WO2023171789A1 - Vla-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物 - Google Patents

Vla-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物 Download PDF

Info

Publication number
WO2023171789A1
WO2023171789A1 PCT/JP2023/009251 JP2023009251W WO2023171789A1 WO 2023171789 A1 WO2023171789 A1 WO 2023171789A1 JP 2023009251 W JP2023009251 W JP 2023009251W WO 2023171789 A1 WO2023171789 A1 WO 2023171789A1
Authority
WO
WIPO (PCT)
Prior art keywords
myocarditis
vla
composition
group
antibody
Prior art date
Application number
PCT/JP2023/009251
Other languages
English (en)
French (fr)
Inventor
研 松岡
成二 ▲高▼島
貴嗣 瀬川
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2024506421A priority Critical patent/JPWO2023171789A1/ja
Publication of WO2023171789A1 publication Critical patent/WO2023171789A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • the specification includes a composition for preventing or treating myocarditis, a composition for improving the prognosis of patients with myocarditis, and a composition for preventing exacerbation of myocarditis, which contains a VLA-4 inhibitor.
  • a composition for preventing or treating myocarditis a composition for improving the prognosis of patients with myocarditis
  • a composition for preventing exacerbation of myocarditis which contains a VLA-4 inhibitor.
  • Disclosed are products and compositions for treating myocarditis associated with decreased cardiac function.
  • Myocarditis is an inflammatory disease that primarily affects the myocardium. Myocarditis accounts for approximately 10% of the causes of sudden death, and approximately 30% of myocardial cases progress to chronic myocarditis (dilated cardiomyopathy). The mortality rate for myocarditis is 22%, and the mortality rate for fulminant myocarditis reaches 43%. According to Non-Patent Document 1, myocarditis is classified into lymphocytic myocarditis, giant cell myocarditis, eosinophilic myocarditis, and granulomatous myocarditis based on histological characteristics.
  • lymphocytic myocarditis The etiology of lymphocytic myocarditis is said to be mostly due to viral infections such as coxsackie virus and adenovirus.
  • Giant cell myocarditis, eosinophilic myocarditis, and granulomatous myocarditis are said to have many complications such as cardiotoxic substances, drugs, autoimmunity, and systemic diseases.
  • Drugs such as anthracyclines, fluorouracil, immune checkpoint inhibitors, and coronavirus vaccines have been reported to cause myocarditis.
  • An object of the present invention is to provide a new composition for treating myocarditis and/or a composition for preventing myocarditis.
  • the present invention includes the following aspects.
  • Item 1. A composition for preventing or treating myocarditis, comprising a VLA-4 inhibitor.
  • the VLA-4 inhibitor is an anti-VLA-4 antibody or an antigen-binding domain fragment thereof, a VLA-4 antagonist, siRNA, shRNA, miRNA, and antisense targeting VLA-4 mRNA.
  • Item 2. The composition according to Item 1, which is at least one RNA molecule selected from the group consisting of RNA or a vector capable of expressing the RNA molecule, or a genome editing system targeting the VLA-4 gene.
  • Item 3. Item 3.
  • the composition according to Item 2, wherein the anti-VLA-4 antibody has the function of neutralizing VLA-4.
  • composition according to item 2 wherein the VLA-4 antagonist is carotegrast methyl.
  • Item 5 The composition according to any one of Items 1 to 4, wherein the myocarditis is myocarditis other than eosinophilic myocarditis.
  • Item 6. The composition according to any one of Items 1 to 5, wherein the myocarditis is myocarditis caused by an immune checkpoint inhibitor.
  • Section 7. The composition according to any one of Items 1 to 6, wherein the myocarditis is accompanied by a decrease in cardiac function.
  • Section 8. Item 9. The composition according to any one of Items 1 to 7, used in combination with a composition comprising an anti-Vcam-1 antibody or an antigen-binding domain fragment thereof.
  • a composition for preventing exacerbation of myocarditis containing a VLA-4 inhibitor.
  • Item 10. A composition for treating myocarditis accompanied by decreased cardiac function, comprising an inhibitor of VLA-4.
  • Item 11 A composition for improving the prognosis of a patient suspected of having myocarditis or a patient with myocarditis, the composition comprising a VLA-4 inhibitor.
  • myocarditis can be treated. Furthermore, according to the present invention, myocarditis can be prevented.
  • (A) Shows the administration schedule of Vcam-1 neutralizing antibody and VLA-4 neutralizing antibody.
  • (B) Shows the left ventricular diameter shortening (% fractional shortening; FS) measured by echocardiography of all mice in the CTL group and the neutralizing antibody group.
  • (C) Boxplots of left ventricular end-diastolic diameter and left ventricular shortening fraction on day 28 of the same mouse as in (B) are shown.
  • (D) Shows Kaplan-Meier curves for the CTL group and the neutralizing antibody administration group.
  • (A) Shows the administration schedule of neutralizing antibodies.
  • (B) Shows Kaplan-Meier curves for each group.
  • Kaplan-Meier curves are shown for the CTL group (symbol a) and the VLA-4 group (symbol b). Kaplan-Meier curves are shown for the CTL group (code a), the VLA-4 group (code b), and the normal EF group (code c). The Kaplan-Meier curves of each group when VLA4 inhibitor was administered to MRL-Pdcd1 ⁇ / ⁇ are shown. In the figure, symbol a indicates the AJM300 (+) group, and symbol b indicates the AJM300 (-) group.
  • %Fractional Shortening (%) of each group when VLA4 inhibitor was administered to MRL-Pdcd1 -/- are shown.
  • 3 healthy subjects CTL
  • 4 patients with Covid-related myocarditis 8 patients with lymphocytic myocarditis (Lym)
  • 6 patients with eosinophilic myocarditis Eosi
  • giant cell myocarditis Shows the concentration of soluble Vcam-1 in the serum of 3 people.
  • the serum sVcam-1 concentration in the acute phase and recovery phase of patients with lymphocytic myocarditis is shown.
  • composition for preventing or treating myocarditis contains a VLA-4 inhibitor.
  • myocarditis is an inflammatory disease primarily affecting the myocardium. Classification of myocarditis based on clinical course includes acute myocarditis and chronic myocarditis. Furthermore, acute myocarditis includes fulminant myocarditis and myocarditis other than fulminant myocarditis. Chronic myocarditis includes dilated cardiomyopathy accompanied by ventricular hypertrophy and chronic myocarditis other than dilated cardiomyopathy.
  • myocarditis includes lymphocytic myocarditis, giant cell myocarditis, eosinophilic myocarditis, granulomatous myocarditis, etc. Viral infection has been reported as a cause of lymphocytic myocarditis.
  • Causative viruses include enterovirus infection, including coxsackievirus (group A or group B), echovirus, and poliovirus; hepatitis virus (type A or C); influenza virus (type A or B); respiratory syncytial virus; mumps virus ; measles virus; dengue virus; yellow fever virus; chikuningya virus; rabies virus; HIV virus; vaccinia virus; herpes zoster virus; cytomegalovirus; herpes simplex virus; EB virus; measles virus; adenovirus; parvovirus, etc. Most cases are thought to be caused by viral infection.
  • Giant cell myocarditis, eosinophilic myocarditis, and giant cell myocarditis have been reported to be caused by bacterial infection.
  • Eosinophilic myocarditis has been reported to be caused by a fungal infection.
  • Granulomatous myocarditis is caused by infectious diseases such as rickettsial infections, spirochetal infections, protozoal infections, and parasitic infections; ingestion of drugs and chemicals; allergies, autoimmune diseases; Kawasaki disease; sarcoidosis; radiation exposure; heat radiation. It is said that it is often associated with diseases.
  • drugs that can cause myocarditis include anthracyclines, fluorouracil, immune checkpoint inhibitors, and coronavirus vaccines.
  • Immune checkpoint inhibitors include anti-PD-1 antibodies, anti-PD-L1 antibodies, and anti-CTLA4 antibodies.
  • the composition according to this embodiment is preferably used in patients suspected of having myocarditis other than eosinophilic myocarditis, in particular caused by immune checkpoint inhibitors, or diagnosed with myocarditis caused by immune checkpoint inhibitors. It can be suitably used for patients with myocarditis.
  • the diagnosis of myocarditis is generally made by collecting myocardial tissue through endomyocardial biopsy and making a definitive diagnosis from the histological images. Therefore, a patient with myocarditis is intended to be a patient who has been definitively diagnosed with myocarditis. Patients suspected of having myocarditis are considered to have an electrocardiogram; pulse rate; echocardiogram (cross-sectional image; evaluation of cardiac function such as left ventricular shortening rate and left ventricular ejection fraction); blood CRP, and AST, although a definitive diagnosis has not been reached. , LDH, CK-MB, cardiac troponin (T or I), sVcam-1 measurements; chest X-ray; cardiac MRI, etc., indicate patients who have been suggested to have myocarditis.
  • prevention of myocarditis may include preventing the onset of myocarditis and preventing recurrence of myocarditis.
  • Treatment of myocarditis may include improving symptoms of myocarditis, curing myocarditis, and preventing cardiac dysfunction and heart failure due to myocarditis.
  • the degree of myocarditis can be determined by, for example, electrocardiogram; pulse rate; echocardiography (cross-sectional image; evaluation of cardiac function such as left ventricular shortening rate and left ventricular ejection fraction); blood CRP, AST, LDH, CK-MB, and myocardium. It can be evaluated by measurements such as troponin (T or I) and sVcam-1; chest X-ray; and cardiac MRI.
  • Whether or not myocarditis is worsening can be evaluated by comparing the patient's past test data for the same test items. For example, when determining whether or not myocarditis is worsening using the left ventricular diameter shortening rate and left ventricular ejection fraction as indicators, the patient's past left ventricular diameter shortening rate or left ventricular ejection fraction If the test data of the patient's current test items is low compared to the above, it can be determined that myocarditis is worsening. In addition, if the patient's current test data is the same or higher than the patient's past left ventricular diameter shortening rate or left ventricular ejection fraction, myocarditis has worsened. It can be determined that there is no.
  • VLA-4 is a protein also called integrin subunit alpha 4 or CD49D, and in the case of humans, it is a protein expressed from a gene registered with the National Center for Biotechnology Information as Gene ID: 3676. .
  • VLA-4 is a ligand for vascular cell adhesion molecule 1 (VCAM1; CD106; INCAM-100).
  • VCAM1 vascular cell adhesion molecule 1
  • VLA-4 inhibitors include anti-VLA-4 antibodies or fragments thereof containing the antigen-binding domain.
  • the "anti-VLA-4 antibody” is not limited as long as it can specifically bind to the VLA-4 protein and suppress its functional expression.
  • the antibody may be either a polyclonal antibody or a monoclonal antibody. Both polyclonal antibodies and monoclonal antibodies can be appropriately produced by methods known to those skilled in the art.
  • the antibody When the antibody is a monoclonal antibody, it may be a chimeric antibody, a humanized antibody, or a human antibody produced by a known method. Further, the antibody may be an antibody fragment such as Fab, F(ab) 2 , diabody, scFv, minibody, peptibody, mimetibody, etc.
  • the anti-VLA-4 antibody is a neutralizing antibody.
  • the VLA-4 antagonist may be a type that inhibits VLA-4 competitively (competitive inhibition type) or a type that inhibits it non-competitively (non-competitive inhibition type). Preferably, it is a non-competitive inhibition type.
  • VLA-4 antagonists can be compounds or peptides.
  • VLA-4 antagonist for example, carotegrast methyl (Reference: International Publication No. 2016/051828); Reference: SB683699/Firategrast described in Ferreira, E.F.B. et al (Current Medicinal Chemistry, 2021, 28, 5884-5895); R411/valategrast, CT7758/CDP323, DS-70, and TBC3486; Literature: PN-943 and MORF-057 described in Slack, RJ (Nature Reviews Drug Discovery volume 21, pages 60-78 (2022)); Literature: Baiula , BIO1211 and BIO5192 described in M et al (Front Chem.
  • PN-943 is a peptide.
  • VLA-4 antagonists include the following compounds described in the literature: Baiula, M et al (Front Chem. 2019 Jul 9;7:489).
  • VLA-4 inhibitors include RNA molecules that target VLA-4 mRNA.
  • the RNA molecule is not limited as long as it targets VLA-4 mRNA and suppresses the expression of VLA-4 mRNA.
  • examples of the RNA include RNA molecules having the effect of degrading target mRNA, such as at least one selected from the group consisting of siRNA, shRNA, miRNA, and antisense RNA, and/or suppressing the translation of target mRNA. I can do it.
  • the sequences of these RNA molecules can be appropriately designed by those skilled in the art using known techniques based on information on the base sequence of the target gene. Further, the RNA molecule may be produced based on a known method, or one available on the market may be obtained and used.
  • RNA molecules for VLA-4, ATL1102 described in the literature: Limmroth, V. et al (Neurology 83 November 11, 2014) can be mentioned. Mention may be made of RNA molecules or vectors capable of expressing said RNA molecules.
  • Vectors capable of expressing RNA molecules targeting VLA-4 mRNA are not particularly limited as long as they can express RNA molecules that suppress the expression of the VLA-4 protein in the body or cells of an individual.
  • hairpin-shaped RNA expression vectors and the like can be mentioned.
  • a hairpin-shaped RNA expression vector is a sense strand DNA that has the same sequence as the sense strand of the target mRNA (however, uracil in the mRNA is changed to thymine) downstream of a promoter base sequence suitable for expressing short RNA, such as the U6 promoter.
  • vectors contain at least a base sequence; a loop base sequence that forms a loop structure after transcription; an antisense strand DNA base sequence that can be fully or partially complementary to the sense strand DNA base sequence; and a terminator sequence.
  • vectors include plasmid vectors, adeno-associated virus (AAV) vectors, adenovirus vectors, retrovirus vectors, lentivirus vectors, and the like.
  • VLA-4 inhibitors include genome editing systems that target the VLA-4 gene.
  • the genome editing system that targets the VLA-4 gene is not limited as long as it is a system that can cause recombination within the VLA-4 gene within the body of an individual.
  • Examples include the CompoZr Zinc Finger Nuclease (ZFN) system, the TAL effector nuclease (TALEN) system, and the Clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system.
  • ZFN CompoZr Zinc Finger Nuclease
  • TALEN TAL effector nuclease
  • CRISPR/Cas9 Clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9
  • it is the CRISPR/Cas9 system.
  • it is a CRISPR/Cas9 system using a vector.
  • the CRISPR-encoding nucleic acid and the Cas9-encoding nucleic acid may be on different vectors or on one vector.
  • the promoter for making CRISPR function is not particularly limited, but U6 promoter is preferred.
  • the promoter for making Cas9 function is not particularly limited, but a promoter that is expressed in mammalian cells, such as a cytomegalovirus promoter, is preferred.
  • a commercially available vector such as pX330-U6-Chimeric_BB-CBh-hSpCas9 vector can be used as the CRISPR/Cas9 system.
  • VLA-4 gene target sequence The sequence that targets the VLA-4 gene (hereinafter also referred to as “VLA-4 gene target sequence”), which is incorporated into the CRISPR sequence, is incorporated into guide RNA (also referred to as gRNA, crRNA) and transcribed by the CRISPR/Cas9 system.
  • guide RNA also referred to as gRNA, crRNA
  • the VLA-4 gene target sequence can be obtained from the Optimized CRISPR design tool (Massachusetts Institute of Technology, ZhangLab webpage (http://crispr.mit.edu/)), E-CRISP (http://www.e-crisp. org/E-CRISP/ (German Cancer Research Center)), ZiFiT Targeter (http://zifit.partners.org/ZiFit/ (Zing Finger Consortium)), Cas9 design (http://cas9.cbi.pku.
  • a composition can be prepared by combining a VLA-4 inhibitor and a suitable carrier or additive.
  • carriers and additives used in the preparation of the composition include various commonly used drugs, such as excipients, binders, disintegrants, lubricants, colorants, Examples include flavoring agents, deodorants, surfactants, and the like.
  • the VLA-4 inhibitor is a peptide, antibody, antibody fragment, RNA molecule, plasmid vector, etc.
  • a transfection reagent containing a polymer, lipid, magnetism, etc. may be used as the carrier.
  • compositions When the composition is to be administered parenterally, examples include injections and drips.
  • the dosage form is not particularly limited, but tablets, powders, granules, capsules (including hard capsules and soft capsules), liquids, pills, suspensions, etc. Examples include clouding agents and emulsions.
  • composition is an oral solid composition such as a tablet, powder, granule, pill, or capsule
  • carriers such as lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate
  • Excipients such as kaolin, crystalline cellulose, silicic acid, methylcellulose, glycerin, sodium alginate, gum arabic; simple syrup, glucose solution, starch solution, gelatin solution, polyvinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, carboxymethylcellulose, shellac
  • Binders such as methylcellulose, ethylcellulose, water, ethanol, potassium phosphate
  • dry starch sodium alginate, agar powder, laminaran powder, sodium bicarbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid esters, sodium lauryl sulfate, stearic acid monoglyceride disintegrants such as , starch, lactose; disintegration inhibitors such as sucrose,
  • excipients such as glucose, lactose, starch, cacao butter, hydrogenated vegetable oil, kaolin, and talc may be used as carriers; gum arabic powder; , tragacanth powder, gelatin, and other binders; laminaran, agar, and other disintegrants, and the like can be used.
  • the capsules are prepared by mixing the active ingredient with the various carriers listed above and filling the mixture into hard capsules, soft capsules, etc. prepared.
  • the above formulation is a liquid, it may be an aqueous or oily suspension, solution, syrup, or elixir, and is prepared according to a conventional method using conventional additives.
  • the carrier When preparing the above pharmaceutical composition as an injection, the carrier may be diluted with water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters, etc.
  • pH adjusters such as sodium citrate, sodium acetate, and sodium phosphate
  • Buffers such as dipotassium phosphate, trisodium phosphate, sodium hydrogen phosphate, and sodium citrate
  • sodium pyrosulfite, EDTA, thioglycolic acid Stabilizers such as , thiolactic acid
  • saccharides such as mannitol, inositol, maltose, sucrose, and lactose can be used as molding agents during freeze-drying.
  • a sufficient amount of glucose or glycerin to adjust the isotonic solution may be included in the pharmaceutical preparation, and usual solubilizing agents, analgesics, local anesthetics, etc. may be added.
  • subcutaneous, intramuscular, or intravenous injections can be produced by conventional methods.
  • the above formulation is an infusion, it can be prepared by dissolving the compound to be administered in an isotonic electrolyte infusion formulation based on physiological saline, Ringer's solution, or the like.
  • the dosage of the composition is not particularly limited as long as the effects of the present invention are achieved, and can be appropriately determined depending on the dosage form, patient's age, sex, degree of medical condition, etc.
  • the composition when the composition contains an anti-VLA-4 antibody or an antigen-binding domain fragment thereof, when administering the composition systemically by intravenous injection, the anti-VLA-4 antibody or antigen-binding domain fragment thereof is
  • the fragment can be administered at a protein content of 0.01 to 1,000 mg/day. Administration can be carried out, for example, daily, every second day, every third day, every fourth day, every fifth day, every other week, every two weeks, every third week, every four weeks.
  • the administration period can be continued until the myocarditis improves. Preferably, it can be administered for about 6 months from the acute stage.
  • cardiac function improves in echocardiography and/or that the concentration of sVcam-1 or cardiac troponin in the patient's blood (preferably in serum) falls below a reference value.
  • the standard value is, for example, the average value, maximum value, 3rd quartile, 2nd quartile (median value), 1st quartile, and minimum value of the concentration of sVcam-1 in the blood of healthy people. selected.
  • the amount of VLA-4 antagonist per 1 kg of adult body weight may be 0.01 to 1,000 mg/day. can.
  • the VLA-4 antagonist is carotegrast methyl, it can be administered orally in an amount of 0.01 to 1,500 mg/day per kg of adult body weight. Administration can be carried out, for example, daily, every second day, every third day, every fourth day, every fifth day, every other week, every two weeks, every third week, every four weeks.
  • the administration period can be continued until the myocarditis improves. Preferably, it can be administered for about 6 months from the acute stage.
  • the definitions of myocarditis improvement and reference values are as described above.
  • At least one RNA molecule selected from the group consisting of siRNA, shRNA, miRNA, and antisense RNA targeting VLA-4 mRNA, or a vector capable of expressing the RNA molecule can be administered for 1 kg of adult body weight when administered systemically. It can be administered at a dose of 0.1 to 1,000 mg/day. Vectors can be linearized if necessary.
  • RNA molecule selected from the group consisting of siRNA, shRNA, miRNA, and antisense RNA targeting VLA-4 mRNA, or a vector capable of expressing the RNA molecule is used to target VLA-4 mRNA.
  • a nucleic acid delivery reagent such as liposome may be used in combination.
  • it can be administered at a dose of 0.01 to 100 mg/day/cm 2 of target tissue.
  • the number of administrations of at least one RNA molecule selected from the group consisting of siRNA, shRNA, miRNA, and antisense RNA targeting VLA-4 mRNA or a vector capable of expressing the RNA molecule is determined in the case of systemic administration. Even in the case of topical administration, it can be done once or multiple times. When administering multiple times, administration can be repeated every two days, every four days, or every week. When administered multiple times, it can be administered 2, 5, 10, 15, 20, or 24 times. Preferably, it can be administered for about 6 months from the acute stage.
  • the definitions of myocarditis improvement and reference values are as described above.
  • a genome editing system targeting the VLA-4 gene When administering a genome editing system targeting the VLA-4 gene to an individual, it can be administered systemically or locally. When administered systemically, intravenous injection is preferred.
  • the nucleic acid contained in the genome editing system is a DNA-based system, vectors derived from lentiviruses, adenoviruses, AAVs, etc. that can be expressed in individuals may be used.
  • the genome editing system targeting the VLA-4 gene When the genome editing system targeting the VLA-4 gene is administered systemically, it can be administered at a dose of 10 10 to 10 18 vg/kg of adult body weight/day.
  • the genome editing system can be administered once or multiple times, whether it is administered systemically or locally. When administering multiple times, administration can be repeated every two days, every four days, or every week. When administered multiple times, it can be administered 2, 5, 10, 15, 20, or 24 times. Preferably, it can be administered for about 6 months from the acute stage.
  • the definitions of myocarditis improvement and reference values are as described above.
  • the vector may be administered to an individual along with a nucleic acid delivery reagent such as a liposome. If the nucleic acid contained in the genome editing system is an RNA-based system, it can be administered together with liposomes. Moreover, it is preferable that the vector be linearized as necessary.
  • composition for treating myocarditis accompanied by decreased cardiac function 1.
  • the composition described in can also be used as a composition for treating myocarditis associated with decreased cardiac function. Therefore, above 1.
  • the description of the compositions in which is incorporated herein by reference.
  • the explanation regarding myocarditis is also given in 1 above.
  • Cardiac function can be evaluated, for example, by echocardiography (cross-sectional images; cardiac function evaluation such as left ventricular diameter shortening rate and left ventricular ejection fraction).
  • the cardiac function can be determined by comparing the reference value of each test item with the patient's measurement data of each test item, and if it is lower than the reference value, it can be determined that the patient's cardiac function is reduced. can.
  • composition for improving the prognosis of patients suspected of having myocarditis or patients with myocarditis 1.
  • the composition described in can also be used as a composition for improving the prognosis of patients suspected of having myocarditis or patients with myocarditis. Therefore, above 1.
  • the description of the compositions in which is incorporated herein by reference.
  • the explanation regarding myocarditis is also given in 1 above.
  • prognosis refers to survival period
  • improving prognosis refers to prolongation of survival period.
  • Prolongation of the survival period means, for example, that the survival period is longer than the reference value calculated from the survival period of a patient group to which the composition according to the present embodiment was not administered. Examples of the reference value include the median, first quartile, third quartile, average value, etc. of the survival period of a patient group.
  • compositions containing anti-Vcam-1 antibodies or antigen-binding domain fragments thereof used in combination with each composition 1. From 3.
  • the compositions described above may be used in combination with compositions comprising anti-Vcam-1 antibodies, or antigen-binding domain fragments thereof.
  • the anti-Vcam-1 antibody is not limited as long as it can specifically bind to the Vcam-1 protein and suppress its functional expression.
  • the antibody may be either a polyclonal antibody or a monoclonal antibody. Both polyclonal antibodies and monoclonal antibodies can be appropriately produced by methods known to those skilled in the art.
  • the antibody may be a monoclonal antibody, it may be a chimeric antibody, a humanized antibody, or a human antibody produced by a known method.
  • the antibody may be an antibody fragment such as Fab, F(ab) 2 , diabody, scFv, minibody, peptibody, mimetibody, etc.
  • the anti-Vcam-1 antibody is a neutralizing antibody.
  • InVivoMAb anti-mouse CD106 VCAM-1 (Clone No. M/K-2.7, Cat No. BE0027, Bio X Cell) can be mentioned.
  • a composition can be prepared by combining an anti-Vcam-1 antibody or an antigen-binding domain fragment thereof with a suitable carrier or additive.
  • a suitable carrier or additive A description of the carrier and additives used in the preparation of the composition can be found in 1. above. The explanation is incorporated here.
  • the amount of protein of the anti-Vcam-1 antibody or its antigen-binding domain fragment is calculated per 1 kg of adult body weight. It can be administered at a dose of 0.01 to 1,000 mg/day. Administration can be carried out, for example, daily, every second day, every third day, every fourth day, every fifth day, every other week, every two weeks, every third week, every four weeks. The administration period can be continued until the myocarditis improves.
  • autoimmune myocarditis rat model Single cell analysis using autoimmune myocarditis rat model
  • the autoimmune myocarditis rat model was performed using Pig Cardiac Myosin (self-purified from pig heart) in Lewis rats (male, 8 weeks old). ) 10mg/ml and Adjuvant (CFA 10mg/ml; Chondrex, 7002). The day of administration of Pig Cardiac Myosin was defined as Day 0. In this model, myocarditis reached its peak on Day 21.
  • FIG. 1 shows macroscopic images of the heart on Day 12, Day 19, and Day 25, and weakly magnified images and strongly magnified images of hematopoietic stained tissue images.
  • FIG. 3 shows the expression of Vcam-1 in each CTL, day 8, day 14, day 21, and day 25.
  • Vcam-1 was observed to be expressed in vascular endothelial cells, but was also highly expressed in activated cardiac fibroblasts (Postn + /FAP + ).
  • FIG. 4 shows the schedule of adhesion experiments.
  • cardiac fibroblasts hearts removed from newborn rats were dispersed with Collagenase type 2 (Worthington Biochemical Corporation, LS004176), and the isolated fibroblasts were cultured in a 96-well plate.
  • Collagenase type 2 Worthington Biochemical Corporation, LS004176
  • the isolated fibroblasts were cultured in a 96-well plate.
  • splenic mononuclear cells the spleen was removed from a wild-type mouse, and after homogenization, the mononuclear cell fraction was collected by gravity separation using Optiprep (Serumwerk Bernburg, 1893).
  • cardiac fibroblasts were cultured in a 96-well plate for 48 hours, the medium was replaced with TNF ⁇ +/-, and the cells were cultured for an additional 24 hours.
  • Fluorescently stained splenic mononuclear cells Hoechst 33342 (Dojin Kagaku, 341-07901) or Cytored (Dojin Kagaku, 342-08531)
  • PBS(-) splenic mononuclear cells
  • adherent mononuclear cells were counted using In Cell Analyzer 6000 (GE Healthcare Life Sciences).
  • TNF ⁇ (Peprotech, 300-01A) was added to the wells at a final concentration of 5 to 15 ng/ml.
  • Vcam-1 The induction of Vcam-1 by TNF ⁇ was confirmed by Western blotting.
  • Anti-Vcam1 antibody EPR5047 (Abcam, ab134047) was used as the primary antibody for Western blotting.
  • HRP-labeled anti-Rabbit antibody was used for detection, and Chemilumiwan L (Nacalai tesque, 07880-70) was used as the luminescent reagent.
  • Western blotting for GAPDH was performed as an internal control.
  • FIG. 4(B) Western blotting was performed in duplicate for each sample. Vcam-1 expression was slightly observed even after 0 hr of TNF ⁇ addition. However, the expression increased more at 12 hrs and 24 hrs after addition of TNF ⁇ .
  • FIG. 4(C) is an image captured by In Cell Analyzer 6000. As shown in FIG. 4(C), cardiac fibroblasts were shown to have stronger adhesion with mononuclear cells upon stimulation with TNF ⁇ .
  • FIG. 5(A) shows the schedule of this experiment. Cardiac fibroblast culture and adhesion experiments were performed in 2. above. The same procedure as (1) was carried out. Vcam-1 siRNA (Silencer TM Select Pre-Designed siRNA, siRNA ID s129593, Thermo; also called siVcam-1) was added to the wells using Lipofectamine TM RNAiMAX Transfection Reagent (Thermo, 13778075) to a final concentration of 30 nM. Two hours after seeding, cardiac fibroblasts were transfected. Adhesion experiments with mononuclear cells were performed 72 hours after cardiac fibroblasts were seeded into the wells. Silencer TM Select Negative Control No.
  • siRNA (Thermo, 4390843) was used as a siRNA control (siCTL).
  • the transfection amount was the same as that of siVcam-1.
  • TNF ⁇ was added at a concentration of 5 ng/ml.
  • Western blotting of Vcam-1 was performed in 2. above. The same procedure as (1) was carried out.
  • InVivoMAb anti-mouse CD106 VCAM-1) (Clone No. M/K-2.7, Cat No. BE0027, Bio X Cell) was used as a Vcam-1 neutralizing antibody.
  • VLA-4 neutralizing antibody As a neutralizing antibody, InVivoMAb anti-mouse/human VLA-4 (CD49d) (Clone No. PS/2, Cat No. BE0071, Bio X Cell). The dose of each was 10 ⁇ g/g.
  • the administration schedule was as shown in FIG. 6(A), from the 14th day after birth to every 3 days until the 26th day after birth. Echocardiography was performed on the 14th and 28th day after birth. In addition, after obtaining echocardiographic data on the 28th day after birth, blood and hearts were collected from all mice.
  • Figure 6 (B) shows the left ventricular diameter fraction (% fractional shortening; FS) measured by echocardiography of all mice in the CTL group and the neutralizing antibody group.
  • FS left ventricular diameter fraction
  • Figure 6 (C) shows a boxplot of the left ventricular end-diastolic diameter [LVDd (mm)] and left ventricular diameter shortening rate [%FS (%)] on day 28 of the individual shown in Figure 6 (B). show.
  • FIG. 6(D) shows Kaplan-Meier curves for the CTL group and the neutralizing antibody administration group.
  • symbol a indicates the CTL group
  • symbol b indicates the neutralizing antibody group.
  • VLA-4 neutralizing antibody The following study was conducted to examine whether Vcam-1 neutralizing antibody or VLA-4 neutralizing antibody contributes to lowering the mortality rate due to myocarditis.
  • the dosage of each antibody is as described in 4.
  • the same amount as in (1) was used.
  • the administration schedule of the neutralizing antibody is also the same as described in 4. Same as (1).
  • FIG. 8 shows 3-week-old wild-type mice (WT) and F1 mice crossed with wild-type mice and MRL-Pdcd1 -/-. (hetero: MRL-Pdcd1 - ), %FS values of MRL-Pdcd1 -/- (homo) are shown.
  • the %FS value of the WT group was over 75%, and the variation was small with little difference between the 1st and 4th quartiles.
  • the %FS values of the homo and hetero groups were broadly distributed as a whole, with some individuals having high values and some individuals having low values.
  • the group with decreased function was divided into a control group (CTL group) in which no VLA-4 neutralizing antibody was administered and a VLA-4 administration group (VLA-4 group) in which VLA-4 neutralizing antibody was administered.
  • CTL group control group
  • VLA-4 group VLA-4 administration group
  • the cut-off value between the good cardiac function group (normal EF group) and the poor cardiac function group was set as 70%, and the group with 70% or higher was considered the good cardiac function group, and the group with lower than 70% was considered the poor cardiac function group.
  • VLA-4 neutralizing antibody was administered according to the schedule shown in FIG. 8(C).
  • Figure 9 shows the body weight (BW), pulse rate (HR), and %FS values of each group. There were no significant differences in each parameter between the CTL group and VLA-4 group.
  • VLA-4 neutralizing antibodies to individuals with myocarditis improves the prognosis of myocarditis, regardless of each individual's cardiac function data. Furthermore, it was suggested that administering VLA-4 neutralizing antibodies to individuals with myocarditis is effective in preventing or treating myocarditis.
  • the AJM300 group (+) was administered a 1% AJM300 mixed diet from 2 weeks after birth until death.
  • 9 of the AJM300 (-) group and 10 of the AJM300 (+) group were evaluated for echocardiographic cardiac function when they were 28 days old, and were euthanized and their hearts and blood samples were taken. was collected.
  • Soluble Vcam-1 concentration in serum in humans Serum concentrations of soluble Vcam-1 (sVcam-1) were compared between healthy subjects and patients with myocarditis. 3 healthy subjects (CTL), 4 patients with Covid-related myocarditis (Covid related), 8 patients with lymphocytic myocarditis (Lym), 6 patients with eosinophilic myocarditis (Eosi), and giant cell myocarditis (Giant). The results for the three participants are shown in Figure 14. Increased serum sVcam-1 concentration was observed in patients with all types of myocarditis, including lymphocytic myocarditis, compared to healthy subjects. This suggested that the VLA-4/Vcam-1 pathway is involved in the development of myocarditis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、新たな心筋炎の治療用組成物、及び/又は心筋炎の予防用組成物を提供することを課題とする。 VLA-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物を提供する。

Description

VLA-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物
 明細書には、VLA-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物、心筋炎患者の予後を改善するための組成物、心筋炎の増悪を予防するための組成物、及び心機能の低下を伴う心筋炎を治療するための組成物が開示される。
 心筋炎は、心筋を主座とした炎症性疾患である。心筋炎は、突然死の原因の約10%を占め、また、心筋症例の約30%が、慢性心筋炎(拡張型心筋症)に移行する。心筋炎の死亡率は22%であり、中でも劇症型心筋炎の死亡率は43%に達する。非特許文献1によれば、心筋炎は、組織学的特徴から、リンパ球性心筋炎、巨細胞性心筋炎、好酸球性心筋炎、肉芽腫性心筋炎に分類される。リンパ球性心筋炎の病因は、コクサッキーウイルス、アデノウイルス等のウイルス感染によるものが多いとされる。巨細胞性心筋炎、好酸球性心筋炎、肉芽腫性心筋炎は心毒性物質、薬物、自己免疫、全身性疾患などの合併症が多いとされている。薬物としては、アントラサイクリン、フルオロウラシル、免疫チェックポイント阻害剤、コロナワクチン等が心筋炎の原因になることが報告されている。中でも免疫チェックポイント阻害剤に関し、抗PD-1抗体単独投与例において0.5%、抗PD-L1抗体単独投与例において2.4%、抗CTLA4単独投与例において3.3%の心筋炎発症例が報告されている。免疫チェックポイント阻害剤に起因すると思われる心筋炎の病巣では、Tリンパ球優位の組織浸潤像が確認されている。さらに、免疫チェックポイント阻害剤の投与に起因して心筋炎を発症した場合、死亡率は、心不全による死亡率、及び心原性の死亡率を合わせると46%に上る(非特許文献2)。
Kociol. R. D. et al:Recognition and Initial Management of Fulminant Myocarditis -A Scientific Statement From the American Heart Association, Endorsed by the Heart Failure Society of America and the Myocarditis Foundation. Circulation. 2020;141 Mahmood, SS: J Am Coll Cardiol 2018;71:1755-64 Hokibara, S: Clin Exp Immunol 1998;114:236-244 Grabmaier, U: Circulation 2012;126:A14885 Ammirati, E: J Am Coll Cardiol. 2019 Jul 23;74(3):299-311
 現在、心筋炎の治療として、ステロイドパルス療法、シクロスポリン投与等の免疫抑制療法、抗ウイルス療法等が採用されている。また、好酸球性心筋炎モデルマウスに対して、VLA-4中和抗体で好酸球浸潤が軽減することが報告されている(非特許文献3)。さらに、慢性期の自己免疫性心筋炎モデルラットにおいて、VLA-4中和抗体の投与によりT cell relapseと線維化が改善することが報告されている(非特許文献4)。しかし、非特許文献5によれば、この10年間で予後は改善されていない。
 本発明は、新たな心筋炎の治療用組成物、及び/又は心筋炎の予防用組成物を提供することを課題とする。
 本発明は、以下の態様を含む。
項1.VLA-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物。
項2.前記VLA-4の阻害物質が、抗VLA-4抗体、又はその抗原結合ドメインフラグメントであるか、VLA-4アンタゴニストであるか、VLA-4 mRNAを標的とするsiRNA、shRNA、miRNA、及びアンチセンスRNAよりなる群から選ばれる少なくとも一種のRNA分子又は該RNA分子を発現することができるベクターであるか、VLA-4遺伝子を標的とするゲノム編集システムである、項1に記載の組成物。
項3.前記抗VLA-4抗体が、VLA-4を中和する機能を有する、項2に記載の組成物。
項4.前記VLA-4アンタゴニストが、カロテグラストメチルである、項2に記載の組成物。
項5.前記心筋炎が、好酸球性心筋炎以外の心筋炎である、項1から4のいずれか一項に記載の組成物。
項6.前記心筋炎が、免疫チェックポイント阻害剤に起因する心筋炎である、項1から5のいずれか一項に記載の組成物。
項7.前記心筋炎が、心機能の低下を伴う、項1から6のいずれか一項に記載の組成物。
項8.抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物と組み合わせて使用される、項1から7のいずれか一項に記載の組成物
項9.VLA-4の阻害物質を含む、心筋炎の増悪を予防するための組成物。
項10.VLA-4の阻害物質を含む、心機能の低下を伴う心筋炎を治療するための組成物。項11.VLA-4の阻害物質を含む、心筋炎を疑う患者、又は心筋炎患者の予後を改善するための組成物。
 本発明によれば、心筋炎を治療することができる。また、本発明によれば、心筋炎を予防することができる。
Day 12、Day 19、及びDay 25における心臓のマクロ画像と、組織のhematopoietic染色像の弱拡大画像及び強拡大画像を示す。 シングルセル解析による心筋組織内の細胞のポピュレーション解析結果を示す。 CTL、day 8、day 14、day 21、day 25におけるVcam-1の発現を示す。 (A)接着実験のスケジュールを示す。(B)Vcam-1の発現に関するウエスタンブロッティングの結果を示す。(C)TNFα依存的な、心臓線維芽細胞と単核球の接着性を示す。 (A)実験のスケジュールを示す。(B)siVcam-1によるVcam-1遺伝子発現抑制効果を示す。(C)心臓線維芽細胞と単核球の接着性を示す。 (A)Vcam-1中和抗体とVLA-4中和抗体の投与スケジュールを示す。(B)CTL群、中和抗体群全てのマウスの心エコーにより測定した左室内径短縮率(%fractional shortening ; FS)を示す。(C)(B)と同じマウスの28日目の左室拡張末期径と左室内径短縮率箱ひげ図を示す。(D)CTL群と中和抗体投与群のKaplan-Meier曲線を示す。 (A)中和抗体の投与スケジュールを示す。(B)各群のKaplan-Meier曲線を示す。 (A)生後3週目の野生型マウス(WT)、野生型マウスとMRL-Pdcd1-/-を交配させたF1(hetero:MRL-Pdcd1-)、MRL-Pdcd1-/-(homo)の%FS値を示す。(B)homo群を%FSの高い群(心機能良好群:n=11)と%FSの低い群(心機能低下群:n=20)にわけた結果を示す。(C)VLA-4中和抗体の投与スケジュールを示す。 CTL群、VLA-4群、及びnormal EF群の臨床データを示す。 CTL群(符号a)、及びVLA-4群(符号b)のKaplan-Meier曲線を示す。 CTL群(符号a)、VLA-4群(符号b)、及びnormal EF群(符号c)のKaplan-Meier曲線を示す。 MRL-Pdcd1-/-にVLA4阻害剤投与を行った時の各群のKaplan-Meier曲線を示す。図中符号aはAJM300(+)群を示し、符号bはAJM300(-)群を示す。 MRL-Pdcd1-/-にVLA4阻害剤投与を行った時の各群の心拍数と左室収縮能:%Fractional Shortening (%)の結果を示す。 健常人(CTL)3名、Covid関連心筋炎(Covid related)4名、リンパ球性心筋炎(Lym)8名、好酸球性心筋炎(Eosi)6名、巨細胞性心筋炎(Giant)3名の血清中の可溶性Vcam-1 濃度を示す。 リンパ球性心筋炎患者の急性期及び回復期における血清中sVcam-1濃度を示す。
1.心筋炎を予防、又は治療するための組成物
 本実施態様にかかる、心筋炎を予防、又は治療するための組成物は、VLA-4の阻害物質を含む。
 本明細書において「心筋炎」は、心筋を主座とした炎症性疾患である。心筋炎には、臨床経過に基づく分類では、急性心筋炎と慢性心筋炎が含まれる。また、急性心筋炎には、劇症型心筋炎と劇症型心筋炎以外の心筋炎が含まれる。慢性心筋炎には、心室の肥大を伴う拡張型心筋症と拡張型心筋症以外の慢性心筋炎が含まれる。
 また、組織学的な分類では、心筋炎には、リンパ球性心筋炎、巨細胞性心筋炎、好酸球性心筋炎、肉芽腫性心筋炎等が含まれる。リンパ球性心筋炎の病因として、ウイルス感染が報告されている。原因ウイルスとして、コクサッキーウイルス(A群又はB群)、エコーウイルス、及びポリオウイルス等を含むエンテロウイルス感染;肝炎ウイルス(A型又はC型);インフルエンザウイルス(A型又はB型);RSウイルス;ムンプスウイルス;麻疹ウイルス;デング熱ウイルス;黄熱病ウイルス;チクニングニアウイルス;狂犬病ウイルス;HIVウイルス;ワクチニアウイルス;帯状疱疹ウイルス;サイトメガロウイルス;単純ヘルペスウイルス;EBウイルス;麻疹ウイルス;アデノウイルス;パルボウイルス等のウイルス感染によるものが多いとされる。巨細胞性心筋炎、好酸球性心筋炎、巨細胞性心筋炎は、細菌感染が原因となることが報告されている。好酸球性心筋炎は、真菌感染症が原因となることが報告されている。肉芽腫性心筋炎はリケッチア感染症、スピロヘータ感染症、原虫感染症、寄生虫感染症等の感染症;薬剤、化学物質の摂取;アレルギー、自己免疫疾患;川崎病;サルコイドーシス;放射被爆;熱射病などに合併することが多いとされている。心筋炎を惹起する可能性のある薬剤として、アントラサイクリン、フルオロウラシル、免疫チェックポイント阻害剤、コロナワクチン等を挙げることができる。免疫チェックポイント阻害剤として、抗PD-1抗体、抗PD-L1抗体、抗CTLA4抗体を挙げることができる。本実施態様に係る、組成物は、好ましくは好酸球性心筋炎の以外の、特に免疫チェックポイント阻害剤に起因する心筋炎を疑う患者、又は免疫チェックポイント阻害剤に起因する心筋炎と診断された心筋炎患者に好適に用いることができる。
 心筋炎の診断は、一般的に心内膜心筋生検により心筋組織を採取し、その組織画像から確定診断を行う。したがって、心筋炎患者は、心筋炎であると確定診断がついた患者を意図する。心筋炎を疑う患者とは、確定診断には至っていないものの、心電図;脈拍;心エコー(断層画像;左室内径短縮率、左室駆出率等の心機能評価);血液中のCRP、AST、LDH、CK-MB、心筋トロポニン(T又はI)、sVcam-1の測定;胸部X線;心臓MRI等の検査により心筋炎の可能性が示唆された患者を意図する。
 本実施形態において、心筋炎の予防には、心筋炎の発症を防ぐこと、心筋炎の再発を防ぐことを含み得る。心筋炎の治療には、心筋炎の症状を改善すること、心筋炎を治癒させること、心筋炎による心機能低下や心不全を防ぐことを含みうる。
 心筋炎の程度は、例えば、心電図;脈拍;心エコー(断層画像;左室内径短縮率、左室駆出率等の心機能評価);血液中のCRP、AST、LDH、CK-MB、心筋トロポニン(T又はI)、sVcam-1の測定;胸部X線;心臓MRI等の検査により評価することができる。
 心筋炎が増悪しているか否かは、患者本人の同一検査項目の過去の検査データと比較して評価することができる。例えば、検査項目を左室内径短縮率、左室駆出率を指標として心筋炎が増悪しているか否かを判定する場合、患者本人の過去の左室内径短縮率、又は左室駆出率と比較して、患者本人の現時点における検査項目の検査データが低くなっていれば、心筋炎が増悪していると判断することができる。また、患者本人の過去の左室内径短縮率、又は左室駆出率と比較して、患者本人の現時点における検査項目の検査データが同じか、それ以上であれば、心筋炎は増悪していないと判断することができる。
 本明細書において、VLA-4は、integrin subunit alpha 4、又はCD49Dとも呼ばれるタンパク質であり、ヒトの場合、National Center for Biotechnology Informationに、Gene ID: 3676 として登録される遺伝子から発現されるたんぱく質である。VLA-4は、vascular cell adhesion molecule 1(VCAM1;CD106; INCAM-100)のリガンドである。
 VLA-4の阻害物質として、例えば、抗VLA-4抗体、又はその抗原結合ドメインを含むフラグメントを挙げることができる。
 本発明において、「抗VLA-4抗体」は、VLA-4タンパク質に特異的に結合し、その機能発現を抑制できる限り制限されない。当該抗体はポリクローナル抗体及びモノクローナル抗体のいずれであってもよい。ポリクローナル抗体及びモノクローナル抗体は、いずれも当業者が公知の方法により適宜作成することができる。当該抗体がモノクローナル抗体である場合は、公知の方法により作成されるキメラ抗体、ヒト化抗体、ヒト抗体であってもよい。また、前記抗体は、Fab、F(ab)2、ダイアボディ、scFv、ミニボディ、ぺプチボディ、ミメティボディ等の抗体フラグメントであってもよい。好ましくは、抗VLA-4抗体は、中和抗体である。例えば、抗VLA-4抗体として、InVivoMAb anti-mouse/human VLA-4 (CD49d)(クローンNo. PS/2、Cat No. BE0071、Bio X Cell)、文献:Ferreira, E.F.B. et al(Current Medicinal Chemistry, 2021, 28, 5884-5895)に記載のVedolizumab等を挙げることができる。
 本実施態様において、VLA-4アンタゴニストは、VLA-4を競合的に阻害するタイプ(競合阻害型)であっても、非競合的に阻害するタイプ(非競合阻害型)であってもよい。好ましくは、非競合阻害型である。VLA-4アンタゴニストは、化合物であってもペプチドであってもよい。
 VLA-4アンタゴニストとして、例えば、カロテグラストメチル(文献:国際公開第2016/051828号);文献:Ferreira, E.F.B. et al(Current Medicinal Chemistry, 2021, 28, 5884-5895)に記載のSB683699/Firategrast、R411/valategrast、CT7758/CDP323、DS-70、及びTBC3486;文献:Slack, RJ(Nature Reviews Drug Discovery volume 21, pages60-78 (2022))に記載のPN-943、及びMORF-057;文献:Baiula, M et al (Front Chem . 2019 Jul 9;7:489)に記載のBIO1211、及びBIO5192;文献:Ohkuro,  M et al(Nat Commun. 2018 May 17;9(1):1982ER464195-01)に記載のER464195-01;ER464195-01の類縁体であるE6007を挙げることができる。PN-943は、ペプチドである。
 さらに、VLA-4アンタゴニストとして、例えば、文献:Baiula, M et al (Front Chem . 2019 Jul 9;7:489)に記載の下記化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
 VLA-4の阻害物質として、VLA-4 mRNAを標的とするRNA分子を挙げることができる。前記RNA分子は、VLA-4 mRNA を標的とし、VLA-4 mRNA の発現を抑制できる限り制限されない。前記RNAとして、RNA分子siRNA、shRNA、miRNA、及びアンチセンスRNAよりなる群から選ばれる少なくとも一種等の標的mRNAを分解する作用を有するもの、及び/又は標的mRNAの翻訳を抑制するものを挙げることができる。これらのRNA分子の配列は、標的である上記遺伝子の塩基配列の情報に基づいて、当業者が公知の手法により適宜設計することができる。また、当該RNA分子は公知の手法に基づいて作製してもよく、市場に流通するものを入手して用いることもできる。例えば、VLA-4のアンチセンスRNAとして、文献:Limmroth, V. et al (Neurology 83 November 11, 2014)に記載のATL1102を挙げることができる。RNA分子又は該RNA分子を発現することができるベクターを挙げることができる。
 VLA-4 mRNAを標的とするRNA分子を発現できるベクターは、個体の体内、又は細胞内で当該VLA-4タンパク質の発現を抑制するRNA分子を発現できる限り特に制限されない。例えば、ヘアピン型RNA発現ベクター等を挙げることができる。ヘアピン型RNA発現ベクターは、例えばU6プロモーター等の短鎖RNAの発現に適したプロモーター塩基配列の下流に、標的mRNAのセンス鎖と同じ配列(但しmRNAのウラシルはチミンに変わる)を有するセンス鎖DNA塩基配列と;転写後にループ構造を形成するループ塩基配列と;前記センス鎖DNA塩基配列と全体又は一部が相補的に結合することができるアンチセンス鎖DNA塩基配列と;ターミネーター配列を少なくとも含む。ベクターは、プラスミドベクター、アデノ随伴ウイルス(AAV)ベクター、アデノウイルスベクター、レトロウイルスベクター、レンチウイルスベクター等を例示することができる。
 VLA-4の阻害物質として、VLA-4遺伝子を標的とするゲノム編集システムを挙げることができる。VLA-4遺伝子を標的とするゲノム編集システムは、個体の体内においてVLA-4遺伝子内に組換えを起こすことができるシステムである限り制限されない。例えば、CompoZr Zinc Finger Nuclease(ZFN)システム、TAL effector nuclease (TALEN)システム、及びClustered regularly interspaced short palindromic repeats/CRISPR associated protein 9(CRISPR/Cas9)システム等を挙げることができる。好ましくは、CRISPR/Cas9システムである。好ましくは、ベクターを用いたCRISPR/Cas9システムである。ベクターを用いたCRISPR/Cas9システムにおいて、CRISPRをコードする核酸とCas9をコードする核酸は、異なるベクター上にあってもよく、また1つのベクター上にあってもよい。CRISPRを機能させるためのプロモーターは特に制限されないが、U6プロモーターが好ましい。Cas9を機能させるためのプロモーターは特に制限されないが、サイトメガロウイルスプロモーター等の哺乳類細胞内で発現されるプロモーターが好ましい。CRISPR/Cas9システムとして好ましくは、pX330-U6-Chimeric_BB-CBh-hSpCas9ベクター等の市販のベクターを使用することができる。
 CRISPR配列に組み込まれる、VLA-4遺伝子を標的とする配列(以下、“VLA-4遺伝子標的配列”ともいう)は、CRISPR/Cas9システムによってガイドRNA(gRNA、crRNAともいう)に組み込まれて転写され、VLA-4遺伝子を組換えることができる配列である限り制限されない。一般的には、VLA-4遺伝子標的配列としては、VLA-4遺伝子内に存在する塩基配列「NGG」の5’側上流域の20塩基前後の配列を選択することができるといわれている。VLA-4遺伝子標的配列は、Optimized CRISPR design tool (Massachusetts Institute of Technology, ZhangLabのウェブページ(http://crispr.mit.edu/))、E-CRISP(http://www.e-crisp.org/E-CRISP/(ドイツがん研究センター))、ZiFiT Targeter(http://zifit.partners.org/ZiFit/ (Zing Finger コンソーシアム))、Cas9 design(http://cas9.cbi.pku.edu.cn (北京大学))、CRISPRdirect(http://crispr.dbcls.jp(東京大学))、CRISPR-P(http://cbi.hzau.edu.cn/crispr/(華中農業大学))等において公開されている公知のデザインツールを使用してデザインすることができる。
 組成物は、VLA-4の阻害物質と適当な担体又は添加剤を組み合わせて調製することができる。組成物の調製に用いられる担体や添加剤としては組成物の剤形に応じて通常の薬剤に汎用される各種のもの、例えば賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味剤、矯臭剤、界面活性剤等を例示できる。また、VLA-4の阻害物質がペプチド、抗体、抗体フラグメント、RNA分子、プラスミドベクター等の場合には、上記担体としてポリマー、脂質、磁気等を含むトランスフェクション試薬を使用してもよい。
 組成物が、非経口投与されるものである場合には、注射剤、及び点滴剤等を例示できる。また、組成物が経口投与されるものである場合の剤形は、特に制限されないが、錠剤、散剤、顆粒剤、カプセル剤(硬質カプセル剤及び軟質カプセル剤を含む)、液剤、丸剤、懸濁剤、及び乳剤等を例示できる。
 組成物が、錠剤、散剤、顆粒剤、丸剤、カプセル剤等の経口用固形組成物である場合の調製に際しては、担体として例えば乳糖、白糖、塩化ナトリウム、ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸、メチルセルロース、グリセリン、アルギン酸ナトリウム、アラビアゴム等の賦形剤;単シロップ、プドウ糖液、デンプン液、ゼラチン溶液、ポリビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、カルボキシメチルセルロース、セラック、メチルセルロース、エチルセルロース、水、エタノール、リン酸カリウム等の結合剤;乾燥デンプン、アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル類、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、デンプン、乳糖等の崩壊剤;白糖、ステアリン酸、カカオバター、水素添加油等の崩壊抑制剤;ラウリル硫酸ナトリウム等の吸収促進剤;グリセリン、デンプン等の保湿剤;デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤;精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリコール等の滑沢剤等を使用できる。さらに錠剤は必要に応じ通常の剤皮を施した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フイルムコーティング錠、二重錠、多層錠等とすることができる。
 上記医薬組成物が、丸剤の経口用固形組成物である場合の調製に際しては、担体として、例えばブドウ糖、乳糖、デンプン、カカオ脂、硬化植物油、カオリン、タルク等の賦形剤;アラビアゴム末、トラガント末、ゼラチン等の結合剤;ラミナラン、カンテン等の崩壊剤等を使用できる。
 上記医薬組成物が、カプセル剤の経口用固形組成物である場合の調製に際しては、カプセル剤は有効成分を上記で例示した各種の担体と混合し、硬質カプセル、又は軟質カプセル等に充填して調製される。
 上記製剤が液剤の場合には、水性又は油性の懸濁液、溶液、シロップ、エリキシル剤であってもよく、通常の添加剤を用いて常法に従い、調製される。
 上記医薬組成物が注射剤の場合の調製に際しては、担体として例えば水、エチルアルコール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等のpH調整剤;リン酸二カリウム、リン酸三ナトリウム、リン酸水素ナトリウム、クエン酸ナトリウム等の緩衝剤;ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸等の安定化剤;凍結乾燥した際の成形剤として例えばマンニトール、イノシトール、マルトース、シュクロース、ラクトース等の糖類を使用できる。なお、この場合等張性の溶液を調整するに十分な量のブドウ糖或いはグリセリンを医薬製剤中に含有せしめてもよく、また通常の溶解補助剤、無痛化剤、局所麻酔剤等を添加しても良い。これらの担体を添加して、常法により皮下、筋肉内、静脈内用注射剤を製造することができる。
 上記製剤が点滴剤の場合には、投与化合物を生理食塩水、リンゲル液等を基本とした等張電解質輸液製剤に溶解して調製することができる。
 組成物の投与量としては、本発明の効果が奏される限り特に限定されず、剤型、患者の年齢、性別、病状の程度等によって適宜設定され得る。
 例えば、組成物が抗VLA-4抗体、又はその抗原結合ドメインフラグメントを含むとき、組成物を静注等で全身投与する場合には、成人体重1kgあたり抗VLA-4抗体、又はその抗原結合ドメインフラグメントのタンパク質量に換算して、0.01~1,000 mg/日となるように投与することができる。投与は、例えば、毎日、2日おき、3日おき、4日おき、5日おき、1週間おき、2週間おき、3週間おき、4週間おきに行うことができる。投与期間は、心筋炎が改善するまで継続することができる。好ましくは、急性期から6ヶ月程度投与することができる。心筋炎が改善するとは、心エコーにおいて心機能が改善すること、及び/又は患者の血液中(好ましくは血清中)のsVcam-1又は心筋トロポニンの濃度が基準値以下になることを意図する。基準値は、例えば健常人の血液中のsVcam-1の濃度の平均値、最大値、第3四分位、第2四分位(中央値)、第1四分位、最小値の中から選択される。
 例えば、組成物がVLA-4アンタゴニストを、静注等で全身投与する場合には、成人体重1kgあたりVLA-4アンタゴニストの量に換算して0.01~1,000 mg/日となるように投与することができる。VLA-4アンタゴニストがカロテグラストメチルである場合、経口投与が可能であり、成人体重1kgあたりカロテグラストメチルの量に換算して0.01~1,500 mg/日となるように投与することができる。投与は、例えば、毎日、2日おき、3日おき、4日おき、5日おき、1週間おき、2週間おき、3週間おき、4週間おきに行うことができる。投与期間は、心筋炎が改善するまで継続することができる。好ましくは、急性期から6ヶ月程度投与することができる。心筋炎の改善及び基準値の定義は、上述のとおりである。
 VLA-4 mRNAを標的とするsiRNA、shRNA、miRNA及びアンチセンスRNAからなる群から選ばれる少なくとも1種のRNA分子又は該RNA分子を発現することができるベクターは、全身投与の場合、成人体重1kgあたり0.1~1,000 mg/日程度となるように投与することができる。ベクターは必要に応じて直鎖化することができる。
 VLA-4 mRNAを標的とするsiRNA、shRNA、miRNA及びアンチセンスRNAからなる群から選ばれる少なくとも1種のRNA分子又は該RNA分子を発現することができるベクターを局所投与する場合には、ベクター又はVLA-4 mRNAを標的とするsiRNA、shRNA、miRNA及びアンチセンスRNAからなる群から選ばれる少なくとも1種のRNA分子又は該RNA分子を発現することができるベクターを注射器やカテーテルを用いて、標的の組織に注入することができる。この場合、リポソーム等の核酸デリバリー試薬を併用してもよい。局所投与の場合、標的組織1cm2あたり、0.01~100 mg/日となるように投与することができる。
 VLA-4 mRNAを標的とするsiRNA、shRNA、miRNA及びアンチセンスRNAからなる群から選ばれる少なくとも1種のRNA分子又は該RNA分子を発現することができるベクターの投与回数は、全身投与の場合であっても、局所投与の場合であっても、単回、又は複数回行うことができる。複数回投与する場合には、2日おき、4日おき、一週間おきに投与を繰り返すことができる。複数回投与する場合には、2回、5回、10回、15回、20回、又は24回投与することができる。好ましくは、急性期から6ヶ月程度投与することができる。心筋炎の改善及び基準値の定義は、上述のとおりである。
 VLA-4遺伝子を標的とするゲノム編集システムを個体へ投与する場合、全身性に、又は局所に投与することができる。全身性に投与する場合には、静注することが好ましい。ゲノム編集システムに含まれる核酸がDNAを基本とするシステムである場合には、ベクターとしてレンチウイルス、アデノウイルス、AAV等由来の個体内で発現できるベクターを使用してもよい。
 VLA-4遺伝子を標的とするゲノム編集システムを全身投与する場合、成人体重1kgあたり1010~1018vg/日となるように投与することができる。前記ゲノム編集システムの投与回数は、全身投与の場合であっても、局所投与の場合であっても、単回、又は複数回行うことができる。複数回投与する場合には、2日おき、4日おき、一週間おきに投与を繰り返すことができる。複数回投与する場合には、2回、5回、10回、15回、20回、又は24回投与することができる。好ましくは、急性期から6ヶ月程度投与することができる。心筋炎の改善及び基準値の定義は、上述のとおりである。リポソーム等の核酸デリバリー試薬と共にベクターを個体に投与してもよい。ゲノム編集システムに含まれる核酸がRNAを基本とするシステムである場合には、リポソームと共に投与することができる。また、ベクターは、必要に応じて直鎖化することが好ましい。
2.心機能の低下を伴う心筋炎を治療するための組成物
 上記1.において述べた組成物は、心機能の低下を伴う心筋炎を治療するための組成物としても使用することができる。したがって、上記1.における組成物に関する説明は、ここに援用する。また、心筋炎に関する説明も上記1.における説明をここに援用する。
 心機能は、例えば、心エコー(断層画像;左室内径短縮率、左室駆出率等の心機能評価)等により評価することができる。心機能は、各検査項目の基準値と、患者の各検査項目の測定データを比較して、基準値よりも低下していれば、前記患者の心機能が低下していると決定することができる。
3.心筋炎を疑う患者、又は心筋炎患者の予後を改善するための組成物
 上記1.において述べた組成物は、心筋炎を疑う患者、又は心筋炎患者の予後を改善するための組成物としても使用することができる。したがって、上記1.における組成物に関する説明は、ここに援用する。また、心筋炎に関する説明も上記1.における説明をここに援用する。
 本実施態様において、予後とは生存期間を意図し、予後の改善とは、生存期間の延長を意図する。生存期間の延長とは、例えば、本実施態様に係る組成物を投与しなかった患者群の生存期間から算出される基準値よりも生存期間が長くなることを意図する。基準値として、例えば、患者群の生存期間の中央値、第1四分位、第3四分位、平均値等を挙げることができる。
4.各組成物と組み合わせて使用される抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物
 上記1.から3.において述べた組成物は、抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物と組み合わせて使用してもよい。
 抗Vcam-1抗体は、Vcam-1タンパク質に特異的に結合し、その機能発現を抑制できる限り制限されない。当該抗体はポリクローナル抗体及びモノクローナル抗体のいずれであってもよい。ポリクローナル抗体及びモノクローナル抗体は、いずれも当業者が公知の方法により適宜作成することができる。当該抗体がモノクローナル抗体である場合は、公知の方法により作成されるキメラ抗体、ヒト化抗体、ヒト抗体であってもよい。また、前記抗体は、Fab、F(ab)2、ダイアボディ、scFv、ミニボディ、ぺプチボディ、ミメティボディ等の抗体フラグメントであってもよい。好ましくは、抗Vcam-1抗体は、中和抗体である。例えば、抗Vcam-1抗体として、InVivoMAb anti-mouse CD106 (VCAM-1)(クローンNo. M/K-2.7、Cat No. BE0027、Bio X Cell)を挙げることができる。
 組成物は、抗Vcam-1抗体、又はその抗原結合ドメインフラグメントと、適当な担体又は添加剤を組み合わせて調製することができる。組成物の調製に用いられる担体や添加剤の説明は、上記1.の説明をここに援用する。
 抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物を静注等で全身投与する場合には、成人体重1kgあたり抗Vcam-1抗体、又はその抗原結合ドメインフラグメントのタンパク質量に換算して、0.01~1,000 mg/日となるように投与することができる。投与は、例えば、毎日、2日おき、3日おき、4日おき、5日おき、1週間おき、2週間おき、3週間おき、4週間に行うことができる。投与期間は、心筋炎が改善するまで継続することができる。
 上記1.から3.において述べた組成物と、抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物とを組み合わせるタイミングは、上記1.から3.において述べた組成物を投与し、後から抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物の投与を行うか、上記1.から3.において述べた組成物と抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物の投与を行うか、どちらであってもよい。ここで上記1.から3.において述べた組成物を投与する前に抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物の投与を行うことは避けることが好ましい。抗Vcam-1抗体、又はその抗原結合ドメインフラグメントの単独投与は、患者の予後を改善しない可能性があるためである。
 以下に実施例を示して本発明についてより詳細に説明する。しかし、本発明は、実施例に限定して解釈されるものではない。
 また、本実施例における全ての動物実験は実験動物の管理と使用に関する指針(Guide for the Care and Use of Laboratory Animals)に従い、大阪大学動物実験委員会の承認を得て行った。
1.自己免疫性心筋炎ラットモデルを使ったシングルセル解析
(1)自己免疫性心筋炎ラットモデル
 自己免疫性心筋炎ラットモデルはルイスラット(オス、8週齢)にPig Cardiac Myosin(ブタ心臓から自家精製) 10mg/mlと Adjuvant (CFA 10mg/ml;Chondrex社、7002)を投与し作成した。Pig Cardiac Myosinの投与日をDay 0とした。このモデルにおいて、Day 21に心筋炎の極期を迎えた。図1に、Day 12、Day 19、及びDay 25における心臓のマクロ画像と、組織のhematopoietic染色像の弱拡大画像及び強拡大画像を示す。Day 12で心筋組織内への炎症性細胞の浸潤が始まり、Day 19では、さらに強い炎症性細胞の浸潤を認めた。Day 25では、炎症による心筋組織の破壊が認められた。いずれの病期においても好酸球浸潤は認めなかった。
(2)シングルセル解析による心筋組織内の細胞のポピュレーション解析
 シングルセル解析は、ラット心臓を酵素(Liberase TM (Roche, 5401119001 / Liberase DH (Roche, 5401054001))で細胞分散し、Chromium (10x Genomics)で解析することにより行った。図2に結果を示す。図中“CTL”は抗原未投与のコントロールを示し、“Myocarditis day…”は、Pig Cardiac Myosin投与からの経過日数を示す。Day 21では、T細胞及び好中球の数が増加し、血管内皮細胞は相対的に減少した。また、単球及びマクロファージの数が顕著に増加したが、NK細胞は減少し、B細胞は確認されなかった。好酸球もまた検出されなかった。さらに、CTLとは異なり、活性化した心臓線維芽細胞集団が増加した。
 図3に、各CTL、day 8、day 14、day 21、day 25におけるVcam-1の発現を示す。Vcam-1は、血管内皮細胞に発現が認められたが、活性化心臓線維芽細胞(Postn+/FAP+)においても高い発現を示した。
2.in vitroにおける心臓線維芽細胞を用いた単核球の接着実験
 炎症性サイトカインである、TNFαの刺激によりVcam-1の発現が変化するか、また、TNFαの刺激により心臓線維芽細胞と単核球との接着性に変化が起こるかを確認するため本実験を行った。
(1)培養条件と接着条件
 図4(A)に接着実験のスケジュールを示す。
 心臓線維芽細胞として、ラット新生児から摘出した心臓をCollagenase type2(Worthington Biochemical Corporation, LS004176)で細胞分散後に単離した線維芽細胞を96well plateに培養した。脾臓単核球は、野生型マウスより脾臓を摘出し、ホモジナイズ後にOptiprep(Serumwerk Bernburg, 1893)による比重分離で単核球分画を採取した。接着実験は心臓線維芽細胞を96well plateに48時間培養し、TNFα +/-の培地交換を行いさらに24時間培養した。蛍光染色(Hoechst 33342(同人化学, 341-07901), もしくはCytored(同人化学, 342-08531))した脾臓単核球を加え、30分37℃でインキュベートした。PBS(-)で6回Washを行い、非接着単核球を除去後に、In Cell Analyzer 6000(GE Healthcare Life Sciences)で接着単核球のカウントを行った。
 TNFα(Peprotech、300-01A)は、終濃度で5~15 ng/mlとなるようにウェルに添加した。
 TNFαによるVcam-1の誘導をウエスタンブロッティングで確認した。ウエスタンブロッティングの一次抗体としてAnti-Vcam1抗体EPR5047(Abcam、ab134047)を使用した。検出にはHRP標識抗Rabbit抗体を使用し、発光試薬はケミルミワンL(Nacalai tesque、07880-70)を使用した。インターナルコントロールとして、GAPDHのウエスタンブロッティングを行った。
(2)結果
 ウエスタンブロッティングの結果を図4(B)に示す。ウエスタンブロッティングは、各サンプルにつきディプリケートで行った。Vcam-1の発現は、TNFαの添加0 hrにおいてもわずかに認められた。しかし、TNFαの添加12 hrs、及び24 hrsでより発現が増加した。また、図4(C)は、In Cell Analyzer 6000による撮像画像である。図4(C)に示すように、TNFαの刺激を受けることにより、心臓線維芽細胞は単核球との接着が強くなることが示された。
3.in vitroにおけるsiRNAを用いた心臓線維芽細胞と単核球の接着実験
 心臓線維芽細胞と単核球にVcam-1が直接接着していることを確認するため、siRNAを用いてV-cam-1をノックダウンした心臓線維芽細胞を使用し、単核球との接着性を確認した。
(1)実験条件
 図5(A)に本実験のスケジュールを示す。
 心臓線維芽細胞の培養、及び接着実験は、上記2.(1)と同様に行った。
 Vcam-1 siRNA(SilencerTM Select Pre-Designed siRNA, siRNA ID s129593, Thermo;siVcam-1とも呼ぶ)は、終濃度30nMとなるように、LipofectamineTMRNAiMAX Transfection Reagent (Thermo, 13778075)を使って、ウェルに播種後2時間の心臓線維芽細胞にトランスフェクトした。心臓線維芽細胞をウェルに播種してから72時間後に単核球との接着実験を行った。siRNAのコントロール(siCTL)として、SilencerTM Select Negative Control No.1 siRNA(Thermo、4390843)を使用した。トランスフェクション量は、siVcam-1と同量とした。また、トランスフェクション後46時間後にTNFαを5 ng/mlとなるように添加した。
 Vcam-1のウエスタンブロッティングは、上記2.(1)と同様に行った。
 単核球の検出には、In Cell Analyzer 6000(GE Healthcare Life Sciences)で接着単核球のカウントを行った。
(2)結果
 図5(B)に示す様に、siCTLをトランスフェクトした心臓線維芽細胞では、Vcam-1のシグナルが検出されたが、siVcam-1をトランスフェクトした心臓線維芽細胞ではVcam-1のシグナルが検出されなかった。このことから、siVcam-1は、心臓線維芽細胞内においてVcam-1の発現を抑制していることが示された。この実験系を用い、単核球との接着性を確認した。その結果を図5(C)に示す。siVcam-1をトランスフェクトした細胞では、単核球の接着が減少していた。一方、siCTLをトランスフェクトした細胞では、単核球の接着が認められた。このことから、心臓線維芽細胞と単核球との接着は、Vcam-1を介していることが示された。
4. Vcam-1中和抗体とVLA-4中和抗体との併用による心筋炎の予後改善効果の検証
 文献:Int Immunol. 2010 Jun;22(6):443-52によれば、自然発症型全身性エリテマトーデスマウスモデルであるMRL-Faslpr/lprとPD-1ノックアウトマウスであるC57BL/6-Pdcd1-/-を交配したMRL-Pdcd1-/-は、生後4週から8週で96%が心筋炎を発症するリンパ球性心筋炎自然発症モデルマウスである。また、生後10週における生存率は30%程度であり、野生型マウスと比較して著しく低い。このMRL-Pdcd1-/-を使用し、以下の心筋炎の実験を行った。
(1)Vcam-1中和抗体とVLA-4中和抗体の併用投与
 13匹のMRL-Pdcd1-/-をコントロール(CTL: n=7)とVcam-1中和抗体とVLA-4中和抗体の併用投与(中和抗体群: n=7)の2群に分けた。生後14日目からCTL群には生理食塩水を腹腔内に投与し、中和抗体群にはVcam-1中和抗体とVLA-4中和抗体を投与した。Vcam-1中和抗体として、InVivoMAb anti-mouse CD106 (VCAM-1)(クローンNo. M/K-2.7、Cat No. BE0027、Bio X Cell)を使用した。VLA-4中和抗体の中和抗体としてInVivoMAb anti-mouse/human VLA-4 (CD49d)(クローンNo. PS/2、Cat No. BE0071、Bio X Cell)。それぞれの投与量は、10μg/gとした。投与スケジュールは、図6(A)に示すように、生後14日目から3日おきに生後26日目まで行った。生後14日目と、28日目に心エコーを行った。また、生後28日目の心エコーデータ取得後に、全てのマウスについて採血と心臓の採取を行った。
(2)結果
 図6(B)にCTL群、中和抗体群全てのマウスの心エコーにより測定した左室内径率(%fractional shortening ; FS)を示す。CTL群では生後14日目に比較し、生後28日目では心室の収縮性が著しく低下した。一方、中和抗体投与群では、CTL群と比較し心室の収縮性の低下が軽度であった。図6(C)に、図6(B)に示した個体の28日目の左室拡張末期径[LVDd(mm)]と左室内径短縮率[%FS(%)]の箱ひげ図を示す。CTL群と中和抗体投与群の間のLVDd に優位な差は目認められなかった(p=0.22)。一方%FSは、中和抗体投与群で優位に高かった(p=0.0103)。図6(D)にCTL群と中和抗体投与群のKaplan-Meier曲線を示す。図中符号aはCTL群を示し、符号bは中和抗体群を示す。生後28日間までの検討では、CTL群では生後20日目から絶命する個体が増えた。一方、中和抗体投与群では絶命する個体は認められなかった。両群の差は、Log-rank解析において、p=0.033であり有意差が認められた。このことから、Vcam-1中和抗体とVLA-4中和抗体の併用投与により、心筋炎による死亡率が改善されることが示された。
5.VLA-4中和抗体の効果
 Vcam-1中和抗体とVLA-4中和抗体のどちらが心筋炎による死亡率の低下に貢献するか検討するため以下の検討を行った。
(1)抗体投与
 29匹のMRL-Pdcd1-/-をコントロール(CTL: n=12)と、Vcam-1中和抗体のみを投与するVcam-1群(n=5)と、VLA-4中和抗体を投与するVLA-4群(n=6)と、Vcam-1中和抗体とVLA-4中和抗体の併用投与するVcam-1/VLA-4群(n=6)の4群に分けた。
 各抗体の投与量は上記4.(1)と同量とした。図7(A)に示すように、中和抗体の投与スケジュールも上記4.(1)と同様とした。
(2)結果
 図7(B)に各群のKaplan-Meier曲線を示す。図中符号aはCTL群を示し、符号bはVcam-1群を示し、符号cはVcam-1/VLA-4群を示し、符号dはVLA-4群を示す。生後28日間までの検討では、CTL群(符号a)では生後19日目から絶命する個体が増えた。Vcam-1群(符号b)も生後20日から絶命する個体が増えた。一方、Vcam-1/VLA-4群(符号c)では、絶命した個体は認められなかった。VLA-4群(符号d)は、18日目で1個体絶命したものの、残る個体は生後28日目まで生存していた。このことから、心筋炎の予後の改善に貢献しているのは、VLA-4中和抗体であることが示された。
6.心機能が低下したマウス群におけるVLA-4中和抗体の効果
 図8(A)に、生後3週目の野生型マウス(WT)、野生型マウスとMRL-Pdcd1-/-を交配させたF1(hetero:MRL-Pdcd1-)、MRL-Pdcd1-/-(homo)の%FS値を示す。WT群の%FS値は、75%以上でありばらつきは第1四分位と第4四分位間の差は少なくばらつきは少なかった。一方homo群とhetero群の%FS値は、高い個体もあれば、低い個体もあり、全体としてブロードに分布していた。
 そこで、図8(B)に示す様にhomo群を%FSの高い群(心機能良好群:n=11)と%FSの低い群(心機能低下群:n=20)にわけ、さらに心機能低下群を、VLA-4中和抗体を投与しないコントロール群(CTL群)とVLA-4中和抗体を投与するVLA-4投与群(VLA-4群)に分けVLA-4中和抗体の効果を検討した。心機能良好群(normal EF群)と心機能低下群とのカットオフ値は、70%とし、70%以上の群を心機能良好群とし、70%よりも低い群を心機能低下群とした。その上で、図8(C)に示すスケジュールでVLA-4中和抗体を投与した。 各群の体重(BW)、脈拍(HR)、%FS値を図9に示す。CTL群とVLA-4群間で各パラメータに有意差はなかった。
 図10に、CTL群(符号a)とVLA-4群(符号b)のKaplan-Meier曲線を示す。Log-rank解析の結果、p=0.0285であり、VLA-4群は優位に生存率が延長していた。
 図11に、さらに、normal EF群(符号c)の生存曲線を追加したKaplan-Meier曲線を示す。normal EF群は心機能が良好であり、VLA-4中和抗体を投与しなかった群であるが、VLA-4群と比較して有意に生存率が低いことが示された(Log-rank解析の結果、p=0.0275)。
 このことから、各個体の心機能データに捕らわれることなく、心筋炎個体にVLA-4中和抗体を投与することは、心筋炎の予後を改善することが示唆された。また、心筋炎個体にVLA-4中和抗体を投与することは、心筋炎の予防、又は治療に有効であることが示唆された。
7.VLA4阻害剤投与の効果
 VLA4阻害剤の1つであるAJM300(カロテグラストメチル)の投与が心筋炎による死亡率の低下に貢献するか検討するため以下の検討を行った。
(1)AJM300投与
 44匹のMRL-Pdcd1-/-をAJM300を投与しないAJM300(-)群(n=13)と、AJM300を投与するAJM300(+)群(n=12)の2群に分けた。
 AJM300群(+)には、生後2週から死ぬまでAJM300 1%混合給餌投与した。
 また、AJM300(-)群のうちの9匹と、AJM300(+)群のうちの10匹は、28日齢になったときに心エコー心機能の評価を行い、安楽死させ心臓及び血液サンプルを採取した。
(2)結果
 図12に各群のKaplan-Meier曲線を示す。図中符号aはAJM300(+)群を示し、符号bはAJM300(-)群を示す。AJM300(+)群は、AJM300(-)群と比較して有意に生存期間が延長していた(Log rank解析 p=0.0022)。このことから、VLA4阻害剤の投与は心筋炎の予後の改善に貢献することが示された。
 図13に心エコー心機能検査によって測定した心拍数と左室収縮能:%Fractional Shortening (%)の結果を示す。AJM300(+)群は、AJM300(-)群と比較して有意に徐脈が改善していた(t検定 p=0.0231)。また、AJM300(+)群は、AJM300(-)群と比較して有意に左室収縮能が改善していた(t検定 p=0.0231)。このことから、VLA4阻害剤の投与は心機能の改善に貢献することが示された。
8.ヒトにおける血清中の可溶性Vcam-1 濃度
 可溶性Vcam-1 (sVcam-1)の血清中の濃度を健常人と心筋炎患者の間で比較した。
 健常人(CTL)3名、Covid関連心筋炎(Covid related)4名、リンパ球性心筋炎(Lym)8名、好酸球性心筋炎(Eosi)6名、巨細胞性心筋炎(Giant)3名の結果を図14に示す。リンパ球性心筋炎を含むいずれのタイプの心筋炎でも健常人と比較して血清中sVcam-1濃度の上昇を認めた。このことから、心筋炎発症においてVLA-4/Vcam-1経路が関与していることが示唆された。
9.心筋炎病態における血清中sVcam-1の推移
 3名のリンパ球性心筋炎患者の急性期及び回復期における血清中sVcam-1濃度を比較した。
 結果を図15に示す。患者3名の血清中sVcam-1濃度は急性期には非常に公知を示していたが、回復期には、健常人レベルまで改善していた。
 このことから、心筋炎においてVLA-4/Vcam-1経路が関与していることが示唆された。 

Claims (11)

  1.  VLA-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物。
  2.  前記VLA-4の阻害物質が、
      抗VLA-4抗体、又はその抗原結合ドメインフラグメントであるか、
      VLA-4アンタゴニストであるか、
      VLA-4 mRNAを標的とするsiRNA、shRNA、miRNA、及びアンチセンスRNAよりなる群から選ばれる少なくとも一種のRNA分子又は該RNA分子を発現することができるベクターであるか、
      VLA-4遺伝子を標的とするゲノム編集システムである、
    請求項1に記載の組成物。
  3.  前記抗VLA-4抗体が、VLA-4を中和する機能を有する、請求項2に記載の組成物。
  4.  前記VLA-4アンタゴニストが、カロテグラストメチルである、請求項2に記載の組成物。
  5.  前記心筋炎が、好酸球性心筋炎以外の心筋炎である、請求項1に記載の組成物。
  6.  前記心筋炎が、免疫チェックポイント阻害剤に起因する心筋炎である、請求項1に記載の組成物。
  7.  前記心筋炎が、心機能の低下を伴う、請求項1に記載の組成物。
  8.  抗Vcam-1抗体、又はその抗原結合ドメインフラグメントを含む組成物と組み合わせて使用される、請求項1に記載の組成物。
  9.  VLA-4の阻害物質を含む、心筋炎の増悪を予防するための組成物。
  10.  VLA-4の阻害物質を含む、心機能の低下を伴う心筋炎を治療するための組成物。
  11.  VLA-4の阻害物質を含む、心筋炎を疑う患者、又は心筋炎患者の予後を改善するための組成物。 
PCT/JP2023/009251 2022-03-11 2023-03-10 Vla-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物 WO2023171789A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024506421A JPWO2023171789A1 (ja) 2022-03-11 2023-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022038575 2022-03-11
JP2022-038575 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171789A1 true WO2023171789A1 (ja) 2023-09-14

Family

ID=87935448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009251 WO2023171789A1 (ja) 2022-03-11 2023-03-10 Vla-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物

Country Status (2)

Country Link
JP (1) JPWO2023171789A1 (ja)
WO (1) WO2023171789A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510097A (ja) * 2005-09-29 2009-03-12 エラン ファーマシューティカルズ,インコーポレイテッド Vla−4によって媒介される白血球接着を阻害するピリミジニルアミド化合物
WO2011122619A1 (ja) * 2010-03-29 2011-10-06 味の素株式会社 フェニルアラニン誘導体の塩の結晶

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510097A (ja) * 2005-09-29 2009-03-12 エラン ファーマシューティカルズ,インコーポレイテッド Vla−4によって媒介される白血球接着を阻害するピリミジニルアミド化合物
WO2011122619A1 (ja) * 2010-03-29 2011-10-06 味の素株式会社 フェニルアラニン誘導体の塩の結晶

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRABMAIER ULRICH, BRUNNER STEFAN, GRABMEIER JOHANNA, KANIA GABRIELA, ERIKSSON URS, HERBACH NADIA, WANKE RÚDIGER, FRANZ WOLFGANG-MI: "Blocking VCAM-1/VLA-4 Axis Ameliorates Inflammation and Fibrosis in Experimental Autoimmune Myocarditis", CIRCULATION, vol. 126, no. Suppl 21, 1 January 2012 (2012-01-01), pages 14885, XP093089002, DOI: 10.1161/circ.126.suppl_21.A14885 *
SEKO YOSHINORI, YAGITA HIDEO, OKUMURA KO, YAZAKI YOSHIO: "EXPRESSION OF VASCULAR CELL ADHESION MOLECULE-1 IN MURINE HEARTS WITH ACUTE MYOCARDITIS CAUSED BY COXSACKIEVIRUS B3", THE JOURNAL OF PATHOLOGY, LONGMAN, HOBOKEN, USA, vol. 180, no. 4, 1 December 1996 (1996-12-01), Hoboken, USA, pages 450 - 454, XP093088997, ISSN: 0022-3417, DOI: 10.1002/(SICI)1096-9896(199612)180:4<450::AID-PATH693>3.0.CO;2-5 *

Also Published As

Publication number Publication date
JPWO2023171789A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
US11806555B2 (en) Methods for treating hair loss disorders
French et al. Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity
An et al. Intervention for early diabetic nephropathy by mesenchymal stem cells in a preclinical nonhuman primate model
Spano et al. Dipyridamole prevents triple-negative breast-cancer progression
JP2007523956A (ja) 腫瘍細胞増殖を阻害するための方法
JP6923215B2 (ja) 抗htlv−1剤、htlv−1関連脊髄症(ham/tsp)治療薬
Beaumier et al. Extracellular vesicular microRNAs as potential biomarker for early detection of doxorubicin‐induced cardiotoxicity
CN110934873A (zh) 靶向组织微环境中衰老细胞的抗衰老药物d/s及其应用
CN112138024A (zh) 治疗严重形式的肺动脉高压的方法
WO2021075536A1 (ja) 幹細胞遊走剤を使用した糖尿病治療
KR20150131260A (ko) 결장직장암의 치료 방법
JP2021106625A (ja) Il−34アンチセンスオリゴヌクレオチドおよびその使用方法
Li et al. Granulocyte colony-stimulating factor improves left ventricular function of doxorubicin-induced cardiomyopathy
EP4299076A1 (en) Novel method and agent for treating, diagnosing and detecting diabetes and complications
Hsu et al. 5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation
Zhang et al. M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages
Rohm et al. Adipose tissue macrophages secrete small extracellular vesicles that mediate rosiglitazone-induced insulin sensitization
WO2023171789A1 (ja) Vla-4の阻害物質を含む、心筋炎を予防、又は治療するための組成物
KR20070008719A (ko) 안사마이신계 항생물질의 신규용도 및 신규혈관신생억제물질의 스크리닝 방법
Nakanishi et al. Chemosensitivity of micrometastases and circulating tumor cells to uracil and tegafur as evaluated using LacZ gene-tagged Lewis lung carcinoma cell
Wang et al. Advanced donor age impairs bone marrow cell therapeutic efficacy for cardiac disease
JP4671961B2 (ja) 癌細胞を検出し、癌治療をモニターする方法
Wang et al. Indirubin-3′-monoxime exhibits potent antiviral and anti-inflammatory effects against human adenoviruses in vitro and in vivo
CN114617969B (zh) 乐伐替尼和Aurora-A激酶抑制剂在制备抑制癌症的药物中的应用
WO2024014468A1 (ja) 転写因子FoxO1阻害による動脈硬化抑制

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024506421

Country of ref document: JP

Kind code of ref document: A