WO2023179636A1 - 抬头显示玻璃和抬头显示系统 - Google Patents

抬头显示玻璃和抬头显示系统 Download PDF

Info

Publication number
WO2023179636A1
WO2023179636A1 PCT/CN2023/082935 CN2023082935W WO2023179636A1 WO 2023179636 A1 WO2023179636 A1 WO 2023179636A1 CN 2023082935 W CN2023082935 W CN 2023082935W WO 2023179636 A1 WO2023179636 A1 WO 2023179636A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
head
refractive index
reflective film
display glass
Prior art date
Application number
PCT/CN2023/082935
Other languages
English (en)
French (fr)
Inventor
鲁岳闽
陈志新
林军
张灿忠
Original Assignee
福建省万达汽车玻璃工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省万达汽车玻璃工业有限公司 filed Critical 福建省万达汽车玻璃工业有限公司
Publication of WO2023179636A1 publication Critical patent/WO2023179636A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0183Adaptation to parameters characterising the motion of the vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0194Supplementary details with combiner of laminated type, for optical or mechanical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0196Supplementary details having transparent supporting structure for display mounting, e.g. to a window or a windshield

Definitions

  • This application relates to the technical field of glass products, and in particular to a head-up display glass and a head-up display system.
  • head-up display HUD, Head Up Display
  • the head-up display system on the vehicle can display important driving information, such as speed, engine revolutions, fuel consumption, tire pressure, navigation and information from external smart devices, in the driver's field of vision in real time, so that the driver does not have to lower his head.
  • Driving information can be seen, thereby avoiding distracting the driver's attention from the road ahead; at the same time, the driver does not have to adjust his eyes between observing the distant road and nearby instruments, which can avoid eye fatigue and greatly enhance driving safety. and improved driving experience.
  • head-up display technology is mainly implemented through two methods: luminescence imaging and projection imaging.
  • Projection imaging uses the head-up display glass itself or additional optical elements for projection display.
  • Using the head-up display glass to reflect the projection image is the simplest structure.
  • General head-up display glass is laminated glass. The light emitted by the projection light source of the head-up display system will be reflected when it passes through the two surfaces of the laminated glass that are in contact with the air. The reflected images on the two surfaces will shift to form two mutually exclusive structures. Interfering ghosting, which greatly limits the clarity of the projected image.
  • the purpose of this application is to provide a head-up display glass and a head-up display system that can clearly display images without ghosting.
  • This application provides a head-up display glass, which includes laminated glass and a reflective film layer.
  • the reflective film layer can reflect P polarized light;
  • Laminated glass includes an outer glass plate, a polymer intermediate layer and an inner glass plate.
  • the polymer intermediate layer is sandwiched between the outer glass plate and the inner glass plate;
  • the reflective film layer includes a stacked inner barrier layer, an improvement layer and at least one laminated structure.
  • the inner barrier layer is provided on the surface of the inner glass plate facing away from the polymer intermediate layer.
  • the laminated structure includes high-rise films laminated in sequence in a direction away from the inner barrier layer. Refractive index layer and low refractive index layer, the refractive index of the high refractive index layer is ⁇ 1.8, and the refractive index of the low refractive index layer is ⁇ 1.7;
  • the improvement layer is provided between the inner barrier layer and the laminated structure; or the improvement layer is provided between the high refractive index layer and the low refractive index layer.
  • the reflectivity of the head-up display glass to the P-polarized light incident at the incident angle ⁇ is Y, 60° ⁇ 75°, and Y ⁇ 15%.
  • the reflectivity of the head-up display glass to vertically incident visible light is ⁇ 15%.
  • the material of the inner barrier layer is selected from at least one of the oxides of Zn, Sn, Ti, Si, Al, Nb, Zr, Ni, Mg, Cr, Ta elements and oxides of their alloys, or selected from Si , at least one of nitrides of Al, Zr, B, Ti elements and nitrides of their alloys.
  • the material of the improvement layer is selected from the elements Ni, Cr, Fe, Ti, Mo, Cu, Al, Au, Sn, Zr, In, Si, Nb, Ge, W, Ta, Pd, Pt elements and their alloys of at least one.
  • the element or alloy in the improvement layer has a crystal structure, and the thickness of the improvement layer is 1 nm to 40 nm.
  • the element or alloy in the improvement layer has an amorphous structure, and the thickness of the improvement layer is 1 nm to 5 nm.
  • the reflective film layer further includes an outer barrier layer, and the outer barrier layer is disposed on a surface of at least one stacked structure away from the inner barrier layer.
  • the material of the outer barrier layer is selected from at least one of Si, Al, Zr, Ti, B, nitrides of Ni elements and oxynitrides of their alloys.
  • the thickness of the outer barrier layer is 3nm ⁇ 30nm.
  • the difference between the refractive index of the inner glass plate and the refractive index of the polymer intermediate layer is not greater than 0.1, and the difference between the refractive index of the outer glass plate and the refractive index of the polymer intermediate layer is not greater than 0.1.
  • the Lab value of the reflected color of the head-up display glass measured from the reflective film layer side ranges from -8 to 3
  • the range of the b value ranges from -12 to 0.
  • This application also provides a head-up display glass, which includes laminated glass and a reflective film layer, and the reflective film layer can reflect P polarized light;
  • Laminated glass includes an outer glass plate, a polymer intermediate layer and an inner glass plate.
  • the polymer intermediate layer is sandwiched between the outer glass plate and the inner glass plate;
  • the reflective film layer includes a stacking improvement layer and at least one laminated structure.
  • the laminated structure includes a high refractive index layer and a low refractive index layer sequentially stacked in a direction away from the inner barrier layer.
  • the refractive index of the high refractive index layer is ⁇ 1.8
  • the low refractive index layer is ⁇ 1.8.
  • the refractive index of the index layer is ⁇ 1.7;
  • the reflectivity of the head-up display glass to P-polarized light incident at the incident angle ⁇ is Y, 60° ⁇ 75°, Y ⁇ 15%.
  • the reflective film layer also includes an inner barrier layer, and the inner barrier layer is provided on the surface of the inner glass plate facing away from the polymer intermediate layer.
  • the material of the improvement layer has a crystal structure, and the thickness of the improvement layer is 1 nm to 40 nm.
  • the material of the improvement layer has an amorphous structure, and the thickness of the improvement layer is 1 nm to 5 nm.
  • the material of the improvement layer is selected from the elements Ni, Cr, Fe, Ti, Mo, Cu, Al, Au, Sn, Zr, In, Si, Nb, Ge, W, Ta, Pd, Pt elements and their alloys of at least one.
  • the Lab value of the reflected color of the head-up display glass measured from the reflective film layer side ranges from -8 to 3
  • the range of the b value ranges from -12 to 0.
  • This application also provides a head-up display system, which includes a projection light source and the above head-up display glass.
  • the projection light source is used to generate P-polarized light, and the P-polarized light is projected on the reflective film layer.
  • This application provides a head-up display glass and a head-up display system.
  • the inner barrier layer can prevent alkali metal ions on the glass surface from damaging the improvement layer and blocking the improvement layer during the heat treatment process.
  • the diffusion of oxygen oxidizes the improvement layer, and the improvement layer can further improve the reflectivity of the reflective film layer for P polarized light, while maintaining the low reflectivity of the reflective film layer for visible light.
  • the inner barrier layer, improvement layer and stacked structure Together, the reflective film layer formed has a high reflectivity for P-polarized light, so that when the driver inside the vehicle visually observes the reflection image of the head-up display glass, he can only observe the reflection image of the reflective film layer. , thus eliminating the visual ghosting phenomenon; and, the reflectivity of the head-up display glass in this application to visible light is less than or equal to 15%, and no obvious reflection phenomenon will be observed in the car.
  • Figure 1 is a schematic structural diagram of a vehicle equipped with a head-up display system according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of the head-up display system in the vehicle shown in Figure 1;
  • Figure 3 is a schematic cross-sectional structural diagram of the first embodiment of the head-up display glass in the head-up display system shown in Figure 2;
  • Figure 4 is a schematic structural diagram of a first example of a reflective film layer in the first embodiment of the head-up display glass shown in Figure 3;
  • Figure 5 is a schematic structural diagram of a second example of the reflective film layer in the first embodiment of the head-up display glass shown in Figure 3;
  • Figure 6 is a schematic structural diagram of a third example of the reflective film layer in the first embodiment of the head-up display glass shown in Figure 3;
  • Figure 7 is a schematic structural diagram of a fourth example of the reflective film layer in the first embodiment of the head-up display glass shown in Figure 3;
  • Figure 8 is a schematic structural diagram of a fifth example of the reflective film layer in the first embodiment of the head-up display glass shown in Figure 3;
  • Figure 9 is a schematic structural diagram of a sixth example of the reflective film layer in the first embodiment of the head-up display glass shown in Figure 3;
  • Figure 10 is a schematic structural diagram of a first example of a reflective film layer in the second embodiment of the head-up display glass shown in Figure 3;
  • FIG. 11 is a schematic structural diagram of a second example of the reflective film layer in the second embodiment of the head-up display glass shown in FIG. 3 .
  • FIG. 1 shows a schematic structural diagram of a vehicle 1 equipped with a head-up display system 1000 according to an embodiment of the present application.
  • the vehicle 1 includes a head-up display system 1000 and a body 2000.
  • the head-up display system 1000 is located on the body 2000 and is used to display important driving information, such as speed, engine revolutions, fuel consumption, tire pressure, navigation and information from external smart devices in real time. in the driver's field of vision.
  • FIG. 2 is a schematic structural diagram of the head-up display system 1000 in the vehicle 1 shown in FIG. 1 .
  • the head-up display system 1000 includes a head-up display glass 100 and a projection light source 200 .
  • the head-up display glass 100 is installed on the vehicle body 2000 , and the projection light source 200 is located inside the vehicle body 2000 .
  • the head-up display glass 100 has opposite first side surfaces 101 and second side surfaces 102. When the head-up display glass 100 is installed on a vehicle, the first side surface 101 faces the outside of the vehicle and the second side surface 102 faces the inside of the vehicle.
  • the projection light source 200 is installed inside the vehicle.
  • the projection light source 200 generates P-polarized light.
  • the P-polarized light is projected on the second side surface 102 of the head-up display glass 100 facing the inside of the vehicle.
  • Part of the P-polarized light is incident on the second side at an incident angle ⁇ .
  • the surface 102 is reflected on the second side surface 102 , and part of the P-polarized light passes through the head-up display glass 100 and reaches the first side surface 101 , and is reflected on the first side surface 101 .
  • the second side surface 102 of the head-up display glass 100 facing the inside of the vehicle has a higher reflectivity for P-polarized light
  • the first side surface 101 facing the outside of the vehicle has a lower reflectivity for P-polarized light, so that the driver inside the vehicle
  • the reflection image (HUD display image) of the head-up display glass 100 it is only possible to The reflected image of the second side surface 102 can be observed, thereby eliminating the visual ghost phenomenon.
  • the P-polarized light generated by the projection light source 200 can be understood as the projection light generated by the projection light source 200 contains at least 80% P-polarized light.
  • the higher the proportion of P-polarized light in the projection light the higher the brightness and clarity of the head-up display image. , the easier it is to eliminate visual ghosting, the more preferably it contains at least 90% P-polarized light, especially 100% P-polarized light, that is, the projection light is basically pure P-polarized light.
  • FIG. 3 is a schematic cross-sectional structural diagram of the first embodiment of the head-up display glass 100 in the head-up display system 1000 shown in FIG. 2 .
  • the thickness direction of the head-up display glass 100 shown in FIG. 2 is defined as the X-axis direction.
  • the head-up display glass 100 includes laminated glass and a reflective film layer 40, and the reflective film layer 40 can reflect P-polarized light.
  • the laminated glass includes an outer glass plate 10, a polymer intermediate layer 30 and an inner glass plate 20 in sequence.
  • the polymer intermediate layer 30 is sandwiched between the outer glass plate 10 and the inner glass plate 20.
  • the outer glass plate 10 has a first surface 11 and a second surface 12.
  • the first surface 11 and the second surface 12 are arranged oppositely.
  • the second surface 12 faces the polymer intermediate layer 30.
  • the first surface 11 is the interface between the outer glass plate 10 and the air.
  • the interface is the first side surface 101 of the head-up display glass 100 .
  • the inner glass plate 20 has a third surface 21 and a fourth surface 22 .
  • the third surface 21 and the fourth surface 22 are oppositely arranged.
  • the third surface 21 faces the polymer intermediate layer 30 and the fourth surface 22 faces away from the polymer intermediate layer 30 .
  • the difference between the refractive index of the outer glass plate 10 and the refractive index of the polymer intermediate layer 30 is no more than 0.1, and the difference between the refractive index of the inner glass plate 20 and the refractive index of the polymer intermediate layer 30 is no more than 0.1. greater than 0.1.
  • the reflective film layer 40 is disposed on the fourth surface 22 of the inner glass panel 20 .
  • the reflective film layer 40 faces the interior of the vehicle.
  • the surface of the reflective film layer 40 facing away from the fourth surface 22 is the second side surface 102 .
  • the reflective film layer 40 has a high reflectivity for the P-polarized light emitted by the projection light source 200 , and the first surface 11 of the outer glass plate 10 has a low reflectivity for the P-polarized light, thereby eliminating visual ghosting.
  • the reflectivity of the head-up display glass 100 for P-polarized light incident at an incident angle ⁇ is Y. In one embodiment, 60° ⁇ 75°, Y ⁇ 15%. In another embodiment, 65° ⁇ 75°, Y ⁇ 20%. In another embodiment, when 70° ⁇ 75°, Y ⁇ 27%.
  • FIG. 4 is a schematic structural diagram of the first example of the reflective film layer 40 in the first embodiment of the head-up display glass 100 shown in FIG. 3 .
  • FIG. 5 is a third example of the head-up display glass 100 shown in FIG. 3 .
  • FIG. 6 is a schematic structural diagram of a third example of the reflective film layer 40 in the first embodiment of the head-up display glass 100 shown in FIG. 3 .
  • FIG. 7 is a schematic diagram of the reflective film layer 40 in the first embodiment of the head-up display glass 100 shown in FIG. 3
  • FIG. 8 is a fifth example of the reflective film layer 40 in the first embodiment of the head-up display glass 100 shown in FIG. 3 Structural schematic diagram.
  • FIG. 9 is a schematic structural diagram of a sixth example of the reflective film layer 40 in the first embodiment of the head-up display glass 100 shown in FIG. 3 .
  • the positive direction of the X-axis in the figure is the direction away from the inner barrier layer 41 .
  • the reflective film layer 40 includes a stacked inner barrier layer 41 , an improvement layer 42 and at least one stacked structure 43 .
  • the inner barrier layer 41 is disposed on the fourth surface 22 of the inner glass plate 20 in a direction away from the inner barrier layer 41 , that is, along the positive direction of the X-axis in the figure, that is, in a direction away from the outer glass plate 10 from the fourth surface 22 .
  • the inner barrier layer 41 and the stacked structure 43 are stacked in sequence, and each stacked structure 43 includes a high refractive index layer 431 and a low refractive index layer 432 stacked in sequence to form a high refractive index layer/low refractive index layer structure.
  • the refractive index of the high refractive index layer 431 is ⁇ 1.8, and the refractive index of the low refractive index layer 432 is ⁇ 1.7. In some embodiments, the refractive index of the high refractive index layer 431 is ⁇ 2.0, and in other embodiments, the refractive index of the high refractive index layer 431 is ⁇ 2.2. "Laminated" in this application includes direct contact and indirect contact.
  • the inner barrier layer 41 can prevent the alkali metal ions on the fourth surface 22 of the inner glass plate 20 from damaging the improvement layer 42, and prevent the diffusion of oxygen from oxidizing the improvement layer 42, which is beneficial to Improve reflective film Thermal stability of layer 40.
  • the material of the inner barrier layer 41 is selected from at least one of Zn, Sn, Ti, Si, Al, Nb, Zr, Ni, Mg, Cr, Ta element oxides and oxides of their alloys, or selected from Si, At least one of nitrides of Al, Zr, B, Ti elements and nitrides of their alloys.
  • the inner barrier layer 41 examples include a SiO 2 layer (silicon oxide layer), a ZnSnOx layer (zinc tin oxide layer), a Si 3 N 4 layer (silicon nitride layer), and a ZrSiNx layer (silicon zirconium nitride layer).
  • the thickness of the inner barrier layer 41 is ⁇ 3 nm, and in another embodiment, the thickness of the inner barrier layer 41 is ⁇ 5 nm.
  • the improvement layer 42 has a certain reflection effect on P-polarized light, which can further improve the reflectivity of the reflective film layer 40 on P-polarized light, while maintaining a low reflectivity of the reflective film layer 40 on visible light to meet the requirements of the head-up display glass.
  • 100 has the requirement of higher reflectivity for P polarized light and lower reflectivity for visible light.
  • the material of the improvement layer 42 is selected from Ni, Cr, Fe, Ti, Mo, Cu, Al, Au, Sn, Zr, In, Si, Nb, Ge, W, Ta, Pd, Pt elements At least one of the elements and their alloys.
  • the improvement layer 42 include an amorphous Si layer, a crystalline Si layer, a Ti layer, an Al layer, and a NiCr layer.
  • the element or alloy in the improvement layer 42 has a crystal structure, and the thickness of the improvement layer is 1 nm to 40 nm. Preferably, the thickness of the improvement layer 42 is greater than 5 nm, and further preferably, the thickness of the improvement layer 42 is 10 nm to 30 nm. Examples of the improvement layer 42 having a crystal structure include Ti, Mo, Al, and Si.
  • the element or alloy in the improvement layer 42 has an amorphous structure, and the thickness of the improvement layer 42 is 1 nm to 5 nm.
  • the improvement layer 42 with a crystal structure has higher optical properties and lower visible light reflectivity, which can further improve the reflectivity of the reflective film layer 40 for P polarized light and obtain lower Visible light reflectivity and better visible light transmittance.
  • the material of the high refractive index layer 431 in the laminated structure 43 is selected from oxides of Zn, Sn, Ti, Nb, Zr, Ni, In, Al, Ce, W, Mo, Sb, Bi elements and their alloys. At least one of the oxides, or at least one of the nitrides and oxynitrides of Si, Al, Zr, Y, Ce, La elements and their alloys.
  • the high refractive index layer 431 include TiO x and the like.
  • the thickness of the high refractive index layer 431 is 30 nm to 85 nm; in another embodiment, the thickness of the high refractive index layer 431 is 40 nm to 65 nm.
  • the high refractive index layer 431 may contain one or more sub-layer structures. That is, when the high refractive index layer 431 contains one sub-layer structure, the refractive index of the single-layer sub-layer structure is ⁇ 1.8. When the high refractive index layer 431 contains multiple sub-layer structures, the refractive index of the multiple sub-layer structures are all ⁇ 1.8.
  • the material of the low refractive index layer 432 in the stacked structure 43 is selected from at least one of Si, Al, Zr, oxides of B elements and oxides of their alloys.
  • Examples of the low refractive index layer 432 include SiO x and the like.
  • the thickness of the low refractive index layer 432 is 35 nm to 130 nm; in another embodiment, the thickness of the low refractive index layer 432 is 50 nm to 100 nm.
  • the low refractive index layer 432 may contain one or more sub-layer structures. That is, when the low refractive index layer 432 contains one sub-layer structure, the refractive index of the single-layer sub-layer structure is ⁇ 1.7; when the low refractive index layer 432 contains multiple sub-layer structures, the refractive indices of the multiple sub-layer structures are all ⁇ 1.7.
  • the improvement layer 42 is provided between the inner barrier layer 41 and the stacked structure 43 .
  • the improvement layer 42 is located between the inner barrier layer 41 and the high refractive index layer 431 in the stacked structure 43.
  • the improvement layer 42 is located between the inner barrier layer 41 and the first stacked structure 43 disposed in the positive direction of the X-axis from the inner barrier layer 41.
  • the reflective film layer 40 has two stacked structures 43, and the improvement layer 42 is located between the inner barrier layer 41 and the first stacked structure 43 from the inner barrier layer 41 to the positive direction of the X-axis.
  • the improvement layer 42 is located at the height of the inner barrier layer 41 and the first stacked structure 43 between refractive index layers 431.
  • the improvement layer 42 is provided in at least one laminated structure 43 .
  • the improvement layer 42 is provided in the high refractive index layer 431 and the low refractive index layer 432 of the laminated structure 43 . between.
  • the improvement layer 42 is located between the high refractive index layer 431 and the low refractive index layer 432 of the laminated structure 43.
  • the improvement layer 42 can be located between two adjacent stacked structures 43. As shown in FIG. 7, the reflective film layer 40 has two stacked structures.
  • the improvement layer 42 is located between the low refractive index layer 432 of the first stacked structure 43 and the high refractive index layer 431 of the second stacked structure 43 in the positive direction of the X-axis from the inner barrier layer 41; In another case, the improvement layer 42 may be located between the high refractive index layer 431 and the low refractive index layer 432 of any stacked structure 43,
  • the reflective film layer 40 has two stacked structures 43.
  • the improvement layer 42 is located in the high refractive index layer 431 and the low refractive index layer of the first stacked structure 43 in the positive direction of the X-axis from the inner barrier layer 41. between layers 432,
  • the reflective film layer 40 has two stacked structures 43.
  • the improvement layer 42 is located in the high refractive index layer 431 and the low refractive index layer of the second stacked structure 43 in the positive direction of the X-axis from the inner barrier layer 41. between layers 432.
  • the inner barrier layer 41 is used to prevent the alkali metal ions of the inner glass plate 20 from damaging the improvement layer 42 in the reflective film layer 40, and to prevent the diffusion of oxygen from damaging the reflective film layer 40.
  • the improvement layer 42 and the stacked structure 43 are used together to further improve the reflectivity of the reflective film layer 40 for P-polarized light, so that the P-polarized light will not cause visual stress when projected onto the head-up display glass 100. reflection phenomenon, and at the same time, the reflective film layer 40 can maintain a high visible light transmittance and a low visible light reflectivity, so that the head-up display glass 100 meets the requirements for safe driving and no obvious reflection phenomenon is observed from inside the car. .
  • Figure 10 is a schematic structural diagram of a first example of the reflective film layer 40 in the second embodiment of the head-up display glass 100 shown in Figure 3.
  • Figure 11 is a second example of the head-up display glass 100 shown in Figure 3.
  • the reflective film layer 40 in the second embodiment further includes an outer barrier layer 44 . That is, in the second embodiment, the reflective film layer 40 includes an inner barrier layer 41 , an improvement layer 42 , at least one stacked structure 43 and an outer barrier layer 44 .
  • the inner barrier layer 41 , the laminated structure 43 and the outer barrier layer 44 are stacked in sequence.
  • the outer barrier layer 44 is disposed on the side of the outermost stacked structure from the inner barrier layer 41 in the positive direction of the X-axis away from the inner barrier layer 41 , that is, the outer barrier layer 44 is disposed on the outermost stacked structure.
  • the low refractive index layer 432 of 43 faces away from the surface of the inner barrier layer 41 .
  • the reflective film layer 40 in this example has a stacked structure 43 , and the outer barrier layer 44 is provided on the side surface of the low refractive index layer 432 in the stacked structure 43 away from the inner barrier layer 41 .
  • the reflective film layer 40 in this example has two stacked structures 43, and the outer barrier layer 44 is provided on one side of the outermost stacked structure 43 in the positive direction of the X-axis from the inner barrier layer 41.
  • the outer barrier layer 44 is provided on the side surface of the low refractive index layer 432 of the second stacked structure 43 in the positive direction of the X-axis from the inner barrier layer 41 away from the inner barrier layer 41 .
  • the outer barrier layer 44 is beneficial to improving the thermal stability of the reflective film layer 40 , preventing the improvement layer 42 in the reflective film layer 40 from being oxidized, and improving the mechanical and chemical stability of the reflective film layer 40 .
  • the material of the outer barrier layer 44 is selected from at least one of Si, Al, Zr, Ti, B, nitrides of Ni elements and oxynitrides of their alloys.
  • An example of the outer barrier layer 44 is a Si 3 N 4 layer (silicon nitride layer).
  • the outer barrier layer 44 is preferably a silicon nitride layer doped with Al or Zr.
  • the thickness of the outer barrier layer 44 is 3 nm to 30 nm to avoid the problem that the thickness of the outer barrier layer 44 is greater than 30 nm, which affects the reflectivity of P-polarized light or affects the color of the reflected appearance.
  • the outer barrier layer 44 is used to block the intrusion of oxygen in the environment into the reflective film layer 40 to prevent the improvement layer 42 in the reflective film layer 40 from being oxidized, which is beneficial to improving reflection.
  • the mechanical and chemical stability of the film layer 40 can also maintain the high reflectivity of the reflective film layer 40 for P-polarized light and the low reflectivity for visible light, so that the head-up display glass 100 meets the requirements of automotive glass.
  • Embodiment 1 provides a head-up display glass 100, which includes an outer glass plate 10, a polymer intermediate layer 30, an inner glass plate 20 and a reflective film layer 40 laminated in sequence.
  • the reflective film layer 40 of this embodiment adopts the above-mentioned second embodiment.
  • the structure of the first example of the reflective film layer 40 is shown in this example. Specifically, the structure can be formed by sequentially depositing the reflective film layer 40 on the inner glass plate 20, and then forming it according to the high-temperature (550-650°C) automotive glass molding process, and then sandwiching a polymer between the inner glass plate 20 and the outer glass plate 10. Layer 30 is finally subjected to high-pressure lamination to form the head-up display glass 100.
  • the reflective film layer 40 includes an inner barrier layer 41 , an improvement layer 42 , and a high refractive index layer laminated in sequence. index layer 431, low refractive index layer 432 and outer barrier layer 44.
  • the high refractive index layer 431 and the low refractive index layer 432 together form a stacked structure 43
  • the improvement layer 42 is provided between the inner barrier layer 41 and the stacked structure 43.
  • the outer glass plate 10 and the inner glass plate 20 are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer intermediate layer 30 is made of polyvinyl butyral. , PVB), thickness is 0.76mm.
  • the inner barrier layer 41 is a Si 3 N 4 layer with a thickness of 10 nm.
  • the improvement layer 42 is a NiCr layer with a thickness of 1.5 nm.
  • the high refractive index layer 431 in the laminated structure 43 is a TiO X layer with a thickness of 66 nm.
  • the low refractive index layer 432 in the stacked structure 43 is a SiO 2 layer with a thickness of 72 nm.
  • the outer barrier layer 44 is a Si 3 N 4 layer with a thickness of 10 nm.
  • Embodiment 2 provides a head-up display glass 100, including an outer glass plate 10, a polymer intermediate layer 30, an inner glass plate 20 and a reflective film layer 40 laminated in sequence.
  • the outer glass plate 10 and the inner glass plate 20 are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer intermediate layer 30 is polyvinyl butyral. , PVB), thickness is 0.76mm.
  • the reflective film layer 40 includes an inner barrier layer 41 , a high refractive index layer 431 , and Improvement layer 42, low refractive index layer 432 and outer barrier layer 44.
  • the high refractive index layer 431 and the low refractive index layer 432 together form a stacked structure 43, and the improvement layer 42 is provided in the stacked structure 43.
  • the inner barrier layer 41 is a Si 3 N 4 layer with a thickness of 33 nm.
  • the high refractive index layer 431 is a TiO X layer with a thickness of 57 nm.
  • the improvement layer 42 is a NiCr layer with a thickness of 1.9 nm.
  • the low refractive index layer 432 is a SiO 2 layer with a thickness of 86 nm.
  • the outer barrier layer 44 is a Si 3 N 4 layer with a thickness of 6.5 nm.
  • Embodiment 3 provides a head-up display glass 100.
  • the difference from Embodiment 2 is that the reflective film layer 40 in the head-up display glass 100 of Embodiment 3 does not include an outer barrier layer 44.
  • the reflective film layer 40 of this embodiment adopts the structure of the third example of the reflective film layer 40 in the first embodiment.
  • the reflective film layer 40 includes an inner barrier layer 41 and a high refractive index layer laminated in sequence. 431. Improvement layer 42 and low refractive index layer 432.
  • the high refractive index layer 431 and the low refractive index layer 432 together form a stacked structure 43.
  • the good layer 42 is provided in the stacked structure 43 .
  • Embodiment 4 provides a head-up display glass 100, including an outer glass plate 10, a polymer intermediate layer 30, an inner glass plate 20 and a reflective film layer 40 laminated in sequence.
  • the reflective film layer 40 includes an inner barrier layer 41 , a high refractive index layer 431 , and Improvement layer 42, low refractive index layer 432 and outer barrier layer 44.
  • the outer glass plate 10 and the inner glass plate 20 are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer intermediate layer 30 is made of polyvinyl butyral. , PVB), thickness is 0.76mm.
  • the inner barrier layer 41 is a Si 3 N 4 layer with a thickness of 28 nm.
  • the high refractive index layer 431 is a TiO X layer with a thickness of 57 nm.
  • the improvement layer 42 is a Ti layer with a thickness of 3.5 nm.
  • the low refractive index layer 432 is a SiO 2 layer with a thickness of 75 nm.
  • the outer barrier layer 44 is a Si 3 N 4 layer with a thickness of 10 nm.
  • Embodiment 5 provides a head-up display glass 100, including an outer glass plate 10, a polymer intermediate layer 30, an inner glass plate 20 and a reflective film layer 40 laminated in sequence.
  • the reflective film layer 40 includes an inner barrier layer 41 , a high refractive index layer 431 , and Improvement layer 42, low refractive index layer 432 and outer barrier layer 44.
  • the outer glass plate 10 and the inner glass plate 20 are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer intermediate layer 30 is made of polyvinyl butyral. , PVB), thickness is 0.76mm.
  • the inner barrier layer 41 is a Si 3 N 4 layer with a thickness of 42 nm.
  • the high refractive index layer 431 is a TiO X layer with a thickness of 60 nm.
  • the improvement layer 42 is an Al layer with a thickness of 2 nm.
  • the low refractive index layer 432 is a SiO 2 layer with a thickness of 62 nm.
  • the outer barrier layer 44 is a Si 3 N 4 layer with a thickness of 12 nm.
  • Embodiment 5 provides a head-up display glass 100, including an outer glass plate 10, a polymer intermediate layer 30, an inner glass plate 20 and a reflective film layer 40 laminated in sequence.
  • the reflective film layer 40 includes an inner barrier layer 41 , an improvement layer 42 , and a high refractive index layer laminated in sequence. index layer 431, low refractive index layer 432 and outer barrier layer 44.
  • the reflective film layer 40 of this embodiment adopts the structure of the first example of the reflective film layer 40 in the above-mentioned second embodiment.
  • the outer glass plate 10 and the inner glass plate 20 are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer intermediate layer 30 is made of polyvinyl butyral. , PVB), thickness is 0.76mm.
  • the inner barrier layer 41 is a Si 3 N 4 layer with a thickness of 52 nm.
  • the improvement layer 42 is an amorphous Si layer with a thickness of 3.2 nm.
  • the high refractive index layer 431 is a TiO X layer with a thickness of 35 nm.
  • the low refractive index layer 432 is a SiO 2 layer with a thickness of 98 nm.
  • the outer barrier layer 44 is a Si 3 N 4 layer with a thickness of 5 nm.
  • Embodiment 5 provides a head-up display glass 100, including an outer glass plate 10, a polymer intermediate layer 30, an inner glass plate 20 and a reflective film layer 40 laminated in sequence.
  • the reflective film layer 40 includes an inner barrier layer 41 , an improvement layer 42 , and a high refractive index layer laminated in sequence. index layer 431, low refractive index layer 432 and outer barrier layer 44.
  • the reflective film layer 40 of this embodiment adopts the structure of the first example of the reflective film layer 40 in the above-mentioned second embodiment.
  • the outer glass plate 10 and the inner glass plate 20 are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is Both are 2.1mm, and the polymer intermediate layer 30 is made of polyvinyl butyral (PVB), with a thickness of 0.76mm.
  • the inner barrier layer 41 is a Si 3 N 4 layer with a thickness of 50 nm.
  • the improvement layer 42 is a crystalline Si layer with a thickness of 26 nm.
  • the high refractive index layer 431 is a TiO X layer with a thickness of 35 nm.
  • the low refractive index layer 432 is a SiO 2 layer with a thickness of 49 nm.
  • the outer barrier layer 44 is a Si 3 N 4 layer with a thickness of 12 nm.
  • Comparative Example 1 provides a head-up display glass, including an outer glass plate, a polymer intermediate layer, an inner glass plate and a reflective film layer laminated in sequence.
  • the reflective film layer includes a high refractive index layer and a low refractive index layer stacked in sequence.
  • the high refractive index layer is attached to the inner glass plate.
  • the outer glass plate and the inner glass plate are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer middle layer is polyvinyl butyral (PVB). , thickness is 0.76mm.
  • the high refractive index layer is a TiO X layer with a thickness of 72nm.
  • the low refractive index layer is a SiO 2 layer with a thickness of 103nm.
  • Comparative Example 2 provides a head-up display glass, including an outer glass plate, a polymer intermediate layer, an inner glass plate and a reflective film layer laminated in sequence.
  • the reflective film layer includes a high refractive index layer and a low refractive index layer stacked in sequence.
  • the high refractive index layer is attached to the inner glass plate.
  • the outer glass plate and the inner glass plate are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer middle layer is polyvinyl butyral (PVB). , thickness is 0.76mm.
  • the high refractive index layer is a TiO X layer with a thickness of 62nm.
  • the low refractive index layer is a SiO 2 layer with a thickness of 98nm.
  • Comparative Example 3 provides a head-up display glass. The difference from the head-up display glass 100 of Embodiment 1 is that the head-up display glass of Comparative Example 3 does not have an inner barrier layer 41 .
  • Comparative Example 4 provides a head-up display glass, including an outer glass plate, a polymer intermediate layer, an inner glass plate and a reflective film layer laminated in sequence.
  • the reflective film layer includes an inner barrier layer, a high refractive index layer, a low refractive index layer, an improvement layer and outer barrier layer.
  • the high refractive index layer and the low refractive index layer in Comparative Example 4 together form a laminated structure, and the improvement layer is disposed between the laminated structure and the outer barrier layer.
  • the outer glass plate and the inner glass plate are both ordinary transparent glass (white glass with visible light transmittance ⁇ 70%), and the thickness is 2.1mm.
  • the polymer middle layer is polyvinyl butyral (PVB). , thickness is 0.76mm.
  • the inner barrier layer is a Si 3 N 4 layer with a thickness of 7 nm.
  • the high refractive index layer is a TiO X layer with a thickness of 64nm.
  • the low refractive index layer is a SiO 2 layer with a thickness of 92nm.
  • the improvement layer is a NiCr layer with a thickness of 1.5nm.
  • the outer barrier layer is a Si 3 N 4 layer with a thickness of 6 nm.
  • Measure the optical indicators of the head-up display glass of Examples 1 to 7 and Comparative Examples 1 to 4 measure the visible light transmittance of the head-up display glass and measure the P-polarized light reflectance and visible light reflection color of the head-up display glass from the reflective film layer side .
  • the results of Examples 1 to 3 and Comparative Examples 1 to 4 are included in Table 1, and the results of Examples 4 to 7 are included in Table 2.
  • Head-up display glass is usually required to have a reflectivity of visible light ⁇ 15%, a reflectance of P-polarized light incident at an incident angle of 60° ⁇ 15%, and a reflectance of P-polarized light incident at an incident angle of 65° ⁇ 20%.
  • Comparative Example 1 According to Table 1, by comparing Comparative Example 1 and Comparative Example 2, it can be seen that the reflective film layers of Comparative Example 1 and Comparative Example 2 only adopt a stacked structure of a high refractive index layer and a low refractive index layer (TiO x /SiO 2 ) , just by adjusting the thickness of the high refractive index layer and the low refractive index layer, it is impossible to meet the requirements of the reflectivity of the head-up display glass for P polarized light and the reflectivity of visible light at the same time, such as the reflectivity of the head-up display glass of Comparative Example 1 for visible light. The requirement of less than 15% is met, but the reflectivity of P-polarized light incident at 60° and 65° incident angles cannot meet the requirements.
  • the head-up display glass of Comparative Example 2 meets the requirements for reflectivity of P-polarized light incident at 60° and 65° incident angles, but does not meet the requirement of less than 15% for visible light. This shows that only by adjusting the high refractive index layer and The thickness of the low refractive index layer can increase the reflectivity of P-polarized light to a certain extent. However, as the reflectivity of P-polarized light increases, the visible light reflectance also increases accordingly or is even higher than 15%, which does not meet the requirements. Therefore, it can be seen from the analysis that the requirements of the head-up display glass having a high reflectivity for P-polarized light and a low reflectivity for visible light cannot be simultaneously achieved by simply setting up a laminated structure. beg.
  • the embodiment of the present application increases the reflectivity of the head-up display glass to 17% for P-polarized light incident at 60° to 73° by arranging an inner barrier layer and an improvement layer in the reflective film layer. ⁇ 35%, or even higher, while the reflectivity of visible light can still be maintained ⁇ 15%, and the head-up display glass can obtain a neutral color.
  • Example 3 by comparing Example 3 with Example 2, it can be seen that when the outer barrier layer is not used, the overall thermal stability of the reflective film layer is slightly reduced, but the formed head-up display glass can still satisfy both P-polarized light and Visible light reflectivity requirements.
  • the reflective film layer of Comparative Example 3 is not provided with an inner barrier layer, and the improvement layer (NiCr/1.5nm) is directly in contact with the inner glass plate.
  • the inner glass plate After high-temperature heat treatment, the inner glass plate The diffusion of metal ions and oxygen ions on the surface damages and oxidizes the improvement layer, which in turn reduces the reflectivity of the head-up display glass for P-polarized light.
  • the improvement layer is provided in the stacked structure (TiO X /SiO 2 ) and the outer barrier layer (Si 3 N 4 ), specifically, the improvement layer is located on the low refractive index layer in the laminated structure.
  • the improvement layer After P polarized light and visible light are incident on the reflective film layer from inside the vehicle, the P polarized light and visible light will first be absorbed by the improvement layer. and reflection, and then passes through the high refractive index layer/low refractive index layer, resulting in a decrease in the overall performance of the reflective film layer.
  • the resulting head-up display glass has a visible light transmittance of less than 70% and a reflectivity of P polarized light of less than 15% or 20%. %, cannot meet the requirements.
  • the reflective film layer formed by silicon as an improvement layer can improve the reflectivity of P-polarized light to a certain extent while maintaining a high visible light transmittance and a low visible light reflectance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

提供了一种抬头显示玻璃(100)和抬头显示系统(1000)。抬头显示玻璃(100)包括夹层玻璃和反射膜层(40);夹层玻璃包括外玻璃板(10)、聚合物中间层(30)和内玻璃板(20);反射膜层(40)包括层叠设置的内阻挡层(41)、改善层(42)和至少一个叠层结构(43),内阻挡层(41)能够阻挡在热处理过程中玻璃表面的碱金属离子对改善层(42)的破坏以及阻挡氧的扩散对改善层(42)的氧化,改善层(42)能够进一步提高反射膜层(40)对P偏振光的反射率,同时保持反射膜层(40)对可见光具有较低的反射率,从而使得车辆内部的驾驶员目视观察抬头显示玻璃(100)的反射成像时,仅仅能够观察到反射膜层(40)的反射像,从而消除了目视重影现象;并且,这种抬头显示玻璃(100)对可见光的反射率小于或等于15%,不会在车内观察到明显的倒影现象。

Description

抬头显示玻璃和抬头显示系统
本申请要求于2022年03月22日提交中国专利局、申请号为202210282494.1、申请名称为“抬头显示玻璃和抬头显示系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及玻璃产品技术领域,尤其涉及一种抬头显示玻璃和抬头显示系统。
背景技术
随着科学技术的发展,抬头显示(HUD,Head Up Display)系统被越来越多地在车辆上使用。车辆上的抬头显示系统能够将重要的行车信息,例如速度、发动机转数、油耗、胎压、导航以及外接智能设备的信息实时地显示在驾驶员的视野中,这样使得驾驶员不必低头,就可以看到行车信息,从而避免分散驾驶员对前方道路的注意力;同时使得驾驶员不必在观察远方的道路和近处的仪表之间调节眼睛,可以避免眼睛的疲劳,能够极大地增强行车安全和改进驾驶体验。
目前抬头显示技术的实现主要通过发光成像和投影成像两种方式,其中投影成像是利用抬头显示玻璃本身或者额外设置的光学元件进行投影显示,而采用抬头显示玻璃来反射投影图像是结构最简单的方式。一般的抬头显示玻璃均为夹层玻璃,抬头显示系统的投影光源发出的光经过夹层玻璃与空气接触的两个表面时会发生反射,两个表面上的反射影像会产生偏移从而形成两个相互干扰的重影,这极大地限制了投影显示图像的清晰度。
发明内容
本申请的目的是提供一种抬头显示玻璃和抬头显示系统,该抬头显示玻璃能够清晰呈像,无重影现象。
本申请提供一种抬头显示玻璃,包括夹层玻璃和反射膜层,反射膜层能够反射P偏振光;
夹层玻璃包括外玻璃板、聚合物中间层和内玻璃板,聚合物中间层夹设在外玻璃板与内玻璃板之间;
反射膜层包括层叠设置的内阻挡层、改善层和至少一个叠层结构,内阻挡层设于内玻璃板背离聚合物中间层的表面,叠层结构包括沿背离内阻挡层方向依次层叠的高折射率层和低折射率层,高折射率层的折射率≥1.8,低折射率层的折射率<1.7;
改善层设于内阻挡层与叠层结构之间;或者,改善层设于高折射率层和低折射率层之间。
其中,抬头显示玻璃对以入射角θ入射的P偏振光的反射率为Y,60°≤θ≤75°,Y≥15%。
其中,65°≤θ≤75°时,Y≥20%;70°≤θ≤75°时,Y≥27%。
其中,抬头显示玻璃对垂直入射的可见光的反射率≤15%。
其中,内阻挡层的材料选自Zn、Sn、Ti、Si、Al、Nb、Zr、Ni、Mg、Cr、Ta元素的氧化物及其合金的氧化物中的至少一种,或选自Si、Al、Zr、B、Ti元素的氮化物及其合金的氮化物中的至少一种。
其中,改善层的材料选自Ni、Cr、Fe、Ti、Mo、Cu、Al、Au、Sn、Zr、In、Si、Nb、Ge、W、Ta、Pd、Pt元素的单质及其合金中的至少一种。
其中,改善层中的单质或合金具有晶体结构,改善层的厚度为1nm~40nm。
其中,改善层中的单质或合金具有非晶体结构,改善层的厚度为1nm~5nm。
其中,反射膜层还包括外阻挡层,外阻挡层设于至少一个叠层结构远离内阻挡层的表面。
其中,外阻挡层的材料选自Si、Al、Zr、Ti、B、Ni元素的氮化物及其合金的氮氧化物中的至少一种。
其中,外阻挡层的厚度为3nm~30nm。
其中,内玻璃板的折射率与聚合物中间层的折射率的差值不大于0.1,外玻璃板的折射率与聚合物中间层的折射率的差值不大于0.1。
其中,从反射膜层一侧测量抬头显示玻璃的反射颜色的Lab值中的a值的范围在-8~3之间、b值的范围在-12~0之间。
本申请还提供一种抬头显示玻璃,包括夹层玻璃和反射膜层,反射膜层能够反射P偏振光;
夹层玻璃包括外玻璃板、聚合物中间层和内玻璃板,聚合物中间层夹设在外玻璃板与内玻璃板之间;
反射膜层包括层叠设置改善层和至少一个叠层结构,叠层结构包括沿背离内阻挡层方向依次层叠的高折射率层和低折射率层,高折射率层的折射率≥1.8,低折射率层的折射率<1.7;
抬头显示玻璃对以入射角θ入射的P偏振光的反射率为Y,60°≤θ≤75°,Y≥15%。
其中,反射膜层还包括内阻挡层,内阻挡层设于内玻璃板背离聚合物中间层的表面。
其中,改善层的材料具有晶体结构,改善层的厚度为1nm~40nm。
其中,改善层的材料具有非晶体结构,改善层的厚度为1nm~5nm。
其中,改善层的材料选自Ni、Cr、Fe、Ti、Mo、Cu、Al、Au、Sn、Zr、In、Si、Nb、Ge、W、Ta、Pd、Pt元素的单质及其合金中的至少一种。
其中,从反射膜层一侧测量抬头显示玻璃的反射颜色的Lab值中的a值的范围在-8~3之间、b值的范围在-12~0之间。
本申请还提供一种抬头显示系统,包括投影光源和如上的抬头显示玻璃,投影光源用于产生P偏振光,P偏振光投射在反射膜层上。
本申请提供了一种抬头显示玻璃和抬头显示系统,通过在反射膜层中增加内阻挡层和改善层,内阻挡层能够阻挡在热处理过程中玻璃表面的碱金属离子对改善层的破坏以及阻挡氧的扩散对改善层的氧化,改善层能够进一步提高反射膜层对P偏振光的反射率,同时保持反射膜层对可见光具有较低的反射率,在内阻挡层、改善层和叠层结构共同配合作用下,使得形成的反射膜层对P偏振光具有较高的反射率,从而使得车辆内部的驾驶员目视观察抬头显示玻璃的反射成像时,仅仅能够观察到反射膜层的反射像,从而消除了目视重影现象;并且,本申请中的抬头显示玻璃对可见光的反射率小于或等于15%,不会在车内观察到明显的倒影现象。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为安装有本申请实施例的抬头显示系统的车辆的结构示意图;
图2为图1所示车辆中抬头显示系统的结构示意图;
图3为图2所示抬头显示系统中抬头显示玻璃的第一实施例中的剖面结构示意图;
图4为图3所示抬头显示玻璃的第一实施例中反射膜层的第一示例的结构示意图;
图5为图3所示抬头显示玻璃的第一实施例中反射膜层的第二示例的结构示意图;
图6为图3所示抬头显示玻璃的第一实施例中反射膜层的第三示例的结构示意图;
图7为图3所示抬头显示玻璃的第一实施例中反射膜层的第四示例的结构示意图;
图8为图3所示抬头显示玻璃的第一实施例中反射膜层的第五示例的结构示意图;
图9为图3所示抬头显示玻璃的第一实施例中反射膜层的第六示例的结构示意图;
图10为图3所示抬头显示玻璃的第二实施例中反射膜层的第一示例的结构示意图;
图11为图3所示抬头显示玻璃的第二实施例中反射膜层的第二示例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1,图1示出了安装有本申请实施例的抬头显示系统1000的车辆1的结构示意图。
车辆1包括抬头显示系统1000和车身2000,抬头显示系统1000设于车身2000,用于将重要的行车信息,例如速度、发动机转数、油耗、胎压、导航以及外接智能设备的信息实时地显示在驾驶员的视野中。
请参阅图2,图2为图1所示车辆1中抬头显示系统1000的结构示意图。
抬头显示系统1000包括抬头显示玻璃100和投影光源200,抬头显示玻璃100安装于车身2000,投影光源200位于车身2000的内部。抬头显示玻璃100具有相对的第一侧表面101和第二侧表面102,当抬头显示玻璃100安装于车辆上时,第一侧表面101朝向车辆的外部,第二侧表面102朝向车辆的内部。
投影光源200安装于车辆的内部,投影光源200产生P偏振光,P偏振光投射在抬头显示玻璃100朝向车辆内部的第二侧表面102上,部分P偏振光以入射角θ入射在第二侧表面102并在在第二侧表面102发生反射,部分P偏振光透过抬头显示玻璃100到达第一侧表面101,并在第一侧表面101发生反射。抬头显示玻璃100朝向车辆内部的第二侧表面102对P偏振光具有较高的反射率,朝向车辆外部的第一侧表面101对P偏振光具有较低的反射率,使得车辆内部的驾驶员目视观察抬头显示玻璃100的反射成像(HUD显示图像)时,仅仅能 够观察到第二侧表面102的反射像,从而消除了目视重影现象。
其中,投影光源200产生P偏振光可以理解为投影光源200产生的投影光线包含至少80%的P偏振光,投影光线中的P偏振光的比例越高,抬头显示图像的亮度和清晰度越高,越容易消除目视重影现象,更优选包含至少90%的P偏振光,特别地为100%的P偏振光,即投影光线基本上是纯P偏振光。
参见图3,图3为图2所示抬头显示系统1000中抬头显示玻璃100的第一实施例中的剖面结构示意图。其中,为便于描述,定义图2所示抬头显示玻璃100的厚度方向为X轴方向。
抬头显示玻璃100包括夹层玻璃和反射膜层40,反射膜层40能够反射P偏振光。沿X轴方向,夹层玻璃依次包括外玻璃板10、聚合物中间层30和内玻璃板20,聚合物中间层30夹设在外玻璃板10与内玻璃板20之间。
外玻璃板10具有第一表面11和第二表面12,第一表面11和第二表面12相对设置,第二表面12朝向聚合物中间层30,第一表面11为外玻璃板10与空气的界面,也即为抬头显示玻璃100的第一侧表面101。内玻璃板20具有第三表面21和第四表面22,第三表面21和第四表面22相对设置,第三表面21朝向聚合物中间层30,第四表面22背离聚合物中间层30。在一种实施例中,外玻璃板10的折射率与聚合物中间层30的折射率的差值不大于0.1,内玻璃板20的折射率与聚合物中间层30的折射率的差值不大于0.1。
反射膜层40设于内玻璃板20的第四表面22上,当抬头显示玻璃100安装于车辆上时,反射膜层40朝向车辆的内部。反射膜层40背离第四表面22的表面即为第二侧表面102。反射膜层40对投影光源200发出的P偏振光的反射率较高,外玻璃板10的第一表面11对P偏振光的反射率较低,从而消除了目视重影现象。
本实施例中,抬头显示玻璃100对以入射角θ入射的P偏振光的反射率为Y。在一种实施例中,60°≤θ≤75°,Y≥15%。在另一种实施例中,65°≤θ≤75°,Y≥20%。在另一种实施例中,70°≤θ≤75°时,Y≥27%。
请参阅图4至图9,图4为图3所示抬头显示玻璃100的第一实施例中反射膜层40的第一示例的结构示意图,图5为图3所示抬头显示玻璃100的第一实施例中反射膜层40的第二示例的结构示意图,图6为图3所示抬头显示玻璃100的第一实施例中反射膜层40的第三示例的结构示意图,图7为图3所示抬头显示玻璃100的第一实施例中反射膜层40的第四示例的结构示意图,图8为图3所示抬头显示玻璃100的第一实施例中反射膜层40的第五示例的结构示意图,图9为图3所示抬头显示玻璃100的第一实施例中反射膜层40的第六示例的结构示意图。其中,图示X轴正方向为背离内阻挡层41的方向。
在第一实施例中,反射膜层40包括层叠设置的内阻挡层41、改善层42和至少一个叠层结构43。内阻挡层41设于内玻璃板20的第四表面22上,沿背离内阻挡层41的方向,即沿图示X轴正方向,也即自第四表面22向远离外玻璃板10的方向,内阻挡层41和叠层结构43依次层叠,每一叠层结构43包括依次层叠的高折射率层431和低折射率层432,以形成高折射率层/低折射率层结构。其中,高折射率层431的折射率≥1.8,低折射率层432的折射率<1.7。在一些实施例中,高折射率层431的折射率≥2.0,在另一些实施例中,高折射率层431的折射率≥2.2。本申请中“层叠”包括直接接触和间接接触。
其中,反射膜层40在进行热处理时,内阻挡层41能够阻挡内玻璃板20的第四表面22的碱金属离子对改善层42的破坏,以及阻挡氧的扩散对改善层42的氧化,利于提高反射膜 层40的热稳定性。内阻挡层41的材料选自Zn、Sn、Ti、Si、Al、Nb、Zr、Ni、Mg、Cr、Ta元素的氧化物及其合金的氧化物中的至少一种,或选自Si、Al、Zr、B、Ti元素的氮化物及其合金的氮化物中的至少一种。内阻挡层41可以例举的有SiO2层(氧化硅层)、ZnSnOx层(氧化锌锡层)、Si3N4层(氮化硅层)、ZrSiNx层(氮化硅锆层)。在一种实施例中,内阻挡层41的厚度≥3nm,在另一种实施例中,内阻挡层41的厚度≥5nm。
其中,改善层42对P偏振光具有一定的反射作用,可以进一步提高反射膜层40对P偏振光的反射率,同时保持反射膜层40对可见光具有较低的反射率,以满足抬头显示玻璃100对P偏振光具有较高反射率以及对可见光具有较低反射率的要求。在一种实施例中,改善层42的材料选自Ni、Cr、Fe、Ti、Mo、Cu、Al、Au、Sn、Zr、In、Si、Nb、Ge、W、Ta、Pd、Pt元素的单质及其合金中的至少一种。改善层42可以例举的有非晶体Si层、晶体Si层、Ti层、Al层、NiCr层等。
在一种实施例中,改善层42中的单质或合金具有晶体结构,改善层的厚度为1nm~40nm。优选,改善层42的厚度大于5nm,进一步优选改善层42的厚度为10nm~30nm。具有晶体结构的改善层42可以例举的有Ti、Mo、Al、Si。
在另一种实施例中,改善层42中的单质或合金具有非晶体结构,改善层42的厚度为1nm~5nm。
相比非晶体结构的改善层42,具有晶体结构的改善层42具有更高的光学特性以及更低的可见光反射率,能够进一步提升反射膜层40对P偏振光的反射率、获得更低的可见光反射率以及更优的可见光透过率。
其中,叠层结构43中的高折射率层431的材料选自Zn、Sn、Ti、Nb、Zr、Ni、In、Al、Ce、W、Mo、Sb、Bi元素的氧化物及其合金的氧化物中的至少一种,或者选自Si、Al、Zr、Y、Ce、La元素的氮化物、氮氧化物及其合金的氮化物、氮氧化物中的至少一种。高折射率层431可以例举的有TiOx等。在一种实施例中,高折射率层431的厚度为30nm~85nm;在另一种实施例中,高折射率层431的厚度为40nm~65nm。
可以理解的是,高折射率层431可以含有一个或多个子层结构。即,高折射率层431含有一个子层结构时,该单层的子层结构的折射率≥1.8,高折射率层431含有多个子层结构时,多个子层结构的折射率均≥1.8。
其中,叠层结构43中的低折射率层432的材料选自Si、Al、Zr、B元素的氧化物及其合金的氧化物中的至少一种。低折射率层432可以例举的有SiOx等。在一种实施例中,低折射率层432的厚度为35nm~130nm;在另一种实施例中,低折射率层432的厚度为50nm~100nm。
可以理解的是,低折射率层432可以含有一个或多个子层结构。即低折射率层432含有一个子层结构时,该单层的子层结构的折射率<1.7,低折射率层432含有多个子层结构时,多个子层结构的折射率均<1.7。
在一些示例中,如图4和图5所示,改善层42设于内阻挡层41和叠层结构43之间。当反射膜层40具有一个叠层结构43时,如图4所示,改善层42位于内阻挡层41和叠层结构43中的高折射率层431之间。当反射膜层40具有多个叠层结构43时,改善层42位于内阻挡层41和自内阻挡层41向X轴正方向起第一个设置的叠层结构43之间。如图5所示,反射膜层40具有两个叠层结构43,改善层42位于内阻挡层41和自内阻挡层41向X轴正方向的第一个叠层结构43之间,具体的,改善层42位于内阻挡层41和第一个叠层结构43的高 折射率层431之间。
在另一些示例中,如图6至图9,改善层42设于至少一个叠层结构43中,具体的,改善层42设于叠层结构43的高折射率层431和低折射率层432之间。当反射膜层40具有一个叠层结构43时,如图6所示,改善层42位于叠层结构43的高折射率层431和低折射率层432之间。当反射膜层40具有多个叠层结构43时,一种情况下,改善层42可以位于相邻的两个叠层结构43之间,如图7所示,反射膜层40具有两个叠层结构43,改善层42位于自内阻挡层41向X轴正方向的第一个叠层结构43的低折射率层432和第二个叠层结构43的高折射率层431之间;在另一种情况下,改善层42可以位于任一叠层结构43的高折射率层431和低折射率层432之间,
如图8所示,反射膜层40具有两个叠层结构43,改善层42位于自内阻挡层41向X轴正方向的第一个叠层结构43的高折射率层431和低折射率层432之间,
如图9所示,反射膜层40具有两个叠层结构43,改善层42位于自内阻挡层41向X轴正方向的第二个叠层结构43的高折射率层431和低折射率层432之间。
本申请实施例提供的抬头显示玻璃100的反射膜层40中,利用内阻挡层41阻挡内玻璃板20的碱金属离子对反射膜层40中的改善层42的破坏,以及阻挡氧的扩散对改善层42的氧化,利用改善层42和叠层结构43配合使用,进一步提升反射膜层40对P偏振光的反射率,使得P偏振光投影至抬头显示玻璃100上时不会产生目视重影现象,同时还能够保持反射膜层40具有较高的可见光透过率和具有较低的可见光反射率,以使得抬头显示玻璃100满足安全驾驶要求和不会从车内观察到明显的倒影现象。
参见图10和图11,图10为图3所示抬头显示玻璃100的第二实施例中反射膜层40的第一示例的结构示意图,图11为图3所示抬头显示玻璃100的第二实施例中反射膜层40的第二示例的结构示意图。
第二实施例中的反射膜层40与第一实施例中的反射膜层40的不同之处在于,第二实施例中的反射膜层40还包括外阻挡层44。即第二实施例中,反射膜层40包括内阻挡层41、改善层42、至少一个叠层结构43和外阻挡层44。沿X轴正方向,即自第四表面22向远离外玻璃板10的方向,内阻挡层41、叠层结构43和外阻挡层44依次层叠。
本实施例中,外阻挡层44设于自内阻挡层41向X轴正方向的最外侧的叠层结构远离内阻挡层41的一侧,即外阻挡层44设于最外侧的叠层结构43的低折射率层432背离内阻挡层41的一侧表面。如图10所示,本示例中的反射膜层40具有一个叠层结构43,外阻挡层44设于叠层结构43中低折射率层432背离内阻挡层41的一侧表面。如图11所示,本示例中的反射膜层40具有两个叠层结构43,外阻挡层44设于自内阻挡层41向X轴正方向的最外侧的叠层结构43的一侧,具体的,外阻挡层44设于自内阻挡层41向X轴正方向的第二个叠层结构43的低折射率层432背离内阻挡层41的一侧表面。
其中,反射膜层40在进行热处理时,外阻挡层44利于提高反射膜层40的热稳定性,防止反射膜层40中的改善层42氧化,以及提高反射膜层40的机械和化学稳定性。在一种实施例中,外阻挡层44的材料选自Si、Al、Zr、Ti、B、Ni元素的氮化物及其合金的氮氧化物中的至少一种。外阻挡层44可以例举的有Si3N4层(氮化硅层)。外阻挡层44优选掺有Al或Zr的氮化硅层。在一种实施例中,外阻挡层44的厚度为3nm~30nm,以避免外阻挡层44的厚度大于30nm导致影响P偏振光的反射率或影响反射外观颜色的问题。
本实施例提供的抬头显示玻璃100的反射膜层40中,利用外阻挡层44阻挡环境中的氧对反射膜层40的侵入,以防止反射膜层40中的改善层42氧化,利于提升反射膜层40的机械和化学稳定性,同时还能够保持反射膜层40对P偏振光具有较高的反射率和对可见光具有较低的反射率,使得抬头显示玻璃100满足汽车玻璃的要求。
实施例1-7和对比例1-4
实施例1
实施例1提供一种抬头显示玻璃100,包括依次层叠的外玻璃板10、聚合物中间层30、内玻璃板20和反射膜层40,其中本实施例的反射膜层40采用上述第二实施例中反射膜层40的第一示例的结构。具体可通过在内玻璃板20上依次沉积反射膜层40的结构,然后按照汽车玻璃高温(550-650℃)成型工艺成型,再在内玻璃板20与外玻璃板10中间夹上聚合物中间层30,最后进行高压合片形成抬头显示玻璃100。
自内玻璃板20的第四表面22向远离外玻璃板10的方向,即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、改善层42、高折射率层431、低折射率层432和外阻挡层44。本实施例中,高折射率层431和低折射率层432共同形成一个叠层结构43,改善层42设于内阻挡层41与叠层结构43之间。
其中,外玻璃板10和内玻璃板20均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层30为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。内阻挡层41为Si3N4层,厚度为10nm。改善层42为NiCr层,厚度为1.5nm。叠层结构43中的高折射率层431为TiOX层,厚度为66nm。叠层结构43中的低折射率层432为SiO2层,厚度为72nm。外阻挡层44为Si3N4层,厚度为10nm。
实施例2
实施例2提供一种抬头显示玻璃100,包括依次层叠的外玻璃板10、聚合物中间层30、内玻璃板20和反射膜层40。其中,外玻璃板10和内玻璃板20均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层30为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。
自内玻璃板20的第四表面22向远离外玻璃板10的方向,即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、高折射率层431、改善层42、低折射率层432和外阻挡层44。本实施例中,高折射率层431和低折射率层432共同形成一个叠层结构43,改善层42设于叠层结构43中。
其中,内阻挡层41为Si3N4层,厚度为33nm。高折射率层431为TiOX层,厚度为57nm。改善层42为NiCr层,厚度为1.9nm。低折射率层432为SiO2层,厚度为86nm。外阻挡层44为Si3N4层,厚度为6.5nm。
实施例3
实施例3提供一种抬头显示玻璃100,与实施例2的不同之处在于,实施例3的抬头显示玻璃100中的反射膜层40不包括外阻挡层44。本实施例的反射膜层40采用上述第一实施例中反射膜层40的第三示例的结构。
即自内玻璃板20的第四表面22向远离外玻璃板10的方向,也即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、高折射率层431、改善层42和低折射率层432。本实施例中,高折射率层431和低折射率层432共同形成一个叠层结构43,改 善层42设于叠层结构43中。
实施例4
实施例4提供一种抬头显示玻璃100,包括依次层叠的外玻璃板10、聚合物中间层30、内玻璃板20和反射膜层40。自内玻璃板20的第四表面22向远离外玻璃板10的方向,即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、高折射率层431、改善层42、低折射率层432和外阻挡层44。
其中,外玻璃板10和内玻璃板20均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层30为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。内阻挡层41为Si3N4层,厚度为28nm。高折射率层431为TiOX层,厚度为57nm。改善层42为Ti层,厚度为3.5nm。低折射率层432为SiO2层,厚度为75nm。外阻挡层44为Si3N4层,厚度为10nm。
实施例5
实施例5提供一种抬头显示玻璃100,包括依次层叠的外玻璃板10、聚合物中间层30、内玻璃板20和反射膜层40。自内玻璃板20的第四表面22向远离外玻璃板10的方向,即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、高折射率层431、改善层42、低折射率层432和外阻挡层44。
其中,外玻璃板10和内玻璃板20均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层30为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。内阻挡层41为Si3N4层,厚度为42nm。高折射率层431为TiOX层,厚度为60nm。改善层42为Al层,厚度为2nm。低折射率层432为SiO2层,厚度为62nm。外阻挡层44为Si3N4层,厚度为12nm。
实施例6
实施例5提供一种抬头显示玻璃100,包括依次层叠的外玻璃板10、聚合物中间层30、内玻璃板20和反射膜层40。自内玻璃板20的第四表面22向远离外玻璃板10的方向,即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、改善层42、高折射率层431、低折射率层432和外阻挡层44。本实施例的反射膜层40采用上述第二实施例中反射膜层40的第一示例的结构。
其中,外玻璃板10和内玻璃板20均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层30为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。内阻挡层41为Si3N4层,厚度为52nm。改善层42为非晶体Si层,厚度为3.2nm。高折射率层431为TiOX层,厚度为35nm。低折射率层432为SiO2层,厚度为98nm。外阻挡层44为Si3N4层,厚度为5nm。
实施例7
实施例5提供一种抬头显示玻璃100,包括依次层叠的外玻璃板10、聚合物中间层30、内玻璃板20和反射膜层40。自内玻璃板20的第四表面22向远离外玻璃板10的方向,即自内玻璃板20向车辆内部的方向,反射膜层40包括依次层叠的内阻挡层41、改善层42、高折射率层431、低折射率层432和外阻挡层44。本实施例的反射膜层40采用上述第二实施例中反射膜层40的第一示例的结构。
其中,外玻璃板10和内玻璃板20均为普通透明玻璃(可见光透过率≥70%的白玻),厚度 均为2.1mm,聚合物中间层30为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。内阻挡层41为Si3N4层,厚度为50nm。改善层42为晶体Si层,厚度为26nm。高折射率层431为TiOX层,厚度为35nm。低折射率层432为SiO2层,厚度为49nm。外阻挡层44为Si3N4层,厚度为12nm。
对比例1
对比例1提供一种抬头显示玻璃,包括依次层叠的外玻璃板、聚合物中间层、内玻璃板和反射膜层。其中,反射膜层包括依次层叠的高折射率层和低折射率层,高折射率层贴合内玻璃板,反射膜层中未设置内阻挡层、改善层和外阻挡层。
其中,外玻璃板和内玻璃板均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。高折射率层为TiOX层,厚度为72nm。低折射率层为SiO2层,厚度为103nm。
对比例2
对比例2提供一种抬头显示玻璃,包括依次层叠的外玻璃板、聚合物中间层、内玻璃板和反射膜层。其中,反射膜层包括依次层叠的高折射率层和低折射率层,高折射率层贴合内玻璃板,反射膜层中未设置内阻挡层、改善层和外阻挡层。
其中,外玻璃板和内玻璃板均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。高折射率层为TiOX层,厚度为62nm。低折射率层为SiO2层,厚度为98nm。
对比例3
对比例3提供一种抬头显示玻璃,与实施例1的抬头显示玻璃100的不同之处在于,对比例3的抬头显示玻璃未设置内阻挡层41。
对比例4
对比例4提供一种抬头显示玻璃,包括依次层叠的外玻璃板、聚合物中间层、内玻璃板和反射膜层。自内玻璃板的表面向远离外玻璃板的方向,也即自内玻璃板向车辆内部的方向,反射膜层包括依次层叠的内阻挡层、高折射率层、低折射率层、改善层和外阻挡层。对比例4中的高折射率层与低折射率层共同形成一个叠层结构,改善层设于叠层结构与外阻挡层之间。
其中,外玻璃板和内玻璃板均为普通透明玻璃(可见光透过率≥70%的白玻),厚度均为2.1mm,聚合物中间层为聚乙烯醇缩丁醛(Polyvinyl butyral,PVB),厚度为0.76mm。
内阻挡层为Si3N4层,厚度为7nm。高折射率层为TiOX层,厚度为64nm。低折射率层为SiO2层,厚度为92nm。改善层为NiCr层,厚度为1.5nm。外阻挡层为Si3N4层,厚度为6nm。
测量实施例1至7和对比例1至4的抬头显示玻璃的光学指标:对抬头显示玻璃测量可见光透过率以及从反射膜层一侧测量抬头显示玻璃的P偏振光反射率和可见光反射颜色。将实施例1至3和对比例1至4的结果计入表1中,将实施例4至7的结果计入表2中。
表1实施例1至3和对比例1至4的抬头显示玻璃的光学指标

抬头显示玻璃通常要求同时满足对可见光的反射率<15%以及对60°入射角入射的P偏振光的反射率≥15%、对65°入射角入射的P偏振光的反射率≥20%。根据表1,通过比较对比例1和对比例2可以看出,对比例1和对比例2的反射膜层仅采用高折射率层和低折射率层的叠层结构(TiOX/SiO2),仅通过调整高折射率层和低折射率层的厚度无法同时满足抬头显示玻璃对P偏振光的反射率以及对可见光的反射率的要求,如对比例1的抬头显示玻璃对可见光的反射率满足小于15%的要求,但是对60°和65°入射角入射的P偏振光的反射率均不能满足要求。对比例2的抬头显示玻璃对60°和65°入射角入射的P偏振光的反射率满足要求,但对可见光的反射率不满足小于15%的要求,这说明仅通过调整高折射率层和低折射率层的厚度,可以在一定程度上提升对P偏振光的反射率,但是随着P偏振光反射率的增加,可见光反射率也相应增加甚至高于15%,不满足要求。因此,通过分析可知,仅通过设置叠层结构无法同时实现抬头显示玻璃对P偏振光具有较高反射率以及对可见光具有较低反射率的要 求。
而根据实施例1至3的数据,本申请实施例通过在反射膜层中设置内阻挡层和改善层,使得抬头显示玻璃对60°~73°入射的P偏振光的反射率增至17%~35%,甚至更高,同时对可见光的反射率依然可以保持<15%,并且抬头显示玻璃能够获得中性的颜色。此外,通过比较实施例3与实施例2,可以看出,在不采用外阻挡层时,反射膜层的整体热稳定性能略微降低,但是形成的抬头显示玻璃依然能够同时满足对P偏振光和可见光的反射率的要求。
通过比较对比例3和实施例1至2,对比例3的反射膜层中未设置内阻挡层,改善层(NiCr/1.5nm)直接与内玻璃板接触,在经过高温热处理时,内玻璃板表面的金属离子与氧离子的扩散,对改善层产生了破坏及氧化,进而造成了抬头显示玻璃对P偏振光的反射能力降低。
通过比较对比例4和实施例1至2,对比例4的反射膜层中虽然设置了改善层,但改善层设置于叠层结构(TiOX/SiO2)与外阻挡层(Si3N4)之间,具体的,改善层设于叠层结构中的低折射率层之上,P偏振光和可见光从车辆内部入射到反射膜层后,P偏振光和可见光会先经过改善层的吸收和反射后再经过高折射率层/低折射率层,从而导致反射膜层整体性能均下降,形成的抬头显示玻璃对可见光透过率小于70%、P偏振光的反射率小于15%或20%,均不能满足要求。
表2实施例4至7的抬头显示玻璃的光学指标

从表1和表2可以看出,本申请实施例1至7中提供的抬头显示玻璃,对以60°~73°入射的P偏振光的反射率增至17%~35%,甚至更高,而对可见光的反射率依然可以保持<15%,且能够获得中性的颜色,能够满足汽车玻璃的要求。通过比较实施例6和7可以看出,采用具有晶体结构的材料如纳米晶体硅作为改善层时,由于晶体硅对P偏振光的反射特性以及透过特性,与非晶体硅相比,采用晶体硅作为改善层形成的反射膜层可以在一定程度上提升对P偏振光的反射率,同时保持较高的可见光透过率和较低的可见光反射率。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于本申请所涵盖的范围。

Claims (20)

  1. 一种抬头显示玻璃,其特征在于,包括夹层玻璃和反射膜层,所述反射膜层能够反射P偏振光;
    所述夹层玻璃包括外玻璃板、聚合物中间层和内玻璃板,所述聚合物中间层夹设在所述外玻璃板与所述内玻璃板之间;
    所述反射膜层包括层叠设置的内阻挡层、改善层和至少一个叠层结构,所述内阻挡层设于所述内玻璃板背离所述聚合物中间层的表面,所述叠层结构包括沿背离所述内阻挡层方向依次层叠的高折射率层和低折射率层,所述高折射率层的折射率≥1.8,所述低折射率层的折射率<1.7;
    所述改善层设于所述内阻挡层与所述叠层结构之间;或者,所述改善层设于所述高折射率层和所述低折射率层之间。
  2. 根据权利要求1所述的抬头显示玻璃,其特征在于,所述抬头显示玻璃对以入射角θ入射的P偏振光的反射率为Y,60°≤θ≤75°,Y≥15%。
  3. 根据权利要求2所述的抬头显示玻璃,其特征在于,65°≤θ≤75°时,Y≥20%;70°≤θ≤75°时,Y≥27%。
  4. 根据权利要求1所述的抬头显示玻璃,其特征在于,所述抬头显示玻璃对垂直入射的可见光的反射率≤15%。
  5. 根据权利要求1至4中任一项所述的抬头显示玻璃,其特征在于,所述内阻挡层的材料选自Zn、Sn、Ti、Si、Al、Nb、Zr、Ni、Mg、Cr、Ta元素的氧化物及其合金的氧化物中的至少一种,或选自Si、Al、Zr、B、Ti元素的氮化物及其合金的氮化物中的至少一种。
  6. 根据权利要求1至4中任一项所述的抬头显示玻璃,其特征在于,所述改善层的材料选自Ni、Cr、Fe、Ti、Mo、Cu、Al、Au、Sn、Zr、In、Si、Nb、Ge、W、Ta、Pd、Pt元素的单质及其合金中的至少一种。
  7. 根据权利要求6所述的抬头显示玻璃,其特征在于,所述改善层中的单质或合金具有晶体结构,所述改善层的厚度为1nm~40nm。
  8. 根据权利要求6所述的抬头显示玻璃,其特征在于,所述改善层中的单质或合金具有非晶体结构,所述改善层的厚度为1nm~5nm。
  9. 根据权利要求1至4中任一项所述的抬头显示玻璃,其特征在于,所述反射膜层还包括外阻挡层,所述外阻挡层设于所述至少一个叠层结构远离所述内阻挡层的表面。
  10. 根据权利要求9所述的抬头显示玻璃,其特征在于,所述外阻挡层的材料选自Si、Al、Zr、Ti、B、Ni元素的氮化物及其合金的氮氧化物中的至少一种。
  11. 根据权利要求9所述的抬头显示玻璃,其特征在于,所述外阻挡层的厚度为3nm~30nm。
  12. 根据权利要求1所述的抬头显示玻璃,其特征在于,所述内玻璃板的折射率与所述聚合物中间层的折射率的差值不大于0.1,所述外玻璃板的折射率与所述聚合物中间层的折射率的差值不大于0.1。
  13. 根据权利要求1所述的抬头显示玻璃,其特征在于,从所述反射膜层一侧测量所述抬头显示玻璃的反射颜色的Lab值中的a值的范围在-8~3之间、b值的范围在-12~0之间。
  14. 一种抬头显示玻璃,其特征在于,包括夹层玻璃和反射膜层,所述反射膜层能够反射P偏振光;
    所述夹层玻璃包括外玻璃板、聚合物中间层和内玻璃板,所述聚合物中间层夹设在所述外玻璃板与所述内玻璃板之间;
    所述反射膜层包括层叠设置改善层和至少一个叠层结构,所述叠层结构包括沿背离所述内阻挡层方向依次层叠的高折射率层和低折射率层,所述高折射率层的折射率≥1.8,所述低折射率层的折射率<1.7;
    所述抬头显示玻璃对以入射角θ入射的P偏振光的反射率为Y,60°≤θ≤75°,Y≥15%。
  15. 根据权利要求14所述的抬头显示玻璃,其特征在于,所述反射膜层还包括内阻挡层,内阻挡层设于内玻璃板背离聚合物中间层的表面。
  16. 根据权利要求14所述的抬头显示玻璃,其特征在于,所述改善层的材料具有晶体结构,所述改善层的厚度为1nm~40nm。
  17. 根据权利要求14所述的抬头显示玻璃,其特征在于,所述改善层的材料具有非晶体结构,所述改善层的厚度为1nm~5nm。
  18. 根据权利要求14所述的抬头显示玻璃,其特征在于,所述改善层的材料选自Ni、Cr、Fe、Ti、Mo、Cu、Al、Au、Sn、Zr、In、Si、Nb、Ge、W、Ta、Pd、Pt元素的单质及其合金中的至少一种。
  19. 根据权利要求14所述的抬头显示玻璃,其特征在于,从所述反射膜层一侧测量所述抬头显示玻璃的反射颜色的Lab值中的a值的范围在-8~3之间、b值的范围在-12~0之间。
  20. 一种抬头显示系统,其特征在于,包括投影光源和权利要求1至19中任一项所述的抬头显示玻璃,所述投影光源用于产生P偏振光,所述P偏振光投射在所述反射膜层上。
PCT/CN2023/082935 2022-03-22 2023-03-22 抬头显示玻璃和抬头显示系统 WO2023179636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210282494.1A CN114815250A (zh) 2022-03-22 2022-03-22 抬头显示玻璃和抬头显示系统
CN202210282494.1 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023179636A1 true WO2023179636A1 (zh) 2023-09-28

Family

ID=82531726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082935 WO2023179636A1 (zh) 2022-03-22 2023-03-22 抬头显示玻璃和抬头显示系统

Country Status (2)

Country Link
CN (1) CN114815250A (zh)
WO (1) WO2023179636A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815250A (zh) * 2022-03-22 2022-07-29 福建省万达汽车玻璃工业有限公司 抬头显示玻璃和抬头显示系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646874A (zh) * 2016-11-15 2017-05-10 福耀玻璃工业集团股份有限公司 一种能够隔热的抬头显示夹层玻璃
CN207190747U (zh) * 2017-09-14 2018-04-06 江苏华尚汽车玻璃工业有限公司 一种抬头显示前挡风玻璃
WO2021004685A1 (de) * 2019-07-05 2021-01-14 Saint-Gobain Glass France Projektionsanordnung für ein head-up-display (hud) mit p-polarisierter strahlung
CN114035322A (zh) * 2021-10-21 2022-02-11 福耀玻璃工业集团股份有限公司 一种抬头显示玻璃及其抬头显示系统
CN114057407A (zh) * 2021-12-23 2022-02-18 福建省万达汽车玻璃工业有限公司 一种镀膜玻璃及夹层玻璃
CN114815250A (zh) * 2022-03-22 2022-07-29 福建省万达汽车玻璃工业有限公司 抬头显示玻璃和抬头显示系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017839A (ja) * 2016-07-27 2018-02-01 日本化薬株式会社 機能性ガラスおよびこれを用いたヘッドアップディスプレイ
US10788667B2 (en) * 2017-08-31 2020-09-29 Vitro Flat Glass Llc Heads-up display and coating therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646874A (zh) * 2016-11-15 2017-05-10 福耀玻璃工业集团股份有限公司 一种能够隔热的抬头显示夹层玻璃
CN207190747U (zh) * 2017-09-14 2018-04-06 江苏华尚汽车玻璃工业有限公司 一种抬头显示前挡风玻璃
WO2021004685A1 (de) * 2019-07-05 2021-01-14 Saint-Gobain Glass France Projektionsanordnung für ein head-up-display (hud) mit p-polarisierter strahlung
CN114035322A (zh) * 2021-10-21 2022-02-11 福耀玻璃工业集团股份有限公司 一种抬头显示玻璃及其抬头显示系统
CN114057407A (zh) * 2021-12-23 2022-02-18 福建省万达汽车玻璃工业有限公司 一种镀膜玻璃及夹层玻璃
CN114815250A (zh) * 2022-03-22 2022-07-29 福建省万达汽车玻璃工业有限公司 抬头显示玻璃和抬头显示系统

Also Published As

Publication number Publication date
CN114815250A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
JP7104788B2 (ja) p偏光成分を有するヘッドアップディスプレイ(HUD)用投影設備
WO2022207004A1 (zh) 抬头显示玻璃和抬头显示系统
CN110520295B (zh) 具有导电涂层和抗反射涂层的用于平视显示器的复合玻璃板
JP7486602B2 (ja) ヘッドアップディスプレイ(hud)用プロジェクションアセンブリ
US11630301B2 (en) Heads-up display and coating therefor
CN112513716A (zh) 用于平视显示器(HUD)的具有p偏振辐射的投影装置
CN114035322B (zh) 一种抬头显示玻璃及其抬头显示系统
JP7192091B2 (ja) サイドペインを備える乗物用投影アセンブリ
WO2022218367A1 (zh) 一种抬头显示系统
JP2023540104A (ja) ヘッドアップディスプレイシステム
WO2023179636A1 (zh) 抬头显示玻璃和抬头显示系统
WO2024002332A1 (zh) 抬头显示玻璃及抬头显示系统
JP2023506863A (ja) ヘッドアップディスプレイシステム
WO2024078605A1 (zh) 车窗玻璃及其制备方法、车辆
WO2024078606A1 (zh) 车窗玻璃及其制备方法、车辆
CN218455808U (zh) S偏振光透反膜、挡风窗、显示装置和交通设备
JP2000290044A (ja) 低反射ガラス板およびそれを用いた車両用低反射合わせガラス板
CN114791675B (zh) 抬头显示玻璃及抬头显示系统
CN218805124U (zh) 挡风窗、显示装置和交通设备
WO2023155316A1 (zh) 抬头显示玻璃及抬头显示系统
CN220509161U (zh) 透反膜、抬头显示系统及交通工具
CN117799400A (zh) 挡风窗、制造方法、显示装置和交通设备
CN117289468A (zh) 抬头显示玻璃及抬头显示系统
CN116736546A (zh) 一种能够提升hud画面观看亮度的光学玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773883

Country of ref document: EP

Kind code of ref document: A1