WO2023176623A1 - 切削工具及び切削加工物の製造方法 - Google Patents

切削工具及び切削加工物の製造方法 Download PDF

Info

Publication number
WO2023176623A1
WO2023176623A1 PCT/JP2023/008802 JP2023008802W WO2023176623A1 WO 2023176623 A1 WO2023176623 A1 WO 2023176623A1 JP 2023008802 W JP2023008802 W JP 2023008802W WO 2023176623 A1 WO2023176623 A1 WO 2023176623A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
cutting tool
cutting
rotation axis
outer periphery
Prior art date
Application number
PCT/JP2023/008802
Other languages
English (en)
French (fr)
Inventor
翔生 呉藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023176623A1 publication Critical patent/WO2023176623A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/03Boring heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter

Definitions

  • the present disclosure relates to a method for manufacturing a cutting tool and a cut workpiece.
  • An example of a cutting tool is a so-called rotary tool.
  • Rotary tools include milling tools and boring tools.
  • the boring tool can be used to cut the inner peripheral surface of a cylindrical workpiece.
  • Rotary tools described in Patent Documents 1 to 3 are known as cutting tools.
  • a rotary tool When a rotary tool is used as a milling tool, chips move toward the outer circumference and are discharged to the outside.
  • the rotary tool when the rotary tool is used as a boring tool, the chips move toward the rear end and are discharged to the outside. Therefore, it is necessary to ensure both space for the chips to be discharged and strength of the cut portion.
  • the cutting tool described in Patent Document 3 has a rim that connects a plurality of pockets to which cutting inserts are attached.
  • the frame is spaced apart from the central hub to allow chips to flow into the gap between the frame and the central hub.
  • a cutting tool includes a cylindrical shaft extending along a rotational axis from a tip to a rear end, and an end of the outer periphery that protrudes from the shaft toward an outer periphery. a first protrusion having a first cutting edge at a portion thereof; a second protrusion protruding from the shaft toward an outer periphery and having a second cutting edge at an end of the outer periphery; and a first beam connected to the first protrusion and the second protrusion.
  • the second protrusion is located behind the first protrusion in the rotational direction of the rotating shaft, and the first beam is a convex protruding toward the outer periphery when viewed from the tip side. It is the shape.
  • FIG. 1 is a perspective view of a cutting tool according to a non-limiting embodiment of the present disclosure, viewed from the tip side.
  • FIG. 2 is a perspective view of the cutting tool shown in FIG. 1 viewed from the rear end side.
  • FIG. 2 is a front view of the cutting tool shown in FIG. 1 viewed from the tip side.
  • FIG. 2 is a rear view of the cutting tool shown in FIG. 1 when viewed from the rear end side.
  • FIG. 4 is a side view of the cutting tool shown in FIG. 1 viewed from the direction of arrow Y1 shown in FIG. 3;
  • FIG. 4 is a side view of the cutting tool shown in FIG. 1 viewed from the direction of arrow Y2 shown in FIG.
  • FIG. (a) to (c) are schematic cross-sectional views showing the shape of the first beam according to the embodiment.
  • (d) is a schematic cross-sectional view showing the shape of the first beam according to the reference example. It is a typical perspective view showing the cross-sectional shape of a 1st beam.
  • FIG. 2 is a schematic explanatory diagram illustrating one step of a method for manufacturing a cut workpiece according to a non-limiting embodiment of the present disclosure.
  • FIG. 2 is a schematic explanatory diagram illustrating one step of a method for manufacturing a cut workpiece according to a non-limiting embodiment of the present disclosure.
  • FIG. 2 is a schematic explanatory diagram illustrating one step of a method for manufacturing a cut workpiece according to a non-limiting embodiment of the present disclosure.
  • the frame has a linear shape when viewed from the tip side. Therefore, the gap between the frame and the center member becomes narrower, and there is a need for improved chip evacuation. Furthermore, when the cutting tool is used as a boring tool, a gap may be created between the workpiece and the frame, and this gap may become clogged with chips. Therefore, there is a need for a highly versatile cutting tool that can smoothly discharge chips to the outside even when used as a boring tool.
  • the present disclosure relates to a cutting tool with excellent chip evacuation properties.
  • each figure referred to below shows only the main members necessary for explaining the embodiment in a simplified manner. Accordingly, the cutting tool may include any components not shown in the figures referred to. Further, the dimensions of the members in each figure do not faithfully represent the dimensions of the actual constituent members and the dimensional ratios of each member.
  • the cutting tool 10 is, for example, a rotating tool, and a specific example is a boring tool.
  • the boring tool can be used to cut the inner peripheral surface of a cylindrical workpiece.
  • the side of the cutting tool 10 where the fourth cutting edge 85a is located will be referred to as the front end side, and the side opposite to the front end side will be referred to as the rear end side.
  • FIG. 1 is a perspective view of a cutting tool 10 according to Embodiment 1, viewed from the tip side.
  • FIG. 2 is a perspective view of the cutting tool 10 shown in FIG. 1 viewed from the rear end side.
  • FIG. 3 is a front view of the cutting tool 10 shown in FIG. 1 viewed from the tip side.
  • FIG. 4 is a rear view of the cutting tool 10 shown in FIG. 1 viewed from the rear end side.
  • FIG. 5 is a side view of the cutting tool 10 shown in FIG. 1 viewed from the direction of arrow Y1 shown in FIG.
  • FIG. 6 is a side view of the cutting tool 10 shown in FIG. 1 viewed from the direction of arrow Y2 shown in FIG.
  • FIG. 1 is a perspective view of a cutting tool 10 according to Embodiment 1, viewed from the tip side.
  • FIG. 2 is a perspective view of the cutting tool 10 shown in FIG. 1 viewed from the rear end side.
  • FIG. 3 is a front view of the cutting tool 10
  • FIG. 7 is a sectional view taken along the line VII-VII shown in FIG.
  • FIG. 8 is a sectional view taken along the line VIII-VIII shown in FIG. 9 is a sectional view taken along the line IX-IX shown in FIG. 6.
  • FIG. 10 is a sectional view taken along the line XX shown in FIG.
  • a cutting tool 10 as a non-limiting example shown in FIGS. 1 to 10 includes a shaft portion 1, a first protrusion 2, a second protrusion 3, a first beam 4, a third protrusion 5, and a fourth It may also include a protrusion 6, a second beam 7, and a fifth protrusion 8.
  • the material of the shaft portion 1, the first protrusion 2, the second protrusion 3, the first beam 4, the third protrusion 5, the fourth protrusion 6, the second beam 7, and the fifth protrusion 8 in the cutting tool 10 examples include steel such as stainless steel, cast iron, and aluminum alloy.
  • the above-mentioned members have high toughness.
  • These members may be constructed integrally or individually. When these members are constructed individually, the cutting tool 10 may be constructed by assembling these members.
  • the shaft portion 1 may have a cylindrical shape extending from the tip 1a toward the rear end 1b along the rotation axis (center axis) L of the cutting tool 10.
  • the size of the shaft portion 1 is not particularly limited.
  • the length in the direction along the rotation axis L can be set to about 150 mm to 300 mm.
  • the diameter corresponding to the thickness of the shaft portion 1 can be set to about 50 mm to 120 mm.
  • the first protruding portion 2 protrudes from the shaft portion 1 toward the outer periphery.
  • the first protrusion 2 is not limited to a configuration extending in a direction perpendicular to the rotation axis L, as shown in FIGS. 1 and 3.
  • the first protrusion 2 may extend obliquely with respect to the rotation axis L.
  • the first protrusion 2 may have a distal end surface 21, an outer circumferential surface 22, a pocket 23, a cartridge 24, a cutting insert 25, a first cutting edge 25a, and a rear end surface 26.
  • the distal end surface 21 may be located on the distal end 1a side of the shaft portion 1 and on the outer peripheral side of the shaft portion 1.
  • the tip surface 21 is not limited to a configuration perpendicular to the rotation axis L.
  • the tip surface 21 may be configured to be inclined with respect to the rotation axis L.
  • the rear end surface 26 may be located on the rear end 1b side of the shaft portion 1 and on the outer peripheral side of the shaft portion 1.
  • the rear end surface 26 is not limited to a configuration perpendicular to the rotation axis L.
  • the rear end surface 26 may be configured to be inclined with respect to the rotation axis L.
  • the outer circumferential surface 22 may connect the distal end surface 21 and the rear end surface 26 and form a curved surface along the outer circumference of the shaft portion 1.
  • the pocket 23 may be located on the side of the tip 1a of the outer circumferential surface 22.
  • the pocket 23 may be formed by cutting out the outer circumferential surface 22 in the front direction in the rotational direction T, leaving a portion on the rear end surface 26 side.
  • the pocket 23 may be continuous with the distal end surface 21, or may extend from the distal end surface 21 toward the rear end 1b.
  • a cartridge 24 can be attached to the pocket 23.
  • the cartridge 24 located in the pocket 23 is not limited to a specific shape.
  • the cartridge 24 may have a rectangular plate shape.
  • the cartridge 24 may extend from the distal end surface 21 toward the rear end 1b.
  • the cutting insert 25 may be located on the distal end surface 21 side (the end of the outer periphery) of the cartridge 24.
  • the shape of the cutting insert 25 may be a rod shape, a polygonal plate shape, or a polygonal column shape. In this embodiment, the cutting insert 25 has a rhombic plate shape, as shown in FIG.
  • Examples of the material of the cutting insert 25 include cemented carbide and cermet.
  • Examples of the composition of the cemented carbide include WC-Co, WC-TiC-Co, and WC-TiC-TaC-Co.
  • WC, TiC, and TaC may be hard particles
  • Co may be a binder phase.
  • the cermet may be a sintered composite material in which a metal is combined with a ceramic component.
  • cermets include titanium compounds containing titanium carbide (TiC) or titanium nitride (TiN) as a main component.
  • TiC titanium carbide
  • TiN titanium nitride
  • the material of the cutting insert 25 is not limited to the above composition.
  • the surface of cutting insert 25 may be coated with a coating formed using chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • the composition of the film may include titanium carbide (TiC), titanium nitride (TiN), titanium carbonitride (TiCN), alumina (Al 2 O 3 ), and the like.
  • the first cutting edge 25a may be located at the intersection of two side surfaces that sandwich the apex on the tip 1a side of the cutting insert 25. Cutting can be performed by bringing this first cutting edge 25a into contact with a workpiece 103, which will be described later.
  • the cutting tool 10 may have two or more first protrusions 2.
  • the two first protrusions 2 may be positioned opposite to each other with respect to the rotation axis L, and may be arranged point-symmetrically. As shown in FIGS. 1 and 3, in this embodiment, two first protrusions 2 are arranged to face each other with respect to the rotation axis L.
  • the second protruding portion 3 protrudes from the shaft portion 1 toward the outer periphery.
  • the second protrusion 3 is not limited to a configuration extending in a direction perpendicular to the rotation axis L, as shown in FIGS. 1 and 3.
  • the second protrusion 3 may extend obliquely with respect to the rotation axis L.
  • the second protrusion 3 may have a distal end surface 31, an outer circumferential surface 32, a pocket 33, a cartridge 34, a cutting insert 35, a second cutting edge 35a, and a rear end surface 36.
  • the distal end surface 31 may be located on the distal end 1a side of the shaft portion 1 and on the outer peripheral side of the shaft portion 1.
  • the tip surface 31 is not limited to a configuration perpendicular to the rotation axis L.
  • the tip surface 31 may be configured to be inclined with respect to the rotation axis L.
  • the rear end surface 36 may be located on the rear end 1b side of the shaft portion 1 and on the outer peripheral side of the shaft portion 1.
  • the rear end surface 36 is not limited to a configuration perpendicular to the rotation axis L.
  • the rear end surface 36 may be configured to be inclined with respect to the rotation axis L.
  • the outer circumferential surface 32 may connect the distal end surface 31 and the rear end surface 36 and form a curved surface along the outer circumference of the shaft portion 1.
  • the pocket 33 may be located on the tip 1a side of the outer peripheral surface 32.
  • the pocket 23 may be formed by cutting out the outer circumferential surface 32 in the front direction in the rotation direction T, leaving a portion on the rear end surface 36 side.
  • the pocket 23 may be continuous with the distal end surface 31, or may extend from the distal end surface 31 toward the rear end 1b.
  • a cartridge 34 can be attached to the pocket 33.
  • the cartridge 34 located in the pocket 33 is not limited to a specific shape.
  • the cartridge 34 may have a rectangular plate shape.
  • the cartridge 34 may extend from the distal end surface 31 toward the rear end 1b.
  • the cutting insert 35 may be located on the distal end surface 31 side (the end of the outer periphery) of the cartridge 34.
  • the shape of the cutting insert 35 may be a rod shape, a polygonal plate shape, or a polygonal column shape. In this embodiment, the cutting insert 35 has a triangular plate shape, as shown in FIG.
  • the material of the cutting insert 35 is the same as that of the cutting insert 25.
  • the second cutting edge 35a may be located at the intersection of two side surfaces that sandwich the apex on the tip 1a side of the cutting insert 35.
  • the cutting tool 10 may have two or more second protrusions 3.
  • the two second protrusions 3 may be positioned opposite to each other with respect to the central axis, and may be arranged point-symmetrically. As shown in FIGS. 1 and 3, in this embodiment, two second protrusions 3 are arranged to face each other with respect to the rotation axis L.
  • the second protrusion 3 may be located at the rear of the first protrusion 2 in the rotational direction T of the rotation axis L.
  • the first protrusion 2 and the second protrusion 3 that are not connected by the first beam 4, which will be described later, may be adjacent to each other in the circumferential direction of the cutting tool 10, as shown in FIGS. 1 to 3.
  • the first protrusion 2 and the second protrusion 3 may be connected via a recess that is depressed toward the center of the shaft portion 1 (rotation axis L).
  • the first beam 4 is located apart from the shaft portion 1 and is connected to the first protrusion 2 and the second protrusion 3.
  • the second protrusion 3 is located behind the first protrusion 2 in the rotation direction T.
  • the first beam 4 may have a convex shape that protrudes outward when viewed from the tip 1a.
  • FIG. 11 is a diagram showing the relationship between the shape of the first beam 4 and the cutting load applied to the first beam 4 in each shape according to the embodiment and the reference example.
  • the shape of the first beam 4 according to the embodiment is illustrated in (a) to (c) in FIG. 11, and the shape of the first beam 4 according to the reference example is illustrated in (d) in FIG. Ru.
  • the first protrusion 2 and the second protrusion 3 connected by the first beam 4 are arranged at 90 degrees when viewed from the tip 1a of the shaft 1. It is assumed that
  • the first beam 4 may have a convex curved shape curved toward the outer periphery, as shown by reference numeral 1102 in FIG. 11 (FIG. 11(b)).
  • S indicates the circumscribed circle of the cutting tool 10 when viewed from the tip 1a side, in other words, the circumscribed circle that the cutting edge of the cutting tool 10 touches.
  • the first beam 4 may have an arc shape curved toward the outer periphery, as shown by reference numeral 1101 in FIG. 11 (FIG. 11(a)).
  • the circular arc is a shape that follows the circumscribed circle of the cutting tool 10 when viewed from the tip 1a side, in other words, the circumscribed circle S that the cutting edge of the cutting tool 10 touches when the circumscribed circle S is set. It's okay.
  • the first beam 4 may have a shape in which a straight line is bent, as shown by reference numeral 1103 in FIG. 11 (FIG. 11(c)).
  • the first beam 4 only needs to have a convex shape that protrudes outward, and the part that protrudes most toward the outer periphery is inside the circumscribed circle S. Therefore, as shown by reference numeral 1103 in FIG. 11 (FIG. 11(c)), it may have a polygonal line shape instead of a curved shape.
  • the gap between the shaft portion 1 and the first beam 4 can be made wider. As a result, chips flow easily through this gap. Further, since the gaps between the first beam 4 and the circumscribed circle S shown by reference numerals 1101 to 1103 are smaller than the gaps between the beam 14 and the circumscribed circle S shown by the reference numeral 1104, the gaps are less likely to be clogged with chips. Moreover, since a large amount of chips can be flowed inside the first beam 4 and the amount of chips flowing outside the first beam 4, where the machined surface is located, can be reduced, the possibility of damaging the machined surface can be reduced.
  • the main component of the cutting load generated at the first cutting edge 25a is applied toward the rear of the cutting tool 10 in the rotation direction T.
  • the angle formed between the extending direction of the first beam 4 and the direction of the principal component force at the portion of the first beam 4 indicated by reference numerals 1101 to 1103 connected to the first protrusion 2 is the angle formed by the linear beam 14 indicated by reference numeral 1104. is smaller compared to the angle at . That is, it becomes easier for the first beam 4 to receive the principal component force. Therefore, in addition to the chip evacuation performance, the durability of the cutting tool 10 is also improved.
  • the angle formed between the extending direction and the direction of the principal component force becomes smaller, it is easier to absorb the applied cutting load. Furthermore, there is little risk of chips getting caught between the first beam 4 and the machined surface.
  • a load is easily applied to the bent portion. As the shape changes from the polygonal line shape shown at 1103 to the convex curve shape shown at 1102 to the arc shape shown at 1101, it becomes easier to absorb the cutting load. Further, since a curved shape is more easily bent than a broken line shape, the bending increases the ability to absorb a load, resulting in excellent durability.
  • the first beam 4 When the first beam 4 has an arc shape like the reference numeral 1101 in FIG. 11, it is easier for the first beam 4 to absorb the cutting load. There is less risk of chips getting caught between the first beam 4 and the machined surface, and the possibility that the first beam 4 will come into contact with the workpiece 103 during cutting is reduced compared to the first beam 4 indicated by reference numeral 1102. .
  • the first beam 4 may have a distal end surface 41, an outer circumferential surface 42, and a rear end surface 43.
  • the tip surface 41 is located on the side of the tip 1a of the shaft portion 1.
  • the rear end surface 43 is located on the rear end 1b side of the shaft portion 1.
  • the outer circumferential surface 32 is a surface that connects the distal end surface 31 and the rear end surface 36.
  • FIG. 12 is a schematic perspective view showing the cross-sectional shape of the first beam 4.
  • dimension a is a dimension in a direction along the rotation axis L
  • dimension b is a dimension in a direction perpendicular to the rotation axis L.
  • a cross section 44 of the first beam 4 indicated by reference numeral 1201 in FIG. 12 has a substantially square shape in which dimensions a and b are substantially equal.
  • the cross section 44 of the first beam 4 indicated by reference numeral 1202 in FIG. 12 has a substantially rectangular shape with dimension a smaller than dimension b. That is, it is a flat shape in which the dimension a in the direction along the rotation axis L is smaller than the dimension b in the direction perpendicular to the rotation axis L. In this case, the first beam 4 is less likely to bend in the radial direction and less likely to come into contact with the machined surface of the workpiece 103. The effect of pushing out chips toward the rear end 1b is also great.
  • the cross section 44 of the first beam 4 indicated by reference numeral 1203 in FIG. 12 has a substantially rectangular shape with dimension a larger than dimension b. In other words, it is a flat shape in which the dimension a in the direction along the rotation axis L is larger than the dimension b in the direction perpendicular to the rotation axis L. In this case, the space on the inner peripheral side of the first beam 4 can be increased.
  • the cross section 44 of the first beam 4 indicated by reference numeral 1204 in FIG. 12 has a substantially trapezoidal shape in which the dimension a is larger on the outer circumferential side than on the inner circumferential side.
  • the dimension a2 on the outer circumferential side is larger than the dimension a1 on the inner circumferential side.
  • the first beam 4 is less likely to bend in the radial direction. When the chips flow backward, they are directed toward the inner circumference rather than the outer circumference where the machined surface is, making it difficult for them to come into contact with the machined surface.
  • the interval m can be increased to easily ensure a space for the chips to flow.
  • the distance k between the circumscribed circle S and the first beam 4 is It may be narrower than the interval m between the beams 4. In this case, the space formed between the machined surface and the first beam 4 can be made small, so that chips can be difficult to get caught between the first beam 4 and the machined surface.
  • the first beam 4 may approach the rear end 1b as it approaches the second protrusion 3. That is, as shown in FIG. 5, the rear end surface 43 is inclined obliquely from the tip 1a toward the rear end 1b. In this case, when the cutting tool 10 is rotated, the chips tend to flow in a screw-like manner toward the rear end 1b. Even when coolant is used, it is easy to encourage the coolant to flow toward the rear end 1b side, and it is easy to discharge chips.
  • the first beam 4 may move away from the tip 1a as it approaches the second protrusion 3. That is, as shown in FIG. 5, the distal end surface 41 is obliquely inclined from the distal end 1a toward the rear end 1b. In this case, a space can be secured for the chips generated by the second cutting edge 35a to flow.
  • a chip pocket 45 is formed at the connection portion of the first beam 4 with the second protrusion 3, and chips generated from the second cutting edge 35a can easily flow through the chip pocket 45 to the rear end 1b.
  • the first cutting edge 25a of the first protrusion 2 is It is possible to properly receive the principal component force and efficiently discharge chips generated by the second cutting edge 35a.
  • the third protruding portion 5 protrudes from the shaft portion 1 toward the outer periphery.
  • the third protrusion 5 is not limited to a configuration extending in a direction perpendicular to the rotation axis L, as shown in FIG.
  • the third protrusion 5 may extend obliquely with respect to the rotation axis L.
  • the third protrusion 5 may have a distal end surface 51, an outer peripheral surface 52, a pocket 53, a cartridge 54, a cutting insert 55, a third cutting edge 55a, and a rear end surface 56.
  • the tip surface 51 may be located on the side of the tip 1a of the shaft portion 1.
  • the tip surface 51 may be perpendicular to the rotation axis L, or may be inclined with respect to the rotation axis L.
  • the rear end surface 56 may be located on the side of the rear end 1b of the shaft portion 1.
  • the rear end surface 56 may be perpendicular to the rotation axis L or may be inclined with respect to the rotation axis L.
  • the outer circumferential surface 52 connects the distal end surface 51 and the rear end surface 56 and may be curved along the outer circumference of the shaft portion 1.
  • the pocket 53 may be located on the tip 1a side of the outer circumferential surface 52.
  • the pocket 53 is formed by cutting out the upper third protrusion 5 in FIGS. 1 and 2 in the front direction of the rotational direction T of the outer circumferential surface 52, leaving a portion on the rear end surface 56 side. may be done.
  • the pocket 53 may be continuous with the distal end surface 31, or may extend from the distal end surface 51 toward the rear end 1b.
  • a cartridge 54 can be attached to the pocket 53.
  • the cartridge 54 located in the pocket 53 is not limited to a specific shape.
  • the cartridge 54 may have a rectangular plate shape.
  • the cartridge 54 may extend from the distal end surface 51 toward the rear end 1b.
  • the cutting insert 55 may be located on the distal end surface 51 side (the end of the outer periphery) of the cartridge 54.
  • the shape of the cutting insert 55 may be a rod shape, a polygonal plate shape, or a polygonal column shape. In this embodiment, the cutting insert 55 has a triangular plate shape, as shown in FIG.
  • the material of the cutting insert 55 is the same as that of the cutting insert 25.
  • the third cutting edge 55a may be located at the intersection of two side surfaces that sandwich the apex on the tip 1a side of the cutting insert 55.
  • the cutting tool 10 may have two or more third protrusions 5.
  • the two third protrusions 5 may be positioned opposite to each other with respect to the rotation axis L, and may be arranged point-symmetrically. As shown in FIG. 2, in this embodiment, two third protrusions 5 are arranged to face each other with respect to the rotation axis L.
  • the fourth protrusion 6 protrudes from the shaft portion 1 toward the outer periphery.
  • the fourth protrusion 6 is not limited to a configuration in which it extends in a direction perpendicular to the rotation axis L, as shown in FIG.
  • the fourth protrusion 6 may extend obliquely with respect to the rotation axis L.
  • the fourth protrusion 6 may have a distal end surface 61, an outer circumferential surface 62, and a rear end surface 63.
  • the tip surface 61 may be located on the side of the tip 1a of the shaft portion 1.
  • the tip surface 61 may be perpendicular to the rotation axis L, or may be inclined with respect to the rotation axis L.
  • the rear end surface 63 may be located on the rear end 1b side of the shaft portion 1.
  • the rear end surface 63 may be perpendicular to the rotation axis L, or may be inclined with respect to the rotation axis L.
  • the outer circumferential surface 62 may connect the distal end surface 61 and the rear end surface 63 and form a curved surface along the outer circumference of the shaft portion 1 .
  • the cutting tool 10 may have two or more fourth protrusions 6.
  • the two fourth protrusions 6 may be positioned opposite to each other with respect to the central axis, and may be arranged point-symmetrically.
  • two third protrusions 5 are arranged to face each other with respect to the rotation axis L.
  • the fourth protrusion 6 may be located at the rear of the third protrusion 5 in the rotational direction of the rotation axis L.
  • the third protrusion 5 and the fourth protrusion 6 may be located closer to the rear end 1b than the first protrusion 2 and the second protrusion 3.
  • the third protrusion 5 and the fourth protrusion 6 may be adjacent to each other in the circumferential direction of the cutting tool 10 shown in FIG. 3 . Further, the third protrusion 5 and the fourth protrusion 6 may be connected in the circumferential direction of the cutting tool 10.
  • the second beam 7 is located apart from the shaft portion 1 and is connected to the third protrusion 5 and the fourth protrusion 6.
  • the second beam 7 may have a convex shape protruding toward the outer periphery when viewed from the tip 1a side.
  • the gap between the shaft portion 1 and the second beam 7 can be made wider than when the second beam 7 has a straight shape. As a result, chips flow easily through this gap.
  • the first beam 4 may approach the rear end 1b as it approaches the second protrusion 3, and the second beam 7 may extend in a direction perpendicular to the rotation axis L.
  • Main cutting is performed by the first cutting edge 25a and the second cutting edge 35a on the tip 1a side. Since the third cutting edge 55a on the rear end 1b side is for finishing cutting, the fourth protrusion 6 does not need to have a cutting edge. Therefore, there is no need to form a space (chip pocket) in which chips flow in the fourth protrusion 6.
  • the fifth protrusion 8 protrudes from the shaft 1 toward the outer periphery at the tip 1a of the shaft 1.
  • the fifth protrusion 8 is not limited to a configuration extending in a direction perpendicular to the rotation axis L, as shown in FIGS. 1 and 3.
  • the fifth protrusion 8 may extend obliquely with respect to the rotation axis L.
  • the fifth protruding portion 8 may include a distal end surface 81, an outer circumferential surface 82, a pocket 83, a cartridge 84, a cutting insert 85, and a fourth cutting edge 85a.
  • the tip surface 81 may be located on the side of the tip 1a of the shaft portion 1.
  • the tip surface 81 may be perpendicular to the rotation axis L or may be inclined with respect to the rotation axis L.
  • the outer circumferential surface 82 is located on the outer circumferential side of the fifth protrusion 8 and may have a curved shape along the outer circumference of the shaft portion 1.
  • the pocket 83 may be formed, for example, in the front direction of the rotation direction T of the outer peripheral surface 82 in the upper fifth protrusion 8 in FIGS. 1 and 2.
  • the pocket 83 may be continuous with the distal end surface 81, or may extend from the distal end surface 81 toward the rear end 1b.
  • a cartridge 84 can be attached to the pocket 83.
  • the cartridge 84 located in the pocket 83 is not limited to a specific shape.
  • the cartridge 84 may have a rectangular plate shape.
  • the cartridge 84 may extend from the distal end surface 81 toward the rear end 1b.
  • the cutting insert 85 may be located on the distal end surface 81 side of the cartridge 84.
  • the shape of the cutting insert 85 may be a rod shape, a polygonal plate shape, or a polygonal column shape. In this embodiment, the cutting insert 85 has a diamond-shaped plate shape, as shown in FIG.
  • the material of the cutting insert 85 is the same as that of the cutting insert 25.
  • the fourth cutting edge 85a may be located at the intersection of two side surfaces that sandwich the apex on the tip 1a side of the cutting insert 55.
  • the cutting tool 10 may have two or more fifth protrusions 8.
  • the two fifth protrusions 8 may be positioned opposite to each other with respect to the central axis, and may be arranged point-symmetrically.
  • the fifth protrusion 8 may be located in line with the first protrusion 2 in the radial direction, as shown in FIG. 3 .
  • the cut workpiece 101 is produced by cutting a workpiece 103.
  • the method for manufacturing the cut workpiece 101 in the embodiment includes the following steps. That is, (1) a step of rotating the cutting tool 10; (2) a step of bringing the cutting tool 10 into contact with the workpiece 103; (3) a step of separating the cutting tool 10 from the workpiece 103; Equipped with
  • the cutting tool 10 may be rotated around the rotation axis L and brought relatively close to the workpiece 103.
  • the workpiece 103 may be cut by bringing at least a portion of the cutting edge of the cutting tool 10 into contact with the workpiece 103.
  • the cutting tool 10 may be moved relatively away from the workpiece 103 (cutting workpiece 101).
  • the cutting tool 10 may be brought closer to the workpiece 103 by moving the cutting tool 10 in a rotated state in the forward direction, in other words, in the downward direction in FIG.
  • the workpiece 103 may be cut by moving the cutting tool 10 forward with at least a portion of the cutting blade in contact with the workpiece 103.
  • the cutting tool 10 may be moved away from the workpiece 103 by moving the cutting tool 10 backward, in other words, upward in FIG. 13 while it is being rotated.
  • the cutting tool 10 is brought into contact with the work material 103 or separated from the work material 103 by moving the cutting tool 10, but the present invention is not limited to this case.
  • the workpiece 103 may be brought closer to the cutting tool 10.
  • the workpiece 103 may be moved away from the cutting tool 10.
  • the cutting tool 10 may be kept in a rotated state and the process of bringing at least a portion of the cutting edge into contact with different locations on the workpiece 103 may be repeated.
  • Typical examples of the material of the work material 103 include hardened steel, carbon steel, alloy steel, stainless steel, cast iron, and non-ferrous metals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

切削工具は、円柱形状の軸部と、軸部から外周に向かって突出し、且つ、外周の端部に第1切刃を有する第1突出部と、軸部から外周に向かって突出し、且つ、外周の端部に第2切刃を有する第2突出部と、軸部から離れて位置し、第1突出部及び第2突出部に接続された第1梁と、を有する。第2突出部が、第1突出部に対して回転軸の回転方向の後方に位置し、先端の側から見た場合に、第1梁が、外周に向かって突出した凸形状である。

Description

切削工具及び切削加工物の製造方法
 本開示は、切削工具及び切削加工物の製造方法に関する。切削工具の一例として、いわゆる回転工具が挙げられる。回転工具として、フライス工具及びボーリング工具が挙げられる。ボーリング工具は、円筒形状の被削材における内周面の切削加工に用いられ得る。
 切削工具として、特許文献1~3に記載の回転工具が知られている。回転工具をフライス工具として用いる場合においては、切屑が外周側へと進むことで外部に排出される。一方、回転工具をボーリング工具として用いる場合においては、切屑が後端側へと進むことで外部に排出される。そのため、切屑が排出されるスペース確保と、切削部分の強度確保との両立を図る必要がある。例えば特許文献3に記載の切削工具は、切削インサートが取り付けられる複数のポケットを接続する枠(rim)を有する。枠は、中心部材(central hub)から離れており、枠及び中心部材の間の隙間に切屑が流れることが可能である。
日本国特表2019-511385号公報 米国特許公開公報第2021/0060665号 米国特許公開公報第2014/0161543号
 本開示の限定されない一態様に基づく切削工具は、先端から後端に向かって回転軸に沿って延びた円柱形状の軸部と、前記軸部から外周に向かって突出し、且つ、前記外周の端部に第1切刃を有する第1突出部と、前記軸部から外周に向かって突出し、且つ、前記外周の端部に第2切刃を有する第2突出部と、前記軸部から離れて位置し、前記第1突出部及び第2突出部に接続された第1梁と、を有する。前記第2突出部が、前記第1突出部に対して前記回転軸の回転方向の後方に位置し、前記先端の側から見た場合に、前記第1梁が、外周に向かって突出した凸形状である。
本開示の限定されない実施形態に係る切削工具を示す先端側から見た斜視図である。 図1に示す切削工具を後端側から見た斜視図である。 図1に示す切削工具を先端側から見た正面図である。 図1に示す切削工具を後端側から見た背面図である。 図1に示す切削工具を図3に示す矢印Y1の方向から見た側面図である。 図1に示す切削工具を図3に示す矢印Y2の方向から見た側面図である。 図6に示すVII-VII線矢視断面図である。 図6に示すVIII-VIII線矢視断面図である。 図6に示すIX-IX線矢視断面図である。 図5に示すX-X線矢視断面図である。 (a)~(c)は、実施形態に係る第1梁の形状を示す模式的な断面図である。(d)は、参考例に係る第1梁の形状を示す模式的な断面図である。 第1梁の断面形状を示す模式的な斜視図である。 本開示の限定されない実施形態に係る切削加工物の製造方法の一工程を示す概略説明図である。 本開示の限定されない実施形態に係る切削加工物の製造方法の一工程を示す概略説明図である。 本開示の限定されない実施形態に係る切削加工物の製造方法の一工程を示す概略説明図である。
 上述の特許文献3に記載の切削工具において、先端の側から見た場合に枠が直線形状である。そのため、枠及び中心部材の間の隙間が狭くなり、切屑の排出性の向上が求められる。また、切削工具をボーリング工具として用いる場合においては、被削材及び枠の間に隙間が生じて、この隙間に切屑が詰まる恐れがある。そのため、ボーリング工具として用いた場合であっても円滑に切屑を外部に排出できる汎用性の高い切削工具が求められている。本開示は、切屑の排出性に優れた切削工具に関するものである。
 以下、本開示の一例である実施形態の切削工具、及び切削加工物の製造方法について、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、実施形態を説明する上で必要な主要部材のみを簡略化して示したものである。従って、切削工具は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。
 切削工具10は例えば回転工具であり、具体例としては、ボーリング工具が挙げられる。ボーリング工具は、円筒形状の被削材における内周面の切削加工に用いられ得る。以下の説明では、切削工具10の、第4切刃85aが位置する側を先端側と称し、先端側とは反対側を後端側と称する。
 (切削工具)
 図1は実施形態1に係る切削工具10を先端側から見た斜視図である。図2は図1に示す切削工具10を後端側から見た斜視図である。図3は、図1に示す切削工具10を先端側から見た正面図である。図4は、図1に示す切削工具10を後端側から見た背面図である。図5は、図1に示す切削工具10を図3に示す矢印Y1の方向から見た側面図である。図6は、図1に示す切削工具10を図3に示す矢印Y2の方向から見た側面図である。図7は、図6に示すVII-VII線矢視断面図である。図8は、図6に示すVIII-VIII線矢視断面図である。図9は、図6に示すIX-IX線矢視断面図である。図10は、図5に示すX-X線矢視断面図である。
 図1~図10に示す限定されない一例の切削工具10は、軸部1と、第1突出部2と、第2突出部3と、第1梁4と、第3突出部5と、第4突出部6と、第2梁7と、第5突出部8と、を備えてもよい。
 切削工具10における軸部1、第1突出部2、第2突出部3、第1梁4、第3突出部5、第4突出部6、第2梁7及び第5突出部8の材質としては、ステンレス鋼等の鋼、鋳鉄、及びアルミニウム合金等が挙げられる。特に、これらの部材の中で鋼が用いられた場合には、上記した部材の靱性が高い。これらの部材は、一体的に構成されてもよく、また、個々に構成されてもよい。これらの部材が個々に構成された場合には、これらの部材を組み立てることによって切削工具10が構成されてもよい。
 <軸部>
 軸部1は、切削工具10の回転軸(中心軸)Lに沿って先端1aから後端1bに向かって延びた円柱形状であってもよい。
 軸部1の大きさは特に限定されない。例えば、回転軸Lに沿った方向における長さは、150mm~300mm程度に設定できる。また、軸部1の太さに相当する直径は、50mm~120mm程度に設定できる。
 <第1突出部>
 第1突出部2は、軸部1から外周に向かって突出している。第1突出部2は、図1及び図3に示すように、回転軸Lに対し直交する方向に延びる構成に限定されない。第1突出部2は、回転軸Lに対して傾斜した状態で延びてもよい。第1突出部2は、先端面21、外周面22、ポケット23、カートリッジ24、切削インサート25、第1切刃25a、及び後端面26を有してもよい。
 先端面21は、軸部1の先端1aの側であって、軸部1の外周側に位置してもよい。先端面21は、回転軸Lに対し直交する構成に限定されない。先端面21は、回転軸Lに対して傾斜する構成であってもよい。
 後端面26は、軸部1の後端1bの側であって、軸部1の外周側に位置してもよい。後端面26は、回転軸Lに直交する構成に限定されない。後端面26は、回転軸Lに対して傾斜する構成であってもよい。
 外周面22は、先端面21と後端面26とを繋ぎ、軸部1の外周に沿った曲面状をなしてもよい。ポケット23は、外周面22における先端1a側に位置してもよい。ポケット23は、例えば、外周面22の回転方向Tの前方向において、後端面26側の部分を残した状態で切り欠いたように形成されてもよい。ポケット23は、先端面21に連なってもよく、また、先端面21から後端1bに向かって延びてもよい。ポケット23には、カートリッジ24を取り付けることが可能である。
 ポケット23に位置するカートリッジ24は、特定の形状に限定されない。カートリッジ24は、角板状であってもよい。カートリッジ24は、先端面21から後端1bに向かって延びてもよい。切削インサート25は、カートリッジ24の先端面21側(外周の端部)に位置してもよい。切削インサート25の形状は、棒形状、多角板形状または多角柱形状の構成であってもよい。本実施形態において切削インサート25は、図5に示すように、菱形板状である。
 切削インサート25の材質としては、例えば、超硬合金及びサーメット等が挙げられ得る。超硬合金の組成としては、例えば、WC-Co、WC-TiC-Co、及びWC-TiC-TaC-Co等が挙げられ得る。ここで、WC、TiC、及びTaCは硬質粒子であってもよく、Coは結合相であってもよい。
 また、サーメットは、セラミック成分に金属を複合させた焼結複合材料であってもよい。サーメットの一例として、炭化チタン(TiC)又は窒化チタン(TiN)を主成分としたチタン化合物が挙げられ得る。切削インサート25の材質は、上記の組成に限定されない。
 切削インサート25の表面は、化学蒸着(CVD)法又は物理蒸着(PVD)法を用いて形成した被膜でコーティングされてもよい。被膜の組成としては、炭化チタン(TiC)、窒化チタン(TiN)、炭窒化チタン(TiCN)、及びアルミナ(Al)等が挙げられ得る。
 切削インサート25が菱形板状である場合、切削インサート25の先端1a側の頂点を挟む2つの側面の交叉部分に第1切刃25aが位置してもよい。この第1切刃25aを後述する被削材103に接触させることによって切削加工を行うことができる。
 切削工具10は、第1突出部2を2つ以上有していてもよい。第1突出部2を2つ有する場合、2つの第1突出部2は回転軸Lに対し、互いに対向するように位置し、点対称になるように配置してもよい。図1、図3に示すように、本実施形態において第1突出部2は、回転軸Lに対し互いに対向するよう2つ配置されている。
 <第2突出部>
 第2突出部3は、軸部1から外周に向かって突出している。第2突出部3は、図1及び図3に示すように、回転軸Lに対し直交する方向に延びる構成に限定されない。第2突出部3は、回転軸Lに対して傾斜した状態で延びてもよい。第2突出部3は、先端面31、外周面32、ポケット33、カートリッジ34、切削インサート35、第2切刃35a、及び後端面36を有してもよい。
 先端面31は、軸部1の先端1aの側であって、軸部1の外周側に位置してもよい。先端面31は、回転軸Lに直交する構成に限定されない。例えば、先端面31は、回転軸Lに対して傾斜する構成であってもよい。
 後端面36は、軸部1の後端1bの側であって、軸部1の外周側に位置してもよい。後端面36は、回転軸Lに直交する構成に限定されない。例えば、後端面36は、回転軸Lに対して傾斜する構成であってもよい。
 外周面32は、先端面31と後端面36とを繋ぎ、軸部1の外周に沿った曲面状をなしてもよい。ポケット33は、外周面32における先端1a側に位置してもよい。ポケット23は、例えば、外周面32の回転方向Tの前方向において、後端面36側の部分を残した状態で切り欠いたように形成されてもよい。ポケット23は、先端面31に連なってもよく、また、先端面31から後端1bに向かって延びてもよい。ポケット33には、カートリッジ34を取り付けることが可能である。
 ポケット33に位置するカートリッジ34は、特定の形状に限定されない。カートリッジ34は、角板状であってもよい。カートリッジ34は、先端面31から後端1bに向かって延びてもよい。切削インサート35は、カートリッジ34の先端面31側(外周の端部)に位置してもよい。切削インサート35の形状は、棒形状、多角板形状または多角柱形状の構成であってもよい。本実施形態において切削インサート35は、図5に示すように、三角形板状である。
 切削インサート35の材質は、切削インサート25の材質と同一である。切削インサート35が三角形板状である場合、切削インサート35の先端1a側の頂点を挟む2つの側面の交叉部分に第2切刃35aが位置してもよい。
 切削工具10は、第2突出部3を2つ以上有していてもよい。第2突出部3を2つ有する場合、2つの第2突出部3は中心軸に対し、互いに対向するように位置し、点対称になるように配置してもよい。図1、図3に示すように、本実施形態において第2突出部3は、回転軸Lに対し互いに対向するよう2つ配置されている。
 図5に示すように、第2突出部3は、第1突出部2に対して、回転軸Lの回転方向Tの後方に位置してもよい。例えば、図1、図3に示すように、第1突出部2及び第2突出部3が2つずつ配置されているとする。この場合、後述する第1梁4で接続されない第1突出部2と第2突出部3とは、図1~図3に示すように、切削工具10の周方向に隣り合ってもよい。また、第1突出部2と第2突出部3とは、軸部1の中心(回転軸L)に向かって窪んだ凹部を介して繋がっていてもよい。
 <第1梁>
 第1梁4は、図2、図5に示すように、軸部1から離れて位置し、且つ、第1突出部2及び第2突出部3に接続されている。第2突出部3は、第1突出部2の回転方向Tの後方に位置する。
 第1梁4は、図3に示すように、先端1aから見た場合に、外側に向かって突出した凸形状であってもよい。
 図11は、実施形態及び参考例に係る第1梁4の形状と各形状において第1梁4にかかる切削負荷との関係を示す図である。具体的には、実施形態に係る第1梁4の形状が図11における(a)~(c)に図示され、参考例に係る第1梁4の形状が図11における(d)に図示される。図11においては、説明の便宜上、第1梁4にて接続される第1突出部2及び第2突出部3が、軸部1の先端1aの側から見て90度をなすように配置されているものとする。
 第1梁4は、図11の符号1102(図11(b))に示すように、外周に向かって湾曲した凸曲線形状であってもよい。図中、先端1a側から見た場合において切削工具10の外接円、換言すれば、切削工具10の切刃が接する外接円をSにて示す。また、第1梁4は、図11の符号1101(図11(a))に示すように、外周に向かって湾曲した円弧形状であってもよい。円弧は、先端1a側から見た場合において切削工具10の外接円、換言すれば、切削工具10の切刃が接する外接円Sを設定した際の、外接円Sの円弧に沿った形状であってもよい。あるいは、第1梁4は、図11の符号1103(図11(c))に示すように、直線が折れ曲がった形状であってもよい。
 第1梁4は、外側に向かって突出した凸形状であって、最も外周に突出した部分が外接円Sの内側であればよい。そのため、図11の符号1103(図11(c))に示すように、曲線形状でない折れ線形状であってもよい。
 図11の符号1101~1103(図11(a)~(c))に示すように、第1梁4が凸形状である場合、直線形状である梁14を有する図11の符号1104(図11(d))の場合と比較して、軸部1及び第1梁4の間の隙間を広くできる。その結果、この隙間で切屑が流れやすくなる。また、符号1101~1103に示す第1梁4及び外接円Sの間の隙間は、符号1104に示す梁14及び外接円Sの間の隙間より小さいので、隙間に切屑が詰まりにくい。また、第1梁4の内側に多くの切屑を流し、加工面のある第1梁4の外側を流れる切屑の量を少なくすることができるので、加工面を傷つける恐れを低減できる。
 図11に太い黒色の矢印にて示すように、第1切刃25aで生じた切削負荷の主分力は、切削工具10の回転方向Tの後方に向かって加わる。符号1101~1103に示す第1梁4における第1突出部2に接続された部分での第1梁4の延びる方向と主分力の方向のなす角度は、符号1104に示す直線形状の梁14における角度と比較して、小さくなる。すなわち、主分力を第1梁4で受け止めやすくなる。そのため、切屑の排出性に加えて切削工具10の耐久性が向上するという効果も得られる。
 図11の符号1102に示す第1梁4の場合、符号1103に示すように折れ曲がっている第1梁4より、第1梁4における第1突出部2に接続された部分での第1梁4の延びる方向と主分力の方向のなす角度が小さくなるので、加わる切削負荷をより吸収し易い。また、第1梁4と加工面との間に切屑が噛み込む恐れが小さい。符号1103に示す第1梁4の場合、折れ曲がっている部分に負荷がかかり易い。符号1103に示す折れ線形状から、符号1102に示す凸曲線形状、符号1101に示す円弧形状になるに従い、切削負荷をより吸収し易くなる。また、折れ線形状に対して曲線形状は撓み易いため、撓むことによっても負荷を受け止める力が強くなり、耐久性に優れる。
 図11の符号1101に示す第1梁4のように円弧形状をなす場合、切削負荷を第1梁4でさらに吸収し易い。第1梁4と加工面との間に切屑が噛み込む恐れが小さく、符号1102に示す第1梁4より、切削時に第1梁4が被削材103と接触する可能性が低減している。
 第1梁4は、先端面41、外周面42、及び後端面43を有してもよい。先端面41は、軸部1の先端1aの側に位置している。後端面43は、軸部1の後端1bの側に位置している。外周面32は、先端面31と後端面36とを繋ぐ面である。
 図12は、第1梁4の断面形状を示す模式的な斜視図である。図12において、寸法aは、回転軸Lに沿った方向の寸法であり、寸法bは回転軸Lに直交する方向の寸法である。図12の符号1201に示す第1梁4の断面44は、寸法aと寸法bが略等しい略正方形状である。
 図12の符号1202に示す第1梁4の断面44は、寸法aが寸法bよりも小さい略長方形状である。すなわち、回転軸Lに沿った方向の寸法aは、回転軸Lに直交する方向の寸法bよりも小さい扁平形状である。この場合、第1梁4が径方向に撓みにくく、被削材103の加工面に接触しにくい。切屑を後端1b側に押し出す効果も大きい。
 図12の符号1203に示す第1梁4の断面44は、寸法aが寸法bよりも大きい略長方形状である。換言すると、回転軸Lに沿った方向の寸法aは、回転軸Lに直交する方向の寸法bよりも大きい扁平形状である。この場合、第1梁4の内周側の空間を大きくできる。
 図12の符号1204に示す第1梁4の断面44は、寸法aが内周側よりも外周側において大きい略台形状である。外周側の寸法a2は、内周側の寸法a1よりも大きい。この場合、第1梁4が径方向により撓みにくい。切屑を後方に流す際、加工面がある外周側でなく内周側に向かわせるので、加工面と接触させにくくなる。
 第1梁4は、図11の符号1101及び図3に示すように、軸部11及び第1梁4の間隔mが、回転軸Lに直交する方向(径方向)の第1梁4の寸法nよりも大きくてもよい。この場合、間隔mを大きくして切屑が流れるスペースが確保され易い構成とできる。
 第1梁4は、図11の符号1101及び図3に示すように、切削工具の外接円Sを設定した際に、外接円S及び第1梁4の間隔kが、軸部1及び第1梁4の間隔mよりも狭くてもよい。この場合、加工面と第1梁4との間に形成されるスペースを小さくして、第1梁4と加工面との間に切屑が噛み込みにくい構成とできる。
 第1梁4は、第2突出部3に近づくにしたがって後端1bに近づいてもよい。すなわち、図5に示すように、後端面43が先端1aから後端1b側へ斜めに傾いている。この場合、切削工具10を回転させるときに、スクリュー状に、後端1bへ向かう切屑の流れを促しやすくなる。クーラントを用いる場合においても後端1b側へとクーラントが流れる動きを促しやすく、切屑を排出し易い。
 第1梁4は、第2突出部3に近づくにしたがって先端1aから離れてもよい。すなわち、図5に示すように、先端面41が先端1aから後端1b側へ斜めに傾いている。この場合、第2切刃35aで生じる切屑の流れるスペースを確保できる。第1梁4の第2突出部3との接続部分に、切屑ポケット45が形成され、第2切刃35aから生じる切屑を、切屑ポケット45を介して後端1bへ流し易くなる。このような構成とすることで、第1突出部2の後端部と第2突出部3の後端部とを接続した構成に比べて、第1突出部2の第1切刃25aにかかる主分力を的確に受け止めつつ、第2切刃35aで生じる切屑の排出を良好にできる。
 <第3突出部>
 第3突出部5は、軸部1から外周に向かって突出している。第3突出部5は、図1に示すように、回転軸Lに対し直交する方向に延びる構成に限定されない。第3突出部5は、回転軸Lに対して傾斜した状態で延びてもよい。第3突出部5は、先端面51、外周面52、ポケット53、カートリッジ54、切削インサート55、第3切刃55a、及び後端面56を有してもよい。
 先端面51は、軸部1の先端1aの側に位置してもよい。先端面51は、回転軸Lに直交してもよく、回転軸Lに対し傾斜してもよい。後端面56は、軸部1の後端1bの側に位置してもよい。後端面56は、回転軸Lに直交してもよく、回転軸Lに対し傾斜してもよい。
 外周面52は、先端面51と後端面56とを繋ぎ、軸部1の外周に沿った曲面状をなしてもよい。ポケット53は、外周面52における先端1a側に位置してもよい。ポケット53は、例えば、図1及び図2における上側の第3突出部5において、外周面52の回転方向Tの前方向において、後端面56側の部分を残した状態で切り欠いたように形成されてもよい。ポケット53は、先端面31に連なってもよく、また、先端面51から後端1bに向かって延びてもよい。ポケット53には、カートリッジ54を取り付けることが可能である。
 ポケット53に位置するカートリッジ54は、特定の形状に限定されない。カートリッジ54は、角板状であってもよい。カートリッジ54は、先端面51から後端1bに向かって延びてもよい。切削インサート55は、カートリッジ54の先端面51側(外周の端部)に位置してもよい。切削インサート55の形状は、棒形状、多角板形状または多角柱形状の構成であってもよい。本実施形態において切削インサート55は、図5に示すように、三角形板状である。
 切削インサート55の材質は、切削インサート25の材質と同一である。切削インサート55が三角形板状である場合、切削インサート55の先端1a側の頂点を挟む2つの側面の交叉部分に第3切刃55aが位置してもよい。
 切削工具10は、第3突出部5を2つ以上有していてもよい。第3突出部5を2つ有する場合、2つの第3突出部5は回転軸Lに対し、互いに対向するように位置し、点対称になるように配置してもよい。図2に示すように、本実施形態において第3突出部5は、回転軸Lに対し互いに対向するよう2つ配置されている。
 <第4突出部>
 第4突出部6は、軸部1から外周に向かって突出している。第4突出部6は、図1に示すように、回転軸Lに対し直交する方向に延びる構成に限定されない。第4突出部6は、回転軸Lに対して傾斜した状態で延びてもよい。第4突出部6は、先端面61、外周面62、及び後端面63を有してもよい。
 先端面61は、軸部1の先端1aの側に位置してもよい。先端面61は、回転軸Lに直交してもよく、回転軸Lに対し傾斜してもよい。後端面63は、軸部1の後端1bの側に位置してもよい。後端面63は、回転軸Lに直交してもよく、回転軸Lに対し傾斜してもよい。
 外周面62は、先端面61と後端面63とを繋ぎ、軸部1の外周に沿った曲面状をなしてもよい。
 切削工具10は、第4突出部6を2つ以上有していてもよい。第4突出部6を2つ有する場合、2つの第4突出部6は中心軸に対し、互いに対向するように位置し、点対称になるように配置してもよい。図2に示すように、本実施形態において第3突出部5は、回転軸Lに対し互いに対向するよう2つ配置されている。
 第4突出部6は、第3突出部5に対して回転軸Lの回転方向の後方に位置してもよい。第3突出部5及び第4突出部6は、第1突出部2及び第2突出部3よりも後端1bの側に位置してもよい。第3突出部5と第4突出部6とは、図3に示す切削工具10の周方向に隣り合っていてもよい。また、第3突出部5と第4突出部6とは、切削工具10の周方向に繋がっていてもよい。
 <第2梁>
 第2梁7は、軸部1から離れて位置し、第3突出部5及び第4突出部6に接続されている。第2梁7は、先端1a側から見た場合に、外周に向かって突出した凸形状であってもよい。第2梁7が凸形状である場合、直線形状である場合と比較して、軸部1及び第2梁7の間の隙間を広くできる。その結果、この隙間で切屑が流れやすくなる。
 第1梁4は、第2突出部3に近づくにしたがって後端1bに近づき、第2梁7は、回転軸Lに対して直交する方向に延びていてもよい。先端1a側の第1切刃25a及び第2切刃35aによりメインの切削を行う。後端1b側の第3切刃55aは仕上げ切削であるため、第4突出部6には切刃がなくてもよい。そのため、第4突出部6に切屑が流れるスペース(切屑ポケット)を形成する必要はない。
 <第5突出部>
 第5突出部8は、軸部1の先端1aにおいて、軸部1から外周に向かって突出している。第5突出部8は、図1及び図3に示すように、回転軸Lに対し直交する方向に延びる構成に限定されない。第5突出部8は、回転軸Lに対して傾斜した状態で延びてもよい。第5突出部8は、先端面81、外周面82、ポケット83、カートリッジ84、切削インサート85、及び第4切刃85aを有してもよい。
 先端面81は、軸部1の先端1aの側に位置してもよい。先端面81は、回転軸Lに直交してもよく、回転軸Lに対し傾斜してもよい。
 外周面82は、第5突出部8の外周側に位置し、軸部1の外周に沿った曲面状をなしてもよい。ポケット83は、例えば、図1及び図2における上側の第5突出部8において、外周面82の回転方向Tの前方向に形成されてもよい。ポケット83は、先端面81に連なってもよく、また、先端面81から後端1bに向かって延びてもよい。ポケット83には、カートリッジ84を取り付けることが可能である。
 ポケット83に位置するカートリッジ84は、特定の形状に限定されない。カートリッジ84は、角板状であってもよい。カートリッジ84は、先端面81から後端1bに向かって延びてもよい。切削インサート85は、カートリッジ84の先端面81側に位置してもよい。切削インサート85の形状は、棒形状、多角板形状または多角柱形状の構成であってもよい。本実施形態において切削インサート85は、図5に示すように、菱形板状である。
 切削インサート85の材質は、切削インサート25の材質と同一である。切削インサート85が菱形板状である場合、切削インサート55の先端1a側の頂点を挟む2つの側面の交叉部分に第4切刃85aが位置してもよい。
 切削工具10は、第5突出部8を2つ以上有していてもよい。第5突出部8を2つ有する場合、2つの第5突出部8は中心軸に対し、互いに対向するように位置し、点対称になるように配置してもよい。第5突出部8は、図3に示すように、第1突出部2と径方向に一直線上に位置してもよい。
 <切削加工物の製造方法>
 次に、本開示における限定されない一面の切削加工物の製造方法について図面を用いて説明する。被削材103に対し、第1切刃25a、第2切刃35a及び第3切刃55aにより大径の孔104を形成し、第4切刃85aにより小径の孔105を形成する場合について説明する。
 切削加工物101は、被削材103を切削加工することによって作製される。実施形態における切削加工物101の製造方法は、以下の工程を備える。即ち、
 (1)切削工具10を回転させる工程と、
 (2)切削工具10を被削材103に接触させる工程と、
 (3)切削工具10を被削材103から離す工程と、
を備える。
 より具体的には、まず、図13に示すように、切削工具10を回転軸Lの周りで回転させるとともに、被削材103に相対的に近付けてもよい。次に、図14に示すように、切削工具10における切刃の少なくとも一部を被削材103に接触させて、被削材103を切削してもよい。そして、図15に示すように、切削工具10を被削材103(切削加工物101)から相対的に遠ざけてもよい。
 図13に示すように、回転させた状態で切削工具10を前方向、換言すれば、図13における下方向に移動させることによって、切削工具10を被削材103に近づけてもよい。
 また、図14に示すように、被削材103に切刃の少なくとも一部を接触させた状態で切削工具10を前方向に移動させることによって、被削材103を切削してもよい。
 また、図15に示すように、回転させた状態で切削工具10を後方向、換言すれば、図13における上方向に移動させることによって、切削工具10を被削材103から遠ざけてもよい。
 それぞれの工程において、切削工具10を動かすことによって、切削工具10を被削材103に接触させる、あるいは、切削工具10を被削材103から離しているが、この場合に限定されない。
 例えば、(1)の工程において、被削材103を切削工具10に近づけてもよい。(3)の工程において、被削材103を切削工具10から遠ざけてもよい。切削加工を継続する場合には、切削工具10を回転させた状態を維持して、被削材103の異なる箇所に切刃の少なくとも一部を接触させる工程を繰り返してもよい。
 被削材103の材質の代表例としては、焼入鋼、炭素鋼、合金鋼、ステンレス、鋳鉄、又は非鉄金属等が挙げられ得る。
 以上、本開示に係る発明について、諸図面及び実施形態に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
 1 軸部
 2 第1突出部
 21、31、51、61 先端面
 22、32、52、62 外周面
 23、33、53 ポケット
 24、34、54 カートリッジ
 25、35、55 切削インサート
 25a 第1切刃
 26、36、56、63 後端面
 3 第2突出部
 35a 第2切刃
 4 第1梁
 41 先端面
 42 外周面
 43 後端面
 5 第3突出部
 55a 第3切刃
 7 第2梁
 10 切削工具
 L 回転軸
 T 回転方向

Claims (11)

  1.  先端から後端に向かって回転軸に沿って延びた円柱形状の軸部と、
     前記軸部から外周に向かって突出し、且つ、前記外周の端部に第1切刃を有する第1突出部と、
     前記軸部から前記外周に向かって突出し、且つ、前記外周の端部に第2切刃を有する第2突出部と、
     前記軸部から離れて位置し、前記第1突出部及び前記第2突出部に接続された第1梁と、を有し、
     前記第2突出部が、前記第1突出部に対して前記回転軸の回転方向の後方に位置し、
     前記先端の側から見た場合に、前記第1梁が、前記外周に向かって突出した凸形状である、切削工具。
  2.  前記先端の側から見た場合に、前記第1梁が、前記外周に向かって湾曲した凸曲線形状である、請求項1に記載の切削工具。
  3.  前記先端の側から見た場合に、前記第1梁が、前記外周に向かって湾曲した円弧形状である、請求項2に記載の切削工具。
  4.  前記回転軸を含む断面において、前記第1梁は、前記回転軸に沿った方向の寸法が、前記回転軸に直交する方向の寸法よりも小さい扁平形状である、請求項1~3のいずれか1つに記載の切削工具。
  5.  前記回転軸を含む断面において、前記軸部及び前記第1梁の間隔が、前記回転軸に直交する方向の前記第1梁の寸法よりも大きい、請求項1~4のいずれか1つに記載の切削工具。
  6.  前記先端の側から見た場合において前記切削工具の外接円を設定した際に、前記外接円及び前記第1梁の間隔が、前記軸部及び前記第1梁の間隔よりも狭い、請求項1~5のいずれか1つに記載の切削工具。
  7.  前記第1梁は、前記第2突出部に近づくにしたがって前記後端に近づく、請求項1~6のいずれか1つに記載の切削工具。
  8.  前記第1梁は、前記第2突出部に近づくにしたがって前記先端から離れる、請求項1~7のいずれか1つに記載の切削工具。
  9.  前記軸部から前記外周に向かって突出し、且つ、前記外周の端部に第3切刃を有する第3突出部と、
     前記軸部から前記外周に向かって突出した第4突出部と、
     前記軸部から離れて位置し、前記第3突出部及び第4突出部に接続された第2梁と、を有し、
     前記第4突出部が、前記第3突出部に対して前記回転軸の回転方向の後方に位置し、
     前記第3突出部及び前記第4突出部が、前記第1突出部及び前記第2突出部よりも前記後端の側に位置し、
     前記先端の側から見た場合に、前記第2梁が、外周に向かって突出した凸形状である、請求項1~8のいずれか1つに記載の切削工具。
  10.  前記第1梁は、前記第2突出部に近づくにしたがって前記後端に近づき、
     前記第2梁は、前記回転軸に対して直交する方向に延びている、請求項9に記載の切削工具。
  11.  請求項1~10のいずれか1つに記載の切削工具を回転させる工程と、
     前記切削工具を被削材に接触させる工程と、
     前記切削工具を被削材から離す工程と、を有する切削加工物の製造方法。
PCT/JP2023/008802 2022-03-16 2023-03-08 切削工具及び切削加工物の製造方法 WO2023176623A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041732 2022-03-16
JP2022-041732 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176623A1 true WO2023176623A1 (ja) 2023-09-21

Family

ID=88023169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008802 WO2023176623A1 (ja) 2022-03-16 2023-03-08 切削工具及び切削加工物の製造方法

Country Status (1)

Country Link
WO (1) WO2023176623A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502291A (ja) * 1995-12-22 2000-02-29 ケンナメタル インコーポレイテッド 高速回転ツール
JP2011528286A (ja) * 2008-07-18 2011-11-17 サンドビック インテレクチュアル プロパティー アクティエボラーグ 締結ユニットを具備する器具
JP2011528284A (ja) * 2008-07-18 2011-11-17 サンドビック インテレクチュアル プロパティー アクティエボラーグ 中ぐり工具
US20140161543A1 (en) * 2012-12-12 2014-06-12 Kennametal Inc. Rotary cutting tool with effective chip evacuation
JP2019511385A (ja) * 2016-04-14 2019-04-25 ザーパドチェスカー ウニヴェルズィタ ヴ プルズニZapadoceska univerzita v Plzni スペーサバーを備えるフライスカッタ
US20190314904A1 (en) * 2018-04-12 2019-10-17 Guehring Kg Rotary tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502291A (ja) * 1995-12-22 2000-02-29 ケンナメタル インコーポレイテッド 高速回転ツール
JP2011528286A (ja) * 2008-07-18 2011-11-17 サンドビック インテレクチュアル プロパティー アクティエボラーグ 締結ユニットを具備する器具
JP2011528284A (ja) * 2008-07-18 2011-11-17 サンドビック インテレクチュアル プロパティー アクティエボラーグ 中ぐり工具
US20140161543A1 (en) * 2012-12-12 2014-06-12 Kennametal Inc. Rotary cutting tool with effective chip evacuation
JP2019511385A (ja) * 2016-04-14 2019-04-25 ザーパドチェスカー ウニヴェルズィタ ヴ プルズニZapadoceska univerzita v Plzni スペーサバーを備えるフライスカッタ
US20190314904A1 (en) * 2018-04-12 2019-10-17 Guehring Kg Rotary tool

Similar Documents

Publication Publication Date Title
JP6861269B2 (ja) 切削インサート、切削工具及び切削加工物の製造方法
CN108698143B (zh) 切削工具用刀具
JP6711830B2 (ja) ドリル及びそれを用いた切削加工物の製造方法
JP6467049B2 (ja) 切削工具及び切削加工物の製造方法
JPWO2018159499A1 (ja) 切削インサート、切削工具及び切削加工物の製造方法
WO2023176623A1 (ja) 切削工具及び切削加工物の製造方法
JP7103933B2 (ja) 切削インサート、回転工具及び切削加工物の製造方法
JP5905123B2 (ja) 切削インサート、切削工具および切削加工物の製造方法
JP7386339B2 (ja) ドリル及び切削加工物の製造方法
JP7417707B2 (ja) エンドミル及び切削加工物の製造方法
JP6457632B2 (ja) 切削工具及び切削加工物の製造方法
JP7045460B2 (ja) 切削工具及び切削加工物の製造方法
JP7114733B2 (ja) 切削インサート、切削工具及び切削加工物の製造方法
JP6839015B2 (ja) ドリル
JP7344321B2 (ja) 回転工具及び切削加工物の製造方法
CN114072249B (zh) 旋转刀具以及切削加工物的制造方法
JP7391108B2 (ja) ドリル及び切削加工物の製造方法
JP7223773B2 (ja) 回転工具及び切削加工物の製造方法
JP7488332B2 (ja) 回転工具及び切削加工物の製造方法
US20230364689A1 (en) Cutting insert, rotary tool, and method for manufacturing machined product
JP2014124719A (ja) 切削インサート、切削工具および切削加工物の製造方法
JP6875518B2 (ja) ドリル及び切削加工物の製造方法
WO2023228741A1 (ja) 切削工具及び切削加工物の製造方法
WO2023176618A1 (ja) 切削インサート、切削工具、及び切削加工物の製造方法
WO2023176533A1 (ja) 回転工具及び切削加工物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770579

Country of ref document: EP

Kind code of ref document: A1