WO2023171226A1 - 撥水ガラス - Google Patents

撥水ガラス Download PDF

Info

Publication number
WO2023171226A1
WO2023171226A1 PCT/JP2023/004427 JP2023004427W WO2023171226A1 WO 2023171226 A1 WO2023171226 A1 WO 2023171226A1 JP 2023004427 W JP2023004427 W JP 2023004427W WO 2023171226 A1 WO2023171226 A1 WO 2023171226A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
glass
glass substrate
repellent
region
Prior art date
Application number
PCT/JP2023/004427
Other languages
English (en)
French (fr)
Inventor
興平 安田
泰夫 林
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023171226A1 publication Critical patent/WO2023171226A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material

Definitions

  • the present invention relates to water-repellent glass.
  • water-repellent glass can be manufactured by forming a base film having irregularities on the surface of a glass substrate, and further forming a water-repellent film on the base film.
  • Patent Document 1 discloses that a member formed by forming an amorphous alumina film containing voids on a glass substrate can be applied as a base structure of a water-repellent member.
  • Conventional water-repellent glass has the problem of being susceptible to abrasion and scratches. For example, with conventional water-repellent glass, after continued use for a certain period of time, it is often observed that the water-repellent film disappears as the underlying film falls off. Therefore, water-repellent glass with better abrasion resistance is desired.
  • the present invention was made in view of this background, and an object of the present invention is to provide water-repellent glass that has significantly higher abrasion resistance than conventional glass.
  • the water-repellent glass comprises: a glass substrate having a first surface; a water-repellent film installed on the first surface of the glass substrate; has The first surface of the glass substrate has a feature region in which a part of the glass substrate is aggregated in the form of particles, and the feature region has particulate features that integrally extend from the glass substrate.
  • the dimension of the characteristic region in the first direction is in the range of 50 nm to 2000 nm
  • the straight line LA is a line that is connected to a plurality of particulate features included in the feature region. has an intersection that intersects with, and the average size of the intersection is in the range of 20 nm to 5000 nm
  • a water-repellent glass is provided, wherein at least a portion of the particulate features have a constriction that decreases in size toward the interior of the glass substrate.
  • the present invention can provide water-repellent glass that has significantly higher abrasion resistance than conventional glass.
  • FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of water-repellent glass according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A surrounded by a circle in FIG. 1.
  • FIG. 3 is a cross-sectional view schematically showing another configuration of the characteristic region of the water-repellent glass according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing still another configuration of the characteristic region of the water-repellent glass according to an embodiment of the present invention.
  • 1 is a diagram showing a schematic flow of a method for manufacturing water-repellent glass according to an embodiment of the present invention.
  • 3 is a photograph showing an example of the surface morphology of the evaluation area in Sample 1.
  • 7 is a photograph showing an example of the surface morphology of the evaluation area in Sample 2.
  • 3 is a photograph showing an example of the surface morphology of the evaluation area in Sample 3.
  • 3 is a photograph showing an example of the surface morphology of the evaluation area in Sample 4. It is a photograph showing an example of the surface form of the evaluation area in sample 11.
  • 3 is a photograph showing an example of the surface morphology of the evaluation region in sample 12.
  • 3 is a photograph showing an example of the cross-sectional form of the evaluation region in Sample 1.
  • 7 is a photograph showing an example of the cross-sectional form of the evaluation region in Sample 2.
  • 3 is a photograph showing an example of the cross-sectional form of the evaluation region in Sample 3.
  • 7 is a photograph showing an example of the cross-sectional form of the evaluation region in sample 4.
  • 7 is a photograph showing an example of the cross-sectional form of the evaluation region in sample 11.
  • 7 is a photograph showing an example of the cross-sectional form of the evaluation region in sample 12. It is a photograph showing an example of the surface form of the evaluation area in sample 21. It is a photograph showing an example of the cross-sectional form of the evaluation region in sample 21.
  • the water-repellent glass comprises: a glass substrate having a first surface; a water-repellent film installed on the first surface of the glass substrate; has The first surface of the glass substrate has a feature region in which a part of the glass substrate is aggregated in the form of particles, and the feature region has particulate features that integrally extend from the glass substrate.
  • the dimension of the characteristic region in the first direction is in the range of 50 nm to 2000 nm
  • the straight line LA is a line that is connected to a plurality of particulate features included in the feature region. has an intersection that intersects with, and the average size of the intersection is in the range of 20 nm to 5000 nm
  • a water-repellent glass is provided, wherein at least a portion of the particulate features have a constriction that decreases in size toward the interior of the glass substrate.
  • a water-repellent glass according to an embodiment of the present invention has a water-repellent film on the first surface of a glass substrate. Therefore, the water-repellent glass according to an embodiment of the present invention can exhibit water repellency.
  • the surface of the glass substrate on the water-repellent side that is, the first surface
  • the first surface has a characteristic shape.
  • the first surface has a feature region in which components contained in the glass substrate are aggregated in the form of "particles", and the feature region includes particulate features that integrally extend from the glass substrate. It has the characteristic of having.
  • the “particulate features” formed in the feature region have their root parts integrated with the glass substrate, and therefore It is important to note that this is fixed. More specifically, a “particulate feature” is a part that starts from the glass substrate and protrudes seamlessly from the glass substrate.
  • the average size of the "particulate features” ranges from 20 nm to 5000 nm. Note that since “particulate features" are different from general “particles", the average size is determined by the method described below.
  • the "particulate features” have a so-called “narrowing part”, which is a part whose diameter decreases toward the inside of the glass substrate.
  • the characteristic region of the first surface of the glass substrate has such a characteristic form.
  • conventional water-repellent glass has the problem of being susceptible to wear and scratches, such as the water-repellent film disappearing as the base film falls off after a certain amount of use.
  • a base layer for forming unevenness is not provided on the glass substrate. That is, the first surface of the glass substrate itself forms a characteristic region, and the water-repellent film is placed on the characteristic region.
  • the characteristic region is formed integrally with the glass substrate, so unlike a configuration in which a base film is added separately on the glass substrate, the water-repellent glass exhibits relatively high robustness. Can be done.
  • the thickness direction of the glass substrate is referred to as the first direction
  • the dimension of the characteristic region along the first direction is referred to as the "thickness of the characteristic region.”
  • the first surface may not be provided with a sufficiently effective feature region. Furthermore, if a water-repellent film is placed on such a characteristic region, sufficient water-repellency may not be achieved. On the other hand, if the thickness of the characteristic region exceeds 2000 nm, the robustness of the characteristic region may decrease, and the abrasion resistance of the water-repellent glass may decrease.
  • the thickness of the characteristic region is controlled within a range of 50 nm to 2000 nm. Therefore, the water-repellent glass according to an embodiment of the present invention can exhibit sufficient water repellency and can also provide significantly high robustness.
  • one embodiment of the present invention can provide water-repellent glass that has significantly higher abrasion resistance than conventional glass.
  • FIG. 1 schematically shows an example of a cross-sectional structure of water-repellent glass (hereinafter referred to as "first water-repellent glass”) according to an embodiment of the present invention.
  • the first water-repellent glass 100 includes a glass substrate 110 and a water-repellent film 140.
  • Glass substrate 110 has a first surface 112, and water-repellent film 140 is placed on the first surface 112 side of glass substrate 110.
  • FIG. 2 shows an enlarged schematic diagram of the circled section A in FIG. 1.
  • the first surface 112 of the glass substrate 110 has a feature region 120 that includes a number of particulate features 125.
  • the particulate features 125 have the form of protrusions that protrude outward from the glass substrate 110.
  • the particulate features 125 are seamlessly connected to the glass substrate 110, that is, they are integrated with the glass substrate 110. In other words, in the glass substrate 110, a portion of the first surface 112 protrudes to form particulate features 125.
  • a space where the glass substrate 110 does not exist that is, a void 130 is formed between adjacent particulate features 125.
  • At least a portion of the particulate features 125 have a substantially mushroom-shaped cross section, rather than a simple cylindrical or conical cross section. That is, some particulate features 125 have a portion whose diameter becomes narrower toward the depth direction of the glass substrate 110 (Z direction in FIG. 2), that is, a narrow portion 129.
  • all particulate features 125 have a mushroom-shaped cross-section and therefore have a constriction 129.
  • the particulate features 125 have an average size ranging from 20 nm to 5000 nm. Note that the average size of the particulate features 125 is determined by the following method.
  • a straight line LA is drawn in a 1 ⁇ m ⁇ 1 ⁇ m section of the characteristic region 120.
  • particulate features 125 that intersect with the straight line LA are determined and these are selected as selected features. Further, in each selected feature, the length of the portion (line segment) that intersects with the straight line LA is determined. The lengths of the line segments obtained for each selected feature are averaged to determine the average size of the particulate feature 125.
  • the average size of the particulate features 125 thus obtained is preferably in the range of 20 nm to 1000 nm, more preferably in the range of 20 nm to 500 nm.
  • the water-repellent film 140 is arranged to cover at least the tips of the particulate features 125 in the feature region 120. For example, in the example shown in FIG. It is installed to cover areas that do not exist.
  • 3 and 4 show another configuration of the feature region 120 of the water-repellent glass according to an embodiment of the present invention.
  • the water-repellent glass feature region 120 has the same arrangement of particulate features 125 as in FIG. 3. However, the water-repellent film 140 is also filled in the narrowed portion 129 of the particulate feature 125 and even in the void 130 .
  • the characteristic region 120 of the water-repellent glass may have various forms. However, it should be noted that in both configurations, the thickness of the feature region ranges from 50 nm to 2000 nm, and the average size of the particulate features ranges from 20 nm to 5000 nm.
  • each member included in the water-repellent glass according to an embodiment of the present invention will be explained in more detail.
  • the characteristics of each member will be explained using the first water-repellent glass 100 having the configuration shown in FIGS. 1 and 2 as an example of the water-repellent glass according to an embodiment of the present invention. . Therefore, when representing each member, the reference numerals used in FIGS. 1 and 2 will be used.
  • the composition of the glass substrate 110 is not particularly limited.
  • the glass substrate 110 may be, for example, soda lime glass, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, or alkali-free glass.
  • the shape and dimensions of the glass substrate 110 are not particularly limited.
  • the glass substrate 110 may have a flat plate shape, a curved shape, or the like. Further, the glass substrate 110 may have various sizes, from large dimensions such as a building window glass to small dimensions such as a camera lens member.
  • Water repellent film 140 The type of water-repellent film 140 is not particularly limited as long as water repellency can be obtained.
  • water repellency means a property in which the contact angle ⁇ of water droplets is 90° or more.
  • the water-repellent film 140 may be made of, for example, a fluorine-containing silane compound.
  • the thickness of the water-repellent film 140 is, for example, in the range of 0.5 nm to 50 nm.
  • the thickness of the water-repellent film 140 is the thickness excluding the water-repellent film portion that fills the voids 130 of the feature region 120
  • the thickness of the water-repellent film 140 is the thickness excluding the water-repellent film portion that fills the voids 130 of the feature region 120. It is determined by averaging the thickness of the water-repellent film 140 installed at the top.
  • the contact angle ⁇ of water droplets on the water-repellent film 140 side is, for example, 120° or more.
  • the contact angle ⁇ is preferably 125° or more, more preferably 130° or more, and even more preferably 135° or more.
  • the fluorine concentration on the first surface 112 of the glass substrate 110 is F 1 (at%)
  • the bulk fluorine concentration of the glass substrate 110 is F 2 (at%).
  • (F 1 -F 2 ) may be 3 at% or more.
  • the refractive index can be significantly lowered. Moreover, this makes it possible to provide water-repellent glass having an antireflection function.
  • the first water-repellent glass 100 is manufactured through a gas etching process using a fluorine-containing compound, as described below. Therefore, in one embodiment of the present invention, water-repellent glass in which (F 1 -F 2 ) is 3 at% or more can be obtained relatively easily.
  • the water-repellent glass according to an embodiment of the present invention can be applied to a wide range of uses, such as window glass for buildings, glass members for vehicles, camera parts, and sensor parts.
  • FIG. 5 shows a schematic flow of a method for manufacturing water-repellent glass (hereinafter referred to as the "first method") according to an embodiment of the present invention.
  • the first method is (1) A step of preparing a glass substrate having a surface to be treated (step S110); (2) a step of etching the surface to be treated of the glass substrate using a processing gas containing fluorine or a fluorine compound (step S120); (3) a step of installing a water-repellent film on the surface to be treated (step S130) and has.
  • Step S110 First, a glass substrate having a surface to be treated is prepared.
  • the composition of the glass substrate is not particularly limited.
  • the glass substrate may be, for example, soda lime glass, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, or alkali-free glass.
  • the surface to be treated of the glass substrate is subjected to a cleaning treatment before the next step (step S120).
  • the cleaning process is performed to remove contaminants and/or oil adhering to the surface of the glass substrate to be treated, thereby cleaning the surface to be treated.
  • the conditions for the cleaning treatment are not particularly limited as long as the surface to be treated is cleaned.
  • the cleaning treatment may be performed, for example, in the order of (i) ultrasonic cleaning with a solution containing an alkaline detergent, (ii) ultrasonic cleaning with ultrapure water, and (iii) ozone cleaning.
  • an alkaline detergent sodium hydroxide or the like may be used.
  • the surface to be treated of the glass substrate does not necessarily have to be the entire surface (for example, the first surface) of the glass substrate, and may be a part of the first surface.
  • subsequent step S120 may be performed after masking the portion of the glass substrate excluding the surface to be treated.
  • Step S120 Next, the cleaned surface of the glass substrate to be processed is etched using a processing gas.
  • the processing gas contains fluorine or a fluorine compound.
  • the processing gas may include hydrogen fluoride gas or fluorine gas.
  • the processing gas may further include a carrier gas.
  • the carrier gas include, but are not limited to, nitrogen and/or argon.
  • the concentration of the fluorine compound in the processing gas is, for example, in the range of 0.1 vol% to 10 vol%, preferably in the range of 0.5 vol% to 8 vol%, and preferably in the range of 1 vol% to 5 vol%. More preferred.
  • the etching process is usually performed in an atmospheric atmosphere at normal pressure.
  • the temperature of the etching process is not particularly limited.
  • the treatment temperature is, for example, in the range of 250°C to 650°C, preferably in the range of 275°C to 600°C, and more preferably in the range of 300°C to 600°C.
  • the surface of the glass substrate to be processed is etched by exposure to the processing gas.
  • a characteristic region having the characteristics described above is formed on the surface to be treated. That is, a feature region is formed having a plurality of particulate features integrated with and extending from the glass substrate.
  • Step S130 Next, a water-repellent film is formed on the characteristic region of the glass substrate.
  • the type of water-repellent film is not particularly limited as long as it exhibits water-repellency in the characteristic areas of the glass substrate.
  • the water-repellent film may be made of, for example, a fluorine-containing silane compound.
  • the method for forming the water-repellent film is not particularly limited.
  • the water-repellent film may be placed on the characteristic region of the glass substrate by, for example, a vapor deposition method, a coating method (including brushing and spraying), a dipping method, or the like.
  • the glass substrate may be subjected to a drying treatment after forming the water-repellent film.
  • water-repellent glass having a water-repellent film on the characteristic region of the glass substrate can be manufactured.
  • Examples 1 to 4 are examples, and Examples 11 to 12 are comparative examples. Moreover, Example 21 is an example.
  • Example 1 Water-repellent glass was produced according to the first method described above.
  • a flat soda lime glass measuring 50 mm long x 50 mm wide x 1 mm thick was used as the glass substrate.
  • This glass substrate was cleaned using the following steps: (i) First, the glass substrate was ultrasonically cleaned for 15 minutes using an aqueous solution containing PK-LCG23 manufactured by Parker Corporation as an alkaline detergent. (ii) Next, the glass substrate was ultrasonically cleaned for 15 minutes using ultrapure water. Sonically Clean (iii) Finally, the glass substrate is cleaned with ozone for 15 minutes.
  • a surface (first surface) measuring 50 mm in length and 50 mm in width of the cleaned glass substrate was etched with a processing gas.
  • a mixed gas of nitrogen gas and hydrogen fluoride gas was used as the processing gas.
  • the hydrogen fluoride gas concentration in the mixed gas was 3 vol%.
  • the flow rate of the processing gas was 70 SLM (Standard Little per Minutes).
  • the treatment temperature was 675°C, and the treatment time was 3 seconds.
  • a water-repellent film (SurfClear 300; manufactured by Canon Optron Co., Ltd.) was placed on the surface of the glass substrate to be treated by a vapor deposition method.
  • the thickness of the water-repellent film was targeted to be 10 nm.
  • Example 1 water-repellent glass
  • Example 2 to Example 4 Water-repellent glass was produced in the same manner as in Example 1. However, in these Examples 2 to 4, the conditions for etching the glass substrate with hydrogen fluoride gas were changed from those in Example 1. Other conditions are the same as in Example 1.
  • Example 2 The water-repellent glasses obtained in Examples 2 to 4 are referred to as “Sample 2" to “Sample 4", respectively.
  • Example 11 A water-repellent film was placed on the surface of the glass substrate to be treated in the same manner as in Example 1. However, in this Example 11, the etching process using hydrogen fluoride gas was not performed on the glass substrate. That is, a water-repellent film was placed on the first surface of the glass substrate that had only been cleaned.
  • Example 11 The water-repellent glass obtained in Example 11 is referred to as "Sample 11.”
  • Example 12 Water-repellent glass was produced in the same manner as in Example 1. However, in this Example 12, the conditions for etching the glass substrate with hydrogen fluoride gas were changed from those in Example 1. Other conditions are the same as in Example 1.
  • Example 12 The water-repellent glass obtained in Example 12 is referred to as "Sample 12.”
  • Table 1 summarizes the gas etching conditions for each example.
  • evaluation area the morphology of the water-repellent film side (hereinafter referred to as “evaluation area”) of each sample was observed.
  • FIGS. 6 to 11 show examples of the surface forms of the evaluation regions in samples 1 to 4 and samples 11 to 12, respectively.
  • the straight line LA seen in FIGS. 6 to 9 and FIG. 11 is a straight line drawn when determining the average size of particulate features.
  • the average size of the particulate features was in the range of 20 nm to 800 nm in all samples.
  • FIGS. 12 to 17 show examples of cross-sectional forms of evaluation regions in samples 1 to 4 and samples 11 to 12, respectively.
  • the thickness of the characteristic region in each sample was measured from FIGS. 12 to 15 and 17.
  • the thickness of the characteristic region was in the range of 100 nm to 1600 nm.
  • the thickness of the characteristic region was approximately 45 nm, indicating that a characteristic region of sufficient size was not formed.
  • the contact angle ⁇ was 90° or more for all samples, and it was found that all samples had water repellency.
  • sample 2 had a contact angle ⁇ of over 155° and exhibited high water repellency.
  • Total light transmittance was measured for each sample. The measurement was carried out in accordance with JIS K 7361, and the transmittance of light incident from the water-repellent film side and emitted from the glass substrate side was measured.
  • the test was conducted as follows. On the water-repellent side of each sample, a cloth measuring 1 cm x 1 cm is brought into contact with the surface. With a load of 500 g applied to the cloth, the cloth is moved horizontally by cm, and then moved the same distance in the opposite direction. Repeat this 5000 times. Thereafter, the contact angle ⁇ of the sample is measured.
  • the contact angle ⁇ after the test is 120° or more and the difference from the contact angle ⁇ before the test is 10° or less, it is determined that the wear resistance is good. Otherwise, the abrasion resistance of the sample is determined to be poor.
  • the fluorine concentration (F 1 ) at the first surface was measured for each sample.
  • an X-ray photoelectron spectrometer (XPS) PHI Quantera II manufactured by ULVAC-PHI Co., Ltd. was used.
  • Example 21 Water-repellent glass was produced by the following method.
  • a flat soda lime glass measuring 50 mm long x 50 mm wide x 1 mm thick was used as the glass substrate.
  • the glass substrate was used after being cleaned in the same manner as in Example 1 above.
  • atmospheric pressure plasma etching treatment was performed on the 50 mm long x 50 mm wide surface (first surface) of the glass substrate as described below.
  • a microwave plasma type device equipped with a high frequency power source was used as the plasma device.
  • This plasma device has a ceramic tube having electrodes connected to a high frequency power source, and argon (Ar) gas is supplied into the ceramic tube. Further, a raw material gas is supplied around the ceramic tube.
  • a microwave voltage of 2.45 GHz is applied to the electrodes from a high frequency power source.
  • the argon gas flowing inside the ceramic tube is turned into plasma.
  • this plasma decomposes CF 4 contained in the mixed gas at the outlet (plasma head) of the ceramic tube.
  • Fluorine radicals (F * ) generated by decomposition of CF4 react with components contained in the glass substrate as shown in the following reaction formula: nAr * +2CF 4 ⁇ 8F * +C 2 * +nAr (1 formula) SiO 2 +4F * ⁇ SiF 4 +O 2 (2 formulas)
  • a low melting point compound such as silicon tetrafluoride produced by the reaction is volatilized by heat.
  • the first surface of the glass substrate can be etched.
  • the distance between the plasma head and the first surface of the glass substrate during the atmospheric pressure plasma etching process was 18 mm.
  • the scanning speed of the plasma head was 8 mm/s.
  • the temperature of the glass substrate during the treatment was 500°C.
  • a water-repellent film (SurfClear 300; manufactured by Canon Optron Co., Ltd.) was placed on the surface of the glass substrate to be treated by vapor deposition.
  • the thickness of the water-repellent film was targeted to be 10 nm.
  • Example 21 water-repellent glass
  • FIG. 18 shows an example of the surface form of the evaluation area in sample 21.
  • the straight line LA seen in FIG. 18 is the straight line drawn when determining the average size of the particulate features.
  • the average size of the particulate features in Sample 21 was 118 nm.
  • FIG. 19 shows an example of the cross-sectional form of the evaluation region in sample 21.
  • the thickness of the characteristic region in sample 21 was measured. As a result, the thickness of the characteristic region of sample 21 was 66 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

第1の表面を有するガラス基板と、前記ガラス基板の前記第1の表面に設置された撥水膜と、を有し、前記ガラス基板の前記第1の表面は、前記ガラス基板の一部が粒子状に集合した特徴領域を有し、該特徴領域は、前記ガラス基板から一体的に延在する粒子状特徴物を有し、前記ガラス基板の厚さ方向を第1の方向と称したとき、前記特徴領域の前記第1の方向の寸法は、50~2000nmの範囲であり、前記第1の方向と垂直な直線LAを引いたとき、該直線LAは、前記特徴領域に含まれる複数の粒子状特徴物と交差する交差部を有し、該交差部の平均寸法は、20~5000nmの範囲であり、前記粒子状特徴物の少なくとも一部は、前記ガラス基板の内部に向かって寸法が小さくなる狭窄部を有する、撥水ガラス。

Description

撥水ガラス
 本発明は、撥水ガラスに関する。
 撥水ガラスは、車両用のガラス部材および建物の窓ガラスなど、各種分野において、ニーズがある。
 一般に、撥水ガラスは、ガラス基板の表面に凹凸を有する下地膜を成膜し、さらに該下地膜の上に撥水膜を成膜することにより製造することができる。
 例えば、特許文献1には、空隙を含むアモルファスアルミナ膜をガラス基板上に成膜することにより構成された部材を、撥水部材の下地構造として適用できることが開示されている。
特開平9-202649号公報
 従来の撥水ガラスは、摩耗や擦れに弱いという問題がある。例えば、従来の撥水ガラスは、ある程度使用を続けると、下地膜の脱落にともない撥水膜が消失する現象がしばしば認められている。従って、より良好な耐摩耗性を有する撥水ガラスが望まれている。
 本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて有意に高い耐摩耗性を有する撥水ガラスを提供することを目的とする。
 本発明では、撥水ガラスであって、
 第1の表面を有するガラス基板と、
 前記ガラス基板の前記第1の表面に設置された撥水膜と、
 を有し、
 前記ガラス基板の前記第1の表面は、前記ガラス基板の一部が粒子状に集合した特徴領域を有し、該特徴領域は、前記ガラス基板から一体的に延在する粒子状特徴物を有し、
 前記ガラス基板の厚さ方向を第1の方向と称したとき、前記特徴領域の前記第1の方向の寸法は、50nm~2000nmの範囲であり、
 前記特徴領域の上面視、前記特徴領域の1μm×1μmの区画において、前記第1の方向と垂直な直線LAを引いたとき、該直線LAは、前記特徴領域に含まれる複数の粒子状特徴物と交差する交差部を有し、該交差部の平均寸法は、20nmから5000nmの範囲であり、
 前記粒子状特徴物の少なくとも一部は、前記ガラス基板の内部に向かって寸法が小さくなる狭窄部を有する、撥水ガラスが提供される。
 本発明では、従来に比べて有意に高い耐摩耗性を有する撥水ガラスを提供することができる。
本発明の一実施形態による撥水ガラスの断面構造の一例を模式的に示した図である。 図1の丸で囲まれたA部を拡大して示した図である。 本発明の一実施形態による撥水ガラスの特徴領域の別の構成を模式的に示した断面図である。 本発明の一実施形態による撥水ガラスの特徴領域のさらに別の構成を模式的に示した断面図である。 本発明の一実施形態による撥水ガラスの製造方法の模式的なフローを示した図である。 サンプル1における評価領域の表面形態の一例を示した写真である。 サンプル2における評価領域の表面形態の一例を示した写真である。 サンプル3における評価領域の表面形態の一例を示した写真である。 サンプル4における評価領域の表面形態の一例を示した写真である。 サンプル11における評価領域の表面形態の一例を示した写真である。 サンプル12における評価領域の表面形態の一例を示した写真である。 サンプル1における評価領域の断面形態の一例を示した写真である。 サンプル2における評価領域の断面形態の一例を示した写真である。 サンプル3における評価領域の断面形態の一例を示した写真である。 サンプル4における評価領域の断面形態の一例を示した写真である。 サンプル11における評価領域の断面形態の一例を示した写真である。 サンプル12における評価領域の断面形態の一例を示した写真である。 サンプル21における評価領域の表面形態の一例を示した写真である。 サンプル21における評価領域の断面形態の一例を示した写真である。
 以下、本発明の一実施形態について説明する。
 本発明の一実施形態では、撥水ガラスであって、
 第1の表面を有するガラス基板と、
 前記ガラス基板の前記第1の表面に設置された撥水膜と、
 を有し、
 前記ガラス基板の前記第1の表面は、前記ガラス基板の一部が粒子状に集合した特徴領域を有し、該特徴領域は、前記ガラス基板から一体的に延在する粒子状特徴物を有し、
 前記ガラス基板の厚さ方向を第1の方向と称したとき、前記特徴領域の前記第1の方向の寸法は、50nm~2000nmの範囲であり、
 前記特徴領域の上面視、前記特徴領域の1μm×1μmの区画において、前記第1の方向と垂直な直線LAを引いたとき、該直線LAは、前記特徴領域に含まれる複数の粒子状特徴物と交差する交差部を有し、該交差部の平均寸法は、20nmから5000nmの範囲であり、
 前記粒子状特徴物の少なくとも一部は、前記ガラス基板の内部に向かって寸法が小さくなる狭窄部を有する、撥水ガラスが提供される。
 本発明の一実施形態による撥水ガラスは、ガラス基板の第1の表面に撥水膜を有する。従って、本発明の一実施形態による撥水ガラスは、撥水性を発現できる。
 また、本発明の一実施形態による撥水ガラスは、撥水性を有する側のガラス基板の表面、すなわち第1の表面が特徴的な形態を有する。具体的には、第1の表面は、ガラス基板に含まれる成分が「粒子」状に集合した特徴領域を有し、該特徴領域は、ガラス基板から一体的に延在する粒子状特徴物を有するという特徴を有する。
 なお、本願において、特徴領域に形成される「粒子状特徴物」は、自由に移動が可能な一般的な「粒子」とは異なり、根元部分がガラス基板と一体化されており、従ってガラス基板に固定化されていることに留意する必要がある。より具体的には、「粒子状特徴物」は、ガラス基板を起点とし、ガラス基板から継ぎ目なく突出した部分である。
 「粒子状特徴物」の平均寸法は、20nmから5000nmの範囲である。なお、「粒子状特徴物」は、一般的な「粒子」とは異なるため、平均寸法は、後述する方法により定められる。
 また、本発明の一実施形態による撥水ガラスにおいて、「粒子状特徴物」は、ガラス基板の内部に向かって径が小さくなる部分、いわゆる「狭窄部」を有する。
 本発明の一実施形態による撥水ガラスにおいて、ガラス基板の第1の表面の特徴領域は、このような特徴的な形態を有する。
 前述のように、従来の撥水ガラスは、ある程度使用を続けると、下地膜の脱落にともない撥水膜が消失するなど、摩耗や擦れに弱いという問題がある。
 これに対して、本発明の一実施形態による撥水ガラスは、ガラス基板の上に、凹凸を形成するための下地層は設置されていない。すなわち、ガラス基板の第1の表面自体が特徴領域を形成し、該特徴領域上に撥水膜が設置される。
 このような構成では、特徴領域がガラス基板と一体化形成されているため、ガラス基板の上に別途下地膜を追加した構成とは異なり、撥水ガラスは、比較的高い堅牢性を発揮することができる。
 ここで、ガラス基板の厚さ方向を第1の方向と称し、特徴領域の第1の方向に沿った寸法を、「特徴領域の厚さ」と称する。
 本願において、特徴領域の長さが不十分な場合、すなわち、特徴領域の厚さが50nm未満の場合、第1の表面に十分に有効な特徴領域が提供されない場合がある。また、そのような特徴領域の上に撥水膜を設置した場合、十分な撥水性が発現されない可能性がある。また逆に、特徴領域の厚さが2000nmを超えると、特徴領域の堅牢性が低下し、撥水ガラスの耐摩耗性が低下する可能性がある。
 しかしながら、本発明の一実施形態による撥水ガラスでは、特徴領域の厚さは、50nm~2000nmの範囲に制御されている。従って、本発明の一実施形態による撥水ガラスでは、十分な撥水性を発揮することができる上、有意に高い堅牢性を提供することができる。
 以上のような効果により、本発明の一実施形態では、従来に比べて有意に高い耐摩耗性を有する撥水ガラスを提供することができる。
 (本発明の一実施形態による撥水ガラス)
 次に、図面を参照して、本発明の一実施形態による撥水ガラスの特徴について、より詳しく説明する。
 図1には、本発明の一実施形態による撥水ガラス(以下、「第1の撥水ガラス」と称する)の断面構造の一例を模式的に示す。
 図1に示すように、第1の撥水ガラス100は、ガラス基板110と、撥水膜140とを有する。ガラス基板110は、第1の表面112を有し、撥水膜140は、ガラス基板110の第1の表面112の側に設置される。
 図2には、図1の丸で囲まれたA部の拡大された模式図を示す。
 図2に示すように、ガラス基板110の第1の表面112は、多数の粒子状特徴物125を含む特徴領域120を有する。
 図2に示した例では、粒子状特徴物125は、ガラス基板110から外方に向かって突出する突出物の形態を有する。
 粒子状特徴物125は、ガラス基板110と切れ目なくつながっており、すなわちガラス基板110と一体化されている。換言すれば、ガラス基板110において、第1の表面112の一部が突出して、粒子状特徴物125が形成される。
 なお、図2において、隣接する粒子状特徴物125同士の間には、ガラス基板110の部分が存在しない空間、すなわち空隙130が形成される。
 粒子状特徴物125の少なくとも一部は、断面が単なる円柱形または円錐形ではなく、略マッシュルーム状の断面を有する。すなわち、一部の粒子状特徴物125は、ガラス基板110の深さ方向(図2におけるZ方向)に向かって径が細くなる部分、すなわち狭窄部129を有する。
 特に、図2に示した例では、全ての粒子状特徴物125がマッシュルーム状の断面を有し、従って狭窄部129を有する。
 粒子状特徴物125は、20nm~5000nmの範囲の平均寸法を有する。なお、粒子状特徴物125の平均寸法は、以下の方法により求められる。
 まず、第1の撥水ガラス100の上面視、特徴領域120の1μm×1μmの区画において、直線LAを引く。
 次に、直線LAと交わる粒子状特徴物125を判定し、これらを選択特徴物とする。また、各選択特徴物において、直線LAと交差する部分(線分)の長さを求める。各選択特徴物で得られた線分の長さを平均して、粒子状特徴物125の平均寸法とする。
 このようにして得られる粒子状特徴物125の平均寸法は、20nm~1000nmの範囲であることが好ましく、20nm~500nmの範囲であることがより好ましい。
 撥水膜140は、特徴領域120において、少なくとも粒子状特徴物125の先端を被覆するように配置される。例えば、図2に示した例では、撥水膜140は、粒子状特徴物125の輪郭に沿って設置されるとともに、さらに、ガラス基板110の第1の表面112において、粒子状特徴物125が存在しない部分を覆うように設置されている。
 なお、図2に示した撥水ガラスにおける特徴領域120の形態は、単なる一例であって、本発明の一実施形態において、撥水ガラスの特徴領域120の形態は、別の構成を有してもよい。
 図3および図4には、本発明の一実施形態による撥水ガラスの特徴領域120の別の構成を示す。
 図3に示した例では、撥水ガラスの特徴領域120において、隣接する粒子状特徴物125は、一部が相互に接触している。また、撥水膜140は、各粒子状特徴物125の上部にのみ設置されており、狭窄部129には設置されていない。このため、空隙130には、撥水膜140の成分は、存在していない。
 また、図4に示した例では、撥水ガラスの特徴領域120は、図3と同様の粒子状特徴物125の配置を有する。ただし、撥水膜140は、粒子状特徴物125の狭窄部129、さらには空隙130の部分にも充填されている。
 このように、本発明の一実施形態において、撥水ガラスの特徴領域120は、各種形態を有し得る。ただし、いずれの形態においても、特徴領域の厚さは、50nm~2000nmの範囲にあり、粒子状特徴物の平均寸法は、20nm~5000nmの範囲にあることに留意する必要がある。
 (本発明の一実施形態による撥水ガラスに含まれる各部材)
 次に、本発明の一実施形態による撥水ガラスに含まれる各部材について、より詳しく説明する。なお、ここでは、本発明の一実施形態による撥水ガラスとして、前述の図1および図2に示したような構成を有する第1の撥水ガラス100を例に、各部材の特徴について説明する。従って、各部材を表す際には、図1および図2に使用した参照符号を使用する。
 (ガラス基板110)
 ガラス基板110の組成は、特に限られない。ガラス基板110は、例えば、ソーダライムガラス、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス、または無アルカリガラス等であってもよい。
 また、ガラス基板110の形状および寸法は、特に限られない。ガラス基板110は、平坦な板状、または曲面状等であってもよい。また、ガラス基板110は、建物の窓ガラスのような大型の寸法から、カメラのレンズ部材のような小型寸法まで、各種サイズを有してもよい。
 (撥水膜140)
 撥水膜140は、撥水性が得られる限り、その種類は特に限られない。
 なお、本願において、「撥水性」とは、水滴の接触角θが90゜以上となる特性を意味する。
 撥水膜140は、例えば、フッ素含有シラン化合物等であってもよい。
 撥水膜140の厚さは、例えば、0.5nm~50nmの範囲である。
 なお、本願において、撥水膜140の厚さは、特徴領域120の空隙130の部分に充填された撥水膜部分を除いた厚さであり、少なくとも10個以上の各粒子状特徴物125の最上部に設置された撥水膜140の厚さを平均することにより定められる。
 (その他の特徴)
 第1の撥水ガラス100において、撥水膜140の側の水滴の接触角θは、例えば、120゜以上である。接触角θは、125゜以上であることが好ましく、130゜以上であることがより好ましく、135゜以上であることがさらに好ましい。
 また、第1の撥水ガラス100において、ガラス基板110の第1の表面112におけるフッ素濃度をF(at%)とし、ガラス基板110のバルクのフッ素濃度をF(at%)としたとき、(F-F)は、3at%以上であってもよい。
 このような、表面にフッ素が「濃縮」されたガラス基板110を備える第1の撥水ガラス100では、屈折率を有意に低下することができる。また、これにより、反射防止機能を有する撥水ガラスを提供することが可能となる。
 一例では、第1の撥水ガラス100は、後述するように、フッ素含有化合物によるガスエッチング工程を経て製造される。従って、本発明の一実施形態では、(F-F)が3at%以上の撥水ガラスを、比較的容易に得ることができる。
 本発明の一実施形態による撥水ガラスは、例えば、建物の窓ガラス、車両用のガラス部材、カメラ部品、およびセンサー部品等、幅広い用途に適用することができる。
 (本発明の一実施形態による撥水ガラスの製造方法)
 次に、図5を参照して、本発明の一実施形態による撥水ガラスの製造方法の一例について説明する。
 図5には、本発明の一実施形態による撥水ガラスの製造方法(以下、「第1の方法」と称する)の模式的なフローを示す。
 図5に示すように、第1の方法は、
(1)被処理表面を有するガラス基板を準備する工程(工程S110)と、
(2)フッ素またはフッ素化合物を含む処理ガスを用いて、前記ガラス基板の被処理表面をエッチングする工程(工程S120)と、(3)前記被処理表面に、撥水膜を設置する工程(工程S130)と、
 を有する。
 以下、各工程について詳しく説明する。
 (工程S110)
 まず、被処理表面を有するガラス基板が準備される。
 ガラス基板の組成は、特に限られない。ガラス基板は、例えば、ソーダライムガラス、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウ珪酸ガラス、または無アルカリガラス等であってもよい。
 ガラス基板の被処理表面は、次工程(工程S120)の前に洗浄処理に供される。
 洗浄処理は、ガラス基板の被処理表面に付着した汚染物質および/または油分等を除去し、被処理表面を清浄化するために実施される。
 洗浄処理の条件は、被処理表面が清浄化される限り、特に限られない。洗浄処理は、例えば、(i)アルカリ洗剤を含む溶液での超音波洗浄、(ii)超純水での超音波洗浄、および(iii)オゾン洗浄の順に実施されてもよい。アルカリ洗剤としては、水酸化ナトリウムなどが利用されてもよい。
 ガラス基板の被処理表面を清浄化することにより、次の工程S120の後に、全体にわたってムラなく均一に、前述のような特徴領域を有する被処理表面を得ることができる。
 なお、ガラス基板の被処理表面は、必ずしもガラス基板の1つの表面(例えば、第1の表面)全体である必要はなく、第1の表面の一部であってもよい。その場合、ガラス基板の被処理表面を除く部分をマスキングした後に、以降の工程S120が実施されてもよい。
 (工程S120)
 次に、ガラス基板の清浄化された被処理表面が処理ガスによりエッチング処理される。
 処理ガスは、フッ素またはフッ素化合物を含む。例えば、処理ガスは、フッ化水素ガスまたはフッ素ガスを含んでもよい。
 処理ガスは、さらに、キャリアガスを含んでも良い。キャリアガスとしては、これに限られるものではないが、例えば、窒素および/またはアルゴン等が使用される。処理ガス中のフッ素化合物の濃度は、例えば、0.1vol%~10vol%の範囲であり、0.5vol%~8vol%の範囲であることが好ましく、1vol%~5vol%の範囲であることがより好ましい。
 エッチング処理は、通常、常圧の大気雰囲気下で実施される。
 エッチング処理の温度は、特に限られない。処理温度は、例えば、250℃~650℃の範囲であり、275℃~600℃の範囲であることが好ましく、300℃~600℃の範囲であることがより好ましい。
 処理ガスに対する暴露により、ガラス基板の被処理表面がエッチングされる。その結果、被処理表面に、前述のような特徴を有する特徴領域が形成される。すなわち、ガラス基板と一体化され該ガラス基板から延在する複数の粒子状特徴物を有する、特徴領域が形成される。
 (工程S130)
 次に、ガラス基板の特徴領域に、撥水膜が形成される。
 撥水膜の種類は、ガラス基板の特徴領域に撥水性が発現する限り、特に限られない。
 撥水膜は、例えば、フッ素含有シラン化合物等であってもよい。
 撥水膜の形成方法は、特に限られない。撥水膜は、例えば、蒸着法、塗布法(刷毛塗りおよびスプレー噴霧を含む)または浸漬法等により、ガラス基板の特徴領域に設置されてもよい。
 必要な場合、撥水膜の形成後に、ガラス基板を乾燥処理してもよい。
 以上の工程により、ガラス基板の特徴領域の上に撥水膜を有する撥水ガラスを製造することができる。
 次に、本発明の実施例について説明する。以下の記載において、例1~例4は、実施例であり、例11~例12は、比較例である。また、例21は、実施例である。
 (例1)
 前述の第1の方法に従って、撥水ガラスを作製した。
 ガラス基板には、縦50mm×横50mm×厚さ1mmの平坦なソーダライムガラスを使用した。
 以下の手順で、このガラス基板を洗浄した:
(i)まず、アルカリ洗剤として、パーカーコーポレーション社製のPK-LCG23を含む水溶液で、15分間ガラス基板を超音波洗浄する(ii)次に、超純水を用いて、15分間ガラス基板を超音波洗浄する(iii)最後に、15分間ガラス基板をオゾン洗浄する。
 次に、洗浄したガラス基板の縦50mm×横50mmの表面(第1の表面)を処理ガスでエッチング処理した。処理ガスには、窒素ガスとフッ化水素ガスの混合ガスを使用した。混合ガス中のフッ化水素ガス濃度は、3vol%とした。処理ガスの流量は、70SLM(Standard Little per Minits)とした。処理温度は、675℃とし、処理時間は、3秒とした。
 その後、ガラス基板の被処理表面に、蒸着法により、撥水膜(SurfClear300;キャノンオプトロン株式会社製)を設置した。撥水膜の厚さは、10nmを目標とした。
 これにより、撥水ガラス(以下、「サンプル1」と称する)が作製された。
 (例2~例4)
 例1と同様の方法により、撥水ガラスを作製した。ただし、これらの例2~例4では、フッ化水素ガスによるガラス基板のエッチング条件を、例1の場合とは変化させた。その他の条件は、例1の場合と同様である。
 例2~例4において得られた撥水ガラスを、それぞれ、「サンプル2」~「サンプル4」と称する。
 (例11)
 例1と同様の方法により、ガラス基板の被処理表面に撥水膜を設置した。ただし、この例11では、ガラス基板に対して、フッ化水素ガスによるエッチング処理を実施しなかった。すなわち、洗浄のみを実施したガラス基板の第1の表面に、撥水膜を設置した。
 例11において得られた撥水ガラスを、「サンプル11」と称する。
 (例12)
 例1と同様の方法により、撥水ガラスを作製した。ただし、この例12では、フッ化水素ガスによるガラス基板のエッチング条件を、例1の場合とは変化させた。その他の条件は、例1の場合と同様である。
 例12において得られた撥水ガラスを「サンプル12」と称する。
 以下の表1には、各例におけるガスエッチング条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 各サンプルを用いて、以下の評価を実施した。
 (特徴領域の評価)
 走査型電子顕微鏡(SEM)を用いて、各サンプルにおける撥水膜の側(以下、「評価領域」と称する)の形態を観察した。
 図6~図11には、それぞれ、サンプル1~サンプル4、およびサンプル11~サンプル12における評価領域の表面形態の一例を示す。
 これらの図から、サンプル1~サンプル4、およびサンプル11では、評価領域に多数の粒子状特徴物が形成されることがわかる。すなわち、評価領域には、前述のような特徴を有する特徴領域が形成されていることがわかった。
 なお図10から、サンプル11では、評価領域に粒子状特徴物は認められず、従って、特徴領域は存在しないことがわかった。
 図6~図9および図11から、前述の方法により、各サンプルにおける粒子状特徴物の平均寸法を求めた。図6~図9および図11に認められる直線LAは、粒子状特徴物の平均寸法を求める際に描いた直線である。
 測定の結果、粒子状特徴物の平均寸法は、いずれのサンプルにおいても、20nm~800nmの範囲であった。
 次に、図12~図17には、それぞれ、サンプル1~サンプル4、およびサンプル11~サンプル12における評価領域の断面形態の一例を示す。
 図12~図15から、サンプル1~サンプル4では、評価領域(すなわち特徴領域)に多数の粒子状特徴物が形成されていることがわかる。特に、サンプル1~サンプル4では、いくつかの粒子状特徴物は狭窄部を有し、従って特徴領域には、多くの空隙も存在することが観察される。
 なお、図16に示すように、サンプル11では、評価領域に粒子状特徴物は認められず、前述のように、特徴領域は存在しないと言える。
 また、図12~図15に示した形態から、いくつかの粒子状特徴物は、ガラス基板の表面と継ぎ目なくつながっており、ガラス基板と一体化されていることがわかる。
 図12~図15および図17から、各サンプルにおける特徴領域の厚さを測定した。
 その結果、サンプル1~サンプル4では、特徴領域の厚さは、100nm~1600nmの範囲であった。一方、サンプル12では、特徴領域の厚さは、約45nmであり、十分な寸法の特徴領域が形成されていないことがわかった。
 (接触角θの測定)
 各サンプルにおいて、撥水膜の側に水滴を滴下し、接触角θ測定した。
 測定の結果、いずれのサンプルにおいても接触角θは90゜以上であり、いずれのサンプルも撥水性を有することがわかった。
 ただし、サンプル11~サンプル12の接触角θは、いずれも114゜であったのに対し、サンプル1~サンプル4の接触角θは、135゜以上であった。特に、サンプル2では、接触角θが155゜を超え、高い撥水性を示した。
 (全光線透過率の測定)
 各サンプルに対して全光線透過率を測定した。測定は、JIS K 7361に準拠して実施し、撥水膜の側から入射され、ガラス基板の側から放射される光の透過率を測定した。
 測定の結果、サンプル1~サンプル4における全光線透過率は、少なくとも87%を超え、サンプル1~サンプル4は、高い透過性を有することがわかった。
 (耐摩耗性評価)
 各サンプルに対して耐摩耗性評価試験を実施した。
 試験は、以下のように実施した。各サンプルの撥水膜の側において、1cm×1cmの寸法の布を表面に接触させる。布に500gの荷重を印加した状態で、布を水平方向に cm移動させた後、逆方向に同じ距離だけ移動させる。これを5000回繰り返す。その後、サンプルの接触角θを測定する。
 試験後の接触角θが120゜以上であり、かつ試験前の接触角θとの差が10゜以下の場合、耐摩耗性が良好であると判定する。それ以外の場合、サンプルの耐摩耗性は、悪いと判定する。
 試験の結果、サンプル1、サンプル3、およびサンプル4は、良好な耐摩耗性を示した。
 (フッ素濃度の評価)
 各サンプルに対して、第1の表面におけるフッ素濃度(F)を測定した。測定には、X線光電子分光分析装置(XPS)PHI Quantera II(アルバック・ファイ株式会社製)を使用した。
 得られた結果から、フッ素濃度差(F-F)(at%)を求めた、ここで、Fは、前述のように、ガラス基板のバルクのフッ素濃度である。
 以下の表2には、各サンプルにおいて得られた評価結果をまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 以上の評価結果から、サンプル1~サンプル4のような特徴領域を有する撥水ガラスは、良好な撥水性を示す上、良好な耐摩耗性を有することが確認された。
 (例21)
 以下の方法により、撥水ガラスを作製した。
 ガラス基板には、縦50mm×横50mm×厚さ1mmの平坦なソーダライムガラスを使用した。ガラス基板は、前述の例1と同様の方法により洗浄してから使用した。
 次に、以下のように、ガラス基板の縦50mm×横50mmの表面(第1の表面)に対して大気圧プラズマエッチング処理を実施した。
 プラズマ装置には、高周波電源を備えるマイクロ波プラズマ方式の装置を使用した。
 本プラズマ装置は、高周波電源に接続された電極を有するセラミック管を有し、該セラミック管内にはアルゴン(Ar)ガスが供給される。また、セラミック管の周囲には、原料ガスが供給される。原料ガスは、アルゴンと四フッ化メタン(CF)の混合ガス(Ar:CF(体積比)=1000:150)とした。
 作動の際には、高周波電源から電極に、2.45GHzのマイクロ波電圧が印加される。これにより、セラミック管内を流れるアルゴンガスがプラズマ化される。また、このプラズマにより、セラミック管の出口(プラズマヘッド)において、混合ガスに含まれるCFが分解される。
 CFの分解により生じたフッ素ラジカル(F)は、以下の反応式のようにガラス基板に含まれる成分と反応する:
 
  nAr+2CF → 8F+C +nAr   (1式)
 
  SiO+4F → SiF+O   (2式)
 
 反応により生じる四フッ化ケイ素のような低融点化合物は、熱により揮発する。
 従って、プラズマヘッドの下方にガラス基板を設置して、大気圧プラズマエッチング処理を実施することにより、ガラス基板の第1の表面をエッチング処理することができる。
 本例において、大気圧プラズマエッチング処理の際のプラズマヘッドとガラス基板の第1の表面との間の距離は、18mmとした。
 また、プラズマヘッドの走査速度は、8mm/sとした。プラズマヘッドの走査方向は、ガラス基板の第1の表面の一つの辺(第1の辺)と平行な方向とした。プラズマヘッドを第1の表面の一方の端部から他方の端部まで走査した(往方向走査の)後、第1の辺と直交する一つの辺(第2の辺)と平行にヘッドを4mm移動させた後(ピッチ=4mm)、同様に第1の辺と平行な方向に沿って走査(復方向走査)を実施し、これを繰り返した。このようにして、ガラス基板の第1の表面全体に対してプラズマ処理を実施した。
 処理の際のガラス基板の温度は、500℃とした。
 その後は、例1の場合と同様の方法で、ガラス基板の被処理表面に、蒸着法により、撥水膜(SurfClear300;キャノンオプトロン株式会社製)を設置した。撥水膜の厚さは、10nmを目標とした。
 これにより、撥水ガラス(以下、「サンプル21」と称する)が作製された。
 (評価結果)
 サンプル21を用いて、前述の評価を実施した。
 図18には、サンプル21における評価領域の表面形態の一例を示す。
 図18から、サンプル21では、評価領域に多数の粒子状特徴物が形成されることがわかる。すなわち、評価領域には、前述のような特徴を有する特徴領域が形成されていることがわかった。
 図18から、前述の方法により、各サンプルにおける粒子状特徴物の平均寸法を求めた。図18に認められる直線LAは、粒子状特徴物の平均寸法を求める際に描いた直線である。
 測定の結果、サンプル21における粒子状特徴物の平均寸法は、118nmであった。
 図19には、サンプル21における評価領域の断面形態の一例を示す。
 図19から、サンプル21では、評価領域(すなわち特徴領域)に多数の粒子状特徴物が形成されていることがわかる。いくつかの粒子状特徴物は狭窄部を有し、従って特徴領域には、多くの空隙も存在することが観察された。
 また、図19に示した形態から、いくつかの粒子状特徴物は、ガラス基板の表面と継ぎ目なくつながっており、ガラス基板と一体化されていることがわかる。
 図19から、サンプル21における特徴領域の厚さを測定した。その結果、サンプル21の特徴領域の厚さは、66nmであった。
 以下の表3には、評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、サンプル21は、良好な撥水性を示す上、良好な耐摩耗性を有することが確認された。
 本願は、2022年3月11日に出願した日本国特許出願第2022-038418号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 100   撥水ガラス
 110   ガラス基板
 112   第1の表面
 120   特徴領域
 125   粒子状特徴物
 129   狭窄部
 130   空隙
 140   撥水膜

Claims (3)

  1.  撥水ガラスであって、
     第1の表面を有するガラス基板と、
     前記ガラス基板の前記第1の表面に設置された撥水膜と、
     を有し、
     前記ガラス基板の前記第1の表面は、前記ガラス基板の一部が粒子状に集合した特徴領域を有し、該特徴領域は、前記ガラス基板から一体的に延在する粒子状特徴物を有し、
     前記ガラス基板の厚さ方向を第1の方向と称したとき、前記特徴領域の前記第1の方向の寸法は、50nm~2000nmの範囲であり、
     前記特徴領域の上面視、前記特徴領域の1μm×1μmの区画において、前記第1の方向と垂直な直線LAを引いたとき、該直線LAは、前記特徴領域に含まれる複数の粒子状特徴物と交差する交差部を有し、該交差部の平均寸法は、20nmから5000nmの範囲であり、
     前記粒子状特徴物の少なくとも一部は、前記ガラス基板の内部に向かって寸法が小さくなる狭窄部を有する、撥水ガラス。
  2.  前記第1の表面におけるフッ素濃度Fと、前記ガラス基板のバルクのフッ素濃度Fの差(F-F)は、3at%以上である、請求項1に記載の撥水ガラス。
  3.  当該撥水ガラスにおいて、前記撥水膜の側で測定される水滴の接触角は、120゜以上である、請求項1または2に記載の撥水ガラス。
PCT/JP2023/004427 2022-03-11 2023-02-09 撥水ガラス WO2023171226A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-038418 2022-03-11
JP2022038418 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171226A1 true WO2023171226A1 (ja) 2023-09-14

Family

ID=87936697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004427 WO2023171226A1 (ja) 2022-03-11 2023-02-09 撥水ガラス

Country Status (1)

Country Link
WO (1) WO2023171226A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509192A (ja) * 2007-11-23 2011-03-24 ゾルテッヒ アーゲー 機能性複合材料
WO2014061615A1 (ja) * 2012-10-17 2014-04-24 旭硝子株式会社 反射防止性を有するガラスの製造方法および反射防止性を有するガラス
WO2021137274A1 (ja) * 2019-12-30 2021-07-08 ナルックス株式会社 石英ガラス基板に微細凹凸表面構造を製造する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509192A (ja) * 2007-11-23 2011-03-24 ゾルテッヒ アーゲー 機能性複合材料
WO2014061615A1 (ja) * 2012-10-17 2014-04-24 旭硝子株式会社 反射防止性を有するガラスの製造方法および反射防止性を有するガラス
WO2021137274A1 (ja) * 2019-12-30 2021-07-08 ナルックス株式会社 石英ガラス基板に微細凹凸表面構造を製造する方法

Similar Documents

Publication Publication Date Title
TWI750353B (zh) 紋理化玻璃製品及其製作方法
JP5962652B2 (ja) 反射防止性ガラス基体及び反射防止性ガラス基体の製造方法
JP5343849B2 (ja) 酸化物ガラスの表面処理方法
EP0658525B1 (en) Multilayered water-repellent film and method of forming same on glass substrate
KR101529528B1 (ko) 저반사성 초소수 또는 초발수 유리 및 그 제조방법
TW200831421A (en) Fused silica and process for producing same
TWI512846B (zh) Water-based protective film formation liquid
KR19990081881A (ko) 요철부를 포함하는 향상된 친수성 또는 소수성 성질을 갖는기판
JP2003066203A (ja) 微細凹凸構造の形成方法及び当該凹凸を有する部材
US7934391B2 (en) Synthetic quartz glass body, process for producing the same, optical element, and optical apparatus
CN114502515B (zh) 具纹理、防眩玻璃制品及其制作方法
TWI766947B (zh) 製造具有結構化表面之玻璃物件的方法
WO2014061615A1 (ja) 反射防止性を有するガラスの製造方法および反射防止性を有するガラス
JP2004002104A (ja) 親水性・防曇防汚性薄膜及びその製造方法
WO2023171226A1 (ja) 撥水ガラス
JP2004137137A (ja) 皮膜被覆物品、その製造方法、およびそれに用いる塗布溶液
JP2004507430A (ja) ガラスコーティング法
US20200407270A1 (en) Textured glass articles and methods of making the same
JP6851017B2 (ja) デバイス及びその製造方法
JP5284960B2 (ja) プラズマエッチング用石英ガラス部材
WO2023026971A1 (ja) 撥水性ガラス部材及びその製造方法、レンズ部材、カバー部材、並びにウインドウパネル部材
WO2024095881A1 (ja) ガラス部材
US20240045108A1 (en) Wet etching solution composition, wet etching method of glass, and patterned glass by the wet etching method
Cao et al. Surface nanostructuring of alkali-aluminosilicate Gorilla display glass substrates using a maskless process
Saher et al. Influence of Dual Layer Silica Nanoparticles Coating on the Performance Enhancement of Solar PV Modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766406

Country of ref document: EP

Kind code of ref document: A1