸化アルミニウムなどが挙げられる。
 絶縁層を形成する方法としては、例えば、蒸着が挙げられる。
 導電配線パターンの各配線の線幅としては、特に制限されないが、例えば、3nm~50nmが挙げられる。
 導電配線パターンの各配線間のスペースの幅としては、特に制限されないが、例えば、3nm~50nmが挙げられる。
 導電配線パターンを形成する方法としては、特に制限されず、例えば、従来公知のリソグラフィープロセスを用いることができる。
 空洞形成用組成物は、例えば、半導体基板上に、スピナー、コーター等の適当な塗布方法により塗布される。
<工程(B)>
 工程(B)は、工程(A)の後に、半導体基板が、熱硬化性部位が熱硬化する温度以上かつ易熱分解性部位が熱分解する温度未満に加熱されて、導電配線パターンの間に空洞形成用組成物から形成される空洞形成用硬化材料(硬化した空洞形成用材料)が形成される工程である。
 半導体基板の加熱は、例えば、ホットプレート等の加熱手段を用いて行われる。
 工程(B)においては、熱硬化性部位が熱硬化する温度以上かつ易熱分解性部位が熱分解する温度未満に加熱されることで、付加重合体中の熱硬化性部位が反応して、付加重合体の架橋構造が形成される。その結果、空洞形成用組成物から空洞形成用硬化材料(硬化した空洞形成用材料)が得られる。
 ここでの加熱温度としては、熱硬化性部位の種類、及び空洞形成用組成物に任意に含有される硬化触媒の種類などに応じて、適宜選択できるが、180℃~250℃が好ましく、190℃~240℃がより好ましく、200℃~230℃が特に好ましい。
 加熱時間としては、特に制限されないが、0.5分~10分が好ましく、0.5分~5分がより好ましい。
<工程(C)>
 工程(C)は、工程(B)の後に、導電配線パターンと、導電配線パターンの間の空洞形成用硬化材料との上に絶縁層が形成される工程である。
 絶縁層の材質としては、特に制限されず、有機材料であってもよいし、無機材料であってもよい。絶縁層が無機材料の場合、その材質としては、例えば、二酸化ケイ素、オキシ炭化ケイ素(silicon oxycarbide)、酸窒化ケイ素、窒化ケイ素、窒化ケイ素炭素(SiCN:silicon carbon nitride)、窒化アルミニウム、酸窒化アルミニウム、酸化アルミニウム、酸化タンタル、酸化チタン、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化ジルコニウムこれらの混合物などが挙げられる。
 絶縁層の厚みとしては、特に制限されないが、例えば、0.2nm~10nmが挙げられる。
 絶縁層を形成する方法としては、特に制限されないが、化学気相蒸着法(CVD法)が好ましい。
 即ち、工程(C)においては、絶縁層は、化学気相蒸着により形成されることが好ましい。
<工程(D)>
 工程(D)は、工程(C)の後に、半導体基板が、易分解性部位が熱分解する温度以上に加熱されて、空洞形成用硬化材料が焼失される工程である。
 空洞形成用硬化材料が、易分解性部位が熱分解する温度以上に加熱されると、易分解性部位の熱分解に起因して、空洞形成用硬化材料である付加重合体の架橋物は分解する。
 ここでの加熱温度としては、空洞形成用硬化材料が消失する温度であれば、特に制限されず、付加重合体の種類等に応じて適宜選択できるが、300℃~500℃が好ましく、350℃~450℃がより好ましく、370℃~430℃が特に好ましい。
 加熱時間としては、特に制限されないが、5分~120分が好ましく、10分~60分がより好ましい。
 空洞形成用硬化材料の焼失量(分解率)としては、100%であることが望ましいが、100%である必要はなく、99.9%以下であってもよい。分解率は、90%以上であることが好ましく、95%以上であることがより好ましい。
<工程(E)>
 工程(B)の際には、空洞形成用硬化材料が、導電配線パターン上にも形成されていてもよい。その場合、半導体素子の製造方法は、工程(C)の前に、導電配線パターン上の空洞形成用硬化材料が除去される工程(E)を含むことが好ましい。
 導電配線パターン上の空洞形成用硬化材料の除去は、例えば、空洞形成用硬化材料をエッチングすることにより行うことができる。エッチングとしては、ウェットエッチングであってもよいし、ドライエッチングであってもよい。
<工程(F)>
 工程(A)と工程(B)の間には、導電配線パターン上に存在している、空洞形成用組成物から形成される未硬化の空洞形成用材料が除去される工程(F)を含んでいてもよい。
 導電配線パターン上の未硬化の空洞形成用材料の除去は、例えば、空洞形成用組成物から形成される未硬化の空洞形成用材料をエッチングすることにより行うことができる。エッチングとしては、ウェットエッチングであってもよいし、ドライエッチングであってもよい。
 以下に半導体素子の製造方法の一例を図1A~図1Fを用いて説明する。
 まず、図1Aに示すように、導電配線パターン2が形成された半導体基板1が用意される。
 続いて、工程(A)として、導電配線パターン2が形成された半導体基板1上に空洞形成用組成物が塗布される。そうすることで、導電配線パターン2上及び導電配線パターン2間の隙間に、未硬化の空洞形成用材料3Aが形成される(図1B)。
 続いて、工程(B)として、半導体基板1が、熱硬化性部位が熱硬化する温度以上かつ易熱分解性部位が熱分解する温度未満に加熱される。そうすることで、導電配線パターン2上及び導電配線パターン2の隙間の未硬化の空洞形成用材料2Aが硬化し、硬化した空洞形成用材料3B(空洞形成用硬化材料)が形成される(図1C)。
 続いて、工程(E)として、導電配線パターン2上の硬化した空洞形成用材料3Bが除去される(図1D)。
 続いて、工程(C)として、導電配線パターン2と導電配線パターン2の隙間の硬化した空洞形成用材料3Bとの上に絶縁層4が形成される(図1E)。
 続いて、工程(D)として、半導体基板1が、易分解性部位が熱分解する温度以上に加熱されて、導電配線パターン2間の硬化した空洞形成用材料3Bが焼失され、導電配線パターン2の間に空洞3Cが形成される。
 以上により、半導体基板の導電配線パターン間に空洞が形成される。
 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記例に示すポリマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)による測定結果である。測定には東ソー株式会社製GPC装置を用い、測定条件等は次のとおりである。
 カラム温度:40
 流量:0.35ml/min
 溶離液:テトラヒドロフラン(THF)
 標準試料:ポリスチレン(東ソー株式会社)
<合成例1>
 温度計、冷却管、滴下装置及び攪拌装置を備えた反応容器にプロピレングリコールモノメチルエーテルアセテート30.00gを仕込み、窒素を30分流した後、80℃に昇温した。また、別容器にプロピレングリコールモノメチルエーテルアセテート42.00gに、1-ブトキシエチルメタクリレート(本州化学工業(株)製品)2.10g、グリシジルメタクリレート(東京化成工業(株)製品)2.00g、メチルメタクリレート(東京化成工業(株)製品)11.58g、及びアゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬(株)製品)2.32gを溶解させて滴下容器に仕込み、窒素雰囲気下でプロピレングリコールモノメチルエーテルアセテートの反応溶液に30分かけて滴下した。
 窒素雰囲気下、80℃で24時間撹拌後、1-ブトキシエチルメタクリレートとグリシジルメタクリレートとメチルメタクリレートの共重合ポリマーを含む溶液を得た。得られたポリマーのGPC分析を行ったところ、重量平均分子量Mwは5420であった。
 以下にポリマーの単位構造を示す。単位構造に付された数字は、ポリマー中の各構造単位のモル比率(単位はモル%)を示す。
Figure JPOXMLDOC01-appb-C000035
<合成例2>
 温度計、冷却管、滴下装置及び攪拌装置を備えた反応容器にプロピレングリコールモノメチルエーテルアセテート30.00gを仕込み、窒素を30分流した後、80℃に昇温した。また、別容器にプロピレングリコールモノメチルエーテルアセテート42.00gに、グリシジルメタクリレート(東京化成工業(株)製品)4.10g、メチルメタクリレート(東京化成工業(株)製品)11.54g、及びアゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬(株)製品)2.37gを溶解させて滴下容器に仕込み、窒素雰囲気下でプロピレングリコールモノメチルエーテルアセテートの反応溶液に30分かけて滴下した。
 窒素雰囲気下、80℃で24時間攪拌後、グリシジルメタクリレートとメチルメタクリレートの共重合ポリマーを含む溶液を得た。得られたポリマーのGPC分析を行ったところ、重量平均分子量Mwは7910であった。
 以下にポリマーの単位構造を示す。単位構造に付された数字は、ポリマー中の各構造単位のモル比率(単位はモル%)を示す。
Figure JPOXMLDOC01-appb-C000036
<合成例3>
 温度計、冷却管、滴下装置及び攪拌装置を備えた反応容器にプロピレングリコールモノメチルエーテルアセテート30.00gを仕込み、窒素を30分流した後、80℃に昇温した。また、別容器にプロピレングリコールモノメチルエーテルアセテート42.00gに、(2-ヒドロキシエチル)メタクリレート(東京化成工業(株)製品)5.60g、メチルメタクリレート(東京化成工業(株)製品)10.05g、及びアゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬(株)製品)2.35gを溶解させて滴下容器に仕込み、窒素雰囲気下でプロピレングリコールモノメチルエーテルアセテートの反応溶液に30分かけて滴下した。 窒素雰囲気下、80℃で24時間攪拌後、(2-ヒドロキシエチル)メタクリレートとメチルメタクリレートの共重合ポリマーを含む溶液を得た。得られたポリマーのGPC分析を行ったところ、重量平均分子量Mwは8570であった。
 以下にポリマーの単位構造を示す。単位構造に付された数字は、ポリマー中の各構造単位のモル比率(単位はモル%)を示す。
Figure JPOXMLDOC01-appb-C000037
<合成例4>
 温度計、冷却管、滴下装置及び攪拌装置を備えた反応容器にプロピレングリコールモノメチルエーテルアセテート30.00gを仕込み、窒素雰囲気下で80℃に昇温した。また、別容器にプロピレングリコールモノメチルエーテルアセテート42.00gに、メチルメタクリレート(東京化成工業(株)製品)15.46g、及びアゾビス(イソ酪酸)ジメチル(富士フイルム和光純薬(株)製品)2.53gを溶解させて滴下容器に仕込み、窒素雰囲気下でプロピレングリコールモノメチルエーテルアセテートの反応溶液に30分かけて滴下した。
窒素雰囲気下、80℃で24時間攪拌後、メチルメタクリレートのポリマーを含む溶液を得た。得られたポリマーのGPC分析を行ったところ、重量平均分子量Mwは6300であった。
 以下にポリマーの単位構造を示す。単位構造に付された数字は、ポリマー中の各構造単位のモル比率(単位はモル%)を示す。
Figure JPOXMLDOC01-appb-C000038
(実施例1)
 合成例1で得たポリマーを含む溶液(固形分濃度18.0質量%)10.0gに、プロピレングリコールモノメチルエーテルアセテート77.3gを加え、2.0質量%溶液とした後、孔径0.05μmのポリエチレン製ミクロフィルターを用いて濾過し、空洞形成用組成物を調製した。
(実施例2)
 合成例2で得たポリマーを含む溶液(固形分濃度18.9質量%)10.0gに、プロピレングリコールモノメチルエーテル66.6g、プロピレングリコールモノメチルエーテルアセテート20.4g、及びTAG-2689(King Industries社製、トリフルオロメタンスルホン酸の第4級アンモニウム塩)0.06gを加え、2.0質量%溶液とした後、孔径0.2μmのポリエチレン製ミクロフィルターを用いて濾過し、空洞形成用組成物を調製した。
(実施例3)
 合成例3で得たポリマーを含む溶液(固形分濃度16.5質量%)10.0gに、プロピレングリコールモノメチルエーテル48.6g、プロピレングリコールモノメチルエーテルアセテート12.5g、及びピリジニウムトリフルオロメタンスルホナート0.06gを加え、2.0質量%溶液とした後、孔径0.2μmのポリエチレン製ミクロフィルターを用いて濾過し、空洞形成用組成物を調製した。
(実施例4)
 合成例2で得たポリマーを含む溶液(固形分濃度18.9質量%)10.0gに、プロピレングリコールモノメチルエーテル66.7g、プロピレングリコールモノメチルエーテルアセテート20.6g、トリエタノールアミン0.01g、及びTAG-2689(King Industries社製、トリフルオロメタンスルホン酸の第4級アンモニウム塩)0.06gを加え、2.0質量%溶液とした後、孔径0.2μmのポリエチレン製ミクロフィルターを用いて濾過し、空洞形成用組成物を調製した。
(比較例1)
 合成例4で得たポリマーを含む溶液(固形分濃度17.4質量%)10.0gに、プロピレングリコールモノメチルエーテルアセテート62.5gを加え、2.4質量%溶液とした後、孔径0.2μmのポリエチレン製ミクロフィルターを用いて濾過し、空洞形成用組成物を調製した。
(比較例2)
 購入したポリグリシジルメタクリレートのプロピレングリコールモノメチルエーテルアセテート溶液(丸善石油化学(株)製品、分子量8500、固形分濃度30.1質量%)5.00gにプロピレングリコールモノメチルエーテル19.1g、プロピレングリコールモノメチルエーテルアセテート41.0g、及びTAG-2689(King Industries社製、トリフルオロメタンスルホン酸の第4級アンモニウム塩)0.05gを加え、2.4質量%溶液とした後、孔径0.2μmのポリエチレン製ミクロフィルターを用いて濾過し、空洞形成用組成物を調製した。
(塗膜の形成)
 シリコン基板上に、実施例1~実施例4で調製した空洞形成用組成物及び比較例1~比較例2で調製した空洞形成用組成物の各々をスピンコートにて塗布し、所定のベーク温度で60秒ベークすることで、43nmの膜厚の塗膜を作製した。
(焼成による組成物の分解性能試験)
 実施例1~実施例4で調製した空洞形成用組成物及び比較例1~比較例2で調製した空洞形成用組成物の各々を用いてスピンコートにて塗布し、表1のベーク温度でシリコン基板上に塗膜を作製した。塗膜の膜厚は約43nmであった。得られた塗膜を用いて熱分解率を測定した。
 膜形成時のベーク温度と得られた分解率の結果を表1に示す。
 なお、熱分解率の測定条件の詳細は以下のとおりである。
 まず、塗膜の厚さをVM-3210((株)SCREENセミコンダクターソリューションズ製)を用いて測定した。その後、空洞形成用組成物を塗布したシリコン基板を窒素雰囲気下において400℃に予め熱したプレートで30分間加熱した。最後に、得られた基板上の塗膜の膜厚をRE-3100及びRE-3500((株)SCREENセミコンダクターソリューションズ製)を用いて再度測定した。得られた結果より下記式1を用いて塗膜の熱分解率を計算した。
 (分解率[%])=100×(1-T/T)  式1
 T=焼成分解前の塗膜の膜厚
 T=焼成分解後の塗膜の膜厚
Figure JPOXMLDOC01-appb-T000039
 上記表1の結果より、実施例1~実施例3と比較例1で調製した空洞形成用組成物を用いて作製した塗膜は、いずれも比較例2より分解率が高いことがわかった。
(ガラス転移温度の測定試験)
 実施例1~実施例4で調製した空洞形成用組成物及び比較例1~比較例2で調製した空洞形成用組成物の各々を用いてスピンコートにて塗布し、表2のベーク温度でシリコン基板上に塗膜を作製した。塗膜の膜厚は約43nmであった。そして、その塗膜を削り、得られた粉体で示差走査熱量測定を実施した。膜形成時のベーク温度と得られたガラス転移温度の結果を表2に示す。
 なお、ガラス転移温度の測定条件の詳細は以下のとおりである。
 測定には示差走査熱量測定(DSC)を用いた。まず、140℃まで温度を上げて熱履歴を消去した後、20℃/分の降温速度で0℃まで温度を降下させ、再び昇温速度20℃/分にて測定した際のサーモグラムに階段状に現れる転移領域の変曲点を示す温度とした。尚、変曲点が見られなかった結果についてはガラス転移温度が100℃以上とした。装置はTA Instruments社製Q2000を用い、サンプル量は約5mgとした。
Figure JPOXMLDOC01-appb-T000040
 上記表2の結果より、実施例1~実施例3と比較例2で調製した保護膜形成用組成物を用いて作製した塗膜は、いずれも比較例1よりガラス転移温度が高いことがわかった。
 本発明に係る空洞形成用組成物は、塗膜にした際に高いガラス転移温度と高温における熱分解性を併せ持つために、多層配線間空洞形成加工に適用する際に本組成物上の均一な絶縁層形成を促し、かつ焼成による組成物除去性能に優れる膜を提供するものである。
 1  半導体基板
 2  導電配線パターン
 3A 未硬化の空洞形成用材料
 3B 硬化した空洞形成用材料
 3C 空洞
 4  絶縁層

Claims (11)

  1.  半導体基板上の導電配線パターン間に空洞を形成するための空洞形成用組成物であって、
     エチレン性不飽和結合を有するモノマーの2種以上の付加重合体と、溶剤とを含有し、
     前記付加重合体が、熱硬化性部位を有する繰り返し単位(R1)と、易熱分解性部位を有する繰り返し単位(R2)とを有し、
     前記易熱分解性部位の熱分解温度が、前記熱硬化性部位の熱硬化温度よりも高い、
     空洞形成用組成物。
  2.  前記空洞形成用組成物から形成される膜を加熱して得られる硬化膜のガラス転移温度が、86℃以上であり、
     前記硬化膜を、窒素雰囲気下400℃で30分間加熱した際の分解率が、95%以上である、
     請求項1に記載の空洞形成用組成物。
  3.  前記繰り返し単位(R1)が、下記式(R1-1)で表される繰り返し単位を含む、請求項1に記載の空洞形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(R1-1)中、Rは、水素原子、ハロゲン原子又はアルキル基を表す。
     L及びLは、それぞれ独立して、単結合又は連結基を表す。
     Xは、エポキシ基、オキセタニル基、ヒドロキシアルキル基、アルコキシアルキル基、(メタ)アクリロイル基、スチリル基及びビニル基の少なくともいずれかを有する基を表す。
     m1は、1~5の整数を表す。m1が2以上の場合、2以上のXは同じであってもよいし、異なっていてもよい。
     m2は、1~5の整数を表す。m2が2以上の場合、2以上の[-L-(Xm1]は、同じであってもよいし、異なっていてもよい。)
  4.  前記繰り返し単位(R1)が、更に、下記式(R1-2)で表される繰り返し単位を含む、請求項3に記載の空洞形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(R1-2)中、X11は、単結合、又は2価の有機基を表す。R11は、水素原子、ハロゲン原子又はアルキル基を表す。R12~R14は、それぞれ独立して、水素原子、又は炭素原子数1~10のアルキル基を表す。R15は、炭素原子数1~10のアルキル基を表す。R14とR15とは互いに結合して環を形成していてもよい。)
  5.  前記繰り返し単位(R2)が、下記式(R2-1)で表される繰り返し単位を含む、請求項1に記載の空洞形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(R2-1)中、R21は、水素原子又はアルキル基を表す。Yは、下記式(R2-1-1)で表される基、置換基を有していてもよいフェニル基、ハロゲン化されていてよいアルキル基、置換基を有していてもよい1価の脂環式炭化水素基、ハロゲン化されていてもよいアルキルカルボニルオキシ基、ハロゲン化されていてもよいアルコキシ基、ニトリル基又はハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(R2-1-1)中、R22は、ハロゲン原子及びジアルキルアミノ基の少なくともいずれかで置換されていてもよい炭化水素基を表す。*は結合手を表す。)
  6.  前記付加重合体中の前記繰り返し単位(R1)が、前記付加重合体の全繰り返し単位に対して、5モル%~50モル%である、請求項1に記載の空洞形成用組成物。
  7.  前記付加重合体中の前記繰り返し単位(R2)が、前記付加重合体の全繰り返し単位に対して、50モル%~95モル%である、請求項1に記載の空洞形成用組成物。
  8.  導電配線パターンが形成された半導体基板上に請求項1から7のいずれかに記載の空洞形成用組成物が塗布される工程(A)と、
     前記工程(A)の後に、前記半導体基板が、前記熱硬化性部位が熱硬化する温度以上かつ前記易熱分解性部位が熱分解する温度未満に加熱されて、前記導電配線パターンの間に前記空洞形成用組成物から形成される空洞形成用硬化材料が形成される工程(B)と、
     前記工程(B)の後に、前記導電配線パターンと、前記導電配線パターンの間の前記空洞形成用硬化材料との上に絶縁層が形成される工程(C)と、
     前記工程(C)の後に、前記半導体基板が、前記易分解性部位が熱分解する温度以上に加熱されて、前記空洞形成用硬化材料が焼失される工程(D)と、
     を含む、半導体素子の製造方法。
  9.  前記工程(B)の際に、前記空洞形成用硬化材料が、前記導電配線パターン上にも形成されており、
     前記工程(C)の前に、前記導電配線パターン上の前記空洞形成用硬化材料が除去される工程(E)を含む、
     請求項8に記載の半導体素子の製造方法。
  10.  前記工程(A)と前記工程(B)の間に、前記導電配線パターン上に存在している、前記空洞形成用組成物から形成される未硬化の空洞形成用材料が除去される工程(F)を含む、
     請求項8に記載の半導体素子の製造方法。
  11.  前記工程(C)において、前記絶縁層が、化学気相蒸着により形成される、請求項8に記載の半導体素子の製造方法。
PCT/JP2023/010519 2022-03-24 2023-03-17 空洞形成用組成物 WO2023182195A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022048670 2022-03-24
JP2022-048670 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182195A1 true WO2023182195A1 (ja) 2023-09-28

Family

ID=88100810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010519 WO2023182195A1 (ja) 2022-03-24 2023-03-17 空洞形成用組成物

Country Status (2)

Country Link
TW (1) TW202343676A (ja)
WO (1) WO2023182195A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226599A (ja) * 2000-02-18 2001-08-21 Sumitomo Bakelite Co Ltd 空洞多層配線形成用樹脂組成物及びこれを用いた空洞多層配線
JP2004149607A (ja) * 2002-10-29 2004-05-27 Jsr Corp 多層配線間の空洞形成用重合体およびその製造方法
US20120261788A1 (en) * 2011-04-15 2012-10-18 International Business Machines Corporation Self-aligned airgap interconnect structures and methods of fabrication
JP2015111610A (ja) * 2013-12-06 2015-06-18 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 熱分解可能な充填用組成物、ならびにその組成物を用いて形成された空隙を具備した半導体装置、およびその組成物を用いた半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226599A (ja) * 2000-02-18 2001-08-21 Sumitomo Bakelite Co Ltd 空洞多層配線形成用樹脂組成物及びこれを用いた空洞多層配線
JP2004149607A (ja) * 2002-10-29 2004-05-27 Jsr Corp 多層配線間の空洞形成用重合体およびその製造方法
US20120261788A1 (en) * 2011-04-15 2012-10-18 International Business Machines Corporation Self-aligned airgap interconnect structures and methods of fabrication
JP2015111610A (ja) * 2013-12-06 2015-06-18 メルクパフォーマンスマテリアルズマニュファクチャリング合同会社 熱分解可能な充填用組成物、ならびにその組成物を用いて形成された空隙を具備した半導体装置、およびその組成物を用いた半導体装置の製造方法

Also Published As

Publication number Publication date
TW202343676A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
JP4753046B2 (ja) 保護されたカルボキシル基を有する化合物を含むリソグラフィー用下層膜形成組成物
KR101366793B1 (ko) 광가교 경화의 레지스트 하층막을 형성하기 위한 레지스트 하층막 형성 조성물
JP6264246B2 (ja) 膜形成用組成物、膜、パターンが形成された基板の製造方法及び化合物
JP6248865B2 (ja) 膜形成用組成物、膜、パターンが形成された基板の製造方法及び化合物
KR101682919B1 (ko) 레지스트 하층막 형성 조성물 및 이를 이용한 레지스트 패턴의 형성방법
TW201838959A (zh) 新穎化合物、半導體材料、及使用其之膜及半導體之製造方法
WO2006126406A1 (ja) ポリシラン化合物を含むリソグラフィー用下層膜形成組成物
CN115427890A (zh) 一种包含碳材料、金属有机化合物和溶剂的旋涂组合物以及一种在基材上方制造金属氧化物膜的方法
JP7554799B2 (ja) エチニル誘導体コンポジット、それを含んでなる組成物、それによる塗膜の製造方法、およびその塗膜を含んでなる素子の製造方法
KR20170008038A (ko) 신규한 레지스트 하층막 형성용 중합체, 이를 포함하는 레지스트 하층막 형성용 조성물 및 이를 이용한 레지스트 패턴의 형성 방법
TW202113487A (zh) 含有具二氰基苯乙烯基之雜環化合物之可濕蝕刻之阻劑下層膜形成組成物
CN112513738A (zh) 抗蚀剂下层膜形成用组合物
KR20190011478A (ko) 신규한 레지스트 하층막 형성용 중합체, 이를 포함하는 레지스트 하층막 형성용 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2023182195A1 (ja) 空洞形成用組成物
KR102456124B1 (ko) 막 형성용 조성물, 막, 패턴이 형성된 기판의 제조 방법 및 화합물
JP6844339B2 (ja) 熱硬化性樹脂組成物
KR102469461B1 (ko) 막 형성용 조성물, 막, 패턴이 형성된 기판의 제조 방법 및 화합물
WO2024185670A1 (ja) 空洞形成用組成物
TWI834839B (zh) 形成阻劑下層膜之組成物
KR20240144176A (ko) 보호막 형성용 조성물
WO2024048487A1 (ja) ギャップフィル材形成用組成物
JP2011199175A (ja) 半導体装置の製造方法および半導体装置
JP2011171572A (ja) 絶縁膜、積層体、半導体装置および半導体装置の製造方法
TW202436430A (zh) 空洞形成用組成物
TW202403454A (zh) 具有茀骨架之阻劑下層膜形成組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024510121

Country of ref document: JP

Kind code of ref document: A