WO2023179071A1 - 一种高纯度碳酸乙烯酯氟代衍生物的制备方法 - Google Patents

一种高纯度碳酸乙烯酯氟代衍生物的制备方法 Download PDF

Info

Publication number
WO2023179071A1
WO2023179071A1 PCT/CN2022/134653 CN2022134653W WO2023179071A1 WO 2023179071 A1 WO2023179071 A1 WO 2023179071A1 CN 2022134653 W CN2022134653 W CN 2022134653W WO 2023179071 A1 WO2023179071 A1 WO 2023179071A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
bisfluoroethylene
reaction
purity
temperature
Prior art date
Application number
PCT/CN2022/134653
Other languages
English (en)
French (fr)
Inventor
谢家伟
谢文健
陈志强
陈新滋
Original Assignee
广州理文科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州理文科技有限公司 filed Critical 广州理文科技有限公司
Publication of WO2023179071A1 publication Critical patent/WO2023179071A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/42Halogen atoms or nitro radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing high-purity ethylene carbonate fluorinated derivatives.
  • Fluoroethylene carbonate is an important electrolyte additive for lithium-ion batteries. While inhibiting the decomposition of the electrolyte, it significantly improves the safety and stability of lithium batteries, such as cycle charging efficiency, high and low temperature resistance and stability.
  • 4,5-difluoroethylene carbonate Compared with fluoroethylene carbonate, 4,5-difluoroethylene carbonate has a higher dielectric constant, higher oxidation resistance and structural symmetry stability, and has outstanding advantages in improving silicon graphite anodes, so 4,5-Difluoroethylene carbonate is mainly used in the lithium ion electrolyte of lithium batteries.
  • Bisfluoroethylene carbonate can effectively improve the high and low temperature resistance of lithium ion electrolyte and improve the resistance of lithium ion electrolyte. combustion performance.
  • fluorinated ethylene carbonate In the existing technology, the production and preparation methods of fluorinated ethylene carbonate can be classified into the following categories: (1) electrochemical fluorination method, which is currently limited to the laboratory development stage; (2) addition method, which has poor selectivity. Disadvantages such as high cost and difficult to control the reaction; (3) Fluorine source replacement fluorination, that is, replacing hydrogen atoms or chlorine atoms with fluorine atoms.
  • fluorine gas is used as a fluorine source to prepare many side reactions, and the product The purity is difficult to meet the standard; the acid value content of the product obtained by using hydrogen fluoride as a fluorine source cannot meet the requirements of electronic grade products, which requires subsequent processing and increases production costs.
  • hydrogen fluoride is highly toxic and corrosive and requires high equipment and personnel.
  • Fluorine silicone is used. Acid or organic amine hydrofluorates as fluorine sources are limited to laboratory research and development.
  • Chinese patent (CN 113896705 A) reports a synthesis method for co-producing 1-fluoro-2-chloroethylene carbonate and 1,2-difluoroethylene carbonate, which reports the use of a solvent-free method during fluorination. Due to the low solubility of metal fluoride, this method is difficult to stir without solvent and the reaction is incomplete. It requires a large amount of 4,5-bischloroethylene carbonate as both solvent and raw material, which leads to incomplete fluorination. The product content increases.
  • U.S. Patent US 2011048053 introduces the use of acetonitrile as a solvent to synthesize difluoroethylene carbonate using KF and dichloroethylene carbonate.
  • the reaction time of this method is as long as 18 hours, the conversion rate is low, the effect is not ideal, and it is not suitable for Large-scale industrial production.
  • the object of the invention is to provide a method for preparing high-purity fluorinated ethylene carbonate derivatives, using chloroethylene carbonate or 4,5-bischloroethylene carbonate as raw materials, fluoride as the fluorinating agent, and alcohol
  • Protic and carboxylic acid-based protic solvents overcome technical biases, improve the solubility of metal fluorides, better dissociate F ions, and improve fluorination efficiency.
  • the reaction conditions are mild, the product yield is high, the purity is high, and the raw material cost is low. , the process is simple and easy to realize industrial production.
  • a method for preparing high-purity fluorinated derivatives of ethylene carbonate using chloroethylene carbonate or 4,5-bischloroethylene carbonate as raw materials, fluoride as the fluorinating agent, and alcohol or alcohol with a boiling point of ⁇ 150°C.
  • the fluorination reaction is carried out in a carboxylic acid protic solvent, the reaction temperature is controlled at 30-70°C, and the reaction time is 2-6 hours; after the reaction, the crude product is purified to obtain high-purity fluoroethylene carbonate or 4,5-bisfluorocarbonate.
  • Vinyl ester in which fluoride is represented by MF, and M in MF represents metal ion or NH 4 + .
  • the alcohol is selected from one or more of methanol, ethanol, propanol, isopropanol, and butanol
  • the carboxylic acid is selected from one or more of formic acid, acetic acid, and propionic acid.
  • the molar ratio of the protic solvent to the chlorinated ethylene carbonate is 1:2-10; when synthesizing 4,5-bisfluoroethylene carbonate, the protic solvent dosage is to the molar ratio of The molar ratio of 4,5-bischloroethylene carbonate is 1:5 ⁇ 20.
  • the fluoride is one or more of LiF, NaF, KF, RbF, CsF, CaF 2 , ZnF 2 , NH 4 F or SbF 3.
  • the amount of fluorinating agent is chlorinated
  • the molar amount of ethylene carbonate is 1.5 to 3 times; when synthesizing 4,5-bisfluoroethylene carbonate, the amount of fluorinating agent used is 3 to 6 times the molar amount of 4,5-bischloroethylene carbonate.
  • the specific steps for crude product purification are as follows: use an organic solvent to extract the crude fluoroethylene carbonate or 4,5-bisfluoroethylene carbonate, and the organic solvent is selected from ethyl acetate, methyl acetate, ethyl formate, and formic acid.
  • the organic solvent is selected from ethyl acetate, methyl acetate, ethyl formate, and formic acid.
  • One or more of butyl ester, butyl acetate, acetonitrile or dimethyl carbonate, the molar amount of organic solvent is 2 to 50% of the crude fluoroethylene carbonate or 4,5-bisfluoroethylene carbonate.
  • the protic solvent is removed by vacuum distillation at a distillation temperature of 30 to 100°C and a pressure of 5 to 20 mmHg.
  • the temperature is lowered from 30 to 35°C, with a cooling rate of 0.5 to 2°C/h, and the temperature is lowered to 0°C; when the crystal is heated, the temperature is raised at a rate of 0.5 to 2°C/h with a certain interval.
  • the sweat is discharged for a period of time for detection until the content of fluoroethylene carbonate or 4,5-bisfluoroethylene carbonate in the sweat is ⁇ 99.9wt%.
  • the purification method further includes distilling the concentrated extract, and then using a cooling crystallization method to purify the fraction.
  • MF has good solubility in protic solvents, but it is generally believed that chloroethylene carbonate, 4,5-bischloroethylene carbonate, fluoroethylene carbonate and 4,5-bisfluoroethylene carbonate will Side reactions occur with protic solvents, so no one chooses protic solvents as reaction solvents.
  • the present invention overcomes technical prejudice and uses alcohols and carboxylic acid protic solvents to improve the solubility of metal fluorides and better dissociate F ions. , to improve the fluorination efficiency; the protic solvent selected in the present invention can simultaneously serve as a solvent and a speed-increasing agent;
  • the alcohol or carboxylic acid protic solvent of the present invention is cheap and easy to obtain, has low industrial production cost, and can be recycled;
  • the present invention selects alcohol or carboxylic acid protic solvent, and does not need to add additional catalysts such as crown ether, polyethylene glycol and ionic liquid, so that no other substances are introduced, which can reduce the difficulty of purification and at the same time improve the efficiency of fluorinated ethylene carbonate or ethylene carbonate. Quality and performance of 4,5-bisfluoroethylene carbonate;
  • the present invention uses chloroethylene carbonate or 4,5-bischloroethylene carbonate as the raw material, MF as the reaction raw material, and alcohols and carboxylic acid protic solvents as the reaction solvent.
  • the entire process does not use or produce HF. Corrosive and highly toxic gas, the reaction conditions are milder, the product yield is higher, the cost of raw materials is low, the process is simple, and it is suitable for industrial production.
  • the present invention uses chloroethylene carbonate or 4,5-bischloroethylene carbonate as raw materials, fluoride as the fluorinating agent, and uses alcohols and carboxylic acid protic solvents to overcome technical prejudices and improve the metal fluoride
  • the solubility can better dissociate F ions and improve the fluorination efficiency.
  • the reaction conditions are mild, the product yield is high, the purity is high, the cost of raw materials is low, it is green and environmentally friendly, the process is simple, and it is easy to realize industrial production.
  • the gas chromatograph When the temperature was raised to 30°C, the gas chromatograph showed that the content of the discharged liquid had reached 99.76%, and it was determined that the content of the liquid in the container had reached 99.76%. The product is close to qualified. Increase the temperature to 50°C and quickly melt the remaining solid to obtain 90.58g of high-purity fluorinated ethylene carbonate. Gas chromatography shows that the fluorinated ethylene carbonate content is 99.92%, and the comprehensive yield is 85.45%. The unsolidified liquid and sweat liquid collected in the process are returned to the distillation, and then crystallized and purified, and the cycle repeats.
  • the gas chromatograph When the temperature was raised to 30°C, the gas chromatograph showed that the content of the discharged liquid had reached 99.82%, and it was determined that the content of the liquid in the container had reached 99.82%. The product is close to qualified. Increase the temperature to 50°C and quickly melt the remaining solid to obtain 93.62g of high-purity fluorinated ethylene carbonate. Gas chromatography shows that the fluorinated ethylene carbonate content is 99.94%, and the comprehensive yield is 88.32%. The unsolidified liquid and sweat liquid collected in the process are returned to the distillation, and then crystallized and purified, and the cycle repeats.
  • the crystal begins to slowly heat up, and the temperature is increased by 1°C every 1 hour.
  • the melted liquid during the sweating process is discharged and collected, and each is detected.
  • the gas chromatograph shows that the content of the discharged liquid has reached 99.81%, and it is determined that the content of the liquid in the container has reached 99.81%.
  • the product is close to qualified.
  • the gas chromatography shows that the 4,5-bisfluoroethylene carbonate content is 99.95%.
  • the comprehensive yield is 82.83%.
  • the unsolidified liquid and sweat liquid collected in the process are returned to the distillation, and then crystallized and purified, and the cycle repeats.
  • Liquid the main content of the product detected by gas chromatography is 94.06%.
  • Set the initial cooling point to 30°C, turn on the heat exchange medium circulation switch, and lower the temperature by 1°C every 1 hour.
  • crystallization begins to appear on the tube wall.
  • Most of the crystals have precipitated and will stay at this temperature.
  • the crystal begins to slowly heat up, and the temperature is increased by 1°C every 1 hour.
  • the melted liquid during the sweating process is discharged and collected, and each is detected.
  • the gas chromatograph shows that the content of the discharged liquid has reached 99.78%, and it is determined that the content of the liquid in the container has reached 99.78%.
  • the product is close to qualified.
  • the gas chromatography shows that the 4,5-bisfluoroethylene carbonate content is 99.94%.
  • the comprehensive yield is 80.59%.
  • the unsolidified liquid and sweat liquid collected in the process are returned to the distillation, and then crystallized and purified, and the cycle repeats.
  • the crystal begins to slowly heat up, and the temperature is increased by 1°C every 1 hour.
  • the melted liquid during the sweating process is discharged and collected, and each is detected.
  • the gas chromatograph shows that the content of the discharged liquid has reached 99.81%, and it is determined that the content of the liquid in the container has reached 99.81%.
  • the product is close to qualified.
  • the gas chromatography shows that the 4,5-bisfluoroethylene carbonate content is 99.93%.
  • the comprehensive yield is 58.38%.
  • the unsolidified liquid and sweat liquid collected in the process are returned to the distillation, and then crystallized and purified, and the cycle repeats.
  • the gas chromatograph shows that the content of the discharged liquid has reached 99.80%, and it is determined that the content of the liquid in the container has reached 99.80%.
  • the product is close to qualified.
  • the gas chromatography shows that the 4,5-bisfluoroethylene carbonate content is 99.95%.
  • the comprehensive yield is 49.76%.
  • the unsolidified liquid and sweat liquid collected in the process are returned to the distillation, and then crystallized and purified, and the cycle repeats.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种高纯度碳酸乙烯酯氟代衍生物的制备方法,以氯代碳酸乙烯酯或4,5-双氯代碳酸乙烯酯为原料,氟化物为氟化剂,在沸点≤150 ℃的醇或羧酸质子溶剂中进行氟化反应,反应温度控制在30~70 ℃,反应时间为2~6 h;反应后,粗品经过提纯,得到高纯度氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯,采用醇类和羧酸类质子溶剂,上述方法克服了技术偏见,提升金属氟化物的溶解度,更好的使F离子解离出来,提升氟化效率,反应条件温和,产品产率高、纯度高,原料成本低廉,绿色环保,工艺简单,容易实现工业化生产。

Description

一种高纯度碳酸乙烯酯氟代衍生物的制备方法 技术领域:
本发明涉及一种高纯度碳酸乙烯酯氟代衍生物的制备方法。
背景技术:
氟代碳酸乙烯酯是一种重要的锂离子电池用电解液添加剂。其在抑制电解液的分解的同时,显著提高锂电池的安全稳定性能,如:循环充电效率、耐高低温性能和稳定性等。
4,5-二氟代碳酸乙烯酯相比氟代碳酸乙烯酯具有更高的介电常数,更高的抗氧化性及结构对称的稳定性,在改善硅石墨负极方面有突出的优势,所以4,5-二氟代碳酸乙烯酯主要应用于锂电池的锂离子电解液中,双氟代碳酸乙烯酯可有效改善锂离子电解液的耐高低温性能,并能提高锂离子电解液的阻燃性能。
现有技术中,关于氟代碳酸乙烯酯的生产制备方法可归为以下几种:(1)电化学氟化法,目前仅限于实验室开发阶段;(2)加成法,存在选择性差,成本高,反应不易控制等缺点;(3)氟源置换氟化,即用氟原子置换氢原子或氯原子,现有氟源置换专利技术中:氟气作为氟源制备副反应较多,产品纯度难以达标;氟化氢作为氟源所得产品中酸值含量不能满足电子级产品要求,需要后续处理,增加生产成本,并且氟化氢由于剧毒和强腐蚀性,对设备和人员要求较高,采用氟硅酸或有机胺氢氟酸盐作为氟源仅限实验室研发。
现有技术中,关于4,5-二氟代碳酸乙烯酯的制备方法主要有以下几种:(1)以碳酸亚乙烯酯为原料,以氟气为氟源加成反应制得双氟代碳酸乙烯酯,该法的缺陷在于:原料成本高,设备易腐蚀,设备要求高,不适合工业化生产;(2)单质氟与氟代碳酸乙烯酯反应制备4,5-二氟代碳酸乙烯酯,该方法氟代过程很难控制氟代位置以及氟代数量,从而导致该方法制备 的反应液为混合物。
中国专利(CN 103772345 B)报道了以碱金属氟化物MF为氟化剂在有机溶剂存在的条件下与氯代碳酸乙烯酯发生反应,专利中选用的有机溶剂为非质子有机溶剂,并且用到离子液体作为催化剂,但该反应有明显的不足之处。首先,离子液体相对而言成本较高;其次,引入的离子液体极难除去,虽说可以回收使用,但回收成本较高,并且实际操作困难,并且回收的离子液体效果并不如以前。
中国专利(CN 105731398 A)研究报道了氯代碳酸乙烯酯在相转移催化剂存在下,如冠醚或聚乙二醇等,以金属氟化物为氟化剂,合成氟代碳酸乙烯酯。该方法的实验原理是通过冠醚和聚乙二醇的特殊性实现相转移催化,更好的释放氟离子,加速氟化进程。但该反应有明显的不足之处。首先,冠醚和聚乙二醇相对而言成本较高,对于工业化生产消耗较大。其次,冠醚和聚乙二醇极难除去,这样会增大其纯化的难度。
中国专利(CN 102060838 A)研究报道了在醚类溶剂中,以碱金属氟化物为氟化剂,但是金属氟化物在醚类溶剂中溶解度较低,致使反应性能较差,要想取得好的反应效率,需要提升反应温度。
中国专利(CN 113896705 A)报道了联产1-氟-2-氯代碳酸乙烯酯和1,2-二氟代碳酸乙烯酯的合成方法,其中报道了在氟化时采用无溶剂的方式,该方法由于金属氟化物溶解度较低,无溶剂的情况下搅拌困难,反应不完全,需要大量的4,5-双氯代碳酸乙烯酯同时为溶剂和原料,进而导致反应会使氟化不完全的产物含量增高。
中国专利(CN 102766130 A)报道了二氯代碳酸乙烯酯在四(二乙胺基)溴化磷的催化下与氟化钠或氟化钾反应,同样存在成本高和催化剂难回收使用的问题。
美国专利US 2011048053介绍了使用乙腈作溶剂利用KF和二氯代碳酸乙烯酯合成二氟代碳酸乙烯酯,该方法反应的时间长达18个小时,转化率低,效果不甚理想,不适合于大规模工业化生产。
发明内容:
本发明的目的是提供一种高纯度碳酸乙烯酯氟代衍生物的制备方法,以氯代碳酸乙烯酯或4,5-双氯代碳酸乙烯酯为原料,氟化物为氟化剂,采用醇类和羧酸类质子溶剂,克服了技术偏见,提升金属氟化物的溶解度,更好的使F离子解离出来,提升氟化效率,反应条件温和,产品产率高、纯度高,原料成本低廉,工艺简单,容易实现工业化生产。
本发明是通过以下技术方案予以实现的:
一种高纯度碳酸乙烯酯氟代衍生物的制备方法,以氯代碳酸乙烯酯或4,5-双氯代碳酸乙烯酯为原料,氟化物为氟化剂,在沸点≤150℃的醇或羧酸质子溶剂中进行氟化反应,反应温度控制在30~70℃,反应时间为2~6h;反应后,粗品经过提纯,得到高纯度氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯,其中氟化物以MF表示,MF中M表示金属离子或NH 4 +
所述醇选自甲醇、乙醇、丙醇、异丙醇、丁醇中的一种或者多种,所述羧酸选自甲酸、乙酸、丙酸中的一种或者多种。
合成氟代碳酸乙烯酯时,所述质子溶剂用量与所述氯代碳酸乙烯酯摩尔比为1:2~10;合成4,5-双氟代碳酸乙烯酯时所述质子溶剂用量与所述4,5-双氯代碳酸乙烯酯摩尔比为1:5~20。
所述氟化物为LiF、NaF、KF、RbF、CsF、CaF 2、ZnF 2、NH 4F或SbF 3中的一种或多种,合成氟代碳酸乙烯酯时氟化剂的用量为氯代碳酸乙烯酯摩尔量的1.5~3倍;合成4,5-双氟代碳 酸乙烯酯时氟化剂的用量为4,5-双氯代碳酸乙烯酯摩尔量的3~6倍。
粗品提纯的具体步骤如下:使用有机溶剂对所述氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯粗品进行提取,有机溶剂选自乙酸乙酯、乙酸甲酯、甲酸乙酯、甲酸丁酯、乙酸丁酯、乙腈或碳酸二甲酯中的一种或者多种,有机溶剂的摩尔用量为所述氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯粗品的2~50倍,过滤、浓缩提取液,再使用静态熔融结晶器对所述浓缩后的氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯提取液进行降温结晶,分离出晶体,微加压后经放料阀排出残液;然后对晶体进行加热,加热熔化结晶器内余下固体,收集得到高纯度氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯成品。
所得粗品在提取步骤之前,先通过减压蒸馏去除所述质子溶剂,蒸馏温度30~100℃,压力为5~20mmHg。
所述降温结晶时从30~35℃开始降温,降温速率为0.5~2℃/h,降温到0℃;对所述晶体进行加热时,以0.5~2℃/h的速度进行升温,间隔一定时间排出汗液进行检测,直至汗液中氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯含量≥99.9wt%。
所述提纯方法还包括对所述浓缩提取液进行精馏,然后采用降温结晶的方法对馏分进行所述提纯处理。
本发明所达到的有益效果:
1、MF在质子溶剂中有很好的溶解度,但一般认为氯代碳酸乙烯酯、4,5-双氯代碳酸乙烯酯、氟代碳酸乙烯酯和4,5-双氟代碳酸乙烯酯会与质子溶剂发生副反应,从而没人选用质子溶剂作为反应溶剂,本发明克服了技术偏见,采用醇类和羧酸类质子溶剂,提升金属氟化物的溶解度,更好的使F离子解离出来,提升氟化效率;本发明选用质子溶剂可以同时起到 作为溶剂与提速剂的作用;
2、本发明醇或羧酸质子溶剂质子溶剂价格便宜,易得,工业化生产成本低廉,可以回收利用;
3、本发明选用醇或羧酸质子溶剂,可以不用另外再加冠醚、聚乙二醇和离子液体等催化剂,从而不会再引入其他物质,可降低提纯难度,同时可提高氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯的品质和性能;
4、本发明选用氯代碳酸乙烯酯或4,5-双氯代碳酸乙烯酯为原料、MF作为反应原料,选用醇类和羧酸类质子溶剂为反应溶剂,整个过程不会使用和产生HF腐蚀性的剧毒气体,反应条件更加温和,产品产率更高,原料成本低廉,工艺简单,适合工业化生产。
总之,本发明以氯代碳酸乙烯酯或4,5-双氯代碳酸乙烯酯为原料,氟化物为氟化剂,采用醇类和羧酸类质子溶剂,克服了技术偏见,提升金属氟化物的溶解度,更好的使F离子解离出来,提升氟化效率,反应条件温和,产品产率高、纯度高,原料成本低廉,绿色环保,工艺简单,容易实现工业化生产。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1 高纯度氟代碳酸乙烯酯的制备
反应如下:
Figure PCTCN2022134653-appb-000001
在氮气保护下向装有搅拌器的500mL三口烧瓶依次加入乙醇(150mL),氟化钾(87g, 1.5mol),在30℃下搅拌0.5h后加入氯代碳酸乙烯酯(122.5g,1mol),之后再在30℃下反应6h后用减压蒸出质子溶剂乙醇,用于回收再利用。再加入有机溶剂乙酸乙酯120mL过滤不溶物,收集滤液浓缩回收溶剂,向类似于列管换热器的静态熔融结晶器内,压入浓缩后的氟代碳酸乙烯酯提取液,气相色谱检测产物主含量93.52%。设置初始降温点30℃,开启换热介质循环开关,每隔1h降温1℃,降温至15℃,管壁开始出现结晶,继续梯次降温至0℃,已有大部分晶体析出,停留在此温度2h,仍有少量未固化的低浓度残液,且颜色较深,放出。对晶体开始缓慢升温,每隔1h升高温度1℃,排出收集发汗过程中的融化液,逐各进行检测,至升温至30℃时,气相色谱显示排出液含量已达99.76%,判定容器内产品已接近合格,提高温度至50℃,迅速融化剩余固体,得到高纯度氟代碳酸乙烯酯90.58g,气相色谱显示氟代碳酸乙烯酯含量为99.92%,综合产率85.45%。过程收集到的未固化液及发汗液返回精馏,再进行结晶纯化,循环往复。
实施例2 高纯度氟代碳酸乙烯酯的制备
反应如下:
Figure PCTCN2022134653-appb-000002
在氮气保护下向装有搅拌器的500mL三口烧瓶依次加入甲酸(120mL),氟化钠(84g,2mol),在60℃下搅拌0.5h后加入氯代碳酸乙烯酯(122.5g,1mol),之后再在60℃下反应4h后用减压蒸出质子溶剂甲酸,用于回收再利用。再加入有机溶剂乙腈120mL过滤不溶物,收集滤液浓缩回收溶剂,向类似于列管换热器的静态熔融结晶器内,压入浓缩后的氟代碳酸乙烯酯提取液,气相色谱检测产物主含量93.98%。设置初始降温点30℃,开启换热介 质循环开关,每隔1h降温1℃,降温至15℃,管壁开始出现结晶,继续梯次降温至0℃,已有大部分晶体析出,停留在此温度2h,仍有少量未固化的低浓度残液,且颜色较深,放出。对晶体开始缓慢升温,每隔1h升高温度1℃,排出收集发汗过程中的融化液,逐各进行检测,至升温至30℃时,气相色谱显示排出液含量已达99.82%,判定容器内产品已接近合格,提高温度至50℃,迅速融化剩余固体,得到高纯度氟代碳酸乙烯酯93.62g,气相色谱显示氟代碳酸乙烯酯含量为99.94%,综合产率88.32%。过程收集到的未固化液及发汗液返回精馏,再进行结晶纯化,循环往复。
实施例3 高纯度4,5-双氟代碳酸乙烯酯的制备
反应如下:
Figure PCTCN2022134653-appb-000003
在氮气保护下向装有搅拌器的1000mL三口烧瓶依次加入乙醇(400mL),氟化钾(319g,5.5mol),在60℃下搅拌0.5h后加入4,5-双氯代碳酸乙烯酯(157g,1mol),之后再在60℃下反应5h后用减压蒸出质子溶剂乙醇,用于回收再利用。再加入有机溶剂乙腈120mL过滤不溶物,收集滤液浓缩回收溶剂,向类似于列管换热器的静态熔融结晶器内,压入浓缩后的1,2-双氟代碳酸乙烯酯提取液,气相色谱检测产物主含量94.18%。设置初始降温点30℃,开启换热介质循环开关,每隔1h降温1℃,降温至12℃,管壁开始出现结晶,继续梯次降温至0℃,已有大部分晶体析出,停留在此温度2h,仍有少量未固化的低浓度残液,且颜色较深,放出。对晶体开始缓慢升温,每隔1h升高温度1℃,排出收集发汗过程中的融化液,逐各进行检测,至升温至30℃时,气相色谱显示排出液含量已达99.81%,判定容器内产品 已接近合格,提高温度至50℃,迅速融化剩余固体,得到高纯度4,5-双氟代碳酸乙烯酯102.72g,气相色谱显示4,5-双氟代碳酸乙烯酯含量为99.95%,综合产率82.83%。过程收集到的未固化液及发汗液返回精馏,再进行结晶纯化,循环往复。
实施例4 高纯度4,5-双氟代碳酸乙烯酯的制备
反应如下:
Figure PCTCN2022134653-appb-000004
在氮气保护下向装有搅拌器的1000mL三口烧瓶依次加入甲酸(350mL),氟化钠(252g,6mol),在50℃下搅拌0.5h后加入4,5-双氯代碳酸乙烯酯(157g,1mol),之后再在50℃下反应4h后用减压蒸出质子溶剂甲酸,用于回收再利用。再加入有机溶剂碳酸二甲酯120mL过滤不溶物,收集滤液浓缩回收溶剂,向类似于列管换热器的静态熔融结晶器内,压入浓缩后的4,5-双氟代碳酸乙烯酯提取液,气相色谱检测产物主含量94.06%。设置初始降温点30℃,开启换热介质循环开关,每隔1h降温1℃,降温至12℃,管壁开始出现结晶,继续梯次降温至0℃,已有大部分晶体析出,停留在此温度2h,仍有少量未固化的低浓度残液,且颜色较深,放出。对晶体开始缓慢升温,每隔1h升高温度1℃,排出收集发汗过程中的融化液,逐各进行检测,至升温至30℃时,气相色谱显示排出液含量已达99.78%,判定容器内产品已接近合格,提高温度至50℃,迅速融化剩余固体,得到高纯度4,5-双氟代碳酸乙烯酯99.93g,气相色谱显示4,5-双氟代碳酸乙烯酯含量为99.94%,综合产率80.59%。过程收集到的未固化液及发汗液返回精馏,再进行结晶纯化,循环往复。
对比例1 高纯度4,5-双氟代碳酸乙烯酯的制备
反应如下:
Figure PCTCN2022134653-appb-000005
在氮气保护下向装有搅拌器的1000mL三口烧瓶依次加入非质子有机溶剂碳酸二甲酯(400mL),氟化钾(319g,5.5mol),在60℃下搅拌0.5h后加入4,5-双氯代碳酸乙烯酯(157g,1mol),之后再在60℃下反应5h后用减压蒸出碳酸二甲酯,用于回收再利用。再加入有机溶剂乙腈120mL过滤不溶物,收集滤液浓缩回收溶剂,向类似于列管换热器的静态熔融结晶器内,压入浓缩后的4,5-双氟代碳酸乙烯酯提取液,气相色谱检测产物主含量93.89%。设置初始降温点30℃,开启换热介质循环开关,每隔1h降温1℃,降温至12℃,管壁开始出现结晶,继续梯次降温至0℃,已有大部分晶体析出,停留在此温度2h,仍有少量未固化的低浓度残液,且颜色较深,放出。对晶体开始缓慢升温,每隔1h升高温度1℃,排出收集发汗过程中的融化液,逐各进行检测,至升温至30℃时,气相色谱显示排出液含量已达99.81%,判定容器内产品已接近合格,提高温度至50℃,迅速融化剩余固体,得到高纯度4,5-双氟代碳酸乙烯酯72.39g,气相色谱显示4,5-双氟代碳酸乙烯酯含量为99.93%,综合产率58.38%。过程收集到的未固化液及发汗液返回精馏,再进行结晶纯化,循环往复。
对比例2 高纯度4,5-双氟代碳酸乙烯酯的制备
反应如下:
Figure PCTCN2022134653-appb-000006
在氮气保护下向装有搅拌器的1000mL三口烧瓶依次加入非质子有机溶剂乙腈(350 mL),氟化钠(252g,6mol),在50℃下搅拌0.5h后加入4,5-双氯代碳酸乙烯酯(157g,1mol),之后再在50℃下反应4h后用减压蒸出乙腈,用于回收再利用。再加入有机溶剂碳酸二甲酯120mL过滤不溶物,收集滤液浓缩回收溶剂,向类似于列管换热器的静态熔融结晶器内,压入浓缩后的4,5-双氟代碳酸乙烯酯提取液,气相色谱检测产物主含量94.03%。设置初始降温点30℃,开启换热介质循环开关,每隔1h降温1℃,降温至12℃,管壁开始出现结晶,继续梯次降温至0℃,已有大部分晶体析出,停留在此温度2h,仍有少量未固化的低浓度残液,且颜色较深,放出。对晶体开始缓慢升温,每隔1h升高温度1℃,排出收集发汗过程中的融化液,逐各进行检测,至升温至30℃时,气相色谱显示排出液含量已达99.80%,判定容器内产品已接近合格,提高温度至50℃,迅速融化剩余固体,得到高纯度4,5-双氟代碳酸乙烯酯61.70g,气相色谱显示4,5-双氟代碳酸乙烯酯含量为99.95%,综合产率49.76%。过程收集到的未固化液及发汗液返回精馏,再进行结晶纯化,循环往复。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

  1. 一种高纯度碳酸乙烯酯氟代衍生物的制备方法,以氯代碳酸乙烯酯或4,5-双氯代碳酸乙烯酯为原料,氟化物为氟化剂,其特征在于,在沸点≤150℃的醇或羧酸质子溶剂中进行氟化反应,反应温度控制在30~70℃,反应时间为2~6h;反应后,粗品经过提纯,得到高纯度氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯,其中氟化物以MF表示,MF中M表示金属离子或NH 4 +
  2. 根据权利要求1所述的制备方法,其特征在于,所述醇选自甲醇、乙醇、丙醇、异丙醇、丁醇中的一种或者多种,所述羧酸选自甲酸、乙酸、丙酸中的一种或者多种。
  3. 根据权利要求1所述的制备方法,其特征在于,合成氟代碳酸乙烯酯时,所述质子溶剂用量与所述氯代碳酸乙烯酯摩尔比为1:2~10;合成4,5-双氟代碳酸乙烯酯时所述质子溶剂用量与所述4,5-双氯代碳酸乙烯酯摩尔比为1:5~20。
  4. 根据权利要求1所述的制备方法,其特征在于,所述氟化物为LiF、NaF、KF、RbF、CsF、CaF 2、ZnF 2、NH 4F或SbF 3中的一种或多种,合成氟代碳酸乙烯酯时氟化剂的用量为氯代碳酸乙烯酯摩尔量的1.5~3倍;合成4,5-双氟代碳酸乙烯酯时氟化剂的用量为4,5-双氯代碳酸乙烯酯摩尔量的3~6倍。
  5. 根据权利要求1所述的制备方法,其特征在于,粗品提纯的具体步骤如下:使用有机溶剂对所述氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯粗品进行提取,有机溶剂选自乙酸乙酯、乙酸甲酯、甲酸乙酯、甲酸丁酯、乙酸丁酯、乙腈或碳酸二甲酯中的一种或者多种,有机溶剂的摩尔用量为所述氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯粗品的2~50倍,过滤、浓缩提取液,再使用静态熔融结晶器对所述浓缩后的氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯提取液 进行降温结晶,分离出晶体,微加压后经放料阀排出残液;然后对晶体进行加热,加热熔化结晶器内余下固体,收集得到高纯度氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯成品。
  6. 根据权利要求5所述的制备方法,其特征在于,所得粗品在提取步骤之前,先通过减压蒸馏去除所述质子溶剂,蒸馏温度30~100℃,压力为5~20mmHg。
  7. 根据权利要求5所述的制备方法,其特征在于,所述降温结晶时从30~35℃开始降温,降温速率为0.5~2℃/h,降温到0℃。
  8. 根据权利要求5所述的制备方法,其特征在于,对所述晶体进行加热时,以0.5~2℃/h的速度进行升温,间隔一定时间排出汗液进行检测,直至汗液中氟代碳酸乙烯酯或4,5-双氟代碳酸乙烯酯含量≥99.9wt%。
  9. 根据权利要求5所述的制备方法,其特征在于,所述提纯方法还包括对所述浓缩提取液进行精馏,然后采用降温结晶的方法对馏分进行所述提纯处理。
PCT/CN2022/134653 2022-11-10 2022-11-28 一种高纯度碳酸乙烯酯氟代衍生物的制备方法 WO2023179071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211408310.8A CN115611846A (zh) 2022-11-10 2022-11-10 一种高纯度碳酸乙烯酯氟代衍生物的制备方法
CN202211408310.8 2022-11-10

Publications (1)

Publication Number Publication Date
WO2023179071A1 true WO2023179071A1 (zh) 2023-09-28

Family

ID=84877791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134653 WO2023179071A1 (zh) 2022-11-10 2022-11-28 一种高纯度碳酸乙烯酯氟代衍生物的制备方法

Country Status (2)

Country Link
CN (1) CN115611846A (zh)
WO (1) WO2023179071A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297299A (ja) * 2007-06-01 2008-12-11 Zhangjiagang Huasheng Chemicals Co Ltd フルオロ環状炭酸エステルの製造方法
CN106905290A (zh) * 2017-03-08 2017-06-30 江苏理文化工有限公司 一种双氟代碳酸乙烯酯的制备方法
WO2018184379A1 (zh) * 2017-04-06 2018-10-11 多氟多化工股份有限公司 一种高纯氟代碳酸乙烯酯的制备方法
CN110845467A (zh) * 2018-03-20 2020-02-28 上海华谊(集团)公司 氟代碳酸乙烯酯的生产方法
CN114014834A (zh) * 2021-12-08 2022-02-08 江苏瀚康新材料有限公司 一种二氟代碳酸乙烯酯的制备方法
CN114716403A (zh) * 2022-05-11 2022-07-08 多氟多新材料股份有限公司 一种氟代碳酸乙烯酯的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402496B (zh) * 2021-07-07 2022-03-25 山东海科创新研究院有限公司 二甲基乙酰胺在制备氟代碳酸乙烯酯中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297299A (ja) * 2007-06-01 2008-12-11 Zhangjiagang Huasheng Chemicals Co Ltd フルオロ環状炭酸エステルの製造方法
CN106905290A (zh) * 2017-03-08 2017-06-30 江苏理文化工有限公司 一种双氟代碳酸乙烯酯的制备方法
WO2018184379A1 (zh) * 2017-04-06 2018-10-11 多氟多化工股份有限公司 一种高纯氟代碳酸乙烯酯的制备方法
CN110845467A (zh) * 2018-03-20 2020-02-28 上海华谊(集团)公司 氟代碳酸乙烯酯的生产方法
CN114014834A (zh) * 2021-12-08 2022-02-08 江苏瀚康新材料有限公司 一种二氟代碳酸乙烯酯的制备方法
CN114716403A (zh) * 2022-05-11 2022-07-08 多氟多新材料股份有限公司 一种氟代碳酸乙烯酯的合成方法

Also Published As

Publication number Publication date
CN115611846A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
US8629295B2 (en) Method for preparing dialkyl carbonate
CN109941978B (zh) 制备双氟磺酰亚胺铵及双氟磺酰亚胺碱金属盐的方法
CN108275666B (zh) 一种双(氟磺酰)亚胺碱金属盐的制备方法
CN111393403B (zh) 一种碳酸亚乙烯酯的制备方法
CN110981849B (zh) 一种氟代碳酸乙烯酯的制备方法及应用
CN111116429A (zh) 一种三氟甲磺酸碱金属盐的合成方法
CN115466181A (zh) 一种使用长效催化剂的酯交换生产碳酸二甲酯的方法
CN102211995A (zh) 一种2,6-二羟基苯甲酸的制备方法
CN112390748B (zh) 一种2-氰基-3-氟-5-三氟甲基吡啶的制备方法
WO2003002506A1 (fr) Procédé de production d'éther vinylique fluoré
WO2023179071A1 (zh) 一种高纯度碳酸乙烯酯氟代衍生物的制备方法
CN116143088A (zh) 一种双氟磺酰亚胺和双氟磺酰亚胺锂的制备方法
CN105085273A (zh) 一种制备原膜散酯的方法
CN114790219A (zh) 一种双草酸硼酸锂的制备方法
JP4815692B2 (ja) 電解質及び非水電解液の製造方法
CN106146302B (zh) 丙酸酯的制备方法
JP4817542B2 (ja) フッ素化ビニルエーテルの製造法
CN115160140B (zh) 一种链状氟代烷基不对称碳酸酯的制备方法
CN111943969B (zh) 一种二氟草酸硼酸锂的制备方法
CN112500285B (zh) 三氟乙酰氟的连续制备方法
CN116178333A (zh) 一种氟代碳酸乙烯酯的制备方法
CN118026110A (zh) 一种连续法制备提纯双氟磺酰亚胺的方法及装置
CN115959638A (zh) 一种双氟磺酰亚胺及其碱金属盐的制备方法
JP4324373B2 (ja) 2−(2−フルオロスルホニル)−ペルフルオロエチレンオキシ3−ハロゲン−プロピオン酸のアルキルエステル及びその製造方法
CN117586121A (zh) 一种一步法甲基三氟乙基碳酸酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933122

Country of ref document: EP

Kind code of ref document: A1