WO2023181950A1 - 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法 - Google Patents

感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023181950A1
WO2023181950A1 PCT/JP2023/008868 JP2023008868W WO2023181950A1 WO 2023181950 A1 WO2023181950 A1 WO 2023181950A1 JP 2023008868 W JP2023008868 W JP 2023008868W WO 2023181950 A1 WO2023181950 A1 WO 2023181950A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sensitive
formula
atom
radiation
Prior art date
Application number
PCT/JP2023/008868
Other languages
English (en)
French (fr)
Inventor
健志 川端
研由 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023181950A1 publication Critical patent/WO2023181950A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, a resist film, a pattern forming method, and an electronic device manufacturing method.
  • pattern forming methods using chemical amplification have been used to compensate for the decrease in sensitivity due to light absorption.
  • a photoacid generator contained in an exposed area is decomposed by light irradiation to generate acid.
  • the catalytic action of the generated acid converts the alkali-insoluble groups of the resin contained in the actinic ray-sensitive or radiation-sensitive resin composition into alkali-soluble groups.
  • the solubility in the developer is changed by, for example, changing to a base.
  • development is performed using, for example, a basic aqueous solution.
  • the exposed portion is removed and a desired pattern is obtained.
  • the wavelength of exposure light sources has become shorter and the numerical aperture (NA) of projection lenses has become higher.
  • NA numerical aperture
  • EUV extreme ultraviolet
  • EB electron beam
  • Patent Document 1 discloses a positive resist composition for EUV lithography that includes a polymer whose main chain is cleaved by irradiation with extreme ultraviolet rays (EUV) to increase its solubility in a developer.
  • EUV extreme ultraviolet rays
  • the present inventors prepared and studied actinic ray-sensitive or radiation-sensitive resin compositions with reference to Patent Document 1, and found that there was room for further improvement in sensitivity. It was also revealed that there is room for further improvement in resolution.
  • An actinic ray-sensitive or radiation-sensitive resin composition comprising a solvent,
  • the metal compound is one or more selected from the group consisting of metal complexes, organometallic salts, and organometallic compounds,
  • the metal compound contains one or more metal atoms selected from the group consisting of iron atoms, titanium atoms, cobalt atoms, nickel atoms, zinc atoms, silver atoms, indium atoms, tin atoms, and hafnium atoms.
  • Composition [10] The actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [9], further comprising a photodegradable onium salt compound.
  • [12] Forming a resist film on a substrate using the actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [10]; a step of exposing the resist film to X-rays, electron beams, or extreme ultraviolet rays; A pattern forming method comprising the step of developing the exposed resist film using a developer. [13] A method for manufacturing an electronic device, including the pattern forming method according to [12].
  • the present invention it is possible to provide an actinic ray-sensitive or radiation-sensitive resin composition that has excellent sensitivity and excellent resolution of a formed pattern. Further, the present invention can provide a resist film, a pattern forming method, and an electronic device manufacturing method regarding the actinic ray-sensitive or radiation-sensitive resin composition.
  • organic group refers to a group containing at least one carbon atom.
  • active rays or “radiation” include, for example, the bright line spectrum of mercury lamps, far ultraviolet rays typified by excimer lasers, extreme ultraviolet (EUV), X-rays, and electron beams (EB: electron beam) etc.
  • Light in this specification means actinic rays or radiation.
  • exposure refers not only to exposure to the bright line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays, X-rays, and EUV light, but also to electron beams and It also includes drawing using particle beams such as ion beams.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the direction of bonding of the divalent groups described herein is not limited unless otherwise specified. For example, when Y in the compound represented by the formula "X-Y-Z" is -COO-, Y may be -CO-O- or -O-CO- Good too. Further, the above compound may be "X-CO-O-Z" or "X-O-CO-Z".
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (also referred to as molecular weight distribution) (Mw/Mn) of the resin are measured using a GPC (Gel Permeation Chromatography) apparatus (HLC-8120GPC manufactured by Tosoh). ) GPC measurement (solvent: tetrahydrofuran, flow rate (sample injection amount): 10 ⁇ L, column: Tosoh TSK gel Multipore HXL-M, column temperature: 40°C, flow rate: 1.0 mL/min, detector: differential refractive index Defined as a polystyrene equivalent value determined by a Refractive Index Detector.
  • GPC Gel Permeation Chromatography
  • acid dissociation constant refers to pKa in an aqueous solution, and specifically, using the following software package 1, a value based on Hammett's substituent constant and a database of known literature values is calculated. , is a value obtained by calculation. All pKa values described herein are values calculated using this software package.
  • pKa can also be determined by molecular orbital calculation method.
  • a specific method for this includes a method of calculating H 2 + dissociation free energy in an aqueous solution based on a thermodynamic cycle.
  • the H + dissociation free energy can be calculated, for example, by DFT (density functional theory), but various other methods have been reported in the literature, and the method is not limited to this. .
  • DFT density functional theory
  • there is a plurality of software that can perform DFT and one example is Gaussian 16.
  • pKa in this specification refers to a value obtained by calculating a value based on Hammett's substituent constant and a database of known literature values using software package 1. If calculation is not possible, a value obtained by Gaussian 16 based on DFT (density functional theory) is adopted.
  • pKa in this specification refers to "pKa in an aqueous solution” as described above, but if pKa in an aqueous solution cannot be calculated, “pKa in a dimethyl sulfoxide (DMSO) solution” is adopted. It shall be.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the solid content is intended to be a component that forms a resist film, and does not include a solvent. Furthermore, if the component forms a resist film, it is considered to be a solid component even if the component is liquid.
  • the actinic ray-sensitive or radiation-sensitive resin composition (hereinafter also referred to as "resist composition”) of the present invention includes: a metal compound; A resin whose main chain is decomposed by irradiation with X-rays, electron beams, or extreme ultraviolet rays; An actinic ray-sensitive or radiation-sensitive resin composition comprising a solvent,
  • the metal compound contains one or more metal compounds selected from the group consisting of metal complexes, organometallic salts, and organometallic compounds (hereinafter also referred to as "specific metal compounds"),
  • the resin includes a repeating unit represented by formula (1) described below or a repeating unit represented by formula (XR0) described later (hereinafter also referred to as "specific resin").
  • the resist composition of the present invention has excellent sensitivity and can form a pattern with excellent resolution.
  • the specific resin contains a predetermined repeating unit, when it is irradiated with X-rays, electron beams, or extreme ultraviolet rays, its main chain is cleaved, resulting in a lower molecular weight and increased solubility in a developer.
  • a resist film formed from a resist composition containing a specific resin is irradiated with X-rays, electron beams, or extreme ultraviolet rays, due to the above-mentioned mechanism of action of the specific resin, the resist film becomes resistant to developer in exposed and unexposed areas.
  • the formation of a pattern is made possible by the difference in solubility (dissolution contrast).
  • the resist film formed by the resist composition of the present invention contains the above-mentioned specific resin and a specific metal compound.
  • a resist film is irradiated with X-rays, electron beams, or extreme ultraviolet rays, secondary electrons are generated not only from the decomposition (ionization) of specific resins but also from specific metal compounds. Therefore, the amount of secondary electrons generated in the film is significantly large. As a result, the amount of main chain decomposition of the specific resin caused by the generated secondary electrons increases (in other words, the main chain decomposition efficiency is high), and it is presumed that the sensitivity is excellent.
  • the specific resin contains relatively highly polar bonds such as carbonyl bonds and ether bonds, and optionally, as described later, relatively highly polar functional groups (e.g., hydroxyl group, carboxyl group, amino group, amide group). , thiol group, acetoxy group, etc.).
  • the specific metal compound has an electrostatic interaction with the above-mentioned highly polar bonds and functional groups (hetero atoms or atomic groups containing hetero atoms) contained in the specific resin. It is presumed that they are loosely bonded together and exist in an aggregated structure due to the action.
  • the above-mentioned agglomerated structure is easily released when irradiated with X-rays, electron beams, or extreme ultraviolet rays.
  • the resist film formed by the resist composition of the present invention has a high dissolution contrast between the unexposed area and the exposed area due to the electrostatic interaction between the specific metal compound and the specific resin, and as a result, the formed pattern It is assumed that the resolution is excellent. In the following, the fact that the sensitivity of the resist composition is better and/or the resolution of the pattern formed from the resist composition is better is also referred to as "the effect of the present invention is better.”
  • the resist composition is a resin whose main chain is decomposed by irradiation with X-rays, electron beams, or extreme ultraviolet rays, and includes a repeating unit represented by the formula (1) described below or a repeating unit represented by the formula (XR) described below.
  • Specific embodiments of the specific resin include a resin containing a repeating unit represented by the formula (1) described below (hereinafter also referred to as "specific resin 1"), or a resin represented by the formula (XR) described below. It is preferable that the resin is a resin containing a repeating unit (hereinafter also referred to as "specific resin 2").
  • the specific resin may be a resin containing either a repeating unit represented by formula (1) described later or a repeating unit represented by formula (XR) described later.
  • the specific resin is a group consisting of a hydroxyl group (alcoholic hydroxyl group and phenolic hydroxyl group), carboxyl group, amino group, amide group, thiol group, and acetoxy group, as will be described later. It is preferable to contain one or more functional groups selected from the following (hereinafter also referred to as "specific functional groups"), and more preferably to contain one or more functional groups selected from the group consisting of phenolic hydroxyl groups and carboxyl groups. .
  • Specific Resin 1 is preferable in that the effect of the present invention is excellent, and is a resin containing a repeating unit represented by the above-mentioned formula (1) and a repeating unit represented by the above-mentioned formula (3). It is more preferable to use the repeating unit represented by the above formula (1) (wherein, X represents a chlorine atom) and the above formula (3), since the sensitivity is further improved. More preferably, the resin contains the following repeating unit (wherein C 1 represents a phenolic hydrogen atom or a carboxy group).
  • Specific resin 1 is a resin containing a repeating unit represented by the following formula (1).
  • X represents a halogen atom or a fluorinated alkyl group.
  • halogen atom represented by X a chlorine atom is preferable since the effects of the present invention are more excellent.
  • the alkyl group in the fluorinated alkyl group represented by X may be linear, branched, or cyclic. Further, the number of fluorine atoms substituted on the alkyl group may be one or more, but a perfluoroalkyl group is preferable since the effects of the present invention are more excellent.
  • the number of carbon atoms in the fluorinated alkyl group represented by X is preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 3. As X, a halogen atom is preferable, and a chlorine atom is more preferable, since the effects of the present invention are more excellent.
  • R 0 represents a hydrogen atom or an organic group.
  • the organic group represented by R 0 is not particularly limited, but is preferably a linear, branched, or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 3.
  • the alkyl group may have a substituent. Examples of the substituent include, but are not particularly limited to, a halogen atom (preferably a fluorine atom or an iodine atom), a specific functional group, and the like.
  • a hydrogen atom is preferable since the effect of the present invention is more excellent.
  • R 1 represents a substituent.
  • the substituent represented by R 1 is not particularly limited, and examples include a group represented by the following formula (1-1), a hydroxyl group, and -NH 2 .
  • R X represents a hydrogen atom or an organic group.
  • the organic group represented by R X is not particularly limited, but is preferably a linear, branched, or cyclic alkyl group, for example.
  • the number of carbon atoms in the alkyl group is preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 3.
  • the alkyl group may have a substituent. Examples of the substituent include, but are not particularly limited to, a halogen atom (preferably a fluorine atom or an iodine atom), a specific functional group, and the like.
  • R X a hydrogen atom is preferable since the effects of the present invention are more excellent.
  • R 1A represents a hydrogen atom or an organic group.
  • the organic group represented by R 1 is not particularly limited, but includes an alkyl group, an aryl group, an aralkyl group, and a group containing an onium salt structure described below.
  • the alkyl group may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group is not particularly limited, and includes, for example, 1 to 20 carbon atoms. Among the above alkyl groups, the number of carbon atoms in the linear or branched alkyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6.
  • the cyclic alkyl group may be either monocyclic or polycyclic. Further, the number of carbon atoms in the cyclic alkyl group is not particularly limited, but is preferably from 5 to 15, more preferably from 5 to 10. Examples of the cycloalkyl group include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, and polycyclic cycloalkyl groups such as norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group, and adamantyl group. . Further, the alkyl group may have a substituent. The substituent is not particularly limited, and includes a halogen atom (preferably a fluorine atom or an iodine atom), a specific functional group, and the like.
  • one embodiment of the alkyl group includes a group represented by -C(R X1 )(R X2 )(R X3 ).
  • R X1 to R X3 each independently represent a linear, branched, or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group represented by R X1 to R X3 is not particularly limited, and may be, for example, 1 to 20.
  • the number of carbon atoms in the linear or branched alkyl group is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 6.
  • the cyclic alkyl group may be either monocyclic or polycyclic.
  • the number of carbon atoms in the cyclic alkyl group is not particularly limited, but is preferably from 5 to 15, more preferably from 5 to 10.
  • the cycloalkyl group include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, and polycyclic cycloalkyl groups such as norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group, and adamantyl group.
  • R X1 to R X3 each independently represent a linear or branched alkyl group (preferably a linear alkyl group), or two of R X1 to R It is preferable to form a cyclic or polycyclic 5- to 8-membered alicyclic ring.
  • the alkyl groups represented by R X1 to R X3 above may have a substituent.
  • the substituent is not particularly limited, and includes a halogen atom (preferably a fluorine atom or an iodine atom), a specific functional group, and the like.
  • the alkyl group represents a group represented by -C(R X1 )(R X2 )(R X3 )
  • the above L 1A preferably represents -O- or -N( R , -O- is more preferable.
  • the above aryl group may be either monocyclic or polycyclic, preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 15 carbon atoms, and an aryl group having 6 to 10 carbon atoms. is even more preferable.
  • the aryl group is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • the above aryl group may have a substituent.
  • the substituent is not particularly limited, and includes a halogen atom (preferably a fluorine atom or an iodine atom), a specific functional group, and the like, with a fluorine atom, an iodine atom, or a hydroxyl group being particularly preferred.
  • a halogen atom preferably a fluorine atom or an iodine atom
  • the above-mentioned aralkyl group preferably has a structure in which one of the hydrogen atoms in the above-mentioned alkyl group is substituted with the above-mentioned aryl group.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 20, more preferably 7 to 15.
  • R 0 and R 1 may be connected to each other to form a ring.
  • repeating unit represented by the above formula (1) it is particularly preferable to represent the repeating unit represented by the following formula (1A), since the effects of the present invention are more excellent.
  • X and R 0 have the same meanings as X and R 0 in formula (1), and preferred embodiments are also the same.
  • L 2A represents -O- or -N(R x )-.
  • R x represents a hydrogen atom or an organic group. Examples of the organic group represented by R x include those similar to R x in formula (1-1) above.
  • R 1A represents a hydrogen atom or an organic group. Examples of the organic group represented by R 1A include those similar to R 1A in the above formula (1-1).
  • R 0 and R 1A may be connected to each other to form a ring. Examples of the ring formed by R 0 and R 1A connected to each other include the same ring as the ring formed by R 0 and R 1 connected to each other in the above formula (1).
  • the content of the repeating unit represented by formula (1) in the specific resin 1 is preferably 5 to 95 mol%, more preferably 10 to 90 mol%, and more preferably 20 to 95 mol%, based on the total repeating units of the specific resin 1. More preferably 80 mol%.
  • the number of repeating units represented by formula (1) may be one or two or more. When there are two or more types of repeating units represented by formula (1), it is preferable that their total content falls within the above numerical range.
  • the specific resin 1 further contains other repeating units (hereinafter also referred to as “other repeating units”) different from the repeating unit represented by formula (1).
  • other repeating units repeating units represented by formula (2) are preferable, and repeating units represented by formula (3) are more preferable since the effects of the present invention are more excellent.
  • a 1 represents a hydrogen atom or an alkyl group.
  • the alkyl group represented by A 1 may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group is preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 3.
  • the alkyl group may have a substituent. Examples of the substituent include, but are not particularly limited to, a halogen atom (preferably a fluorine atom or an iodine atom), a specific functional group, and the like.
  • a 1 is preferably an alkyl group, more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably an alkyl group having 1 to 3 carbon atoms, since the effects of the present invention are more excellent.
  • L 1 represents a single bond or a divalent linking group.
  • the divalent linking group represented by L 1 is not particularly limited, but includes, for example, -CO-, -O-, -SO-, -SO 2 -, -NR A -, and an alkylene group (preferably one having 1 carbon number). ⁇ 6. May be linear or branched), cycloalkylene group (preferably having 3 to 15 carbon atoms), arylene group (preferably 6 to 10-membered ring, more preferably 6-membered ring), and these Examples include divalent linking groups in which a plurality of groups are combined. Further, the alkylene group, the cycloalkylene group, and the arylene group may have a substituent.
  • substituent examples include an alkyl group, a halogen atom, and a specific functional group.
  • R A examples include a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • L 1 is preferably a single bond, -COO-, or -CONR A -.
  • B 1 represents a substituent.
  • the substituent represented by B1 is not particularly limited, and includes, for example, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkoxy group, an acyloxy group, a cyano group, a nitro group, a halogen atom, and a lactone group. , a group containing an onium salt structure described below, and a specific functional group.
  • alkyl group, cycloalkyl group, aryl group, aralkyl group, alkenyl group, alkoxy group, acyloxy group, and lactone group may further have a substituent, and the substituent Examples include halogen atoms and specific functional groups. Note that when the alkyl group has a fluorine atom, it may be a perfluoroalkyl group.
  • the alkyl group may be either linear or branched. Further, the number of carbon atoms is not particularly limited, but is preferably from 1 to 20, more preferably from 1 to 10, and even more preferably from 1 to 6.
  • the above cycloalkyl group may be monocyclic or polycyclic. Further, the number of carbon atoms is not particularly limited, but is preferably from 5 to 15, more preferably from 5 to 10, for example.
  • cycloalkyl group examples include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, and polycyclic cycloalkyl groups such as norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group, and adamantyl group.
  • the above aryl group may be monocyclic or polycyclic. Further, the number of carbon atoms is not particularly limited, but is preferably 6 to 15, more preferably 6 to 10. As the aryl group, a phenyl group, a naphthyl group, or an anthranyl group is preferable, and a phenyl group is more preferable.
  • the aralkyl group preferably has a structure in which one of the hydrogen atoms in the alkyl group described above is substituted with the aryl group described above.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 20, more preferably 7 to 15.
  • the alkenyl group may be linear, branched, or cyclic. Further, the number of carbon atoms is not particularly limited, but is preferably from 2 to 20, more preferably from 2 to 10, even more preferably from 2 to 6.
  • the alkoxy group may be linear, branched, or cyclic, and has preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the above acyloxy group may be linear, branched, or cyclic, and has preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 2 to 6 carbon atoms.
  • the lactone group is preferably a 5- to 7-membered lactone group, more preferably one in which another ring structure is fused to the 5- to 7-membered lactone ring to form a bicyclo structure or a spiro structure.
  • a 1 and L 1 have the same meanings as A 1 and L 1 in formula (2), and preferred embodiments are also the same.
  • B 2 represents a (m1+1)-valent linking group.
  • the (m1+1)-valent linking group represented by B 2 is, for example, 1 selected from the group consisting of an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkoxy group, an acyloxy group, and a lactone group. Examples include a group formed by removing m1 hydrogen atoms from a valence group.
  • the alkyl group, cycloalkyl group, aryl group, aralkyl group, alkenyl group, alkoxy group, acyloxy group, and lactone group further include a specific functional group represented by C 1 It may have a substituent other than that, and examples of the substituent include a halogen atom. Note that when the alkyl group has a fluorine atom, it may be a perfluoroalkyl group.
  • the alkyl group may be either linear or branched. Further, the number of carbon atoms is not particularly limited, but is preferably from 1 to 20, more preferably from 1 to 10, and even more preferably from 1 to 6.
  • the above cycloalkyl group may be monocyclic or polycyclic. Further, the number of carbon atoms is not particularly limited, but is preferably from 5 to 15, more preferably from 5 to 10, for example.
  • cycloalkyl group examples include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, and polycyclic cycloalkyl groups such as norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group, and adamantyl group.
  • the above aryl group may be monocyclic or polycyclic. Further, the number of carbon atoms is not particularly limited, but is preferably 6 to 15, more preferably 6 to 10. As the aryl group, a phenyl group, a naphthyl group, or an anthranyl group is preferable, and a phenyl group is more preferable.
  • the aralkyl group preferably has a structure in which one of the hydrogen atoms in the alkyl group described above is substituted with the aryl group described above.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 20, more preferably 7 to 15.
  • the alkenyl group may be linear, branched, or cyclic. Further, the number of carbon atoms is not particularly limited, but is preferably from 2 to 20, more preferably from 2 to 10, even more preferably from 2 to 6.
  • the alkoxy group may be linear, branched, or cyclic, and has preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the above acyloxy group may be linear, branched, or cyclic, and has preferably 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 2 to 6 carbon atoms.
  • the lactone group is preferably a 5- to 7-membered lactone group, more preferably one in which another ring structure is fused to the 5- to 7-membered lactone ring to form a bicyclo structure or a spiro structure.
  • the (m1+1)-valent linking group represented by B2 is, among others, a (m1+1)-valent aromatic hydrocarbon ring group (a group formed by removing m1 hydrogen atoms from an aryl group). is preferable, and a (m1+1)-valent benzene ring group or a (m1+1)-valent naphthalene ring group is more preferable. Further, it is also preferable that the (m1+1)-valent benzene ring group and the (m1+1)-valent naphthalene ring group have a halogen atom as a substituent.
  • C 1 represents one or more functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, an amide group, a thiol group, and an acetoxy group. That is, C 1 represents a specific functional group.
  • the above-mentioned functional group one or more functional groups selected from the group consisting of phenolic hydroxyl group and carboxyl group are more preferable since the effects of the present invention are more excellent.
  • the (m1+1)-valent linking group represented by B1 is an (m1+1)-valent aromatic hydrocarbon ring group (by removing m1 hydrogen atoms from the aryl group). It is preferable to represent a group formed by
  • n1 represents an integer of 1 or more.
  • m1 is preferably 1 to 6, more preferably 1 to 3.
  • the plurality of C1s may be the same or different.
  • the content of the repeating unit represented by formula (2) (preferably the repeating unit represented by formula (3)) in the specific resin 1 is 5 to 95 mol based on the total repeating units of the specific resin 1. %, more preferably 10 to 90 mol%, still more preferably 20 to 80 mol%.
  • the repeating unit represented by formula (2) (preferably the repeating unit represented by formula (3)) may be one type or two or more types. When there are two or more types of repeating units represented by formula (2) (preferably repeating units represented by formula (3)), it is preferable that their total content falls within the above numerical range.
  • the specific resin 1 preferably contains a repeating unit represented by the above formula (1) and a repeating unit represented by the above formula (2), and a repeating unit represented by the above formula (1) and the above formula ( It is more preferable that the repeating unit represented by 3) is included.
  • the total content of the repeating unit represented by the above formula (1) and the repeating unit represented by the above formula (2) (preferably the repeating unit represented by the formula (3)) is the total repeating unit of the specific resin 1. It is preferably 90 mol% or more, more preferably 95 mol% or more. In addition, as an upper limit, 100 mol% or less is preferable.
  • the specific resin 1 is a copolymer containing a repeating unit represented by the above formula (1) and a repeating unit represented by the above formula (2) (preferably a repeating unit represented by the formula (3)).
  • random copolymers, block copolymers, and alternating copolymers (repeating units represented by formula (1) above and repeating units represented by formula (2) above (preferably formula (3)) It may be in any form, such as a copolymer in which the repeating units (represented by the repeating units) are arranged alternately like ABAB..., but an alternating copolymer is particularly preferred.
  • a preferred embodiment of the specific resin 1 is an embodiment in which the proportion of the alternating copolymer in the specific resin 1 is 90% by mass or more (preferably 100% by mass or more) based on the total mass of the specific resin 1. Aspects may also be mentioned.
  • An onium salt structure is a structural site having an ion pair of a cation and an anion, and is a structural site represented by "X n- nM + " (n represents an integer from 1 to 3, for example, ).
  • M + represents a structural site containing a positively charged atom or atomic group
  • X n- represents a structural site containing a negatively charged atom or atomic group.
  • the anion in the onium base is preferably a non-nucleophilic anion (an anion with a significantly low ability to cause a nucleophilic reaction).
  • the anion in the onium base is a non-nucleophilic anion, it tends to form a photodegradable onium salt structure.
  • a non-nucleophilic anion described below as a generated acid of a photodegradable onium salt compound can be mentioned.
  • a group represented by the following formula (O1) is preferable.
  • *-L T -X A - M A + formula (O1) L T represents a single bond or a divalent linking group.
  • Examples of the divalent linking group represented by L T include those similar to the divalent linking group represented by L 1 in formula (2) described above.
  • X A ⁇ represents a monovalent organic anionic group.
  • M A + represents an organic cation.
  • the monovalent organic anionic group represented by X A - is preferably a non-nucleophilic anionic group (an anionic group with extremely low ability to cause a nucleophilic reaction).
  • R X1 each independently represents a monovalent organic group.
  • R X2 each independently represents a hydrogen atom or a substituent other than a fluorine atom and a perfluoroalkyl group. Two R X2 's in formula (B-7) may be the same or different.
  • R XF1 represents a hydrogen atom, a fluorine atom, or a perfluoroalkyl group.
  • R XF1 represents a fluorine atom or a perfluoroalkyl group.
  • Two R XF1 's in formula (B-8) may be the same or different.
  • R X3 represents a hydrogen atom, a halogen atom, or a monovalent organic group.
  • n1 represents an integer from 0 to 4.
  • R XF2 represents a fluorine atom or a perfluoroalkyl group.
  • the partner to which the bonding position represented by * in formula (B-14) is bonded is preferably a phenylene group which may have a substituent. Examples of the substituent that the phenylene group may have include a halogen atom.
  • R X1 each independently represents a monovalent organic group.
  • R X1 is an alkyl group (which may be linear or branched, preferably having 1 to 15 carbon atoms), or a cycloalkyl group (which may be monocyclic or polycyclic, preferably having 3 to 20 carbon atoms). ), or an aryl group (which may be monocyclic or polycyclic. The number of carbon atoms is preferably 6 to 20). Further, the above group represented by R X1 may have a substituent.
  • it is also preferable that the atom directly bonded to N- in R X1 is neither the carbon atom in -CO- nor the sulfur atom in -SO 2 -.
  • the cycloalkyl group in R X1 may be monocyclic or polycyclic.
  • Examples of the cycloalkyl group for R X1 include a norbornyl group and an adamantyl group.
  • the substituent that the cycloalkyl group in R One or more of the carbon atoms that are ring member atoms of the cycloalkyl group in R X1 may be replaced with a carbonyl carbon atom.
  • the number of carbon atoms in the alkyl group (linear or branched) in R X1 is preferably 1 to 10, more preferably 1 to 5.
  • the substituent that the alkyl group in R X1 may have is not particularly limited, but is preferably a cycloalkyl group, a fluorine atom, or a cyano group.
  • Examples of the cycloalkyl group as the above-mentioned substituent include the cycloalkyl group described in the case where R X1 is a cycloalkyl group.
  • the alkyl group in R X1 has a fluorine atom as the substituent, the alkyl group may be a perfluoroalkyl group.
  • one or more -CH 2 - may be substituted with a carbonyl group.
  • the aryl group for R X1 is preferably a benzene ring group.
  • the substituent that the aryl group in R X1 may have is not particularly limited, but is preferably an alkyl group, a fluorine atom, or a cyano group. Examples of the alkyl group as the above-mentioned substituent include the alkyl groups explained in the case where R X1 is an alkyl group.
  • R The number of carbon atoms is preferably 1 to 15.
  • the cycloalkyl group not containing a fluorine atom (which may be monocyclic or polycyclic.
  • the number of carbon atoms is preferably 3 to 20).
  • Two R X2 's in formula (B-7) may be the same or different.
  • R XF1 represents a hydrogen atom, a fluorine atom, or a perfluoroalkyl group. However, at least one of the plurality of R XF1 represents a fluorine atom or a perfluoroalkyl group. Two R XF1 's in formula (B-8) may be the same or different.
  • the number of carbon atoms in the perfluoroalkyl group represented by R XF1 is preferably 1 to 15, more preferably 1 to 10, and even more preferably 1 to 6.
  • R X3 represents a hydrogen atom, a halogen atom, or a monovalent organic group.
  • the halogen atom as R X3 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, of which a fluorine atom is preferred.
  • the monovalent organic group as R X3 is the same as the monovalent organic group described as R X1 .
  • n1 represents an integer from 0 to 4.
  • n1 is preferably an integer of 0 to 2, and preferably 0 or 1. When n1 represents an integer of 2 to 4, a plurality of R X3 may be the same or different.
  • R XF2 represents a fluorine atom or a perfluoroalkyl group.
  • the number of carbon atoms in the perfluoroalkyl group represented by R XF2 is preferably 1 to 15, more preferably 1 to 10, and even more preferably 1 to 6.
  • the organic cation represented by M A + in formula (O1) is an organic cation represented by formula (ZaI) (cation (ZaI)) or an organic cation (cation (ZaII)) represented by formula (ZaII). ) is preferred.
  • R 201 , R 202 and R 203 each independently represent an organic group.
  • the number of carbon atoms in the organic groups as R 201 , R 202 and R 203 is usually 1 to 30, preferably 1 to 20.
  • two of R 201 to R 203 may be combined to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester group, an amide group, or a carbonyl group.
  • Examples of the group formed by combining two of R 201 to R 203 include an alkylene group (for example, a butylene group and a pentylene group), and -CH 2 -CH 2 -O-CH 2 -CH 2 -. Can be mentioned.
  • Preferred embodiments of the organic cation in formula (ZaI) include cation (ZaI-1), cation (ZaI-2), and organic cation (cation (ZaI-3b)) represented by formula (ZaI-3b), which will be described later. ), and an organic cation (cation (ZaI-4b)) represented by the formula (ZaI-4b).
  • the cation (ZaI-1) is an arylsulfonium cation in which at least one of R 201 to R 203 in the above formula (ZaI) is an aryl group.
  • the arylsulfonium cation all of R 201 to R 203 may be an aryl group, or some of R 201 to R 203 may be an aryl group, and the remainder may be an alkyl group or a cycloalkyl group.
  • R 201 to R 203 may be an aryl group, and the remaining two of R 201 to R 203 may be bonded to form a ring structure, with an oxygen atom, a sulfur atom, It may contain an ester group, an amide group, or a carbonyl group.
  • the group formed by combining two of R 201 to R 203 includes, for example, one or more methylene groups substituted with an oxygen atom, a sulfur atom, an ester group, an amide group, and/or a carbonyl group. and alkylene groups (eg, butylene group, pentylene group, or -CH 2 -CH 2 -O-CH 2 -CH 2 -).
  • arylsulfonium cation examples include triarylsulfonium cation, diarylalkylsulfonium cation, aryldialkylsulfonium cation, diarylcycloalkylsulfonium cation, and aryldicycloalkylsulfonium cation.
  • the aryl group contained in the arylsulfonium cation is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • the aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Examples of the heterocyclic structure include pyrrole residue, furan residue, thiophene residue, indole residue, benzofuran residue, and benzothiophene residue.
  • the arylsulfonium cation has two or more aryl groups, the two or more aryl groups may be the same or different.
  • the alkyl group or cycloalkyl group that the arylsulfonium cation has as necessary is a linear alkyl group having 1 to 15 carbon atoms, a branched alkyl group having 3 to 15 carbon atoms, or a branched alkyl group having 3 to 15 carbon atoms.
  • a cycloalkyl group is preferred, and for example, a methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, t-butyl group, cyclopropyl group, cyclobutyl group, and cyclohexyl group are more preferred.
  • the substituents that the aryl group, alkyl group, and cycloalkyl group of R 201 to R 203 may each independently include an alkyl group (for example, carbon number 1 to 15), a cycloalkyl group (for example, carbon number 3-15), aryl group (e.g. 6-14 carbon atoms), alkoxy group (e.g. 1-15 carbon atoms), cycloalkylalkoxy group (e.g. 1-15 carbon atoms), halogen atom (e.g.
  • the above substituent may further have a substituent if possible.
  • the above alkyl group may have a halogen atom as a substituent to become a halogenated alkyl group such as a trifluoromethyl group. preferable.
  • the cation (ZaI-2) is a cation in which R 201 to R 203 in the formula (ZaI) each independently represent an organic group having no aromatic ring.
  • the aromatic ring includes an aromatic ring containing a hetero atom.
  • the organic group having no aromatic ring as R 201 to R 203 generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
  • R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group, or a vinyl group, and a linear or branched 2-oxoalkyl group, a 2-oxocycloalkyl group, or an alkoxy
  • a carbonylmethyl group is more preferred, and a linear or branched 2-oxoalkyl group is even more preferred.
  • the alkyl group and cycloalkyl group of R 201 to R 203 include, for example, a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms (e.g., methyl group, ethyl group, propyl group). group, butyl group, and pentyl group), and cycloalkyl groups having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, and norbornyl group).
  • R 201 to R 203 may be further substituted with a halogen atom, an alkoxy group (eg, having 1 to 5 carbon atoms), a hydroxyl group, a cyano group, or a nitro group.
  • the cation (ZaI-3b) is a cation represented by the following formula (ZaI-3b).
  • R 1c to R 5c each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an alkylcarbonyloxy group, a cycloalkylcarbonyloxy group, a halogen atom, and a hydroxyl group.
  • R 1c to R 5c each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an alkylcarbonyloxy group, a cycloalkylcarbonyloxy group, a halogen atom, and a hydroxyl group.
  • R 6c and R 7c each independently represent a hydrogen atom, an alkyl group (such as a t-butyl group), a cycloalkyl group, a halogen atom, a cyano group, or an aryl group.
  • R x and R y each independently represent an alkyl group, a cycloalkyl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, an allyl group, or a vinyl group.
  • R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y may be bonded to each other to form a ring.
  • the rings may each independently contain an oxygen atom, a sulfur atom, a ketone group, an ester bond, or an amide bond.
  • the above-mentioned ring include an aromatic or non-aromatic hydrocarbon ring, an aromatic or non-aromatic heterocycle, and a polycyclic condensed ring formed by combining two or more of these rings.
  • the ring include a 3- to 10-membered ring, preferably a 4- to 8-membered ring, and more preferably a 5- or 6-membered ring.
  • Examples of the group formed by combining any two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include alkylene groups such as a butylene group and a pentylene group.
  • the methylene group in this alkylene group may be substituted with a hetero atom such as an oxygen atom.
  • the group formed by bonding R 5c and R 6c and R 5c and R x is preferably a single bond or an alkylene group.
  • Examples of the alkylene group include a methylene group and an ethylene group.
  • R 1c to R 5c , R 6c , R 7c , R x , R y , and any two or more of R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and the ring formed by bonding R x and R y to each other may have a substituent.
  • the cation (ZaI-4b) is a cation represented by the following formula (ZaI-4b).
  • R13 is a group having a hydrogen atom, a halogen atom (for example, a fluorine atom, an iodine atom, etc.), a hydroxyl group, an alkyl group, a halogenated alkyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or a cycloalkyl group (cycloalkyl It may be a group itself or a group partially containing a cycloalkyl group). These groups may have substituents.
  • R14 is a hydroxyl group, a halogen atom (e.g., a fluorine atom, an iodine atom, etc.), an alkyl group, a halogenated alkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl group.
  • R 15 each independently represents the above group such as a hydroxyl group.
  • R 15 each independently represents an alkyl group, a cycloalkyl group, or a naphthyl group.
  • Two R 15s may be bonded to each other to form a ring.
  • the ring skeleton may contain a heteroatom such as an oxygen atom or a nitrogen atom.
  • two R 15s are alkylene groups and are preferably bonded to each other to form a ring structure.
  • the ring formed by bonding the alkyl group, cycloalkyl group, naphthyl group, and two R 15s to each other may have a substituent.
  • the alkyl groups of R 13 , R 14 and R 15 are preferably linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1 to 10.
  • As the alkyl group a methyl group, ethyl group, n-butyl group, or t-butyl group is more preferable.
  • R 204 and R 205 each independently represent an aryl group, an alkyl group, or a cycloalkyl group.
  • the aryl group for R 204 and R 205 is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • the aryl group of R 204 and R 205 may be an aryl group having a heterocycle having an oxygen atom, a nitrogen atom, a sulfur atom, or the like.
  • Examples of the skeleton of the aryl group having a heterocycle include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group of R 204 and R 205 include a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, butyl group, pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, or norbornyl group).
  • the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may each independently have a substituent.
  • substituents that the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may have include an alkyl group (for example, having 1 to 15 carbon atoms), a cycloalkyl group (for example, having 3 to 15 carbon atoms), 15), an aryl group (for example, having 6 to 15 carbon atoms), an alkoxy group (for example, having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group.
  • the specific resin 2 is a resin containing a repeating unit represented by the following formula (XR).
  • R r1 to R r4 each independently represent a hydrogen atom or a substituent. Furthermore, R r2 and R r3 may be combined with each other to form a ring. * represents the bonding position. It is preferable that the specific resin 2 has the specific functional group described above.
  • the specific resin 2 is such that at least one or more of R r1 to R r4 in formula (XR) represents a substituent, and at least one or more of the substituents has the above-mentioned specific functional group, or R r2 and R r3 in (XR) combine with each other to form a ring, and at least one or more of the substituents on this ring has the above-mentioned specific functional group, or the formula (XR ) It is preferable that the other repeating unit contains a repeating unit other than the repeating unit represented by, and that the other repeating unit has the above-mentioned specific functional group.
  • R r1 to R r4 in formula (XR) represents a substituent, and at least one of the substituents has the above-mentioned specific functional group, or It is more preferable that R r2 and R r3 in formula (XR) combine with each other to form a ring, and that at least one or more of the substituents on this ring has the above-mentioned specific functional group.
  • the specific resin 2 has R r2 and R r3 in formula (XR) bonded to each other to form a ring, and at least one of the substituents substituted on this ring. More preferably, one or more have the above-mentioned specific functional groups.
  • the repeating unit represented by the above formula (XR) preferably accounts for 90 mol% or more, more preferably 95 mol% or more, based on the total repeating units of the specific resin 2. In addition, as an upper limit, 100 mol% or less is preferable.
  • the substituents represented by R r1 to R r4 include the same substituents as the substituent represented by B 1 in the above-mentioned formula (2), and preferred embodiments are also the same. . Furthermore, as one embodiment of the substituents represented by R r1 to R r4 , an embodiment represented by *-L N -R pA is also preferable.
  • L N represents a single bond or a divalent linking group. Examples of the divalent linking group represented by L N include those similar to the divalent linking group represented by L 1 in the above-mentioned formula (2).
  • R pA represents a specific functional group.
  • the ring formed by R r2 and R r3 bonding to each other is not particularly limited, and may be either an alicyclic ring or an aromatic ring.
  • the above ring may further have a substituent. Examples of the substituent include the same substituents as those represented by R r1 to R r4 above.
  • repeating unit represented by formula (XR) is also preferably a repeating unit represented by formula (XRA) below.
  • R r1 and R r4 have the same meanings as R r1 and R r4 in the above formula (XR), and preferred embodiments are also the same.
  • R T represents a substituent. Examples of the substituent represented by R T include those similar to the substituents represented by R r1 to R r4 above. At least one of the substituents represented by R T preferably represents the above-mentioned *-L N -R pA .
  • m represents an integer of 0 to 4, preferably an integer of 1 to 4.
  • the above-mentioned specific resin 2 may contain other repeating units other than the above-mentioned repeating units as long as the effects of the present invention are not impaired.
  • Other repeating units are not particularly limited, and for example, repeating units represented by formula (2) (preferably repeating units represented by formula (3)) that may be included in the specific resin 1 mentioned above. Can be mentioned.
  • the specific resin is selected from the group consisting of hydroxyl groups (alcoholic hydroxyl groups and phenolic hydroxyl groups), carboxyl groups, amino groups, amide groups, thiol groups, and acetoxy groups, as mentioned above, because the effects of the present invention are more excellent. It is preferable to contain one or more kinds of functional groups (specific functional groups), and more preferably to contain one or more kinds of functional groups selected from the group consisting of phenolic hydroxyl groups and carboxyl groups.
  • phenolic hydroxyl group refers to a hydroxyl group substituted on a ring member atom of an aromatic ring.
  • the aromatic ring is not limited to a benzene ring, and may be either an aromatic hydrocarbon ring or an aromatic heterocycle. Moreover, the aromatic ring may be either monocyclic or polycyclic.
  • the alcoholic hydroxyl group is distinguished from the phenolic hydroxyl group, and in this specification, a hydroxyl group substituted for an aliphatic hydrocarbon group is intended.
  • R P and R q each independently preferably represent a hydrogen atom or a monovalent organic group (preferably an alkyl group having 1 to 6 carbon atoms), and more preferably a hydrogen atom.
  • the specific resin contains a group represented by -CO-N(R q )- as a specific functional group means, for example, when R 0 and R 1A in the repeating unit represented by the above formula (1) are connected to each other to form a ring, and within the ring there is a structural moiety represented by -CO-N(R q )- (preferably a structure represented by -CO-N(R q )-CO-) This applies to cases where the person has a body part).
  • the specific resin preferably contains a repeating unit containing a specific functional group, since the effects of the present invention are more excellent.
  • the content of repeating units containing a specific functional group in the specific resin is preferably 5 to 100 mol%, more preferably 10 to 100 mol%, and 20 to 100 mol% based on the total repeating units of the specific resin. More preferred.
  • the number of repeating units containing the specific functional group may be one or two or more. When there are two or more types of repeating units containing specific functional groups, it is preferable that their total content falls within the above numerical range.
  • any unit containing a specific functional group is applicable as a repeating unit containing a specific functional group in a specific resin.
  • repeating unit represented by formula (1) above when the repeating unit represented by formula (1) above includes a specific functional group, it corresponds to a repeating unit containing the specific functional group. Moreover, since the repeating unit represented by the above-mentioned formula (3) includes a specific functional group, it corresponds to a repeating unit containing a specific functional group.
  • the specific resin can be synthesized by conventional methods (eg, radical polymerization).
  • the weight average molecular weight of the specific resin is preferably from 1,000 to 200,000, more preferably from 2,500 to 150,000, even more preferably from 25,00 to 80,000, as a polystyrene equivalent value determined by GPC method.
  • the weight average molecular weight is within the above numerical range, deterioration of heat resistance and dry etching resistance can be further suppressed. Further, it is possible to further suppress deterioration of developability and deterioration of film formability due to increase in viscosity.
  • the degree of dispersion (molecular weight distribution) of the specific resin is usually 1.0 to 5.0, preferably 1.0 to 3.0, more preferably 1.2 to 3.0, and 1.2 to 2.0. is even more preferable.
  • the content of the specific resin is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 65% by mass or more, and 70% by mass or more, based on the total solid content of the composition. Particularly preferred.
  • the upper limit is preferably 99% by mass or less, more preferably 95% by mass.
  • the specific resin may be used alone or in combination. When two or more types are used, it is preferable that the total content is within the above-mentioned preferred content range.
  • the resist composition contains one or more metal compounds (specific metal compounds) selected from the group consisting of metal complexes, organometallic salts, and organometallic compounds.
  • metal atoms contained in the metal compound include lithium atom, sodium atom, magnesium atom, aluminum atom, potassium atom, calcium atom, scandium atom, titanium atom, vanadium atom, chromium atom, manganese atom, iron atom, cobalt atom, Nickel atom, copper atom, zinc atom, gallium atom, rubidium atom, strontium atom, yttrium atom, zirconium atom, ruthenium atom, rhodium atom, palladium atom, silver atom, cadmium atom, indium atom, tin atom, antimony atom, cesium atom , barium atom, hafnium atom, tungsten atom, rhenium atom, osmium atom, iridium atom, platinum atom, gold atom, mercury atom, thallium atom, lead atom, bismuth atom, lanthanum atom, cerium atom, p
  • the metal compound is one selected from the group consisting of iron atom, titanium atom, cobalt atom, nickel atom, zinc atom, silver atom, indium atom, tin atom, and hafnium atom because of its superior sensitivity. It is preferable that the above atoms are contained, and it is more preferable that one or more atoms selected from the group consisting of iron atoms, tin atoms, and hafnium atoms are contained.
  • the metal complex includes a central metal atom (preferably a transition metal atom or a typical metal atom such as zinc) and a ligand (for example, a neutral or anionic monodentate atom) that forms a coordinate bond with the central metal atom.
  • a ligand for example, a neutral or anionic monodentate atom
  • Examples include metal complexes containing a ligand or a neutral or anionic polydentate ligand (preferably a bidentate ligand).
  • a metal complex containing a central metal atom and an organic ligand forming a coordinate bond to the central metal atom is particularly preferred.
  • organic ligand refers to a ligand containing at least one carbon atom.
  • At least one of the ligands in the metal complex is an organic ligand.
  • the central metal atom include the metal atoms mentioned above.
  • the bond between the central metal atom and the ligand include a metal-nitrogen bond, a metal-carbon bond, a metal-oxygen bond, a metal-phosphorus bond, a metal-sulfur bond, and a metal-halogen bond. .
  • Examples of the ligands contained in the metal complex include halogen atoms, alkyl groups, cycloalkyl groups, acyl groups (e.g., acetylacetonate groups, etc.), carbonyl groups, isocyanide groups, alkene groups (e.g., butadiene groups, cyclooctane groups, etc.).
  • diene group, etc. alkyne group, aryl group (e.g., benzene and naphthalene, etc.), alkylidene group, alkylidine group, cyclopentadienyl group, indenyl group, cycloheptatrienium group, cyclobutadiene group, nitrogen molecule, nitro group
  • Examples include a phosphine group, a phosphine group, a thiol group, a hydroxyl group, an amine group, an ether group, an alkoxide group, an amide group, and a silyl group.
  • organic metal salts include salts consisting of a metal ion and an organic counter ion (salts consisting of a metal cation and an organic anion, and salts consisting of a metal anion and an organic cation). and an organic anion are preferred.
  • organic counter ion refers to a counter ion containing at least one carbon atom.
  • the metal ion include metal ions of the metal atomic species described above.
  • Organic counter ions are not particularly limited, and include, for example, organic cations containing quaternary nitrogen atoms (e.g., pyridinium ions, etc.), sulfonate anions (aliphatic sulfonate anions, aromatic sulfonate anions, etc.) (e.g., perfluoromethyl sulfonic acid anions, etc.), and carboxylic acid anions (aliphatic carboxylic acid anions, aromatic carboxylic acid anions, etc. (eg, 2-pyridinecarboxylic acid anions, etc.)), and the like.
  • organic cations containing quaternary nitrogen atoms e.g., pyridinium ions, etc.
  • sulfonate anions aliphatic sulfonate anions, aromatic sulfonate anions, etc.
  • carboxylic acid anions aliphatic carboxylic acid anions, aromatic carboxylic acid anions, etc. (eg,
  • organometallic compounds include compounds containing at least one metal-carbon bond (particularly a metal-carbon covalent bond).
  • One embodiment of the organometallic compound includes an organotin compound.
  • the organic tin compound include groups represented by the following formula (1S) or (2S).
  • R S1 represents an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
  • the alkyl group represented by R S1 may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkyl group is preferably 1 to 20, more preferably 1 to 8, and even more preferably 1 to 6.
  • Specific examples of alkyl groups include linear or branched chains such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, and n-hexyl group.
  • alkyl groups examples include alkyl groups, monocyclic cycloalkyl groups such as cyclopentyl groups and cyclohexyl groups, and polycyclic cycloalkyl groups such as norbornyl groups, tetracyclodecanyl groups, tetracyclododecanyl groups, and adamantyl groups.
  • the alkyl group may further have a substituent.
  • the alkenyl group represented by R S1 may be linear, branched, or cyclic.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 2 to 6 carbon atoms.
  • the alkenyl group may further have a substituent.
  • the alkynyl group represented by R S1 may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkynyl group is preferably 2 to 20, more preferably 2 to 10, even more preferably 2 to 6.
  • the alkynyl group may further have a substituent.
  • the aryl group represented by R S1 may be either monocyclic or polycyclic (eg, 2 to 6 rings).
  • the number of ring member atoms in the aryl group is preferably 6 to 15, more preferably 6 to 10.
  • the aryl group is preferably a phenyl group, a naphthyl group, or an anthranyl group, and more preferably a phenyl group.
  • the aryl group may further have a substituent.
  • R S2 represents an alkylcarbonyloxy group or a mono- or dialkylamino group.
  • the mono- or dialkylamino group means a group in which one or two hydrogen atoms of an amino group are substituted with an alkyl group.
  • the alkyl group moiety in the alkylcarbonyloxy group and the alkyl group moiety in the mono- or dialkylamino group include the same embodiments as the alkyl group represented by R S1 above.
  • Examples of the alkylcarbonyloxy group include an acetoxy group.
  • Examples of the mono- or dialkylamino group include a diethylamino group.
  • p represents an integer of 1 to 4
  • q represents an integer of 0 to 3
  • p+q 4.
  • p preferably represents 1 or 2.
  • R S3 represents an alkyl group, an alkenyl group, an alkynyl group, or an aryl group.
  • Examples of the alkyl group, alkenyl group, alkynyl group, and aryl group represented by R S3 include those similar to the alkyl group, alkenyl group, alkynyl group, and aryl group represented by R S1 in formula (1S). Can be mentioned.
  • examples of metal complexes, organometallic salts, and organometallic compounds include Organic Transition Metal Chemistry, Vol. Weller, T. Overton, J. Rourke, F. Armstrong, Tokyo Kagaku Dojin, 2016), Dictionary of Inorganic Compounds and Complexes (Katsunaka Nakahara, Kodansha Scientific, 1997), etc. can also be used. .
  • the content of the metal compound is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 3% by mass or more, based on the total solid content of the composition.
  • the upper limit is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 35% by mass or less.
  • one type of metal compound may be used or a plurality of metal compounds may be used in combination. When two or more types are used, it is preferable that the total content is within the above-mentioned preferred content range.
  • the content of the metal compound in the resist composition is preferably 1 to 40% by mass, more preferably 1 to 35% by mass, and 1 to 30% by mass based on the content of the specific resin. It is even more preferable.
  • the resist composition includes a solvent.
  • the solvent is not particularly limited, but includes (M1) propylene glycol monoalkyl ether carboxylate, and (M2) propylene glycol monoalkyl ether, lactic acid ester, acetate ester, alkoxypropionate, chain ketone, cyclic ketone, lactone, and alkylene carbonate. Note that this solvent may further contain components other than components (M1) and (M2).
  • Component (M1) is preferably at least one selected from the group consisting of propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether propionate, and propylene glycol monoethyl ether acetate; Glycol monomethyl ether acetate (PGMEA) is more preferred.
  • component (M2) the following are preferable.
  • propylene glycol monoalkyl ether propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether are preferred.
  • lactic acid ester ethyl lactate, butyl lactate, or propyl lactate is preferable.
  • acetic acid ester methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, isoamyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, or 3-methoxybutyl acetate is preferred. Butyl butyrate is also preferred.
  • alkoxypropionate ester methyl 3-methoxypropionate (MMP) or ethyl 3-ethoxypropionate (EEP) is preferable.
  • chain ketones include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 2-heptanone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, phenylacetone, methyl ethyl ketone, and methyl isobutyl.
  • Ketone, acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetyl carbinol, acetophenone, methylnaphthyl ketone, or methyl amyl ketone is preferred.
  • cyclic ketone methylcyclohexanone, isophorone, or cyclohexanone is preferred.
  • lactone ⁇ -butyrolactone is preferred.
  • alkylene carbonate propylene carbonate is preferred.
  • Component (M2) is more preferably propylene glycol monomethyl ether (PGME), ethyl lactate, ethyl 3-ethoxypropionate, methyl amyl ketone, cyclohexanone, butyl acetate, pentyl acetate, ⁇ -butyrolactone, or propylene carbonate.
  • PGME propylene glycol monomethyl ether
  • ethyl lactate ethyl 3-ethoxypropionate
  • methyl amyl ketone cyclohexanone
  • butyl acetate pentyl acetate
  • ⁇ -butyrolactone propylene carbonate
  • the solvent may include an ester solvent having 7 or more carbon atoms (preferably 7 to 14, more preferably 7 to 12, even more preferably 7 to 10) and having 2 or less heteroatoms. It is also preferable to include.
  • ester solvents having 7 or more carbon atoms and 2 or less heteroatoms include amyl acetate, 2-methylbutyl acetate, 1-methylbutyl acetate, hexyl acetate, pentyl propionate, hexyl propionate, butyl propionate, and isobutyl isobutyrate. , heptyl propionate, or butyl butanoate are preferred, and isoamyl acetate is more preferred.
  • the component (M2) preferably has a flash point (hereinafter also referred to as fp) of 37° C. or higher.
  • Such components (M2) include propylene glycol monomethyl ether (fp: 47°C), ethyl lactate (fp: 53°C), ethyl 3-ethoxypropionate (fp: 49°C), and methyl amyl ketone (fp: 42°C). ), cyclohexanone (fp: 44°C), pentyl acetate (fp: 45°C), methyl 2-hydroxyisobutyrate (fp: 45°C), ⁇ -butyrolactone (fp: 101°C), or propylene carbonate (fp: 132°C) is preferred.
  • propylene glycol monoethyl ether, ethyl lactate, pentyl acetate, or cyclohexanone are more preferred, and propylene glycol monoethyl ether or ethyl lactate is even more preferred.
  • flash point here means the value described in the reagent catalog of Tokyo Chemical Industry Co., Ltd. or Sigma-Aldrich.
  • the solvent contains component (M1). It is more preferable that the solvent consists essentially of component (M1) only, or is a mixed solvent of component (M1) and other components. In the latter case, it is more preferable that the solvent contains both component (M1) and component (M2).
  • the mass ratio (M1/M2) of component (M1) and component (M2) is preferably within the range of "100/0" to "15/85", and is preferably within the range of "100/0" to "40/60”. ”, and even more preferably within the range of “100/0” to “60/40”. That is, it is preferable that the solvent consists only of component (M1) or contains both component (M1) and component (M2), and the mass ratio thereof is as follows.
  • the mass ratio of component (M1) to component (M2) is preferably 15/85 or more, more preferably 40/60 or more, and even more preferably 60/40 or more. preferable. If such a configuration is adopted, it becomes possible to further reduce the number of development defects.
  • the mass ratio of component (M1) to component (M2) is, for example, 99/1 or less.
  • the content of components other than components (M1) and (M2) is preferably 5 to 30% by mass based on the total amount of the solvent.
  • the content of the solvent in the resist composition is preferably determined so that the solid content concentration is 0.5 to 30% by mass, and preferably 1 to 20% by mass in terms of better coating properties. is more preferable.
  • the resist composition may contain components other than the specific resin, specific metal compound, and solvent.
  • Other components include, but are not particularly limited to, photodegradable onium salt compounds, surfactants, and the like.
  • the resist composition preferably contains a compound having an onium salt structure (photodegradable onium salt compound) that generates an acid upon irradiation with actinic rays or radiation.
  • the specific resin is capable of forming a photodegradable onium salt compound through a relatively highly polar functional group or a specific functional group that may be included in the specific resin. Easily aggregates with compounds.
  • the agglomerated structure can be released due to cleavage of the photodegradable onium salt compound. In other words, due to the above-mentioned effect, the dissolution contrast between the unexposed area and the exposed area of the resist film is further increased, and the effects of the present invention are likely to be more excellent.
  • a photodegradable onium salt compound is a compound that has at least one salt structure site consisting of an anion site and a cation site, and that decomposes upon exposure to light to generate an acid (preferably an organic acid).
  • an acid preferably an organic acid
  • the above-mentioned salt structure moiety of the photodegradable onium salt compound is easily decomposed by exposure to light and is superior in organic acid production, and is composed of an organic cation moiety and an organic anion moiety with extremely low nucleophilicity. It is preferable that The above-mentioned salt structure site may be a part of the photodegradable onium salt compound, or may be the entirety.
  • the case where the above-mentioned salt structure part is a part of a photodegradable onium salt compound corresponds to a structure in which two or more salt structure parts are connected, for example, as in the photodegradable onium salt PG2 described below. do.
  • the number of salt structural moieties in the photodegradable onium salt is not particularly limited, but is preferably from 1 to 10, preferably from 1 to 6, and more preferably from 1 to 3.
  • organic acids generated from the photodegradable onium salt compound due to the action of exposure mentioned above include sulfonic acids (aliphatic sulfonic acids, aromatic sulfonic acids, camphor sulfonic acids, etc.), carboxylic acids (aliphatic sulfonic acids, etc.), carboxylic acid, aromatic carboxylic acid, aralkylcarboxylic acid, etc.), carbonylsulfonylimidic acid, bis(alkylsulfonyl)imidic acid, tris(alkylsulfonyl)methide acid, and the like.
  • the organic acid generated from the photodegradable onium salt compound by the action of exposure may be a polyhydric acid having two or more acid groups.
  • the photodegradable onium salt compound is the photodegradable onium salt compound PG2 described below
  • the organic acid generated by decomposition of the photodegradable onium salt compound due to exposure to light becomes a polyhydric acid having two or more acid groups.
  • the cation moiety constituting the salt structure moiety is preferably an organic cation moiety, and in particular, an organic cation (cation (ZaI)) represented by the above-mentioned formula (ZaI) or An organic cation (cation (ZaII)) represented by formula (ZaII) is preferred.
  • Photodegradable onium salt compound PG1 An example of a preferred embodiment of the photodegradable onium salt compound is an onium salt compound represented by "M + ). In the compound represented by "M + X - ", M + represents an organic cation and X - represents an organic anion.
  • the photodegradable onium salt compound PG1 will be explained below.
  • the organic cation represented by M + in the photodegradable onium salt compound PG1 is the organic cation (cation (ZaI)) represented by the above-mentioned formula (ZaI) or the organic cation (cation (ZaI)) represented by the formula (ZaII). Cation (ZaII)) is preferred.
  • the organic anion represented by X - in the photodegradable onium salt compound PG1 is preferably a non-nucleophilic anion (an anion with extremely low ability to cause a nucleophilic reaction).
  • non-nucleophilic anions include sulfonic acid anions (aliphatic sulfonic acid anions, aromatic sulfonic acid anions, camphor sulfonic acid anions, etc.), carboxylic acid anions (aliphatic carboxylic acid anions, aromatic carboxylic acid anions) , and aralkylcarboxylic acid anions), sulfonylimide anions, bis(alkylsulfonyl)imide anions, and tris(alkylsulfonyl)methide anions.
  • the aliphatic moiety in the aliphatic sulfonic acid anion and the aliphatic carboxylic acid anion may be an alkyl group or a cycloalkyl group, and may be a linear or branched alkyl group having 1 to 30 carbon atoms, or , a cycloalkyl group having 3 to 30 carbon atoms is preferred.
  • the alkyl group may be, for example, a fluoroalkyl group (which may or may not have a substituent other than a fluorine atom; it may also be a perfluoroalkyl group).
  • the aryl group in the aromatic sulfonic acid anion and the aromatic carboxylic acid anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • alkyl group, cycloalkyl group, and aryl group listed above may have a substituent.
  • Substituents are not particularly limited, but specifically include a nitro group, a halogen atom such as a fluorine atom or a chlorine atom, a carboxy group, a hydroxyl group, an amino group, a cyano group, an alkoxy group (preferably having 1 to 15 carbon atoms), Alkyl group (preferably 1 to 10 carbon atoms), cycloalkyl group (preferably 3 to 15 carbon atoms), aryl group (preferably 6 to 14 carbon atoms), alkoxycarbonyl group (preferably 2 to 7 carbon atoms), Acyl group (preferably 2 to 12 carbon atoms), alkoxycarbonyloxy group (preferably 2 to 7 carbon atoms), alkylthio group (preferably 1 to 15 carbon atoms), alkylsulfonyl group (preferably 1 to 15 carbon atoms) , an alkyliminosulfony
  • the aralkyl group in the aralkylcarboxylic acid anion is preferably an aralkyl group having 7 to 14 carbon atoms, such as a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group, and a naphthylbutyl group.
  • Examples of the sulfonylimide anion include saccharin anion.
  • the alkyl group in the bis(alkylsulfonyl)imide anion and tris(alkylsulfonyl)methide anion is preferably an alkyl group having 1 to 5 carbon atoms.
  • Substituents for these alkyl groups include halogen atoms, alkyl groups substituted with halogen atoms, alkoxy groups, alkylthio groups, alkyloxysulfonyl groups, aryloxysulfonyl groups, and cycloalkylaryloxysulfonyl groups, and fluorine
  • An alkyl group substituted with an atom or a fluorine atom is preferred.
  • the alkyl groups in the bis(alkylsulfonyl)imide anion may be bonded to each other to form a ring structure. This increases the acid strength.
  • non-nucleophilic anions include aliphatic sulfonic acid anions in which at least the ⁇ -position of the sulfonic acid is substituted with a fluorine atom, aromatic sulfonic acid anions substituted with a fluorine atom or a group having a fluorine atom, and an alkyl group having a fluorine atom.
  • a bis(alkylsulfonyl)imide anion substituted with , or a tris(alkylsulfonyl)methide anion whose alkyl group is substituted with a fluorine atom is preferred.
  • the organic anion represented by X ⁇ in the photodegradable onium salt compound PG1 is preferably an organic anion represented by the following formula (DA), for example.
  • a 31- represents an anionic group.
  • R a1 represents a hydrogen atom or a monovalent organic group.
  • L a1 represents a single bond or a divalent linking group.
  • a 31- represents an anionic group.
  • the anionic group represented by A 31- is not particularly limited, but for example, a group selected from the group consisting of the groups represented by the above formulas (B-1) to (B-14). is preferred.
  • the monovalent organic group R a1 is not particularly limited, but generally has 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms.
  • R a1 is preferably an alkyl group, a cycloalkyl group, or an aryl group.
  • the alkyl group may be linear or branched, and preferably has 1 to 20 carbon atoms, more preferably has 1 to 15 carbon atoms, and even more preferably has 1 to 10 carbon atoms.
  • the cycloalkyl group may be monocyclic or polycyclic, preferably a cycloalkyl group having 3 to 20 carbon atoms, more preferably a cycloalkyl group having 3 to 15 carbon atoms, and still more preferably a cycloalkyl group having 3 to 10 carbon atoms.
  • the aryl group may be monocyclic or polycyclic, preferably having 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the alkyl group, cycloalkyl group, and aryl group described above may further have a substituent.
  • the divalent linking group as L a1 is not particularly limited, but includes alkylene groups, cycloalkylene groups, aromatic groups, -O-, -CO-, -COO-, and groups formed by combining two or more of these. represent.
  • the alkylene group may be linear or branched and preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms.
  • the cycloalkylene group may be monocyclic or polycyclic, and preferably has 3 to 20 carbon atoms, more preferably 3 to 10 carbon atoms.
  • the aromatic group is a divalent aromatic group, preferably an aromatic group having 6 to 20 carbon atoms, and more preferably an aromatic group having 6 to 15 carbon atoms.
  • the aromatic ring constituting the aromatic group is not particularly limited, but examples include aromatic rings having 6 to 20 carbon atoms, and specific examples include benzene ring, naphthalene ring, anthracene ring, and thiophene ring. .
  • the aromatic ring constituting the aromatic group is preferably a benzene ring or a naphthalene ring, and more preferably a benzene ring.
  • the alkylene group, cycloalkylene group, and aromatic group may further have a substituent, and the substituent is preferably a halogen atom.
  • a 31- and R a1 may be bonded to each other to form a ring.
  • Examples of the photodegradable onium salt compound PG1 include paragraphs [0135] to [0171] of International Publication No. 2018/193954, paragraphs [0077] to [0116] of International Publication No. 2020/066824, and International Publication 2017/ It is also preferable to use the photoacid generators disclosed in paragraphs [0018] to [0075] and [0334] to [0335] of Publication No. 154345.
  • photodegradable onium salt compound a compound having a betaine structure in which the above-mentioned organic anion represented by X ⁇ and the above-mentioned organic cation represented by M + are bonded by a covalent bond can also be used.
  • the molecular weight of the photodegradable onium salt compound PG1 is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less.
  • Photodegradable onium salt compound PG2 Photodegradable onium salt compound PG2
  • compound (I) and compound (II) hereinafter, “compound (I) and compound (II)
  • photodegradable onium salt compound PG2 is a compound that has two or more of the above-described salt structure sites and generates a polyvalent organic acid upon exposure to light.
  • the photodegradable onium salt compound PG2 will be explained below.
  • Compound (I) is a compound having one or more of the following structural moieties X and one or more of the following structural moieties Y, and the following first acidic acid derived from the following structural moiety This is a compound that generates an acid containing the following second acidic site derived from the structural site Y below. structural site _ _ _ 2 - and a cationic site M 2 + , and forms a second acidic site represented by HA 2 upon irradiation with actinic rays or radiation. However, compound (I) satisfies the following condition I.
  • a compound PI obtained by replacing the cation moiety M 1 + in the structural moiety X and the cation moiety M 2 + in the structural moiety Y with H + in the compound (I) is The acid dissociation constant a1 derived from the acidic site represented by HA 1 is obtained by replacing the cationic site M 1 + with H + , and the acid dissociation constant a1 derived from the acidic site represented by HA 1 is obtained by replacing the cationic site M 2 + in the structural site Y with H + It has an acid dissociation constant a2 derived from the acidic site represented by HA 2 , and the acid dissociation constant a2 is larger than the acid dissociation constant a1.
  • the above-mentioned compound PI corresponds to an acid generated when compound (I) is irradiated with actinic rays or radiation.
  • compound (I) has two or more structural sites X
  • the structural sites X may be the same or different.
  • the two or more A 1 ⁇ and the two or more M 1 + may be the same or different.
  • the above A 1 - and the above A 2 - , and the above M 1 + and the above M 2 + may be the same or different, but the above A 1 - and the above Preferably, each A 2 - is different.
  • the anionic moiety A 1 - and the anionic moiety A 2 - are structural moieties containing negatively charged atoms or atomic groups, for example, the formulas (AA-1) to (AA-3) and the formula (BB Examples include structural sites selected from the group consisting of -1) to (BB-6). Note that in the following formulas (AA-1) to (AA-3) and formulas (BB-1) to (BB-6), * represents the bonding position.
  • R A represents a monovalent organic group. Examples of the monovalent organic group represented by R A include a cyano group, a trifluoromethyl group, and a methanesulfonyl group.
  • the cationic site M 1 + and the cationic site M 2 + are structural sites containing positively charged atoms or atomic groups, such as monovalent organic cations.
  • the organic cation is not particularly limited, but is preferably an organic cation (cation (ZaI)) represented by the above-mentioned formula (ZaI) or an organic cation (cation (ZaII)) represented by the formula (ZaII).
  • Compound (II) is a compound having two or more of the above structural moieties It is a compound that generates an acid containing two or more sites and the above structural site Z.
  • Structural site Z nonionic site capable of neutralizing acids
  • the above compound (II) is a compound PII (acid) having an acidic site represented by HA 1 obtained by replacing the above cation site M 1 + in the above structural site X with H + by irradiation with actinic rays or radiation. It can occur. That is, compound PII represents a compound having the acidic site represented by HA 1 above and the structural site Z, which is a nonionic site capable of neutralizing acid.
  • the definition of the structural moiety X and the definitions of A 1 - and M 1 + in compound (II) are the same as the definition of the structural moiety X and A 1 - and M 1 + in compound (I) described above. It has the same meaning as the definition, and the preferred embodiments are also the same.
  • the two or more structural sites X may be the same or different.
  • the two or more A 1 ⁇ and the two or more M 1 + may be the same or different.
  • the nonionic site that can neutralize the acid in the structural site Z is not particularly limited, and is preferably a site that contains a group that can electrostatically interact with protons or a functional group that has electrons. .
  • a group capable of electrostatic interaction with protons or a functional group having electrons a functional group having a macrocyclic structure such as a cyclic polyether, or a nitrogen atom having a lone pair of electrons that does not contribute to ⁇ conjugation is used. Examples include functional groups having such a functional group.
  • a nitrogen atom having a lone pair of electrons that does not contribute to ⁇ conjugation is, for example, a nitrogen atom having a partial structure shown in the following formula.
  • partial structures of functional groups having groups or electrons that can electrostatically interact with protons include crown ether structures, aza crown ether structures, primary to tertiary amine structures, pyridine structures, imidazole structures, and pyrazine structures. Among them, primary to tertiary amine structures are preferred.
  • the molecular weight of the photodegradable onium salt compound PG2 is preferably 100 to 10,000, more preferably 100 to 2,500, even more preferably 100 to 1,500.
  • the resist composition contains a photodegradable onium salt compound
  • its content is not particularly limited, but is preferably 0.5% by mass or more, more preferably 1% by mass or more, based on the total solid content of the composition. More preferably, the content is 5% by mass or more. Further, the content is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the photodegradable onium salt compounds may be used alone or in combination of two or more. When two or more types are used, it is preferable that the total content is within the above-mentioned preferred content range.
  • photodegradable onium salt compound PG2 Specific examples of the photodegradable onium salt compound PG2 are shown below, but the invention is not limited thereto.
  • the resist composition may contain a surfactant.
  • a surfactant is included, a pattern with better adhesion and fewer development defects can be formed.
  • the surfactant is preferably a fluorine-based and/or silicon-based surfactant. Examples of the fluorine-based and/or silicon-based surfactants include the surfactants disclosed in paragraphs [0218] and [0219] of International Publication No. 2018/193954.
  • surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0.0001 to 2% by mass, more preferably 0.0005 to 1% by mass, based on the total solid content of the composition.
  • Step 1 Forming a resist film on a substrate using a resist composition
  • Step 2 Exposing the resist film to light
  • Step 3 Developing the exposed resist film using a developer containing an organic solvent
  • Step 1 is a step of forming a resist film on a substrate using a resist composition.
  • the definition of the resist composition is as described above.
  • Examples of methods for forming a resist film on a substrate using a resist composition include a method of applying a resist composition onto a substrate. Note that it is preferable to filter the resist composition as necessary before coating.
  • the pore size of the filter is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.03 ⁇ m or less.
  • the filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • the resist composition can be applied onto a substrate (eg, silicon, silicon dioxide coated), such as those used in the manufacture of integrated circuit devices, by any suitable application method, such as a spinner or coater.
  • the coating method is preferably spin coating using a spinner.
  • the rotation speed during spin coating using a spinner is preferably 1000 to 3000 rpm.
  • the substrate may be dried to form a resist film. Note that, if necessary, various base films (inorganic film, organic film, antireflection film) may be formed under the resist film.
  • drying method examples include a method of drying by heating. Heating can be carried out using a means provided in an ordinary exposure machine and/or developing machine, or may be carried out using a hot plate or the like.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, even more preferably 80 to 130°C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, even more preferably 60 to 600 seconds.
  • the thickness of the resist film is not particularly limited, but is preferably 10 to 120 nm from the standpoint of forming fine patterns with higher precision. Among these, in the case of EUV exposure, the thickness of the resist film is more preferably 10 to 65 nm, and even more preferably 15 to 50 nm. Further, in the case of ArF immersion exposure, the thickness of the resist film is more preferably 10 to 120 nm, and even more preferably 15 to 90 nm.
  • a top coat may be formed on the upper layer of the resist film using a top coat composition.
  • the top coat composition does not mix with the resist film and can be uniformly applied to the upper layer of the resist film.
  • the top coat is not particularly limited, and a conventionally known top coat can be formed by a conventionally known method. Can be formed.
  • Specific examples of basic compounds that may be included in the top coat include basic compounds that may be included in the resist composition.
  • the top coat contains a compound containing at least one group or bond selected from the group consisting of an ether bond, a thioether bond, a hydroxyl group, a thiol group, a carbonyl bond, and an ester bond.
  • Step 2 is a step of exposing the resist film.
  • the exposure method include a method of irradiating the formed resist film with actinic rays or radiation through a predetermined mask.
  • Actinic light or radiation includes infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, and electron beams, preferably 250 nm or less, more preferably 220 nm or less, particularly preferably 1 Deep ultraviolet light with a wavelength of ⁇ 200 nm, specifically KrF excimer laser (248 nm), ArF excimer laser (193 nm), F2 excimer laser (157 nm), EUV (13 nm), X-rays, and electron beams. .
  • post-exposure heat treatment also referred to as post-exposure bake
  • the post-exposure heat treatment accelerates the reaction in the exposed area, resulting in better sensitivity and pattern shape.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, even more preferably 80 to 130°C.
  • the heating time is preferably 10 to 1000 seconds, more preferably 10 to 180 seconds, and even more preferably 30 to 120 seconds. Heating can be carried out using means provided in a normal exposure machine and/or developing machine, and may be carried out using a hot plate or the like.
  • Step 3 is a step of developing the exposed resist film using a developer to form a pattern.
  • the developer may be an alkaline developer or a developer containing an organic solvent (hereinafter also referred to as an organic developer).
  • Development methods include, for example, a method in which the substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and the substrate is left still for a certain period of time for development (paddle method). ), a method of spraying the developer onto the substrate surface (spray method), and a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the rotating substrate (dynamic dispensing method). can be mentioned. Furthermore, after the step of developing, a step of stopping the development may be carried out while substituting another solvent.
  • the development time is not particularly limited as long as the resin in the unexposed areas is sufficiently dissolved, and is preferably 10 to 300 seconds, more preferably 20 to 120 seconds.
  • the temperature of the developer is preferably 0 to 50°C, more preferably 15 to 35°C.
  • the organic developer is a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. It is preferable to have one.
  • a plurality of the above-mentioned solvents may be mixed together, or may be mixed with a solvent other than the above-mentioned ones or water.
  • the water content of the developer as a whole is preferably less than 50% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, and particularly preferably substantially free of water.
  • the content of the organic solvent in the organic developer is preferably 50% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass, based on the total amount of the developer. The following is more preferable, and 95% by mass or more and 100% by mass or less is particularly preferable.
  • the pattern forming method preferably includes a step of cleaning using a rinsing liquid after step 3.
  • the rinsing solution used in the rinsing step after the development step using an organic developer is not particularly limited as long as it does not dissolve the pattern, and solutions containing common organic solvents can be used.
  • the rinsing liquid contains at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents. is preferred.
  • the method of the rinsing process is not particularly limited, and examples include a method in which the rinsing liquid is continuously discharged onto the substrate rotating at a constant speed (rotary coating method), and a method in which the substrate is immersed in a tank filled with the rinsing liquid for a certain period of time. (dip method), and a method of spraying a rinsing liquid onto the substrate surface (spray method).
  • the pattern forming method of the present invention may include a heating step (Post Bake) after the rinsing step. In this step, the developer and rinse solution remaining between patterns and inside the patterns due to baking are removed. This step also has the effect of smoothing the resist pattern and improving surface roughness of the pattern.
  • the heating step after the rinsing step is usually carried out at 40 to 250°C (preferably 90 to 200°C) for 10 seconds to 3 minutes (preferably 30 seconds to 120 seconds).
  • the substrate may be etched using the formed pattern as a mask. That is, the pattern formed in step 3 may be used as a mask to process the substrate (or the lower film and the substrate) to form a pattern on the substrate.
  • the method of processing the substrate (or the lower layer film and the substrate) is not particularly limited, but by performing dry etching on the substrate (or the lower layer film and the substrate) using the pattern formed in step 3 as a mask, the substrate is processed.
  • a method of forming a pattern is preferred.
  • the dry etching is preferably oxygen plasma etching.
  • the various materials used in the pattern forming method of the present invention should not contain impurities such as metals. preferable.
  • the content of impurities contained in these materials is preferably 1 mass ppm or less, more preferably 10 mass ppt or less, even more preferably 100 mass ppt or less, particularly preferably 10 mass ppt or less, and most preferably 1 mass ppt or less.
  • examples of metal impurities include Na, K, Ca, Fe, Cu, Mg, Al, Li, Cr, Ni, Sn, Ag, As, Au, Ba, Cd, Co, Pb, Ti, V, W, Zn, etc. are mentioned.
  • Examples of methods for removing impurities such as metals from various materials include filtration using a filter. Details of filtration using a filter are described in paragraph [0321] of International Publication No. 2020/004306.
  • methods for reducing impurities such as metals contained in various materials include, for example, selecting raw materials with low metal content as raw materials constituting various materials, and filtering raw materials constituting various materials. and a method in which distillation is carried out under conditions where contamination is suppressed as much as possible by lining the inside of the apparatus with Teflon (registered trademark).
  • impurities may be removed using an adsorbent, or a combination of filter filtration and an adsorbent may be used.
  • adsorbent known adsorbents can be used, such as inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • inorganic adsorbents such as silica gel and zeolite
  • organic adsorbents such as activated carbon.
  • metal impurities have been sufficiently removed from the manufacturing equipment can be confirmed by measuring the content of metal components contained in the cleaning liquid used to clean the manufacturing equipment.
  • the content of metal components contained in the cleaning solution after use is preferably 100 parts per trillion or less, more preferably 10 parts per trillion or less, and even more preferably 1 parts per trillion or less.
  • Conductive compounds are added to organic processing solutions such as rinse solutions to prevent damage to chemical piping and various parts (filters, O-rings, tubes, etc.) due to static electricity charging and subsequent electrostatic discharge. You may.
  • the conductive compound is not particularly limited, and for example, methanol may be mentioned.
  • the amount added is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less in terms of maintaining favorable development characteristics or rinsing characteristics.
  • Examples of chemical liquid piping include SUS (stainless steel), polyethylene or polypropylene treated with antistatic treatment, or various types of piping coated with fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.). can be used.
  • antistatically treated polyethylene, polypropylene, or fluororesin polytetrafluoroethylene, perfluoroalkoxy resin, etc.
  • the present invention also relates to an electronic device manufacturing method including the above-described pattern forming method, and an electronic device manufactured by this manufacturing method.
  • the electronic device of the present invention is preferably installed in electrical and electronic equipment (home appliances, office automation (OA), media-related equipment, optical equipment, communication equipment, etc.).
  • the weight average molecular weight (Mw) and dispersity (Mw/Mn) of resins B-1 to B-16 and RB-1 to RB-2 were measured by GPC (carrier: tetrahydrofuran (THF)) (polystyrene equivalent amount).
  • the composition ratio (mol% ratio) of the resin was measured by 13 C-NMR (Nuclear Magnetic Resonance).
  • Metal compound The metal compounds (A-1 to A-20) shown in Tables 1 and 2 are shown below.
  • Photodegradable onium salts (C-1 to C-5) shown in Tables 1 and 2 are shown below.
  • D-1 Propylene glycol monomethyl ether acetate (PGMEA)
  • D-2 Propylene glycol monomethyl ether (PGME)
  • D-3 Cyclohexanone
  • D-4 Ethyl lactate
  • D-5 ⁇ -butyrolactone
  • D-6 Diacetone alcohol
  • the wafer After rinsing the wafer by pouring the rinsing liquid shown in 1 for 10 seconds, the wafer was rotated at a rotation speed of 4000 rpm for 30 seconds to obtain a line-and-space pattern with a pitch of 40 nm.
  • Optimal exposure amount (sensitivity evaluation)
  • SEM length-measuring scanning electron microscope
  • the actual exposure amount was determined, and this was defined as the optimum exposure amount (mJ/cm 2 ).
  • Table 1 The results are shown in Table 1.
  • the exposure amount that reproduces a mask pattern with a line width of 20 nm is set as the optimum exposure amount, and the line width of the line-and-space pattern is formed by further increasing the exposure amount from the optimum exposure amount.
  • the minimum line width at which the pattern can be resolved without disconnection when the pattern is narrowed was defined as a value (nm) indicating resolution. The smaller the value indicating resolution, the finer the pattern is resolved and the higher the resolution. More specifically, the resolution is preferably 18 nm or less, more preferably 16 nm or less, and even more preferably 14 nm or less. The results are shown in Table 1.
  • the resist compositions of Examples had excellent sensitivity and could form patterns with excellent resolution.
  • the specific metal compound in the resist composition was selected from the group consisting of iron atom, titanium atom, cobalt atom, nickel atom, zinc atom, silver atom, indium atom, tin atom, and hafnium atom. (preferably, one or more atoms selected from the group consisting of iron atoms, tin atoms, and hafnium atoms), the sensitivity of the resist composition can be further improved. confirmed.
  • the specific resin in the resist composition has a repeating unit represented by the above formula (1) (where X represents a chlorine atom) and a repeat unit represented by the above formula (3). It was confirmed that when a repeating unit (C 1 represents a phenolic hydrogen atom or a carboxy group) is included, a pattern with improved resolution can be formed.
  • a mask blank having a resist film obtained by the above procedure was subjected to pattern irradiation using an electron beam exposure device (EBM-9000 manufactured by NuFlare Technology Co., Ltd., acceleration voltage 50 kV). At this time, drawing was performed so that the line size was 22 nm and a 1:1 line and space was formed. After baking the exposed resist film at 100°C for 60 seconds, develop it by puddle for 30 seconds with the developer shown in Table 2. After rinsing the wafer by pouring the rinsing liquid shown in 2 for 10 seconds, the wafer was rotated at a rotation speed of 4000 rpm for 30 seconds to obtain a line-and-space pattern with a pitch of 44 nm.
  • EBM-9000 electron beam exposure device manufactured by NuFlare Technology Co., Ltd., acceleration voltage 50 kV
  • the optimum exposure amount is specifically preferably 250 mJ/cm 2 or less, more preferably 200 mJ/cm 2 or less.
  • the resolution is preferably 20 nm or less, more preferably 18 nm or less, and even more preferably 16 nm or less.
  • the resist compositions of Examples had excellent sensitivity and could form patterns with excellent resolution. Further, from comparison with Examples, it was found that the specific metal compound in the resist composition was selected from the group consisting of iron atoms, titanium atoms, cobalt atoms, nickel atoms, zinc atoms, silver atoms, indium atoms, tin atoms, and hafnium atoms. (preferably, one or more atoms selected from the group consisting of iron atoms, tin atoms, and hafnium atoms), the sensitivity of the resist composition can be further improved. confirmed.
  • the specific resin in the resist composition has a repeating unit represented by the above formula (1) (where X represents a chlorine atom) and a repeat unit represented by the above formula (3). It was confirmed that when a repeating unit (C 1 represents a phenolic hydrogen atom or a carboxy group) is included, a pattern with improved resolution can be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本発明の第1の課題は、感度に優れ、且つ、形成されるパターンの解像性にも優れる、感活性光線性又は感放射線性樹脂組成物を提供することである。また、本発明の第2の課題は、上記感活性光線性又は感放射線性樹脂組成物に関する、レジスト膜、パターン形成方法、及び、電子デバイスの製造方法を提供することである。 本発明の感活性光線性又は感放射線性樹脂組成物は、 金属化合物と、 X線、電子線、又は極紫外線の照射により主鎖が分解する樹脂と、 溶剤と、を含む感活性光線性又は感放射線性樹脂組成物であって、 上記金属化合物が、金属錯体、有機金属塩、及び有機金属化合物からなる群から選ばれる1種以上の金属化合物を含み、 上記樹脂が、式(1)で表される繰り返し単位又は式(XR0)で表される繰り返し単位を含む樹脂を含む。

Description

感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
 本発明は、感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法に関する。
 KrFエキシマレーザー(248nm)用レジスト以降、光吸収による感度低下を補うべく、化学増幅を利用したパターン形成方法が用いられている。例えば、ポジ型の化学増幅法では、まず、露光部に含まれる光酸発生剤が、光照射により分解して酸を発生する。そして、露光後のベーク(PEB:Post Exposure Bake)過程等において、発生した酸の触媒作用により、感活性光線性又は感放射線性樹脂組成物に含まれる樹脂が有するアルカリ不溶性の基をアルカリ可溶性の基に変化させる等して現像液に対する溶解性を変化させる。その後、例えば塩基性水溶液を用いて、現像を行う。これにより、露光部を除去して、所望のパターンを得る。
 半導体素子の微細化のために、露光光源の短波長化及び投影レンズの高開口数(高NA)化が進み、現在では、193nmの波長を有するArFエキシマレーザーを光源とする露光機が開発されている。また、昨今では、極紫外線(EUV光: Extreme Ultraviolet)及び電子線(EB:Electron Beam)を光源としたパターン形成方法も検討されつつある。
 このような現状のもと、感活性光線性又は感放射線性樹脂組成物として、種々の構成が提案されている。
 例えば、特許文献1では、極紫外線(EUV)の照射により主鎖が切断されて現像液に対する溶解性が増大する重合体を含む、EUVリソグラフィ用ポジ型レジスト組成物を開示している。
特開2019-211531号公報
 本発明者らは、特許文献1を参照して感活性光線性又は感放射線性樹脂組成物を調製して検討したところ、感度について更に改善する余地があることを明らかとした。また、解像性についても、同様に、更なる改善の余地があることを明らかとした。
 そこで、本発明は、感度に優れ、且つ、形成されるパターンの解像性にも優れる、感活性光線性又は感放射線性樹脂組成物を提供することを課題とする。
 また、本発明は、上記感活性光線性又は感放射線性樹脂組成物に関する、レジスト膜、パターン形成方法、及び、電子デバイスの製造方法を提供することを課題とする。
 本発明者らは、以下の構成により上記課題を解決できることを見出した。
 〔1〕 金属化合物と、
 X線、電子線、又は極紫外線の照射により主鎖が分解する樹脂と、
 溶剤と、を含む感活性光線性又は感放射線性樹脂組成物であって、
 上記金属化合物が、金属錯体、有機金属塩、及び有機金属化合物からなる群から選ばれる1種以上であり、
 上記樹脂が、後述する式(1)で表される繰り返し単位又は後述する式(XR)で表される繰り返し単位を含む、感活性光線性又は感放射線性樹脂組成物。
 〔2〕 上記樹脂が、水酸基、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基からなる群から選ばれる1種以上の官能基を含む、〔1〕に記載の感活性光線性又は感放射線性樹脂組成物。
 〔3〕 上記樹脂が、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基を含む、〔1〕又は〔2〕に記載の感活性光線性又は感放射線性樹脂組成物。
 〔4〕 上記式(1)で表される繰り返し単位が、後述する式(1A)で表される繰り返し単位を含む、〔1〕~〔3〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物。
 〔5〕 上記Xが、塩素原子を表す、〔1〕~〔4〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物。
 〔6〕 上記樹脂が、上記式(1)で表される繰り返し単位と、後述する式(3)で表される繰り返し単位とを含む、〔1〕~〔5〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物。
 〔7〕 上記Cが、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基を含む、〔6〕に記載の感活性光線性又は感放射線性樹脂組成物。
 〔8〕 上記金属化合物が、鉄原子、チタン原子、コバルト原子、ニッケル原子、亜鉛原子、銀原子、インジウム原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の金属原子を含む、〔1〕~〔7〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物。
 〔9〕 上記金属化合物の含有量が、上記樹脂の含有量に対して、1~40質量%である、〔1〕~〔8〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物。
 〔10〕 更に、光分解型オニウム塩化合物を含む、〔1〕~〔9〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物。
 〔11〕 〔1〕~〔10〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物を用いて形成された、レジスト膜。
 〔12〕 〔1〕~〔10〕のいずれかに記載の感活性光線性又は感放射線性樹脂組成物を用いて、基板上にレジスト膜を形成する工程と、
 上記レジスト膜をX線、電子線、又は極紫外線で露光する工程と、
 上記露光されたレジスト膜を現像液を用いて現像する工程と、を有する、パターン形成方法。
 〔13〕 〔12〕に記載のパターン形成方法を含む、電子デバイスの製造方法。
 本発明によれば、感度に優れ、且つ、形成されるパターンの解像性にも優れる、感活性光線性又は感放射線性樹脂組成物を提供できる。
 また、本発明は、上記感活性光線性又は感放射線性樹脂組成物に関する、レジスト膜、パターン形成方法、及び、電子デバイスの製造方法を提供できる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
 本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme Ultraviolet)、X線、及び電子線(EB:Electron Beam)等を意味する。本明細書中における「光」とは、活性光線又は放射線を意味する。
 本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV光等による露光のみならず、電子線、及びイオンビーム等の粒子線による描画も含む。
 本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書において表記される2価の基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。また、上記化合物は「X-CO-O-Z」であってもよく「X-O-CO-Z」であってもよい。
 本明細書において、樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(分子量分布ともいう)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー製HLC-8120GPC)によるGPC測定(溶媒:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー社製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
 本明細書において酸解離定数(pKa)とは、水溶液中でのpKaを表し、具体的には、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求められる値である。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示す。
 ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。
 一方で、pKaは、分子軌道計算法によっても求められる。この具体的な方法としては、熱力学サイクルに基づいて、水溶液中におけるH解離自由エネルギーを計算することで算出する手法が挙げられる。H解離自由エネルギーの計算方法については、例えばDFT(密度汎関数法)により計算することができるが、他にも様々な手法が文献等で報告されており、これに制限されるものではない。なお、DFTを実施できるソフトウェアは複数存在するが、例えば、Gaussian16が挙げられる。
 本明細書中のpKaとは、上述した通り、ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を計算により求められる値を指すが、この手法によりpKaが算出できない場合には、DFT(密度汎関数法)に基づいてGaussian16により得られる値を採用するものとする。
 また、本明細書中のpKaは、上述した通り「水溶液中でのpKa」を指すが、水溶液中でのpKaが算出できない場合には、「ジメチルスルホキシド(DMSO)溶液中でのpKa」を採用するものとする。
 本明細書において、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 本明細書において、固形分とは、レジスト膜を形成する成分を意図し、溶剤は含まれない。また、レジスト膜を形成する成分であれば、その性状が液体状であっても、固形分とみなす。
[感活性光線性又は感放射線性樹脂組成物]
 本発明の感活性光線性又は感放射線性樹脂組成物(以下「レジスト組成物」ともいう。)は、
 金属化合物と、
 X線、電子線、又は極紫外線の照射により主鎖が分解する樹脂と、
 溶剤と、を含む感活性光線性又は感放射線性樹脂組成物であって、
 上記金属化合物が、金属錯体、有機金属塩、及び有機金属化合物からなる群から選ばれる1種以上の金属化合物(以下「特定金属化合物」ともいう。)を含み、
 上記樹脂が、後述する式(1)で表される繰り返し単位又は後述する式(XR0)で表される繰り返し単位を含む樹脂(以下「特定樹脂」ともいう。)を含む。
 本発明のレジスト組成物は、上記構成により、感度が優れており、且つ、解像性に優れるパターンを形成できる。これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 特定樹脂は、所定の繰り返し単位を含むことから、X線、電子線、又は極紫外線を照射されると主鎖が切断されて低分子量化し、現像液に対する溶解性が増大する。特定樹脂を含むレジスト組成物により形成されるレジスト膜は、X線、電子線、又は極紫外線の照射を受けると、特定樹脂の上記作用機構に起因して露光部と未露光部において現像液に対する溶解性の差(溶解コントラスト)が生じることで、パターンの形成を可能としている。
 本発明のレジスト組成物により形成されるレジスト膜は、上述の特定樹脂とともに特定金属化合物を含む。このようなレジスト膜は、X線、電子線、又は極紫外線の照射を受けた際、特定樹脂の分解(イオン化)によって生じる二次電子に加えて、特定金属化合物からも二次電子が発生するため、膜中に発生する二次電子の量が著しく多い。この結果として、発生した二次電子によって生じる特定樹脂の主鎖分解量が多くなり(換言すると、主鎖分解効率が大きく)、感度に優れると推測される。
 また、特定樹脂は、カルボニル結合及びエーテル結合といった比較的高極性の結合を含み、更に、任意で、後述するように比較的高極性の官能基(例えば、水酸基、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基等)を含んでいてもよい。本発明のレジスト組成物により形成されるレジスト膜中において、特定金属化合物は、特定樹脂中に含まれる上述の高極性の結合や官能基(ヘテロ原子又はヘテロ原子を含む原子団)と静電相互作用により緩やかに結合して凝集構造をとって存在していると推測される。一方で、上述の凝集構造は、X線、電子線、又は極紫外線の照射を受けると、容易に解除され易い。つまり、本発明のレジスト組成物により形成されるレジスト膜は、特定金属化合物と特定樹脂との静電相互作用の影響により未露光部と露光部の溶解コントラストが高く、結果として、形成されるパターンの解像性が優れると推測される。
 以下において、レジスト組成物の感度がより優れること、及び/又は、レジスト組成物から形成されるパターンの解像性がより優れることを、「本発明の効果がより優れる」ともいう。
 以下、まず、レジスト組成物に含まれる各種成分について説明する。
〔特定樹脂〕
 レジスト組成物は、X線、電子線、又は極紫外線の照射により主鎖が分解する樹脂として、後述する式(1)で表される繰り返し単位又は後述する式(XR)で表される繰り返し単位を含む樹脂(特定樹脂)を含む。
 特定樹脂の具体的な態様としては、後述する式(1)で表される繰り返し単位を含む樹脂(以下「特定樹脂1」ともいう。)であるか、又は、後述する式(XR)で表される繰り返し単位を含む樹脂(以下「特定樹脂2」ともいう。)であるのが好ましい。
 なお、特定樹脂としては、後述する式(1)で表される繰り返し単位又は後述する式(XR)で表される繰り返し単位をいずれも含む樹脂であってもよい。
 また、特定樹脂としては、本発明の効果がより優れる点で、後述するとおり、水酸基(アルコール性水酸基及びフェノール性水酸基)、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基からなる群から選ばれる1種以上の官能基(以下「特定官能基」ともいう。)を含むのが好ましく、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基を含むのがより好ましい。
 特定樹脂としては、本発明の効果が優れる点で、特定樹脂1が好ましく、上述した式(1)で表される繰り返し単位と、上述した式(3)で表される繰り返し単位とを含む樹脂であるのがより好ましく、なかでも、感度がより一層向上する点で、上述した式(1)で表される繰り返し単位(但し、Xが塩素原子を表す)と、上述した式(3)で表される繰り返し単位(但し、Cがフェノール性水素原子又はカルボキシ基を表す)を含む樹脂であるのが更に好ましい。
 以下、特定樹脂1及び特定樹脂2について、各々説明する。
<特定樹脂1>
 特定樹脂1は、下記式(1)で表される繰り返し単位を含む樹脂である。
(式(1)で表される繰り返し単位)
 以下、式(1)で表される繰り返し単位について説明する。
 式(1)中、Xは、ハロゲン原子又はフッ化アルキル基を表す。
 Xで表されるハロゲン原子としては、本発明の効果がより優れる点で、塩素原子が好ましい。
 Xで表されるフッ化アルキル基におけるアルキル基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよい。また、アルキル基に置換するフッ素原子は1個以上であればよいが、本発明の効果がより優れる点で、パーフルオロアルキル基であるのが好ましい。
 Xで表されるフッ化アルキル基の炭素数としては、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい。
 Xとしては、本発明の効果がより優れる点で、ハロゲン原子であるのが好ましく、塩素原子であるのがより好ましい。
 式(1)中、Rは、水素原子又は有機基を表す。
 Rで表される有機基としては特に制限されないが、直鎖状、分岐鎖状、又は環状のアルキル基であるのが好ましい。
 上記アルキル基の炭素数としては、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい。
 また、上記アルキル基は、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、ハロゲン原子(好ましくはフッ素原子又はヨウ素原子)及び特定官能基等が挙げられる。
 Rとしては、本発明の効果がより優れる点で、水素原子が好ましい。
 Rは、置換基を表す。
 Rで表される置換基としては特に制限されず、下記式(1-1)で表される基、水酸基、及び、-NH等が挙げられる。
 式(1-1):*-L1A-R1A
 式(1-1)中、*は、結合位置を表す。
 式(1-1)中、L1Aは、単結合、-O-、又は-N(R)-を表す。
 Rは、水素原子又は有機基を表す。
 上記Rで表される有機基としては特に制限されないが、例えば、直鎖状、分岐鎖状、又は環状のアルキル基であるのが好ましい。
 上記アルキル基の炭素数としては、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい。
 また、上記アルキル基は、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、ハロゲン原子(好ましくはフッ素原子又はヨウ素原子)及び特定官能基等が挙げられる。
 Rとしては、本発明の効果がより優れる点で、水素原子が好ましい。
 式(1-1)中、R1Aは、水素原子又は有機基を表す。
 Rで表される有機基としては、特に制限されないが、アルキル基、アリール基、アラルキル基、及び後述するオニウム塩構造を含む基等が挙げられる。
 上記アルキル基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよい。
 上記アルキル基の炭素数としては特に制限されず、例えば、1~20が挙げられる。
 上記アルキル基のうち、直鎖状又は分岐鎖状のアルキル基の炭素数としては、1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アルキル基のうち、環状のアルキル基(シクロアルキル基)としては、単環及び多環のいずれであってもよい。また、環状のアルキル基の炭素数としては特に制限されないが、例えば、5~15が好ましく、5~10がより好ましい。シクロアルキル基としては、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。
 また、上記アルキル基は、置換基を有していてもよい。置換基としては、特に制限されず、ハロゲン原子(好ましくはフッ素原子又はヨウ素原子)及び特定官能基等が挙げられる。
 また、アルキル基の一態様として、-C(RX1)(RX2)(RX3)で表される基が挙げられる。RX1~RX3は、各々独立に、直鎖状、分岐鎖状、又は環状のアルキル基を表す。
 RX1~RX3で表されるアルキル基の炭素数としては特に制限されず、例えば、1~20が挙げられる。上記アルキル基のうち、直鎖状又は分岐鎖状のアルキル基の炭素数としては、1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。また、上記アルキル基のうち、環状のアルキル基(シクロアルキル基)としては、単環及び多環のいずれであってもよい。また、環状のアルキル基の炭素数としては特に制限されないが、例えば、5~15が好ましく、5~10がより好ましい。シクロアルキル基としては、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。
 RX1~RX3としては、各々独立に、直鎖状又は分岐鎖状のアルキル基(好ましくは直鎖状のアルキル基)を表すか、RX1~RX3のうちの2つが結合して単環又は多環の5~8員環の脂環を形成するのが好ましい。
 また、上記RX1~RX3で表されるアルキル基は、置換基を有していてもよい。置換基としては、特に制限されず、ハロゲン原子(好ましくはフッ素原子又はヨウ素原子)及び特定官能基等が挙げられる。
 なお、アルキル基が-C(RX1)(RX2)(RX3)で表される基を表す場合、上記L1Aとしては、-O-又は-N(R)-を表すのが好ましく、-O-を表すのがより好ましい。
 上記アリール基としては、単環及び多環のいずれであってもよく、炭素数6~20のアリール基が好ましく、炭素数6~15のアリール基がより好ましく、炭素数6~10のアリール基が更に好ましい。上記アリール基としては、なかでも、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 また、上記アリール基は、置換基を有していてもよい。置換基としては、特に制限されず、ハロゲン原子(好ましくはフッ素原子又はヨウ素原子)及び特定官能基等が挙げられ、なかでも、フッ素原子、ヨウ素原子、又は水酸基が好ましい。
 上記アラルキル基としては、上述したアルキル基中の水素原子のうちの1つが上述したアリール基で置換された構造であるのが好ましい。上記アラルキル基の炭素数としては、7~20が好ましく、7~15がより好ましい。
 上記オニウム塩構造を含む基としては、後述のとおりである。
 式(1)中、RとRとは、互いに連結して環を形成してもよい。
 RとRとが互いに結合して結合する環は、式(1)中に明示される2つの炭素原子及び1つのカルボニル(>C=O)炭素を少なくとも含む環であり、5~8員環であるのが好ましく、5又は6員環であるのがより好ましい。
 また、上記環は、ヘテロ原子(例えば、窒素原子、酸素原子、及び硫黄原子等)を環員原子として含んでいてもよい。また、上記環における炭素原子(但し、式(1)中に明示される2つの炭素原子を除く)以外の炭素原子がカルボニル(>C=O)炭素で置換されていてもよい。
 上述の式(1)で表される繰り返し単位としては、本発明の効果がより優れる点で、なかでも、下記式(1A)で表される繰り返し単位を表すのが好ましい。
 式(1A)中、X及びRは、式(1)中のX及びRと同義であり、好適態様も同じである。
 式(1A)中、L2Aは、-O-又は-N(R)-を表す。Rは、水素原子又は有機基を表す。上記Rで表される有機基としては、上述の式(1-1)中におけるRと同様のものが挙げられる。
 式(1A)中、R1Aは、水素原子又は有機基を表す。上記R1Aで表される有機基としては、上述の式(1-1)中におけるR1Aと同様のものが挙げられる。
 なお、RとR1Aとは、互いに連結して環を形成してもよい。RとR1Aとが互いに連結して形成する環としては、上述の式(1)においてRとRとが互いに連結して形成する環と同様のものが挙げられる。
 特定樹脂1中、式(1)で表される繰り返し単位の含有量としては、特定樹脂1の全繰り返し単位に対して、5~95モル%が好ましく、10~90モル%がより好ましく、20~80モル%が更に好ましい。
 特定樹脂1中、式(1)で表される繰り返し単位は1種であっても2種以上であってもよい。式(1)で表される繰り返し単位が2種以上である場合、その合計含有量が上記数値範囲となることが好ましい。
(その他の繰り返し単位)
 特定樹脂1は、更に、式(1)で表される繰り返し単位とは異なるその他の繰り返し単位(以下「その他の繰り返し単位」ともいう。)を含むのが好ましい。
 その他の繰り返し単位としては、式(2)で表される繰り返し単位が好ましく、本発明の効果がより優れる点で、式(3)で表される繰り返し単位がより好ましい。
《式(2)で表される繰り返し単位》
 式(2)中、Aは、水素原子又はアルキル基を表す。
 Aで表されるアルキル基としては、直鎖状、分岐鎖状、又は環状のいずれであってもよい。上記アルキル基の炭素数としては、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい。
 また、上記アルキル基は、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、ハロゲン原子(好ましくはフッ素原子又はヨウ素原子)及び特定官能基等が挙げられる。
 Aとしては、本発明の効果がより優れる点で、アルキル基が好ましく、炭素数1~6のアルキル基がより好ましく、1~3のアルキル基が更に好ましい。
 Lは、単結合又は2価の連結基を表す。
 Lで表される2価の連結基としては特に制限されないが、例えば、-CO-、-O-、-SO-、-SO-、-NR-、アルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、アリーレン基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。また、上記アルキレン基、上記シクロアルキレン基、及びアリーレン基は、置換基を有していてもよい。置換基としては、例えば、アルキル基及びハロゲン原子及び特定官能基等が挙げられる。Rとしては、水素原子又は炭素数1~6のアルキル基が挙げられる。
 Lとしては、単結合、-COO-、又は-CONR-が好ましい。
 Bは、置換基を表す。
 Bで表される置換基としては特に制限されず、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、アルコキシ基、アシルオキシ基、シアノ基、ニトロ基、ハロゲン原子、ラクトン基、後述するオニウム塩構造を含む基、及び特定官能基等が挙げられる。
 また、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、上記アルケニル基、上記アルコキシ基、上記アシルオキシ基、及び上記ラクトン基は、更に置換基を有していてもよく、置換基としては、例えば、ハロゲン原子及び特定官能基等が挙げられる。なお、アルキル基がフッ素原子を有する場合、パーフルオロアルキル基であってもよい。
 上記アルキル基は、直鎖状及び分岐鎖状のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記シクロアルキル基は、単環及び多環のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、5~15が好ましく、5~10がより好ましい。シクロアルキル基としては、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。
 上記アリール基は、単環及び多環のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、6~15が好ましく、6~10がより好ましい。アリール基としては、フェニル基、ナフチル基、又はアントラニル基が好ましく、フェニル基がより好ましい。
 上記アラルキル基としては、上述のアルキル基中の水素原子のうちの1つが上述のアリール基で置換された構造であるのが好ましい。上記アラルキル基の炭素数としては、7~20が好ましく、7~15がより好ましい。
 上記アルケニル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。
 上記アルコキシ基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよく、炭素数としては1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アシルオキシ基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよく、炭素数としては2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。
 ラクトン基としては、5~7員環のラクトン基が好ましく、ビシクロ構造若しくはスピロ構造を形成する形で5~7員環のラクトン環に他の環構造が縮環しているものがより好ましい。
《式(3)で表される繰り返し単位》
 式(3)中、A及びLは、式(2)中のA及びL同義であり、好適態様も同じである。
 Bは、(m1+1)価の連結基を表す。
 Bで表される(m1+1)価の連結基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、アルコキシ基、アシルオキシ基、及びラクトン基からなる群から選ばれる1価の基からm1個の水素原子を除いて形成される基が挙げられる。
 また、上記アルキル基、上記シクロアルキル基、上記アリール基、上記アラルキル基、上記アルケニル基、上記アルコキシ基、上記アシルオキシ基、及び上記ラクトン基は、更に、Cで表される特定種の官能基以外の置換基を有していてもよく、置換基としては、例えば、ハロゲン原子が挙げられる。なお、アルキル基がフッ素原子を有する場合、パーフルオロアルキル基であってもよい。
 上記アルキル基は、直鎖状及び分岐鎖状のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記シクロアルキル基は、単環及び多環のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、5~15が好ましく、5~10がより好ましい。シクロアルキル基としては、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。
 上記アリール基は、単環及び多環のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、6~15が好ましく、6~10がより好ましい。アリール基としては、フェニル基、ナフチル基、又はアントラニル基が好ましく、フェニル基がより好ましい。
 上記アラルキル基としては、上述のアルキル基中の水素原子のうちの1つが上述のアリール基で置換された構造であるのが好ましい。上記アラルキル基の炭素数としては、7~20が好ましく、7~15がより好ましい。
 上記アルケニル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。また、炭素数としては特に制限されないが、例えば、2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。
 上記アルコキシ基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよく、炭素数としては1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アシルオキシ基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよく、炭素数としては2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。
 ラクトン基としては、5~7員環のラクトン基が好ましく、ビシクロ構造若しくはスピロ構造を形成する形で5~7員環のラクトン環に他の環構造が縮環しているものがより好ましい。
 Bで表される(m1+1)価の連結基としては、なかでも、(m1+1)価の芳香族炭化水素環基(アリール基からm1個の水素原子を除いて形成される基)であるのが好ましく、(m1+1)価のベンゼン環基又は(m1+1)価のナフタレン環基であるのがより好ましい。また、上記(m1+1)価のベンゼン環基及び(m1+1)価のナフタレン環基は、置換基としてハロゲン原子を有しているのも好ましい。
 Cは、水酸基、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基からなる群から選ばれる1種以上の官能基を表す。つまり、Cは、特定官能基を表す。上記官能基としては、本発明の効果がより優れる点で、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基がより好ましい。
 なお、Cがフェノール性水酸基を表す場合、Bで表される(m1+1)価の連結基は、(m1+1)価の芳香族炭化水素環基(アリール基からm1個の水素原子を除いて形成される基)を表すのが好ましい。
 m1は、1以上の整数を表す。
 m1としては、例えば、1~6が好ましく、1~3がより好ましい。
 なお、m1が2以上の整数を表す場合、複数存在するC同士は、互いに同一であっても異なっていてもよい。
 特定樹脂1中、式(2)で表される繰り返し単位(好ましくは式(3)で表される繰り返し単位)の含有量としては、特定樹脂1の全繰り返し単位に対して、5~95モル%が好ましく、10~90モル%がより好ましく20~80モル%が更に好ましい。
 特定樹脂1中、式(2)で表される繰り返し単位(好ましくは式(3)で表される繰り返し単位)は1種であっても2種以上であってもよい。式(2)で表される繰り返し単位(好ましくは式(3)で表される繰り返し単位)が2種以上である場合、その合計含有量が上記数値範囲となることが好ましい。
(特定樹脂1の好適態様)
 特定樹脂1としては、上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位を含むのが好ましく、上記式(1)で表される繰り返し単位及び上記式(3)で表される繰り返し単位を含むのがより好ましい。
 上記式(1)で表される繰り返し単位及び上記式(2)で表される繰り返し単位(好ましくは式(3)で表される繰り返し単位)の合計含有量は、特定樹脂1の全繰り返し単位に対して、90モル%以上であるのが好ましく、95モル%以上であるのがより好ましい。なお、上限値としては、100モル%以下が好ましい。
 また、特定樹脂1が上記式(1)で表される繰り返し単位と上記式(2)で表される繰り返し単位(好ましくは式(3)で表される繰り返し単位)とを含む共重合体である場合、ランダム共重合体、ブロック共重合体、及び交互共重合体(上記式(1)で表される繰り返し単位と上記式(2)で表される繰り返し単位(好ましくは式(3)で表される繰り返し単位)とがABAB・・・の様に交互に配置された共重合体)等のいずれの形態であってもよいが、なかでも、交互共重合体であるのが好ましい。
 特定樹脂1の好適な一態様として、特定樹脂1中の交互共重合体の存在割合が、特定樹脂1の全質量にして、90質量%以上である態様(好ましくは100質量%以上)である態様も挙げられる。
(オニウム塩構造を含む基)
 以下、特定樹脂1中に含まれ得る、オニウム塩構造を含む基について説明する。
 オニウム塩構造とは、カチオン及びアニオンのイオン対を有する構造部位であり、「Xn- nM」で表される構造部位(nは、例えば、1~3の整数を表し、1又は2を表すのが好ましい。)であるのが好ましい。
 Mは、正電荷を帯びた原子又は原子団を含む構造部位であり、Xn-は、負電荷を帯びた原子又は原子団を含む構造部位を表す。オニウム塩基におけるアニオンは、非求核性アニオン(求核反応を起こす能力が著しく低いアニオン)であるのが好ましい。オニウム塩基におけるアニオンが非求核性アニオンである場合、光分解型オニウム塩構造となりやすい。なお、非求核性アニオンの具体例としては、後述する光分解型オニウム塩化合物の発生酸として説明する非求核性アニオンが挙げられる。
 オニウム塩構造を含む基としては、下記式(O1)で表される基が好ましい。
 *-L-X   式(O1)
 式(O1)中、Lは、単結合又は2価の連結基を表す。Lで表される2価の連結基としては、上述した式(2)中のLで表される2価の連結基と同様のものが挙げられる。X は、1価の有機アニオン性基を表す。M は、有機カチオンを表す。
 なお、X で表される1価の有機アニオン性基としては、非求核性アニオン性基(求核反応を起こす能力が著しく低いアニオン性基)であるのが好ましい。
 式(O1)中、X で表される1価のアニオン性基としては特に制限されないが、例えば、下記式(B-1)~(B-14)で表される基からなる群から選択される基であるのが好ましい。
 *-O  式(B-14)
 式(B-1)~(B-14)中、*は結合位置を表す。
 式(B-1)~(B-5)及び式(B-12)中、RX1は、各々独立に、1価の有機基を表す。
 式(B-7)及び式(B-11)中、RX2は、各々独立に、水素原子、又は、フッ素原子及びパーフルオロアルキル基以外の置換基を表す。式(B-7)における2個のRX2は、同一であっても異なっていてもよい。
 式(B-8)中、RXF1は、水素原子、フッ素原子、又はパーフルオロアルキル基を表す。但し、2個のRXF1のうち、少なくとも1つはフッ素原子又はパーフルオロアルキル基を表す。式(B-8)における2個のRXF1は、同一であっても異なっていてもよい。
 式(B-9)中、RX3は、水素原子、ハロゲン原子、又は1価の有機基を表す。n1は、0~4の整数を表す。n1が2~4の整数を表す場合、複数のRX3は同一であっても異なっていてもよい。
 式(B-10)中、RXF2は、フッ素原子又はパーフルオロアルキル基を表す。
 式(B-14)の*で表される結合位置と結合する相手は、置換基を有していてもよいフェニレン基であるのが好ましい。上記フェニレン基が有していてもよい置換基としては、ハロゲン原子等が挙げられる。
 式(B-1)~(B-5)、及び式(B-12)中、RX1は、各々独立に、1価の有機基を表す。
 RX1としては、アルキル基(直鎖状でも分岐鎖状でもよい。炭素数は1~15が好ましい。)、シクロアルキル基(単環でも多環でもよい。炭素数は3~20が好ましい。)、又はアリール基(単環でも多環でもよい。炭素数は6~20が好ましい。)が好ましい。また、RX1で表される上記基は、置換基を有していてもよい。
 なお、式(B-5)においてRX1中の、N-と直接結合する原子は、-CO-における炭素原子、及び-SO-における硫黄原子のいずれでもないのも好ましい。
 RX1におけるシクロアルキル基は単環でも多環でもよい。
 RX1におけるシクロアルキル基としては、例えば、ノルボルニル基及びアダマンチル基が挙げられる。
 RX1におけるシクロアルキル基が有してもよい置換基は、特に制限されないが、アルキル基(直鎖状でも分岐鎖状でもよい。好ましくは炭素数1~5)が好ましい。RX1におけるシクロアルキル基の環員原子である炭素原子のうちの1個以上が、カルボニル炭素原子で置き換わっていてもよい。
 RX1におけるアルキル基(直鎖状又は分岐鎖状)の炭素数は1~10が好ましく、1~5がより好ましい。
 RX1におけるアルキル基が有してもよい置換基は、特に制限されないが、例えば、シクロアルキル基、フッ素原子、又はシアノ基が好ましい。
 上記置換基としてのシクロアルキル基の例としては、RX1がシクロアルキル基である場合において説明したシクロアルキル基が同様に挙げられる。
 RX1におけるアルキル基が、上記置換基としてのフッ素原子を有する場合、上記アルキル基は、パーフルオロアルキル基となっていてもよい。
 また、RX1におけるアルキル基は、1つ以上の-CH-がカルボニル基で置換されていてもよい。
 RX1におけるアリール基としては、ベンゼン環基が好ましい。
 RX1におけるアリール基が有してもよい置換基は、特に制限されないが、アルキル基、フッ素原子、又はシアノ基が好ましい。上記置換基としてのアルキル基の例としては、RX1がアルキル基である場合において説明したアルキル基が同様に挙げられる。
 式(B-7)及び(B-11)中、RX2は、各々独立に、水素原子、又はフッ素原子及びパーフルオロアルキル基以外の置換基(例えば、フッ素原子を含まないアルキル基(直鎖状でも分岐鎖状でもよい。炭素数は1~15が好ましい。)及びフッ素原子を含まないシクロアルキル基(単環でも多環でもよい。炭素数は3~20が好ましい。)が挙げられる。)を表す。式(B-7)における2個のRX2は、同一であっても異なっていてもよい。
 式(B-8)中、RXF1は、水素原子、フッ素原子、又はパーフルオロアルキル基を表す。但し、複数のRXF1のうち、少なくとも1つはフッ素原子又はパーフルオロアルキル基を表す。式(B-8)における2個のRXF1は、同一であっても異なっていてもよい。RXF1で表されるパーフルオロアルキル基の炭素数は、1~15が好ましく、1~10がより好ましく、1~6が更に好ましい。
 式(B-9)中、RX3は、水素原子、ハロゲン原子、又は1価の有機基を表す。RX3としてのハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、中でもフッ素原子が好ましい。
 RX3としての1価の有機基は、RX1として記載した1価の有機基と同様である。
 n1は、0~4の整数を表す。
 n1は、0~2の整数が好ましく、0又は1が好ましい。n1が2~4の整数を表す場合、複数のRX3は同一であっても異なっていてもよい。
 式(B-10)中、RXF2は、フッ素原子又はパーフルオロアルキル基を表す。
 RXF2で表されるパーフルオロアルキル基の炭素数は、1~15が好ましく、1~10がより好ましく、1~6が更に好ましい。
 式(O1)中のM で表される有機カチオンとしては、式(ZaI)で表される有機カチオン(カチオン(ZaI))又は式(ZaII)で表される有機カチオン(カチオン(ZaII))が好ましい。
 上記式(ZaI)において、
 R201、R202、及びR203は、各々独立に、有機基を表す。
 R201、R202、及びR203としての有機基の炭素数は、通常1~30であり、1~20が好ましい。また、R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、例えば、アルキレン基(例えば、ブチレン基及びペンチレン基)、及び-CH-CH-O-CH-CH-が挙げられる。
 式(ZaI)における有機カチオンの好適な態様としては、後述する、カチオン(ZaI-1)、カチオン(ZaI-2)、式(ZaI-3b)で表される有機カチオン(カチオン(ZaI-3b))、及び式(ZaI-4b)で表される有機カチオン(カチオン(ZaI-4b))が挙げられる。
 まず、カチオン(ZaI-1)について説明する。
 カチオン(ZaI-1)は、上記式(ZaI)のR201~R203の少なくとも1つがアリール基である、アリールスルホニウムカチオンである。
 アリールスルホニウムカチオンは、R201~R203の全てがアリール基でもよいし、R201~R203の一部がアリール基であり、残りがアルキル基又はシクロアルキル基であってもよい。
 また、R201~R203のうちの1つがアリール基であり、R201~R203のうちの残りの2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203のうちの2つが結合して形成する基としては、例えば、1つ以上のメチレン基が酸素原子、硫黄原子、エステル基、アミド基、及び/又はカルボニル基で置換されていてもよいアルキレン基(例えば、ブチレン基、ペンチレン基、又は-CH-CH-O-CH-CH-)が挙げられる。
 アリールスルホニウムカチオンとしては、例えば、トリアリールスルホニウムカチオン、ジアリールアルキルスルホニウムカチオン、アリールジアルキルスルホニウムカチオン、ジアリールシクロアルキルスルホニウムカチオン、及びアリールジシクロアルキルスルホニウムカチオンが挙げられる。
 アリールスルホニウムカチオンに含まれるアリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。アリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環構造を有するアリール基であってもよい。ヘテロ環構造としては、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、及びベンゾチオフェン残基等が挙げられる。アリールスルホニウムカチオンが2つ以上のアリール基を有する場合に、2つ以上あるアリール基は同一であっても異なっていてもよい。
 アリールスルホニウムカチオンが必要に応じて有しているアルキル基又はシクロアルキル基は、炭素数1~15の直鎖状アルキル基、炭素数3~15の分岐鎖状アルキル基、又は炭素数3~15のシクロアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基、及びシクロヘキシル基等がより好ましい。
 R201~R203のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、各々独立に、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~14)、アルコキシ基(例えば炭素数1~15)、シクロアルキルアルコキシ基(例えば炭素数1~15)、ハロゲン原子(例えばフッ素、ヨウ素)、水酸基、カルボキシル基、エステル基、スルフィニル基、スルホニル基、アルキルチオ基、及びフェニルチオ基等が好ましい。
 上記置換基は可能な場合さらに置換基を有していてもよく、例えば、上記アルキル基が置換基としてハロゲン原子を有して、トリフルオロメチル基などのハロゲン化アルキル基となっていることも好ましい。
 次に、カチオン(ZaI-2)について説明する。
 カチオン(ZaI-2)は、式(ZaI)におけるR201~R203が、各々独立に、芳香環を有さない有機基を表すカチオンである。ここで芳香環とは、ヘテロ原子を含む芳香族環も包含する。
 R201~R203としての芳香環を有さない有機基は、一般的に炭素数1~30であり、炭素数1~20が好ましい。
 R201~R203は、各々独立に、アルキル基、シクロアルキル基、アリル基、又はビニル基が好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基、2-オキソシクロアルキル基、又はアルコキシカルボニルメチル基がより好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基が更に好ましい。
 R201~R203のアルキル基及びシクロアルキル基としては、例えば、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、及びペンチル基)、並びに、炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、及びノルボルニル基)が挙げられる。
 R201~R203は、ハロゲン原子、アルコキシ基(例えば炭素数1~5)、水酸基、シアノ基、又はニトロ基によって更に置換されていてもよい。
 次に、カチオン(ZaI-3b)について説明する。
 カチオン(ZaI-3b)は、下記式(ZaI-3b)で表されるカチオンである。
 式(ZaI-3b)中、
 R1c~R5cは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、シクロアルキルカルボニルオキシ基、ハロゲン原子、水酸基、ニトロ基、アルキルチオ基、又はアリールチオ基を表す。
 R6c及びR7cは、各々独立に、水素原子、アルキル基(t-ブチル基等)、シクロアルキル基、ハロゲン原子、シアノ基、又はアリール基を表す。
 R及びRは、各々独立に、アルキル基、シクロアルキル基、2-オキソアルキル基、2-オキソシクロアルキル基、アルコキシカルボニルアルキル基、アリル基、又はビニル基を表す。
 R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRは、それぞれ互いに結合して環を形成してもよく、この環は、各々独立に、酸素原子、硫黄原子、ケトン基、エステル結合、又はアミド結合を含んでいてもよい。
 上記環としては、芳香族又は非芳香族の炭化水素環、芳香族又は非芳香族のヘテロ環、及びこれらの環が2つ以上組み合わされてなる多環縮合環が挙げられる。環としては、3~10員環が挙げられ、4~8員環が好ましく、5又は6員環がより好ましい。
 R1c~R5c中のいずれか2つ以上、R6cとR7c、及びRとRが結合して形成する基としては、ブチレン基及びペンチレン基等のアルキレン基が挙げられる。このアルキレン基中のメチレン基が酸素原子等のヘテロ原子で置換されていてもよい。
 R5cとR6c、及びR5cとRが結合して形成する基としては、単結合又はアルキレン基が好ましい。アルキレン基としては、メチレン基及びエチレン基等が挙げられる。
 R1c~R5c、R6c、R7c、R、R、並びに、R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及び、RとRがそれぞれ互いに結合して形成する環は、置換基を有していてもよい。
 次に、カチオン(ZaI-4b)について説明する。
 カチオン(ZaI-4b)は、下記式(ZaI-4b)で表されるカチオンである。
 式(ZaI-4b)中、
 lは0~2の整数を表す。
 rは0~8の整数を表す。
 R13は、水素原子、ハロゲン原子(例えば、フッ素原子、ヨウ素原子等)、水酸基、アルキル基、ハロゲン化アルキル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、又はシクロアルキル基を有する基(シクロアルキル基そのものであってもよく、シクロアルキル基を一部に含む基であってもよい)を表す。これらの基は置換基を有してもよい。
 R14は、水酸基、ハロゲン原子(例えば、フッ素原子、ヨウ素原子等)、アルキル基、ハロゲン化アルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を有する基(シクロアルキル基そのものであってもよく、シクロアルキル基を一部に含む基であってもよい)を表す。これらの基は置換基を有してもよい。R14は、複数存在する場合はそれぞれ独立して、水酸基等の上記基を表す。
 R15は、それぞれ独立して、アルキル基、シクロアルキル基、又はナフチル基を表す。2つのR15が互いに結合して環を形成してもよい。2つのR15が互いに結合して環を形成するとき、環骨格内に、酸素原子、又は窒素原子等のヘテロ原子を含んでもよい。一態様において、2つのR15がアルキレン基であり、互いに結合して環構造を形成するのが好ましい。なお、上記アルキル基、上記シクロアルキル基、及び上記ナフチル基、並びに、2つのR15が互いに結合して形成する環は置換基を有してもよい。
 式(ZaI-4b)において、R13、R14、及びR15のアルキル基は、直鎖状又は分岐鎖状であるのが好ましい。アルキル基の炭素数は、1~10が好ましい。アルキル基としては、メチル基、エチル基、n-ブチル基、又はt-ブチル基等がより好ましい。
 次に、式(ZaII)について説明する。
 式(ZaII)中、R204及びR205は、各々独立に、アリール基、アルキル基、又はシクロアルキル基を表す。
 R204及びR205のアリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。R204及びR205のアリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環を有するアリール基であってもよい。ヘテロ環を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、及びベンゾチオフェン等が挙げられる。
 R204及びR205のアルキル基及びシクロアルキル基としては、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、又はペンチル基)、又は炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、又はノルボルニル基)が好ましい。
 R204及びR205のアリール基、アルキル基、及びシクロアルキル基は、各々独立に、置換基を有していてもよい。R204及びR205のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば炭素数1~15)、シクロアルキル基(例えば炭素数3~15)、アリール基(例えば炭素数6~15)、アルコキシ基(例えば炭素数1~15)、ハロゲン原子、水酸基、及びフェニルチオ基等が挙げられる。
 以下に有機カチオンの具体例を示すが、本発明は、これに制限されるものではない。
<特定樹脂2>
 特定樹脂2は、下記式(XR)で表される繰り返し単位を含む樹脂である。
(式(XR)で表される繰り返し単位)
 以下、式(XR)で表される繰り返し単位について説明する。
 式(XR)中、Rr1~Rr4は、各々独立に、水素原子又は置換基を表す。また、Rr2及びRr3が互いに結合して環を形成してもよい。*は、結合位置を表す。
 上記特定樹脂2は、上述した特定官能基を有するのが好ましい。
 上記特定樹脂2としては、式(XR)中のRr1~Rr4の少なくとも1つ以上が置換基を表し、且つ、この置換基の少なくとも1つ以上が上述した特定官能基を有するか、式(XR)中のRr2及びRr3が互いに結合して環を形成し、且つ、この環上に置換する置換基の少なくとも1つ以上が上述した特定官能基を有するか、又は、式(XR)で表される繰り返し単位以外の他の繰り返し単位を含み、且つ、この他の繰り返し単位が、上述した特定官能基を有するのが好ましい。
 上記特定樹脂2としては、式(XR)中のRr1~Rr4の少なくとも1つ以上が置換基を表し、且つ、この置換基の少なくとも1つ以上が上述した特定官能基を有するか、又は、式(XR)中のRr2及びRr3が互いに結合して環を形成し、且つ、この環上に置換する置換基の少なくとも1つ以上が上述した特定官能基を有するのがより好ましい。
 本発明の効果がより優れる点で、上記特定樹脂2としては、式(XR)中のRr2及びRr3が互いに結合して環を形成し、且つ、この環上に置換する置換基の少なくとも1つ以上が上述した特定官能基有するのがより好ましい。
(特定樹脂2の好適形態)
 以下、特定樹脂2の好適形態について詳述する。
 特定樹脂2において、上記式(XR)で表される繰り返し単位は、特定樹脂2の全繰り返し単位に対して、90モル%以上であるのが好ましく、95モル%以上であるのがより好ましい。なお、上限値としては、100モル%以下が好ましい。
 式(XR)中、Rr1~Rr4で表される置換基としては、上述した式(2)中のBで表される置換基と同様のものが挙げられ、好適態様も同じである。
 また、Rr1~Rr4で表される置換基の一態様として、*-L-RpAで表される態様であるのも好ましい。Lは、単結合又は2価の連結基を表す。Lで表される2価の連結基としては、上述した式(2)中のLで表される2価の連結基と同様のものが挙げられる。RpAは、特定官能基を表す。
 また、式(XR)中、Rr2及びRr3が互いに結合して形成する環としては、特に制限されず、脂環及び芳香環のいずれであってもよい。上記環は更に置換基を有していてもよい。置換基としては、上記Rr1~Rr4で表される置換基と同様のものが挙げられる。
 式(XR)においてRr2及びRr3が互いに結合する場合、式(XR)で表される繰り返し単位は、下記式(XRA)で表される繰り返し単位であるのも好ましい。
 式中、Rr1及びRr4は、上記式(XR)中のRr1及びRr4と同義であり、好適態様も同じである。また、Rは、置換基を表す。Rで表される置換基としては、上記Rr1~Rr4で表される置換基と同様のものが挙げられる。Rで表される置換基のうちの少なくとも1つは、上述の*-L-RpAを表すのが好ましい。mは、0~4の整数を表し、1~4の整数を表すのが好ましい。
 上述した特定樹脂2は、本発明の効果を阻害しない範囲において、上述した繰り返し単位以外の他の繰り返し単位を含んでいてもよい。他の繰り返し単位としては、特に制限されず、例えば、上述した特定樹脂1中に含まれ得る式(2)で表される繰り返し単位(好ましくは、式(3)で表される繰り返し単位)が挙げられる。
<特定樹脂のその他の態様>
 特定樹脂としては、本発明の効果がより優れる点で、上述のとおり、水酸基(アルコール性水酸基及びフェノール性水酸基)、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基からなる群から選ばれる1種以上の官能基(特定官能基)を含むのが好ましく、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基を含むのがより好ましい。
 ここで、フェノール性水酸基とは、芳香族環の環員原子に置換した水酸基を意図する。
 芳香族環としては、ベンゼン環に制限されず、芳香族炭化水素環及び芳香族複素環のいずれであってもよい。また、芳香族環は、単環及び多環のいずれであってもよい。
 また、アルコール性水酸基とは、フェノール性水酸基とは区別されるものであって、本明細書においては、脂肪族炭化水素基に置換する水酸基を意図する。
 また、アミノ基としては、-N(Rで表される基が好ましく、アミド基としては、-CO-N(Rで表される基、又は、-CO-N(R)-で表される基が好ましい。上記R及びRは、各々独立に、水素原子又は1価の有機基(好ましくは、炭素数1~6のアルキル基)を表すのが好ましく、水素原子を表すのがより好ましい。なお、特定樹脂が特定官能基として-CO-N(R)-で表される基を含む場合とは、例えば、上述した式(1)で表される繰り返し単位においてRとR1Aとが互いに連結して環を形成し、且つ、環内に-CO-N(R)-で表される構造部位(好ましくは、-CO-N(R)-CO-で表される構造部位)を有する場合等が該当する。
 特定樹脂としては、本発明の効果がより優れる点で、特定官能基を含む繰り返し単位を含むのが好ましい。
 特定樹脂中、特定官能基を含む繰り返し単位の含有量としては、特定樹脂の全繰り返し単位に対して、5~100モル%が好ましく、10~100モル%がより好ましく、20~100モル%が更に好ましい。
 特定樹脂中、特定官能基を含む繰り返し単位は1種であっても2種以上であってもよい。特定官能基を含む繰り返し単位が2種以上である場合、その合計含有量が上記数値範囲となることが好ましい。
 なお、特定樹脂中、特定官能基を含む繰り返し単位としては、特定官能基を含むものであればいずれも該当する。例えば、上述した式(1)で表される繰り返し単位が特定官能基を含む場合には、特定官能基を含む繰り返し単位に該当する。また、上述した式(3)で表される繰り返し単位は特定官能基を含むことから、特定官能基を含む繰り返し単位に該当する。
 特定樹脂は、常法に従って(例えばラジカル重合)合成できる。
 GPC法によりポリスチレン換算値として、特定樹脂の重量平均分子量は、1,000~200,000が好ましく、2,500~150,000がより好ましく、25,00~80,000が更に好ましい。重量平均分子量が上記数値範囲の場合、耐熱性及びドライエッチング耐性の劣化をより一層抑制できる。また、現像性の劣化、及び粘度が高くなって製膜性が劣化することもより一層抑制できる。
 特定樹脂の分散度(分子量分布)は、通常1.0~5.0であり、1.0~3.0が好ましく、1.2~3.0がより好ましく、1.2~2.0が更に好ましい。分散度が小さいものほど、解像度及びレジスト形状がより優れる。
 レジスト組成物中、特定樹脂の含有量は、組成物の全固形分に対して、50質量%以上が好ましく、60質量%以上がより好ましく、65質量%以上が更に好ましく、70質量%以上が特に好ましい。上限値としては、99質量%以下が好ましく、95質量%がより好ましい。
 また、特定樹脂は、1種で使用してもよいし、複数併用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
 以下、特定樹脂の具体例を挙げるが、本発明における特定樹脂はこれに制限されない。
〔特定金属化合物〕
 レジスト組成物は、金属錯体、有機金属塩、及び有機金属化合物からなる群から選ばれる1種以上の金属化合物(特定金属化合物)を含む。
 金属化合物が含む金属原子としては、例えば、リチウム原子、ナトリム原子、マグネシウム原子、アルミニウム原子、カリウム原子、カルシウム原子、スカンジウム原子、チタン原子、バナジウム原子、クロム原子、マンガン原子、鉄原子、コバルト原子、ニッケル原子、銅原子、亜鉛原子、ガリウム原子、ルビジウム原子、ストロンチウム原子、イットリウム原子、ジルコニウム原子、ルテニウム原子、ロジウム原子、パラジウム原子、銀原子、カドミウム原子、インジウム原子、錫原子、アンチモン原子、セシウム原子、バリウム原子、ハフニウム原子、タングステン原子、レニウム原子、オスミウム原子、イリジウム原子、白金原子、金原子、水銀原子、タリウム原子、鉛原子、ビスマス原子、ランタン原子、セリウム原子、プラセオジム原子、ネオジム原子、サマリウム原子、ユウロピウム原子、ガドリニウム原子、テルビウム原子、ジスプロシウム原子、ホルミウム原子、エルビウム原子、ツリウム原子、イッテルビウム原子、及びルテチウム原子等が挙げられる。
 金属化合物は、感度がより一層優れる点で、なかでも、鉄原子、チタン原子、コバルト原子、ニッケル原子、亜鉛原子、銀原子、インジウム原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の原子を含むことが好ましく、鉄原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の原子を含むことがより好ましい。
 金属錯体としては、中心金属原子(好ましくは、遷移金属原子又は亜鉛等の典型金属原子)と、中心金属原子に対して配位結合を形成する配位子(例えば、中性若しくはアニオン性の単座配位子、又は、中性若しくはアニオン性の多座配位子(好ましくは2座配位子))とを含む金属錯体が挙げられる。金属錯体としては、なかでも、中心金属原子と、中心金属原子に対して配位結合を形成する有機配位子とを含む金属錯体が好ましい。ここで、「有機配位子」とは、少なくとも1個の炭素原子を含む配位子をいう。
 なお、金属錯体における配位子の少なくとも1つが有機配位子であるのも好ましい。
 上記中心金属原子としては、上述した金属原子が挙げられる。
 中心金属原子と配位子との間の結合としては、例えば、金属-窒素結合、金属-炭素結合、金属-酸素結合、金属-リン結合、金属-硫黄結合、及び金属-ハロゲン結合が挙げられる。
 金属錯体が含む配位子としては、例えば、ハロゲン原子、アルキル基、シクロアルキル基、アシル基(例えば、アセチルアセトナト基等)、カルボニル基、イソシアニド基、アルケン基(例えば、ブタジエン基及びシクロオクタジエン基等)、アルキン基、アリール基(例えば、ベンゼン及びナフタレン等)、アルキリデン基、アルキリジン基、シクロペンタジエニル基、インデニル基、シクロヘプタトリエニウム基、シクロブタジエン基、窒素分子、ニトロ基、ホスフェン基、ホスフィン基、チオール基、水酸基、アミン基、エーテル基、アルコキシド基、アミド基、及びシリル基等が挙げられる。
 有機金属塩としては、金属イオンと有機カウンターイオンからなる塩(金属カチオンと有機アニオンとから構成される塩、及び、金属アニオンと有機カチオンとから構成される塩)が挙げられ、なかでも金属カチオンと有機アニオンとから構成される塩が好ましい。ここで、「有機カウンターイオン」とは、少なくとも1個の炭素原子を含むカウンターイオンをいう。
 上記金属イオンとしては、上述した金属原子種の金属イオンが挙げられる。
 有機カウンターイオンとしては特に制限されず、例えば、4級窒素原子を含む有機カチオン(例えば、ピリジニウムイオン等)、スルホン酸アニオン(脂肪族スルホン酸アニオン及び芳香族スルホン酸アニオン等(例えば、パーフルオロメチルスルホン酸アニオン等))、及びカルボン酸アニオン(脂肪族カルボン酸アニオン及び芳香族カルボン酸アニオン等(例えば、2-ピリジンカルボン酸アニオン等))等が挙げられる。
 有機金属化合物としては、金属-炭素結合(特に金属炭素の共有結合)を少なくとも1つ含む化合物が挙げられる。有機金属化合物の一態様としては、有機錫化合物が挙げられる。有機錫化合物としては、例えば、下記式(1S)又は(2S)で表される基が挙げられる。
 式(1S):Sn(RS1(RS2
 式(1S)中、RS1は、アルキル基、アルケニル基、アルキニル基、又はアリール基を表す。
 RS1で表されるアルキル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。アルキル基の炭素数としては、1~20が好ましく、1~8がより好ましく、1~6が更に好ましい。アルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、及びn-ヘキシル基等の直鎖状又は分岐鎖状アルキル基、シクロペンチル基及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が挙げられる。
 アルキル基は、更に置換基を有していてもよい。
 RS1で表されるアルケニル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。上記アルケニル基の炭素数は、2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。アルケニル基は、更に置換基を有していてもよい。
 RS1で表されるアルキニル基は、直鎖状、分岐鎖状、及び環状のいずれであってもよい。上記アルキニル基の炭素数は、2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。アルキニル基は、更に置換基を有していてもよい。
 RS1で表されるアリール基は、単環及び多環(例えば、2~6環等)のいずれであってもよい。
 上記アリール基の環員原子の数は、6~15が好ましく、6~10がより好ましい。
 上記アリール基としては、フェニル基、ナフチル基、又は、アントラニル基が好ましく、フェニル基がより好ましい。アリール基は、更に置換基を有していてもよい。
 RS2は、アルキルカルボニルオキシ基、又は、モノ若しくはジアルキルアミノ基を表す。ここで、モノ若しくはジアルキルアミノ基とは、アミノ基の水素原子の1つ又は2つがアルキル基で置換された基を意味する。
 アルキルカルボニルオキシ基におけるアルキル基部分、及びモノ若しくはジアルキルアミノ基におけるアルキル基部分としては、上記RS1で表されるアルキル基と同様の態様が挙げられる。
 アルキルカルボニルオキシ基としては、例えば、アセトキシ基が挙げられる。
 モノ若しくはジアルキルアミノ基としては、例えば、ジエチルアミノ基等が挙げられる。
 式(1S)中、pは、1~4の整数を表し、qは、0~3の整数を表し、p+q=4を表す。
 式(1S)中、なかでも、pは、1又は2を表すのが好ましい。
 式(2S):RS3-Sn(=O)-OH
 式(2S)中、RS3は、アルキル基、アルケニル基、アルキニル基、又はアリール基を表す。
 RS3で表されるアルキル基、アルケニル基、アルキニル基、及びアリール基としては、式(1S)中のRS1で表されるアルキル基、アルケニル基、アルキニル基、及びアリール基と同様のものが挙げられる。
 金属錯体、有機金属塩、及び有機金属化合物としては、上述したもののほか、有機遷移金属化学 上下巻(John F.Hartwig著、東京化学同人、2014年)、シュライバー・アトキンス無機化学 上下巻(M.Weller, T.Overton, J.Rourke, F.Armstrong著、東京化学同人、2016年)、及び無機化合物・錯体辞典(中原勝儼著、講談社サイエンティック、1997年)等に記載のものも使用できる。
 レジスト組成物中、金属化合物の含有量は、組成物の全固形分に対して、0.1質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上が更に好ましい。上限値としては、50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下が更に好ましい。
 また、金属化合物は、1種で使用してもよいし、複数併用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
 レジスト組成物中、金属化合物の含有量としては、特定樹脂の含有量に対して、1~40質量%であるのが好ましく、1~35質量%であるのがより好ましく、1~30であるのが更に好ましい。
 以下、金属化合物の具体例を挙げるが、本発明における金属化合物はこれに制限されない。
〔溶剤〕
 レジスト組成物は、溶剤を含む。
 溶剤としては特に制限されないが、(M1)プロピレングリコールモノアルキルエーテルカルボキシレート、並びに、(M2)プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、及びアルキレンカーボネートからなる群より選択される少なくとも1つの少なくとも一方を含んでいるのが好ましい。なお、この溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。
 このような溶剤と特定樹脂とを組み合わせて用いた場合、レジスト組成物の塗布性が向上すると共に、現像欠陥数の少ないパターンが形成し易い。この理由として、これら溶剤は、特定樹脂の溶解性、沸点、及び粘度のバランスに優れるため、レジスト組成物の組成物膜であるレジスト膜の膜厚のムラ及びスピンコート中の析出物の発生等を抑制できることに起因していると推測される。
 成分(M1)としては、プロピレングリコールモノメチルエーテルアセテート(PGMEA:propylene glycol monomethylether acetate)、プロピレングリコールモノメチルエーテルプロピオネート、及び、プロピレングリコールモノエチルエーテルアセテートからなる群より選択される少なくとも1つが好ましく、プロピレングリコールモノメチルエーテルアセテート(PGMEA)がより好ましい。
 成分(M2)としては、以下のものが好ましい。
 プロピレングリコールモノアルキルエーテルとしては、プロピレングリコールモノメチルエーテル(PGME:propylene glycol monomethylether)、及び、プロピレングリコールモノエチルエーテルが好ましい。
 乳酸エステルとしては、乳酸エチル、乳酸ブチル、又は、乳酸プロピルが好ましい。
 酢酸エステルとしては、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、酢酸イソアミル、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、又は、酢酸3-メトキシブチルが好ましい。
 また、酪酸ブチルも好ましい。
 アルコキシプロピオン酸エステルとしては、3-メトキシプロピオン酸メチル(MMP:methyl 3-Methoxypropionate)、又は、3-エトキシプロピオン酸エチル(EEP:ethyl 3-ethoxypropionate)が好ましい。
 鎖状ケトンとしては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、2-ヘプタノン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、又は、メチルアミルケトンが好ましい。
 環状ケトンとしては、メチルシクロヘキサノン、イソホロン、又は、シクロヘキサノンが好ましい。
 ラクトンとしては、γ-ブチロラクトンが好ましい。
 アルキレンカーボネートとしては、プロピレンカーボネートが好ましい。
 成分(M2)としては、プロピレングリコールモノメチルエーテル(PGME)、乳酸エチル、3-エトキシプロピオン酸エチル、メチルアミルケトン、シクロヘキサノン、酢酸ブチル、酢酸ペンチル、γ-ブチロラクトン、又は、プロピレンカーボネートがより好ましい。
 溶剤としては、上述の成分の他、炭素数が7以上(7~14が好ましく、7~12がより好ましく、7~10が更に好ましい)、かつ、ヘテロ原子数が2以下のエステル系溶剤を含むのも好ましい。
 炭素数が7以上かつヘテロ原子数が2以下のエステル系溶剤としては、酢酸アミル、酢酸2-メチルブチル、酢酸1-メチルブチル、酢酸ヘキシル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ブチル、イソ酪酸イソブチル、プロピオン酸ヘプチル、又は、ブタン酸ブチルが好ましく、酢酸イソアミルがより好ましい。
 成分(M2)としては、引火点(以下、fpともいう)が37℃以上であるものが好ましい。このような成分(M2)としては、プロピレングリコールモノメチルエーテル(fp:47℃)、乳酸エチル(fp:53℃)、3-エトキシプロピオン酸エチル(fp:49℃)、メチルアミルケトン(fp:42℃)、シクロヘキサノン(fp:44℃)、酢酸ペンチル(fp:45℃)、2-ヒドロキシイソ酪酸メチル(fp:45℃)、γ-ブチロラクトン(fp:101℃)、又は、プロピレンカーボネート(fp:132℃)が好ましい。これらのうち、プロピレングリコールモノエチルエーテル、乳酸エチル、酢酸ペンチル、又は、シクロヘキサノンがより好ましく、プロピレングリコールモノエチルエーテル、又は、乳酸エチルが更に好ましい。
 なお、ここで「引火点」とは、東京化成工業株式会社又はシグマアルドリッチ社の試薬カタログに記載されている値を意味している。
 溶剤は、成分(M1)を含んでいることが好ましい。溶剤は、実質的に成分(M1)のみからなるか、又は、成分(M1)と他の成分との混合溶剤であることがより好ましい。後者の場合、溶剤は、成分(M1)と成分(M2)との双方を含んでいることが更に好ましい。
 成分(M1)と成分(M2)との質量比(M1/M2)は、「100/0」~「15/85」の範囲内にあることが好ましく、「100/0」~「40/60」の範囲内にあることがより好ましく、「100/0」~「60/40」の範囲内にあることが更に好ましい。つまり、溶剤は、成分(M1)のみからなるか、又は、成分(M1)と成分(M2)との双方を含んでおり、かつ、それらの質量比が以下の通りであることが好ましい。即ち、後者の場合、成分(M2)に対する成分(M1)の質量比は、15/85以上であることが好ましく、40/60以上であることよりが好ましく、60/40以上であることが更に好ましい。このような構成を採用すると、現像欠陥数を更に減少させることが可能となる。
 なお、溶剤が成分(M1)と成分(M2)との双方を含んでいる場合、成分(M2)に対する成分(M1)の質量比は、例えば、99/1以下とする。
 溶剤が成分(M1)及び(M2)以外の成分を更に含む場合、成分(M1)及び(M2)以外の成分の含有量は、溶剤の全量に対して、5~30質量%が好ましい。
 レジスト組成物中の溶剤の含有量は、塗布性がより優れる点で、固形分濃度が0.5~30質量%となるように定めるのが好ましく、1~20質量%となるように定めるのがより好ましい。
〔その他の成分〕
 レジスト組成物は、特定樹脂、特定金属化合物、及び溶剤以外のその他の成分を含んでいてもよい。
 その他の成分としては特に制限されないが、例えば光分解型オニウム塩化合物、及び、界面活性剤等が挙げられる。
<光分解型オニウム塩化合物>
 レジスト組成物は、活性光線又は放射線の照射によって酸を発生するオニウム塩構造の化合物(光分解型オニウム塩化合物)を含むのが好ましい。
 レジスト組成物が光分解型オニウム塩化合物を含む場合、未露光部分においては、特定樹脂は、特定樹脂中に含まれ得る比較的極性の高い官能基や特定官能基を介して光分解型オニウム塩化合物と凝集し易い。一方で、露光を受けると、光分解型オニウム塩化合物の開裂により、上記凝集構造が解除され得る。つまり、上記作用によりレジスト膜において未露光部と露光部にて溶解コントラストがより一層高まり、本発明の効果がより優れやすい。
 光分解型オニウム塩化合物とは、アニオン部位とカチオン部位とから構成される塩構造部位を少なくとも1つ有し、且つ露光により分解して酸(好ましくは有機酸)を発生する化合物であるのが好ましい。
 光分解型オニウム塩化合物の上記塩構造部位は、露光によって分解し易く、且つ有機酸の生成性により優れる点で、なかでも、有機カチオン部位と求核性が著しく低い有機アニオン部位とから構成されているのが好ましい。
 上記塩構造部位は、光分解型オニウム塩化合物における一部分であってもよいし、全体であってもよい。なお、上記塩構造部位が光分解型オニウム塩化合物における一部分である場合とは、例えば、後述する光分解型オニウム塩PG2の如く、2つ以上の塩構造部位が連結している構造等が該当する。
 光分解型オニウム塩における塩構造部位の個数としては特に制限されないが、1~10が好ましく、1~6が好ましく、1~3が更に好ましい。
 上述の露光の作用により光分解型オニウム塩化合物から発生する有機酸としては、例えば、例えば、スルホン酸(脂肪族スルホン酸、芳香族スルホン酸、及び、カンファースルホン酸等)、カルボン酸(脂肪族カルボン酸、芳香族カルボン酸、及び、アラルキルカルボン酸等)、カルボニルスルホニルイミド酸、ビス(アルキルスルホニル)イミド酸、及び、トリス(アルキルスルホニル)メチド酸等が挙げられる。
 また、露光の作用により光分解型オニウム塩化合物から発生する有機酸は、酸基を2つ以上有する多価酸であってもよい。例えば、光分解型オニウム塩化合物が後述する光分解型オニウム塩化合物PG2である場合、光分解型オニウム塩化合物の露光による分解により生じる有機酸は、酸基を2つ以上有する多価酸となる。
 光分解型オニウム塩化合物において、塩構造部位を構成するカチオン部位としては、有機カチオン部位であるのが好ましく、なかでも、上述した式(ZaI)で表される有機カチオン(カチオン(ZaI))又は式(ZaII)で表される有機カチオン(カチオン(ZaII))が好ましい。
(光分解型オニウム塩化合物PG1)
 光分解型オニウム塩化合物の好適態様の一例としては、「M X」で表されるオニウム塩化合物であって、露光により有機酸を発生する化合物(以下「光分解型オニウム塩化合物PG1」ともいう)が挙げられる。
 「M X」で表される化合物において、Mは、有機カチオンを表し、Xは、有機アニオンを表す。
 以下、光分解型オニウム塩化合物PG1について説明する。
 光分解型オニウム塩化合物PG1中のMで表される有機カチオンとしては、上述した式(ZaI)で表される有機カチオン(カチオン(ZaI))又は式(ZaII)で表される有機カチオン(カチオン(ZaII))が好ましい。
 光分解型オニウム塩化合物PG1中のXで表される有機アニオンとしては、非求核性アニオン(求核反応を起こす能力が著しく低いアニオン)であるのが好ましい。
 非求核性アニオンとしては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、及び、カンファースルホン酸アニオン等)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、及び、アラルキルカルボン酸アニオン等)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、及びトリス(アルキルスルホニル)メチドアニオン等が挙げられる。
 脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、アルキル基であってもシクロアルキル基であってもよく、炭素数1~30の直鎖状又は分岐鎖状のアルキル基、又は、炭素数3~30のシクロアルキル基が好ましい。
 上記アルキル基は、例えば、フルオロアルキル基(フッ素原子以外の置換基を有していてもよいし有していなくてもよい。パーフルオロアルキル基でもよい)でもよい。
 芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおけるアリール基としては、炭素数6~14のアリール基が好ましく、例えば、フェニル基、トリル基、及びナフチル基が挙げられる。
 上記で挙げたアルキル基、シクロアルキル基、及びアリール基は、置換基を有していてもよい。置換基としては特に制限されないが、具体的には、ニトロ基、フッ素原子又は塩素原子等のハロゲン原子、カルボキシ基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1~15)、アルキル基(好ましくは炭素数1~10)、シクロアルキル基(好ましくは炭素数3~15)、アリール基(好ましくは炭素数6~14)、アルコキシカルボニル基(好ましくは炭素数2~7)、アシル基(好ましくは炭素数2~12)、アルコキシカルボニルオキシ基(好ましくは炭素数2~7)、アルキルチオ基(好ましくは炭素数1~15)、アルキルスルホニル基(好ましくは炭素数1~15)、アルキルイミノスルホニル基(好ましくは炭素数1~15)、及びアリールオキシスルホニル基(好ましくは炭素数6~20)等が挙げられる。
 アラルキルカルボン酸アニオンにおけるアラルキル基としては、炭素数7~14のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、及びナフチルブチル基が挙げられる。
 スルホニルイミドアニオンとしては、例えば、サッカリンアニオンが挙げられる。
 ビス(アルキルスルホニル)イミドアニオン及びトリス(アルキルスルホニル)メチドアニオンにおけるアルキル基としては、炭素数1~5のアルキル基が好ましい。これらのアルキル基の置換基としては、ハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、及びシクロアルキルアリールオキシスルホニル基が挙げられ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
 また、ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、互いに結合して環構造を形成してもよい。これにより、酸強度が増加する。
 非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子若しくはフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、又は、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。
 光分解型オニウム塩化合物PG1中のXで表される有機アニオンとしては、例えば、下記式(DA)で表される有機アニオンであるのも好ましい。
 式(DA)中、A31-は、アニオン性基を表す。Ra1は、水素原子又は1価の有機基を表す。La1は、単結合、又は2価の連結基を表す。
 A31-はアニオン性基を表す。A31-で表されるアニオン性基としては、特に制限されないが、例えば、上述した式(B-1)~(B-14)で表される基からなる群から選択される基であるのが好ましい。
 Ra1の1価の有機基は、特に制限されないが、一般的に炭素数1~30であり、炭素数1~20が好ましい。
 Ra1は、アルキル基、シクロアルキル基、又はアリール基が好ましい。
 アルキル基としては、直鎖状でも分岐鎖状でもよく、炭素数1~20のアルキル基が好ましく、炭素数1~15のアルキル基がより好ましく、炭素数1~10のアルキル基が更に好ましい。
 シクロアルキル基としては、単環でも多環でもよく、炭素数3~20のシクロアルキル基が好ましく、炭素数3~15のシクロアルキル基がより好ましく、炭素数3~10のシクロアルキル基が更に好ましい。
 アリール基としては、単環でも多環でもよく、炭素数6~20のアリール基が好ましく、炭素数6~15のアリール基がより好ましく、炭素数6~10のアリール基が更に好ましい。
 シクロアルキル基は、環員原子として、ヘテロ原子を含んでいてもよい。
 ヘテロ原子としては、特に制限されないが、窒素原子、酸素原子等が挙げられる。
 また、シクロアルキル基は、環員原子として、カルボニル結合(>C=O)を含んでいてもよい。
 上記アルキル基、シクロアルキル基、及びアリール基は、更に置換基を有してもよい。
 La1としての2価の連結基は、特に制限されないが、アルキレン基、シクロアルキレン基、芳香族基、-O-、-CO-、-COO-、及びこれらを2つ以上組み合わせてなる基を表す。
 アルキレン基は、直鎖状又は分岐鎖状でもよく、炭素数1~20であるのが好ましく、炭素数1~10であるのがより好ましい。
 シクロアルキレン基は、単環でも多環でもよく、炭素数3~20であるのが好ましく、炭素数3~10であるのがより好ましい。
 芳香族基は、2価の芳香族基であり、炭素数6~20の芳香族基が好ましく、6~15の芳香族基がより好ましい。
 芳香族基を構成する芳香環は、特に制限されないが、例えば、炭素数6~20の芳香環が挙げられ、具体的には、ベンゼン環、ナフタレン環、アントラセン環、及びチオフェン環等が挙げられる。芳香族基を構成する芳香環としては、ベンゼン環又はナフタレン環が好ましく、ベンゼン環がより好ましい。
 アルキレン基、シクロアルキレン基、及び芳香族基は、更に置換基を有していてもよく、置換基としては、ハロゲン原子が好ましい。
 また、A31-とRa1は、互いに結合して、環を形成しても良い。
 光分解型オニウム塩化合物PG1としては、例えば、国際公開2018/193954号公報の段落[0135]~[0171]、国際公開2020/066824号公報の段落[0077]~[0116]、国際公開2017/154345号公報の段落[0018]~[0075]及び[0334]~[0335]に開示された光酸発生剤等を使用するのも好ましい。
 なお、光分解型オニウム塩化合物としては、上述のXで表される有機アニオンと上述のMで表される有機カチオンとが共有結合で結合しているベタイン構造を有する化合物も使用できる。
 光分解型オニウム塩化合物PG1の分子量としては、3000以下が好ましく、2000以下がより好ましく、1000以下が更に好ましい。
(光分解型オニウム塩化合物PG2)
 また、光分解型オニウム塩化合物の好適態様の他の一例として、下記化合物(I)及び化合物(II)(以下、「化合物(I)及び化合物(II)」を「光分解型オニウム塩化合物PG2」ともいう。)が挙げられる。光分解型オニウム塩化合物PG2は、上述の塩構造部位を2つ以上有し、露光により多価の有機酸を発生する化合物である。
 以下、光分解型オニウム塩化合物PG2について説明する。
《化合物(I)》
 化合物(I)は、1つ以上の下記構造部位X及び1つ以上の下記構造部位Yを有する化合物であって、活性光線又は放射線の照射によって、下記構造部位Xに由来する下記第1の酸性部位と下記構造部位Yに由来する下記第2の酸性部位とを含む酸を発生する化合物である。
  構造部位X:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によってHAで表される第1の酸性部位を形成する構造部位
  構造部位Y:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によってHAで表される第2の酸性部位を形成する構造部位
 但し、化合物(I)は、下記条件Iを満たす。
 条件I:上記化合物(I)において上記構造部位X中の上記カチオン部位M 及び上記構造部位Y中の上記カチオン部位M をHに置き換えてなる化合物PIが、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a1と、上記構造部位Y中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a2を有し、且つ、上記酸解離定数a1よりも上記酸解離定数a2の方が大きい。
 上記化合物PIとは、化合物(I)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 化合物(I)が2つ以上の構造部位Xを有する場合、構造部位Xは、各々同一であっても異なっていてもよい。また、2つ以上の上記A 、及び、2つ以上の上記M は、各々同一であっても異なっていてもよい。
 また、化合物(I)中、上記A 及び上記A 、並びに、上記M 及び上記M は、各々同一であっても異なっていてもよいが、上記A 及び上記A は、各々異なっているのが好ましい。
 アニオン部位A 及びアニオン部位A は、負電荷を帯びた原子又は原子団を含む構造部位であり、例えば、以下に示す式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)からなる群から選ばれる構造部位が挙げられる。なお、以下の式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)中、*は、結合位置を表す。また、Rは、1価の有機基を表す。Rで表される1価の有機基としては、シアノ基、トリフルオロメチル基、及びメタンスルホニル基等が挙げられる。
 また、カチオン部位M 及びカチオン部位M は、正電荷を帯びた原子又は原子団を含む構造部位であり、例えば、電荷が1価の有機カチオンが挙げられる。なお、有機カチオンとしては特に制限されないが、上述した式(ZaI)で表される有機カチオン(カチオン(ZaI))又は式(ZaII)で表される有機カチオン(カチオン(ZaII))が好ましい。
《化合物(II)》
 化合物(II)は、2つ以上の上記構造部位X及び1つ以上の下記構造部位Zを有する化合物であって、活性光線又は放射線の照射によって、上記構造部位Xに由来する上記第1の酸性部位を2つ以上と上記構造部位Zとを含む酸を発生する化合物である。
 構造部位Z:酸を中和可能な非イオン性の部位
 上記化合物(II)は、活性光線又は放射線を照射によって、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位を有する化合物PII(酸)を発生し得る。つまり、化合物PIIは、上記HAで表される酸性部位と、酸を中和可能な非イオン性の部位である構造部位Zと、を有する化合物を表す。
 なお、化合物(II)中、構造部位Xの定義、並びに、A 及びM の定義は、上述した化合物(I)中の構造部位Xの定義、並びに、A 及びM の定義と同義であり、好適態様も同じである。
 また、上記2つ以上の構造部位Xは、各々同一であっても異なっていてもよい。また、2つ以上の上記A 、及び、2つ以上の上記M は、各々同一であっても異なっていてもよい。
 構造部位Z中の酸を中和可能な非イオン性の部位としては特に制限されず、例えば、プロトンと静電的に相互作用し得る基又は電子を有する官能基を含む部位であるのが好ましい。
 プロトンと静電的に相互作用し得る基又は電子を有する官能基としては、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又はπ共役に寄与しない非共有電子対をもった窒素原子を有する官能基等が挙げられる。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。
 プロトンと静電的に相互作用し得る基又は電子を有する官能基の部分構造としては、例えば、クラウンエーテル構造、アザクラウンエーテル構造、1~3級アミン構造、ピリジン構造、イミダゾール構造、及びピラジン構造等が挙げられ、なかでも、1~3級アミン構造が好ましい。
 光分解型オニウム塩化合物PG2の分子量は100~10000が好ましく、100~2500がより好ましく、100~1500が更に好ましい。
 光分解型オニウム塩化合物PG2としては、国際公開第2020/158313号段落[0023]~[0095]に例示された化合物を引用できる。
 レジスト組成物が光分解型オニウム塩化合物を含む場合、その含有量は特に制限されないが、組成物の全固形分に対して、0.5質量%以上が好ましく、1質量%以上がより好ましく、5質量%以上が更に好ましい。また、上記含有量は、40質量%以下が好ましく、30質量%以下がより好ましい。
 光分解型オニウム塩化合物は、1種単独で使用してもよく、2種以上を使用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
 光分解型オニウム塩化合物PG2が有し得る、カチオン以外の部位を例示する。
 以下に光分解型オニウム塩化合物PG2の具体例を示すが、これに限定されない。
<界面活性剤>
 レジスト組成物は、界面活性剤を含んでいてもよい。界面活性剤を含むと、密着性により優れ、現像欠陥のより少ないパターンを形成できる。
 界面活性剤は、フッ素系及び/又はシリコン系界面活性剤が好ましい。
 フッ素系及び/又はシリコン系界面活性剤としては、国際公開第2018/193954号公報の段落[0218]及び[0219]に開示された界面活性剤が挙げられる。
 これら界面活性剤は、1種を単独で用いてもよく、2種以上を使用してもよい。
 レジスト組成物が界面活性剤を含む場合、界面活性剤の含有量は、組成物の全固形分に対して、0.0001~2質量%が好ましく、0.0005~1質量%がより好ましい。
〔レジスト膜、パターン形成方法〕
 上記レジスト組成物を用いたパターン形成方法の手順は特に制限されないが、以下の工程を有するのが好ましい。
工程1:レジスト組成物を用いて、基板上にレジスト膜を形成する工程
工程2:レジスト膜を露光する工程
工程3:露光されたレジスト膜を有機溶剤を含む現像液を用いて現像する工程
 以下、上記それぞれの工程の手順について詳述する。
<工程1:レジスト膜形成工程>
 工程1は、レジスト組成物を用いて、基板上にレジスト膜を形成する工程である。
 レジスト組成物の定義は、上述の通りである。
 レジスト組成物を用いて基板上にレジスト膜を形成する方法としては、例えば、レジスト組成物を基板上に塗布する方法が挙げられる。
 なお、塗布前にレジスト組成物を必要に応じてフィルター濾過するのが好ましい。フィルターのポアサイズは、0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。また、フィルターは、ポリテトラフルオロエチレン製、ポリエチレン製、又は、ナイロン製が好ましい。
 レジスト組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上に、スピナー又はコーター等の適当な塗布方法により塗布できる。塗布方法は、スピナーを用いたスピン塗布が好ましい。スピナーを用いたスピン塗布をする際の回転数は、1000~3000rpmが好ましい。
 レジスト組成物の塗布後、基板を乾燥し、レジスト膜を形成してもよい。なお、必要により、レジスト膜の下層に、各種下地膜(無機膜、有機膜、反射防止膜)を形成してもよい。
 乾燥方法としては、例えば、加熱して乾燥する方法が挙げられる。加熱は通常の露光機、及び/又は、現像機に備わっている手段で実施でき、ホットプレート等を用いて実施してもよい。加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。加熱時間は30~1000秒が好ましく、60~800秒がより好ましく、60~600秒が更に好ましい。
 レジスト膜の膜厚は特に制限されないが、より高精度な微細パターンを形成できる点から、10~120nmが好ましい。なかでも、EUV露光とする場合、レジスト膜の膜厚としては、10~65nmがより好ましく、15~50nmが更に好ましい。また、ArF液浸露光とする場合、レジスト膜の膜厚としては、10~120nmがより好ましく、15~90nmが更に好ましい。
 なお、レジスト膜の上層にトップコート組成物を用いてトップコートを形成してもよい。
 トップコート組成物は、レジスト膜と混合せず、更にレジスト膜上層に均一に塗布できるのが好ましい。トップコートは、特に限定されず、従来公知のトップコートを、従来公知の方法によって形成でき、例えば、特開2014-059543号公報の段落[0072]~[0082]の記載に基づいてトップコートを形成できる。
 例えば、特開2013-061648号公報に記載されたような塩基性化合物を含むトップコートを、レジスト膜上に形成するのが好ましい。トップコートが含み得る塩基性化合物の具体的な例は、レジスト組成物が含んでいてもよい塩基性化合物が挙げられる。
 また、トップコートは、エーテル結合、チオエーテル結合、水酸基、チオール基、カルボニル結合、及びエステル結合からなる群より選択される基又は結合を少なくとも一つ含む化合物を含むのも好ましい。
<工程2:露光工程>
 工程2は、レジスト膜を露光する工程である。
 露光の方法としては、形成したレジスト膜に所定のマスクを通して活性光線又は放射線を照射する方法が挙げられる。
 活性光線又は放射線としては、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、及び電子線が挙げられ、好ましくは250nm以下、より好ましくは220nm以下、特に好ましくは1~200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、EUV(13nm)、X線、及び電子ビームが挙げられる。
 露光後、現像を行う前に露光後加熱処理(露光後ベークともいう。)を行うのが好ましい。露光後加熱処理により露光部の反応が促進され、感度及びパターン形状がより良好となる。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。
 加熱時間は10~1000秒が好ましく、10~180秒がより好ましく、30~120秒が更に好ましい。
 加熱は通常の露光機及び/又は現像機に備わっている手段で実施でき、ホットプレート等を用いて行ってもよい。
<工程3:現像工程>
 工程3は、現像液を用いて、露光されたレジスト膜を現像し、パターンを形成する工程である。
 現像液は、アルカリ現像液であっても、有機溶剤を含む現像液(以下、有機系現像液ともいう)であってもよい。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止して現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、及び一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)が挙げられる。
 また、現像を行う工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
 現像時間は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、10~300秒が好ましく、20~120秒がより好ましい。
 現像液の温度は0~50℃が好ましく、15~35℃がより好ましい。
 有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有する現像液であるのが好ましい。
 上記の溶剤は、複数混合してもよいし、上記以外の溶剤又は水と混合してもよい。現像液全体としての含水率は、50質量%未満が好ましく、20質量%未満がより好ましく、10質量%未満が更に好ましく、実質的に水分を含有しないのが特に好ましい。
 有機系現像液に対する有機溶剤の含有量は、現像液の全量に対して、50質量%以上100質量%以下が好ましく、80質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下が更に好ましく、95質量%以上100質量%以下が特に好ましい。
<他の工程>
 上記パターン形成方法は、工程3の後に、リンス液を用いて洗浄する工程を含むのが好ましい。
 有機系現像液を用いた現像工程の後のリンス工程に用いるリンス液は、パターンを溶解しないものであれば特に制限はなく、一般的な有機溶剤を含む溶液を使用できる。リンス液は、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有するリンス液を用いるのが好ましい。
 リンス工程の方法は特に限定されず、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、及び基板表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。
 また、本発明のパターン形成方法は、リンス工程の後に加熱工程(Post Bake)を含んでいてもよい。本工程により、ベークによりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。また、本工程により、レジストパターンがなまされ、パターンの表面荒れが改善される効果もある。リンス工程の後の加熱工程は、通常40~250℃(好ましくは90~200℃)で、通常10秒間~3分間(好ましくは30秒間~120秒間)行う。
 また、形成されたパターンをマスクとして、基板のエッチング処理を実施してもよい。つまり、工程3にて形成されたパターンをマスクとして、基板(又は、下層膜及び基板)を加工して、基板にパターンを形成してもよい。
 基板(又は、下層膜及び基板)の加工方法は特に限定されないが、工程3で形成されたパターンをマスクとして、基板(又は、下層膜及び基板)に対してドライエッチングを行うことにより、基板にパターンを形成する方法が好ましい。ドライエッチングは、酸素プラズマエッチングが好ましい。
 本発明のパターン形成方法において使用される各種材料(例えば、溶剤、現像液、リンス液、反射防止膜形成用組成物、トップコート形成用組成物等)は、金属等の不純物を含まないのが好ましい。これら材料に含まれる不純物の含有量は、1質量ppm以下が好ましく、10質量ppb以下がより好ましく、100質量ppt以下が更に好ましく、10質量ppt以下が特に好ましく、1質量ppt以下が最も好ましい。ここで、金属不純物としては、例えば、Na、K、Ca、Fe、Cu、Mg、Al、Li、Cr、Ni、Sn、Ag、As、Au、Ba、Cd、Co、Pb、Ti、V、W、及びZn等が挙げられる。
 各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過が挙げられる。フィルターを用いた濾過の詳細は、国際公開第2020/004306号公報の段落[0321]に記載される。
 また、各種材料に含まれる金属等の不純物を低減する方法としては、例えば、各種材料を構成する原料として金属含有量が少ない原料を選択する方法、各種材料を構成する原料に対してフィルター濾過を行う方法、及び装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う方法等が挙げられる。
 フィルター濾過の他、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材とを組み合わせて使用してもよい。吸着材としては、公知の吸着材を使用でき、例えば、シリカゲル及びゼオライト等の無機系吸着材、並びに、活性炭等の有機系吸着材を使用できる。上記各種材料に含まれる金属等の不純物を低減するためには、製造工程における金属不純物の混入を防止する必要がある。製造装置から金属不純物が十分に除去されたかどうかは、製造装置の洗浄に使用された洗浄液中に含まれる金属成分の含有量を測定して確認できる。使用後の洗浄液に含まれる金属成分の含有量は、100質量ppt(parts per trillion)以下が好ましく、10質量ppt以下がより好ましく、1質量ppt以下が更に好ましい。
 リンス液等の有機系処理液には、静電気の帯電、引き続き生じる静電気放電に伴う、薬液配管及び各種パーツ(フィルター、O-リング、チューブ等)の故障を防止する為、導電性の化合物を添加してもよい。導電性の化合物は特に制限されないが、例えば、メタノールが挙げられる。添加量は特に制限されないが、好ましい現像特性又はリンス特性を維持する点で、10質量%以下が好ましく、5質量%以下がより好ましい。
 薬液配管としては、例えば、SUS(ステンレス鋼)、又は、帯電防止処理の施されたポリエチレン、ポリプロピレン、若しくは、フッ素樹脂(ポリテトラフルオロエチレン、又は、パーフロオロアルコキシ樹脂等)で被膜された各種配管を使用できる。フィルター及びO-リングに関しても同様に、帯電防止処理の施されたポリエチレン、ポリプロピレン、又は、フッ素樹脂(ポリテトラフルオロエチレン、又は、パーフロオロアルコキシ樹脂等)を使用できる。
[電子デバイスの製造方法]
 また、本発明は、上記したパターン形成方法を含む、電子デバイスの製造方法、及びこの製造方法により製造された電子デバイスにも関する。
 本発明の電子デバイスは、電気電子機器(家電、OA(Office Automation)、メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[感活性光線性又は感放射線性樹脂組成物の各種成分]
〔樹脂〕
 表1及び表2に示される樹脂(B-1~B-16及びRB-1~RB-2)は、既知の方法にて合成したものを用いた。なお、樹脂RB-1~RB-2は、比較用樹脂に該当する。
 以下、樹脂B-1~B-16、RB-1~RB-2を示す。
 なお、以下の樹脂において、各繰り返し単位の組成比は、モル%基準である。
 また、樹脂B-1~B-16、RB-1~RB-2の重量平均分子量(Mw)及び分散度(Mw/Mn)は、GPC(キャリア:テトラヒドロフラン(THF))により測定した(ポリスチレン換算量である)。樹脂の組成比(モル%比)は、13C-NMR(Nuclear Magnetic Resonance)により測定した。
〔金属化合物〕
 以下、表1及び表2に示される金属化合物(A-1~A-20)を示す。
〔光分解型オニウム塩〕
 以下、表1及び表2に示される光分解型オニウム塩(C-1~C-5)を示す。
〔溶剤〕
 以下、表1及び表2に示される溶剤(D-1~D-6)を示す。
 D-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 D-2:プロピレングリコールモノメチルエーテル(PGME)
 D-3:シクロヘキサノン
 D-4:乳酸エチル
 D-5:γ-ブチロラクトン
 D-6:ジアセトンアルコール
〔現像液及びリンス液〕
 以下、表1及び表2に示される現像液及びリンス液(E-1~E-4)を示す。
 E-1: 酢酸ブチル
 E-2: 酢酸イソプロピル
 E-3: 酢酸ブチル:n-ウンデカン=90:10(質量比)
 E-4: 4-メチル-2-ペンタノール
[感活性光線性又は感放射線性樹脂組成物の調製]
 表1に示す成分を表1に示す溶剤に溶解させ、固形分濃度が2.0質量%の溶液を調製し、これを0.02μmのポアサイズを有するポリエチレンフィルターでろ過して、レジスト組成物を調製した。
 なお、固形分とは、溶剤以外の全ての成分を意味する。得られたレジスト組成物を、実施例及び比較例で使用した。
 また、表中、「質量%」欄は、各成分の、レジスト組成物中の全固形分に対する含有量(質量%)を示す。また、表には用いた溶剤の使用量(質量部)を記載した。
[パターン形成及び評価]
〔EUV露光によるパターン形成及び評価:実施例1-1~1-19、比較例1-1~1-3〕
<パターン形成>
 シリコンウエハ上に下層膜形成用組成物AL412(Brewer Science社製)を塗布し、205℃で60秒間ベークして、膜厚20nmの下地膜を形成した。その上に、表1に示す製造直後のレジスト組成物を塗布し、100℃で60秒間ベークして、膜厚30nmのレジスト膜を形成した。
 EUV露光装置(Exitech社製、Micro Exposure Tool、NA0.3、Quadrupol、アウターシグマ0.68、インナーシグマ0.36)を用いて、得られたレジスト膜を有するシリコンウエハに対してパターン照射を行った。なお、レクチルとしては、ラインサイズ=20nmであり、且つ、ライン:スペース=1:1であるマスクを用いた。
 露光後のレジスト膜を100℃で60秒間ベークした後、表1に示した現像液で30秒間パドルして現像し、記載がある場合に限り、1000rpmの回転数でウエハを回転させながら表1に示したリンス液を10秒間かけ流してリンスした後、4000rpmの回転数で30秒間ウエハを回転させることにより、ピッチ40nmのラインアンドスペースパターンを得た。
<評価>
(最適露光量(感度評価))
 測長走査型電子顕微鏡(SEM:Scanning Electron Microscope(日立ハイテクノロジー社製 CG-4100))を用いて、露光量を変化させながらラインアンドスペースパターンのライン幅を測定し、ライン幅が20nmとなる際の露光量を求め、これを最適露光量(mJ/cm)とした。
 最適露光量を示す値が小さいほど、より感度が高いことを示す。より具体的には、最適露光量は、65mJ/cm以下であることが好ましく、50mJ/cm以下であることがより好ましい。
 結果を表1に示す。
(解像性)
 上記レジストパターンの形成の露光及び現像条件において、線幅20nmのマスクパターンを再現する露光量を最適露光量とし、最適露光量から更に露光量を増大させて形成されるラインアンドスペースパターンの線幅を細らせた際に、パターンが断線することなく解像する限界最小のライン幅を、解像性を示す値(nm)として定義した。
 解像性を示す値が小さいほど、より微細なパターンが解像することを表し、解像力が高いことを示す。より具体的には、解像性は、18nm以下であることが好ましく、16nm以下であることがより好ましく、14nm以下であることが更に好ましい。
 結果を表1に示す。
 表1の結果から、実施例のレジスト組成物は、感度に優れており、且つ、解像性に優れるパターンを形成できることが確認された。
 また、実施例の対比から、レジスト組成物中の特定金属化合物として、鉄原子、チタン原子、コバルト原子、ニッケル原子、亜鉛原子、銀原子、インジウム原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の金属原子を含む場合(好ましくは、鉄原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の原子を含む場合)、レジスト組成物の感度がより向上することが確認された。
 また、実施例の対比から、レジスト組成物中の特定樹脂が上述した式(1)で表される繰り返し単位(但し、Xが塩素原子を表す)と、上述した式(3)で表される繰り返し単位(但し、Cがフェノール性水素原子又はカルボキシ基を表す)を含む場合、解像性がより向上したパターンを形成できることが確認された。
〔EB露光によるパターン形成及び評価:実施例2-1~2-19、比較例2-1~2-3〕
<パターン形成>
 ACTM(東京エレクトロン(株)製)を用いて、152mm角の最表面がCrであるマスクブランク上に、反射防止膜形成用組成物DUV44(Brewer Science社製)を塗布し、205℃で60秒間ベークして膜厚60nmの下層膜を形成した。表2に示す製造直後のレジスト組成物を塗布し、100℃で60秒間ベークして、膜厚30nmのレジスト膜を形成した。これにより、レジスト膜を有するマスクブランクを形成した。
 上述の手順により得られたレジスト膜を有するマスクブランクに対して、電子線露光装置((株)ニューフレアテクノロジー製EBM-9000、加速電圧50kV)を用いて、パターン照射を行った。この際、ラインサイズ=22nmであり、且つ、1:1のラインアンドスペースが形成されるように描画を行った。
 露光後のレジスト膜を100℃で60秒間ベークした後、表2に示した現像液で30秒間パドルして現像し、記載がある場合に限り、1000rpmの回転数でウエハを回転させながら下記表2に示したリンス液を10秒間かけ流してリンスした後、4000rpmの回転数で30秒間ウエハを回転させることにより、ピッチ44nmのラインアンドスペースパターンを得た。
<評価>
 上述した〔EUV露光によるパターン形成及び評価:実施例1-1~1-19、比較例1-1~1-3〕と同様の手順により評価を実施した。結果を表2に示す。
 なお、本評価において、最適露光量としては、具体的には、250mJ/cm以下であることが好ましく、200mJ/cm以下であることがより好ましい。また、解像性としては、具体的には、20nm以下であることが好ましく、18nm以下であることがより好ましく、16nm以下であることが更に好ましい。
 表2の結果から、実施例のレジスト組成物は、感度に優れており、且つ、解像性に優れるパターンを形成できることが確認された。
 また、実施例の対比から、レジスト組成物中の特定金属化合物が、鉄原子、チタン原子、コバルト原子、ニッケル原子、亜鉛原子、銀原子、インジウム原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の金属原子を含む場合(好ましくは、鉄原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の原子を含む場合)、レジスト組成物の感度がより向上することが確認された。
 また、実施例の対比から、レジスト組成物中の特定樹脂が上述した式(1)で表される繰り返し単位(但し、Xが塩素原子を表す)と、上述した式(3)で表される繰り返し単位(但し、Cがフェノール性水素原子又はカルボキシ基を表す)を含む場合、解像性がより向上したパターンを形成できることが確認された。

Claims (13)

  1.  金属化合物と、
     X線、電子線、又は極紫外線の照射により主鎖が分解する樹脂と、
     溶剤と、を含む感活性光線性又は感放射線性樹脂組成物であって、
     前記金属化合物が、金属錯体、有機金属塩、及び有機金属化合物からなる群から選ばれる1種以上の金属化合物を含み、
     前記樹脂が、下記式(1)で表される繰り返し単位又は下記式(XR)で表される繰り返し単位を含む樹脂を含む、感活性光線性又は感放射線性樹脂組成物。
     式(1)中、Xは、ハロゲン原子又はフッ化アルキル基を表す。Rは、水素原子又は有機基を表す。Rは、置換基を表す。なお、RとRとは、互いに連結して環を形成してもよい。
     式(XR)中、Rr1~Rr4は、各々独立に、水素原子又は置換基を表す。また、Rr2及びRr3が互いに結合して環を形成してもよい。*は、結合位置を表す。
  2.  前記樹脂が、水酸基、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基からなる群から選ばれる1種以上の官能基を含む、請求項1に記載の感活性光線性又は感放射線性樹脂組成物。
  3.  前記樹脂が、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基を含む、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  4.  前記式(1)で表される繰り返し単位が、下記式(1A)で表される繰り返し単位を含む、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
     式(1)中、Xは、ハロゲン原子又はフッ化アルキル基を表す。L2Aは、-O-又は-N(R)-を表す。R、R、及びR1Aは、各々独立に、水素原子又は有機基を表す。なお、RとR1Aとは、互いに連結して環を形成してもよい。
  5.  前記Xが、塩素原子を表す、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  6.  前記樹脂が、前記式(1)で表される繰り返し単位と、下記式(3)で表される繰り返し単位とを含む、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
     式(3)中、Aは、水素原子又はアルキル基を表す。Lは、単結合又は2価の連結基を表す。Bは、(m1+1)価の連結基を表す。Cは、水酸基、カルボキシル基、アミノ基、アミド基、チオール基、及びアセトキシ基からなる群から選ばれる1種以上の特定官能基を表す。m1は、1以上の整数を表す。なお、m1が2以上の整数を表す場合、複数存在するC同士は、互いに同一であっても異なっていてもよい。
  7.  前記Cが、フェノール性水酸基及びカルボキシル基からなる群から選ばれる1種以上の官能基を含む、請求項6に記載の感活性光線性又は感放射線性樹脂組成物。
  8.  前記金属化合物が、鉄原子、チタン原子、コバルト原子、ニッケル原子、亜鉛原子、銀原子、インジウム原子、錫原子、及びハフニウム原子からなる群から選ばれる1種以上の金属原子を含む、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  9.  前記金属化合物の含有量が、前記樹脂の含有量に対して、1~40質量%である、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  10.  更に、光分解型オニウム塩化合物を含む、請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物。
  11.  請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物を用いて形成された、レジスト膜。
  12.  請求項1又は2に記載の感活性光線性又は感放射線性樹脂組成物を用いて、基板上にレジスト膜を形成する工程と、
     前記レジスト膜をX線、電子線、又は極紫外線で露光する工程と、
     前記露光されたレジスト膜を現像液を用いて現像する工程と、を有する、パターン形成方法。
  13.  請求項12に記載のパターン形成方法を含む、電子デバイスの製造方法。
PCT/JP2023/008868 2022-03-23 2023-03-08 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法 WO2023181950A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022047069 2022-03-23
JP2022-047069 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023181950A1 true WO2023181950A1 (ja) 2023-09-28

Family

ID=88100766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008868 WO2023181950A1 (ja) 2022-03-23 2023-03-08 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法

Country Status (2)

Country Link
TW (1) TW202347025A (ja)
WO (1) WO2023181950A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262874A (ja) * 1991-07-31 1993-10-12 Hoechst Ag 酸に対して不安定な保護基を有するオリゴマー化合物、およびこの化合物を用いて製造したポジ型放射線感応性混合物
JP2001066767A (ja) * 1999-07-12 2001-03-16 Internatl Business Mach Corp <Ibm> レジスト組成物およびその使用
JP2003066610A (ja) * 2001-08-27 2003-03-05 Toppan Printing Co Ltd ポリイミド樹脂及びこれを含有する感光性樹脂組成物
JP2020016699A (ja) * 2018-07-23 2020-01-30 日本ゼオン株式会社 重合体及びその製造方法、ポジ型レジスト組成物、並びにレジストパターン形成方法
WO2021002351A1 (ja) * 2019-07-02 2021-01-07 王子ホールディングス株式会社 パターン形成方法、レジスト材料及びパターン形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262874A (ja) * 1991-07-31 1993-10-12 Hoechst Ag 酸に対して不安定な保護基を有するオリゴマー化合物、およびこの化合物を用いて製造したポジ型放射線感応性混合物
JP2001066767A (ja) * 1999-07-12 2001-03-16 Internatl Business Mach Corp <Ibm> レジスト組成物およびその使用
JP2003066610A (ja) * 2001-08-27 2003-03-05 Toppan Printing Co Ltd ポリイミド樹脂及びこれを含有する感光性樹脂組成物
JP2020016699A (ja) * 2018-07-23 2020-01-30 日本ゼオン株式会社 重合体及びその製造方法、ポジ型レジスト組成物、並びにレジストパターン形成方法
WO2021002351A1 (ja) * 2019-07-02 2021-01-07 王子ホールディングス株式会社 パターン形成方法、レジスト材料及びパターン形成装置

Also Published As

Publication number Publication date
TW202347025A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
EP4098672A1 (en) Positive resist composition, resist film, pattern formation method, and method for manufacturing electronic device
CN117063122A (zh) 感光化射线性或感放射线性树脂组合物、抗蚀剂膜、图案形成方法、电子器件的制造方法
TW201914991A (zh) 感光化射線性或感放射線性樹脂組成物、抗蝕劑膜、圖案形成方法及電子元件的製造方法
KR20230131900A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막,패턴 형성 방법, 전자 디바이스의 제조 방법
WO2023181950A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP7124094B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2024048463A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024147288A1 (ja) パターン形成方法、パターン形成用キット、及び電子デバイスの製造方法
WO2023189586A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2024122346A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024116797A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024034438A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024048462A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法及び重合体
TWI793267B (zh) 感光化射線性或感放射線性樹脂組成物、抗蝕劑膜、圖案形成方法、電子元件的製造方法
WO2024150663A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2024116798A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024024692A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法及び電子デバイスの製造方法
WO2023157712A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、重合体
WO2024150676A1 (ja) 感活性光線性又は感放射線性樹脂組成物
WO2024150677A1 (ja) 感活性光線性又は感放射線性樹脂組成物
WO2024048281A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024128040A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024147289A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2024038802A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
TW202419486A (zh) 感光化射線性或感放射線性樹脂組成物、光阻膜、圖案形成方法、及電子器件之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774549

Country of ref document: EP

Kind code of ref document: A1