WO2022218367A1 - 一种抬头显示系统 - Google Patents

一种抬头显示系统 Download PDF

Info

Publication number
WO2022218367A1
WO2022218367A1 PCT/CN2022/086752 CN2022086752W WO2022218367A1 WO 2022218367 A1 WO2022218367 A1 WO 2022218367A1 CN 2022086752 W CN2022086752 W CN 2022086752W WO 2022218367 A1 WO2022218367 A1 WO 2022218367A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
polarized light
film
glass plate
display system
Prior art date
Application number
PCT/CN2022/086752
Other languages
English (en)
French (fr)
Inventor
曹晖
何立山
黄凤珠
朱瑞
卢国水
福原康太
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Priority to KR1020237001051A priority Critical patent/KR20230020542A/ko
Priority to JP2023520346A priority patent/JP7564355B2/ja
Priority to EP22787589.5A priority patent/EP4206792A4/en
Publication of WO2022218367A1 publication Critical patent/WO2022218367A1/zh
Priority to US18/320,388 priority patent/US12061337B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10064Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising at least two glass sheets, only one of which being an outer layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • G02B2027/0105Holograms with particular structures
    • G02B2027/0107Holograms with particular structures with optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0194Supplementary details with combiner of laminated type, for optical or mechanical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images

Definitions

  • the invention relates to the technical field of head-up display, in particular to a head-up display system using transparent nano-film imaging and display, and specifically provides a head-up display system comprising ultra-thin glass.
  • Head-up display HUD, Head Up Display
  • HUD Head-up Display
  • important driving information such as speed, engine revolutions, fuel consumption, tire pressure, navigation, and information from external smart devices
  • Displayed in the driver's field of vision on the front windshield so that the driver can see the driving information without looking down, so as to avoid distracting attention from the road ahead; at the same time, the driver does not have to observe the distant road and the near Adjusting the eyes between the instruments can avoid eye fatigue, which can greatly enhance driving safety and improve driving experience.
  • the head-up display system While displaying the projection information, the head-up display system also has the problem of ghosting, that is, in addition to the main image observed by the human eye, there may also be a secondary image that can be recognized by the human eye.
  • the traditional method is to use wedge-shaped laminated glass as the front windshield, for example, patents CN105793033B, CN111417518A, CN110709359A etc. disclose the use of wedge-shaped PVB as the intermediate layer of the laminated glass or one of the glass plates has a wedge-shaped cross section.
  • the prior art also discloses the use of P-polarized light and conductive coatings to generate HUD images, such as patent DE102014220189A1 and Chinese patents CN110520782A, CN111433022A, CN111433023A, etc., so that while realizing the function of head-up display, heat insulation and/or electric heating can also be realized, Therefore, the optical and electrical properties of the conductive coating are required to be high.
  • the number and thickness of conductive coatings can be increased, but this will lead to an excessively large visible light reflectance RL (8°) of the laminated glass with conductive coatings, making it difficult to ensure the conductive coatings
  • the visible light transmittance of the coated laminated glass is greater than or equal to the requirement of 70%.
  • the technical problem to be solved by the present invention is that the laminated glass with conductive coating in the prior art is difficult to satisfy the requirements of high P-polarized light reflectivity, high visible light transmittance, and low visible light reflectivity on the fourth surface at the same time, and provides a A head-up display system that includes ultra-thin glass.
  • a head-up display system comprising a projection light source, a laminated glass and a transparent nano-film
  • the laminated glass includes an outer glass plate, an inner glass plate, and an outer glass plate and an inner glass sandwiched between the outer glass plate and the inner glass plate.
  • the outer glass plate has a first surface and a second surface
  • the inner glass plate has a third surface and a fourth surface
  • the transparent nano film is disposed on the second surface and the second surface
  • the transparent nano-film includes at least two metal layers;
  • the projection light source is used to generate P-polarized light, the P-polarized light is incident on the fourth surface, and the P-polarized light is The incident angle is 45° ⁇ 72°, and the transparent nano-film can reflect at least part of the incident P-polarized light;
  • the present invention also provides a head-up display system, comprising a projection light source, a laminated glass and a transparent nano-film, wherein the laminated glass includes an outer glass plate, an inner glass plate, and an intermediate bonding layer sandwiched between the outer glass plate and the inner glass plate,
  • the outer glass plate has a first surface and a second surface
  • the inner glass plate has a third surface and a fourth surface
  • the transparent nano film is arranged between the second surface and the third surface, so
  • the transparent nano-film includes at least two metal layers
  • the projection light source is used to generate P-polarized light, the P-polarized light is incident on the fourth surface, and the incident angle of the P-polarized light is 45°-72°
  • the transparent nano-film can reflect at least part of the incident P-polarized light;
  • the distance between the transparent nano-film and the fourth surface is less than or equal to 1.86mm, the reflectivity of the laminated glass provided with the transparent nano-film to the P-polarized light is greater than or equal to 6%, and the outer glass
  • the refractive index of the plate and/or the inner glass plate is 1.35 to 1.49.
  • the intermediate adhesive layer has a wedge-shaped cross-sectional profile, and the wedge angle of the wedge-shaped cross-sectional profile is 0.01-0.18 mrad.
  • the projection light source produces 100% P-polarized light.
  • the thickness of the at least one metal layer is 4 nm ⁇ 8 nm.
  • the transparent nano-film includes at least three metal layers, and the total thickness of the at least three metal layers is greater than 30 nm.
  • the thickness of at least one metal layer is greater than or equal to 12 nm.
  • the transparent nanofilm is deposited on at least one surface of a thermoplastic polyester layer disposed between the outer glass plate and the inner glass plate, and the material of the thermoplastic polyester layer is It is polyethylene terephthalate or polyethylene naphthalate.
  • the outer glass plate and/or the intermediate adhesive layer can absorb P-polarized light, so that the absorption rate of the P-polarized light by the laminated glass provided with the transparent nano-film is 8%-30%.
  • the outer glass plate and/or the inner glass plate are selected from fluoride glass, silica glass or borosilicate glass.
  • the visible light reflectance RL (8°) of the fourth surface of the laminated glass provided with the transparent nanofilm is less than or equal to 15%.
  • the outer glass plate is a curved glass plate with a thickness greater than or equal to 1.8 mm
  • the inner glass plate is a curved glass plate with a thickness of less than or equal to 1.4 mm.
  • the reflectivity of the laminated glass provided with the transparent nano-film to the P-polarized light is greater than or equal to 10%.
  • the ratio T1/T2 0.1 of the ratio T1 of near-red light in the wavelength range of 580nm ⁇ 680nm and the ratio T2 of blue-green light in the wavelength range of 450nm ⁇ 550nm in the P-polarized light incident on the fourth surface ⁇ 0.9.
  • a filter element and/or a color filter processing algorithm are added in the head-up display system, the filter element is located on the optical path of the P-polarized light, and the filter element transmits the P-polarized light.
  • the head-up display system further includes a projection control system for controlling the projection light source to generate P-polarized light, and a color filter processing algorithm is added to the projection control system.
  • the head-up display system of the present invention can generate a clear head-up display (HUD) image without visual ghosting, and can improve the reflectivity of P polarized light while improving the visible light transmittance of the laminated glass provided with the transparent nano-film , to meet the requirements of high P-polarized light reflectivity, high visible light transmittance, and low visible light reflectivity on the fourth surface, and can also eliminate reddish and yellowish defects in the head-up display (HUD) image. color, and enrich the color of the head-up display image for full-color display.
  • HUD head-up display
  • FIG. 1 is a schematic structural diagram of a head-up display system in which the transparent nano-film is arranged on the third surface according to the present invention
  • FIG. 2 is a schematic structural diagram of the head-up display system with the transparent nano-film disposed on the second surface according to the present invention
  • FIG. 3 is a schematic structural diagram of a first example in which the transparent nano-film of the present invention is disposed on the thermoplastic polyester layer;
  • FIG. 4 is a schematic structural diagram of a second example in which the transparent nano-film of the present invention is disposed on the thermoplastic polyester layer;
  • FIG. 5 is a schematic structural diagram of a third example in which the transparent nano-film according to the present invention is disposed on the thermoplastic polyester layer.
  • the head-up display system of the present invention includes a projection light source 1 , a laminated glass 2 and a transparent nano-film 3 .
  • the laminated glass 2 includes an outer glass plate 21 , an inner glass plate 23 and a Intermediate bonding layer 22 between glass sheet 21 with first surface 211 and second surface 212 and inner glass sheet 23 with third surface 231 and fourth surface 232 , the transparent nano-film 3 is arranged between the second surface 212 and the third surface 231, the transparent nano-film 3 includes at least two metal layers;
  • the projection light source 1 is used to generate P-polarized light 11 , the P-polarized light 11 is incident on the fourth surface 232, the incident angle of the P-polarized light 11 is 45° ⁇ 72°, and the transparent nano-film 3 can reflect at least part of the incident P-polarized light 11.
  • the present invention utilizes the characteristic that when the P-polarized light is incident at an angle of 45° to 72°, the reflectivity at the interface between the glass and the air is low or even almost no reflection occurs, and the transparent nano-film 3 has a high reflectivity to the P-polarized light. , so that only the reflection image of the transparent nano-film is observed as the main image when the reflection imaging on the laminated glass is visually observed, thereby eliminating the visual ghost phenomenon.
  • the first surface 211 is disposed toward the outside of the vehicle and farthest from the intermediate adhesive layer 22
  • the second surface 212 is close to the intermediate adhesive layer 22
  • the third surface 231 is close to the intermediate adhesive layer 22
  • the fourth surface 232 is disposed toward the interior of the vehicle and farthest away from the intermediate adhesive layer 22
  • the outer glass panel 21 and the inner glass panel 23 are bonded by the intermediate adhesive layer 22 together to form the laminated glass 2.
  • the intermediate adhesive layer 22 can be selected from polycarbonate (PC), polyvinyl chloride (PVC), polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyacrylate (PA), polymethyl methacrylate At least one of methyl methacrylate (PMMA), ionic intermediate layer (SGP) or polyurethane (PU), and the like.
  • the intermediate adhesive layer 22 can be a single-layer structure or a multi-layer structure, and the multi-layer structure can be exemplified by a double-layer structure, a three-layer structure, a four-layer structure, a five-layer structure, and the like.
  • the intermediate adhesive layer 22 can also have other functions, such as providing at least one colored area as a shadow band to reduce the interference of sunlight to human eyes, or adding an infrared absorber to provide sun protection or heat insulation, or adding ultraviolet absorption. Therefore, it has the function of blocking ultraviolet rays, or one of the layers of the intermediate adhesive layer 22 of the multi-layer structure has a higher content of plasticizer so that it has the function of sound insulation.
  • the intermediate adhesive layer 22 has a wedge-shaped cross-sectional profile, and the wedge angle of the wedge-shaped cross-sectional profile is 0.01-0.18mrad, for example, 0.01mard, 0.02mrad, 0.03mrad, 0.04mrad, 0.05mrad, 0.06mrad, 0.07mrad, 0.08mrad, 0.09mrad, 0.10mrad, 0.11mrad, 0.12mrad, 0.13mrad, 0.14mrad, 0.15mrad, 0.16mrad, 0.17mrad, 0.18mrad.
  • the intermediate adhesive layer 22 with a smaller wedge angle, the reflection ghost and the perspective ghost can be eliminated at the same time in a low-cost manner, thereby obtaining a higher quality head-up display image and observation effect.
  • the P-polarized light 11 generated by the projection light source 1 is incident on the fourth surface 232 at an angle ⁇ of 45-72 degrees, because the angle of incidence ⁇ is close to the Brewster angle (about ⁇ ). 57°), so the P-polarized light incident on the fourth surface 232 is basically not reflected, and the P-polarized light entering the interior of the laminated glass 2 propagates to the transparent nano-film 3, including all of the at least two metal layers.
  • the transparent nano-film 3 can reflect the P-polarized light to form the reflected light 12 emitted from the fourth surface 232, directly entering the eyes of the observer 100 to form a head-up display (HUD) main image, preferably the transparent nano-film 3
  • the distance between the fourth surface 232 and the fourth surface 232 is less than or equal to 1.86mm, and the reflectivity of the laminated glass 2 provided with the transparent nanofilm 3 to the P-polarized light is greater than or equal to 6%.
  • the intensity of the internal P-polarized light entering the eyes of the observer 100 again is quite weak or even close to zero, so that it is difficult for the observer 100 to perceive the existence of ghosting, and the head-up display (HUD) image at this time is clear without visual ghosting. , has a good display effect.
  • the projection light source 1 is used to output relevant text and image information such as speed, engine revolutions, fuel consumption, tire pressure, dynamic navigation, night vision, real-life map, etc. to the laminated glass 2, so as to be viewed by the observer 100 in the vehicle. Observe, implement Heads Up Displays (HUDs), and even Augmented Reality Heads Up Displays (AR-HUDs).
  • HUDs Heads Up Displays
  • AR-HUDs Augmented Reality Heads Up Displays
  • the projection light source 1 is an element known to those skilled in the art, including but not limited to laser, light emitting diode (LED), liquid crystal display (LCD), digital light processing (DLP), electroluminescence (EL), cathode ray Tube (CRT), Vacuum Fluorescent Tube (VFD), Collimating Mirror, Spherical Correcting Mirror, Convex Lens, Concave Lens, Reflector and/or Polarizer, etc.
  • the position and incident angle of the projection light source 1 are adjustable to suit observers 100 at different positions or heights in the vehicle.
  • the proportion of P-polarized light generated by the projection light source 1 is greater than or equal to 70%, more preferably greater than or equal to 90%, and even 100% is P-polarized light.
  • the laminated glass provided with the transparent nano-film is in the P-polarized light.
  • the transparent nano-film 3 includes at least two metal layers, and the film material of the metal layers can be any metal or metal alloy that can reflect P-polarized light, such as silver (Ag), gold (Au) , copper (Cu), aluminum (Al) and other metals or metal alloys, preferably silver metal or silver alloy in the present invention, wherein the silver alloy in the present invention is preferably at least one of silver and gold, aluminum, copper, and platinum alloy.
  • the transparent nano-film 3 further includes at least three dielectric layers, and each metal layer is located between the two dielectric layers.
  • the number of metal layers in the transparent nano-film 3 can be two, three, four, five or even more; taking silver metal or silver alloy as an example, there can be double silver, Three silver, four silver, five silver, etc., the material of the dielectric layer is selected from oxides of Zn, Mg, Sn, Ti, Nb, Zr, Ni, In, Al, Ce, W, Mo, Sb, Bi elements, Or at least one of nitrides, oxynitrides and mixtures of Si, Al, Zr, Y, Ce, La elements.
  • the film material and thickness of the transparent nano-film 3 can be optimized to be able to withstand subsequent high temperature heat treatment or other bending forming processes, and the optical performance of the obtained head-up display system can meet the use standard of automotive glass, completely overcoming the simple
  • the metal thin layer has disadvantages such as poor durability and poor optical appearance.
  • the thickness of at least one metal layer is between 4 nm and 8 nm, or the thickness of at least one metal layer is greater than or equal to 12 nm, so as to realize the laminated glass provided with the transparent nanofilm and satisfy the high reflectivity of P-polarized light.
  • the transparent nanofilm includes at least three metal layers, and the total thickness of the at least three metal layers is greater than 30 nm, so as to realize the laminated glass provided with the transparent nanofilm and satisfy the high reflectivity of P-polarized light at the same time. , High visible light transmittance and low visible light reflectivity on the fourth surface.
  • the transparent nanofilm 3 includes a bottom metal layer, a middle metal layer and an outermost metal layer
  • the bottom metal layer is the first metal layer closest to the deposition substrate of the transparent nanofilm 3, so
  • the outermost metal layer is the third metal layer farthest from the deposition substrate of the transparent nanofilm 3
  • the middle metal layer is the second metal layer located between the bottom metal layer and the outermost metal layer, so
  • the thickness of the outermost metal layer is at least 1.5 times the thickness of the bottom metal layer or the thickness of the middle metal layer, so as to realize the laminated glass provided with the transparent nanofilm and satisfy the requirements of high P-polarized light reflectivity and visible light. High transmittance and low visible light reflectivity on the fourth surface.
  • the thickness of the outermost metal layer is greater than the sum of the thickness of the underlying metal layer and the thickness of the intermediate metal layer. More preferably, the difference between the thickness of the underlying metal layer and the thickness of the intermediate metal layer is less than or equal to 2 nm.
  • the transparent nano-film 3 is deposited on the third surface 231 of the inner glass plate 23, and the P-polarized light 11 only passes through the inner glass plate 23, in order to further reduce the adverse effect of the head-up display image It is preferable that the outer glass plate 21 and/or the intermediate adhesive layer 22 can absorb the P-polarized light, so that the absorption rate of the P-polarized light 11 by the laminated glass 2 provided with the transparent nano-film 3 is 8% to 30%, more preferably 10% to 20%.
  • the outer glass plate 21 and/or the intermediate adhesive layer 22 can absorb the P-polarized light, so that the absorption rate of the P-polarized light 11 by the laminated glass 2 provided with the transparent nano-film 3 is 8% to 30%, more preferably 10% to 20%.
  • the transparent nanofilm 3 is deposited on the second surface 212 of the outer glass plate 21, and the P-polarized light 11 passes through the intermediate adhesive layer 22 and the inner glass plate 23, in order to obtain a higher quality head-up display image, preferably, the difference between the refractive indices of the intermediate adhesive layer 22 and the inner glass plate 23 is less than or equal to 0.1.
  • the outer glass plate 21 can absorb the P-polarized light, so that the absorption rate of the P-polarized light 11 by the laminated glass 2 provided with the transparent nano-film 3 is 8%. ⁇ 30%, more preferably 10% to 20%.
  • the transparent nano-film 3 may also be deposited on at least one surface of the thermoplastic polyester layer 4 , which is provided on the outer glass plate 21 and all the between the inner glass plates 23; the thermoplastic polyester layer 4 is preferably made of polyethylene terephthalate (PET) or polyethylene naphthalate (PEN). Specifically in FIG. 3 , the thermoplastic polyester layer 4 on which the transparent nano film 3 is deposited is located between the intermediate adhesive layer 22 and the inner glass plate 23 , and the transparent nano film 3 is located in the thermoplastic polyester layer 4 and the third surface 231.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • thermoplastic polyester layer 4 on which the transparent nano-film 3 is deposited is located between the outer glass plate 21 and the intermediate adhesive layer 22, the transparent nano-film 3 is located on the second surface 212 and between the thermoplastic polyester layers 4 .
  • thermoplastic polyester layer 4 on which the transparent nanofilm 3 is deposited is located between two intermediate adhesive layers 22 , and the transparent nanofilm 3 is located between the thermoplastic polyester layer 4 and the third surface 231 between.
  • the visible light reflectivity RL (8°) of 232 is less than or equal to 15%, even less than or equal to 10%, and even less than or equal to 6%, which helps to reduce the reflection in the car, and at the same time meets the requirements of high P-polarized light reflectivity and visible light transmission. High pass rate and low visible light reflectivity of the fourth surface.
  • the outer glass plate 21 is a curved glass plate with a thickness greater than or equal to 1.8 mm; from the perspective of obtaining a higher quality head-up display image and reducing the weight of the vehicle, the inner glass plate 23 It is preferably a curved glass plate with a thickness of less than or equal to 1.4 mm, more preferably the thickness of the inner glass plate 23 is 0.3-1.2 mm, and the curved glass plate can be physically strengthened, chemically strengthened or bulk strengthened.
  • Physical strengthening is mainly to process the glass plate through high temperature heat treatment at at least 560°C and bending molding;
  • the chemical strengthening of the present invention is mainly to exchange ions on the glass surface through ions of different ionic radii, so that the glass surface produces a higher surface stress, and accompanied by a certain depth of the stress layer, thereby improving the strength of the glass in terms of mechanical properties;
  • the bulk tempered glass in the present invention refers to neither physical strengthening nor chemical strengthening, the original glass itself is It can be directly matched with another piece of glass to form a laminated glass, and the quality of the laminated glass meets the standards for the use of automotive laminated glass, such as China's "GB9656-2016 Automotive Safety Glass" and so on.
  • the reflectivity of the laminated glass 2 provided with the transparent nano-film 3 to the P-polarized light 11 is greater than or equal to 10%, more preferably greater than or equal to 15%, in order to obtain a higher primary image/secondary image Brightness ratio; the reflectivity of the laminated glass 2 with the transparent nano-film 3 to the P-polarized light 11 can be measured and calculated according to the standard ISO9050.
  • the wavelength range of the P-polarized light 11 is 380 nm to 780 nm.
  • the laminated glass 2 provided with the transparent nano-film 3 has a wavelength of 580 nm to 780 nm.
  • the ratio R1/R2 1.0 ⁇ 1.7 of the near-red light reflectivity R1 in the wavelength range of 680nm and the blue-green light reflectivity R2 in the wavelength range of 450nm ⁇ 550nm of the laminated glass 2 provided with the transparent nano film 3,
  • HUD head-up display
  • any object R( ⁇ ) has the color tristimulus values X, Y, Z given the illumination source S( ⁇ ), as shown in the following formula:
  • k is the adjustment factor
  • R( ⁇ ) is the spectral reflectance of the object
  • S( ⁇ ) is the relative spectral power distribution of the light source
  • CIE National Standard Illumination Committee
  • the ratio R1 of the near-red light reflectivity R1 of the laminated glass 2 provided with the transparent nano-film 3 and the blue-green light reflectivity R2 of the laminated glass 2 provided with the transparent nano-film 3 in the present invention is R1
  • the relative spectral power distribution of the P-polarized light 11 incident on the fourth surface 232 is improved; moreover, the present invention can realize full color without strictly controlling the ratio of the synthesized light of the projection light source Therefore, full-color display can be realized in a lower cost manner, and the selection cost of the projection light source is reduced.
  • the present invention preferably adds a filter element and/or a color filter processing algorithm in the head-up display system to make the incident light
  • the ratio T1/T2 0.1-0.9 of the ratio T1 of near-red light in the wavelength range of 580nm-680nm and the ratio T2 of blue-green light in the wavelength range of 450nm-550nm in the P-polarized light 11 on the fourth surface 232.
  • the filter element is located on the optical path of the P-polarized light, and the transmittance of the filter element to the P-polarized light is greater than or equal to 80%.
  • the head-up display system further includes a projection control system, which is used to control the projection light source 1 to generate P-polarized light 11, and a color filter processing algorithm is added in the projection control system, and the color filter processing algorithm adopts
  • the digital image processing technology processes the P-polarized light 11 generated by the projection light source 1 , specifically, a linear method, a nonlinear method, a mask method, a color compensation method, a color correction method, and the like can be used.
  • the present invention is described with the head-up display systems of Example 1-15 and Comparative Example 1-3.
  • the projection light source of Example 1-15 and Comparative Example 1-3 is a TFT-LCD projector with LED backlight, which can produce 100%
  • the P-polarized light also contains multiple mirrors, which adjust the position of the projection light source and the angle and incident direction of the outgoing light, so that the displayed image can be observed by the observer to achieve the clearest.
  • the white glass in the embodiments of the present invention refers to transparent glass with visible light transmittance ⁇ 70%.
  • T1 is the ratio of near-red light in the wavelength range of 580 nm ⁇ 680 nm in the P-polarized light 11 incident on the fourth surface 232
  • T2 is the ratio of 450 nm ⁇ 450 nm in the P-polarized light 11 incident on the fourth surface 232
  • the ratio of blue-green light in the wavelength range of 550nm, T1 and T2 are calculated according to the following formulas:
  • k is the adjustment factor
  • R( ⁇ ) is the spectral reflectance of the object
  • S( ⁇ ) is the relative spectral power distribution of the light source
  • CIE National Standard Illumination Committee
  • R1 is the near-red light reflectivity of the laminated glass provided with the transparent nano-film 3 in the wavelength range of 580 nm to 680 nm
  • R2 is the reflectance of the laminated glass provided with the transparent nano-film 3 in the wavelength range of 450 nm to 550 nm. Blue-green reflectance, R1 and R2 are measured and calculated according to standard ISO9050.
  • No ghosting evaluation method in a dark dark room, it is judged by visually observing whether there is a secondary image or whether the secondary image is obvious, and the HUD image is visually observed according to the incident angle.
  • the HUD image is visually observed according to the incident angle.
  • P-polarized light reflectivity within the incident angle range of 45° to 72°, measure the reflectivity of the laminated glass 2 provided with the transparent nanofilm 3 to the P-polarized light 11 at every 1° interval, that is, Rp ( 45°), Rp(46°), Rp(47°),..., Rp(71°), Rp(72°), where the maximum reflectance value is Rmax and the minimum reflectance value is Rmin, for example, 72
  • Visible light transmittance (TL): According to ISO9050 standard, the visible light transmittance of 380-780nm is calculated.
  • the present invention prepares the outer glass plate, the inner glass plate and at least one intermediate adhesive layer by designing the film structure of the transparent nano-film and adjusting the thickness of the inner glass plate, and obtains Examples 1-5 and Comparative Example 1 according to the production process of automobile glass .
  • Laminated glass outer glass plate (2.1mm white glass)/PVB (0.76mm)/transparent nano film/inner glass plate (1.0mm white glass);
  • Transparent Nanofilm White Glass(1.0mm)/SiO2(15nm)/SiN(41.2nm)/AZO(10nm)/Ag(7.0nm)/NiCr(0.35nm)/AZO(5nm)/Ag(5.0nm)/ AZO(10nm)/SiN(40nm);
  • Laminated glass outer glass plate (2.1mm white glass)/transparent nano film/PVB (0.76mm)/inner glass plate (0.7mm white glass);
  • Laminated glass outer glass plate (2.1mm white glass)/PVB (0.76mm)/transparent nano film/inner glass plate (0.7mm white glass);
  • Laminated glass outer glass plate (2.1mm white glass)/transparent nano film/PVB (0.76mm)/inner glass plate (0.5mm white glass);
  • Laminated glass outer glass plate(2.1mm white glass)/PVB(0.76mm)/PET(0.05mm)/transparent nano film/PVB(0.38mm)/inner glass plate(0.5mm white glass);
  • Laminated glass outer glass plate (2.1mm white glass)/PVB (0.76mm)/inner glass plate (2.1mm white glass);
  • the head-up display systems of Examples 1 to 5 and Comparative Example 1 project the P-polarized light generated by the projection light source at an incident angle of 45° to 72°, and no filter elements and/or color filter processing are added in the head-up display systems. Algorithm, visually observe whether the HUD image is clear and without ghosting; at the same time, record the reflectivity of the laminated glass provided with the transparent nanofilm to P-polarized light every 1° to obtain Rp(60°) and Rmax/Rmin. included in Table 1.
  • the comparative example 1 without the transparent nano-film cannot realize the head-up display function, and the examples 1-5 with the transparent nano-film can realize the head-up display function, so that the head-up display (HUD)
  • HUD head-up display
  • the present invention prepares the outer glass plate, the inner glass plate and at least one intermediate bonding layer by adjusting the refractive index n and thickness of the outer glass plate and the inner glass plate, and obtains Examples 6-10 and Comparative Example 2 according to the automobile glass production process.
  • Transparent nano film outer glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • Transparent nano film outer glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • Transparent nano film outer glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • Transparent nano film outer glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • Transparent nano film inner glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(8.2nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(8.0nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(15.5nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • Transparent nano film outer glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • the head-up display systems of Examples 6 to 10 and Comparative Example 2 project the P-polarized light generated by the projection light source at an incident angle of 45° to 72°, and no filter element and/or color filter processing are added in the head-up display system.
  • Algorithm visually observe whether the HUD image is clear and without ghosting; at the same time, record the reflectivity of the laminated glass provided with the transparent nanofilm to P-polarized light every 1°, obtain Rp(60°) and Rmax/Rmin, and calculate The visible light transmittance (TL) of the laminated glass provided with the transparent nanofilm is included in Table 2.
  • Examples 6 to 10 and Comparative Example 2 with the transparent nano-film are all able to realize the head-up display function, so that the head-up display (HUD) image is clear without visual ghosting, and has a good display Effect:
  • a large field of view (FOV) is required and the overall brightness uniformity of the HUD image is achieved; and, the sum of the thicknesses of the three silver layers in Example 10 is greater than 30nm, and the visible light transmittance TL of Example 10 is still greater than 70%, It meets the requirements of
  • the present invention obtains Examples 11-15 and Comparative Example 3 by designing the film system structure of the transparent nanofilm and adjusting the value of T1/T2 of the P-polarized light incident on the fourth surface.
  • Transparent nano film outer glass plate/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm) )/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
  • Comparative Example 3 The incident P-polarized light is white light generated by the projection system, without filtering or color filtering;
  • the head-up display systems of Examples 11 to 15 and Comparative Example 3 project the P-polarized light generated by the projection system at incident angles of 50°, 55°, 60°, 65°, and 70°, and project from the reflection angle corresponding to the incident angle. Observe the presented target image in the direction of the target image, and judge whether the head-up display image is reddish or yellowish based on the target image as a white spot.
  • the RGB value of the white spot is (255, 255, 255), and the observation results are included in the table. 3.
  • the R1/R2 of the laminated glass with the transparent nanofilm is 1.16-1.33, and the white light generated by the projection light source without filter or color filter treatment in Comparative Example 3 is 50°, 55°
  • the target image will appear slightly yellowish or slightly reddish-yellow.
  • the T1/T2 0.4 used in Examples 11 to 15
  • the incident P-polarized light of -0.8 can make the target image a standard white light spot, without the phenomenon of reddish and yellowish, and can obtain higher-quality head-up display images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Polarising Elements (AREA)

Abstract

本发明涉及抬头显示技术领域,特别是利用透明纳米膜成像显示的抬头显示系统,具体提供一种包括超薄玻璃的抬头显示系统。所述抬头显示系统包括投影光源、夹层玻璃和透明纳米膜,所述透明纳米膜包括至少两个金属层;所述投影光源用于产生P偏振光,设置有所述透明纳米膜的夹层玻璃在45°~72°的入射角度内对所述P偏振光具有最大反射率Rmax和最小反射率Rmin,Rmax/Rmin=1.0~2.0。本发明能够产生清晰且无目视重影的抬头显示图像,满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求,使抬头显示图像呈现中性色,以及使抬头显示图像的颜色更加丰富以实现全彩显示。

Description

一种抬头显示系统
本申请要求于2021年4月14日提交中国专利局、申请号为202110397936.2、申请名称为“一种抬头显示系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及抬头显示技术领域,特别是利用透明纳米膜成像显示的抬头显示系统,具体提供一种包括超薄玻璃的抬头显示系统。
背景技术
抬头显示(HUD,Head Up Display)系统被越来越多地配置到汽车上,从而能够将重要的行车信息,例如速度、发动机转数、油耗、胎压、导航以及外接智能设备的信息实时地显示在前挡风玻璃上驾驶员的视野中,这样使得驾驶员不必低头,就可以看到行车信息,从而避免分散对前方道路的注意力;同时使得驾驶员不必在观察远方的道路和近处的仪表之间调节眼睛,可以避免眼睛的疲劳,能够极大地增强行车安全和改进驾驶体验。
抬头显示系统在进行投影信息显示的同时,还存在重影问题,即除了人眼观察到的主像之外,还可能出现人眼能够识别的副像。为了减轻或消除副像,传统方法是采用楔形夹层玻璃作为前挡风玻璃,例如专利CN105793033B、CN111417518A、CN110709359A等公开了采用楔形PVB作为夹层玻璃的中间层或将其中一片玻璃板具有楔形横截面。
现有技术也有公开利用P偏振光和导电涂层产生HUD图像,例如专利DE102014220189A1和中国专利CN110520782A、CN111433022A、CN111433023A等,这样在实现抬头显示功能的同时,还能够实现隔热和/或电加热,因此对导电涂层的光学和电学性能均要求较高。为了获得更高质量的抬头显示(HUD)图像,可以提高导电涂层的数量和厚度,但这会导致具有导电涂层的夹层玻璃的可见光反射率RL(8°)过大,难以保证具有导电涂层的夹层玻璃的可见光透过率大于或等于70%的要求。
发明内容
本发明所要解决的技术问题是针对现有技术中具有导电涂层的夹层玻璃难以同时满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求等缺陷,提供一种包括超薄玻璃的抬头显示系统。
本发明解决其技术问题所采取的技术方案是:一种抬头显示系统,包括投影光源、夹层玻璃和透明纳米膜,所述夹层玻璃包括外玻璃板、内玻璃板以及夹在外玻璃板和内玻璃板之间的中间粘结层,所述外玻璃板具有第一表面和第二表面,所述内玻璃板具有第三表面和第四表面,所述透明纳米膜设置在所述第二表面和所述第三表面之间,所述透明纳米膜包括至少两个金属层;所述投影光源用于产生P偏振光,所述P偏振光入射到所述第四表面上,所述P偏振光的入射角度为45°~72°,所述透明纳米膜能够反射至少部分入射的所述P偏振光;
所述透明纳米膜与所述第四表面之间的距离小于或等于1.86mm,设置有所述透明纳米膜的夹层玻璃对所述P偏振光的反射率大于或等于6%,设置有所述透明纳米膜的夹层玻璃在45°~72°的入射角度内对所述P偏振光具有最大反射率Rmax和最小反射率Rmin, Rmax/Rmin=1.0~2.0。
本发明还提供一种抬头显示系统,包括投影光源、夹层玻璃和透明纳米膜,所述夹层玻璃包括外玻璃板、内玻璃板以及夹在外玻璃板和内玻璃板之间的中间粘结层,所述外玻璃板具有第一表面和第二表面,所述内玻璃板具有第三表面和第四表面,所述透明纳米膜设置在所述第二表面和所述第三表面之间,所述透明纳米膜包括至少两个金属层;所述投影光源用于产生P偏振光,所述P偏振光入射到所述第四表面上,所述P偏振光的入射角度为45°~72°,所述透明纳米膜能够反射至少部分入射的所述P偏振光;
所述透明纳米膜与所述第四表面之间的距离小于或等于1.86mm,设置有所述透明纳米膜的夹层玻璃对所述P偏振光的反射率大于或等于6%,所述外玻璃板和/或所述内玻璃板的折射率为1.35~1.49。
优选地,所述中间粘结层具有楔形截面轮廓,所述楔形截面轮廓的楔角为0.01~0.18mrad。
优选地,所述投影光源产生100%的P偏振光。
优选地,至少一个金属层的厚度为4nm~8nm。
优选地,所述透明纳米膜包括至少三个金属层,至少三个金属层的总厚度大于30nm。
优选地,至少一个金属层的厚度大于或等于12nm。
优选地,所述透明纳米膜沉积在热塑性聚酯层的至少一个表面上,所述热塑性聚酯层设置在所述外玻璃板和所述内玻璃板之间,所述热塑性聚酯层的材料为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯。
优选地,所述外玻璃板和/或所述中间粘结层能够吸收P偏振光,使设置有所述透明纳米膜的夹层玻璃对所述P偏振光的吸收率为8%~30%。
优选地,所述外玻璃板和/或所述内玻璃板选用氟化物玻璃、氧化硅玻璃或硼硅酸盐玻璃。
优选地,设置有所述透明纳米膜的夹层玻璃的第四表面的可见光反射率RL(8°)小于或等于15%。
优选地,所述外玻璃板为厚度大于或等于1.8mm的弯曲玻璃板,所述内玻璃板为厚度小于或等于1.4mm的弯曲玻璃板。
优选地,设置有所述透明纳米膜的夹层玻璃对所述P偏振光的反射率大于或等于10%。
优选地,设置有所述透明纳米膜的夹层玻璃在580nm~680nm波长范围内具有的近红光反射率R1与设置有所述透明纳米膜的夹层玻璃在450nm~550nm波长范围内具有的蓝绿光反射率R2之比R1/R2=1.0~1.7。
优选地,入射到所述第四表面上的P偏振光中的580nm~680nm波长范围内的近红光比例T1与其中450nm~550nm波长范围内的蓝绿光比例T2之比T1/T2=0.1~0.9。
优选地,设置有所述透明纳米膜的夹层玻璃在580nm~680nm波长范围内具有的近红光反射率R1与设置有所述透明纳米膜的夹层玻璃在450nm~550nm波长范围内具有的蓝绿光反射率R2之比R1/R2=1.01~1.5,入射到所述第四表面上的P偏振光中的580nm~680nm波长范围内的近红光比例T1与其中450nm~550nm波长范围内的蓝绿光比例T2之比T1/T2=0.4~0.8。
优选地,在所述抬头显示系统中增设滤光元件和/或滤色处理算法,所述滤光元件位于所述P偏振光的光路上,所述滤光元件对所述P偏振光的透过率大于或等于80%,所述抬头显示系统还包括投影控制系统,所述投影控制系统用于控制所述投影光源产生P偏振光,所述投影控制系统中增设有滤色处理算法。
本发明所述的抬头显示系统能够产生清晰且无目视重影的抬头显示(HUD)图像,能够在提高设置有透明纳米膜的夹层玻璃的可见光透过率的同时提高P偏振光的反射率,满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求,还能够消除抬头显示(HUD)图像出现的偏红、偏黄等缺陷,使抬头显示图像呈现中性色,以及使抬头显示图像的颜色更加丰富以实现全彩显示。
附图说明
图1为本发明所述的透明纳米膜设置在第三表面上的抬头显示系统的结构示意图;
图2为本发明所述的透明纳米膜设置在第二表面上的抬头显示系统的结构示意图;
图3为本发明所述的透明纳米膜设置在热塑性聚酯层上的第一示例的结构示意图;
图4为本发明所述的透明纳米膜设置在热塑性聚酯层上的第二示例的结构示意图;
图5为本发明所述的透明纳米膜设置在热塑性聚酯层上的第三示例的结构示意图。
具体实施方式
以下结合附图对本发明的内容作进一步说明。
如图1和图2所示,本发明所述的抬头显示系统,包括投影光源1、夹层玻璃2和透明纳米膜3,所述夹层玻璃2包括外玻璃板21、内玻璃板23以及夹在外玻璃板21和内玻璃板23之间的中间粘结层22,所述外玻璃板21具有第一表面211和第二表面212,所述内玻璃板23具有第三表面231和第四表面232,所述透明纳米膜3设置在所述第二表面212和所述第三表面231之间,所述透明纳米膜3包括至少两个金属层;所述投影光源1用于产生P偏振光11,所述P偏振光11入射到所述第四表面232上,所述P偏振光11的入射角度为45°~72°,所述透明纳米膜3能够反射至少部分入射的所述P偏振光11。本发明利用P偏振光以45°~72°的角度入射时,在玻璃和空气界面上反射率较低甚至基本不发生反射而所述透明纳米膜3对P偏振光的反射率较高的特性,使得目视观察夹层玻璃上的反射成像时仅仅观察到透明纳米膜的反射像作为主像,从而消除目视重影现象。
在本发明中,所述第一表面211朝向车辆外部设置且最远离所述中间粘结层22,所述第二表面212靠近所述中间粘结层22,所述第三表面231靠近所述中间粘结层22,所述第四表面232朝向车辆内部设置且最远离所述中间粘结层22,所述外玻璃板21和所述内玻璃板23通过所述中间粘结层22粘接在一起,以形成夹层玻璃2。
所述中间粘结层22可以选用聚碳酸酯(PC)、聚氯乙烯(PVC)、聚乙烯醇缩丁醛(PVB)、乙烯乙酸乙烯酯(EVA)、聚丙烯酸酯(PA)、聚甲基丙烯酸甲酯(PMMA)、离子性中间层(SGP)或聚氨酯(PU)等中的至少一种。所述中间粘结层22可以为单层结构或多层结构,多层结构可以举例有双层结构、三层结构、四层结构、五层结构等。所述中间粘结层22还可以具有其他功能,例如设置至少一个着色区用作阴影带从而降低太阳光对人眼的干扰,或者增添红外线吸收剂从而具有防晒或隔热功能,或者增添紫外线吸收剂从而具有隔紫外线功能,又或者多层结构的所述中间粘结层22的其中一层的增塑剂含量更高从而具有隔音功能。为了消除车辆外部环境中的景物透过挡风玻璃产生的透视重影,优选所述中间粘结层22具有楔形截面轮廓,所述楔形截面轮廓的楔角为0.01~0.18mrad,例如0.01mard、0.02mrad、0.03mrad、0.04mrad、0.05mrad、0.06mrad、0.07mrad、0.08mrad、0.09mrad、0.10mrad、0.11mrad、0.12mrad、0.13mrad、0.14mrad、0.15mrad、0.16mard、0.17mard、0.18mrad等,这样仅通过使用较小楔角的中间粘结层22,就能够以低成本的方式同时消除反射重影和透视重影,从而获得更高质量的抬头显示图像和观察效果。
在图1和图2中,所述投影光源1产生的P偏振光11以45~72度的θ角入射到所述第四表面232上,由于入射角θ接近于布儒斯特角(约57°),所以入射到所述第四表面232上的P偏振光基本不发生反射,进入夹层玻璃2内部的P偏振光传播至所述透明纳米膜3上,包括至少两个金属层的所述透明纳米膜3能够反射P偏振光以形成从所述第四表面232上出射的反射光12,直接进入观察者100的眼睛,形成抬头显示(HUD)主像,优选所述透明纳米膜3与所述第四表面232之间的距离小于或等于1.86mm,设置有所述透明纳米膜3的夹层玻璃2对所述P偏振光的反射率大于或等于6%,能够使进入夹层玻璃2内部的P偏振光再次进入观察者100的眼睛的光的强度相当微弱甚至接近于零,从而使观察者100难以察觉重影的存在,此时的抬头显示(HUD)图像清晰无目视重影,具有良好的显示效果。
其中,所述投影光源1用于输出相关文字、图像信息例如速度、发动机转数、油耗、胎压、动态导航、夜视、实景地图等到夹层玻璃2上,从而被车内的观察者100所观察到,实现抬头显示(HUD),甚至增强现实抬头显示(AR-HUD)。所述投影光源1为本领域技术人员已知的元件,包括但不限于激光、发光二极管(LED)、液晶显示屏(LCD)、数字光处理(DLP)、电致发光(EL)、阴极射线管(CRT)、真空荧光管(VFD)、准直镜、球面校正镜、凸透镜、凹透镜、反射镜和/或偏振镜等。同时,投影光源1的位置和入射角度是可调的,以适合车内不同位置或高度的观察者100。在本发明中,所述投影光源1产生的P偏振光的占比大于或等于70%,更优选大于或等于90%,甚至100%为P偏振光。
为了实现HUD图像尽可能色彩中性的显示、满足更大的视场角(FOV)要求以及实现HUD图像整体亮度均匀性,本发明优选设置有所述透明纳米膜的夹层玻璃在45°~72°的入射角度内对所述P偏振光具有最大反射率Rmax和最小反射率Rmin,Rmax/Rmin=1.0~2.0,具体可举例为1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0等。假如设置有所述透明纳米膜的夹层玻璃在P偏振光11以72°入射时具有最大反射率Pmax即Rp(72°)=14%,设置有所述透明纳米膜的夹层玻璃在P偏振光11以60°入射时具有最小反射率Pmin即Rp(60°)=11%,Rmax/Rmin=Rp(72°)/Rp(60°)=1.27。
在本发明中,所述透明纳米膜3包括至少两个金属层,所述金属层的膜层材料可以选用能够反射P偏振光的任何金属或金属合金,例如银(Ag)、金(Au)、铜(Cu)、铝(Al)等金属或金属合金,在本发明中优选为银金属或银合金,其中银合金在本发明中优选为银与金、铝、铜、铂金中至少一种的合金。所述透明纳米膜3还包括至少三个介质层,每个金属层位于两个介质层之间。根据实际应用的需要,所述透明纳米膜3中的金属层的数量可以举例为两个、三个、四个、五个甚至更多个;以银金属或银合金举例,可以有双银、三银、四银、五银等,所述介质层的材料选自Zn、Mg、Sn、Ti、Nb、Zr、Ni、In、Al、Ce、W、Mo、Sb、Bi元素的氧化物,或Si、Al、Zr、Y、Ce、La元素的氮化物、氮氧化物及其混合物中的至少一种。所述透明纳米膜3的膜层材料和厚度可以经过优化设计,实现能够承受后续高温热处理或其他弯曲成型工艺,并且得到的抬头显示系统的光学性能能够满足汽车玻璃的使用标准,完全克服单纯的金属薄层存在的耐久性不佳、光学外观差等缺点。
在某些实施例中,至少一个金属层的厚度为4nm~8nm,或至少一个金属层的厚度大于或等于12nm,以实现设置有所述透明纳米膜的夹层玻璃同时满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求。在某些实施例中,所述透明纳米膜包括至少三个金属层,至少三个金属层的总厚度大于30nm,以实现设置有所述透明纳米膜的夹层玻璃同时满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求。
在某些实施例中,所述透明纳米膜3包括底层金属层、中间金属层和最外金属层,所述 底层金属层为最靠近所述透明纳米膜3沉积基板的第一金属层,所述最外金属层为最远离所述透明纳米膜3沉积基板的第三金属层,所述中间金属层为位于所述底层金属层和所述最外金属层之间的第二金属层,所述最外金属层的厚度为所述底层金属层的厚度或所述中间金属层的厚度的至少1.5倍,以实现设置有所述透明纳米膜的夹层玻璃同时满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求。优选地,所述最外金属层的厚度大于所述底层金属层的厚度与所述中间金属层的厚度之和。更优选地,所述底层金属层的厚度与所述中间金属层的厚度之差小于或等于2nm。
在图1中,所述透明纳米膜3沉积在所述内玻璃板23的第三表面231上,所述P偏振光11仅穿过所述内玻璃板23,为了进一步降低抬头显示图像的副像影响,优选所述外玻璃板21和/或所述中间粘结层22能够吸收P偏振光,使设置有所述透明纳米膜3的夹层玻璃2对所述P偏振光11的吸收率为8%~30%,更优选为10%~20%。在图2中,所述透明纳米膜3沉积在所述外玻璃板21的第二表面212上,所述P偏振光11穿过所述中间粘结层22和所述内玻璃板23,为了获得更高质量的抬头显示图像,优选所述中间粘结层22与所述内玻璃板23的折射率之差小于或等于0.1。为了进一步降低抬头显示图像的副像影响,优选所述外玻璃板21能够吸收P偏振光,使设置有所述透明纳米膜3的夹层玻璃2对所述P偏振光11的吸收率为8%~30%,更优选为10%~20%。
如图3、图4和图5所示,所述透明纳米膜3还可以沉积在热塑性聚酯层4的至少一个表面上,所述热塑性聚酯层4设置在所述外玻璃板21和所述内玻璃板23之间;所述热塑性聚酯层4的材料优选为聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)。具体在图3中,沉积所述透明纳米膜3的热塑性聚酯层4位于所述中间粘结层22和所述内玻璃板23之间,所述透明纳米膜3位于所述热塑性聚酯层4和所述第三表面231之间。在图4中,沉积所述透明纳米膜3的热塑性聚酯层4位于所述外玻璃板21和所述中间粘结层22之间,所述透明纳米膜3位于所述第二表面212和所述热塑性聚酯层4之间。在图5中,沉积所述透明纳米膜3的热塑性聚酯层4位于两个中间粘结层22之间,所述透明纳米膜3位于所述热塑性聚酯层4和所述第三表面231之间。
传统夹层玻璃使用的是普通钠钙硅玻璃板,具体结构为普通钠钙硅玻璃板/PVB/普通钠钙硅玻璃板,普通钠钙硅玻璃板的折射率n=1.51~1.52,申请人发现所述外玻璃板21和所述内玻璃板23中的至少一个选用折射率n=1.35~1.49的玻璃板,能够使夹层玻璃2在保证可见光透过率≥70%的同时,提高P偏振光反射率和降低所述第四表面232的可见光反射率,具体夹层玻璃结构可以举例为外玻璃板(n=1.52)/PVB/内玻璃板(n=1.47)、外玻璃板(n=1.47)/PVB/内玻璃板(n=1.51)、外玻璃板(n=1.47)/PVB/内玻璃板(n=1.47)等,使设置有所述透明纳米膜3的夹层玻璃2的第四表面232的可见光反射率RL(8°)小于或等于15%,甚至小于或等于10%,更甚至小于或等于6%,有助于减少车内倒影,同时满足P偏振光反射率高、可见光透过率高、第四表面可见光反射率低的要求。所述折射率n=1.35~1.49的玻璃板可以选用氟化物玻璃、氧化硅玻璃或硼硅酸盐玻璃。
为了满足汽车玻璃的使用安全要求,所述外玻璃板21选用厚度大于或等于1.8mm的弯曲玻璃板;从获得更高质量的抬头显示图像和汽车轻量化的角度考虑,所述内玻璃板23优选为厚度小于或等于1.4mm的弯曲玻璃板,更优选所述内玻璃板23的厚度为0.3~1.2mm,所述弯曲玻璃板可以经过物理强化、化学强化或本体强化,本发明所述的物理强化主要是将玻璃板经过至少560℃的高温热处理和弯曲成型进行处理;本发明所述的化学强化主要是通过不同离子半径的离子在玻璃表面进行离子交换,使玻璃表面产生较高的表面应力,并伴随有 一定的应力层深度,从而提高玻璃在力学性能方面的强度;本发明所述的本体强化玻璃是指既不需要经过物理强化、也不需要经过化学强化,原片玻璃本身就可直接配合另一片玻璃形成夹层玻璃,并且夹层玻璃的质量符合汽车夹层玻璃的使用标准,例如中国的《GB9656-2016汽车安全玻璃》等。
优选地,设置有所述透明纳米膜3的夹层玻璃2对所述P偏振光11的反射率大于或等于10%,更优选大于或等于15%,以获得更高的主像/副像的亮度比;置有所述透明纳米膜3的夹层玻璃2对所述P偏振光11的反射率可根据标准ISO9050测量计算获得。通常,所述P偏振光11的波长范围为380nm~780nm,为了消除抬头显示(HUD)图像出现的偏红、偏黄等缺陷,优选设置有所述透明纳米膜3的夹层玻璃2在580nm~680nm波长范围内具有的近红光反射率R1与设置有所述透明纳米膜3的夹层玻璃2在450nm~550nm波长范围内具有的蓝绿光反射率R2之比R1/R2=1.0~1.7,具体可以举例1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7等,更优选R1/R2=1.01~1.5,从而能够对P偏振光有更高的反射率以获得更高质量的抬头显示图像。
为了在消除抬头显示(HUD)图像出现的偏红、偏黄等缺陷的同时,还能够使抬头显示图像呈现中性色,以及使抬头显示图像的颜色更加丰富以实现全彩显示,例如在抬头显示图像中同时显示红色、绿色、蓝色、黄色、橙色和白色等不同颜色的标记或符号,本发明还优选入射到所述第四表面232上的P偏振光11中的580nm~680nm波长范围内的近红光比例T1与其中450nm~550nm波长范围内的蓝绿光比例T2之比T1/T2=0.1~0.9,具体可以举例0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等,更优选T1/T2=0.4~0.8。根据色度学理论,任何物体R(λ)在给定照明光源S(λ)情况下,所具有的颜色三刺激值X,Y,Z,如以下公式所示:
Figure PCTCN2022086752-appb-000001
Figure PCTCN2022086752-appb-000002
Figure PCTCN2022086752-appb-000003
其中,k为调整因子,R(λ)为物体光谱反射率,S(λ)为光源相对光谱功率分布,
Figure PCTCN2022086752-appb-000004
Figure PCTCN2022086752-appb-000005
为CIE(国标照明委员会)标准观察者光谱三刺激值,dλ为波长间隔。根据上述公式可知,本发明在设置有所述透明纳米膜3的夹层玻璃2的近红光反射率R1与设置有所述透明纳米膜3的夹层玻璃2的蓝绿光反射率R2之比R1/R2的基础上,改善了入射到所述第四表面232上的P偏振光11的相对光谱功率分布;并且,本发明无须对投影光源的合成光的比例做严苛控制即可实现全彩显示,从而能够以更低成本的方式实现全彩显示,降低了投影光源的选用成本。
为了改善了入射到所述第四表面232上的P偏振光11的相对光谱功率分布,本发明优选在所述抬头显示系统中增设滤光元件和/或滤色处理算法,用于使入射到所述第四表面232上的P偏振光11中的580nm~680nm波长范围内的近红光比例T1与450nm~550nm波长范围内的蓝绿光比例T2之比T1/T2=0.1~0.9。所述滤光元件位于所述P偏振光的光路上,所述滤光元件对所述P偏振光的透过率大于或等于80%,具体可以举例为滤光片、滤光膜、胶片、滤光镜、微纳米阵列等,所述滤光元件可以位于所述投影光源1的内部,或位于所述投影光源1和夹层玻璃2之间。所述抬头显示系统还包括投影控制系统,所述投影控制系统用于控制所述投影光源1产生P偏振光11,所述投影控制系统中增设有滤色处理算法,所述滤色处理算法采用数字图像处理技术对所述投影光源1产生的P偏振光11进行处理,具体可以举例 为线性法、非线性法、掩膜法、颜色补偿法、颜色校正法等。
实施例
下面,举出一些本发明的实施例进一步说明,但本发明不限于以下实施例。
本发明以实施例1-15和对比例1-3的抬头显示系统进行说明,实施例1-15和对比例1-3的投影光源选用LED背光的TFT-LCD投影机,其能够产生100%的P偏振光,还包含多个反射镜,调节投影光源的位置和出射光的角度入射方向使观察者能够观察到的显示图像达到最清晰。本发明的实施例中的白玻是指可见光透过率≥70%的透明玻璃。
T1为入射到所述第四表面232上的P偏振光11中的580nm~680nm波长范围内的近红光比例,T2为入射到所述第四表面232上的P偏振光11中的450nm~550nm波长范围内的蓝绿光比例,T1和T2分别依据以下公式计算获得:
Figure PCTCN2022086752-appb-000006
Figure PCTCN2022086752-appb-000007
其中,k为调整因子,R(λ)为物体光谱反射率,S(λ)为光源相对光谱功率分布,
Figure PCTCN2022086752-appb-000008
Figure PCTCN2022086752-appb-000009
为CIE(国标照明委员会)标准观察者光谱三刺激值,dλ为波长间隔。
R1为设置有所述透明纳米膜3的夹层玻璃在580nm~680nm波长范围内具有的近红光反射率,R2为设置有所述透明纳米膜3的夹层玻璃在450nm~550nm波长范围内具有的蓝绿光反射率,R1和R2根据标准ISO9050进行测量计算。
无重影评价办法:在黑暗的暗室中,通过目视观察有无副像或副像是否明显来判定,按照入射角进行目视观察HUD图像,当没有副像或副像不明显时,定义为无重影;反之,就有重影。
P偏振光反射率:在45°~72°的入射角范围内,按照每间隔1°测量设置有所述透明纳米膜3的夹层玻璃2对所述P偏振光11的反射率,即Rp(45°)、Rp(46°)、Rp(47°)、……、Rp(71°)、Rp(72°),其中的最大反射率值为Rmax,最小反射率值为Rmin,例如以72°入射角入射时的反射率最大,以60°入射角入射时的反射率最小,则Rmax=Rp(72°),Rmin=Rp(60°)。
可见光透过率(TL):依据ISO9050标准计算出380~780nm可见光透过率。
实施例1~5和对比例1
本发明通过设计透明纳米膜的膜系结构和调整内玻璃板的厚度,准备外玻璃板、内玻璃板以及至少一片中间粘结层,按照汽车玻璃生产工艺获得实施例1-5和对比例1。
实施例1
夹层玻璃:外玻璃板(2.1mm白玻)/PVB(0.76mm)/透明纳米膜/内玻璃板(1.0mm白玻);
透明纳米膜:白玻(1.0mm)/SiO2(15nm)/SiN(41.2nm)/AZO(10nm)/Ag(7.0nm)/NiCr(0.35nm)/AZO(5nm)/Ag(5.0nm)/AZO(10nm)/SiN(40nm);
实施例2
夹层玻璃:外玻璃板(2.1mm白玻)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻);
透明纳米膜:白玻(2.1mm)/ZnSnOx(24.0nm)/TiO2(3.1nm)/AZO(10nm)/AgCuPt(5.0nm)/AZ O(10nm)/TiN(2.0nm)/TiO2(8.6nm)/ZnSnOx(48.7nm)/AZO(10nm)/AgCu(5.0nm)/AZO(10nm)/ZnSnOx(56.7nm)/TiO2(17.4nm)/AZO(5nm)/AgCuPt(15.0nm)/AZO(5nm)/TiO2(16.9nm)/ZnSnOx(23.9nm)/SiN(5.0nm);
实施例3
夹层玻璃:外玻璃板(2.1mm白玻)/PVB(0.76mm)/透明纳米膜/内玻璃板(0.7mm白玻);
透明纳米膜:白玻(2.1mm)/ZnSnOx(24.0nm)/TiO2(3.1nm)/AZO(10nm)/AgCuPt(5.0nm)/AZO(10nm)/TiN(2.0nm)/TiO2(8.6nm)/ZnSnOx(48.7nm)/AZO(10nm)/AgCu(5.0nm)/AZO(10nm)/ZnSnOx(56.7nm)/TiO2(17.4nm)/AZO(5nm)/AgCuPt(15.0nm)/AZO(5nm)/TiO2(16.9nm)/ZnSnOx(23.9nm)/SiN(5.0nm);
实施例4
夹层玻璃:外玻璃板(2.1mm白玻)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.5mm白玻);
透明纳米膜:白玻(2.1mm)/ZnSnOx(34.1nm)/AZO(10nm)/Ag(5.0nm)/AZO(10nm)/SiN(78.1nm)/AZO(10.0nm)/Ag(5.7nm)/AZO(10.0nm)/ZnSnOx(65.8nm)/AZO(10.0nm)/Ag(8.5nm)/AZO(10.0nm)/SiN(61.7nm)/AZO(10.0nm)/Ag(15.0nm)/AZO(10.0nm)/SiN(46nm);
实施例5
夹层玻璃:外玻璃板(2.1mm白玻)/PVB(0.76mm)/PET(0.05mm)/透明纳米膜/PVB(0.38mm)/内玻璃板(0.5mm白玻);
透明纳米膜:PET(0.05mm)/ZnSnOx(34.1nm)/AZO(10nm)/Ag(5.0nm)/AZO(10nm)/SiN(78.1nm)/AZO(10.0nm)/Ag(5.7nm)/AZO(10.0nm)/ZnSnOx(65.8nm)/AZO(10.0nm)/Ag(8.5nm)/AZO(10.0nm)/SiN(61.7nm)/AZO(10.0nm)/Ag(15.0nm)/AZO(10.0nm)/SiN(46nm);
对比例1
夹层玻璃:外玻璃板(2.1mm白玻)/PVB(0.76mm)/内玻璃板(2.1mm白玻);
无透明纳米膜;
实施例1~5和对比例1的抬头显示系统将投影光源产生的P偏振光以45°~72°为入射角进行投影,所述抬头显示系统中未增设滤光元件和/或滤色处理算法,目视观察HUD图像是否清晰且无重影;同时,每间隔1°记录设置有透明纳米膜的夹层玻璃对P偏振光的反射率,获得Rp(60°)和Rmax/Rmin,将结果计入表1中。
表1:实施例1~5和对比例1的抬头显示图像质量
Figure PCTCN2022086752-appb-000010
从表1中可以看出,未设置所述透明纳米膜的对比例1无法实现抬头显示功能,设置有所述透明纳米膜的实施例1~5能够实现抬头显示功能,使抬头显示(HUD)图像清晰且无目视重影,具有良好的显示效果;并且,实施例1~5具有Rmax/Rmin=1.4~1.6,能够更好地实现HUD图像尽可能色彩中性的显示、满足更大的视场角(FOV)要求以及实现HUD图像整体亮度均匀性等。
实施例6~10和对比例2
本发明通过调整外玻璃板和内玻璃板的折射率n、厚度,准备外玻璃板、内玻璃板以及至少一片中间粘结层,按照汽车玻璃生产工艺获得实施例6-10和对比例2。
实施例6
夹层玻璃:外玻璃板(2.1mm白玻、n=1.52)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻、n=1.47);
透明纳米膜:外玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
实施例7
夹层玻璃:外玻璃板(2.1mm白玻、n=1.47)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻、n=1.47);
透明纳米膜:外玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
实施例8
夹层玻璃:外玻璃板(2.1mm白玻、n=1.47)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻、n=1.52);
透明纳米膜:外玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
实施例9
夹层玻璃:外玻璃板(2.1mm白玻、n=1.52)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻、n=1.40);
透明纳米膜:外玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
实施例10
夹层玻璃:外玻璃板(2.1mm白玻、n=1.52)/PVB(0.76mm)/透明纳米膜/内玻璃板(0.7mm白玻、n=1.47);
透明纳米膜:内玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(8.2nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(8.0nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(15.5nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
对比例2
夹层玻璃:外玻璃板(2.1mm白玻、n=1.52)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻、n=1.52);
透明纳米膜:外玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
实施例6~10和对比例2的抬头显示系统将投影光源产生的P偏振光以45°~72°为入射角进行投影,所述抬头显示系统中未增设滤光元件和/或滤色处理算法,目视观察HUD图 像是否清晰且无重影;同时,每间隔1°记录设置有透明纳米膜的夹层玻璃对P偏振光的反射率,获得Rp(60°)和Rmax/Rmin,以及计算设置有透明纳米膜的夹层玻璃的可见光透过率(TL),将结果计入表2中。
表2:实施例6~10和对比例2的抬头显示图像质量
Figure PCTCN2022086752-appb-000011
从表2中可以看出,设置所述透明纳米膜的实施例6~10和对比例2均能够实现抬头显示功能,使抬头显示(HUD)图像清晰且无目视重影,具有良好的显示效果;与对比例2相比,选用折射率n=1.35~1.49的外玻璃板和/或内玻璃板,能够使夹层玻璃在保证可见光透过率≥70%的同时,提高P偏振光反射率和降低所述第四表面的可见光反射率,使设置有所述透明纳米膜的实施例6~10具有Rmax/Rmin=1.3~1.4,更好实现HUD图像尽可能色彩中性的显示、满足更大的视场角(FOV)要求以及实现HUD图像整体亮度均匀性等;并且,实施例10的三个银层的厚度之和大于30nm,实施例10的可见光透过率TL仍然大于70%,满足了标准GB9656的要求,还同时显著提高了Rp(60°)。
实施例11~15和对比例3
本发明通过设计透明纳米膜的膜系结构和调整入射到第四表面上的P偏振光的T1/T2的值获得实施例11-15和对比例3。
夹层玻璃:外玻璃板(2.1mm白玻、n=1.52)/透明纳米膜/PVB(0.76mm)/内玻璃板(0.7mm白玻、n=1.47);
透明纳米膜:外玻璃板/ZnSnOx(37.3nm)/AZO(10nm)/Ag(6.7nm)/AZO(10nm)/ZnSnOx(51.3nm)/AZO(10nm)/Ag(6.8nm)/AZO(10nm)/ZnSnOx(45nm)/AZO(10nm)/Ag(14.4nm)/AZO(10nm)/ZnSnOx(24nm)/SiN(5nm);
测量计算获得Rmax/Rmin=1.4;
实施例11:入射P偏振光的T1/T2=0.8;
实施例12:入射P偏振光的T1/T2=0.7;
实施例13:入射P偏振光的T1/T2=0.6;
实施例14:入射P偏振光的T1/T2=0.5;
实施例15:入射P偏振光的T1/T2=0.4;
对比例3:入射P偏振光为投影系统产生的白光,不做滤光或滤色处理;
实施例11~15和对比例3的抬头显示系统将投影系统产生的P偏振光以50°、55°、60°、65°、70°为入射角进行投影,从与入射角对应的反射角的方向观察呈现的目标图像,以目标图像为白色光斑为标准进行判断抬头显示图像是否偏红或偏黄,所述白色光斑的RGB值为(255,255,255),将观察结果计入表3。
表3:实施例11~15和对比例3的抬头显示图像质量
Figure PCTCN2022086752-appb-000012
从表3中可以看出,具有所述透明纳米膜的的夹层玻璃的R1/R2为1.16-1.33,对比例3采用不做滤光或滤色处理的投影光源产生的白光以50°、55°、60°、65°、70°入射时均会使目标图像呈现微偏黄或微偏红黄现象,虽然不会显著影响目视观察,但实施例11~15采用的T1/T2=0.4-0.8的入射P偏振光能够使目标图像为标准白色光斑,不会出现偏红偏黄现象,能够获得更高质量的抬头显示图像。
以上内容对本发明所述的抬头显示系统进行了具体描述,但是本发明不受以上描述的具体实施方式内容的局限,所以凡依据本发明的技术要点进行的任何改进、等同修改和替换等,均属于本发明保护的范围。

Claims (15)

  1. 一种抬头显示系统,其特征在于:包括投影光源、夹层玻璃和透明纳米膜,所述夹层玻璃包括外玻璃板、内玻璃板以及夹在外玻璃板和内玻璃板之间的中间粘结层,所述外玻璃板具有第一表面和第二表面,所述内玻璃板具有第三表面和第四表面,所述透明纳米膜设置在所述第二表面和所述第三表面之间,所述透明纳米膜包括至少两个金属层;所述投影光源用于产生P偏振光,所述P偏振光入射到所述第四表面上,所述P偏振光的入射角度为45°~72°,所述透明纳米膜能够反射至少部分入射的所述P偏振光;
    所述透明纳米膜与所述第四表面之间的距离小于或等于1.86mm,设置有所述透明纳米膜的夹层玻璃对所述P偏振光的反射率大于或等于6%,设置有所述透明纳米膜的夹层玻璃在45°~72°的入射角度内对所述P偏振光具有最大反射率Rmax和最小反射率Rmin,Rmax/Rmin=1.0~2.0。
  2. 根据权利要求1所述的抬头显示系统,其特征在于:所述中间粘结层具有楔形截面轮廓,所述楔形截面轮廓的楔角为0.01~0.18mrad。
  3. 根据权利要求1所述的抬头显示系统,其特征在于:所述投影光源产生100%的P偏振光。
  4. 根据权利要求1所述的抬头显示系统,其特征在于:至少一个金属层的厚度为4nm~8nm。
  5. 根据权利要求1所述的抬头显示系统,其特征在于:所述透明纳米膜包括至少三个金属层,至少三个金属层的总厚度大于30nm。
  6. 根据权利要求1所述的抬头显示系统,其特征在于:至少一个金属层的厚度大于或等于12nm。
  7. 根据权利要求1所述的抬头显示系统,其特征在于:所述透明纳米膜沉积在热塑性聚酯层的至少一个表面上,所述热塑性聚酯层设置在所述外玻璃板和所述内玻璃板之间,所述热塑性聚酯层的材料为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯。
  8. 根据权利要求1所述的抬头显示系统,其特征在于:所述外玻璃板和/或所述中间粘结层能够吸收P偏振光,使设置有所述透明纳米膜的夹层玻璃对所述P偏振光的吸收率为8%~30%。
  9. 根据权利要求1所述的抬头显示系统,其特征在于:所述外玻璃板和/或所述内玻璃板选用氟化物玻璃、氧化硅玻璃或硼硅酸盐玻璃。
  10. 根据权利要求1所述的抬头显示系统,其特征在于:所述外玻璃板为厚度大于或等于1.8mm的弯曲玻璃板,所述内玻璃板为厚度小于或等于1.4mm的弯曲玻璃板。
  11. 根据权利要求1所述的抬头显示系统,其特征在于:设置有所述透明纳米膜的夹层玻璃对所述P偏振光的反射率大于或等于10%。
  12. 根据权利要求1所述的抬头显示系统,其特征在于:设置有所述透明纳米膜的夹层玻璃在580nm~680nm波长范围内具有的近红光反射率R1与设置有所述透明纳米膜的夹层玻璃在450nm~550nm波长范围内具有的蓝绿光反射率R2之比R1/R2=1.0~1.7。
  13. 根据权利要求1所述的抬头显示系统,其特征在于:入射到所述第四表面上的P偏振光中的580nm~680nm波长范围内的近红光比例T1与其中450nm~550nm波长范围内的蓝绿光比例T2之比T1/T2=0.1~0.9。
  14. 根据权利要求1所述的抬头显示系统,其特征在于:设置有所述透明纳米膜的夹层 玻璃在580nm~680nm波长范围内具有的近红光反射率R1与设置有所述透明纳米膜的夹层玻璃在450nm~550nm波长范围内具有的蓝绿光反射率R2之比R1/R2=1.01~1.5,入射到所述第四表面上的P偏振光中的580nm~680nm波长范围内的近红光比例T1与其中450nm~550nm波长范围内的蓝绿光比例T2之比T1/T2=0.4~0.8。
  15. 根据权利要求1所述的抬头显示系统,其特征在于:在所述抬头显示系统中增设滤光元件和/或滤色处理算法,所述滤光元件位于所述P偏振光的光路上,所述滤光元件对所述P偏振光的透过率大于或等于80%,所述抬头显示系统还包括投影控制系统,所述投影控制系统用于控制所述投影光源产生P偏振光,所述投影控制系统中增设有滤色处理算法。
PCT/CN2022/086752 2021-04-14 2022-04-14 一种抬头显示系统 WO2022218367A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237001051A KR20230020542A (ko) 2021-04-14 2022-04-14 헤드업 디스플레이 시스템
JP2023520346A JP7564355B2 (ja) 2021-04-14 2022-04-14 ヘッドアップディスプレイシステム
EP22787589.5A EP4206792A4 (en) 2021-04-14 2022-04-14 HEAD-UP DISPLAY SYSTEM
US18/320,388 US12061337B2 (en) 2021-04-14 2023-05-19 Head-up display system provided with transparent nano film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110397936.2 2021-04-14
CN202110397936.2A CN113238378B (zh) 2021-04-14 2021-04-14 一种抬头显示系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/320,388 Continuation US12061337B2 (en) 2021-04-14 2023-05-19 Head-up display system provided with transparent nano film

Publications (1)

Publication Number Publication Date
WO2022218367A1 true WO2022218367A1 (zh) 2022-10-20

Family

ID=77128185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086752 WO2022218367A1 (zh) 2021-04-14 2022-04-14 一种抬头显示系统

Country Status (6)

Country Link
US (1) US12061337B2 (zh)
EP (1) EP4206792A4 (zh)
JP (1) JP7564355B2 (zh)
KR (1) KR20230020542A (zh)
CN (1) CN113238378B (zh)
WO (1) WO2022218367A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238378B (zh) * 2021-04-14 2022-07-19 福耀玻璃工业集团股份有限公司 一种抬头显示系统
KR20240027796A (ko) * 2021-11-04 2024-03-04 푸야오 글라스 인더스트리 그룹 컴퍼니 리미티드 전면 바람막이 유리와 차량
CN114019689B (zh) * 2021-11-30 2022-08-09 福耀玻璃工业集团股份有限公司 抬头显示系统
CN114379470B (zh) * 2022-01-17 2023-10-20 福耀玻璃工业集团股份有限公司 车载系统
CN114349371B (zh) * 2022-01-17 2022-09-09 福耀玻璃工业集团股份有限公司 夹层玻璃及抬头显示系统
CN117183689A (zh) * 2022-05-31 2023-12-08 华为技术有限公司 一种风挡玻璃、显示系统及交通工具

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191309656A (en) 1913-04-24 1914-02-19 Christian Albert Jensen Improvements in and relating to Spring Operated Clips.
CN104267499A (zh) * 2014-10-14 2015-01-07 福耀玻璃工业集团股份有限公司 一种抬头显示系统
DE102014220189A1 (de) 2014-10-06 2016-04-07 Continental Automotive Gmbh Head-Up-Display und Verfahren zur Erzeugung eines virtuellen Bilds mittels eines Head-Up-Displays
WO2016056617A1 (ja) * 2014-10-10 2016-04-14 日本化薬株式会社 光反射フィルム、ならびにこれを用いた光制御フィルム、光学フィルム、機能性ガラスおよびヘッドアップディスプレイ
CN105793033A (zh) 2013-12-12 2016-07-20 法国圣戈班玻璃厂 用于在垂直和水平方向上具有在一些区段中非线性连续楔形嵌件的复合玻璃板的热塑性薄膜
CN106094072A (zh) * 2016-07-29 2016-11-09 福耀玻璃工业集团股份有限公司 一种抬头显示夹层玻璃及抬头显示系统
CN107024771A (zh) * 2016-02-02 2017-08-08 扬升照明股份有限公司 显示系统以及半透射光学板
JP2019066773A (ja) * 2017-10-04 2019-04-25 大日本印刷株式会社 反射表示板、映像表示装置、車両
CN110520782A (zh) 2018-03-22 2019-11-29 法国圣戈班玻璃厂 具有p偏振辐射分量的平视显示器(HUD)的投影装置
CN110709359A (zh) 2018-01-30 2020-01-17 法国圣戈班玻璃厂 在通过浮法制造玻璃的装置的纵向中具有楔形的玻璃的制造
CN111417518A (zh) 2018-11-05 2020-07-14 法国圣戈班玻璃厂 具有楔形横截面的复合玻璃板
CN111433023A (zh) 2018-11-09 2020-07-17 法国圣戈班玻璃厂 用于利用p偏振辐射的平视显示器(HUD)的投影装置
CN111433022A (zh) 2018-11-09 2020-07-17 法国圣戈班玻璃厂 用于利用p偏振辐射的平视显示器(HUD)的投影装置
CN111918852A (zh) * 2018-03-29 2020-11-10 积水化学工业株式会社 夹层玻璃、平视显示系统和平视显示系统的制造方法
CN112513716A (zh) * 2019-07-05 2021-03-16 法国圣戈班玻璃厂 用于平视显示器(HUD)的具有p偏振辐射的投影装置
CN113238377A (zh) * 2021-04-14 2021-08-10 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN113238378A (zh) * 2021-04-14 2021-08-10 福耀玻璃工业集团股份有限公司 一种抬头显示系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227687A3 (en) * 2000-12-30 2005-05-25 Texas Instruments Incorporated System for reducing color separation artifacts in sequential color displays
US7864431B2 (en) 2008-06-04 2011-01-04 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Windshield for use with head-up display and/or method of making the same
JP5306872B2 (ja) 2009-03-26 2013-10-02 日東光学株式会社 光学部品および光学機器
FR2993677B1 (fr) 2012-07-18 2015-03-27 Valeo Etudes Electroniques Dispositif et procede d'emission d'un faisceau lumineux destine a former une image, systeme de projection et afficheur utilisant ledit dispositif
JP2016153281A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 ウインドシールドガラスおよびヘッドアップディスプレイシステム
CN107531566A (zh) 2015-05-11 2018-01-02 旭硝子株式会社 车辆用的隔热玻璃单元及其制造方法
EA034780B1 (ru) 2015-06-11 2020-03-19 Сэн-Гобэн Гласс Франс Проекционная система для дисплея на лобовом стекле (длс) в системе дополненной реальности
US10656414B2 (en) * 2015-06-11 2020-05-19 Saint-Gobain Glass France Projection arrangement for a head-up display (HUD)
CN104950447A (zh) * 2015-07-13 2015-09-30 京东方科技集团股份有限公司 一种平视显示装置和交通工具
CN106082712B (zh) * 2016-06-07 2019-02-22 福耀玻璃工业集团股份有限公司 一种抬头显示前挡风玻璃
JP2019525236A (ja) 2016-07-18 2019-09-05 サン−ゴバン グラス フランス 観察者に画像情報を表示するためのヘッドアップディスプレイシステム
CN205899060U (zh) * 2016-07-29 2017-01-18 福耀玻璃工业集团股份有限公司 一种抬头显示夹层玻璃及抬头显示系统
CN106019424B (zh) * 2016-07-29 2017-11-03 福耀玻璃工业集团股份有限公司 能够适应高入射角的抬头显示夹层玻璃及其系统
WO2018084076A1 (ja) * 2016-11-04 2018-05-11 富士フイルム株式会社 ウインドシールドガラス、ヘッドアップディスプレイシステム、およびハーフミラーフィルム
CN106646874B (zh) * 2016-11-15 2019-05-14 福耀玻璃工业集团股份有限公司 一种能够隔热的抬头显示夹层玻璃
CN107045203B (zh) * 2017-03-27 2019-08-20 福耀玻璃工业集团股份有限公司 一种抬头显示系统
JP2018173437A (ja) 2017-03-31 2018-11-08 日本精機株式会社 ヘッドアップディスプレイ
CN207148424U (zh) * 2017-06-06 2018-03-27 孝感市青谷信息科技有限公司 一种抬头显示装置
US10788667B2 (en) * 2017-08-31 2020-09-29 Vitro Flat Glass Llc Heads-up display and coating therefor
JP6880244B2 (ja) * 2018-01-25 2021-06-02 富士フイルム株式会社 投映像表示用部材、ウインドシールドガラスおよびヘッドアップディスプレイシステム
PL3768509T3 (pl) 2018-03-22 2022-05-02 Saint-Gobain Glass France Szyba wielowarstwowa do wyświetlacza head-up z powłoką elektroprzewodzącą oraz powłoką antyrefleksyjną
DE202020107202U1 (de) 2020-12-14 2021-01-15 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Nachrüstbares Head-up-Display-system

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191309656A (en) 1913-04-24 1914-02-19 Christian Albert Jensen Improvements in and relating to Spring Operated Clips.
CN105793033A (zh) 2013-12-12 2016-07-20 法国圣戈班玻璃厂 用于在垂直和水平方向上具有在一些区段中非线性连续楔形嵌件的复合玻璃板的热塑性薄膜
DE102014220189A1 (de) 2014-10-06 2016-04-07 Continental Automotive Gmbh Head-Up-Display und Verfahren zur Erzeugung eines virtuellen Bilds mittels eines Head-Up-Displays
WO2016056617A1 (ja) * 2014-10-10 2016-04-14 日本化薬株式会社 光反射フィルム、ならびにこれを用いた光制御フィルム、光学フィルム、機能性ガラスおよびヘッドアップディスプレイ
CN104267499A (zh) * 2014-10-14 2015-01-07 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN107024771A (zh) * 2016-02-02 2017-08-08 扬升照明股份有限公司 显示系统以及半透射光学板
CN106094072A (zh) * 2016-07-29 2016-11-09 福耀玻璃工业集团股份有限公司 一种抬头显示夹层玻璃及抬头显示系统
JP2019066773A (ja) * 2017-10-04 2019-04-25 大日本印刷株式会社 反射表示板、映像表示装置、車両
CN110709359A (zh) 2018-01-30 2020-01-17 法国圣戈班玻璃厂 在通过浮法制造玻璃的装置的纵向中具有楔形的玻璃的制造
CN110520782A (zh) 2018-03-22 2019-11-29 法国圣戈班玻璃厂 具有p偏振辐射分量的平视显示器(HUD)的投影装置
CN111918852A (zh) * 2018-03-29 2020-11-10 积水化学工业株式会社 夹层玻璃、平视显示系统和平视显示系统的制造方法
CN111417518A (zh) 2018-11-05 2020-07-14 法国圣戈班玻璃厂 具有楔形横截面的复合玻璃板
CN111433023A (zh) 2018-11-09 2020-07-17 法国圣戈班玻璃厂 用于利用p偏振辐射的平视显示器(HUD)的投影装置
CN111433022A (zh) 2018-11-09 2020-07-17 法国圣戈班玻璃厂 用于利用p偏振辐射的平视显示器(HUD)的投影装置
CN112513716A (zh) * 2019-07-05 2021-03-16 法国圣戈班玻璃厂 用于平视显示器(HUD)的具有p偏振辐射的投影装置
CN113238377A (zh) * 2021-04-14 2021-08-10 福耀玻璃工业集团股份有限公司 一种抬头显示系统
CN113238378A (zh) * 2021-04-14 2021-08-10 福耀玻璃工业集团股份有限公司 一种抬头显示系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206792A4

Also Published As

Publication number Publication date
EP4206792A4 (en) 2024-05-08
US20230288700A1 (en) 2023-09-14
JP2023546811A (ja) 2023-11-08
JP7564355B2 (ja) 2024-10-08
KR20230020542A (ko) 2023-02-10
CN113238378B (zh) 2022-07-19
CN113238378A (zh) 2021-08-10
EP4206792A1 (en) 2023-07-05
US12061337B2 (en) 2024-08-13

Similar Documents

Publication Publication Date Title
WO2022205916A1 (zh) 一种抬头显示系统
WO2022218367A1 (zh) 一种抬头显示系统
WO2022207004A1 (zh) 抬头显示玻璃和抬头显示系统
KR102589372B1 (ko) p-편광 방사선을 갖는 헤드업 디스플레이(HUD)를 위한 프로젝션 장치
ES2906116T3 (es) Luna laminada compuesta para una pantalla de visualización frontal con revestimiento conductor de la electricidad y revestimiento antirreflectante
JP6302140B2 (ja) ヘッドアップディスプレイシステム
CN113238377B (zh) 一种抬头显示系统
KR20200121866A (ko) P-편광 광선 부분들을 갖는 헤드-업 디스플레이(hud)를 위한 프로젝션 어레인지먼트
JP7192091B2 (ja) サイドペインを備える乗物用投影アセンブリ
EP4382990A1 (en) Head-up display glass and head-up display system thereof
CN204143067U (zh) 一种抬头显示系统
WO2024078605A1 (zh) 车窗玻璃及其制备方法、车辆
WO2024078606A1 (zh) 车窗玻璃及其制备方法、车辆
WO2023155316A1 (zh) 抬头显示玻璃及抬头显示系统
CN112339357B (zh) 复合膜层及包含其的窗口、显示系统和汽车
CN221351860U (zh) 反射件、抬头显示系统和交通工具
Krasnov et al. Mitigating distractive reflections in automotive glazing
CN116868094A (zh) 包括复合玻璃板的投影装置
CN117289468A (zh) 抬头显示玻璃及抬头显示系统
CN116438149A (zh) 包括复合玻璃板的投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237001051

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023520346

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022787589

Country of ref document: EP

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE