WO2023176781A1 - スラリー組成物、及びコーティング剤 - Google Patents

スラリー組成物、及びコーティング剤 Download PDF

Info

Publication number
WO2023176781A1
WO2023176781A1 PCT/JP2023/009644 JP2023009644W WO2023176781A1 WO 2023176781 A1 WO2023176781 A1 WO 2023176781A1 JP 2023009644 W JP2023009644 W JP 2023009644W WO 2023176781 A1 WO2023176781 A1 WO 2023176781A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
based composite
slurry composition
oxide particles
particles
Prior art date
Application number
PCT/JP2023/009644
Other languages
English (en)
French (fr)
Inventor
康之 沖村
満央 庄司
久司 小塚
昌也 岩田
亮太 村井
太樹 岡山
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Publication of WO2023176781A1 publication Critical patent/WO2023176781A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic

Definitions

  • the present invention relates to a slurry composition and a coating agent.
  • ceramics made of a composite oxide containing rare earth elements, molybdenum (Mo), etc. are known as a new type of inorganic material with antibacterial and antiviral properties.
  • those made of composite oxides (e.g., La 2 Mo 2 O 9 ) containing lanthanum (La) as a rare earth are difficult to produce industrially because they use lanthanum, which is cheap and easily available among rare earths. It is attracting particular attention because of its advantages.
  • Patent Document 1 discloses that ceramic powder of a composite oxide containing lanthanum and molybdenum is combined with a known binder resin, a solvent, etc., and applied as an ink or paste to the surface of a desired article. , it has been shown that a film containing composite oxide ceramics can be formed.
  • An object of the present invention is to provide a slurry composition and a coating agent in which the sedimentation rate of La-based composite oxide particles is retarded.
  • the present inventors found that the center particle diameter of particles of a composite oxide containing at least one element selected from the group consisting of Mo and W is 800 nm or less, It has been found that when the content of the particles is 0.1 to 10% by mass, the sedimentation rate of the particles is delayed, making it possible to coat the object, and the present invention has been completed.
  • Means for solving the above problem are as follows. That is, ⁇ 1> Comprising particles of a composite oxide containing La and at least one element selected from the group consisting of Mo and W, and a dispersion medium, the center particle diameter of the particles is 800 nm or less, and the particles A slurry composition having a content of 0.1 to 10% by mass.
  • ⁇ 4> The slurry composition according to any one of ⁇ 1> to ⁇ 3> above, which contains a dispersant.
  • ⁇ 5> The slurry composition according to any one of ⁇ 1> to ⁇ 4> above, containing an ultraviolet curable resin.
  • a coating agent comprising the slurry composition according to any one of ⁇ 1> to ⁇ 5> above.
  • a diagram showing a SEM image of La-Mo-based composite oxide particles of Example 2 A diagram showing external photographs of each slurry composition of Examples 1 and 2. A diagram showing a photograph of the appearance of a small bottle filled with the slurry composition of Comparative Example 1. A diagram showing a photograph of the appearance of the slurry composition of Example 15. A diagram showing a graph of transmittance (%) of the slurry composition of Example 2 A diagram showing a SEM image of La-Mo-based composite oxide particles of Comparative Example 2
  • the slurry composition of this embodiment is a liquid composition containing particles of a La-based composite oxide and a dispersion medium.
  • La-based composite oxide a composite oxide containing La and at least one element selected from the group consisting of Mo and W is referred to as a "La-based composite oxide.”
  • La-based composite oxide has excellent antibacterial and antiviral properties.
  • the La-based composite oxide is represented by, for example, La 2 Mo x W (2-X) O 9 (0 ⁇ x ⁇ 2).
  • La-based composite oxides include La-Mo-based composite oxides, La-Mo-W-based composite oxides, and La-W-based composite oxides.
  • the La-Mo-based composite oxide preferably contains Mo as the element from the viewpoint of antibacterial and antiviral properties. That is, the La-based composite oxide is preferably one represented by La 2 Mo x W (2-X) O 9 (0 ⁇ x ⁇ 2).
  • La-based composite oxide particles particles of La-based composite oxide (that is, particulate La-based composite oxide) are referred to as "La-based composite oxide particles.”
  • La-Mo composite oxide particles a composite oxide of lanthanum (La) and molybdenum (Mo)
  • La-Mo composite oxide particles particles of the La-Mo composite oxide (that is, particulate La -Mo-based composite oxide)
  • a composite oxide of lanthanum (La), molybdenum (Mo), and tungsten (W) is referred to as a "La-Mo-W-based composite oxide,” and also referred to as a “La-Mo-W-based composite oxide.”
  • Particles of W-based composite oxide that is, particulate La-Mo-W-based composite oxide
  • La-Mo-W-based composite oxide particles are referred to as "La-Mo-W-based composite oxide particles.”
  • La-W composite oxide particles a composite oxide of lanthanum (La) and tungsten (W) is referred to as a "La-W composite oxide,” and particles of the La-W composite oxide (i.e., particles (La-W-based composite oxide particles) are referred to as "La--W-based composite oxide particles.”
  • the central particle diameter of the La-based composite oxide particles is 800 nm or less, preferably 600 nm or less, more preferably 150 nm or less, and still more preferably 100 nm or less.
  • the central particle diameter of the La-based composite oxide particles is within such a range, the sedimentation rate of the La-based composite oxide particles in the dispersion medium is sufficiently retarded, thereby improving the dispersibility of the La-based composite oxide particles. It becomes possible to apply the slurry composition to an object with improved performance.
  • the central particle diameter of the La-based composite oxide particles is determined as the particle diameter (D50) at which the cumulative frequency is 50% by laser diffraction method.
  • D50 particle diameter at which the cumulative frequency is 50% by laser diffraction method.
  • FE-SEM Field Emission-Scanning Electron Microscope
  • the La-Mo-based composite oxide is not particularly limited as long as it does not impair the purpose of the present invention, and examples thereof include La 2 Mo 2 O 9 .
  • the La-Mo-based composite oxide may consist only of La 2 Mo 2 O 9 or may contain something other than La 2 Mo 2 O 9 .
  • the La-Mo-W-based composite oxide is not particularly limited as long as it does not impair the purpose of the present invention, but examples include La 2 MoWO 9 , La 2 Mo 1.5 W 0.5 O 9 , La 2 Mo 0 .5 W 1.5 O 9 and the like. These may be used alone or in combination of two or more.
  • the La--W-based composite oxide is not particularly limited as long as it does not impair the purpose of the present invention, and examples thereof include La 2 W 2 O 9 .
  • the La—W-based composite oxide may consist only of La 2 W 2 O 9 or may contain something other than La 2 W 2 O 9 .
  • La-based composite oxide particles such as La-Mo-based composite oxide particles are manufactured through, for example, a preparation step, a first firing step, and a pulverization step.
  • the preparation step is a step of mixing a lanthanum compound and a molybdenum compound to prepare a mixed powder.
  • the preparation step is a step of mixing a lanthanum compound, a molybdenum compound, and a tungsten compound to prepare a mixed powder.
  • the adjustment step is a step of mixing a lanthanum compound and a tungsten compound to prepare a mixed powder.
  • the lanthanum compound is a compound containing lanthanum (La), which is necessary for producing La-based composite oxides such as La-Mo-based composite oxides, and includes, for example, La(OH) 3 , La 2 O 3 , La 2 (CO 3 ) 3 and the like.
  • La(OH) 3 is preferable as the lanthanum compound.
  • the molybdenum compound is a compound containing molybdenum (Mo) necessary for producing a La-Mo-based composite oxide or a La-Mo-W-based composite oxide, and includes, for example, MoO 3 , MoO 2 , MoO, Mo( OH) 3 , Mo(OH) 5 and the like.
  • MoO 3 molybdenum
  • MoO 2 molybdenum
  • MoO molybdenum compound
  • the tungsten compound is a compound containing tungsten (W) necessary for producing La-Mo-W-based composite oxide or La-W-based composite oxide, and includes, for example, WO 3 , WO 2 , W 2 O 3 Can be mentioned. Note that WO 3 is preferable as the tungsten compound.
  • the raw materials for La-based composite oxides such as lanthanum compounds, molybdenum compounds, and tungsten compounds are powders, and they may be mixed together in powder form, or the powders may be mixed with a solvent such as lower alcohol (ethanol). may be added to perform wet mixing.
  • the raw materials may be mixed by wet mixing using, for example, alumina balls (alumina cobblestones). Note that the wet-mixed mixture (wet mixture) is appropriately dried by hot water bath drying, spray drying, or the like.
  • a mixed powder of a lanthanum compound and a molybdenum compound, a mixed powder of a lanthanum compound, a molybdenum compound, and a tungsten compound, or a mixed powder of a lanthanum compound and a tungsten compound can be obtained.
  • the first firing step is a step of firing the mixed powder obtained in the preparation step in order to react the lanthanum compound, molybdenum compound, etc. in the mixed powder.
  • the mixed powder is fired at a temperature of, for example, 500° C. or more and 900° C. or less for one hour or more. Note that the first firing step does not need to be performed under a special synthetic air atmosphere, but is performed under a normal atmospheric pressure atmosphere.
  • the mixed powder is a mixed powder of a lanthanum compound and a molybdenum compound
  • the lanthanum compound and molybdenum compound in the mixed powder react with each other in the first firing step, resulting in La- containing La 2 Mo 2 O 9 and the like.
  • a Mo-based composite oxide is obtained.
  • the mixed powder is a mixed powder of a lanthanum compound, a molybdenum compound, and a tungsten compound
  • the lanthanum compound, molybdenum compound, and tungsten compound in the mixed powder react to form a La-Mo-W system containing La 2 MoWO 9 , etc.
  • a composite oxide is obtained.
  • the mixed powder is a mixed powder of a lanthanum compound and a tungsten compound
  • the lanthanum compound and tungsten compound in the mixed powder react to obtain a La-W-based composite oxide containing La 2 W 2 O 9 and the like. It will be done.
  • the pulverization step is a step of pulverizing the La-based composite oxide after the first firing using a media agitation pulverization device such as a bead mill so that the center particle size falls within a predetermined range.
  • Conditions such as pulverization time are appropriately set so that the central particle diameter of the La-based composite oxide falls within a predetermined range.
  • La-based composite oxide particles such as La-Mo-based composite oxide particles having a predetermined center particle diameter, which are used in the slurry composition, are obtained.
  • the obtained La-based composite oxide particles may be granulated if necessary.
  • a slurry is prepared by adding a solvent such as ethanol to La-based composite oxide particles and performing wet mixing and pulverization using an alumina ball, and the dried slurry is passed through a sieve with a predetermined opening. By passing the mixture through the wafer, La-based composite oxide particles granulated to a predetermined size can be obtained.
  • a product obtained by sintering La-based composite oxide particles and then pulverizing the obtained sintered body may be used in the slurry composition. It may also be "La-based composite oxide particles".
  • the sintered body can be obtained, for example, by molding unsintered La-based composite oxide particles into a predetermined shape and firing the resulting molded body at a predetermined temperature condition (for example, 900° C. or higher).
  • the firing step performed to sinter the La-based composite oxide particles is referred to as a "second firing step.” This second firing step can be performed in an air atmosphere. Note that the La-based composite oxide obtained after the second firing step is adjusted into particles having a center particle diameter within a predetermined range by a pulverization step, if necessary.
  • the dispersion medium used in the slurry composition water, ethanol, isopropyl alcohol (IPA), methyl ethyl ketone (MEK), ethyl acetate, toluene, etc. are used. These may be used alone or in combination of two or more.
  • the content of La-based composite oxide particles in the slurry composition is 0.1 to 10% by mass.
  • the slurry composition may contain other components as long as they do not impair the purpose of the present invention.
  • components examples include binders, dispersants, ultraviolet curing resins, colorants (pigments, dyes), and the like. Moreover, components other than these may be used as other components.
  • the binder is used for the purpose of improving the adhesion of the La-based composite oxide particles contained in the slurry composition to the object.
  • a binder is not particularly limited as long as it does not impair the purpose of the present invention, and examples thereof include polyvinyl alcohol (PVA), polyvinyl butyral (PVB), and the like. These may be used alone or in combination of two or more.
  • the content of the binder in the slurry composition is not particularly limited as long as it does not impair the purpose of the present invention, but is preferably 0.05 to 5% by mass based on the La-based composite oxide particles.
  • the dispersant is used for the purpose of increasing the dispersibility of the La-based composite oxide particles in the dispersion medium.
  • Such dispersants are not particularly limited as long as they do not impair the purpose of the present invention, but include, for example, water-soluble acrylic acid dispersants, anionic surfactants, cationic surfactants, and nonionic surfactants. agent, polyethylene glycol (PEG)-polypropylene glycol (PPG) block polymer, polyacrylic acid ammonium salt, polycarboxylic acid copolymer having an alkyl chain or polyalkylene glycol (PAG) chain, and the like. These may be used alone or in combination of two or more.
  • the content of the dispersant in the slurry composition is not particularly limited as long as it does not impair the purpose of the present invention, but for example, it is preferably 5% by mass or less based on the La-based composite oxide particles.
  • the slurry composition of this embodiment can be used as a coating agent by containing a curing agent.
  • the curing agent may include a curing agent formed by dissolving a synthetic resin in a volatile solvent, a moisture curing type curing agent, a two-component mixture type curing agent, an ultraviolet curing type curing agent, etc., as long as they do not impair the purpose of the present invention. , any curing agent can be selected.
  • the curing agent is used for the purpose of improving the adhesion of the La-based composite oxide particles contained in the slurry composition to an object.
  • Examples of the ultraviolet curable resin used in the ultraviolet curable curing agent include acrylic ultraviolet curable resins.
  • the content of the ultraviolet curable resin in the slurry composition is not particularly limited as long as it does not impair the purpose of the present invention, but is preferably 5% by mass or less based on the La-based composite oxide particles, for example.
  • the slurry composition (coating agent) of this embodiment may contain a pigment.
  • the pigment is used for the purpose of coloring a coating film containing La-based composite oxide particles formed on the surface of an object.
  • the pigment may be water-based or oil-based.
  • the pigment is not particularly limited, and examples thereof include carbon black, synthetic resin, metal powder, minerals, and the like. These may be used alone or in combination of two or more.
  • Materials that make up the object include, for example, glass, ceramics, synthetic resins such as thermoplastic resins and thermosetting resins, rubber (natural rubber, synthetic rubber), genuine leather (natural leather), synthetic leather, metals, and alloys. Examples include metal materials, wood, paper, fibers, nonwoven fabrics, silicon (silicon wafers, etc.), carbon materials, minerals, etc.
  • a brush, a roller, blade casting, or dipping can be used as a method for applying the slurry composition to the object.
  • a method for drying the slurry composition after applying it to the object known methods such as natural drying, heating in a drying oven, etc. can be used. At this time, it is preferable to select a method that suppresses aggregation of the La-based composite oxide particles.
  • the mixed powder was fired in an air atmosphere at a temperature of 700° C. for 10 hours to obtain a fired powder consisting of a reaction product of a lanthanum compound and a molybdenum compound.
  • the obtained fired powder was pulverized in a bead mill for 4.5 hours to obtain La-Mo-based composite oxide particles.
  • the central particle diameter of the La-Mo-based composite oxide particles of Example 1 was 100 nm or less. The method for measuring the central particle diameter will be described later.
  • Example 1 Blending the La-Mo-based composite oxide particles in water (dispersion medium) so that the solid content concentration in the final slurry composition is 1% by mass, and stirring the mixture. Thus, the slurry composition of Example 1 was obtained.
  • Example 2 A slurry composition of Example 2 was obtained in the same manner as in Example 1, except that a dispersant was added (1% by mass based on the La-Mo composite oxide particles).
  • Example 3 In the same manner as in Example 1, except that a binder and a dispersant were blended (0.1% by mass (binder) and 1% by mass (dispersant) with respect to the La-Mo-based composite oxide particles). , the slurry composition of Example 3 was obtained.
  • Example 4 Example 1 except that the ultraviolet curable resin and the dispersant were blended (0.1% by mass (UV curable resin) and 1% by mass (dispersant) based on the La-Mo composite oxide particles). A slurry composition of Example 4 was obtained in a similar manner.
  • Example 5 The La-Mo-based composite oxide particles are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 8% by mass, and a dispersant is blended (as described above).
  • a slurry composition of Example 5 was obtained in the same manner as in Example 1, except that 1% by mass) was added to the La-Mo-based composite oxide particles.
  • Example 6 A fired powder was prepared in the same manner as in Example 1, and the fired powder was pulverized in a pot mill for 90 hours to obtain La-Mo-based composite oxide particles of Example 6. Note that the central particle diameter of the La-Mo-based composite oxide particles of Example 6 was 600 nm. The method for measuring the central particle diameter will be described later.
  • the La-Mo-based composite oxide particles of Example 6 were blended with water (dispersion medium) so that the solid content concentration in the final slurry composition was 1% by mass, and further a dispersant was added. (1% by mass based on the La-Mo composite oxide particles) and stirred the mixture to obtain the slurry composition of Example 6.
  • Example 7 A fired powder was prepared in the same manner as in Example 1, and the fired powder was pulverized in a bead mill for 4.5 hours to obtain La-Mo-based composite oxide particles of Example 7. Note that the central particle diameter of the La-Mo-based composite oxide particles of Example 6 was 150 nm.
  • the La-Mo-based composite oxide particles are blended with ethanol (dispersion medium) so that the solid content concentration in the final slurry composition is 1% by mass, and a dispersant is further blended ( 1% by mass) based on the La-Mo-based composite oxide particles, and the mixture was stirred to obtain a slurry composition of Example 7.
  • Example 8 A fired powder was prepared in the same manner as in Example 1, and the fired powder was pulverized in a pot mill for 75 hours to obtain La-Mo-based composite oxide particles of Example 8. Note that the central particle diameter of the La-Mo-based composite oxide particles of Example 8 was 800 nm.
  • the La-Mo-based composite oxide particles are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 1% by mass, and a dispersant is further blended ( 1% by mass) based on the La-Mo-based composite oxide particles, and the mixture was stirred to obtain a slurry composition of Example 8.
  • Example 9 A calcined powder was prepared in the same manner as in Example 1, and the calcined powder was pulverized in a pot mill for 70 hours to obtain La-Mo-based composite oxide particles of Example 9. Note that the central particle diameter of the La-Mo-based composite oxide particles of Example 9 was 800 nm.
  • the La-Mo-based composite oxide particles are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 10% by mass, and a dispersant is further blended ( 1% by mass) based on the La-Mo-based composite oxide particles, and the mixture was stirred to obtain a slurry composition of Example 9.
  • La(OH) 3 was prepared as a lanthanum compound
  • MoO 3 was prepared as a molybdenum compound
  • WO 3 was prepared as a tungsten compound.
  • the mixed powder was fired in an air atmosphere at a temperature of 650° C. for 10 hours to obtain a fired powder consisting of a reactant of a lanthanum compound, a molybdenum compound, and a tungsten compound.
  • the obtained fired powder was pulverized in a bead mill for 6 hours to obtain particles of La-Mo-W-based composite oxide.
  • the center particle diameter of the particles of Example 10 was 100 nm or less.
  • the particles of the La-Mo-W-based composite oxide are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 1% by mass, and the mixture is mixed with water (dispersion medium). By stirring, a slurry composition of Example 10 was obtained.
  • a slurry composition of Example 11 was obtained in the same manner as in Example 10, except that the wet mixture was prepared by weighing each sample as follows: 5).
  • a slurry composition of Example 12 was obtained in the same manner as in Example 10, except that the wet mixture was prepared by weighing each sample as follows: 5).
  • Example 13 A calcined powder was prepared in the same manner as in Example 10, and the calcined powder was pulverized in a pot mill for 75 hours to obtain La-Mo-W composite oxide particles of Example 13. In addition, the center particle diameter of the particles of Example 13 was 800 nm.
  • the particles of the La-Mo-W composite oxide are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 10% by mass, and the mixture is mixed with water (dispersion medium). By stirring, a slurry composition of Example 13 was obtained.
  • the mixed powder was fired in an air atmosphere at a temperature of 700° C. for 10 hours to obtain a fired powder consisting of a reaction product of a lanthanum compound and a tungsten compound.
  • the obtained fired powder was pulverized in a bead mill for 4.5 hours to obtain particles of a La—W-based composite oxide.
  • the center particle diameter of the particles of Example 14 was 100 nm or less.
  • the particles of the La-W-based composite oxide are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 1% by mass, and the mixture is stirred. In this way, a slurry composition of Example 14 was obtained.
  • Example 15 A fired powder was prepared in the same manner as in Example 14, and the fired powder was pulverized in a pot mill for 75 hours to obtain particles of the La--W composite oxide of Example 15. In addition, the center particle diameter of the particles of Example 15 was 800 nm.
  • the particles of the La-W-based composite oxide are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 1% by mass, and the mixture is stirred. In this way, a slurry composition of Example 15 was obtained.
  • Example 1 A fired powder was prepared in the same manner as in Example 1, and the fired powder was pulverized in a pot mill for 15 hours to obtain La-Mo-based composite oxide particles of Comparative Example 1. Note that the central particle diameter of the La-Mo-based composite oxide particles of Comparative Example 1 was 2300 nm.
  • Example 2 A fired powder was prepared in the same manner as in Example 1, and the fired powder was pulverized in a pot mill for 90 hours to obtain La-Mo-based composite oxide particles of Comparative Example 2. Note that the central particle diameter of the La-Mo-based composite oxide particles of Comparative Example 2 was 600 nm.
  • the La-Mo-based composite oxide particles are blended with water (dispersion medium) so that the solid content concentration in the final slurry composition is 20% by mass, and a dispersant is further blended ( 1% by mass) based on the La-Mo-based composite oxide particles, and the mixture was stirred to obtain a slurry composition of Comparative Example 2.
  • Solution A was an aqueous sodium hexametaphosphate solution having a concentration of 2% by mass.
  • La-based composite oxide particles (measurement target) were added to a sodium hexametaphosphate aqueous solution with a concentration of 2% by mass and stirred with a homogenizer to uniformly disperse the La-based composite oxide particles.
  • 0.5 mL of solution B was added dropwise to solution A to prepare solution C in which the concentration of La-based composite oxide particles was 1% by mass or less and in which the La-based composite oxide particles were monodispersed.
  • the particle diameter (D50) at which the cumulative frequency is 50% was determined as the central particle diameter using a laser diffraction particle size distribution device.
  • the measurement results of the central particle diameter (D50) in each Example etc. are shown in Table 1.
  • the measurement results (center particle diameter) of La-Mo-based composite oxide particles in Examples 1 to 5 the measurement results (center particle diameter) of La-Mo-W-based composite oxide particles in Examples 10 to 12,
  • the measurement results (center particle diameter) of the La-W composite oxide particles in Example 14 were 100 nm or less. Therefore, for Examples 1 to 5, 10 to 12, and 14, particle diameters were measured using FE-SEM as described below.
  • FIG. 1 is a diagram showing a SEM image of La-Mo-based composite oxide particles (La-based composite oxide particles) of Example 2.
  • a SEM image (magnification: 100,000) of the La-Mo-based composite oxide particles of Example 2 was obtained, and a plurality of La-Mo-based composite oxide particles were analyzed from the SEM image using predetermined image analysis software. Single particles were extracted as samples. Then, the equivalent circle diameter ( ⁇ m) was calculated from the image of each extracted single particle using analysis software WinROOF2018. From the results of the plurality of circle equivalent diameters ( ⁇ m) thus obtained, the particle diameter (average particle diameter) of the La-Mo-based composite oxide particles was calculated. As a result, the particle size (average particle size) of the La-Mo composite oxide powders of Examples 1 to 5 was 0.05 ⁇ m (50 nm, reference value).
  • FIG. 2 shows a photograph of the appearance of each slurry composition of Examples 1 and 2
  • FIG. 3 shows a photograph of the appearance of the slurry composition of Comparative Example 1.
  • FIG. 4 shows a photograph of the appearance of the slurry composition of Example 15.
  • each slurry composition was allowed to stand still. The presence or absence of precipitation was determined by observing the appearance of each slurry composition 10 minutes after standing.
  • the transmittance ⁇ of the slurry composition of Example 2 was determined by the method shown below.
  • a is the absorbance of the solid content in the slurry composition.
  • a n represents the absorbance of the slurry composition of Example 2
  • a 0 represents the absorbance of water only (blank).
  • the absorbance a n and the absorbance a 0 were measured using an ultraviolet/visible spectrophotometer under the measurement conditions shown below.
  • Measuring device LMS, ultraviolet/visible spectrophotometer (product number: Evolution 201) Measurement range: 360nm to 800nm (visible light range) Scan speed: 1200.00nm/min Data interval: 1nm Integration time: 0.050sec Bandwidth: 1nm Baseline correction: 100%T
  • FIG. 5 shows the transmittance (%) results of the slurry composition of Example 2.
  • the horizontal axis in FIG. 5 represents wavelength (nm), and the vertical axis represents transmittance (%). Note that the maximum value of the transmittance (%) was 100%, and the minimum value was 97.6%.
  • FIG. 6 is a diagram showing a SEM image (magnification: 500) of the La-Mo-based composite oxide particles (La-based composite oxide particles) of Comparative Example 2 attached to the surface of the substrate.
  • each of the slurry compositions of Examples 1 to 9 was able to be redispersed after applying ultrasonic vibration for 10 minutes.
  • the slurry compositions of Examples 2, 3, and 4 were transparent, the slurry compositions of Examples 1, 5, and 7 were translucent, and the slurry compositions of Examples 6, 8, and 9 were cloudy.
  • Each of the slurry compositions of Examples 1 to 9 could be applied to an object. Further, even after each slurry composition of Examples 1 to 9 was allowed to stand for 10 minutes, no precipitation of La-Mo-based composite oxide particles was observed.
  • the slurry composition of Comparative Example 1 the La-Mo composite oxide particles and the dispersion medium were separated into two layers when ultrasonic vibration was applied for 10 minutes, and redispersion was impossible. there were. Therefore, the slurry composition of Comparative Example 1 could not be applied to the object. This is considered to be due to the fact that the central particle diameter of the La-Mo-based composite oxide particles according to Comparative Example 1 was 2300 nm.
  • the slurry composition of Comparative Example 2 was cloudy after applying ultrasonic vibration for 10 minutes, and it was possible to redisperse the La-Mo-based composite oxide particles.
  • the concentration of La-Mo-based composite oxide particles was 20% by mass.
  • the slurry composition of Example 4 containing the ultraviolet curable resin had the best fixation (adhesiveness) to the object. Furthermore, it was confirmed that the slurry composition of Example 3 containing a binder also had excellent fixing properties (adhesive properties) to some extent.
  • each of the slurry compositions of Examples 10 to 15 was able to be redispersed after applying ultrasonic vibration for 10 minutes, as in Example 1 and the like described above.
  • the slurry compositions of Examples 10, 11, 12, and 14 were translucent as in Example 1, and the slurry compositions of Examples 13 and 15 were cloudy as in Example 9.
  • Each of the slurry compositions of Examples 10 to 15 could be applied to an object as in Example 1 and the like.
  • La-based composite oxide particles La-Mo-W-based composite oxide particles, La-W-based composite oxide particles
  • No precipitation of particles was observed.
  • the dispersion medium was evaporated after being applied to the object, no continuous particles of 50 ⁇ m or more were observed, and the La-based composite oxide particles No aggregation was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【解決手段】本発明のスラリー組成物は、Laと、Mo及びWからなる群より選ばれる少なくとも1つの元素とを含む複合酸化物の粒子と、分散媒とを含み、前記粒子の中心粒子径が、800nm以下であり、前記粒子の含有率が、0.1~10質量%である。

Description

スラリー組成物、及びコーティング剤
 本発明は、スラリー組成物、及びコーティング剤に関する。
 特許文献1に示されるように、抗菌性及び抗ウイルス性を備えた新しいタイプの無機系材料として、希土類と、モリブデン(Mo)等とを含む複合酸化物からなるセラミックスが知られている。そのようなセラミックスの中でも、希土類としてランタン(La)を含む複合酸化物(例えば、LaMo)からなるものは、希土類の中でも安価で入手し易いランタンを使用するため、工業的生産に有利である等の理由により、特に注目されている。
 なお、特許文献1には、ランタンとモリブデンとを含む複合酸化物のセラミックス粉末を、公知のバインダ樹脂と、溶媒等とを組み合わせて、インク又はペーストとして、所望の物品の表面に塗布することにより、複合酸化物セラミックスを含む膜を形成すること等が示されている。
国際公開第2020/017493号
(発明が解決しようとする課題)
 従来、銀粉末等の抗菌性又は抗ウイルス性を有する粉末をスラリー化し、そのスラリーをコーティング剤として用いることや、塗料に混合すること等により、抗菌性、又は抗ウイルス性を付与することが行われている。
 しかしながら、上述したランタンとモリブデンとを含む複合酸化物等のセラミックス粉末については、このような検討は行われていなかった。ランタンとモリブデンとを含む複合酸化物の比重は5.5/cmと比較的に大きいため、粉末の沈降速度が速く固液分離が早いということが課題であった。
 本発明の目的は、La系複合酸化物粒子の沈降速度が遅延されたスラリー組成物、及びコーティング剤を提供することである。
(課題を解決するための手段)
 本発明者らは、前記目的を達成すべく鋭意検討を行った結果、Mo及びWからなる群より選ばれる少なくとも1つの元素とを含む複合酸化物の粒子における中心粒子径が800nm以下であり、前記粒子の含有率が、0.1~10質量%であると、前記粒子の沈降速度が遅延し、対象物に塗布可能となることを見出し、本発明の完成に至った。
 前記課題を解決するための手段は、以下の通りである。即ち、
 <1> Laと、Mo及びWからなる群より選ばれる少なくとも1つの元素とを含む複合酸化物の粒子と、分散媒とを含み、前記粒子の中心粒子径が、800nm以下であり、前記粒子の含有率が、0.1~10質量%であるスラリー組成物。
 <2> 前記複合酸化物は、LaMo(2-X)(0≦x≦2)である前記<1>に記載のスラリー組成物。
 <3> バインダを含む前記<1>又は<2>に記載のスラリー組成物。
 <4> 分散剤を含む前記<1>から<3>の何れか1つに記載のスラリー組成物。
 <5> 紫外線硬化樹脂を含む前記<1>から<4>の何れか1つに記載のスラリー組成物。
 <6> 前記<1>から<5>の何れか1つに記載のスラリー組成物を含むコーティング剤。
(発明の効果)
 本発明によれば、La系複合酸化物粒子の沈降速度が遅延されたスラリー組成物、及びコーティング剤を提供することができる。
実施例2のLa-Mo系複合酸化物粒子のSEM画像を示す図 実施例1,2の各スラリー組成物の外観写真を示す図 比較例1のスラリー組成物が小瓶に充填された状態の外観写真を示す図 実施例15のスラリー組成物の外観写真を示す図 実施例2のスラリー組成物の透過率(%)のグラフを示す図 比較例2のLa-Mo系複合酸化物粒子のSEM画像を示す図
 本実施形態のスラリー組成物は、La系複合酸化物の粒子と、分散媒とを含む液状の組成物である。
 本明細書において、Laと、Mo及びWからなる群より選ばれる少なくとも1つの元素とを含む複合酸化物を、「La系複合酸化物」と表す。このようなLa系複合酸化物は、優れた抗菌性、及び抗ウイルス性を備えている。
 La系複合酸化物は、例えば、LaMo(2-X)(0≦x≦2)で表される。
 具体的なLa系複合酸化物としては、例えば、La-Mo系複合酸化物、La-Mo-W系複合酸化物、La-W系複合酸化物が挙げられる。
 La-Mo系複合酸化物としては、抗菌性・抗ウイルス性等の観点より、前記元素としてMoを含むことが好ましい。つまり、La系複合酸化物としては、LaMo(2-X)(0<x≦2)で表されるものが好ましい。
 なお、本明細書において、La系複合酸化物の粒子(つまり、粒子状のLa系複合酸化物)を、「La系複合酸化物粒子」と表す。
 本明細書において、ランタン(La)とモリブデン(Mo)の複合酸化物を、「La-Mo系複合酸化物」と表し、また、La-Mo系複合酸化物の粒子(つまり、粒子状のLa-Mo系複合酸化物)を、「La-Mo系複合酸化物粒子」と表す。
 また、本明細書において、ランタン(La)と、モリブデン(Mo)と、タングステン(W)との複合酸化物を、「La-Mo-W系複合酸化物」と表し、また、La-Mo-W系複合酸化物の粒子(つまり、粒子状のLa-Mo-W系複合酸化物)を、「La-Mo-W系複合酸化物粒子」と表す。
 また、本明細書において、ランタン(La)とタングステン(W)との複合酸化物を、「La-W系複合酸化物」と表し、また、La-W系複合酸化物の粒子(つまり、粒子状のLa-W系複合酸化物)を、「La-W系複合酸化物粒子」と表す。
 La系複合酸化物粒子の中心粒子径は、800nm以下であり、好ましくは600nm以下、より好ましくは150nm以下、更に好ましくは100nm以下である。La系複合酸化物粒子の中心粒子径がこのような範囲であると、分散媒中におけるLa系複合酸化物粒子の沈降速度が十分に遅延することにより、La系複合酸化物粒子の分散性が向上して、対象物にスラリー組成物を塗布することが可能となる。
 La系複合酸化物粒子の中心粒子径は、レーザー回折法による頻度の累積が50%になる粒子径(D50)として求められる。レーザー回折式の粒度分布測定装置を用いた中心粒子径の具体的な測定方法は、後述する。
 なお、前記粒度分布測定装置を用いた中心粒子径の測定において、その測定結果が測定限界の下限値を下回る場合、正確な粒子径(中心粒子径)を求めることができない。そこで、前記粒度分布測定装置による測定結果が、100nm以下となった場合は、前記粒度分布測定装置を用いた測定方法に加えて、FE-SEM(Field Emission-Scanning Electron Microscope)を用いて粒子径を測定した。FE-SEMを用いた測定方法としては、例えば、スラリー組成物中のLa系複合酸化物粉末を適当な対象物の表面上に付着させ、その付着物に含まれるLa系複合酸化物粉末から求めればよい。なお、FE-SEMを用いた具体的な粒子径の測定方法は、後述する。
 La-Mo系複合酸化物としては、本発明の目的を損なわない限り特に制限はないが、例えば、LaMoが挙げられる。La-Mo系複合酸化物は、LaMoのみからなるものであってもよいし、LaMo以外のものを含んでもよい。
 La-Mo-W系複合酸化物としては、本発明の目的を損なわない限り特に制限はないが、例えば、LaMoWO、LaMo1.50.5、LaMo0.51.5等が挙げられる。これらは単独で、又は2種以上を組み合わせて用いてもよい。
 La-W系複合酸化物としては、本発明の目的を損なわない限り特に制限はないが、例えば、Laが挙げられる。La-W系複合酸化物は、Laのみからなるものであってもよいし、La以外のものを含んでもよい。
 La-Mo系複合酸化物粒子等のLa系複合酸化物粒子は、例えば、調製工程、第1焼成工程、及び粉砕工程を経て製造される。
 La系複合酸化物粒子がLa-Mo系複合酸化物粒子の場合、調整工程は、ランタン化合物及びモリブデン化合物を混合して混合粉末を調製する工程である。
 La系複合酸化物粒子がLa-Mo-W系複合酸化物粒子の場合、調整工程は、ランタン化合物とモリブデン化合物とタングステン化合物を混合して混合粉末を調製する工程である。
 La系複合酸化物粒子がLa-W系複合酸化物粒子の場合、調整工程は、ランタン化合物及びタングステン化合物を混合して混合粉末を調製する工程である。
 ランタン化合物は、La-Mo系複合酸化物等のLa系複合酸化物を製造するために必要なランタン(La)を含む化合物であり、例えば、La(OH)、La、La(CO等が挙げられる。ランタン化合物としては、例えば、La(OH)、La、La(COからなる群より選ばれる少なくとも1種が使用されてもよい。なお、ランタン化合物としては、La(OH)が好ましい。
 モリブデン化合物は、La-Mo系複合酸化物又はLa-Mo-W系複合酸化物を製造するために必要なモリブデン(Mo)を含む化合物であり、例えば、MoO、MoO、MoO、Mo(OH)、Mo(OH)等が挙げられる。モリブデン化合物としては、例えば、MoO、MoO、MoO、Mo(OH)、Mo(OH)からなる群より選ばれる少なくとも1種が使用されてもよい。なお、モリブデン化合物としては、MoOが好ましい。
 タングステン化合物は、La-Mo-W系複合酸化物又はLa-W系複合酸化物を製造するために必要なタングステン(W)を含む化合物であり、例えば、WO、WO、W挙げられる。なお、タングステン化合物としては、WOが好ましい。
 La-Mo系複合酸化物を作製する際のランタン化合物及びモリブデン化合物の混合比は、モル比でLa:Mo=1:1となるように調整することが好ましい。
 La-Mo-W系複合酸化物を作製する際のランタン化合物、モリブデン化合物及びタングステン化合物の混合比は、モル比でLa:Mo:W=2:1.5~0.5:0.5~1.5となるように調整することが好ましい。
 La-W系複合酸化物を作製する際のランタン化合物及びタングステン化合物の混合比は、モル比でLa:W=2:1.5~0.5:0.5~1.5となるように調整することが好ましい。
 ランタン化合物、モリブデン化合物、タングステン化合物等のLa系複合酸化物の原材料は、互いに粉末であり、それらを互いに粉末の状態で混合してもよいし、それらの粉末に低級アルコール(エタノール)等の溶媒を加えて湿式混合を行ってもよい。前記原材料同士の混合は、例えば、アルミナボール(アルミナ玉石)等を利用した湿式混合で行われてもよい。なお、湿式混合された混合物(湿式混合物)は、湯煎乾燥、スプレードライ等によって適宜、乾燥される。
 このような調製工程により、ランタン化合物及びモリブデン化合物の混合粉末、ランタン化合物、モリブデン化合物及びタングステン化合物の混合粉末、又はランタン化合物及びタングステン化合物の混合粉末が得られる。
 第1焼成工程は、調製工程で得られた混合粉末中のランタン化合物及びモリブデン化合物等を反応させるために、前記混合粉末を焼成する工程である。第1焼成工程は、前記混合粉末を、例えば、500℃以上900℃以下の温度条件で、1時間以上焼成する。なお、第1焼成工程は、特別な合成空気の雰囲気下で行う必要がなく、通常の大気圧雰囲気下で行われる。
 前記混合粉末が、ランタン化合物及びモリブデン化合物の混合粉末の場合、この第1焼成工程により、前記混合粉末中のランタン化合物とモリブデン化合物とが反応して、LaMo等を含むLa-Mo系複合酸化物が得られる。
 前記混合粉末が、ランタン化合物、モリブデン化合物及びタングステン化合物の混合粉末の場合、前記混合粉末中のランタン化合物、モリブデン化合物及びタングステン化合物が反応して、LaMoWO等を含むLa-Mo-W系複合酸化物が得られる。
 前記混合粉末が、ランタン化合物及びタングステン化合物の混合粉末の場合、前記混合粉末中のランタン化合物とタングステン化合物とが反応して、La等を含むLa-W系複合酸化物が得られる。
 粉砕工程は、第1焼成後のLa系複合酸化物を、その中心粒子径が、所定範囲となるように、ビーズミル等の媒体攪拌粉砕装置を使用して粉砕する工程である。粉砕時間等の諸条件は、La系複合酸化物の中心粒子径が、所定範囲となるように適宜、設定される。
 以上のようにして、スラリー組成物で使用される、所定の中心粒子径を備えたLa-Mo系複合酸化物粒子等のLa系複合酸化物粒子が得られる。
 なお、得られたLa系複合酸化物粒子は、必要に応じて造粒してもよい。例えば、La系複合酸化物粒子に、エタノール等の溶媒を添加しつつ、アルミナボール等を利用した湿式混合粉砕を行うことによりスラリーを調製し、そのスラリーの乾燥物を、所定の目開きの篩に通すことにより、所定の大きさに造粒されたLa系複合酸化物粒子が得られる。
 また、本発明を損なわない限り、La系複合酸化物粒子を焼結させた後、得られた焼結体を粉砕することで得られたもの(粉砕物)を、スラリー組成物に使用する「La系複合酸化物粒子」としてもよい。焼結体は、例えば、焼結前のLa系複合酸化物粒子を、所定形状に成形し、得られた成形体を所定の温度条件(例えば、900℃以上)で焼成することにより得られる。本明細書において、La系複合酸化物粒子を焼結させるために行われる焼成工程を、「第2焼成工程」と称する。この第2焼成工程は、大気雰囲気下で行うことができる。なお、第2焼成工程後に得られたLa系複合酸化物は、必要に応じて、粉砕工程により、所定範囲の中心粒子径を有する粒子状に調整される。
 スラリー組成物に使用される分散媒としては、水、エタノール、イソプロピルアルコール(IPA)、メチルエチルケトン(MEK)、酢酸エチル、トルエン等が使用される。これらは単独で又は2種以上組み合わせて用いてもよい。
 スラリー組成物中におけるLa系複合酸化物粒子の含有率は、0.1~10質量%でる。
 スラリー組成物は、La系複合酸化物粒子、分散媒以外に、本発明の目的を損なわない限り、その他の成分を含んでもよい。
 他の成分(配合物)としては、例えば、バインダ、分散剤、紫外線硬化樹脂、着色剤(顔料、染料)等が挙げられる。また、これら以外の成分が、他の成分として使用されてもよい。
 バインダは、スラリー組成物に含まれるLa系複合酸化物粒子の、対象物に対する付着性を向上等させる目的で使用される。このようなバインダとしては、本発明の目的を損なわない限り、特に制限はないが、例えば、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)等が挙げられる。これらは単独で又は2種以上組み合わせて用いてもよい。
 スラリー組成物中におけるバインダの含有率は、本発明の目的を損なわない限り、特に制限はないが、例えば、La系複合酸化物粒子に対して0.05~5質量%が好ましい。
 分散剤は、分散媒中のLa系複合酸化物粒子の分散性を高める等の目的で使用される。このような分散剤としては、本発明の目的を損なわない限り、特に制限はないが、例えば、水溶性アクリル酸系分散剤、アニオン系界面活性剤、カチオン系界面活性剤、非イオン系界面活性剤、ポリエチレングリコール(PEG)-ポリプロピレングリコール(PPG)ブロックポリマー、ポリアクリル酸アンモニウム塩、アルキル鎖やポリアルキレングリコール(PAG)鎖を有するポリカルボン酸共重合物等が挙げられる。これらは単独で又は2種以上組み合わせてもちいてもよい。
 スラリー組成物中における分散剤の含有率は、本発明の目的を損なわない限り、特に制限はないが、例えば、La系複合酸化物粒子に対して5質量%以下が好ましい。
 本実施形態のスラリー組成物は、硬化剤を含むことによりコーティング剤として用いることができる。硬化剤としては、揮発性溶媒に合成樹脂が溶解されてなる硬化剤、湿気硬化型の硬化剤、2液混合型の硬化剤、紫外線硬化型の硬化剤等、本発明の目的を損なわない限り、任意の硬化剤を選択できる。硬化剤は、スラリー組成物に含まれるLa系複合酸化物粒子の対象物に対する付着性を向上等させる目的で使用される。紫外線硬化型の硬化剤に用いられる紫外線硬化樹脂としては、例えば、アクリル系紫外線硬化樹脂等が挙げられる。
 スラリー組成物中における紫外線硬化樹脂の含有率は、本発明の目的を損なわない限り、特に制限はないが、例えば、La系複合酸化物粒子に対して5質量%以下が好ましい。
 また、本実施形態のスラリー組成物(コーティング剤)は、顔料を含んでもよい。顔料は、対象物の表面に形成されたLa系複合酸化物粒子を含む塗膜を着色する目的等で使用される。顔料は、水性であってもよく、また、油性であってもよい。顔料としては特に制限はなく、例えば、カーボンブラック、合成樹脂、金属粉、鉱物等が挙げられる。これらは単独で又は2種以上組み合わせて用いてもよい。
 スラリー組成物が付与される対象物としては、特に制限はない。対象物を構成する素材としては、例えば、ガラス、セラミックス、熱可塑性樹脂、熱硬化性樹脂等の合成樹脂、ゴム(天然ゴム、合成ゴム)、本革(天然皮革)、合成皮革、金属又は合金からなる金属系材料、木材、紙、繊維、不織布、シリコン(シリコンウェハ等)、カーボン素材、鉱物等が挙げられる。
 スラリー組成物を対象物に塗布する方法としては、例えば、刷毛、ローラー、ブレードキャスティング、ディッピングを用いることができる。スラリー組成物を対象物に塗布した後に乾燥させる手法としては、自然乾燥、乾燥炉内での加熱等、公知の手法を用いることができる。このとき、La系複合酸化物粒子が凝集することを抑制される手法を選択することが好ましい。
 以下、実施例に基づいて本発明を更に説明する。なお、本発明はこれらの実施例により何ら限定されるものではない。
〔実施例1〕
 ランタン化合物として、La(OH)を用意し、モリブデン化合物として、MoOを用意した。そして、ランタン化合物の原料粉末と、モリブデン化合物の原料粉末とを、モル比で1:1(La:Mo=1:1)となるようにそれぞれ秤量した。秤量後の各原料粉末を、所定量のエタノールと共に混合し、得られた湿式混合物を乾燥することで、混合粉末を得た。
 次いで、前記混合粉末を、大気雰囲気下で、700℃の温度条件で10時間焼成することにより、ランタン化合物とモリブデン化合物との反応物からなる焼成粉末を得た。
 そして、得られた焼成粉末を、ビーズミルで4.5時間粉砕することで、La-Mo系複合酸化物粒子を得た。なお、実施例1のLa-Mo系複合酸化物粒子の中心粒子径は100nm以下であった。前記中心粒子径の測定方法は、後述する。
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、それらの混合物を攪拌することで、実施例1のスラリー組成物を得た。
〔実施例2〕
 分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)したこと以外は、実施例1と同様の方法で、実施例2のスラリー組成物を得た。
〔実施例3〕
 バインダと分散剤とを配合(前記La-Mo系複合酸化物粒子に対して0.1質量%(バインダ)、1質量%(分散剤))したこと以外は、実施例1と同様の方法で、実施例3のスラリー組成物を得た。
〔実施例4〕
 紫外線硬化樹脂と分散剤とを配合(前記La-Mo系複合酸化物粒子に対して0.1質量%(紫外線硬化樹脂)、1質量%(分散剤))したこと以外は、実施例1と同様の方法で、実施例4のスラリー組成物を得た。
〔実施例5〕
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が8質量%となるように、水(分散媒)に対して配合し、かつ分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)したこと以外は、実施例1と同様の方法で、実施例5のスラリー組成物を得た。
〔実施例6〕
 実施例1と同様の方法で、焼成粉末を作製し、その焼成粉末を、ポットミルで90時間粉砕することで、実施例6のLa-Mo系複合酸化物粒子を得た。なお、実施例6のLa-Mo系複合酸化物粒子の中心粒子径は600nmであった。前記中心粒子径の測定方法は、後述する。
 実施例6のLa-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、更に、分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)し、それらの混合物を攪拌することで、実施例6のスラリー組成物を得た。
〔実施例7〕
 実施例1と同様の方法で、焼成粉末を作製し、その焼成粉末を、ビーズミルで4.5時間粉砕することで、実施例7のLa-Mo系複合酸化物粒子を得た。なお、実施例6のLa-Mo系複合酸化物粒子の中心粒子径は150nmであった。
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、エタノール(分散媒)に対して配合し、更に、分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)し、それらの混合物を攪拌することで、実施例7のスラリー組成物を得た。
〔実施例8〕
 実施例1と同様の方法で、焼成粉末を作製し、その焼成粉末を、ポットミルで75時間粉砕することで、実施例8のLa-Mo系複合酸化物粒子を得た。なお、実施例8のLa-Mo系複合酸化物粒子の中心粒子径は800nmであった。
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、更に、分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)し、それらの混合物を攪拌することで、実施例8のスラリー組成物を得た。
〔実施例9〕
 実施例1と同様の方法で、焼成粉末を作製し、その仮焼成粉末を、ポットミルで70時間粉砕することで、実施例9のLa-Mo系複合酸化物粒子を得た。なお、実施例9のLa-Mo系複合酸化物粒子の中心粒子径は800nmであった。
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が10質量%となるように、水(分散媒)に対して配合し、更に、分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)し、それらの混合物を攪拌することで、実施例9のスラリー組成物を得た。
〔実施例10〕
 ランタン化合物として、La(OH)を用意し、モリブデン化合物として、MoOを用意し、タングステン化合物として、WOを用意した。そして、ランタン化合物の原料粉末と、モリブデン化合物の原料粉末と、タングステン化合物の原料粉末とを、モル比で、2:1:1(La:Mo:W=2:1:1)となるようにそれぞれ秤量した。秤量後の各原料粉末を、所定のエタノールと共に混合し、得られた湿式混合物を乾燥することで、混合粉末を得た。
 次いで、前記混合粉末を、大気雰囲気下で、650℃の温度条件で10時間焼成することにより、ランタン化合物、モリブデン化合物、及びタングステン化合物の反応物からなる焼成粉末を得た。
 そして、得られた焼成粉末を、ビーズミルで6時間粉砕することで、La-Mo-W系複合酸化物の粒子を得た。なお、実施例10の前記粒子の中心粒子径は100nm以下であった。
 前記La-Mo-W系複合酸化物の粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、それらの混合物を攪拌することで、実施例10のスラリー組成物を得た。
〔実施例11〕
 ランタン化合物の原料粉末と、モリブデン化合物の原料粉末と、タングステン化合物の原料粉末とを、モル比で、2:1.5:0.5(La:Mo:W=2:1.5:0.5)となるようにそれぞれ秤量して、前記湿式混合物を作製したこと以外は、実施例10と同様の方法で、実施例11のスラリー組成物を得た。
〔実施例12〕
 ランタン化合物の原料粉末と、モリブデン化合物の原料粉末と、タングステン化合物の原料粉末とを、モル比で、2:0.5:1.5(La:Mo:W=2:0.5:1.5)となるようにそれぞれ秤量して、前記湿式混合物を作製したこと以外は、実施例10と同様の方法で、実施例12のスラリー組成物を得た。
〔実施例13〕
 実施例10と同様の方法で、焼成粉末を作製し、その仮焼粉末を、ポットミルで75時間粉砕することで、実施例13のLa-Mo-W系複合酸化物の粒子を得た。なお、実施例13の前記粒子の中心粒子径は800nmであった。
 前記La-Mo-W系複合酸化物の粒子を、最終的に得られるスラリー組成物における固形分濃度が10質量%となるように、水(分散媒)に対して配合し、それらの混合物を攪拌することで、実施例13のスラリー組成物を得た。
〔実施例14〕
 ランタン化合物として、La(OH)を用意し、タングステン化合物として、WOを用意した。そして、ランタン化合物の原料粉末と、タングステン化合物の原料粉末とを、モル比で、1:1(La:W=1:1)となるようにそれぞれ秤量した。秤量後の各原料粉末を、所定のエタノールと共に混合し、得られた湿式混合物を乾燥することで、混合粉末を得た。
 次いで、前記混合粉末を、大気雰囲気下で、700℃の温度条件で10時間焼成することにより、ランタン化合物とタングステン化合物との反応物からなる焼成粉末を得た。
 そして、得られた焼成粉末を、ビーズミルで4.5時間粉砕することで、La-W系複合酸化物の粒子を得た。なお、実施例14の前記粒子の中心粒子径は100nm以下であった。
 前記La-W系複合酸化物の粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、それらの混合物を攪拌することで、実施例14のスラリー組成物を得た。
〔実施例15〕
 実施例14と同様の方法で、焼成粉末を作製し、その焼成粉末を、ポットミルで75時間粉砕することで、実施例15のLa-W系複合酸化物の粒子を得た。なお、実施例15の前記粒子の中心粒子径は800nmであった。
 前記La-W系複合酸化物の粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、それらの混合物を攪拌することで、実施例15のスラリー組成物を得た。
〔比較例1〕
 実施例1と同様の方法で、焼成粉末を作製し、その焼成粉末を、ポットミルで15時間粉砕することで、比較例1のLa-Mo系複合酸化物粒子を得た。なお、比較例1のLa-Mo系複合酸化物粒子の中心粒子径は2300nmであった。
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が1質量%となるように、水(分散媒)に対して配合し、それらの混合物を攪拌することで、比較例1のスラリー組成物を得た。
〔比較例2〕
 実施例1と同様の方法で、焼成粉末を作製し、その焼成粉末を、ポットミルで90時間粉砕することで、比較例2のLa-Mo系複合酸化物粒子を得た。なお、比較例2のLa-Mo系複合酸化物粒子の中心粒子径は600nmであった。
 前記La-Mo系複合酸化物粒子を、最終的に得られるスラリー組成物における固形分濃度が20質量%となるように、水(分散媒)に対して配合し、更に、分散剤を配合(前記La-Mo系複合酸化物粒子に対して1質量%)し、それらの混合物を攪拌することで、比較例2のスラリー組成物を得た。
〔レーザー回折法による中心粒子径(D50)の測定〕
 実施例1~15,及び比較例1~2のLa系複合酸化物(La-Mo系複合酸化物、La-Mo-W系複合酸化物、La-W系複合酸化物)の粒子の中心粒子径(D50)を、レーザー回折式粒度分布装置(型式「LA-950」、株式会社堀場製作所製)を用いて測定した。測定条件は、以下の通りである。
 <測定条件>
 濃度が2質量%のヘキサメタリン酸ナトリウム水溶液を、溶液Aとした。また、濃度が2質量%のヘキサメタリン酸ナトリウム水溶液に、La系複合酸化物粒子(測定対象)を加えると共にホモジナイザーで攪拌して、La系複合酸化物粒子を均一に分散させたものを、溶液Bとした。溶液Aに対して溶液Bを0.5mL滴下して、La系複合酸化物粒子の濃度が1質量%以下であり、かつLa系複合酸化物粒子を単分散させた溶液Cを作製した。そして、この溶液Cを用いて、レーザー回折式粒度分布装置により、中心粒子径として、頻度の累積が50%になる粒子径(D50)を求めた。各実施例等における中心粒子径(D50)の測定結果は、表1に示した。
 なお、実施例1~5におけるLa-Mo系複合酸化物粒子の測定結果(中心粒子径)、実施例10~12におけるLa-Mo-W系複合酸化物粒子の測定結果(中心粒子径)、及び実施例14におけるLa-W系複合酸化物粒子の測定結果(中心粒子径)は、100nm以下となった。そのため、実施例1~5,10~12,14については、下記のように、FE-SEMを利用して、粒子径を測定した。
〔FE-SEMによる粒子径の測定〕
 実施例1~5,10~12,14のLa系複合酸化物粒子の粒子径を、FE-SEMを利用して、以下の手順に従って求めた。ここでは、実施例2のスラリー組成物を、カーボンテープ上に滴下し、それを乾燥させたものを測定対象として使用した。なお、乾燥の際に粒子の凝集を抑制するために、滴下したスラリー組成物に対して、適宜、分散媒(水等)を加えて希釈し、スラリー組成物中の単粒子が観察できるようにした。図1は、実施例2のLa-Mo系複合酸化物粒子(La系複合酸化物粒子)のSEM画像を示す図である。実施例2のLa-Mo系複合酸化物粒子のSEM画像(倍率:10万)を取得し、所定の画像解析ソフトを使用して、SEM画像中から、La-Mo系複合酸化物粒子の複数の単粒子をサンプルとして抽出した。そして、抽出された各単粒子の画像から、それぞれ円相当径(μm)を、解析ソフトWinROOF2018を用いて算出した。このようにして得られた複数の円相当径(μm)の結果から、La-Mo系複合酸化物粒子の粒子径(平均粒子径)を算出した。その結果、実施例1~5のLa-Mo系複合酸化物粉末の粒子径(平均粒子径)は、0.05μm(50nm、参考値))であった。
〔スラリー組成物の外観、及び再分散〕
 図2に示すように、容量が50mlの小瓶に、各スラリー組成物30mlを入れ、卓上超音波洗浄機(製品名「US-KS」、エスエヌディ社製)で10分間超音波振動を与えた。その後、スラリー組成物の外観を、目視で観察し、色、及び沈殿の有無を確認した。また、分散した後におけるLa系複合酸化物粒子の沈降の有無で再分散可否を判断した。結果は、表1に示した。
 また、図2に、実施例1,2の各スラリー組成物の外観写真を示し、図3に、比較例1のスラリー組成物の外観写真を示した。更に、図4に、実施例15のスラリー組成物の外観写真を示した。
〔沈殿〕
 各スラリー組成物に、上記したように超音波振動を加えた後、各スラリー組成物を静置した。静置後10分経過したときの各スラリー組成物の外観を観察することで、沈殿の有無を判断した。
〔スラリー組成物の透過率〕
 実施例2のスラリー組成物の透過率τを、以下に示される方法で求めた。実施例2の組成物の透過率τは、τ=10-aより求められる。式中のaは、スラリー組成物中の固形分の吸光度(absorbance)である。この吸光度aは、a=a-aより求められる。ここで、aは、実施例2のスラリー組成物の吸光度を表し、aは、水のみの吸光度(ブランク)を表す。吸光度a、吸光度aは、紫外・可視分光光度計を利用して、以下に示される測定条件の下、測定した。
 <測定条件>
 測定装置:エル・エム・エス社製、紫外・可視分光光度計(品番:Evolution 201)
 測定領域:360nm~800nm(可視光領域)
 スキャン速度:1200.00nm/min
 データ間隔:1nm
 インテグレーション時間:0.050sec
 バンド幅:1nm
 ベースライン補正:100%T
 図5に、実施例2のスラリー組成物の透過率(%)の結果を示した。図5の横軸は、波長(nm)を表し、縦軸は、透過率(%)を表す。なお、前記透過率(%)の最大値は、100%であり、最小値は、97.6%であった。
〔固定性〕
 ガラス製の基板の表面に、実施例1等の各スラリー組成物2mlを、ピペットを用いて滴下し、分散媒を蒸発させた。なお、実施例4の場合、基板の表面にスラリー組成物を付着させた後、紫外線を30秒間照射した。基板の表面に付着させたスラリー組成物に対して、粘着テープの粘着面を貼り付け、その後、その粘着テープを引き剥がすことにより、基板の表面から、スラリー組成物が剥がれるか否かをSEMで確認した。このようなテープ剥離試験を、各スラリー組成物に対して、それぞれ最大で20回行った。テープ剥離試験の回数が3回以下で、スラリー組成物が剥離した場合、その結果を「1」と表した。また、テープ剥離試験の回数が4回以上10回以下で、スラリー組成物が剥離した場合、その結果を「2」と表した。また、テープ剥離試験の回数が11回以上行っても、スラリー組成物が剥離しない場合、その結果を「3」と表した。結果は、表1に示した。
〔塗布乾燥後の凝集〕
 ガラス製の基板の表面に、実施例1等の各スラリー組成物2mlを、ピペットを用いて滴下した後、分散媒を蒸発させた。走査型電子顕微鏡により、加速電圧5kVで像を取得した。倍率は凝集粒子の大きさにより適宜、調整した。走査型電子顕微鏡により取得した像において、粒子が50μm以上連続している場合を「凝集」と定義した。結果は、表1に示した。図6は、比較例2のLa-Mo系複合酸化物粒子(La系複合酸化物粒子)が基板の表面に付着した状態のSEM画像(倍率:500)を示す図である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~9の各スラリー組成物は、超音波振動を10分間印加した後の状態で再分散可能であった。実施例2,3,4のスラリー組成物は透明であり、実施例1,5,7のスラリー組成物は半透明であり、実施例6,8,9のスラリー組成物は白濁していた。実施例1~9の各スラリー組成物は対象物に塗布可能であった。さらに、実施例1~9の各スラリー組成物は10分間静置された後であっても、La-Mo系複合酸化物粒子の沈殿は観察されなかった。また、実施例1~9の各スラリー組成物については、対象物に塗布した後に分散媒を蒸発させた状態で、粒子が50μm以上連続している状態が観察されず、La-Mo系複合酸化物粒子の凝集は認められなかった。
 一方、比較例1のスラリー組成物は、超音波振動を10分間印加した状態で、La-Mo系複合酸化物粒子と、分散媒とが2層に分離しており、再分散が不可能であった。このため、比較例1のスラリー組成物は対象物に塗布することができなかった。これは、比較例1に係るLa-Mo系複合酸化物粒子の中心粒子径が2300nmであることが原因と考えられる。
 また、比較例2のスラリー組成物は、超音波振動を10分間印加した後の状態で白濁しており、La-Mo系複合酸化物粒子の再分散は可能であった。しかし、超音波振動を印加終了後、10分静置された後の状態では、La-Mo系複合酸化物粒子の沈殿が観察された。また、図5に示されるように、対象物への塗布乾燥後に、La-Mo系複合酸化物粒子の凝集が認められた。これは、比較例2に係るスラリー組成物において、La-Mo系複合酸化物粒子の濃度が20質量%であることが原因と考えられる。
 また、紫外線硬化樹脂を含む実施例4のスラリー組成物は、最も対象物に対する固定性(付着性)に優れることが確かめられた。また、組成物中に、バインダを含む実施例3のスラリー組成物も、ある程度、固定性(付着性)に優れることが確かめられた。
 また、表1に示されるように、実施例10~15の各スラリー組成物は、上述した実施例1等と同様、超音波振動を10分間印加した後の状態で再分散可能であった。実施例10,11,12,14のスラリー組成物は、実施例1等と同様、半透明であり、実施例13,15のスラリー組成物は、実施例9等と同様、白濁していた。実施例10~15の各スラリー組成物は、実施例1等と同様、対象物に塗布可能であった。さらに、実施例10~15の各スラリー組成物は10分間静置された後であっても、La系複合酸化物粒子(La-Mo-W系複合酸化物粒子、La-W系複合酸化物粒子)の沈殿は観察されなかった。また、実施例10~15の各スラリー組成物については、対象物に塗布した後に分散媒を蒸発させた状態で、粒子が50μm以上連続している状態が観察されず、La系複合酸化物粒子の凝集は認められなかった。

Claims (6)

  1.  Laと、Mo及びWからなる群より選ばれる少なくとも1つの元素とを含む複合酸化物の粒子と、分散媒とを含み、
     前記粒子の中心粒子径が、800nm以下であり、
     前記粒子の含有率が、0.1~10質量%であるスラリー組成物。
  2.  前記複合酸化物は、LaMo(2-X)(0≦x≦2)である請求項1に記載のスラリー組成物。
  3.  バインダを含む請求項1又は請求項2に記載のスラリー組成物。
  4.  分散剤を含む請求項1から請求項3の何れか一項に記載のスラリー組成物。
  5.  紫外線硬化樹脂を含む請求項1から請求項4の何れか一項に記載のスラリー組成物。
  6.  請求項1から請求項5の何れか一項に記載のスラリー組成物を含むコーティング剤。
PCT/JP2023/009644 2022-03-17 2023-03-13 スラリー組成物、及びコーティング剤 WO2023176781A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022042579 2022-03-17
JP2022-042579 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176781A1 true WO2023176781A1 (ja) 2023-09-21

Family

ID=88023787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009644 WO2023176781A1 (ja) 2022-03-17 2023-03-13 スラリー組成物、及びコーティング剤

Country Status (1)

Country Link
WO (1) WO2023176781A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417127A (zh) * 2002-12-16 2003-05-14 中国科学院长春应用化学研究所 稀土纳米氧化物的制备方法
US20160096151A1 (en) * 2013-05-23 2016-04-07 Protia As Proton conducting ceramic membrane
WO2019054478A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
WO2020017493A1 (ja) * 2018-07-18 2020-01-23 国立大学法人東京工業大学 複合酸化物セラミックス及びその製造方法、並びに物品
JP2022001543A (ja) * 2020-06-22 2022-01-06 日本特殊陶業株式会社 ランタン・モリブデン複合酸化物粉末の製造方法及び焼結体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1417127A (zh) * 2002-12-16 2003-05-14 中国科学院长春应用化学研究所 稀土纳米氧化物的制备方法
US20160096151A1 (en) * 2013-05-23 2016-04-07 Protia As Proton conducting ceramic membrane
WO2019054478A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
WO2020017493A1 (ja) * 2018-07-18 2020-01-23 国立大学法人東京工業大学 複合酸化物セラミックス及びその製造方法、並びに物品
JP2022001543A (ja) * 2020-06-22 2022-01-06 日本特殊陶業株式会社 ランタン・モリブデン複合酸化物粉末の製造方法及び焼結体の製造方法

Similar Documents

Publication Publication Date Title
US8088859B2 (en) Method for producing water-repellent treated aluminum pigment dispersion, water-repellent treated aluminum pigment, and aqueous ink composition containing the same
TWI461491B (zh) 分散液以及噴墨墨水與其形成方法
JP2009197325A (ja) 金属ナノ粒子分散液及びその製造方法
JPH05504122A (ja) 改良されたセラミック誘電体組成物および焼結性を改良する方法
TWI681930B (zh) 矽酸鎂懸浮液,其製造方法及其作為磷光體之用途
JP2736680B2 (ja) 黒色顔料粒子粉末
TW201634396A (zh) 近紅外線吸收微粒子分散液及其製造方法
TWI355407B (en) Powder coating precursors and the use thereof in p
TW201634397A (zh) 近紅外線吸收微粒子分散液及其製造方法
WO2023176781A1 (ja) スラリー組成物、及びコーティング剤
JP2022043763A (ja) スプレー用組成物、及びスプレー製品
JP2011105587A (ja) 鱗片状ガラス及びその製造方法
WO2018066717A1 (ja) 有機顔料組成物の製造方法、塗膜の製造方法及び塗膜の輝度の評価方法
JP6892902B2 (ja) アルミニウム顔料、アルミニウム顔料の製造方法、アルミニウム顔料を含む塗料組成物、塗膜、当該塗膜を有する物品、インキ組成物、及び印刷物
KR20240070663A (ko) 슬러리 조성물 및 코팅제
JP2020023419A (ja) 薄片状チタン酸の有機溶剤分散体およびその製造方法並びにその用途
KR20200019844A (ko) 근적외선 경화형 잉크 조성물과 그의 제조 방법, 근적외선 경화막 및 광조형법
CN113853410B (zh) 含红外线吸收微粒的组合物及其制造方法
JPH083550A (ja) 強い発光輝度を示す赤外線感知透明膜形成用塗料
JP2001271007A (ja) 微粒子金属酸化物顔料水分散液
Heydari et al. Effect of solvents and dispersants on polyol synthesis of V–ZrSiO 4 nanopigment stable suspension for ink application
JPH11343443A (ja) 水性顔料組成物
JP2011178845A (ja) ニッケル微粒子含有インクジェット用組成物
JP2008235846A (ja) 太陽電池の電極形成用組成物及び該電極の形成方法並びに該形成方法により得られた電極を用いた太陽電池
JP6982963B2 (ja) リーフィングアルミニウム顔料、リーフィングアルミニウム顔料の製造方法、リーフィングアルミニウム顔料を含む塗料組成物、塗膜、当該塗膜を有する物品、インキ組成物、及び印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247014426

Country of ref document: KR

Kind code of ref document: A