WO2023174049A1 - 用于电催化还原co 2的纳米钯合金催化剂及其制备方法与应用 - Google Patents

用于电催化还原co 2的纳米钯合金催化剂及其制备方法与应用 Download PDF

Info

Publication number
WO2023174049A1
WO2023174049A1 PCT/CN2023/078689 CN2023078689W WO2023174049A1 WO 2023174049 A1 WO2023174049 A1 WO 2023174049A1 CN 2023078689 W CN2023078689 W CN 2023078689W WO 2023174049 A1 WO2023174049 A1 WO 2023174049A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy catalyst
reduction
nano
nanopalladium
palladium
Prior art date
Application number
PCT/CN2023/078689
Other languages
English (en)
French (fr)
Inventor
李彦光
韩娜
吕芳
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023174049A1 publication Critical patent/WO2023174049A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention belongs to the field of electrochemical reduction of CO 2 catalysis, and specifically relates to the application of the prepared Pd alloy catalyst in the electrocatalytic reduction of CO 2 to produce formic acid, and in particular to the preparation of PdAg nano-alloy and its use in the electrocatalytic reduction of CO 2 to produce formic acid. Application in Reaction.
  • CO 2 RR electrocatalytic CO 2 reduction reaction
  • renewable energy such as solar energy, wind energy, etc.
  • This technology can be used to convert CO 2 into high value-added carbon-based products such as formic acid and carbon monoxide, while achieving resource utilization of CO 2 and effective storage of clean electricity.
  • CO 2 RR involves a variety of complex catalytic reaction pathways and is inevitably accompanied by competition from the hydrogen evolution reaction during the reaction, this reaction often suffers from large overpotential, low target product selectivity, and poor stability. Problems such as difference. Therefore, designing and constructing efficient CO2 reduction electrocatalytic materials is the first core task in this field.
  • formic acid As a common CO2 reduction product, formic acid is not only an important chemical raw material, but also widely used in fields such as hydrogen storage and fuel cells. In industry, the production of formic acid has the disadvantages of high energy consumption, high cost, slow reaction speed and undesirable by-products. Compared with other products such as ethylene, ethanol, and propanol, the production of formic acid using electrochemical CO 2 reduction technology is currently the most economically feasible solution.
  • palladium (Pd) is currently the only known catalytic material that can reduce CO 2 to produce formic acid at nearly zero overpotential.
  • a nano-palladium alloy catalyst used for electrocatalytic reduction of CO2 is a nano-alloy or a nano-alloy and carrier composite material; the nano-alloy includes palladium and other metals.
  • the invention discloses a method for electrocatalytically reducing CO 2 , using the above-mentioned nanopalladium alloy catalyst for electrocatalytically reducing CO 2 as a reduction catalyst, and electrocatalytically reducing CO 2 in an electrolyte.
  • the invention discloses an electrolytic cell for electrocatalytic reduction of CO2 , which includes a counter electrode, a working electrode, and a reference electrode.
  • the working electrode is provided with the above-mentioned nanopalladium alloy catalyst for electrocatalytic reduction of CO2 .
  • the electrocatalytic reduction of CO2 to formic acid occurs in a self-made closed H-type electrolytic cell separated by an ion exchange membrane.
  • a carbon rod is used as the counter electrode
  • a saturated calomel electrode is used in the cathode half-reaction cell.
  • the prepared nano-palladium alloy catalyst is used as the working electrode;
  • the carrier of the working electrode is selected from different hydrophobic carbon papers (P75t, Hesen) or glassy carbon electrodes;
  • the other metals are precious metals, such as one or more of gold, silver, and platinum;
  • the carrier is one of carbon materials such as carbon nanotubes, graphene, activated carbon, and Ketjen black;
  • the molar ratio of palladium to other metals is (2-7):1;
  • the shape of the nanopalladium alloy catalyst includes nanoparticles, nanowires, nanosheets, nanospheres or nanocubes.
  • the nano-palladium alloy catalyst used for the electrocatalytic reduction of CO 2 electrocatalytically reduces CO 2 to obtain formic acid or formate.
  • the invention discloses the application of the above-mentioned nano-palladium alloy catalyst for electrocatalytic reduction of CO2 in electrocatalytic reduction of CO2 or electrocatalytic reduction of CO2 to obtain formic acid or formate.
  • the invention discloses a method for preparing the above-mentioned nanopalladium alloy catalyst for electrocatalytic reduction of CO2 , including a wet chemical reduction method or a solvothermal method; in the wet chemical reduction method, in an inert atmosphere, in the presence of a surfactant and a reducing agent , react chloropalladic acid with other metal salts in a solution to obtain a nanopalladium alloy catalyst; or react chloropalladic acid with other metal salts in a solution in an inert atmosphere, in the presence of surfactants, reducing agents and carriers, to obtain Nano-palladium alloy catalyst; or in the wet chemical reduction method, in an inert atmosphere, in the presence of surfactants, inorganic bases and reducing agents, chloropalladic acid and other metal salts are reacted in solution to obtain nano-palladium alloy catalyst; or inert In the atmosphere, in the presence of surfactants, reducing agents, inorganic bases and carriers, chloropalladic acid and other metal
  • the reaction temperature is 30°C to 90°C, and the reaction time is 0.1 h to 3 h; in the solvothermal method, the reaction temperature is 140°C to 180°C, and the reaction time is 1 h. ⁇ 5 h.
  • the nano-palladium alloy catalyst for electrocatalytic reduction of CO 2 to formic acid of the present invention includes PdAg bimetallic alloy compounds, composite materials formed of PdAg alloy and carbon materials, etc.; the preparation method includes wet chemical reduction method or solvothermal method.
  • the wet chemical reduction method uses chloropalladic acid and silver nitrate as raw materials, and adds ascorbic acid or sodium borohydride solution to a mixed solution containing quaternary ammonium salt cationic surfactants for a reduction reaction to obtain a PdAg nanopalladium alloy catalyst; solvothermal
  • the method is to react a mixed solution of palladium acetylacetonate, silver nitrate and quaternary ammonium salt surfactant in a polyethylene stainless steel autoclave to obtain a PdAg nanopalladium alloy catalyst.
  • an inert atmosphere environment Ar, N 2
  • dimethyl cetyl ammonium chloride, dimethyl cetyl bromide/ammonium chloride, and octadecyl trisulfide are used.
  • Methyl ammonium chloride and other surfactants are used together with chloropalladic acid and silver nitrate in a ratio of 0.3 to 0.8 to form a mixed solution A, and then a reducing agent (ascorbic acid, sodium borohydride, sodium citrate, oxalic acid, hydrochloric acid) is added Hydroxylamine, etc.) or add reducing agent and inorganic base; the reaction temperature is 30°C ⁇ 90°C, and the reaction time is 0.1 h ⁇ 3 h; inorganic bases include sodium chloride, potassium chloride, etc.;
  • the carbon material solution and the mixed solution A or B are uniformly mixed, and the other things remain unchanged.
  • the mass ratio of the carbon material to the metal palladium in the mixed solution A or B is: 1 ⁇ 3.5.
  • the mass ratio of dimethyldicetyl ammonium chloride, silver nitrate, chloropalladic acid and reducing agent is 100: (5-20): (6-15): (5-20), preferably 100: (6 to 10): (9 to 11): (8 to 15);
  • the concentration of the dimethyldicetyl ammonium chloride aqueous solution is 2 to 10 mg/mL, preferably 4 to 7 mg/mL.
  • sodium borohydride is added as a reducing agent at 45°C to 50°C, and then reacted at 45°C to 60°C for 1 h to 1.5 h.
  • the present invention has the following advantages compared with the existing technical solutions: 1.
  • the present invention prepares new nanopalladium alloy catalysts with different nanostructures and different proportions, in different aqueous phase electrolytes saturated with CO2 , realize the electrocatalytic reduction of CO 2 to generate formic acid at near zero potential, and achieve almost 100% formic acid selectivity in a wide potential range.
  • long-term electrolysis tests can still be achieved at high potentials and the current can be maintained Density and Faradaic efficiency of formic acid plateau.
  • the preparation method of the present invention is simple and highly controllable. It also solves the shortcomings of activity attenuation of palladium-based catalysts and has broad market application value.
  • Figure 1 shows the morphology, structural characterization and electrocatalytic CO 2 reduction performance of PdAg-1 nanoparticles prepared by wet chemical reduction method in Example 1, (a) TEM image; (b) XRD pattern; (c) Formic acid Faradaic efficiency diagram ; (d) Stability test chart.
  • Figure 2 shows the morphology characterization and electrocatalytic CO reduction performance of PdAg nanowires prepared by the wet chemical reduction method in Example 2, (a) XRD pattern; (b) SEM image; (c) Formic acid Faradaic efficiency diagram.
  • Figure 3 shows the morphology, structural characterization and electrocatalytic CO 2 reduction performance of PdAg nanocubes prepared by the wet chemical reduction method in Example 3, (a) TEM image; (b) XRD pattern; (c) Formic acid Faradaic efficiency diagram; ( d) Stability test chart.
  • Figure 4 shows the morphology characterization and electrocatalytic CO reduction performance of PdAg nanospheres prepared by solvothermal method in Example 4, (a) TEM image; (b) TEM high-resolution spectrum; (c) formic acid Faradaic efficiency diagram.
  • Figure 5 shows the electrocatalytic CO 2 reduction performance of PdAg nanosheets prepared by the solvothermal method in Example 5, (a) formic acid Faradaic efficiency diagram; (d) stability test diagram.
  • the present invention effectively regulates the electronic structure of Pd by changing the raw materials of metal Pd, the ratio of Pd and Ag metals, surfactants, reaction temperature or time, and preparation of composite materials, thereby improving their catalytic performance.
  • the PdAg nano-palladium alloy catalyst has a powder structure; the powder includes nanoparticles, nanowires, nanosheets, nanospheres, and nanocubes; the ratio of Pd to Ag in the PdAg nano-palladium alloy catalyst is (2-7):1 ;
  • the carrier carbon material in the composite material includes carbon nanotubes, graphene, activated carbon, and Ketjen Black; the synergistic effect of metal and carbon materials improves the catalytic performance of this type of catalyst in the electrocatalytic reduction of CO 2 to formic acid reaction.
  • the invention discloses the application of PdAg nano palladium alloy catalyst in the electrocatalytic reduction of CO 2 to formic acid reaction, or in the preparation of electrocatalytic CO 2 reduction to formic acid reaction electrode; wet chemical reduction method and solvothermal method are used to prepare PdAg nanometer Palladium alloy catalyst.
  • a self-made closed H-type electrolytic cell separated by an ion exchange membrane is used.
  • a carbon rod is used as the counter electrode
  • a saturated calomel electrode is used as the reference electrode
  • the carrier of the working electrode is selected from different hydrophobic carbon papers (P75t, Hesen) or glassy carbon electrodes
  • the invention discloses a method for electrocatalytic reduction of CO2 to generate formic acid.
  • a new type of PdAg nano-palladium alloy catalyst is prepared by wet chemical reduction method and solvothermal method; the catalyst is mixed with conductive Ketjen black and combined with an electrode carrier as a working electrode , and then perform the electrocatalytic reaction of CO reduction to formic acid in an H-type electrolytic cell containing different aqueous electrolytes saturated with CO.
  • the wet chemical reduction method uses chloropalladic acid and silver nitrate as raw materials, and adds ascorbic acid or sodium borohydride solution to a mixed solution containing quaternary ammonium salt cationic surfactants for reduction reaction to obtain PdAg nanopalladium alloy.
  • Catalyst; the solvothermal method is to react a mixed solution of palladium acetylacetonate, silver nitrate and quaternary ammonium salt surfactant in a polyethylene stainless steel autoclave to obtain a PdAg nanopalladium alloy catalyst.
  • the PdAg nano-palladium alloy catalyst of the present invention When used to prepare a working electrode for electrocatalytic reduction of CO 2 to generate formic acid, the PdAg nano-palladium alloy catalyst and conductive Ketjen black are mixed and dispersed in a mixed solution of ethanol and water, dispersed evenly and then drop-coated on On the conductive matrix carbon paper P75T, let it dry naturally to obtain the working electrode.
  • the anode used a carbon rod as the counter electrode, and the cathode used a saturated calomel electrode as the reference electrode; with the prepared Electrode working electrode.
  • the electrolyte was a CO2 - saturated 0.1 M KHCO3 aqueous solution, and the formic acid and by-products ( H2 and CO) produced by the reduction were qualitatively and quantitatively analyzed using ion chromatography and gas chromatography respectively.
  • the Faradaic efficiency of formic acid of PdAg-1 nanoparticles reaches 85% at zero overpotential, and the Faradaic efficiency of formic acid can reach nearly 100% in a wide potential range (-0.1 V ⁇ -0.4 V).
  • the current density of formic acid can be as high as 8.1 mA/cm 2 .
  • PdAg nanowires Pour the solution into a centrifuge tube, centrifuge at 10,000 rpm for 40 minutes, wash and freeze-dry with isopropyl alcohol, ethanol and deionized water to obtain PdAg nanowires.
  • the ratio of Pd to Ag is 3:1.
  • the crystal structure of the prepared PdAg nanowires was analyzed using powder X-ray diffraction.
  • the catalyst has a face-centered cubic structure, and its single peak is located between pure Pd and pure Ag (Figure 2a), which proves the formation of PdAg alloy.
  • Figure 2b Through scanning electron microscopy ( Figure 2b), it was found that the catalyst was mainly 1D nanowires with an average diameter of 5 to 6 nm and a non-uniform length of approximately several hundred nanometers.
  • the electrochemical test (Figure 2c) found that PdAg can reduce CO 2 to form formic acid in the potential range of -0.1 V ⁇ -0.4 V.
  • the PdAg nanowire can only reduce CO2 to formic acid in the potential range of -0.1 V ⁇ -0.3 V. Within the range, the Faradaic efficiency of generating formic acid reaches more than 90%, especially at -0.5V, the Faradaic efficiency drops significantly. Although it has high formic acid selectivity compared with previously reported PdAg nanowires, its catalytic activity fails to surpass the examples. Catalytic performance of PdAg-1 nanoparticles in 1.
  • the prepared PdAg-2 nanocubes have a rounded cubic morphology under the scanning electron microscope ( Figure 3a), with an average size of ⁇ 100 nm.
  • the powder X-ray diffraction pattern ( Figure 3b) shows a diffraction peak at 30-90 ° , which can be explained. It is a face-centered cubic structure.
  • PdAg-2 nanocubes were subjected to chronoamperometry at an operating potential of 0 ⁇ -0.5 V vs RHE. At 0 V, the Faradaic efficiency of formic acid can reach 80.1%, and the Faradaic efficiency of formic acid can remain above 90% in the potential range of -0.1 V and -0.3 V vs RHE.
  • the PdAg alloy Under scanning electron microscopy (SEM) and transmission electron microscopy (TEM) ( Figure 4a,b), the PdAg alloy consists of uniform nanospheres with an average diameter of 60 nm. Potentiostatic electrolysis of PdAg nanospheres was performed in the potential range of 0 ⁇ -0.5 V vs RHE ( Figure 4c). The faradaic efficiency of the catalyst for reducing the generated formic acid reached 92% only in the potential range of -0.16V, and its catalytic activity was Significantly lower.
  • the obtained PdAg nanosheets were tested for the performance of electrochemical CO 2 reduction to produce formic acid (Figure 5).
  • the Faradaic efficiency of generating formic acid can reach 85%, at -0.1 V ⁇ -0.4 V vs RHE Within the potential range, the Faradaic efficiency of the product formic acid can reach more than 95%.
  • the Faradaic efficiency of the catalyst to produce formic acid is The efficiency is significantly higher than that of most Pd-based catalysts that have been reported, but the problem of its stability still cannot be solved.
  • the purpose of the present invention is to effectively regulate the electronic structure of Pd by introducing a second metal such as Ag to form a PdAg nanopalladium alloy catalyst.
  • a second metal such as Ag
  • a PdAg nanopalladium alloy catalyst thereby achieving efficient electrocatalytic reduction of CO 2 to generate formic acid; in particular, designing a new type of PdAg nano-palladium alloy catalyst, including different PdAg metal ratios, configurations, and composites with carbon materials, and applying the nano-palladium alloy catalyst to electrocatalytic CO 2
  • CO 2 can be reduced to formic acid efficiently and stably.
  • this type of catalyst can achieve the conversion of CO 2 into formic acid at zero overpotential, and at the same time, achieve nearly 100% formic acid selectivity over a wide potential range. , and the stability has also been improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了用于电催化还原二氧化碳(CO 2)的纳米钯基合金催化剂及其制备方法与应用,可应用于高效稳定的电催化二氧化碳还原至甲酸(或甲酸盐)反应。钯基催化剂在电催化CO 2还原反应中具有独特的催化性质,是目前唯一已知能够在接近零过电势下实现CO 2还原生成甲酸(或甲酸盐)的催化材料。然而,在CO 2还原反应中,Pd极易受到微量反应副产物一氧化碳(CO)的毒化作用,使其生成甲酸选择性和催化稳定性迅速衰减。本发明中的钯银(PdAg)合金催化剂以高活性、高选择性、高度稳定地实现电催化CO 2还原制备甲酸(或甲酸盐),这对于缓解能源和环境问题、实现碳资源的有效利用具有重要的意义。

Description

用于电催化还原CO 2的纳米钯合金催化剂及其制备方法与应用 技术领域
本发明属于电化学还原CO 2催化领域,具体涉及将所制备的Pd合金催化剂应用于电催化CO 2还原产甲酸反应中,尤其涉及PdAg纳米合金的制备及其在电催化CO 2还原生产甲酸反应中的应用。
背景技术
在优化传统能源发展的基础上,合理规划建设清洁低碳能源体系,提升碳基能源转化和利用,有助于从根本上缓解化石燃料供应不足的困境,降低其对环境气候的影响。二氧化碳(CO 2)作为一种潜在的碳资源化合物,通过合理的方法将其转化为高附加值化学品或碳基燃料,对于缓解能源和环境问题、实现可持续发展目标具有重要的现实意义。
在现阶段发展的CO 2转化技术中,利用可再生能源(如太阳能、风能等)驱动的电催化CO 2还原反应(CO 2RR)因具有温和的反应条件、相对较高的转化效率和广阔的实用前景而备受青睐。利用该技术可以将CO 2转化为甲酸、一氧化碳等高附加值碳基产品,同时实现CO 2的资源化利用和洁净电能的有效存储。然而,由于CO 2RR涉及多种复杂的催化反应路径,且在反应过程中不可避免地伴随析氢反应的竞争,因此,该反应往往存在过电势较大、目标产物选择性较低以及稳定性较差等问题。因此,设计并构建高效CO 2还原电催化材料是该领域的首要核心任务。
技术问题
甲酸作为一种常见的CO 2还原产物,它不仅是一种重要的化工原料,还被广泛应用于储氢和燃料电池等领域。在工业上,生产甲酸存在耗能大、成本高、反应速度慢和不良副产物等缺点。相比于乙烯、乙醇、丙醇等其它产物,利用电化学CO 2还原技术生产甲酸是目前最具经济可行性的方案。在近期发展的CO 2还原产甲酸催化剂中,钯(Pd)是目前唯一已知能够在接近零过电势下实现CO 2还原生成甲酸的催化材料。然而,由于该金属的特殊性,其还原产物分布会随工作电位区间的变化而改变;当反应过电势大于0.2 V时,Pd电极极易受到微量反应副产物CO的毒化作用,从而甲酸选择性和催化稳定性会发生迅速衰减。因此抑制Pd基催化材料在CO 2还原产甲酸过程中的CO毒化现象并显著提升其选择性和稳定性能是现阶段亟待解决的一个关键科学问题。
技术解决方案
本发明采用如下技术方案:
用于电催化还原CO 2的纳米钯合金催化剂,所述纳米钯合金催化剂为纳米合金或者纳米合金、载体复合材料;所述纳米合金包括钯以及其他金属。
本发明公开了一种电催化还原CO 2的方法,以上述用于电催化还原CO 2的纳米钯合金催化剂为还原催化剂,在电解液中进行电催化还原CO 2
 本发明公开了一种电催化还原CO 2用电解池,包括对电极、工作电极、参比电极,工作电极上设有上述用于电催化还原CO 2的纳米钯合金催化剂。电催化CO 2还原至甲酸反应发生在离子交换膜隔开的自制密闭H型电解池中,在阳极半反应池中,以碳棒为对电极,在阴极半反应池中,以饱和甘汞电极为参比电极;以制备的纳米钯合金催化剂为工作电极;工作电极的载体选择不同疏水碳纸(P75t、何森)或玻碳电极;电解液为CO 2饱和的pH = 1~5的硫酸、pH = 1~5的盐酸溶液、不同浓度(0.05~0.5 M)的碳酸氢钠/钾溶液、pH = 7的磷酸盐缓冲液(PBS)、不同浓度(0.01~ 0.1 M)的氯化钠溶液、pH = 8~10的硼酸盐缓冲溶液、不同浓度(0.01~0.1 M)的氢氧化钠/钾溶液等。
 本发明中,所述其他金属为贵金属,比如金、银、铂中的一种或几种;所述载体为碳纳米管、石墨烯、活性炭、科琴黑等碳材料的一种;所述纳米合金中,钯、其他金属的摩尔比为(2~7)∶1;所述纳米钯合金催化剂的形状包括纳米颗粒、纳米线、纳米片、纳米球或者纳米立方体。
 本发明用于电催化还原CO 2的纳米钯合金催化剂电催化还原CO 2得到甲酸或甲酸盐。本发明公开了上述用于电催化还原CO 2的纳米钯合金催化剂在电催化还原CO 2或者电催化还原CO 2得到甲酸或甲酸盐中的应用。
 本发明公开了上述用于电催化还原CO 2的纳米钯合金催化剂的制备方法,包括湿化学还原法或者溶剂热法;湿化学还原法中,在惰性气氛中、表面活性剂与还原剂存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;或者惰性气氛中、表面活性剂、还原剂与载体存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;或者湿化学还原法中,在惰性气氛中、表面活性剂、无机碱与还原剂存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;或者惰性气氛中、表面活性剂、还原剂、无机碱与载体存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;溶剂热法中,在表面活性剂存在下,将钯盐与其他金属盐在有机溶剂中反应,得到纳米钯合金催化剂;或者在表面活性剂、载体存在下,将钯盐与其他金属盐在有机溶剂中反应,得到纳米钯合金催化剂。
 优选的,湿化学还原法中,反应的温度为30℃~90℃,反应的时间为0.1 h~3 h;溶剂热法中,反应的温度为140℃~180℃,反应的时间为1 h~5 h。
 以PdAg纳米钯合金催化剂作为示例,本发明用于电催化CO 2还原至甲酸的纳米钯合金催化剂包括PdAg双金属合金化合物、PdAg合金与碳材料所形成的复合材料等;制备方法包括湿化学还原法或者溶剂热法。湿化学还原法为,以氯钯酸和硝酸银为原料,在含有季铵盐类阳离子型表面活性剂的混合溶液中加入抗坏血酸或硼氢化钠溶液还原反应,得到PdAg纳米钯合金催化剂;溶剂热法为,将乙酰丙酮钯、硝酸银和季铵盐类表面活性剂的混合溶液在聚乙烯不锈钢高压釜中反应,得到PdAg纳米钯合金催化剂。
 具体的,湿化学还原法中,选用惰性气氛环境(Ar、N 2),以二甲基十六烷基氯化铵、二甲基十六烷基溴/氯化铵、十八烷基三甲基氯化铵等为表面活性剂,与不同物质的量比值0.3~0.8的氯钯酸与硝酸银组成混合溶液A,再加入还原剂(抗坏血酸、硼氢化钠、柠檬酸钠、草酸、盐酸羟胺等)或加入还原剂与无机碱;反应温度为30℃~90℃,反应的时间为0.1 h~3 h;无机碱包括氯化钠、氯化钾等;
溶剂热法中,以二甲基甲酰胺为溶剂,十八烷基三甲基氯化铵、十八烷基三甲基溴化铵等为表面活性剂,与不同物质的量比值的乙酰丙酮钯与硝酸银组成混合溶液B,在聚乙烯不锈钢高压釜中高温反应,反应温度为140℃~180℃,反应时间为1 h~5 h。
 对于制备PdAg合金与碳材料所形成的复合材料,将碳材料溶液与混合溶液A或B进行均匀混合,其余不变,即可制备,碳材料与混合溶液A或B中金属钯的质量比值为1~3.5。
比如,将氯钯酸、硝酸银加入二甲基双十六烷基氯化铵的水溶液中,在惰性气氛下加入还原剂,于40℃~60℃反应1 h~1.5 h,得到PdAg纳米钯合金催化剂;进一步的,反应结束后,经过离心、洗涤、干燥,得到PdAg纳米合金催化剂;干燥可以选择冷冻干燥或者真空加热干燥。优选的,二甲基双十六烷基氯化铵、硝酸银、氯钯酸、还原剂的质量比为100∶(5~20)∶(6~15)∶(5~20),优选为100∶(6~10)∶(9~11)∶(8~15);二甲基双十六烷基氯化铵水溶液的浓度为2~10mg/mL,优选为4~7mg/mL。优选的,45℃~50℃下加入硼氢化钠作为还原剂,再于45℃~60℃反应1 h~1.5 h。
有益效果
由于上述技术方案的运用,本发明与现有技术方案相比具有如下优点:1.本发明制备了新型的不同纳米结构以及不同比例的纳米钯合金催化剂,在CO 2饱和的不同水相电解液中,实现在近零电势下电催化CO 2还原生成甲酸,在较宽的电势范围内达到几乎100%的甲酸选择性,同时,在高电势下依旧可以实现长时间的电解测试,并保持电流密度和甲酸法拉第效率平稳。
2.与其他催化剂相比,本发明的制备方法简单、可操控强,同时解决钯基催化剂活性衰减的弊端,具有广阔的市场应用价值。
附图说明
图1是实施例1中湿化学还原法制备PdAg-1纳米颗粒的形貌、结构表征以及电催化CO 2还原性能,(a)TEM图像;(b)XRD图谱;(c)甲酸法拉第效率图; (d)稳定性测试图。
图2是实施例2中湿化学还原法制备PdAg纳米线的形貌表征和电催化CO 2还原性能,(a)XRD图;(b)SEM图像;(c)甲酸法拉第效率图。
图3是实施例3中湿化学还原法制备PdAg纳米立方体的形貌、结构表征和电催化CO 2还原性能,(a)TEM图像;(b)XRD图谱;(c)甲酸法拉第效率图;(d)稳定性测试图。
图4是实施例4中溶剂热法制备PdAg纳米球的形貌表征和电催化CO 2还原性能,(a)TEM图像;(b)TEM高分辨图谱;(c)甲酸法拉第效率图。
图5是实施例5中溶剂热法制备PdAg纳米片的电催化CO 2还原性能,(a)甲酸法拉第效率图;(d)稳定性测试图。
本发明的实施方式
本发明通过改变金属Pd的原料、Pd和Ag金属的比例、表面活性剂、反应温度或时间以及制备复合材料等策略来有效调控Pd的电子结构,从而提升它们的催化性能。PdAg纳米钯合金催化剂为粉末结构;所述粉末包括纳米颗粒、纳米线、纳米片、纳米球、纳米立方体;所述的PdAg纳米钯合金催化剂中Pd与Ag的比例为(2~7)∶1;所述的复合材料中载体碳材料包括碳纳米管、石墨烯、活性炭、科琴黑;通过金属与碳材料的协同作用提升该类催化剂在电催化CO 2还原至甲酸反应中的催化性能。
 本发明公开了PdAg纳米钯合金催化剂在电催化CO 2还原至甲酸反应中的应用,或在制备电催化CO 2还原至甲酸反应电极中的应用;采用湿化学还原法和溶剂热法制备PdAg纳米钯合金催化剂。
 上述技术方案中,电催化CO 2还原至甲酸反应时,在离子交换膜隔开自制的密闭H型电解池中,在阳极半反应池中,以碳棒为对电极,在阴极半反应池中,以饱和甘汞电极为参比电极;以制备的PdAg纳米钯合金催化剂为工作电极;工作电极的载体选择不同疏水碳纸(P75t、何森)或玻碳电极;电解液为CO 2饱和的pH = 1~5的硫酸、pH = 1~5的盐酸溶液、不同浓度(0.05~0.5 M)的碳酸氢钠/钾溶液、pH = 7的磷酸盐缓冲液(PBS)、不同浓度(0.01~0.1 M)的氯化钠溶液、pH = 8~10的硼酸盐缓冲溶液和不同浓度(0.01~0.1 M)的氢氧化钠、钾溶液。反应产生的甲酸以及副产物(H 2和CO)分别采用离子色谱和气相色谱进行定性和定量分析。
 本发明公开了一种电催化CO 2还原生成甲酸的方法,首先采用湿化学还原法和溶剂热法制备新型的PdAg纳米钯合金催化剂;将该催化剂与导电科琴黑混合与电极载体组合作为工作电极,随后在包含CO 2饱和的不同水相电解液的H型电解池中进行电催化CO 2还原生成甲酸的反应。
 本发明中,湿化学还原法为,以氯钯酸和硝酸银为原料,在含有季铵盐类阳离子型表面活性剂的混合溶液中加入抗坏血酸或硼氢化钠溶液还原反应,得到PdAg纳米钯合金催化剂;溶剂热法为,将乙酰丙酮钯、硝酸银和季铵盐类表面活性剂的混合溶液在聚乙烯不锈钢高压釜中反应,得到PdAg纳米钯合金催化剂。
 本发明PdAg纳米钯合金催化剂用于电催化CO 2还原生成甲酸的工作电极制备时,将PdAg纳米钯合金催化剂与导电科琴黑混合分散于乙醇与水的混合溶液中,分散均匀后滴涂于导电基质碳纸P75T上,自然晾干,得到工作电极。
 将制备的PdAg纳米催化剂1 mg、科琴黑0.5 mg分散于含6 μL Nafion粘合剂的250 μL的乙醇与水的混合溶剂(1∶1)中,超声30 min后,将匀浆均匀地滴涂在疏水碳纸P75t上作为工作电极,其催化剂负载量为1 mg cm -2,活性面积为1 mg cm -2。在测试PdAg电催化CO 2还原生成甲酸的性能时,选择Nafion离子交换膜隔开的密闭H型电解池,阳极以碳棒为对电极,阴极以饱和甘汞电极为参比电极;以制备的电极工作电极。电解液选择CO 2饱和的0.1 M KHCO 3水溶液,还原产生的甲酸以及副产物(H 2和CO)分别采用离子色谱和气相色谱进行定性和定量分析。
 实施例1:湿化学还原法制备PdAg纳米颗粒
将100 mg二甲基双十六烷基氯化铵于50 mL烧杯中,加入20 mL蒸馏水、6 mg AgNO 3和10 mg H 2PdCl 4,随后将溶液转移至圆底烧瓶中,通入Ar,并将反应温度调至50℃,随后在烧瓶中加入10 mg NaBH 4,在50℃温度下反应1 h后,在空气中自然冷却至室温,将溶液倒入离心管内,在10000 rpm下离心40分钟后,使用异丙醇、乙醇和去离子水进行洗涤和冷冻干燥处理,得到PdAg-1纳米颗粒,作为催化剂,Pd与Ag的比例为4∶1。
 从图1a可以看出PdAg-1纳米颗粒的尺寸为6~7 nm,图1b中的X射线衍射图谱可以得出PdAg-1纳米颗粒的衍射峰位于纯Pd和纯Ag的对应峰之间,表明形成了双金属PdAg合金。在CO 2饱和的0.1 M KHCO 3溶液中,PdAg-1纳米颗粒0 V~-0.5 V vs RHE电位区间进行了CO 2还原电解测试(图1c)。产物检测表明甲酸是CO 2还原反应的唯一产物。PdAg-1纳米颗粒在零过电势下甲酸的法拉第效率达到85%,并且在较宽的电势范围内(-0.1 V~-0.4 V)可以实现甲酸的法拉第效率达到近乎100%。同时甲酸的电流密度可以高达8.1 mA/cm 2,除此之外,在高电压下(-0.5 V)长时间的电解过程中,还原生成的甲酸电流以及法拉第效率均没有明显的衰减(图1d),相比于目前已经报道的Pd基纳米合金催化剂,PdAg-1纳米颗粒具有较高的催化活性和稳定性,这也使得钯基纳米合金在CO 2还原产甲酸反应中有了突破性的进展。
 实施例2:湿化学还原法制备PdAg纳米线
称取100 mg二甲基双十六烷基氯化铵于50 mL烧杯中,加入20 mL蒸馏水搅拌均匀,称取18 mg AgNO 3和10 mg新配制的H 2PdCl 4加入烧杯中混合均匀,随后将溶液转移至圆底烧瓶中,通入Ar,并将反应温度调至90℃,随后在烧瓶中加入60 mg 抗坏血酸,在90℃温度下反应1 h后,在空气中自然冷却至室温,将溶液倒入离心管内,在10000 rpm下离心40分钟后,使用异丙醇、乙醇和去离子水进行洗涤和冷冻干燥处理,得到PdAg纳米线,Pd与Ag的比例为3∶1。
 利用粉末X射线衍射对所制备的PdAg纳米线晶体结构进行分析,该催化剂为面心立方结构,同时其单个峰位于纯Pd和纯Ag之间(图2a),证明了PdAg合金的生成。通过扫描电子显微镜(图2b)发现该催化剂主要为1D纳米线,平均直径为5 ~ 6 nm,长度不均一,大约为几百个纳米左右。对其电化学测试发现(图2c),在-0.1 V ~ -0.4 V电势范围内,PdAg可以将CO 2还原生成甲酸,然而,该PdAg纳米线仅可以在-0.1 V ~ -0.3 V的电势范围内,生成甲酸的法拉第效率达到90%以上,尤其是在-0.5V,法拉第效率下降显著,尽管与之前报道的PdAg纳米线相比具有高的甲酸选择性,但是其催化活性未能超越实例1中PdAg-1纳米颗粒的催化性能。
 实施例3:湿化学还原法制备PdAg纳米立方体
称取50 mg二甲基双十六烷基氯化铵于25 mL烧杯中,加入10 mL蒸馏水搅拌均匀,称取5 mg KCl、8 mg AgNO 3和20 mg新配制的H 2PdCl 4加入烧杯中混合均匀,随后将溶液转移至圆底烧瓶中,通入Ar,并将反应温度调至70℃,随后在烧瓶中加入35 mg 抗坏血酸,在50℃温度下反应30 min后,在空气中自然冷却至室温,将溶液倒入离心管内,在10000 rpm下离心,使用乙醇和去离子水进行洗涤和冷冻冷冻干燥处理,得到PdAg-2纳米立方体,Pd与Ag的比例为2.7∶1。
 所制备的PdAg-2纳米立方体在扫描电镜下(图3a)为圆角立方形貌,平均尺寸为~100 nm,粉末X射线衍射图谱(图3b)显示在30-90 o衍射峰,可说明其为面心立方结构。如图3c所示,PdAg-2纳米立方体在0 ~ -0.5 V vs RHE的工作电位下进行了计时电流分析。在0 V时,其甲酸的法拉第效率可达到80.1%,在-0.1 V和-0.3 V vs RHE电势范围内甲酸的法拉第效率均可保持在90%以上,然而,在高电势-0.4 V长时间的电解过程中,尽管还原生成的甲酸法拉第效率没有明显的衰减,但是其生成甲酸的电流密度会发生明显的衰减(图3d)。因此,还需进一步探索提升其稳定性的PdAg纳米合金催化剂。
 实施例4:溶剂热法制备PdAg纳米球
称取40 mg的十八烷基氯化铵于烧杯中,加入25 mL二甲基甲酰胺,搅拌均匀后,称取340 mg AgNO 3和152 mg乙酰丙酮钯加入上述溶液中,充分混合后转移至50 mL的聚乙烯不锈钢高压釜中,在140℃下反应12 h后,将所得到的沉淀物倒入离心管内,在10000 rpm下离心30分钟后,分别用乙醇和去离子水清洗,冷冻干燥后得到PdAg纳米球,Pd与Ag的比例为3.5∶1。
 在扫描电镜(SEM)和透射电镜(TEM)下(图4a,b),PdAg合金由均匀的纳米球组成,平均直径为60 nm。在0 ~ -0. 5 V vs RHE电势范围内对PdAg纳米球进行恒电位电解(图4c),该催化剂仅在-0.16V电势范围下,还原生成的甲酸法拉第效率达到92%,其催化活性明显低。
 实施例5:溶剂热法制备PdAg纳米片
称取100 mg的十八烷基氯化铵于烧杯中,加入15 mL二甲基甲酰胺,搅拌均匀后,称取85 mg AgNO 3和152 mg乙酰丙酮钯加入上述溶液中,充分混合后转移至25 mL的聚乙烯不锈钢高压釜中,在180℃下反应8 h后,将所得到的沉淀物倒入离心管内,在10000 rpm下离心40分钟后,分别用乙醇和去离子水清洗,冷冻干燥后得到PdAg纳米片,Pd与Ag的比例为4.3∶1。
 将所得到的PdAg纳米片进行电化学CO 2还原产甲酸的性能测试(图5),在0 V电位下,生成甲酸的法拉第效率可以达到85%,在-0.1 V ~ -0.4 V vs RHE的电位区间内,产物甲酸的法拉第效率均可达到95%以上,然而在-0.5 V高电位下长时间电解过程中,生成甲酸的电流密度有较大程度的衰减,尽管该催化剂生成甲酸的法拉第效率明显高于已经报道的大部分Pd基催化剂,然而依旧未能解决其稳定性的问题。
 综上实施例,可以明显地看出通过湿化学还原法制备的PdAg纳米颗粒在电化学CO 2还原生成甲酸反应中甲酸的选择性、电流密度以及长时间的稳定性中都相较于已报道的钯基纳米合金催化剂性能有很大程度的突破。
 为了解决Pd基催化材料在CO 2还原产甲酸反应中存在的问题和挑战,本发明的目的是通过引入第二金属比如Ag,以形成PdAg纳米钯合金催化剂,来有效调控Pd的电子结构,从而实现高效电催化CO 2还原生成甲酸;特别是设计新型的PdAg纳米钯合金催化剂,包括不同的PdAg金属比例、构型,以及与碳材料复合,将该纳米钯合金催化剂应用于电催化CO 2还原生成甲酸反应的体系中,实现高效、高稳定地将CO 2还原至甲酸。相比于其他电催化CO 2生成甲酸的主族金属催化剂,该类催化剂可以在零过电势下实现CO 2向甲酸的转化,同时,在较宽的电势范围内实现近乎100%的甲酸选择性,并且稳定性也有所提升。

Claims (10)

  1. 用于电催化还原CO 2的纳米钯合金催化剂,其特征在于,所述纳米钯合金催化剂为纳米合金或者纳米合金的载体复合材料;所述纳米合金包括钯以及其他金属。
  2.  根据权利要求1所述用于电催化还原CO 2的纳米钯合金催化剂,其特征在于,所述其他金属为贵金属;所述载体为碳纳米管、石墨烯、活性炭、科琴黑等碳材料的一种;所述纳米合金中,钯、其他金属的摩尔比为(2~7)∶1。
  3.  根据权利要求2所述用于电催化还原CO 2的纳米钯合金催化剂,其特征在于,所述其他金属为金、银、铂中的一种或几种。
  4.  权利要求1所述用于电催化还原CO 2的纳米钯合金催化剂在电催化还原CO 2生成甲酸或甲酸盐中的应用,或者在提升电催化还原CO 2生成甲酸反应的活性和稳定性中的应用。
  5.  权利要求1所述用于电催化还原CO 2的纳米钯合金催化剂的制备方法,其特征在于,包括湿化学还原法或者溶剂热法;所述纳米钯合金催化剂的形状包括纳米颗粒、纳米线、纳米片、纳米球或者纳米立方体。
  6.  根据权利要求5所述用于电催化还原CO 2的纳米钯合金催化剂的制备方法,其特征在于,湿化学还原法中,在惰性气氛中、表面活性剂与还原剂存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;或者惰性气氛中、表面活性剂、还原剂与载体存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;或者;
    湿化学还原法中,在惰性气氛中、表面活性剂、无机碱与还原剂存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;或者惰性气氛中、表面活性剂、还原剂、无机碱与载体存在下,将氯钯酸与其他金属盐在溶液中反应,得到纳米钯合金催化剂;
    溶剂热法中,在表面活性剂存在下,将钯盐与其他金属盐在有机溶剂中反应,得到纳米钯合金催化剂;或者在表面活性剂、载体存在下,将钯盐与其他金属盐在有机溶剂中反应,得到纳米钯合金催化剂。
  7.  根据权利要求6所述用于电催化还原CO 2的纳米钯合金催化剂的制备方法,其特征在于,表面活性剂包括二甲基十六烷基氯化铵、二甲基十六烷基氯化铵、二甲基十六烷基溴化铵、十八烷基三甲基氯化铵中的一种或几种;还原剂包括抗坏血酸、硼氢化钠、柠檬酸钠、草酸、盐酸羟胺中的一种或几种。
  8.  根据权利要求5所述用于电催化还原CO 2的纳米钯合金催化剂的制备方法,其特征在于,湿化学还原法中,反应的温度为30℃~90℃,反应的时间为0.1 h~3 h;溶剂热法中,反应的温度为140℃~180℃,反应的时间为1 h~5 h。
  9.  一种电催化还原CO 2的方法,其特征在于,以权利要求1所述用于电催化还原CO 2的纳米钯合金催化剂作为阴极还原催化剂,在电解液中进行电催化还原CO 2
  10.  一种电催化还原CO 2所用的电解池,包括对电极、工作电极和参比电极,其特征在于,工作电极上负载了权利要求1所述用于电催化还原CO 2的纳米钯合金催化剂。
PCT/CN2023/078689 2022-03-16 2023-02-28 用于电催化还原co 2的纳米钯合金催化剂及其制备方法与应用 WO2023174049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210261526.XA CN114525542B (zh) 2022-03-16 2022-03-16 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用
CN202210261526.X 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023174049A1 true WO2023174049A1 (zh) 2023-09-21

Family

ID=81625987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078689 WO2023174049A1 (zh) 2022-03-16 2023-02-28 用于电催化还原co 2的纳米钯合金催化剂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114525542B (zh)
WO (1) WO2023174049A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525542B (zh) * 2022-03-16 2024-05-14 苏州大学 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160849A (zh) * 2011-12-12 2013-06-19 清华大学 二氧化碳电化学还原转化利用的方法
CN104174392A (zh) * 2013-05-27 2014-12-03 中国科学院大连化学物理研究所 一种担载型铂基多金属催化剂的一步制备方法和应用
CN107519868A (zh) * 2016-06-20 2017-12-29 中国科学院金属研究所 一种催化还原水中硝酸根的纳米钯银合金催化材料及其制备方法和应用
CN108311712A (zh) * 2018-05-03 2018-07-24 济南大学 一种高催化性能多面体状金-钯合金纳米材料的制备方法
CN108311145A (zh) * 2017-01-17 2018-07-24 中国科学院上海高等研究院 碳载钯锡纳米合金催化剂的制备及其在二氧化碳电催化还原中的应用
CN108736022A (zh) * 2018-05-07 2018-11-02 南京师范大学 一种异质结PdAg纳米线的制备方法及其所得材料和应用
CN109453773A (zh) * 2018-10-23 2019-03-12 北京化工大学 一种负载型双金属核壳结构催化剂及其制备方法
CN110560082A (zh) * 2019-08-28 2019-12-13 浙江工业大学 一种自支撑介孔金钯合金薄膜电化学合成氨催化剂及其制备方法
CN111074294A (zh) * 2019-12-12 2020-04-28 中国科学技术大学 一种铜合金材料电催化二氧化碳制备含碳化合物的方法
CN111346645A (zh) * 2020-03-13 2020-06-30 苏州大学 高分散合金纳米粒子制备方法及应用
KR20200093985A (ko) * 2019-01-29 2020-08-06 서울대학교산학협력단 금속 합금 촉매의 제조 방법, 금속 합금 촉매를 이용한 이산화탄소 환원 방법, 및 이산화탄소 환원 시스템
CN113061931A (zh) * 2019-12-13 2021-07-02 中国科学院大连化学物理研究所 一种co2电化学还原用电极催化剂的制备方法
CN113718269A (zh) * 2021-09-06 2021-11-30 隆基绿能科技股份有限公司 一种电催化材料及其制备方法和应用
CN113909487A (zh) * 2021-11-05 2022-01-11 南京师范大学 一种卷曲PtPd纳米枝晶及其制备方法和应用
CN113981474A (zh) * 2021-03-30 2022-01-28 南京工业大学 一种具有高甲酸选择性的二氧化碳电还原催化剂及其制备方法
CN114525542A (zh) * 2022-03-16 2022-05-24 苏州大学 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735291B (zh) * 2016-12-01 2019-01-08 苏州大学 一种树枝状二维钯银纳米片及其制备方法
CN108598508B (zh) * 2018-05-24 2020-09-22 西北工业大学 AgPd纳米合金甲酸盐氧化催化剂及提高催化活性的无表面活性剂的处理方法
CN109518222B (zh) * 2019-01-28 2020-06-23 苏州大学 用于电催化co2还原至甲酸的铋基催化剂及其制备方法和应用
CN109971172B (zh) * 2019-03-18 2021-04-02 岭南师范学院 一种钯银合金/聚苯胺纳米复合材料的一步制备方法和应用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160849A (zh) * 2011-12-12 2013-06-19 清华大学 二氧化碳电化学还原转化利用的方法
CN104174392A (zh) * 2013-05-27 2014-12-03 中国科学院大连化学物理研究所 一种担载型铂基多金属催化剂的一步制备方法和应用
CN107519868A (zh) * 2016-06-20 2017-12-29 中国科学院金属研究所 一种催化还原水中硝酸根的纳米钯银合金催化材料及其制备方法和应用
CN108311145A (zh) * 2017-01-17 2018-07-24 中国科学院上海高等研究院 碳载钯锡纳米合金催化剂的制备及其在二氧化碳电催化还原中的应用
CN108311712A (zh) * 2018-05-03 2018-07-24 济南大学 一种高催化性能多面体状金-钯合金纳米材料的制备方法
CN108736022A (zh) * 2018-05-07 2018-11-02 南京师范大学 一种异质结PdAg纳米线的制备方法及其所得材料和应用
CN109453773A (zh) * 2018-10-23 2019-03-12 北京化工大学 一种负载型双金属核壳结构催化剂及其制备方法
KR20200093985A (ko) * 2019-01-29 2020-08-06 서울대학교산학협력단 금속 합금 촉매의 제조 방법, 금속 합금 촉매를 이용한 이산화탄소 환원 방법, 및 이산화탄소 환원 시스템
CN110560082A (zh) * 2019-08-28 2019-12-13 浙江工业大学 一种自支撑介孔金钯合金薄膜电化学合成氨催化剂及其制备方法
CN111074294A (zh) * 2019-12-12 2020-04-28 中国科学技术大学 一种铜合金材料电催化二氧化碳制备含碳化合物的方法
CN113061931A (zh) * 2019-12-13 2021-07-02 中国科学院大连化学物理研究所 一种co2电化学还原用电极催化剂的制备方法
CN111346645A (zh) * 2020-03-13 2020-06-30 苏州大学 高分散合金纳米粒子制备方法及应用
CN113981474A (zh) * 2021-03-30 2022-01-28 南京工业大学 一种具有高甲酸选择性的二氧化碳电还原催化剂及其制备方法
CN113718269A (zh) * 2021-09-06 2021-11-30 隆基绿能科技股份有限公司 一种电催化材料及其制备方法和应用
CN113909487A (zh) * 2021-11-05 2022-01-11 南京师范大学 一种卷曲PtPd纳米枝晶及其制备方法和应用
CN114525542A (zh) * 2022-03-16 2022-05-24 苏州大学 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 1 June 2020, SUZHOU UNIVERSITY, CN, article ZHOU, YUAN: "Preparation and Synthesis of Nano-palladium-based Alloy Material and Application Research Thereof in Electrochemical Carbon Dioxide Reduction", pages: 1 - 82, XP009548941, DOI: 10.27351/d.cnki.gszhu.2020.000187 *
"Master's Thesis", 17 June 2020, QINGDAO UNIVERSITY, CN, article YIN, YANRU: "Preparation of Palladium and Palladium-based Bimetallic Nanoparticles and Electrocatalytic Performance Research Thereof", pages: 1 - 87, XP009548942, DOI: 10.27262/d.cnki.gqdau.2020.002361 *

Also Published As

Publication number Publication date
CN114525542B (zh) 2024-05-14
CN114525542A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Ning et al. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4
CN101740785B (zh) 一种钯/石墨烯纳米电催化剂及其制备方法
CN105854918A (zh) 纳米级钴基粒子与氮掺杂碳的复合材料、合成方法及用途
CN106669763A (zh) 一种氮掺杂碳包覆纳米花状MoSe2复合材料及制备与应用
CN103331172B (zh) 一种质子交换膜燃料电池非铂氢阳极催化剂的制备方法
CN110961162B (zh) 一种催化剂载体、贵金属催化剂及其制备方法和应用
CN107342427B (zh) 一种直接乙醇燃料电池用Pd/Ag纳米合金催化剂的制备方法
CN109935840A (zh) 一种燃料电池用Pt基催化剂的制备方法
CN111653792A (zh) 一种同步制备多级孔钴和氮共掺杂纳米棒负载铂钴合金纳米氧还原电催化剂的方法
Cheng et al. The hybrid nanostructure of vertically aligned cobalt sulfide nanoneedles on three-dimensional graphene decorated nickel foam for high performance methanol oxidation
CN105789639A (zh) 一种燃料电池用金团簇/碳纳米管复合催化剂的制备方法
WO2023174049A1 (zh) 用于电催化还原co 2的纳米钯合金催化剂及其制备方法与应用
CN110586150A (zh) 电化学还原二氧化碳为一氧化碳的中空结构催化剂及其催化剂的制备方法
Zhou et al. Pt supported on boron, nitrogen co-doped carbon nanotubes (BNC NTs) for effective methanol electrooxidation
Meng et al. One-step synthesis of N-doped carbon nanotubes-encapsulated Ni nanoparticles for efficient electrochemical CO2 reduction to CO
CN110586127B (zh) 一种铂钴双金属纳米空心球的制备方法及其应用
CN113943949B (zh) 一种铂边缘修饰镍基纳米材料及其制备方法和应用
Nie et al. Pd doped Ni derived from Ni-Metal organic framework for efficient hydrogen evolution reaction in alkaline electrolyte
Song et al. Oxygen-doped MoS2 nanoflowers with sulfur vacancies as electrocatalyst for efficient hydrazine oxidation
Yang et al. Electrocatalytic oxidation of formic acid on Pd/CNTs nanocatalysts synthesized in special “non-aqueous” system
CN113174053B (zh) 一种基于乌洛托品的Mn-MOF及其制备方法和应用
CN107565139A (zh) 一种燃料电池氧还原电催化剂磷、氮、镍共掺杂碳材料的制备方法
CN107293759A (zh) 一种燃料电池氧还原电催化剂的制备方法
CN111883791A (zh) 三金属铂钯铬直接乙醇燃料电池催化剂的制备方法
CN112366327B (zh) 一种rGO-MOF(Al)负载钯铋磷合金纳米催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769557

Country of ref document: EP

Kind code of ref document: A1