WO2023171710A1 - ポリビニルアルコールフィルム及びポリビニルアルコールフィルムの製造方法 - Google Patents

ポリビニルアルコールフィルム及びポリビニルアルコールフィルムの製造方法 Download PDF

Info

Publication number
WO2023171710A1
WO2023171710A1 PCT/JP2023/008824 JP2023008824W WO2023171710A1 WO 2023171710 A1 WO2023171710 A1 WO 2023171710A1 JP 2023008824 W JP2023008824 W JP 2023008824W WO 2023171710 A1 WO2023171710 A1 WO 2023171710A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
stretching
mass
pva film
Prior art date
Application number
PCT/JP2023/008824
Other languages
English (en)
French (fr)
Inventor
修 風藤
稔 岡本
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2023171710A1 publication Critical patent/WO2023171710A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a polyvinyl alcohol film (hereinafter, “polyvinyl alcohol” may be abbreviated as "PVA”) suitably used in the production of polarizing films, etc., and a method for producing the PVA film.
  • PVA polyvinyl alcohol film
  • Liquid crystal display devices are used in a wide range of fields, including small devices such as calculators and watches, notebook computers, LCD monitors, LCD color projectors, LCD televisions, in-vehicle navigation systems, mobile phones, and measuring instruments used indoors and outdoors. It is being A polarizing film that has a light transmission and shielding function is a basic component of an LCD, along with a liquid crystal that has a light switching function.
  • the polarizing film is one in which dichroic dyes such as iodine dyes (I 3 - , I 5 - , etc.) are adsorbed to a matrix formed by uniaxially stretching a PVA film (a stretched film uniaxially stretched and oriented). has become the mainstream.
  • dichroic dyes such as iodine dyes (I 3 - , I 5 - , etc.) are adsorbed to a matrix formed by uniaxially stretching a PVA film (a stretched film uniaxially stretched and oriented).
  • Such polarizing films can be produced by uniaxially stretching a PVA film pre-contained with a dichroic dye, by adsorbing a dichroic dye at the same time as the PVA film is uniaxially stretched, or by uniaxially stretching a PVA film and then adding dichroism to the film. It is manufactured by adsorbing pigments.
  • a PVA film is generally manufactured by discharging a film-forming stock solution containing PVA from a die into a film onto a support such as a metal roll or a metal belt, followed by drying and solidification.
  • a support such as a metal roll or a metal belt
  • it is effective to increase the discharge rate of the stock solution and the line speed, but if you try to increase the discharge volume of the film-forming stock solution with high viscosity, the pressure at the die inlet will increase.
  • the present invention has been made to solve the above problems, and is a PVA film that can be used for manufacturing polarizing films, etc., which does not easily increase the die pressure even when manufactured at a high line speed, and
  • An object of the present invention is to provide a PVA film that has good optical performance, stable film width, and good stretchability.
  • Another object of the present invention is to provide a polarizing film made from such a PVA film as a raw material.
  • GPC Gel permeation chromatography
  • the branched structure of polymer chains affects polymer properties such as solution viscosity, rheological properties, meltability, and crystallinity. Quantitative information on branching is essential for developing polymeric materials with superior properties and understanding the polymerization process. Although it is possible to understand the branching state by NMR, IR, rheological measurements, etc., analysis becomes difficult when the number of branching points is small or when the structure of the branching site is similar to the main chain. In GPC measurement, the branched structure can be analyzed by using a light scattering detector and a viscosity detector together.
  • the present inventors investigated the relationship between the molecular weight and intrinsic viscosity of PVA contained in various PVA films by GPC measurement, and as a result of intensive studies, we found that when a film made of the resin was analyzed by GPC, It was discovered that the above problems could be solved by using a PVA film whose intrinsic viscosity satisfies a certain value, and based on this knowledge, further studies were conducted to complete the present invention.
  • the present invention [1] A PVA film containing PVA with a saponification degree of 98 mol% or more and a polymerization degree of 1500 to 8000, which was moved at a measurement temperature of 40°C using a gel permeation chromatograph equipped with a light scattering detector and a viscosity detector.
  • a PVA characterized in that the intrinsic viscosity at an absolute molecular weight of 1 ⁇ 10 6 is 7.5 to 11 dl/g, as measured using hexafluoroisopropanol containing 20 mM Na trifluoroacetate as a phase solvent.
  • the method for producing a PVA film according to [3] above comprising at least one type; [5] The method for producing a PVA film according to [3] above, wherein the concentration of crotonaldehyde in the PVA is 0.70 ⁇ mol% or less; [6] The method for producing a polyvinyl alcohol film according to [3] above, which includes a step of heat-treating the PVA film obtained by film formation at a temperature of 80° C. or higher; [7] The PVA film according to [1] above, which is an optical film; This can be achieved by
  • the PVA film of the present invention has a stable film width and has excellent stretchability with little variation in thickness at the edges, so if the PVA film of the present invention is used, a polarizing film with a wide width and excellent optical performance can be efficiently produced. can do. Moreover, the PVA film can be efficiently manufactured by the manufacturing method of the present invention.
  • the PVA film of the present invention contains PVA with a saponification degree of 98 mol% or more and a polymerization degree of 1500 to 8000, and is measured using a gel permeation chromatograph equipped with a light scattering detector and a viscosity detector at a mobile phase temperature of 40°C.
  • the intrinsic viscosity of the PVA at an absolute molecular weight of 1 ⁇ 10 6 is measured using hexafluoroisopropanol containing 20 mM Na trifluoroacetate as a solvent (hereinafter, the intrinsic viscosity at an absolute molecular weight of 1 ⁇ 10 6 is referred to as the intrinsic viscosity [ ⁇ ] 6 ) is 7.5 to 11 dl/g.
  • the reason why the effects of the present invention can be obtained when the intrinsic viscosity [ ⁇ ] 6 is 7.5 to 11 dl/g in the PVA film of the present invention is not necessarily clear, but it is presumed as follows.
  • the intrinsic viscosity of a polymer corresponds to the spread of the molecular chain in a solution or melt, and the spread of the molecular chain of a high molecular weight component of 1 x 10 6 in the resin is due to interactions such as entanglement between molecules. have a strong influence. If the intrinsic viscosity of the high molecular weight component is too large, that is, if the molecular chain spreads too widely, the viscosity of the solution or melt will increase and the pressure drop within the die will increase.
  • the pressure within the die will exceed the equipment limit.
  • the intrinsic viscosity of the high molecular weight component is too small, that is, if the molecular chain spread is too narrow, the spinnability of the solution or melt will be low. Therefore, the solution or melt discharged from the die lip tends to accumulate particularly at the end of the die due to neck-in. Then, when the molten material accumulates to some extent at the end of the die, it begins to flow in a periodic manner, which tends to cause variations in the film width of the coating film discharged from the die. Therefore, in order to obtain the effects of the present invention, it is necessary to control the intrinsic viscosity of the high molecular weight component in PVA within a specific range.
  • PVA As the PVA contained in the PVA film of the present invention, one manufactured by saponifying a vinyl ester polymer obtained by polymerizing vinyl ester monomers can be used.
  • vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate, etc.
  • vinyl acetate is preferred from the viewpoints of performance, cost, PVA productivity, and the like.
  • the above vinyl ester polymer is preferably one obtained using only one type or two or more types of vinyl ester monomers as a monomer, and those obtained using only one type of vinyl ester monomer as a monomer. Although it is more preferred, it may be a copolymer of one or more vinyl ester monomers and another monomer copolymerizable with the vinyl ester monomer.
  • vinyl ester monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butene, and isobutene; acrylic acid or salts thereof; methyl acrylate, acrylic acid Acrylics such as ethyl, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc.
  • Acid ester methacrylic acid or its salt; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, methacrylic acid 2 - Methacrylic acid esters such as ethylhexyl, dodecyl methacrylate, octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N,N-dimethylacrylamide, diacetone acrylamide, acrylamide propanesulfonic acid or its salts, acrylamide Acrylamide derivatives such as propyldimethylamine or its salts, N-methylolacrylamide or its derivatives; methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid
  • the proportion of the structural units derived from the other monomers in the vinyl ester polymer is not particularly limited as long as it does not impede the purpose of the present invention. Based on the above, it is preferably 15 mol% or less, more preferably 5 mol% or less.
  • ethylene-modified PVA copolymerized with ethylene is preferred because it can improve the stretchability of the PVA film.
  • the amount of modification of ethylene is preferably in the range of 0.5 to 12 mol%. If the amount of modification is less than 0.5 mol%, the effect of improving stretchability will not be sufficiently recognized, and if the amount of modification exceeds 12 mol%, the optical performance of the resulting polarizing film may deteriorate.
  • the amount of modification of ethylene is more preferably in the range of 0.7 to 8 mol%, and even more preferably in the range of 0.9 to 5 mol%.
  • the degree of polymerization of PVA is 1500 or more.
  • the degree of polymerization of PVA is less than 1500, the polarizing performance of a polarizing film obtained using the PVA as a raw material may be impaired.
  • the polymerization degree of PVA is preferably 1,700 or more, more preferably 2,000 or more, and particularly preferably 2,500 or more from the viewpoint of obtaining a polarizing film with extremely high polarizing performance.
  • the degree of polymerization of PVA is 8,000 or less. When the degree of polymerization of PVA exceeds 8000, the viscosity of the aqueous solution or molten PVA increases, which may make film formation difficult.
  • the degree of polymerization of PVA is preferably 6,000 or less, more preferably 5,000 or less, and even more preferably 4,000 or less.
  • the degree of saponification of PVA is 98 mol% or more. If the degree of saponification of PVA is less than 98 mol%, there is a risk that sufficient polarization performance may not be obtained.
  • the degree of saponification of PVA is preferably 99 mol% or more, more preferably 99.5 mol% or more, even more preferably 99.7 mol% or more, and particularly preferably 99.9 mol% or more. Note that the degree of saponification of PVA is defined as the degree of saponification of PVA based on the total number of moles of structural units (typically vinyl ester monomer units) and vinyl alcohol units that can be converted into vinyl alcohol units by saponification.
  • the degree of saponification of PVA can be measured according to the description in JIS K6726-1994. In addition, when a plurality of PVAs having different degrees of saponification are mixed, the degree of saponification of the PVA mixture can be determined by calculating the weighted average of the degrees of saponification of the plurality of PVAs.
  • the content of PVA is preferably 75% by mass or more, more preferably 80% by mass or more, and even more preferably 85% by mass or more, based on the total mass of the PVA film.
  • the intrinsic viscosity [ ⁇ ] 6 of PVA contained in the PVA film of the present invention is 7.5 to 11 dl/g.
  • the intrinsic viscosity [ ⁇ ] 6 is preferably 10.5 dl/g or less, more preferably 10.0 dl/g or less, even more preferably 9.5 dl/g or less, particularly preferably 9.0 dl/g or less.
  • the intrinsic viscosity [ ⁇ ] 6 is less than 7.5 dl/g, film width stability during high-speed film formation tends to deteriorate.
  • the intrinsic viscosity [ ⁇ ] 6 is preferably 7.6 dl/g or more, more preferably 7.7 dl/g or more, and even more preferably 7.8 dl/g or more.
  • the reason why the intrinsic viscosity [ ⁇ ] 6 of PVA, that is, the intrinsic viscosity of PVA in a high molecular weight region, affects the film formability of PVA film is not necessarily clear, but as mentioned above, molten polymer or polymer This is presumed to be because rheological properties such as solution viscosity and spinnability are strongly influenced by high molecular weight components. Although the same effect may be obtained by lowering the average molecular weight of PVA contained in the PVA film, in that case, there is a risk that the optical performance of the polarizing film produced from the PVA film may deteriorate.
  • the PVA film of the present invention may contain a surfactant. Containing a surfactant prevents adhesion to metal supports such as drums during the film forming process, improves the slip properties of PVA films, and suppresses wrinkles in long film rolls. It is possible to obtain known effects such as.
  • the content of the surfactant is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and 0.01 parts by mass, based on 100 parts by mass of PVA. It is more preferable that the amount is at least 1 part by mass.
  • the content of the surfactant is preferably 1 part by mass or less, more preferably 0.8 part by mass or less, and even more preferably 0.5 part by mass or less, per 100 parts by mass of PVA. .
  • the content of the surfactant is less than 0.001 parts by mass, the above effects may not be sufficiently obtained.
  • the content of the surfactant exceeds 1 part by mass, the film tends to be colored and its transparency tends to decrease. In addition, streak-like defects may occur on the film surface.
  • the type of surfactant is not particularly limited, but includes, for example, anionic surfactants, nonionic surfactants, and the like.
  • anionic surfactant examples include carboxylic acid type such as potassium laurate; Sulfate ester type such as octyl sulfate; Examples include sulfonic acid types such as dodecylbenzenesulfonate.
  • nonionic surfactants examples include alkyl ether types such as polyoxyethylene oleyl ether; Alkylphenyl ether type such as polyoxyethylene octylphenyl ether; Alkyl ester type such as polyoxyethylene laurate; Alkylamine type such as polyoxyethylene lauryl amino ether; Alkylamide type such as polyoxyethylene lauric acid amide; Polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; Alkanolamide types such as lauric acid diethanolamide and oleic acid diethanolamide; Examples include allyl phenyl ether types such as polyoxyalkylene allyl phenyl ether.
  • nonionic surfactants are preferred, alkanolamide surfactants are more preferred, and saturated or unsaturated fats having 8 to 30 carbon atoms are preferred, from the viewpoint of being excellent in reducing film surface abnormalities during film formation. More preferred are dialkanolamides such as diethanolamides of aliphatic carboxylic acids such as group carboxylic acids.
  • one type of surfactant may be used alone, or two or more types may be used in combination.
  • the PVA film of the present invention may contain a plasticizer. Since PVA film is more rigid than other plastic films, it may not have sufficient impact strength or process passability during secondary processing. The inconvenience can be improved.
  • plasticizers include polyhydric alcohols.
  • the polyhydric alcohol include ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane.
  • ethylene glycol and glycerin are preferred from the viewpoint of improving the stretchability of the optical PVA film. Note that these plasticizers may be used alone or in combination of two or more.
  • the content of the plasticizer is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and 3 parts by mass or more based on 100 parts by mass of PVA. is even more preferable.
  • the content of the plasticizer is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 20 parts by mass or less, based on 100 parts by mass of PVA. If the content of the plasticizer is less than 1 part by mass, the above effects may not be obtained, and if it exceeds 30 parts by mass, the PVA film may become too flexible and have poor handling properties.
  • the PVA film of the present invention may further contain other optional components other than PVA, surfactant, and plasticizer within a range that does not impair the effects of the present invention.
  • other optional components include water, antioxidants, ultraviolet absorbers, lubricants, colorants, preservatives, antifungal agents, and other polymeric compounds other than the above-mentioned components.
  • the content of the other optional components is preferably 40% by mass or less, more preferably 20% by mass or less, and 10% by mass or less based on the total mass of the PVA film. It is more preferable that the amount is at least 5% by mass, particularly preferably 5% by mass or less.
  • the thickness of the PVA film of the present invention is not particularly limited, but when used as a raw material for a polarizing film, the average thickness is preferably within the range of 5 to 150 ⁇ m.
  • the average thickness of the PVA film can be determined by measuring the thickness at any 10 locations (for example, 10 arbitrary locations on a straight line drawn in the width direction of the PVA film) and determining the average value thereof.
  • the film width of the PVA film can be adjusted to suit the purpose.
  • the width of the PVA film is usually preferably 0.1 m or more, preferably 0.5 m or more, and more preferably 1.0 m or more.
  • the film width of the PVA film is generally preferably 7.5 m or less, more preferably 7.0 m or less, and even more preferably 6.5 m or less.
  • the volatile component concentration of the PVA film of the present invention is preferably 0.5% by mass or more, more preferably 1% by mass or more. On the other hand, the volatile component concentration is preferably 5% by mass or less.
  • the method for producing the PVA film of the present invention is not particularly limited, the following production method is preferred because the PVA film of the present invention can be efficiently obtained. That is, the method for producing a PVA film of the present invention uses PVA with a saponification degree of 98 mol% or more and a polymerization degree of 1500 to 8000, and a concentration of C6 or higher long chain aldehydes in the PVA of 0.35 to 2.0%. A method for producing a polyvinyl alcohol film using a film-forming stock solution containing 5 ⁇ mol % of PVA is preferred.
  • the PVA used in the film forming stock solution is preferably PVA in which the concentration of long chain aldehydes of 6 or more C (carbon number) is 0.35 to 2.5 ⁇ mol%.
  • concentration ( ⁇ mol%) of long-chain aldehydes of C6 or higher in PVA refers to (1) structural units (typically vinyl ester monomer units) that can be converted into vinyl alcohol units by saponification in PVA; It refers to the ratio (mol%) of the number of moles of the long chain aldehyde of C6 or more to the total number of moles of (2) the vinyl alcohol unit in PVA and (3) the long chain aldehyde of C6 or more in PVA.
  • aldehydes easily undergo an acetalization reaction with PVA under high temperature conditions and in the presence of a catalyst such as acetic acid contained in PVA.
  • a catalyst such as acetic acid contained in PVA.
  • an acetal unit containing a side chain (aldehyde chain) of C6 or more is generated in the main chain of PVA. It is presumed that this C6 or higher side chain (aldehyde chain) suppresses the spread of the molecular chain of PVA.
  • At least a part of the long chain aldehyde of C6 or more contained in the PVA may form the acetal unit.
  • the concentration of long-chain aldehydes of C6 or higher in the PVA used in the film-forming stock solution is 2.5 ⁇ mol% or less, so that the optical properties of the polarizing film produced from the obtained PVA film are Performance can be improved easily.
  • the concentration of the long-chain aldehyde is more preferably 2.2 ⁇ mol% or less, and even more preferably 1.9 ⁇ mol% or less.
  • the concentration of the long-chain aldehyde is 0.35 ⁇ mol% or more, the width of the PVA film is likely to be stable when forming the PVA film at high speed.
  • the long-chain aldehyde concentration is more preferably 0.37 ⁇ mol% or more, and even more preferably 0.40 ⁇ mol% or more.
  • the long chain aldehyde in the PVA used in the film forming stock solution is preferably C12 or less, more preferably C10 or less.
  • the number of carbon atoms in the long-chain aldehyde is below the above range, the crystallinity of PVA tends to increase, and the optical performance of a polarizing film manufactured from the resulting PVA film tends to improve.
  • the long chain aldehyde of C6 or higher in the PVA used in the film forming stock solution is not necessarily limited, but since it has moderately good affinity and reactivity with PVA, 2. It is preferable to contain at least one selected from the group consisting of 4-hexadienal, 2,4,6-octatrienal, and 2,4,6,8-decatetraenal.
  • the concentration of crotonaldehyde in the PVA used in the film-forming stock solution is 0.70 ⁇ mol% or less.
  • concentration of crotonaldehyde in PVA ( ⁇ mol%) refers to (1) structural units (typically vinyl ester monomer units) that can be converted into vinyl alcohol units by saponification in PVA, (2) PVA It refers to the ratio (mol%) of the number of moles of crotonaldehyde to the total number of moles of crotonaldehyde in the vinyl alcohol units in PVA and (3) PVA.
  • At least a portion of the crotonaldehyde contained in the PVA may form an acetal unit of the PVA main chain by causing an acetalization reaction with the PVA.
  • ⁇ mol% which is the unit of concentration of crotonaldehyde mentioned above, " ⁇ ” is a prefix in the International System of Units (SI), and " ⁇ mol%” is 10 -6 times (0. 000001 times).
  • the concentration of crotonaldehyde in the PVA used in the membrane-forming stock solution is 0.70 ⁇ mol% or less
  • the yellow tinge of the obtained PVA film is easily reduced.
  • the content of the crotonaldehyde is more preferably 0.50 ⁇ mol% or less, and even more preferably 0.40 ⁇ mol% or less.
  • the lower limit of the content of crotonaldehyde it is preferably at least 0.0010 ⁇ mol%, more preferably at least 0.010 ⁇ mol%, even more preferably at least 0.050 ⁇ mol%.
  • the content of the crotonaldehyde is at least the above lower limit, it is possible to omit the effort of strengthening the washing of PVA, and it is possible to improve the productivity of the PVA film.
  • the method for producing a PVA film of the present invention there is no particular restriction on the method for adjusting the concentration of C6 or higher long chain aldehyde or crotonaldehyde in PVA contained in the film forming stock solution, but aldehydes and other impurities contained in PVA may be adjusted.
  • An example is a method in which a long chain aldehyde of C6 or more or crotonaldehyde is added after extraction and removal with an organic solvent.
  • a stabilizer such as hydroquinone is usually added to the vinyl acetate, but the amount of this stabilizer is intentionally reduced to increase the amount of vinyl acetate.
  • a method of producing an aldehyde by decomposition can also be exemplified.
  • the former method is preferred because it allows easy control of the concentration of C6 or higher long chain aldehyde or crotonaldehyde in PVA contained in the membrane forming stock solution.
  • PVA contained in the film-forming stock solution are the same as those described above, and the surfactants, plasticizers, It may also contain other optional ingredients.
  • a conventionally known method can be adopted as a method for forming a PVA film.
  • Conventionally known methods include, for example, a casting film forming method, a wet film forming method, a wet-dry film forming method, a gel film forming method, a melt extrusion film forming method, and a method combining these methods.
  • the melt extrusion film forming method is preferred from the viewpoint of efficiently obtaining a PVA film with high transparency and little coloring.
  • the PVA film of the present invention can be produced, for example, as follows. First, a PVA chip with the amount of long-chain aldehyde of C6 or higher adjusted in the above method is immersed in distilled water at 10°C to 50°C for 10 to 48 hours, and then centrifugally dehydrated to a volatile content of 30% by mass or more. A 90% by mass PVA water-containing chip is obtained. At this time, since the amount of long chain aldehydes of C6 or higher in PVA is slightly reduced, care must be taken not to raise the temperature too much or make the time too long.
  • a plasticizer such as glycerin, a surfactant, a solvent such as water, etc.
  • a solvent such as water, etc.
  • a plasticizer such as glycerin
  • surfactant such as water
  • a solvent such as water, etc.
  • This mixture is put into a twin-screw extruder, and continuous melt extrusion film formation is performed by a conventionally known method. Specifically, the above mixture is heated and melted in a twin-screw extruder at a maximum temperature of 100° C. to 200° C., and then cooled to 80° C. to 120° C. in a heat exchanger to obtain a film-forming stock solution. This film-forming stock solution is discharged from a T-die at 80° C. to 120° C., cast onto a metal drum at 75° C.
  • the PVA film of the present invention can be manufactured using the following steps.
  • the temperature of the heat treatment is preferably 80°C or higher. By heat treating at 80° C. or higher, the reaction between PVA and long-chain aldehyde can be promoted.
  • the temperature of the heat treatment is more preferably 90°C or higher, even more preferably 100°C or higher, and particularly preferably 110°C or higher. Furthermore, if the heat treatment temperature is too high, problems such as coloring of the film may occur, so the temperature is preferably 170°C or lower, more preferably 160°C or lower, and preferably 150°C or higher. More preferred.
  • the heat treatment time is preferably 1 second or more. By setting the heat treatment time to 1 second or more, the reaction between PVA and long-chain aldehyde can be promoted.
  • the heat treatment time is more preferably 5 seconds or more, and even more preferably 10 seconds or more. Furthermore, if the heat treatment time is too long, problems such as coloring of the film may occur, so the heat treatment time is preferably 60 seconds or less, more preferably 45 seconds or less, and 30 seconds or less. More preferred.
  • the formed PVA film can usually be wound into a roll around a cylindrical core using a conventionally known method to form a film roll.
  • a conventionally known method for manufacturing the film roll for example, both ends of the optical PVA polymer film in the width direction are slit to a length of 0.5 cm to 20 cm, and a roll of 1.0 Kgf is slit using a conventionally known winder.
  • a PVA film roll can be produced by winding the film around a cylindrical core with a film tension of between /cm and 10Kgf/cm.
  • the outer diameter of the core (in the case of a rectangular tube, the diameter of its circumscribed circle) is preferably 10 cm or more. If the outer diameter is less than 10 cm, the film roll may bend due to its own weight and wrinkle.
  • the length of the core may be equal to or longer than the PVA film width, but is preferably 10 cm or more longer than the film width. If the length of the core is shorter than the film width, breakage is likely to occur at the ends in the film width direction during stretching, and uniform stretching may be difficult. Further, it is preferable that the core has a cylindrical shape with an outer surface made of metal or plastic to prevent wrinkles during winding.
  • the length of the PVA film wound into a roll is preferably 1,300 m or more. If the length of the PVA film wound into a roll is less than 1,300 m, it is not preferable because there is a large loss due to film roll switching in the polarizing film manufacturing process. There is no particular restriction on the upper limit of the length of the PVA film that can be wound into a roll, but if it is too long, the weight of the film roll becomes too heavy, making it difficult to handle, or the film roll may warp, causing wrinkles in the film.
  • the length of the PVA film is preferably 20,000 m or less because there is a risk of problems such as the PVA film becoming easily damaged.
  • the PVA film wound into a roll is stored and transported in moisture-proof packaging in a suspended state in which the entire core of the film roll or both ends of the core support the weight.
  • Preferred methods for storing and transporting the above-mentioned suspended state include placing the cores protruding from both ends of the roll on a support, suspending the cores protruding from both ends of the roll from supports, and fixing part of the support to the core. Methods include inserting the rod inside the core, placing a rod-shaped jig inserted inside the core on a support, and suspending the rod-shaped jig inserted inside the core from a support. More preferred is a method in which the substrate is placed on a support.
  • PVA is highly hygroscopic, and if it is stored or transported in environments other than low humidity conditions, it will easily absorb moisture and swell, and there is a high possibility that the film will wrinkle. If transportation is anticipated, sufficient moisture-proof packaging is required.
  • the use of the PVA film of the present invention is not particularly limited, it can be used, for example, as a raw film when manufacturing an optical film.
  • the optical film include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, but a polarizing film is preferable.
  • a method for manufacturing a polarizing film will be specifically explained as an example of a method for manufacturing an optical film.
  • a polarizing film can usually be manufactured using a PVA film as a raw film through processing steps such as a swelling step, a dyeing step, a crosslinking step, a stretching step, and a fixing step.
  • treatment liquids used in each process include swelling treatment liquid used in swelling treatment, dyeing treatment liquid (staining liquid) used in dyeing treatment, crosslinking treatment liquid used in crosslinking treatment, and drawing treatment liquid used in stretching treatment.
  • examples include a stretching treatment liquid used in the fixing treatment, a fixing treatment liquid used in the fixing treatment, and a cleaning treatment liquid (cleaning liquid) used in the cleaning treatment.
  • each processing step that can be employed in the manufacturing method for manufacturing a polarizing film will be described in detail below.
  • one or more of the following treatments may be omitted, the same treatment may be performed multiple times, or different treatments may be performed simultaneously.
  • cleaning treatment before swelling treatment It is preferable to perform a washing process on the PVA film before performing the swelling process on the PVA film.
  • Such cleaning treatment before swelling treatment can remove anti-blocking agents and the like adhering to the PVA film, and prevents each treatment solution in the polarizing film manufacturing process from being contaminated by anti-blocking agents. be able to.
  • the cleaning treatment is preferably carried out by immersing the PVA film in a cleaning treatment liquid, but it can also be carried out by spraying the cleaning treatment liquid onto the PVA film.
  • water can be used as the cleaning treatment liquid.
  • the temperature of the cleaning treatment liquid is preferably 20°C or higher, more preferably 22°C or higher, even more preferably 24°C or higher, and particularly preferably 26°C or higher.
  • the temperature of the cleaning treatment liquid is 20° C. or higher, it becomes easier to remove the antiblocking agent and the like adhering to the PVA film.
  • the temperature of the cleaning treatment liquid is preferably 40°C or lower, more preferably 38°C or lower, even more preferably 36°C or lower, and particularly preferably 34°C or lower.
  • the swelling treatment can be performed by immersing the PVA film in a swelling treatment liquid such as water.
  • the temperature of the swelling treatment liquid is preferably 20°C or higher, more preferably 22°C or higher, and even more preferably 24°C or higher.
  • the temperature of the swelling treatment liquid is preferably 40°C or lower, more preferably 38°C or lower, and even more preferably 36°C or lower.
  • the time for immersion in the swelling treatment liquid is preferably 0.1 minutes or more, and more preferably 0.5 minutes or more, for example.
  • the time for immersion in the swelling treatment liquid is preferably 5 minutes or less, and more preferably 3 minutes or less, for example.
  • the water used as the swelling treatment liquid is not limited to pure water, and may be an aqueous solution in which various components such as a boron-containing compound are dissolved, or a mixture of water and an aqueous medium.
  • the type of boron-containing compound is not particularly limited, but boric acid or borax is preferred from the viewpoint of ease of handling.
  • the swelling treatment liquid contains a boron-containing compound, the concentration thereof is preferably 6% by mass or less from the viewpoint of improving the stretchability of the PVA film.
  • the dyeing process is preferably carried out using an iodine dye as a dichroic dye, and the dyeing process may be performed at any stage before the stretching process, during the stretching process, or after the stretching process.
  • the dyeing treatment is preferably carried out by using a solution (preferably an aqueous solution) containing iodine-potassium iodide as the dyeing treatment liquid, and by immersing the PVA film in the dyeing treatment liquid.
  • concentration of iodine in the dyeing solution is preferably within the range of 0.005 to 0.2% by mass.
  • Potassium iodide/iodine (mass) is preferably within the range of 20 to 100.
  • the temperature of the dyeing solution is preferably 20°C or higher, more preferably 25°C or higher.
  • the temperature of the dyeing solution is preferably 50°C or lower, more preferably 40°C or lower.
  • the dyeing treatment liquid may contain a boron-containing compound such as boric acid as a crosslinking agent. Note that if the PVA film used as the original film contains a dichroic dye in advance, the dyeing process can be omitted. Moreover, a boron-containing compound such as boric acid or borax can be added to the PVA film used as the raw film in advance.
  • a crosslinking treatment When producing a polarizing film, a crosslinking treatment can be performed after the dyeing treatment for the purpose of strengthening the adsorption of the dichroic dye to the PVA film.
  • the crosslinking treatment can be carried out by using a solution (preferably an aqueous solution) containing a crosslinking agent as the crosslinking treatment liquid and immersing the PVA film in the crosslinking treatment liquid.
  • a crosslinking agent one or more boron-containing compounds such as boric acid and borax can be used.
  • the concentration of the crosslinking agent in the crosslinking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and even more preferably 2% by mass or more.
  • the concentration of the crosslinking agent in the crosslinking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and even more preferably 5% by mass or less.
  • the crosslinking treatment liquid may contain an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the crosslinking treatment solution is too high, the heat resistance of the resulting polarizing film tends to decrease, although the reason is unknown. Furthermore, if the concentration of the iodine-containing compound in the crosslinking treatment solution is too low, the effect of suppressing elution of the dichroic dye tends to be reduced.
  • an iodine-containing compound such as potassium iodide
  • the concentration of the iodine-containing compound in the crosslinking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and even more preferably 2% by mass or more.
  • the concentration of the iodine-containing compound in the crosslinking treatment liquid is preferably 6% by mass or less, more preferably 5.5% by mass or less, and even more preferably 5% by mass or less.
  • the temperature of the crosslinking treatment liquid is preferably in the range of 20°C to 40°C.
  • the temperature of the crosslinking treatment liquid is more preferably 22°C or higher, and even more preferably 25°C or higher.
  • the temperature of the crosslinking treatment liquid is preferably 45°C or lower, more preferably 40°C or lower, and even more preferably 35°C or lower.
  • the PVA film may be stretched during or between the above-mentioned treatments.
  • Such stretching can prevent wrinkles from forming on the surface of the PVA film.
  • the total stretching ratio of the pre-stretching (the ratio obtained by multiplying the stretching ratios in each treatment) is 4 times or less based on the original length of the original PVA film before stretching, from the viewpoint of polarizing performance of the polarizing film obtained. It is preferable that The total stretching ratio of the pre-stretching is more preferably 3.5 times or less.
  • the total stretching ratio of the pre-stretching is more preferably 1.5 times or more based on the original length of the original PVA film before stretching, from the viewpoint of the polarizing performance of the resulting polarizing film.
  • the stretching ratio in the swelling treatment is preferably 1.1 times or more, more preferably 1.2 times or more, and even more preferably 1.4 times or more, based on the original length of the PVA film.
  • the stretching ratio in the swelling treatment is preferably 3 times or less, more preferably 2.5 times or less, and even more preferably 2.3 times or less, based on the original length of the PVA film.
  • the stretching ratio in the dyeing treatment is preferably 2 times or less, more preferably 1.8 times or less, and even more preferably 1.5 times or less, based on the original length of the PVA film.
  • the stretching ratio in the dyeing treatment is more preferably 1.1 times or more based on the original length of the PVA film.
  • the stretching ratio in the crosslinking treatment is preferably 2 times or less, more preferably 1.5 times or less, and even more preferably 1.3 times or less, based on the original length of the PVA film.
  • the stretching ratio in the crosslinking treatment is more preferably 1.05 times or more based on the original length of the PVA film.
  • the stretching process may be performed by either a wet stretching method or a dry stretching method.
  • a solution preferably an aqueous solution
  • a boron-containing compound such as boric acid
  • it can be carried out in the stretching solution, or it can be carried out in the dyeing solution or in the fixing solution described below. It can also be carried out in a processing solution.
  • a dry stretching method it can be carried out in air using a PVA film after water absorption.
  • wet stretching is preferred, and uniaxial stretching in an aqueous solution containing boric acid is more preferred.
  • the concentration of the boron-containing compound in the stretching solution is preferably 1.5% by mass or more because it can improve the stretchability of the PVA film. It is more preferably 0% by mass or more, and even more preferably 2.5% by mass or more.
  • the concentration of the boron-containing compound in the stretching solution is preferably 7% by mass or less, more preferably 6.5% by mass or less, and 6% by mass since it can improve the stretchability of the PVA film. It is more preferable that it is the following.
  • the stretching solution contains an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the stretching solution is too high, the resulting polarizing film tends to have a strong bluish hue, and if it is too low, the heat resistance of the resulting polarizing film may deteriorate for unknown reasons. There is a tendency for sexual performance to decrease.
  • the concentration of the iodine-containing compound in the stretching solution is preferably 2% by mass or more, more preferably 2.5% by mass or more, and even more preferably 3% by mass or more.
  • the concentration of the iodine-containing compound in the stretching solution is preferably 8% by mass or less, more preferably 7.5% by mass or less, and even more preferably 7% by mass or less.
  • the temperature of the stretching treatment liquid is preferably 50°C or higher, more preferably 52.5°C or higher, and even more preferably 55°C or higher.
  • the temperature of the stretching solution is preferably 70°C or lower, more preferably 67.5°C or lower, and even more preferably 65°C or lower.
  • the preferable range of the stretching temperature when the stretching treatment is performed by a dry stretching method is also as described above.
  • the stretching ratio in the stretching process is preferably 1.2 times or more, more preferably 1.5 times or more, and 2 More preferably, it is at least twice as large.
  • the total stretching ratio including the stretching ratio of the above-mentioned pre-stretching (the ratio obtained by multiplying the stretching ratio in each step) is determined based on the original length of the raw material PVA film before stretching, and the polarizing performance of the polarizing film obtained. From this point of view, it is preferably 5.5 times or more, more preferably 5.7 times or more, and even more preferably 5.9 times or more.
  • the upper limit of the stretching ratio is not particularly limited, but if the stretching ratio is too high, stretch breakage is likely to occur, so the stretching ratio is preferably 8 times or less.
  • uniaxial stretching in the stretching process there is no particular restriction on the method of uniaxial stretching in the stretching process, and uniaxial stretching in the longitudinal direction or transverse uniaxial stretching in the width direction can be employed.
  • uniaxial stretching in the longitudinal direction is preferred from the standpoint of obtaining a polarizing film with excellent polarizing performance.
  • Uniaxial stretching in the longitudinal direction can be performed by using a stretching device equipped with a plurality of rolls parallel to each other and changing the circumferential speed between each roll.
  • the maximum stretching speed refers to the fastest stretching speed among the stages when the PVA film is stretched in two or more stages using three or more rolls with different circumferential speeds. Say something.
  • the stretching speed at that stage becomes the maximum stretching speed.
  • the stretching speed refers to the increase in the length of the PVA film due to stretching with respect to the length of the PVA film before stretching, per unit time.
  • a stretching speed of 100%/min means: This refers to the speed at which a PVA film is deformed from its length before stretching to twice its length in one minute.
  • the maximum stretching speed becomes too high excessive tension may be locally applied to the PVA film during the stretching process (uniaxial stretching) of the PVA film, making stretching breakage more likely. From this point of view, it is preferable that the maximum stretching speed does not exceed 900%/min.
  • the fixing treatment When producing a polarizing film, it is preferable to perform a fixing treatment in order to strengthen the adsorption of the dichroic dye onto the PVA film.
  • a solution preferably an aqueous solution
  • boron-containing compounds such as boric acid and borax
  • a PVA film preferably after stretching treatment
  • the fixing treatment liquid may contain an iodine-containing compound or a metal compound.
  • the concentration of the boron-containing compound in the fixation treatment liquid is preferably 2% by mass or more, more preferably 3% by mass or more.
  • the concentration of the boron-containing compound in the fixation treatment liquid is preferably 15% by mass or less, more preferably 10% by mass or less.
  • the temperature of the fixing treatment liquid is preferably 15°C or higher, more preferably 25°C or higher.
  • the temperature of the fixing treatment liquid is preferably 60°C or lower, more preferably 40°C or lower.
  • the PVA film is preferably subjected to a washing treatment.
  • the cleaning treatment is preferably carried out by immersing the PVA film in a cleaning treatment liquid, but it can also be carried out by spraying the cleaning treatment liquid onto the PVA film.
  • water can be used as the cleaning treatment liquid.
  • Water is not limited to pure water, and may contain, for example, an iodine-containing compound such as potassium iodide.
  • the cleaning treatment liquid may contain a boron-containing compound, but in that case, the concentration of the boron-containing compound is preferably 2.0% by mass or less.
  • the temperature of the cleaning treatment liquid is preferably 5°C or higher, more preferably 7°C or higher, and even more preferably 10°C or higher. Further, the temperature of the cleaning treatment liquid is preferably 40°C or lower, more preferably 38°C or lower, and even more preferably 35°C or lower. When the temperature of the cleaning treatment liquid is 5° C. or higher, breakage of the PVA film due to freezing of water can be suppressed. Further, when the temperature of the cleaning treatment liquid is 40° C. or lower, the optical properties of the polarizing film obtained are improved.
  • Specific methods for producing a polarizing film include methods in which a PVA film is subjected to dyeing treatment, stretching treatment, and crosslinking treatment and/or fixing treatment.
  • a preferred example is a method in which a PVA film is subjected to swelling treatment, dyeing treatment, crosslinking treatment, stretching treatment (especially uniaxial stretching treatment), and washing treatment in this order.
  • the stretching treatment may be performed in any treatment step before the above, or may be performed in multiple stages of two or more stages.
  • a polarizing film can be obtained by drying the PVA film after undergoing the various treatments described above.
  • drying method There are no particular limitations on the drying method, and examples include a contact method in which the film is brought into contact with a heated roll, a method in which the film is dried in a hot air dryer, and a floating method in which the film is dried by hot air while floating. .
  • the polarizing film obtained as described above is preferably used as a polarizing plate by laminating a protective film that is optically transparent and mechanically strong on both or one side thereof.
  • a protective film triacetate cellulose (TAC) film, cycloolefin polymer (COP) film, cellulose acetate-butyrate (CAB) film, acrylic film, polyester film, etc.
  • TAC triacetate cellulose
  • COP cycloolefin polymer
  • CAB cellulose acetate-butyrate
  • acrylic film polyester film, etc.
  • examples of adhesives for bonding include PVA adhesives and urethane adhesives, with PVA adhesives being preferred.
  • the polarizing plate obtained as described above can be used as an LCD component by laminating an acrylic adhesive or the like and then bonding it to a glass substrate. At the same time, it may be laminated with a retardation film, a viewing angle improvement film, a brightness improvement film, or the like.
  • the PVA film of the present invention can be used as an optical film, and specifically can be suitably used as a raw material for optical films such as polarizing films, retardation films, and special light-condensing films with few optical defects. It can also be used for other uses, such as packaging materials, water-soluble films for laundry bags, etc., and release films for producing artificial marble, etc.
  • the plasticizer and the like contained in the PVA film were removed by repeating the operation of immersing the PVA film in water three times in total. Finally, the water adhering to the surface of the PVA film was removed by absorbing it with a filter paper, and then dried for 24 hours in a vacuum dryer set at 60°C.
  • a calibration curve was created from the peak areas of standard samples of crotonaldehyde, 2,4-hexadienal, 2,4,6-octatrienal, and 2,4,6,8-decatetraenal, and the absolute The concentration ( ⁇ mol%) of long-chain aldehyde of C6 or higher or crotonaldehyde in the PVA chip was measured by the calibration curve method.
  • an adsorption tube soaked with the standard sample was used instead of the sample tube. Measurement was carried out in the same manner as in the sample tube measurement except that the tube temperature was changed to 260°C.
  • Crotonaldehyde Sigma-Aldrich (registered trademark), manufactured by Merck & Co., Ltd.
  • 2,4-hexadienal Sigma-Aldrich (registered trademark), manufactured by Merck & Co., Ltd.
  • 2,4,6-octatrienal manufactured by NARD Laboratories Co., Ltd. 2
  • 4,6,8-decatetraenal Manufactured by NARD Institute Co., Ltd.
  • a PVA film measuring 5 cm in the width direction and 100 cm in the length direction was cut out from the center of the obtained PVA film in the width direction.
  • a PVA film roll with a width of 5 cm was produced by winding up the cut film around a metal rod with a diameter of 1 cm.
  • a PVA film roll with a width of 5 cm from which the metal rod had been removed was placed on a high-quality paper, and the color of the end face of the roll was visually observed from the side of the roll under a fluorescent lamp, and evaluated based on the following criteria.
  • C The end face of the roll was clearly yellowish.
  • Polarization degree Two square samples of 1.5 cm on each side were taken from the center in the width direction of the polarizing film obtained in the following Examples or Comparative Examples in parallel to the orientation direction of the polarizing film, and each Using a spectrophotometer V-7100 manufactured by Hitachi (integrating sphere included), in accordance with JIS Z8722 (object color measurement method), C light source, visibility correction in the visible light range of 2 degrees field of view, and 1 For each polarizing film sample, the light transmittance when tilted at 45 degrees with respect to the stretching axis direction and the light transmittance when tilted at -45 degrees were measured, and the average value (Y1) was determined. .
  • the transmittance (Y) (%) of the polarizing film was determined by averaging Y1 and Y2 determined above.
  • Light transmittance (Y ⁇ ) when the two polarizing film samples collected above are stacked so that their orientation directions are parallel, and light transmittance when they are stacked so that their orientation directions are perpendicular to each other.
  • (Y ⁇ ) was measured by the same method as the transmittance measurement method described above, and the degree of polarization (V) (%) was determined from the following formula.
  • Degree of polarization (V) (%) ⁇ (Y ⁇ Y ⁇ )/(Y ⁇ +Y ⁇ ) ⁇ 1/2 ⁇ 100
  • Example 1 (i) Cleaning of PVA chips PVA chips with a degree of saponification of 99.9 mol% and a degree of polymerization of 2400 and methanol in an amount 10 times the mass of the PVA chips were placed in a cleaning tank and stirred at 25°C for 4 hours. - After washing, the PVA chip and methanol were separated. Methanol in an amount 10 times the mass of the PVA chip before washing was added to the washed PVA chip again, and after stirring and washing at 25° C. for 4 hours, PVA and methanol were separated. Methanol in an amount 10 times the mass of the PVA chip before washing was added to the washed PVA chip again, and after stirring and washing at 25° C. for 4 hours, the PVA chip and methanol were separated.
  • the PVA film was peeled off from the final drying roll, and heat treatment was performed so that one side and the other side of the PVA film were alternately in contact with each heat treatment roll.
  • the heat treatment was performed using two heat treatment rolls, the surface temperature of each heat treatment roll was 120° C., and the heat treatment time was 15 seconds. Both ends of the obtained film were cut off to a width of 930 mm, and the film was wound into a roll around a cylindrical core.
  • the thickness of the obtained PVA film was 60 ⁇ m, and the intrinsic viscosity [ ⁇ ] 6 of PVA contained in the PVA film was measured by the method described above and found to be 8.0 dl/g.
  • the dye is immersed in a potassium iodide/iodine dyeing solution (staining solution) at a temperature of 32°C (potassium iodide/iodine (mass ratio) is 23, iodine concentration is in the range of 0.03 to 0.05% by mass).
  • iodine concentration in the dyeing solution is adjusted to 0.03 to 0.05 so that the single transmittance of the polarizing film obtained after uniaxial stretching in the stretching treatment is in the range of 43.5% ⁇ 0.2%. It was adjusted within the range of mass %.
  • the crosslinking treatment was carried out by uniaxially stretching 1.19 times in the length direction while being immersed in a 32° C. boric acid aqueous solution (crosslinking treatment liquid) (boric acid concentration: 2.6% by mass). Stretching treatment is performed by increasing the length by 2.00 times while being immersed in a 55°C boric acid/potassium iodide aqueous solution (stretching treatment liquid) (boric acid concentration 2.8% by mass, potassium iodide concentration 5% by mass). It was uniaxially stretched. The maximum stretching speed of uniaxial stretching in this stretching process was 400%/min.
  • the cleaning treatment was performed by immersing the sample in a potassium iodide/boric acid aqueous solution (cleaning treatment liquid) at 22°C (potassium iodide concentration 3 to 6% by mass, boric acid concentration 1.5% by mass) for 12 seconds without stretching. went.
  • the drying process was performed by hot air drying at 80° C. for 1.5 minutes without stretching to obtain a polarizing film.
  • Example 2 In the above "(i) Cleaning of PVA chip", PVA chips were washed in the same manner as in Example 1, except that a PVA chip modified with 2 mol% of ethylene with a degree of saponification of 99.3 mol% and a degree of polymerization of 2400 was used as the PVA chip. A chip, a PVA film and a polarizing film were obtained. Table 1 shows the evaluation results of the obtained PVA chip, PVA film, and polarizing film.
  • Example 6 A PVA chip, a PVA film, and a polarizing film were obtained in the same manner as in Example 1, except that in (iii) "Manufacture of PVA film", the surface temperature of both heat treatment rolls was changed to 70°C. Table 1 shows the evaluation results of the obtained PVA chip, PVA film, and polarizing film.
  • Example 7 In the above "(ii) Addition of aldehyde to PVA chip", 250 mg of 2,4-hexadienal, 25 mg of 2,4,6-octatrienal, 25 mg of 2,4, A PVA chip, a PVA film, and a polarizing film were obtained in the same manner as in Example 1 except that 6,8-decatetraenal and 40 mg of crotonaldehyde were added. Table 1 shows the evaluation results of the obtained PVA chip, PVA film, and polarizing film.
  • the PVA films of Examples 1 to 7 in which the PVA contained in the PVA film has a viscosity limit of [ ⁇ ] 6 7.5 to 11 dl/g, have low film width stability during film formation.
  • the evaluation was "A” (the difference between the maximum width and the minimum width of the film was less than 5 mm), and the film width during film formation was stable.
  • the PVA films of Examples 1 to 7 were evaluated for the hue of the end face of the roll when made into a PVA film roll. There was little variation in the thickness of the part.
  • the PVA films of Examples 1 to 7 had a small number of broken test pieces (0 to 3) in the evaluation of stretchability, and the PVA films were less likely to break during the production of polarizing films, making it possible to efficiently manufacture polarizing films. Can be manufactured well. Further, the PVA films of Examples 1 to 7 had excellent optical performance with a degree of polarization of 99.993 to 99.999% when made into polarizing films. In other words, the PVA film of the present invention has a stable film width and has excellent stretchability with little variation in thickness at the edges. Therefore, if the PVA film of the present invention is used, it is possible to efficiently produce a polarizing film with a wide width and excellent optical performance. Can be manufactured well. Moreover, the PVA film can be efficiently manufactured by the manufacturing method of the present invention.
  • the PVA film of Comparative Example 1 in which the viscosity limit of PVA contained in the PVA film [ ⁇ ] 6 exceeds 11 dl/g has a film width stability evaluation of "C" (the difference between the maximum and minimum film widths was 10 mm or more).
  • the PVA film of Comparative Example 1 had a large number of broken test pieces (18 pieces) in the evaluation of stretchability.
  • the PVA film of Comparative Example 2 in which the PVA contained in the PVA film has a viscosity limit of [ ⁇ ] 6 of less than 7.5 dl/g the number of broken test pieces in the evaluation of stretchability was 5. It was a lot of hits.
  • the PVA film of Comparative Example 2 had a polarization degree of 99.981% when made into a polarizing film, and its optical performance was poor.

Abstract

けん化度98モル%以上、重合度1500~8000であるポリビニルアルコールを含むポリビニルアルコールフィルムであって、光散乱検出器と粘度検出器を備えたゲル浸透クロマトグラフにて、測定温度40℃で移動相溶媒として20mMトリフルオロ酢酸Naを含むヘキサフルオロイソプロパノールを用いて測定される、前記ポリビニルアルコールの絶対分子量が1×106における極限粘度が7.5~11dl/gであることを特徴とする、ポリビニルアルコールフィルムである。このようなポリビニルアルコールフィルムは膜幅が安定しており端部の厚み変動が少なく延伸性に優れているため、当該PVAフィルムを用いれば、広幅で光学性能に優れた偏光フィルムを効率よく製造することができる。

Description

ポリビニルアルコールフィルム及びポリビニルアルコールフィルムの製造方法
 本発明は、偏光フィルムの製造等に好適に用いられるポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と略記することがある)及び当該PVAフィルムの製造方法に関する。
 液晶表示装置(LCD)は、電卓及び腕時計などの小型機器、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器などの広い分野で用いられている。光の透過及び遮蔽機能を有する偏光フィルムは、光のスイッチング機能を有する液晶とともに、LCDの基本的な構成要素である。
 偏光フィルムとしてはPVAフィルムを一軸延伸してなるマトリックス(一軸延伸して配向させた延伸フィルム)にヨウ素系色素(I やI 等)等の二色性色素が吸着しているものが主流となっている。このような偏光フィルムは、二色性色素を予め含有させたPVAフィルムを一軸延伸したり、PVAフィルムの一軸延伸と同時に二色性色素を吸着させたり、PVAフィルムを一軸延伸した後に二色性色素を吸着させたりするなどして製造される。
 近年、LCDの用途の拡大に伴い、PVAフィルム製造の効率化が求められている。PVAフィルムは一般に、金属ロールや金属ベルトなどの支持体上へ、PVAを含む製膜原液をダイから膜状に吐出させ、乾燥、固化させて製造する。PVAフィルムを効率的に製造するには、原液の吐出量とライン速度を上げるのが効果的であるが、粘度が高い製膜原液の吐出量を上げようとするとダイ入口の圧力が上昇するため装置的な限界がある。ダイの温度を上げれば原液の粘度を下げることは可能であるが、その場合、ダイから吐出した直後の膜状のPVA原液の幅(一般に「ネックイン」と呼ばれる)が変動して、得られるPVAフィルムの幅も変動する。そのため、フィルム端部をトリムカットする差の幅を広くする必要があり、収率の低下やフィルム幅の不足などの問題を生じやすかった。また、ダイの温度を上げた場合、PVAフィルムの延伸性に低下傾向が見られるため、思うようにライン速度を上げることができない問題があった。
 本発明は上記課題を解決すべくなされたものであり、偏光フィルムの製造等に用いることができるPVAフィルムであって、速いライン速度で製造してもダイの圧力が上がりにくく、かつ、PVAフィルムの良好な光学性能を有し、膜幅が安定していて延伸性も良好なPVAフィルムを提供することを目的とする。また、このようなPVAフィルムを原料とした偏光フィルムを提供することを目的とする。
 高分子の分子量や重合度を把握する方法として、ゲル浸透クロマトグラフ(以下、GPCと称することがある)がある。GPCは汎用的な分析方法として知られており、分子量が既知の標準物質から求められる検量線を用いた相対分子量の測定が一般的であるが、光散乱検出器や粘度検出器などを併用することで、レイリー理論式に基づく絶対分子量を算出することも可能である。
 一方、高分子鎖の分岐構造は溶液粘度、レオロジー特性、融解性、結晶性など高分子の性質に影響を及ぼすことが知られている。分岐に関する定量的情報は、優れた特性を有する高分子材料の開発や重合過程の理解に必要不可欠である。分岐状態の把握は、NMR、IR、レオロジー測定等でも可能であるが、分岐点数が少ない場合や、分岐部位の構造が主鎖と類似している場合には解析が困難となる。GPC測定では、光散乱検出器、粘度検出器を併用することによって分岐構造の解析が可能となる。
 高分子鎖の分岐度については、ZimmとKilbらによって極限粘度に基づいた分岐度の算出方法が提唱されている。算出された絶対分子量と極限粘度をプロットしたグラフをMark-Houwinkプロットと言い、同じ分子量の高分子同士を比較した場合、分岐を有する高分子鎖では直鎖状のポリマー鎖に比べて溶媒中での分子鎖の広がりが小さくなるため、分子鎖同士の絡み合いが抑制されて粘度が低くなる事が知られている。
 本発明者らは、GPC測定により各種PVAフィルムに含まれるPVAの分子量と極限粘度の関係を調査して鋭意検討を重ねた結果、当該樹脂からなるフィルムをGPC分析した際の、特定の分子量における極限粘度がある値に満足するPVAフィルムをもってすれば、上記課題を解決できることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。
 すなわち、本発明は、
[1]けん化度98モル%以上、重合度1500~8000であるPVAを含むPVAフィルムであって、光散乱検出器と粘度検出器を備えたゲル浸透クロマトグラフにて、測定温度40℃で移動相溶媒として20mMトリフルオロ酢酸Naを含むヘキサフルオロイソプロパノールを用いて測定される、前記PVAの絶対分子量が1×10における極限粘度が7.5~11dl/gであることを特徴とする、PVAフィルム;
[2]前記PVAが、エチレン変性量が0.5~12モル%の変性PVAである、前記[1]に記載のPVAフィルム;
[3]けん化度98モル%以上、重合度1500~8000、C6以上の長鎖アルデヒドの濃度が0.35~2.5μmol%であるPVAを用いて得られる製膜原液を用いて製膜する、前記[1]に記載のPVAフィルムの製造方法;
[4]前記C6以上の長鎖アルデヒドが、2,4-ヘキサジエナール、2,4,6-オクタトリエナール、および2,4,6,8-デカテトラエナールからなる群から選択される少なくとも一種を含む、前記[3]に記載のPVAフィルムの製造方法;
[5]前記PVA中のクロトンアルデヒドの濃度が0.70μmol%以下である、前記[3]に記載のPVAフィルムの製造方法;
[6]製膜して得られたPVAフィルムを80℃以上の温度で熱処理する工程を含む、前記[3]に記載のポリビニルアルコールフィルムの製造方法;
[7]光学用フィルムである、前記[1]に記載のPVAフィルム;
により達成することができる。
 本発明のPVAフィルムは膜幅が安定しており端部の厚み変動が少なく延伸性に優れているため、本発明のPVAフィルムを用いれば、広幅で光学性能に優れた偏光フィルムを効率よく製造することができる。また、本発明の製造方法により、当該PVAフィルムを効率的に製造することができる。
[PVAフィルム]
 本発明のPVAフィルムは、けん化度98モル%以上、重合度1500~8000であるPVAを含み、光散乱検出器と粘度検出器を備えたゲル浸透クロマトグラフにて、測定温度40℃で移動相溶媒として20mMトリフルオロ酢酸Naを含むヘキサフルオロイソプロパノールを用いて測定される、前記PVAの絶対分子量が1×10における極限粘度(以下、絶対分子量が1×10における極限粘度を極限粘度[η]と略記することがある)が7.5~11dl/gである。
 本発明のPVAフィルムにおいて、極限粘度[η]が7.5~11dl/gであることにより本発明の効果が得られる理由は必ずしも明確ではないが、以下のように推定される。高分子の極限粘度は溶液中あるいは溶融体中の分子鎖の広がりに対応しており、樹脂中の1×10という高分子量成分の分子鎖の広がりは、分子間の絡み合いなどの相互作用に強い影響を与える。高分子量成分の極限粘度が大きすぎる、すなわち分子鎖の広がりが広すぎる場合、溶液あるいは溶融体の粘度が高くなり、ダイ内の圧損が大きくなる。そのため、高速製膜において吐出量を増やそうとすると、ダイ内の圧力が装置限界を越えるおそれを生じる。一方、高分子量成分の極限粘度が小さすぎる、すなわち分子鎖の広がりが狭すぎる場合、溶液あるいは溶融体の曵糸性が低くなる。そのため、ダイリップから吐出した溶液あるいは溶融体が、特にダイの端部においてネックインの影響によって溜まりやすくなる。そして、当該溶融体がダイの端部にある程度溜まるとそれが流れるという周期的な挙動を取るようになり、そのためにダイから吐出する塗膜の膜幅変動を生じやすくなる。よって、本発明の効果を得るためには、PVA中の高分子量成分の極限粘度を特定の範囲に制御する必要がある。
[PVA]
 本発明のPVAフィルムに含まれるPVAとしては、ビニルエステルモノマーを重合して得られるビニルエステル重合体をけん化することにより製造されたものを使用することができる。ビニルエステルモノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができ、入手性・コスト・PVAの生産性などの観点より、これらの中でも酢酸ビニルが好ましい。
 上記のビニルエステル重合体は、単量体として1種又は2種以上のビニルエステルモノマーのみを用いて得られたものが好ましく、単量体として1種のビニルエステルモノマーのみを用いて得られたものがより好ましいが、1種又は2種以上のビニルエステルモノマーと、これと共重合可能な他のモノマーとの共重合体であってもよい。
 このようなビニルエステルモノマーと共重合可能な他のモノマーとしては、例えば、エチレン;プロピレン、1-ブテン、イソブテン等の炭素数3~30のオレフィン;アクリル酸又はその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸又はその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸又はその塩、アクリルアミドプロピルジメチルアミン又はその塩、N-メチロールアクリルアミド又はその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸又はその塩、メタクリルアミドプロピルジメチルアミン又はその塩、N-メチロールメタクリルアミド又はその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸又はその塩、エステルもしくは酸無水物;イタコン酸又はその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニルなどを挙げることができる。上記のビニルエステル重合体は、これらの他モノマーのうち、1種又は2種以上に由来する構造単位を有することができる。
 上記のビニルエステル重合体に占める上記他のモノマーに由来する構造単位の割合は、本発明の目的を阻害しない範囲で特に制限はないが、ビニルエステル重合体を構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、5モル%以下であることがより好ましい。
 上記のビニルエステルモノマーと共重合可能な他のモノマーの内、エチレンと共重合したエチレン変性PVAは、PVAフィルムの延伸性を向上させることができるので、好ましい。エチレンの変性量は0.5~12モル%の範囲であることが好ましい。変性量0.5モル%未満では延伸性の向上効果が十分には認められず、変性量12モル%を越える場合は得られる偏光フィルムの光学性能が低下するおそれがある。エチレンの変性量は0.7~8モル%の範囲であることがより好ましく、0.9~5モル%の範囲であることがさらに好ましい。
 本発明のPVAフィルムにおいて、PVAの重合度は1500以上である。PVAの重合度が1500未満の場合、該PVAを原料として得られる偏光フィルムの偏光性能が損なわれるおそれがある。PVAの重合度は1700以上であることが好ましく、2000以上であることがさらに好ましく、極めて偏光性能が高い偏光フィルムが得られる点からは、2500以上であることが特に好ましい。また本発明において、PVAの重合度は8000以下である。PVAの重合度が8000を超える場合、水溶液あるいは溶融したPVAの粘度が高くなり、製膜が難しくなるおそれがある。PVAの重合度は6000以下であることが好ましく、5000以下であることがより好ましく、4000以下であることがさらに好ましい。ここで重合度とは、JIS K6726-1994の記載に準じて測定される平均重合度(Po)を意味し、PVA(A)を再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](単位:dl(デシリットル)/g)から次式により求められる。
   Po = ([η]×10/8.29)(1/0.62)
 本発明のPVAフィルムにおいて、PVAのけん化度は98モル%以上である。PVAのけん化度が98モル%未満の場合、十分な偏光性能が得られないおそれがある。PVAのけん化度は99モル%以上が好ましく、99.5モル%以上がより好ましく、99.7モル%以上がさらに好ましく、99.9モル%以上が特に好ましい。なお、ここでPVAのけん化度は、PVAが有する、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル系モノマー単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。PVAのけん化度は、JIS K6726-1994の記載に準じて測定することができる。なお、けん化度の異なる複数のPVAが混合されている場合は、これら複数のPVAのけん化度の加重平均を求めることにより、PVAの混合物のけん化度を特定することができる。
 本発明のPVAフィルムにおいて、PVAの含有量は、PVAフィルムの全質量の75質量%以上が好ましく、80質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
[PVAの極限粘度[η]
 本発明のPVAフィルムにおいて、PVAの極限粘度[η]の測定方法は、後述の実施例に示す通りである。後述の通り、本発明においては、移動相溶媒として、濃度20mM(mmol/L)のトリフルオロ酢酸Naを含有するヘキサフルオロイソプロパノール(HFIP)を用いる。
 本発明のPVAフィルムに含まれるPVAの極限粘度[η]は7.5~11dl/gである。極限粘度[η]が11dl/gを越える場合、そのPVAフィルムを原料とした偏光フィルムの光学性能が低下するおそれがある。極限粘度[η]は10.5dl/g以下が好ましく、10.0dl/g以下がより好ましく、9.5dl/g以下がさらに好ましく、9.0dl/g以下が特に好ましい。一方、極限粘度[η]が7.5dl/g未満の場合、高速製膜時の膜幅安定性が悪化しやすい。極限粘度[η]は7.6dl/g以上が好ましく、7.7dl/g以上がより好ましく、7.8dl/g以上がさらに好ましい。
 本発明において、PVAの極限粘度[η]、すなわち高分子量領域におけるPVAの極限粘度がPVAフィルムの製膜性に影響を与える理由は必ずしも明確ではないが、前記の通り溶融高分子や高分子溶液の粘度や曵糸性などのレオロジー的特性が高分子量成分の影響を強く受けるためと推定される。なお、PVAフィルムに含まれるPVAの平均分子量を下げても同様の効果が得られる可能性はあるが、その場合、当該PVAフィルムから製造される偏光フィルムの光学性能が低下するおそれがある。
[界面活性剤]
 本発明のPVAフィルムは、界面活性剤を含有してもよい。界面活性剤を含有することで、製膜工程におけるドラム等の金属支持体への付着の防止や、PVAフィルムのスリップ性を向上させ、長尺に巻き取ったフィルムロールにおけるシワの発生を抑制するなどの、公知の効果を得ることができる。
 本発明のPVAフィルムにおいて、界面活性剤の含有量は、PVA100質量部に対して、0.001質量部以上であることが好ましく、0.005質量部以上であることがより好ましく、0.01質量部以上であることがさらに好ましい。界面活性剤の含有量は、PVA100質量部に対して、1質量部以下であることが好ましく、0.8質量部以下であることがより好ましく、0.5質量部以下であることがさらに好ましい。界面活性剤の含有量が0.001質量部未満の場合、上記の効果が十分に得られないおそれがある。また、界面活性剤の含有量が1質量部を超えると、フィルムの着色及び透明性の低下が起こり易くなる傾向がある。また、フィルム表面にスジ状の欠点が発生する場合もある。
 界面活性剤の種類としては、特に限定されないが、例えばアニオン系界面活性剤、ノニオン系界面活性剤等が挙げられる。
 上記アニオン系界面活性剤としては、例えば
 ラウリン酸カリウム等のカルボン酸型;
 オクチルサルフェート等の硫酸エステル型;
 ドデシルベンゼンスルホネート等のスルホン酸型等が挙げられる。
 上記ノニオン系界面活性剤としては、例えば
 ポリオキシエチレンオレイルエーテル等のアルキルエーテル型;
 ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;
 ポリオキシエチレンラウレート等のアルキルエステル型;
 ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;
 ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;
 ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;
 ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;
 ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型等が挙げられる。
 これらのうち、製膜時の膜面異常の低減効果に優れるという観点から、ノニオン系界面活性剤が好ましく、アルカノールアミド型の界面活性剤がより好ましく、炭素数8~30の飽和又は不飽和脂肪族カルボン酸等の脂肪族カルボン酸のジエタノールアミド等のジアルカノールアミドがさらに好ましい。なお、界面活性剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
[可塑剤]
 本発明のPVAフィルムは、可塑剤を含有してもよい。PVAフィルムは他のプラスチックフィルムに比べて剛直であるため、衝撃強度、二次加工時の工程通過性等が十分でない場合があるが、当該PVAフィルムは、上記可塑剤を含有することでこれらの不都合を改善することができる。
 可塑剤としては、例えば多価アルコール等が挙げられる。上記多価アルコールとしては、例えばエチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等が挙げられる。これらのうち、当該光学用PVAフィルムの延伸性を向上させるという観点から、エチレングリコール及びグリセリンが好ましい。なお、これらの可塑剤は1種を単独で使用してもよいし、2種以上を併用してもよい。
 本発明のPVAフィルムにおいて、可塑剤の含有量としては、PVA100質量部に対して、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることがさらに好ましい。可塑剤の含有量は、PVA100質量部に対して、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。上記可塑剤の含有量が1質量部未満であると上記効果が得られない場合があり、30質量部を超えると当該PVAフィルムが柔軟になり過ぎて取り扱い性が低下する場合がある。
[その他の任意成分]
 本発明のPVAフィルムは、本発明の効果を損なわない範囲で、PVA、界面活性剤及び可塑剤以外のその他の任意成分をさらに含んでいてもよい。このようなその他の任意成分としては、例えば水、酸化防止剤、紫外線吸収剤、滑剤、着色剤、防腐剤、防黴剤、上記した成分以外の他の高分子化合物等が挙げられる。
 本発明のPVAフィルムにおいて、上記その他の任意成分の含有量としては、PVAフィルムの全質量の40質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。
 本発明のPVAフィルムの厚みとしては、特に制限はないが、偏光フィルムの原料として用いる場合には、平均厚みが5~150μmの範囲内であることが好ましい。なお、PVAフィルムの平均厚みは、任意の10箇所(例えば、PVAフィルムの幅方向に引いた直線上にある任意の10箇所)の厚みを測定し、それらの平均値として求めることができる。また、PVAフィルムのフィルム幅は、用途に合わせたサイズとすることができる。PVAフィルムのフィルム幅は、通常0.1m以上であることが好ましく、0.5m以上であることが好ましく、1.0m以上であることがさらに好ましい。PVAフィルムのフィルム幅は、通常7.5m以下であることが好ましく、7.0m以下であることがより好ましく、6.5m以下であることがさらに好ましい。本発明のPVAフィルムの揮発成分濃度は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。一方、前記揮発成分濃度は、5質量%以下であることが好ましい。
[PVAフィルムの製造方法]
 本発明のPVAフィルムの製造方法は特に限定されないが、以下の製造方法によれば本発明のPVAフィルムを効率的に得られることから好ましい。すなわち、本発明のPVAフィルムの製造方法としては、けん化度98モル%以上、重合度1500~8000のPVAであって、前記PVA中のC6以上の長鎖アルデヒドの濃度が0.35~2.5μmol%であるPVAを含有する製膜原液を用いる、ポリビニルアルコールフィルムの製造方法が好ましい。
 本発明のPVAフィルムの製造方法において、製膜原液に用いられるPVAとしては、PVA中のC(炭素数)6以上の長鎖アルデヒドの濃度が0.35~2.5μmol%であるPVAが好ましい。ここで、PVA中のC6以上の長鎖アルデヒドの濃度(μmol%)とは、(1)PVA中のけん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル系モノマー単位)、(2)PVA中のビニルアルコール単位および(3)PVA中のC6以上の長鎖アルデヒドの合計モル数に対して、当該C6以上の長鎖アルデヒドのモル数が占める割合(mol%)をいう。一般にアルデヒドは、高温条件下ではPVA中に含まれる酢酸などの触媒の存在下で、容易にPVAとアセタール化反応を起こす。C6以上の長鎖アルデヒドがPVAとアセタール化反応を起こすと、PVAの主鎖にC6以上の側鎖(アルデヒド鎖)を含むアセタール単位が生成される。このC6以上の側鎖(アルデヒド鎖)により、PVAの分子鎖の広がりが抑制されるものと推定される。前記PVA中に含まれるC6以上の長鎖アルデヒドの少なくとも一部が前記アセタール単位を形成していてもよい。また、後述するPVAフィルムの熱処理工程等のPVAフィルムの製造工程においても、C6以上の長鎖アルデヒドとPVAとのアセタール化反応が起きて、前記アセタール単位が生成される。なお、上記の長鎖アルデヒドの濃度の単位である「μmol%」において「μ」は国際単位系(SI)における接頭辞であり、「μmol%」は「mol%」の10―6倍(0.000001倍)であることを表す。例えば、0.35μmol%=0.35×10-6mol%である。
 本発明のPVAフィルムの製造方法において、製膜原液に用いられるPVA中のC6以上の長鎖アルデヒドの濃度が2.5μmol%以下であることで、得られるPVAフィルムから製造される偏光フィルムの光学性能が向上しやすくなる。前記長鎖アルデヒドの濃度は2.2μmol%以下がより好ましく、1.9μmol%以下がさらに好ましい。一方、前記長鎖アルデヒドの濃度が0.35μmol%以上であることで、PVAフィルムを高速で製膜する際にPVAフィルムの膜幅が安定しやすい。前記長鎖アルデヒド濃度は0.37μmol%以上がより好ましく、0.40μmol%以上がさらに好ましい。
 本発明のPVAフィルムの製造方法において、製膜原液に用いられるPVA中の長鎖アルデヒドはC12以下であることが好ましく、C10以下であることがより好ましい。前記長鎖アルデヒドの炭素数が前記範囲以下であることで、PVAの結晶性が高まりやすく、得られるPVAフィルムから製造される偏光フィルムの光学性能が向上しやすくなる。
 本発明のPVAフィルムの製造方法において、製膜原液に用いられるPVA中のC6以上の長鎖アルデヒドは必ずしも限定されないが、PVAとの親和性、反応性が適度に良好であることから、2,4-ヘキサジエナール、2,4,6-オクタトリエナール、および2,4,6,8-デカテトラエナールからなる群から選択される少なくとも1種を含むことが好ましい。
 本発明のPVAフィルムの製造方法において、製膜原液に用いられるPVA中のクロトンアルデヒドの濃度が0.70μmol%以下であることも好ましい。ここで、PVA中のクロトンアルデヒドの濃度(μmol%)とは、(1)PVA中のけん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル系モノマー単位)、(2)PVA中のビニルアルコール単位および(3)PVA中のクロトンアルデヒドの合計モル数に対して、クロトンアルデヒドのモル数が占める割合(mol%)をいう。前記PVA中に含まれるクロトンアルデヒドの少なくとも一部が、PVAとアセタール化反応を起こすことにより、PVA主鎖のアセタール単位を形成していてもよい。なお、上記のクロトンアルデヒドの濃度の単位である「μmol%」において、「μ」は国際単位系(SI)における接頭辞であり「μmol%」は「mol%」の10―6倍(0.000001倍)であることを表す。
 本発明のPVAフィルムの製造方法において、製膜原液に用いられるPVA中のクロトンアルデヒドの濃度が0.70μmol%以下であることで、得られるPVAフィルムの黄色味が低減されやすくなる。前記クロトンアルデヒドの含有量は、0.50μmol%以下であることがより好ましく、0.40μmol%以下であることがさらに好ましい。クロトンアルデヒドの含有量の下限に特に制限はないが、0.0010μmol%以上であることが好ましく、0.010μmol%以上であることがより好ましく、0.050μmol%以上であることがさらに好ましい。前記クロトンアルデヒドの含有量が上記下限以上であることで、PVAの洗浄を強化する手間を省略することができ、PVAフィルムの生産性を向上させることができる。
 本発明のPVAフィルムの製造方法において、製膜原液に含まれるPVA中のC6以上の長鎖アルデヒド又はクロトンアルデヒドの濃度の調整方法に特に制限はないが、PVAに含まれるアルデヒドや他の不純物を、有機溶媒で抽出除去した後、C6以上の長鎖アルデヒド又はクロトンアルデヒドを添加する方法が例示される。また、PVAが酢酸ビニルをけん化して製造されたものである場合、当該酢酸ビニルには通常ヒドロキノンなどの安定剤が添加されているが、この安定剤の量を意図的に減らして酢酸ビニルの分解によりアルデヒドを生成させる方法も例示することができる。これらの方法のうち、製膜原液に含まれるPVA中のC6以上の長鎖アルデヒド又はクロトンアルデヒドの濃度を制御しやすいことから、前者の方法が好ましい。
 本発明のPVAフィルムの製造方法において、製膜原液に含まれるPVAの好適態様及び具体的態様は前記と同様であり、本発明の効果を損なわない範囲で、前記した界面活性剤、可塑剤、その他の任意成分を含んでもよい。
 本発明において、PVAフィルムの製膜方法としては、従来公知の方法を採用することができる。従来公知の方法として、例えば、流延製膜法、湿式製膜法、乾湿式製膜法、ゲル製膜法、溶融押出製膜法、これらの方法を組み合わせた方法等が挙げられる。これらのうち、透明性が高く着色の少ないPVAフィルムが効率的に得られるという観点から、溶融押出製膜法が好ましい。
 上記溶融押出製膜法によって、例えば以下のように本発明のPVAフィルムを製造することができる。まず、前記の方法でC6以上の長鎖アルデヒド量を調整したPVAのチップを10℃~50℃の蒸留水に10時間~48時間浸漬した後、遠心脱水を行い、揮発分濃度30質量%~90質量%のPVA含水チップを得る。この時、PVA中のC6以上の長鎖アルデヒド量はやや減少するため、温度を上げすぎたり、時間を長くしすぎたりしないように留意する必要がある。
 上記PVA含水チップに、グリセリン等の可塑剤、界面活性剤、水等の溶媒、などを適量添加して混合する。この混合物を二軸押出機に投入し、従来公知の方法により連続的に溶融押出製膜を行う。具体的には、上記混合物を最高温度100℃~200℃の二軸押出機で加熱溶融し、熱交換機で80℃~120℃に冷却し、製膜原液とする。この製膜原液を80℃~120℃のTダイより吐出させ、75℃~115℃の金属ドラム上にキャストし、乾燥させて水分率15質量%~40質量%の含水状態のフィルムとする。このフィルムを上記金属ドラムから剥離した後、50℃~100℃の熱風乾燥炉を通過又は50℃~100℃の乾燥ロールに接触させて、水分率15質量%未満にまで乾燥した後、熱処理して本発明のPVAフィルムを製造することができる。本発明において、熱処理の温度は80℃以上であることが好ましい。80℃以上で熱処理することにより、PVAと長鎖アルデヒドの反応を促進することができる。熱処理の温度は90℃以上であることがより好ましく、100℃以上であることがさらに好ましく、110℃以上であることが特に好ましい。また、熱処理の温度が高すぎるとフィルムが着色するなどの不具合を生じるおそれがあることから、170℃以下であることが好ましく、160℃以下であることがより好ましく、150℃以上であることがさらに好ましい。一方、熱処理の時間は1秒以上であることが好ましい。熱処理の時間が1秒以上であることで、PVAと長鎖アルデヒドの反応を促進することができる。熱処理の時間は5秒以上であることがより好ましく、10秒以上であることがさらに好ましい。また、熱処理の時間が長すぎるとフィルムが着色するなどの不具合を生じるおそれがあることから、60秒以下であることが好ましく、45秒以下であることがより好ましく、30秒以下であることがさらに好ましい。
 製膜されたPVAフィルムは、通常、従来公知の方法を用いて円筒状のコアにロール状に巻き取られフィルムロールとすることができる。上記フィルムロールの具体的な製造方法としては、例えば、当該光学用PVA系重合体フィルムの幅方向の両端部をそれぞれ0.5cm~20cmスリットし、従来公知の巻取り機を用い、1.0Kgf/cm~10Kgf/cmのフィルム張力で、円筒状コアにフィルムを巻きつけることで、PVAフィルムロールを製造することができる。
 上記コアの外径(角筒の場合はその外接円の直径)としては、10cm以上であることが好ましい。上記外径が10cm未満では、フィルムロールが自重のため撓んで皺が入るおそれがある。また、上記コアの長さとしては、PVAフィルム幅と同等でもよいし、上記フィルム幅より長くてもよいが、上記フィルム幅より10cm以上長いものが好ましい。上記コアの長さがフィルム幅よりも短い場合には、延伸時にフィルム幅方向の端部より破断が発生しやすく、均一な延伸が困難な場合がある。また、上記コアは、巻取り時のシワを防止できるよう外表面が金属又はプラスチックでできた筒状の形態であることが好ましい。
 ロール状に巻き取られるPVAフィルムの長さとしては、1,300m以上であることが好ましい。ロール状に巻き取られるPVAフィルムの長さが1,300m未満では、偏光フィルム製造工程等においてフィルムロール切り替えによるロスが大きいため好ましくない。ロール状に巻き取られるPVAフィルムの長さの上限に特に制限はないが、長すぎるとフィルムロールの重量が重くなりすぎて取り扱い性が悪くなる、またはフィルムロールがたわんでフィルムに皺が発生しやすくなるなどの問題を生じるおそれがあることから、PVAフィルムの長さは、20,000m以下であることが好ましい。
 ロール状に巻き取られたPVAフィルムは、防湿包装して、フィルムロールのコア全体又はコアの両端部で重量を支える宙吊り状態で保管・輸送することが好ましい。上記宙吊り状態で保管・輸送する好ましい方法としては、ロール両端面より出ているコアを支持体に載せる方法、ロール両端面より出ているコアを支持体により吊るす方法、支持体の一部をコア内部に挿入する方法、コア内部に挿入した棒状治具を支持体に載せる方法、コア内部に挿入した棒状治具を支持体により吊るす方法が挙げられ、これらのうちロール両端面より出ているコアを支持体に載せる方法がより好ましい。また、PVAは吸湿性が高く、低湿度条件下以外の環境で保管・輸送されると容易に吸湿・膨潤してフィルムにシワを生じる可能性が高いため、そのような環境下での保管・輸送が予測される場合には、十分な防湿包装を行う必要がある。
[光学フィルムの製造方法]
 本発明のPVAフィルムの用途は特に限定されないが、例えば、光学フィルムを製造する際の原反フィルムとして用いることができる。光学フィルムとしては、偏光フィルム、視野角向上フィルム、位相差フィルム、輝度向上フィルムなどが例示されるが、偏光フィルムであることが好ましい。以下では、光学フィルムの製造方法の一例として、偏光フィルムの製造方法を挙げて具体的に説明する。
 偏光フィルムは、通常、PVAフィルムを原反フィルムとして用いて、膨潤工程、染色工程、架橋工程、延伸工程、固定処理工程などの処理工程を経て製造することができる。各工程に用いる処理液の具体例としては、膨潤処理に使用される膨潤処理液、染色処理に使用される染色処理液(染色液)、架橋処理に使用される架橋処理液、延伸処理に使用される延伸処理液、固定処理に使用される固定処理液及び洗浄処理に使用される洗浄処理液(洗浄液)などが挙げられる。
 偏光フィルムを製造するための製造方法において採用することのできる各処理工程について、以下に詳細に説明する。なお、偏光フィルムの製造方法において、以下の各処理の1つ又は2つ以上を省略してもよいし、同じ処理を複数回行ってもよいし、別の処理を同時に行ってもよい。
(膨潤処理前の洗浄処理)
 PVAフィルムに膨潤処理を行う前に、PVAフィルムに洗浄処理を行うことが好ましい。このような膨潤処理前の洗浄処理によりPVAフィルムに付着しているブロッキング防止剤などを除去することができ、偏光フィルムの製造工程における各処理液がブロッキング防止剤などにより汚染されることを防止することができる。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。洗浄処理液の温度は、20℃以上であることが好ましく、22℃以上であることがより好ましく、24℃以上であることがさらに好ましく、26℃以上であることが特に好ましい。洗浄処理液の温度が20℃以上であることにより、PVAフィルムに付着しているブロッキング防止剤などの除去が行いやすくなる。また、洗浄処理液の温度は、40℃以下であることが好ましく、38℃以下であることがより好ましく、36℃以下であることがさらに好ましく、34℃以下であることが特に好ましい。洗浄処理液の温度が40℃以下であることにより、PVAフィルムの表面の一部が溶解してフィルム同士が膠着して取り扱い性が低下することを防止することができる。
(膨潤処理)
 膨潤処理は、PVAフィルムを水等の膨潤処理液に浸漬させることにより行うことができる。膨潤処理液の温度は、20℃以上であることが好ましく、22℃以上であることがより好ましく、24℃以上であることがさらに好ましい。膨潤処理液の温度は、40℃以下であることが好ましく、38℃以下であることがより好ましく、36℃以下であることがさらに好ましい。また、膨潤処理液に浸漬する時間としては、例えば、0.1分以上であることが好ましく、0.5分以上であることがより好ましい。また、膨潤処理液に浸漬する時間は、例えば、5分以下であることが好ましく、3分以下であることがより好ましい。なお、膨潤処理液として使用される水は純水に限定されず、ホウ素含有化合物等の各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。ホウ素含有化合物の種類は特に限定されないが、取り扱い性の観点からホウ酸又はホウ砂が好ましい。膨潤処理液がホウ素含有化合物を含む場合、PVAフィルムの延伸性を向上させる観点から、その濃度は6質量%以下であることが好ましい。
(染色処理)
 染色処理は、二色性色素としてヨウ素系色素を用いて行うのがよく、染色の時期としては、延伸処理前、延伸処理時、延伸処理後のいずれの段階であってもよい。染色処理は、染色処理液としてヨウ素-ヨウ化カリウムを含有する溶液(好適には水溶液)を用い、染色処理液にPVAフィルムを浸漬させることにより行うことが好ましい。染色処理液におけるヨウ素の濃度は0.005~0.2質量%の範囲内であることが好ましい。ヨウ化カリウム/ヨウ素(質量)は20~100の範囲内であることが好ましい。染色処理液の温度は20℃以上であることが好ましく、25℃以上であることがより好ましい。染色処理液の温度は50℃以下であることが好ましく、40℃以下であることがより好ましい。染色処理液には、ホウ酸等のホウ素含有化合物が架橋剤として含有されていてもよい。なお、原反フィルムとして使用するPVAフィルムに予め二色性色素を含有させておけば、染色処理を省略することができる。また、原反フィルムとして使用するPVAフィルムに予めホウ酸、ホウ砂等のホウ素含有化合物を含有させておくこともできる。
(架橋処理)
 偏光フィルムの製造にあたって、PVAフィルムへの二色性色素の吸着を強固にするなどの目的のために、染色処理後に架橋処理を行うことができる。架橋処理は、架橋処理液として架橋剤を含有する溶液(好適には水溶液)を用い、架橋処理液にPVAフィルムを浸漬させることにより行うことができる。架橋剤としては、ホウ酸、ホウ砂等のホウ素含有化合物の1種又は2種以上を使用することができる。架橋処理液における架橋剤の濃度は、あまりに高すぎると架橋反応が進みすぎてその後に行う延伸処理で十分な延伸を行うのが困難になる傾向があり、また、あまりに少なすぎると架橋処理の効果が低減する傾向がある。架橋処理液における架橋剤の濃度は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。架橋処理液における架橋剤の濃度は、6質量%以下であることが好ましく、5.5質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 染色処理後のPVAフィルムから二色性色素が溶出するのを抑制するため、架橋処理液には、ヨウ化カリウム等のヨウ素含有化合物を含有させてもよい。架橋処理液におけるヨウ素含有化合物の濃度があまりに高すぎると、理由は不明であるが得られる偏光フィルムの耐熱性が低下する傾向がある。また、架橋処理液におけるヨウ素含有化合物の濃度が、あまりに少なすぎると、二色性色素の溶出を抑制する効果が低減する傾向にある。前記理由から架橋処理液におけるヨウ素含有化合物の濃度は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。架橋処理液におけるヨウ素含有化合物の濃度は、6質量%以下であることが好ましく、5.5質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。
 架橋処理液の温度は、あまりに高すぎると二色性色素が溶出して得られる偏光フィルムに染色むらが生じやすくなる傾向があり、また、あまりに低すぎると架橋処理の効果が低減することがある。架橋処理液の温度は、20℃~40℃の範囲にあることが好ましい。架橋処理液の温度は、22℃以上であることがより好ましく、25℃以上であることがさらに好ましい。架橋処理液の温度は、45℃以下であることが好ましく、40℃以下であることがより好ましく、35℃以下であることがさらに好ましい。
 後述する延伸処理とは別に、上述した各処理中や処理間において、PVAフィルムを延伸してもよい。このような延伸(前延伸)することにより、PVAフィルムの表面に皺が発生するのを防止することができる。前延伸の総延伸倍率(各処理における延伸倍率を掛け合わせた倍率)は、得られる偏光フィルムの偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、4倍以下であることが好ましい。前延伸の総延伸倍率は、3.5倍以下であることがより好ましい。前延伸の総延伸倍率は、得られる偏光フィルムの偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、1.5倍以上であることがより好ましい。膨潤処理における延伸倍率は、PVAフィルムの元長に基づいて、1.1倍以上であることが好ましく、1.2倍以上であることがより好ましく、1.4倍以上であることが更に好ましい。膨潤処理における延伸倍率は、PVAフィルムの元長に基づいて、3倍以下であることが好ましく、2.5倍以下であることがより好ましく、2.3倍以下であることが更に好ましい。染色処理における延伸倍率は、PVAフィルムの元長に基づいて、2倍以下であることが好ましく、1.8倍以下であることがより好ましく、1.5倍以下であることが更に好ましい。染色処理における延伸倍率は、PVAフィルムの元長に基づいて、1.1倍以上であることが更に好ましい。架橋処理における延伸倍率は、PVAフィルムの元長に基づいて、2倍以下であることが好ましく、1.5倍以下であることがより好ましく、1.3倍以下であることが更に好ましい。架橋処理における延伸倍率は、PVAフィルムの元長に基づいて、1.05倍以上であることが更に好ましい。
(延伸処理)
 延伸処理は、湿式延伸法又は乾式延伸法のいずれで行ってもよい。湿式延伸法の場合は、延伸処理液としてホウ酸等のホウ素含有化合物を含有する溶液(好適には水溶液)を用い、延伸処理液中で行うこともできるし、染色処理液中や後述する固定処理液中で行うこともできる。また乾式延伸法の場合は、吸水後のPVAフィルムを用いて空気中で行うことができる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。延伸処理液がホウ素含有化合物を含有する場合、延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、1.5質量%以上であることが好ましく、2.0質量%以上であることがより好ましく、2.5質量%以上であることがさらに好ましい。延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、7質量%以下であることが好ましく、6.5質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。
 延伸処理液には、ヨウ化カリウム等のヨウ素含有化合物を含有させることが好ましい。延伸処理液におけるヨウ素含有化合物の濃度は、あまりに高すぎると得られる偏光フィルムの色相が青みの強いものとなる傾向があり、また、あまりに低すぎると理由は不明であるが得られる偏光フィルムの耐熱性が低下する傾向がある。延伸処理液におけるヨウ素含有化合物の濃度は、2質量%以上であることが好ましく、2.5質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。延伸処理液におけるヨウ素含有化合物の濃度は、8質量%以下であることが好ましく、7.5質量%以下であることがより好ましく、7質量%以下であることがさらに好ましい。
 延伸処理液の温度は、あまりに高すぎるとPVAフィルムが溶けかけて柔らくなり破断しやすくなる傾向があり、また、あまりに低すぎると延伸性が低下する傾向がある。延伸処理液の温度は、50℃以上であることが好ましく、52.5℃以上であることがより好ましく、55℃以上であることがさらに好ましい。延伸処理液の温度は、70℃以下であることが好ましく、67.5℃以下であることがより好ましく、65℃以下であることがさらに好ましい。なお、延伸処理を乾式延伸法で行う場合の延伸温度の好ましい範囲も前記の通りである。
 延伸処理における延伸倍率は、高い方がより優れた偏光性能を有する偏光フィルムが得られることなどから、1.2倍以上であることが好ましく、1.5倍以上であることがより好ましく、2倍以上であることが更に好ましい。また、上記した前延伸の延伸倍率も含めた総延伸倍率(各工程における延伸倍率を掛け合わせた倍率)は、延伸前の原料のPVAフィルムの元長に基づいて、得られる偏光フィルムの偏光性能の点から、5.5倍以上であることが好ましく、5.7倍以上であることがより好ましく、5.9倍以上であることが更に好ましい。延伸倍率の上限は特に制限されないが、延伸倍率が高すぎると延伸破断が発生しやすくなることから、延伸倍率は8倍以下であることが好ましい。
 延伸処理を一軸延伸で行う方法に特に制限はなく、長尺方向への一軸延伸や幅方向への横一軸延伸を採用することができる。偏光フィルムを製造する場合に、偏光性能に優れたものが得られる点からは、長尺方向への一軸延伸が好ましい。長尺方向への一軸延伸は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。
 本発明において、延伸処理を一軸延伸で行う際の最大延伸速度(%/min)に特に制限はないが、200%/min以上であることが好ましく、300%/min以上であることがより好ましく、400%/min以上が更に好ましい。ここで、最大延伸速度とは、3本以上の周速が異なるロールを使用して2段階以上の段階に分けてPVAフィルムの延伸処理を行う場合において、その段階の中で最も速い延伸速度のことをいう。なお、PVAフィルムの延伸処理を2段階以上に分けず1段階で行う場合には、その段階における延伸速度が最大延伸速度となる。また、延伸速度とは、単位時間当たりの、延伸前のPVAフィルムの長さに対して延伸により増加したPVAフィルムの長さの増加分のことであり、例えば延伸速度100%/minとは、延伸前の長さから1分間に2倍の長さにPVAフィルムを変形させるときの速度のことをいう。最大延伸速度が大きくなるほど、PVAフィルムの延伸処理(一軸延伸)を高速で行うことができ、その結果、偏光フィルムの生産性が向上することから好ましい。一方で、最大延伸速度が大きくなりすぎると、PVAフィルムの延伸処理(一軸延伸)においてPVAフィルムに局所的に過大な張力がかかることがあり、延伸破断が発生しやすくなる。このような観点から、最大延伸速度は900%/minを超えないことが好ましい。
(固定処理)
 偏光フィルムの製造に当たっては、PVAフィルムへの二色性色素の吸着を強固にするために固定処理を行うことが好ましい。固定処理は、固定処理液としてホウ酸、ホウ砂等のホウ素含有化合物の1種又は2種以上を含む溶液(好適には水溶液)を用い、固定処理液にPVAフィルム(好適には延伸処理後のPVAフィルム)を浸漬させることにより行うことができる。また必要に応じて、固定処理液にはヨウ素含有化合物や金属化合物を含有させてもよい。固定処理液におけるホウ素含有化合物の濃度は、2質量%以上であることが好ましく、3質量%以上であることがより好ましい。固定処理液におけるホウ素含有化合物の濃度は、15質量%以下であることが好ましく、10質量%以下であることがより好ましい。固定処理液の温度は、15℃以上であることが好ましく、25℃以上であることがより好ましい。固定処理液の温度は、60℃以下であることが好ましく、40℃以下であることがより好ましい。
(染色処理後の洗浄処理)
 染色処理後、好ましくは延伸処理後のPVAフィルムに対して洗浄処理を行うことが好ましい。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。水は純水に限定されず、例えばヨウ化カリウム等のヨウ素含有化合物を含有していてもよい。なお、洗浄処理液はホウ素含有化合物を含有していてもよいが、その場合、ホウ素含有化合物の濃度は2.0質量%以下であることが好ましい。
 洗浄処理液の温度は5℃以上であることが好ましく、7℃以上であることがより好ましく、10℃以上であることがさらに好ましい。また、洗浄処理液の温度は、40℃以下であることが好ましく、38℃以下であることがより好ましく、35℃以下であることがさらに好ましい。洗浄処理液の温度が5℃以上であることにより水分の凍結によるPVAフィルムの破断を抑制することができる。また、洗浄処理液の温度が40℃以下であることにより、得られる偏光フィルムの光学特性が向上する。
 偏光フィルムを製造する際の具体的な方法としては、PVAフィルムに対して染色処理、延伸処理、ならびに、架橋処理及び/又は固定処理を施す方法が挙げられる。好ましい一例としては、PVAフィルムに対して、膨潤処理、染色処理、架橋処理、延伸処理(特に一軸延伸処理)、洗浄処理をこの順番で施す方法が挙げられる。また、延伸処理は、上記よりも前のいずれかの処理工程で行ってもよいし、2段以上の多段で行ってもよい。
 上記のような各処理を経た後のPVAフィルムに乾燥処理を行うことにより、偏光フィルムを得ることができる。乾燥処理の方法に特に制限はなく、例えば、フィルムを加熱ロールに接触させる接触式の方法、熱風乾燥機中で乾燥させる方法、フィルムを浮遊させながら熱風により乾燥させるフローティング式の方法などが挙げられる。
(偏光板)
 以上のようにして得られた偏光フィルムは、その両面又は片面に、光学的に透明で且つ機械的強度を有する保護フィルムを貼り合わせて偏光板にして使用されることが好ましい。保護フィルムとしては、三酢酸セルロース(TAC)フィルム、シクロオレフィンポリマー(COP)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などが挙げられるが、PVA系接着剤が好ましい。
 上記のようにして得られた偏光板は、アクリル系等の粘着剤を積層した後、ガラス基板に貼り合わせてLCDの部品として使用することができる。同時に位相差フィルムや視野角向上フィルム、輝度向上フィルム等と貼り合わせてもよい。
 本発明のPVAフィルムは、光学用フィルムとして用いることができ、具体的には、光学的な欠陥の少ない偏光フィルム、位相差フィルム、特殊集光フィルム等の光学フィルムの原料として好適に使用できるが、それ以外の用途、例えば包装材料、ランドリーバッグ等の水溶性フィルム、人工大理石等を製造する際の離型フィルム等として使用することもできる。
 以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
(1)PVAの極限粘度[η]
(I)PVAフィルムの洗浄
 以下の実施例又は比較例で得られたPVAフィルムをA4サイズ(ISO 216、国際規格サイズ)に切り出し、PVAフィルム質量の20倍以上の脱イオン水中に23℃にて10分以上浸漬し、PVAフィルムを水中から取り出した。PVAフィルムを振って表面の水を簡単に切った後、再度PVAフィルム質量の20倍以上の脱イオン水中に23℃にて10分以上浸漬し、PVAフィルムを水中から取り出した。この操作をもう1回繰り返した。すなわち、PVAフィルムを水に浸漬する操作を合計3回繰り返すことで、PVAフィルム中に含まれる可塑剤等を除去した。最後にPVAフィルム表面に付着した水をろ紙に吸わせて除去した後、60℃に設定した真空乾燥機中で24時間乾燥した。
(II)GPC測定
 上記「PVAフィルムの洗浄」で得られたPVAフィルムを秤量し、PVA濃度として0.1質量/体積%となるように、サンプルを調整した(例えばPVAフィルム5.15mgに対して移動相溶媒5.15mlを添加)。このサンプルを40℃で2時間加熱することでPVAフィルムを溶解させた後、下記測定条件にてGPC測定を行い、PVAフィルムに含まれるPVAの極限粘度[η](dl/g)を求めた。
<GPC測定条件>
測定装置        :Marvern社製「Omnisec(Reveal、Resolve)」
解析ソフト       :Marvern社製「Omnisec(装置付属の解析ソフト)」
サンプル濃度      :0.1質量/体積%
移動相溶媒       :20mM トリフルオロ酢酸ナトリウム添加のHFIP
注入量         :100μl
流速          :0.8ml/分
測定温度        :40℃
サンプル溶解条件    :40℃、2時間
サンプルのフィルターろ過: 0.45μm PTFE製フィルター
カラム         :HFIP-LG(Shodex社製ガードカラム)1本+HFIP-806M(Shodex社製)1本
検出器         :装置付属のRI検出器、LS検出器、粘度検出器
装置校正用標品     :Marvern社製PMMA50K(Mw=50,923、Mn=49,909)
(2)PVA中のC6以上の長鎖アルデヒド又はクロトンアルデヒドの濃度
 以下の実施例又は比較例において、下記「PVAチップへのアルデヒドの添加」で得られた乾燥後のPVAチップ約0.5gを凍結粉砕して、加熱脱着ガスクロマトグラフ質量分析装置用ガラスチューブに50.0mg秤量し、サンプルチューブを作成した。下記の加熱脱着ガスクロマトグラフ質量分析装置を用い、下記条件にてサンプルチューブを加熱してサンプルチューブから放出される揮発性ガスを吸着管に一度全量吸着させた後、吸着管から再放出されるガスをカラムで分離し、成分毎のピークを検出した。ここで、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナール、2,4,6,8-デカテトラエナールの標準サンプルのピーク面積から検量線を作成し、絶対検量線法により、PVAチップ中のC6以上の長鎖アルデヒド又はクロトンアルデヒドの濃度(μmol%)をそれぞれ測定した。なお、標準サンプルを測定する際は、吸着管に標準サンプルを染み込ませた吸着管を、サンプルチューブの代わりに用いたこと、サンプル吸着後の放出時の温度について、サンプルチューブの温度180℃から吸着管の温度260℃に変更したこと以外はサンプルチューブの測定の場合と同様にして、測定した。
(加熱脱着部)
装置:株式会社パーキンエルマージャパン製「TurboMatrix-ATD」
吸着官:Carboxen製「Tenax」
吸着管へサンプルを吸着する時の温度:170℃(サンプルチューブ)、
                  -30℃(吸着管)、
                  250℃(バルブ)、
260℃(トランスファーライン)
吸着管への吸着時間:        10分
サンプル吸着後の放出時の温度:   180℃(サンプルチューブ)、
                  260℃(吸着管)、
                  250℃(バルブ)、
                  260℃(トランスファーライン)
吸着管放出時間:          35分
ヘリウムカラムへのキャリアガスの流速:1.0ml/min
圧力:               120kPa
(ガスクロマトグラフ質量分析部)
装置:アジレント・テクノロジー株式会社製 7890B GC System,7977B MSD
カラム:DB-WAX UI(長さ:30m、内径:0.25mm、膜厚:0.50μm)
カラムオーブン温度:40℃で5分保持後10℃/minの昇温速度で240℃まで温調後10分保持(合計測定温度35分)
トランスファーライン(接続部)温度:240℃
イオン化条件:EI+
検出イオン質量範囲:m/z=29-600
検出方法:SCAN
(標準サンプル)
 クロトンアルデヒド:Sigma-Aldrich(登録商標)、メルク社製
 2,4-ヘキサジエナール:Sigma-Aldrich(登録商標)、メルク社製
 2,4,6-オクタトリエナール:株式会社ナード研究所製
 2,4,6,8-デカテトラエナール:株式会社ナード研究所製
(3)製膜時の膜幅安定性
 以下の実施例又は比較例において、PVAを含む製膜原液を1000mm幅のTダイから支持体(回転速度15m/分、表面温度85℃)上に膜状に吐出して、支持体上に液状被膜を形成した。支持体上で、液状被膜の支持体との非接触面の全体に、90℃の熱風を7.5m/秒の速度で吹き付けて乾燥し、PVAフィルム(水分率25質量%)を得た。この製膜を1分間行った時の、PVAフィルムの膜幅の最大幅と最小幅の差を測定し、以下の基準にて評価した。
  A:膜幅の最大幅と最小幅の差が5mm未満
  B:膜幅の最大幅と最小幅の差が5mm以上10mm未満
  C:膜幅の最大幅と最小幅の差が10mm以上
(4)色相
 以下の実施例又は比較例において、得られたPVAフィルムの幅方向中央部より幅方向5cm、長さ方向100cmのPVAフィルムを切り出した。直径1cmの金属棒を軸として切り出したフィルムを巻取って、幅5cmのPVAフィルムロールを作製した。金属棒を抜き取った幅5cmのPVAフィルムロールを上質紙の上に置いて、蛍光灯下でロールの横からロール端面の色を目視で観察し、以下の基準にて評価した。
  A:ロール端面は無色であり、着色は認められない
  B:ロール端面がかすかに黄色味を帯びていた
  C:ロール端面が明らかに黄色味を帯びていた
(5)延伸性
 以下の実施例又は比較例において、得られたPVAフィルムロールから2m切り出して、23℃、50%RHの環境下で24時間調湿した後、フィルムの両端部から、両端部を含む形でそれぞれ長さ方向150mm、幅方向15mmの試験片を10枚ずつ切り出し、合計20枚の試験片を得た。オートグラフ(島津製作所社製、「AG-I」)を用いて、23℃-50%RHの環境下で、引張速度500mm/分、チャック間距離50mmの条件で、これらの20枚の試験片をチャック間距離310mm(延伸倍率6.2倍)まで引っ張り、20枚の試験片のうち、破断した試験片の数で評価した。
(6)偏光度
 以下の実施例又は比較例で得られた偏光フィルムの幅方向の中央部から、偏光フィルムの配向方向に平行に一辺1.5cmの正方形のサンプルを2枚採取し、それぞれについて日立製作所製の分光光度計V-7100(積分球付属)を用いて、JIS Z8722(物体色の測定方法)に準拠し、C光源、2度視野の可視光領域の視感度補正を行い、1枚の偏光フィルムサンプルについて、延伸軸方向に対して45度傾けた場合の光の透過率と-45度傾けた場合の光の透過率を測定して、それらの平均値(Y1)を求めた。もう一枚の偏光フィルムサンプルについても、前記と同様にして45度傾けた場合の光の透過率と-45度傾けた場合の光の透過率を測定して、それらの平均値(Y2)を求めた。前記で求めたY1とY2を平均して偏光フィルムの透過率(Y)(%)とした。
 上記の採取した2枚の偏光フィルムサンプルを、その配向方向が平行になるように重ねた場合の光の透過率(Y∥)、及び配向方向が直交するように重ねた場合の光の透過率(Y⊥)を、上記透過率の測定方法と同様の方法にて測定し、下記の式から偏光度(V)(%)を求めた。
  偏光度(V)(%)={(Y∥-Y⊥)/(Y∥+Y⊥)}1/2×100
[実施例1]
(i)PVAチップの洗浄
 洗浄槽の中に、けん化度99.9モル%、重合度2400のPVAチップと、PVAチップの質量に対して10倍量のメタノールを入れ、25℃で4時間撹拌・洗浄した後、PVAチップとメタノールを分離した。洗浄したPVAチップに、再度洗浄前のPVAチップの質量に対して10倍量のメタノールを入れ、25℃で4時間撹拌・洗浄した後、PVAとメタノールを分離した。洗浄したPVAチップに、もう一度洗浄前のPVAチップの質量に対して10倍量のメタノールを入れ、25℃で4時間撹拌・洗浄した後、PVAチップとメタノールを分離した。
(ii)PVAチップへのアルデヒドの添加
 上記「PVAチップの洗浄」で得られたPVAチップに、洗浄前のPVAチップ1kg当たり25mgの2,4-ヘキサジエナール、25mgの2,4,6-オクタトリエナール、25mgの2,4,6,8-デカテトラエナール、および40mgのクロトンアルデヒドを加え、よく撹拌した後、防爆型の真空乾燥機にて60℃で16時間乾燥した。乾燥後のPVAチップに対して、上記した方法でPVAチップ中のアルデヒド量をそれぞれ測定した。結果を表1に示す。なお、2,4-ヘキサジエナール、2,4,6-オクタトリエナール、2,4,6,8-デカテトラエナール、およびクロトンアルデヒド以外のアルデヒドについては痕跡量しか検出されなかった。
(iii)PVAフィルムの製造
 上記「PVAチップへのアルデヒドの添加」で得られた乾燥後のPVAチップ100質量部、界面活性剤としてラウリン酸ジエタノールアミド0.2質量部、および脱イオン水217.6質量部を溶融押出機で溶融混合して製膜原液(揮発分率66質量%)を調製した。次に、この製膜原液を1000mm幅のTダイから支持体(回転速度15m/分、表面温度85℃)上に膜状に吐出して、支持体上に液状被膜を形成した。支持体上で、液状被膜の支持体との非接触面の全体に、90℃の熱風を7.5m/秒の速度で吹き付けて乾燥し、PVAフィルム(水分率25質量%)を得た。製膜を1分間継続した時の膜幅の最大値は978mm、最小値は975mmであり、その差は3mmであった。次いで、このPVAフィルムを支持体から剥離して、PVAフィルムの一方の面と他方の面とが各乾燥ロールに交互に接触するように、第1乾燥ロールから熱処理ロールの直前にある最終乾燥ロール(第19乾燥ロール)までの間で更に乾燥した後、最終乾燥ロールから剥離した。このとき、第1乾燥ロールから最終乾燥ロールまでの各乾燥ロールの表面温度は70℃とした。さらに、最終乾燥ロールからPVAフィルムを剥離して、PVAフィルムの一方の面と他方の面とが各熱処理ロールに交互に接触するように、熱処理を行った。このとき、熱処理は2本の熱処理ロールを用いて行い、熱処理ロールの表面温度はいずれも120℃とし、熱処理の時間は15秒とした。得られたフィルムは、930mm幅になるように両端部を切り落とされ、円筒状のコアにロール状に巻き取られた。得られたPVAフィルムの厚みは60μmで、上記した方法でPVAフィルムに含まれるPVAの極限粘度[η]を測定したところ8.0dl/gであった。
(iv)偏光フィルムの製造及び評価
 得られたPVAフィルムを幅650mmにスリットし、このフィルムに対して膨潤処理、染色処理、架橋処理、延伸処理、洗浄処理、乾燥処理をこの順に行って偏光フィルムを連続的に製造した。膨潤処理は、25℃の純水(膨潤処理液)に浸漬しながら長さ方向に2.00倍に一軸延伸して行った。染色処理は、温度32℃のヨウ化カリウム/ヨウ素染色液(染色処理液)(ヨウ化カリウム/ヨウ素(質量比)が23、ヨウ素濃度が0.03~0.05質量%の範囲)に浸漬しながら長さ方向に1.26倍に一軸延伸して行った。この染色処理では、延伸処理における一軸延伸後に得られる偏光フィルムの単体透過率が43.5%±0.2%の範囲になるように、染色処理液におけるヨウ素濃度を0.03~0.05質量%の範囲内で調整した。架橋処理は、32℃のホウ酸水溶液(架橋処理液)(ホウ酸濃度2.6質量%)に浸漬しながら長さ方向に1.19倍に一軸延伸して行った。延伸処理は、55℃のホウ酸/ヨウ化カリウム水溶液(延伸処理液)(ホウ酸濃度2.8質量%、ヨウ化カリウム濃度5質量%)に浸漬しながら長さ方向に2.00倍に一軸延伸して行った。この延伸処理における一軸延伸の最大延伸速度は、400%/minであった。洗浄処理は、22℃のヨウ化カリウム/ホウ酸水溶液(洗浄処理液)(ヨウ化カリウム濃度3~6質量%、ホウ酸濃度1.5質量%)に延伸せずに12秒間浸漬することにより行った。乾燥処理は、延伸せずに80℃で1.5分間熱風乾燥することにより行い、偏光フィルムを得た。
 得られたPVAフィルムおよび偏光フィルムに対して、上記した方法で評価した。評価結果を表1に示す。
[実施例2]
 上記「(i)PVAチップの洗浄」において、PVAチップとしてけん化度99.3モル%、重合度2400のエチレン2モル%変性のPVAチップを用いたこと以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[実施例3]
 上記「(i)PVAチップの洗浄」において、PVAチップとしてけん化度99.9モル%、重合度6000のPVAチップを用いたこと以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[実施例4]
 上記「(ii)PVAチップへのアルデヒドの添加」において、洗浄前のPVAチップ1kg当たり3mgの2,4-ヘキサジエナール、3mgの2,4,6-オクタトリエナール、150mgの2,4,6,8-デカテトラエナール、3mgのクロトンアルデヒドを加えたこと以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[実施例5]
 上記「(ii)PVAチップへのアルデヒドの添加」において、洗浄前のPVAチップ1kg当たり25mgの2,4-ヘキサジエナール、25mgの2,4,6-オクタトリエナール、25mgの2,4,6,8-デカテトラエナール、および100mgのクロトンアルデヒドを加えたこと以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[実施例6]
 上記(iii)「PVAフィルムの製造」において、2本の熱処理ロールの表面温度をいずれも70℃に変更した以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[実施例7]
 上記「(ii)PVAチップへのアルデヒドの添加」において、洗浄前のPVAチップ1kg当たり250mgの2,4-ヘキサジエナール、25mgの2,4,6-オクタトリエナール、25mgの2,4,6,8-デカテトラエナール、および40mgのクロトンアルデヒドを加えたこと以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[比較例1]
 上記「(ii)PVAチップへのアルデヒドの添加」において、洗浄前のPVAチップ1kg当たり3mgの2,4-ヘキサジエナール、3mgの2,4,6-オクタトリエナール、3mgの2,4,6,8-デカテトラエナール、および3mgのクロトンアルデヒドを加えたこと以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
[比較例2]
 上記「(ii)PVAチップへのアルデヒドの添加」において、洗浄前のPVAチップ1kg当たり3mgの2,4-ヘキサジエナール、3mgの2,4,6-オクタトリエナール、700mgの2,4,6,8-デカテトラエナール、および3mgのクロトンアルデヒド以外は実施例1と同様にして、PVAチップ、PVAフィルムおよび偏光フィルムを得た。得られたPVAチップ、PVAフィルムおよび偏光フィルムの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、PVAフィルムに含まれるPVAの粘極限度が[η]7.5~11dl/gである実施例1~7のPVAフィルムは、製膜時の膜幅安定性の評価が「A」(膜幅の最大幅と最小幅の差が5mm未満)であり、製膜時の膜幅が安定していた。また、実施例1~7のPVAフィルムは、PVAフィルムロールとした際のロール端面の色相の評価が「A」(ロール端面は無色であり、着色は認められない)であり、PVAフィルムの端部の厚み変動が少なかった。また、実施例1~7のPVAフィルムは、延伸性の評価において破断した試験片の数が0~3個で少なく、偏光フィルムの製造時においてPVAフィルムが破断することが少なく、偏光フィルムを効率よく製造することができる。また、実施例1~7のPVAフィルムは、偏光フィルムとした際の偏光度が99.993~99.999%で光学性能が優れていた。すなわち、本発明のPVAフィルムは膜幅が安定しており端部の厚み変動が少なく延伸性に優れているため、本発明のPVAフィルムを用いれば、広幅で光学性能に優れた偏光フィルムを効率よく製造することができる。また、本発明の製造方法により、当該PVAフィルムを効率的に製造することができる。
 一方、表1に示すように、PVAフィルムに含まれるPVAの粘極限度が[η]が11dl/gを超える比較例1のPVAフィルムは、製膜時の膜幅安定性の評価が「C」(膜幅の最大幅と最小幅の差が10mm以上)であった。また、比較例1のPVAフィルムは、延伸性の評価において破断した試験片の数が18個で多かった。一方、PVAフィルムに含まれるPVAの粘極限度が[η]が7.5dl/g未満である比較例2のPVAフィルムは、延伸性の評価において破断した試験片の数が5個で比較的多かった。また、比較例2のPVAフィルムは、偏光フィルムとした際の偏光度が99.981%で光学性能が不良であった。

 

Claims (7)

  1.  けん化度98モル%以上、重合度1500~8000であるポリビニルアルコールを含むポリビニルアルコールフィルムであって、光散乱検出器と粘度検出器を備えたゲル浸透クロマトグラフにて、測定温度40℃で移動相溶媒として20mMトリフルオロ酢酸Naを含むヘキサフルオロイソプロパノールを用いて測定される、前記ポリビニルアルコールの絶対分子量が1×10における極限粘度が7.5~11dl/gであることを特徴とする、ポリビニルアルコールフィルム。
  2.  前記ポリビニルアルコールが、エチレン変性量が0.5~12モル%の変性ポリビニルアルコールである、請求項1に記載のポリビニルアルコールフィルム。
  3.  けん化度98モル%以上、重合度1500~8000、C6以上の長鎖アルデヒドの濃度が0.35~2.5μmol%であるポリビニルアルコールを用いて得られる製膜原液を用いて製膜する、請求項1に記載のポリビニルアルコールフィルムの製造方法。
  4.  前記C6以上の長鎖アルデヒドが、2,4-ヘキサジエナール、2,4,6-オクタトリエナール、および2,4,6,8-デカテトラエナールからなる群から選択される少なくとも一種を含む、請求項3に記載のポリビニルアルコールフィルムの製造方法。
  5.  前記ポリビニルアルコール中のクロトンアルデヒドの濃度が0.70μmol%以下である、請求項3に記載のポリビニルアルコールフィルムの製造方法。
  6.  製膜して得られたポリビニルアルコールフィルムを80℃以上の温度で熱処理する工程を含む、請求項3に記載のポリビニルアルコールフィルムの製造方法。
  7.  光学用フィルムである、請求項1に記載のポリビニルアルコールフィルム。

     
PCT/JP2023/008824 2022-03-09 2023-03-08 ポリビニルアルコールフィルム及びポリビニルアルコールフィルムの製造方法 WO2023171710A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036028 2022-03-09
JP2022036028 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171710A1 true WO2023171710A1 (ja) 2023-09-14

Family

ID=87935228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008824 WO2023171710A1 (ja) 2022-03-09 2023-03-08 ポリビニルアルコールフィルム及びポリビニルアルコールフィルムの製造方法

Country Status (2)

Country Link
TW (1) TW202346441A (ja)
WO (1) WO2023171710A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077663A1 (ja) * 2010-12-06 2012-06-14 日東電工株式会社 位相差フィルム、偏光板、および表示パネル装置
WO2014192838A1 (ja) * 2013-05-29 2014-12-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料、真空断熱体、フィルムの製造方法及び積層体の製造方法
WO2015019452A1 (ja) * 2013-08-07 2015-02-12 株式会社クラレ ポリビニルアセタールを含有するフィルム
JP2015203088A (ja) * 2014-04-16 2015-11-16 株式会社クラレ ポリビニルアルコール樹脂の製造方法
WO2022145488A1 (ja) * 2020-12-28 2022-07-07 株式会社クラレ ポリビニルアルコールフィルム及びそれを用いた偏光フィルム
WO2022145487A1 (ja) * 2020-12-28 2022-07-07 株式会社クラレ ポリビニルアルコールフィルム及びそれを用いた偏光フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077663A1 (ja) * 2010-12-06 2012-06-14 日東電工株式会社 位相差フィルム、偏光板、および表示パネル装置
WO2014192838A1 (ja) * 2013-05-29 2014-12-04 株式会社クラレ エチレン-ビニルアルコール共重合体含有樹脂組成物、フィルム、積層体、包装材料、真空断熱体、フィルムの製造方法及び積層体の製造方法
WO2015019452A1 (ja) * 2013-08-07 2015-02-12 株式会社クラレ ポリビニルアセタールを含有するフィルム
JP2015203088A (ja) * 2014-04-16 2015-11-16 株式会社クラレ ポリビニルアルコール樹脂の製造方法
WO2022145488A1 (ja) * 2020-12-28 2022-07-07 株式会社クラレ ポリビニルアルコールフィルム及びそれを用いた偏光フィルム
WO2022145487A1 (ja) * 2020-12-28 2022-07-07 株式会社クラレ ポリビニルアルコールフィルム及びそれを用いた偏光フィルム

Also Published As

Publication number Publication date
TW202346441A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
KR102163144B1 (ko) 폴리비닐알코올계 중합체 필름 및 그 제조 방법
CN109564313B (zh) 偏振膜和其制造方法
KR102599701B1 (ko) 폴리비닐알코올 필름 및 그 제조 방법
KR102232980B1 (ko) 광학 필름 제조용 원반 필름
KR20160041921A (ko) 광학 필름 제조용 원단 필름
JP5931125B2 (ja) 偏光フィルムの製造方法
CN114450329A (zh) 光学膜制造用膜、光学膜的制造方法和光学膜
JP2018135426A (ja) ポリビニルアルコールフィルム及びその製造方法、並びにそれを用いた偏光フィルム
TW202233740A (zh) 聚乙烯醇薄膜及使用其之偏光薄膜
WO2022145488A1 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルム
WO2023171710A1 (ja) ポリビニルアルコールフィルム及びポリビニルアルコールフィルムの製造方法
JP7282100B2 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルムの製造方法
CN113950506B (zh) 聚乙烯醇膜和使用其的偏振膜的制造方法
JP5606704B2 (ja) 偏光フィルムの製造方法
JP7328992B2 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルムの製造方法
JP5563331B2 (ja) ポリビニルアルコール系重合体フィルムの製造方法
WO2019146678A1 (ja) 偏光フィルム及びその製造方法
JP6776129B2 (ja) フィルム
JP6735541B2 (ja) 偏光フィルム
WO2022092038A1 (ja) ポリビニルアルコールフィルム及びそれを用いた偏光フィルム
JP6792456B2 (ja) フィルム
JP2022112056A (ja) 偏光子およびその製造方法
JP2023056678A (ja) ポリビニルアルコールフィルム、ポリビニルアルコールフィルムの製造方法、延伸フィルム及び偏光フィルム
CN114829489A (zh) 聚乙烯醇膜和使用了该聚乙烯醇膜的偏振膜的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766886

Country of ref document: EP

Kind code of ref document: A1