WO2023169492A1 - 利用碳纤维编织物边角料制备电致热加热片的方法 - Google Patents

利用碳纤维编织物边角料制备电致热加热片的方法 Download PDF

Info

Publication number
WO2023169492A1
WO2023169492A1 PCT/CN2023/080392 CN2023080392W WO2023169492A1 WO 2023169492 A1 WO2023169492 A1 WO 2023169492A1 CN 2023080392 W CN2023080392 W CN 2023080392W WO 2023169492 A1 WO2023169492 A1 WO 2023169492A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
chopped carbon
dispersion
chopped
drying
Prior art date
Application number
PCT/CN2023/080392
Other languages
English (en)
French (fr)
Inventor
张娜
郑茂林
黄明
刘春太
崔晓凤
杜松林
韦韡
Original Assignee
郑州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州大学 filed Critical 郑州大学
Publication of WO2023169492A1 publication Critical patent/WO2023169492A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding

Definitions

  • the present invention relates to the reuse of carbon fiber braided scraps. Specifically, it relates to a method of using carbon fiber braided scraps to prepare electrothermal heating sheets.
  • Carbon fiber has high specific strength and specific modulus. It also has the advantages of low density, no creep, small thermal expansion coefficient, good electrical conductivity, excellent electromagnetic shielding performance, strong corrosion resistance, and harmless to humans and animals. It is widely used in Reinforcements of composite materials.
  • Carbon fiber braid scraps are scraps produced when carbon fiber tows are braided or cut when laid in molds. This scrap has not been soaked with resin and is not recycled carbon fiber. Therefore, its performance is not affected by acid-base recovery solutions or high temperatures. Its reuse is an important measure for the sustainable application of advanced composite materials, which is in line with the national economic development's desire for "green".
  • Electromagnetic interference EMI, Electromagnetic interference
  • EMI Electromagnetic interference
  • Long-term exposure to electromagnetic radiation can also cause harm to human health. Therefore, suppressing or slowing down undesirable electromagnetic interference has become an important research direction in the field of materials science.
  • the radiation frequency of civilian electronic devices is usually less than 15GHz, and the frequency of military electromagnetic radiation is often between 8GHz and 18GHz.
  • the purpose of the present invention is to address the shortcomings of the existing technology and provide a method with excellent electrical conductivity, good electromagnetic shielding performance, and high utilization of carbon fiber braid scraps to prepare electrothermal heating sheets using carbon fiber braid scraps.
  • the invention provides a method of using carbon fiber braid leftovers to prepare carbon fiber felt and pasting electrodes, which includes the following steps:
  • Step 2 Let stand: Place the chopped carbon fiber in a beaker containing acetone, and let it stand for 10h to 14h in a ventilated environment;
  • Step 3) Cleaning and drying: Wash the chopped carbon fibers repeatedly with acetone and deionized water, and then place them in an oven for drying;
  • Step 4) Prepare the dispersion: Use two containers to take deionized water and absolute ethanol, then take sodium carboxymethylcellulose powder and disperse it in absolute ethanol.
  • the mixture of sodium carboxymethylcellulose powder and absolute ethanol is The volume ratio of deionized water and absolute ethanol is 8 to 10:1.
  • Step 5) Prepare the chopped carbon fiber dispersion: add 1g to 2g of the chopped carbon fiber obtained in step 3) into the dispersion and stir thoroughly so that the chopped carbon fibers are fully dispersed in the dispersion to form a chopped carbon fiber dispersion;
  • Step 6) Make chopped carbon fiber felt sheets: introduce the chopped carbon fiber dispersion into a Buchner funnel with a double-layer metal filter, stir thoroughly and let it stand for 10 minutes, open the vacuum filtration device for suction filtration, and obtain Chopped carbon fiber felt sheets, with a weight between 10g/m 2 and 80g/m 2 ;
  • Step 7) Drying: Remove the upper metal filter with chopped carbon fiber felt sheets and place it in the oven for drying to obtain a circular chopped carbon fiber felt, which is then cut;
  • Step 8) Make electrodes: Bond the electrodes to both ends of the chopped carbon fiber felt, apply conductive silver glue evenly on the electrodes and paste them on both ends of the chopped carbon fiber felt, and then put them in the oven to dry to obtain a Carbon fiber felt for electrodes.
  • the invention provides a method for preparing electrothermal heating sheets using carbon fiber braid scraps, which includes the following steps:
  • Step 2 Let stand: Place the chopped carbon fiber in a beaker containing acetone, and let it stand for 10h to 14h in a ventilated environment;
  • Step 3) Cleaning and drying: Wash the chopped carbon fibers repeatedly with acetone and deionized water, and then place them in an oven for drying;
  • Step 4) Prepare the dispersion: Use two containers to take deionized water and absolute ethanol, then take sodium carboxymethylcellulose powder and disperse it in absolute ethanol.
  • the mixture of sodium carboxymethylcellulose powder and absolute ethanol is The volume ratio of deionized water and absolute ethanol is 8 to 10:1.
  • Step 5) Prepare the chopped carbon fiber dispersion: add 1g to 2g of the chopped carbon fiber obtained in step 3) into the dispersion and stir thoroughly so that the chopped carbon fibers are fully dispersed in the dispersion to form a chopped carbon fiber dispersion;
  • Step 6) Make chopped carbon fiber felt sheets: introduce the chopped carbon fiber dispersion into a Buchner funnel with a double-layer metal filter, stir thoroughly and let it stand for 10 minutes, open the vacuum filtration device for suction filtration, and obtain Chopped carbon fiber felt sheets, with a weight between 10g/m 2 and 80g/m 2 ;
  • Step 7) Drying: Remove the upper metal filter with chopped carbon fiber felt sheets and place it in the oven for drying to obtain a circular chopped carbon fiber felt, which is then cut;
  • Step 8) Make electrodes: Bond the electrodes on both ends of the cut chopped carbon fiber felt, apply conductive silver glue evenly on the electrodes and stick it on both ends of the chopped carbon fiber felt, and then put it in the oven to dry;
  • Step 9) Prepare TPU flakes: Put the TPU pellets into an oven to remove moisture, and then use a vacuum laminating machine to prepare TPU flakes, whose thickness can be controlled between 0.1mm and 2mm;
  • Step 10) Product molding: Add a layer of chopped carbon fiber felt with electrodes between the two layers of TPU sheets, and use a vacuum laminating machine to seal it to make a carbon fiber electrothermal heating sheet.
  • the drying temperature in the oven is 60°C and the drying time is 1 hour.
  • the amount of deionized water is 420 mL ⁇ 460 mL
  • the amount of absolute ethanol is 42 mL ⁇ 50 mL
  • the amount of sodium carboxymethyl cellulose powder is 3 g ⁇ 5 g
  • sodium carboxymethyl cellulose, deionized The mixture of water and absolute ethanol is dissolved using mechanical stirring at a rotation speed of 300 rpm and a stirring time of 3 hours to obtain a dispersion in which sodium carboxymethyl cellulose is completely dissolved.
  • step 5 chopped carbon fibers are added to the dispersion and stirred using a mechanical stirring device at a rotation speed of 300 rpm and a stirring time of 1 hour.
  • the oven temperature is 60°C
  • drying is performed for 3 hours
  • the diameter of the circular chopped carbon fiber felt is 90 mm
  • the cutting is to cut into felt pieces.
  • the size of the felt piece is 50mm ⁇ 50mm.
  • the electrode is a copper electrode
  • the oven temperature is 60°C
  • the drying time is 30 minutes.
  • the temperature for removing moisture from the TPU pellets is 60°C
  • the time for removing moisture is 10 hours
  • the temperature of the vacuum laminating machine is 210°C
  • the pressure is 4MPa.
  • the present invention Compared with the existing technology, the present invention has outstanding substantive features and significant progress. Specifically, the present invention cuts the leftover materials of carbon fiber fabrics to obtain chopped carbon fibers with relatively uniform lengths. On the one hand, it has a good electromagnetic shielding foundation. , on the other hand, it can solve the problem of agglomeration and difficulty in dispersing the carbon fiber during the dispersion process; then clean it, the main purpose is to remove the slurry on the surface of the carbon fiber, fully expose the carbon fiber, strengthen the connection between the chopped carbon fibers, and then prepare the dispersion liquid , disperse the carbon fiber; then dry and cut it, add electrodes at both ends, and plastic seal it with TPU sheets to complete the preparation of the electrothermal heating sheet.
  • Figure 1 is a process flow chart of the method of using carbon fiber braid scraps to prepare electrothermal heating sheets in the present invention
  • Figure 2 is a sample comparison diagram of the cutting, soaking, drying and sheeting processes of carbon fiber braided scraps in the present invention
  • FIG. 3 is a schematic structural diagram of the electrothermal heating plate in the present invention.
  • Figure 4 is a schematic diagram of the electromagnetic shielding efficiency of the electrothermal heating plate in the invention.
  • Figure 5 is a heat distribution diagram of the electrothermal heating plate in the present invention.
  • Figure 6 is a graph showing the temperature changes of the electrothermal heating plate in the present invention under different voltages with time.
  • a method of using carbon fiber braid scraps to prepare electrothermal heating sheets includes the following steps:
  • the purpose is mainly for two points. One is to facilitate the subsequent dispersion process of the carbon fibers and avoid the formation of short-cut carbon fibers.
  • the second problem that cannot be solved by lumped carbon fiber is to improve the electromagnetic shielding performance of carbon fiber. When the length of chopped carbon fiber is within a reasonable range, it has excellent electromagnetic shielding performance.
  • the upper left is a schematic diagram of the disordered carbon fiber braid scraps.
  • Step 2 Let stand: Place the chopped carbon fiber in a beaker filled with acetone and let it stand for 10h to 14h in a ventilated environment, as shown in the upper right corner of Figure 2.
  • Step 3) Cleaning and drying: Wash the chopped carbon fiber after standing with acetone and deionized water repeatedly, then put it into the oven for drying.
  • the drying temperature is 60°C and the drying time is 1 hour.
  • the main steps of this step are: It is to clean the slurry on the surface of carbon fiber.
  • Step 4) Prepare the dispersion: use two containers to take deionized water and absolute ethanol, then take sodium carboxymethyl cellulose powder and disperse it in absolute ethanol.
  • the volume ratio of deionized water and absolute ethanol is 8 ⁇ 10:1
  • the ratio of sodium carboxymethylcellulose powder to absolute ethanol is 1g sodium carboxymethylcellulose dispersed in every 10mL ⁇ 13mL of absolute ethanol to prevent sodium carboxymethylcellulose from being added to deionized water It flocculates and is not easy to dissolve.
  • the amount of deionized water is 420 mL to 460 mL
  • the amount of absolute ethanol is 42 mL to 50 mL
  • the amount of carboxymethyl cellulose sodium powder is 3 g to 5 g
  • the absolute ethanol in which carboxymethyl cellulose sodium is dispersed is mixed with deionized water.
  • Step 5) Prepare the chopped carbon fiber dispersion: Add 1g to 2g of chopped carbon fiber into the dispersion, stir thoroughly with a mechanical stirring device, the rotation speed is 300rpm, and the stirring time is 1 hour, so that the chopped carbon fibers are fully dispersed in the dispersion to form Chopped carbon fiber dispersion, as shown on the lower left in Figure 2.
  • Step 6) Make chopped carbon fiber felt sheets: Introduce the chopped carbon fiber dispersion into a Buchner funnel with a double-layer metal filter, stir thoroughly and let it stand for 10 minutes. Turn on the vacuum filtration device for suction filtration to obtain chopped carbon fiber felt.
  • the weight of carbon fiber felt sheets is between 10g/m 2 and 80g/m 2 , as shown in the lower right corner of Figure 2.
  • Step 7) Drying Remove the upper metal filter with chopped carbon fiber felt sheets and put it into the oven for drying.
  • the oven temperature is 60°C and dried for 3 hours to obtain a circular chopped carbon fiber felt with a diameter of 90mm. It is cut into felt pieces of 50mm ⁇ 50mm size.
  • Step 8) Make electrodes: Use copper electrodes as electrodes. Bond the electrodes to both ends of the chopped carbon fiber felt. Apply conductive silver glue evenly on the electrodes and paste them on both ends of the chopped carbon fiber felt. Then put them in the oven to dry. Dry; size is 80mm ⁇ 5mm ⁇ 0.02mm. Apply the conductive silver glue evenly on the electrode, attach it to both ends of the chopped carbon fiber felt, and place it in a 60°C oven to dry for 30 minutes to completely dry the conductive silver glue, thereby ensuring a stronger bond between the electrode and the chopped carbon fiber felt.
  • Step 9) Prepare TPU sheets: Put the TPU (thermoplastic polyurethane, 1185A, polyether type) pellets into a 60°C oven for 10 hours to completely remove the moisture contained in the TPU.
  • the thickness can be controlled from 0.1mm to 2mm.
  • Step 10) Product molding: Add a layer of chopped carbon fiber felt with electrodes between the two layers of TPU sheets, and use a vacuum laminating machine to seal the product, as shown in Figure 3, 1 refers to the electrode, 2 refers to the chopped carbon fiber felt. Carbon fiber felt sheet, 3-finger TPU sheet.

Landscapes

  • Paper (AREA)
  • Nonwoven Fabrics (AREA)
  • Surface Heating Bodies (AREA)

Abstract

本发明提供了一种利用碳纤维编织物边角料制备电致热加热片的方法,包括以下步骤:将团状无序的碳纤维编织物边角料裁剪成短切碳纤维;用丙酮和去离子水分别清洗、烘干;配置相应的分散液;将短切碳纤维加入分散液中充分分散;采用双层金属滤网进行抽滤,抽滤后烘干,得到短切碳纤维毡;裁剪短切碳纤维毡,在其两端粘贴电极,在碳纤维毡的正反面包覆TPU薄片,形成具有电致热性能和电磁屏蔽性能的加热片产品。碳纤维编织物边角料及制备过程中因裁剪而产生的边角料,作为废物直接抛弃,不仅造成材料的极大浪费,更会成为环境污染的杀手。该方法充分利用了碳纤维编织物边角料,造价成本低,且所制备的产品具备优异的电致热性能和电磁屏蔽性能。

Description

利用碳纤维编织物边角料制备电致热加热片的方法
本申请要求于2022年3月11日提交中国专利局,申请号为CN202210239068.X,发明名称为“利用碳纤维编织物边角料制备电致热加热片的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种碳纤维编织物边角料的重新再利用,具体的说,涉及了一种利用碳纤维编织物边角料制备电致热加热片的方法。
背景技术
传统的电致热材料普遍存在耗能较大的问题,在使用过程中有很大的局限性,因此寻找高效节能的电致热材料已成为目前材料领域研究的热点。碳纤维因其低电阻率、高热传导率等特点,在复合材料电致热装置的应用领域中有广阔的应用前景。
碳纤维具有较高的比强度和比模量,还具有密度低、无蠕变、热膨胀系数小、导电性能良好、电磁屏蔽性能优异、耐腐蚀性强、对人畜无害等优点,被广泛用于复合材料的增强体。
但作为工程应用中的碳纤维增强复合材料中的碳纤维成本较高,且价格在逐年上涨,严重影响了碳纤维在其复合材料中的推广和使用。
碳纤维编织物边角料是对碳纤维丝束进行编织时或在模具中铺放时裁剪产生的边角料,这种边角料并没有经过树脂的浸润,不是回收的碳纤维,因此其性能未受酸碱回收溶液或者高温的影响,它的再利用是先进复合材料可持续应用的重要举措,符合国民经济发展对“绿色”的意愿。
但是,碳纤维编织物边角料的再利用存在许多问题,例如较难实现短切碳纤维的均匀分散,导致碳纤维增强复合材料的电磁屏蔽性能和导电性能离散性较大,因此,解决碳纤维的均匀分散问题是碳纤维编织物边角料再利用的关键。
另外,随着现代科技的进步,人们对电子设备高速运行的需求使电子元器件正向轻量化、微型化、集成化方向发展。不同电子设备在运行过程中产生的电磁干扰(EMI,Electromagnetic interference)会对电子系统性能产生不 利影响,长时间暴露在电磁辐射下也会对人体健康造成危害。因此,抑制或减缓不良电磁干扰已经成为材料科学领域的重要研究方向。民用电子器件的辐射频率通常小于15GHz,军用电磁辐射频率常处于8GHz~18GHz之间。若从吸收电磁波角度看,反射率小于-5dB时,可用于普通民用建筑物的电磁屏蔽;反射率小于-7dB时,可用于军事设施的电磁屏蔽;反射率小于-10dB时,就属于很好地吸波材料了。因此,电磁屏蔽性能也是碳纤维编织物边角料的再利用时需要考虑的另一个重要问题。
为了解决以上存在的问题,人们一直在寻求一种理想的技术解决方案。
发明内容
本发明的目的是针对现有技术的不足,从而提供一种导电性能优异、电磁屏蔽性能好、并对碳纤维编织物边角料利用率高的方法,来利用碳纤维编织物边角料制备电致热加热片。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种利用碳纤维编织物边角料制备碳纤维毡并粘贴电极的方法,包括以下步骤:
步骤1)整理:将团状无序的碳纤维编织物边角料进行裁剪,控制裁剪长度在5mm~10mm,得到短切碳纤维;
步骤2)静置:将所述短切碳纤维放在盛有丙酮的烧杯中,在通风环境下静置10h~14h;
步骤3)清洗烘干:将静置后的短切碳纤维分别用丙酮和去离子水反复清洗后,放入烘箱中进行干燥;
步骤4)配置分散液:用两个容器分别取去离子水和无水乙醇,再取羧甲基纤维素钠粉末分散在无水乙醇中,羧甲基纤维素钠粉末与无水乙醇的配比为每10mL~13mL的无水乙醇中分散1g羧甲基纤维素钠,去离子水和无水乙醇的体积配比为8~10:1,将分散有羧甲基纤维素钠的无水乙醇与去离子水充分混合,形成分散液;
步骤5)配置短切碳纤维分散液:取1g~2g所述步骤3)得到的短切碳纤维加入到分散液中充分搅拌,使短切碳纤维在分散液中充分分散,形成短切碳纤维分散液;
步骤6)制成短切碳纤维毡薄片:将所述短切碳纤维分散液导入带有双层金属滤网的布氏漏斗中,充分搅拌后静置10min,打开真空抽滤装置进行抽滤,得到短切碳纤维毡薄片,其克重在10g/m2~80g/m2之间;
步骤7)烘干:将带有短切碳纤维毡薄片的上层金属滤网取下,放入烘箱进行干燥,得到圆形短切碳纤维毡,对其进行裁剪;
步骤8)制作电极:在裁剪后的短切碳纤维毡的两端粘结电极,将导电银胶均匀涂抹在电极上并粘贴在短切碳纤维毡两端,然后放入烘箱烘干,得到贴有电极的碳纤维毡片。
本发明提供了一种利用碳纤维编织物边角料制备电致热加热片的方法,包括以下步骤:
步骤1)整理:将团状无序的碳纤维编织物边角料进行裁剪,控制裁剪长度在5mm~10mm,得到短切碳纤维;
步骤2)静置:将所述短切碳纤维放在盛有丙酮的烧杯中,在通风环境下静置10h~14h;
步骤3)清洗烘干:将静置后的短切碳纤维分别用丙酮和去离子水反复清洗后,放入烘箱中进行干燥;
步骤4)配置分散液:用两个容器分别取去离子水和无水乙醇,再取羧甲基纤维素钠粉末分散在无水乙醇中,羧甲基纤维素钠粉末与无水乙醇的配比为每10mL~13mL的无水乙醇中分散1g羧甲基纤维素钠,去离子水和无水乙醇的体积配比为8~10:1,将分散有羧甲基纤维素钠的无水乙醇与去离子水充分混合,形成分散液;
步骤5)配置短切碳纤维分散液:取1g~2g所述步骤3)得到的短切碳纤维加入到分散液中充分搅拌,使短切碳纤维在分散液中充分分散,形成短切碳纤维分散液;
步骤6)制成短切碳纤维毡薄片:将所述短切碳纤维分散液导入带有双层金属滤网的布氏漏斗中,充分搅拌后静置10min,打开真空抽滤装置进行抽滤,得到短切碳纤维毡薄片,其克重在10g/m2~80g/m2之间;
步骤7)烘干:将带有短切碳纤维毡薄片的上层金属滤网取下,放入烘箱进行干燥,得到圆形短切碳纤维毡,对其进行裁剪;
步骤8)制作电极:在裁剪后的短切碳纤维毡的两端粘结电极,将导电银胶均匀涂抹在电极上并粘贴在短切碳纤维毡两端,然后放入烘箱烘干;
步骤9)制备TPU薄片:将TPU粒料放入烘箱中去除水分,然后用真空压膜机制备成TPU薄片,其厚度可控制在0.1mm~2mm;
步骤10)产品成型:将两层TPU薄片中间加入一层贴有电极的短切碳纤维毡,用真空压膜机进行塑封,制成碳纤维电致热加热片。
优选地,步骤3)中,烘箱中进行干燥的温度为60℃,时间为1h。
优选地,步骤4)中,去离子水的量为420mL~460mL,无水乙醇为42mL~50mL,羧甲基纤维素钠粉末的量为3g~5g,将羧甲基纤维素钠、去离子水、无水乙醇的混合液采用机械搅拌的方法溶解,转速300rpm,搅拌时间3h,得到羧甲基纤维素钠完全溶解的分散液。
优选地,步骤5)中,短切碳纤维加入到分散液中采用机械搅拌装置搅拌,转速300rpm,搅拌时间1h。
优选地,步骤7)中,烘箱温度为60℃,干燥3h,所述圆形短切碳纤维毡的直径为90mm,所述裁剪为剪裁成毡片。
优选地,步骤7)中,所述毡片的尺寸为50mm×50mm。
优选地,步骤8)中,所述电极为紫铜电极,烘箱温度为60℃,烘干时间30min。
优选地,步骤9)中,TPU粒料去除水分的温度为60℃,去除水分的时间为10h,真空压膜机的温度为210℃,压力为4MPa。
本发明相对现有技术具有突出的实质性特点和显著的进步,具体的说,本发明将碳纤维织物的边角料进行裁剪,得到长度相对均匀的短切碳纤维,一方面使其具有良好的电磁屏蔽基础,另一方面能够解决碳纤维分散过程中成团难以分散的问题;然后进行清洗,主要目的是去除碳纤维表面的浆料,使碳纤维充分暴露出来,加强短切碳纤维之间的连接,再配置分散液,将碳纤维进行分散;然后进行干燥、裁剪,在两端增加电极,并用TPU薄片进行塑封,完成电致热加热片的制备。
附图说明
图1是本发明中利用碳纤维编织物边角料制备电致热加热片的方法的工艺流程图;
图2是本发明中碳纤维编织物边角料进行裁剪、浸泡、烘干、成片过程的样品对比图;
图3是本发明中电致热加热片的结构示意图;
图4是发明中电致热加热片的电磁屏蔽效率示意图;
图5是本发明中电致热加热片的发热分布图;
图6是本发明中电致热加热片在不同电压下的温度随时间变化的曲线图。
具体实施方式
如图1所示,一种利用碳纤维编织物边角料制备电致热加热片的方法,包括以下步骤:
步骤1)整理:将团状无序的碳纤维编织物边角料进行裁剪,控制裁剪长度在5mm~10mm,形成短切碳纤维,其目的主要有两点,其一是方便碳纤维后续的分散过程,避免成团碳纤维无法处理的问题,其二是提高碳纤维的电磁屏蔽性能,短切碳纤维的长度在合理范围内时,具备优异的电磁屏蔽性能。图2中,左上是团状无序的碳纤维编织物边角料的示意图。
步骤2)静置:将短切碳纤维放在盛有丙酮的烧杯中,在通风环境下静置10h~14h,如图2中右上所示的状态。
步骤3)清洗烘干:将静置后的短切碳纤维用丙酮和去离子水先后反复清洗后,放入烘箱中进行干燥,烘干的温度为60℃,烘干时间为1h,该步骤主要是清洗掉碳纤维表面的浆料。
步骤4)配置分散液:用两个容器分别取去离子水和无水乙醇,再取羧甲基纤维素钠粉末分散在无水乙醇中,去离子水和无水乙醇的体积配比为8~10:1,羧甲基纤维素钠粉末与无水乙醇的配比为每10mL~13mL的无水乙醇中分散1g羧甲基纤维素钠,防止羧甲基纤维素钠在加入去离子水中时絮凝,不易溶解。具体的,去离子水的量为420mL~460mL,无水乙醇为42mL~50mL,羧甲基纤维素钠粉末的量为3g~5g,将分散有羧甲基纤维素钠的无水乙醇与去离子水充分混合,采用机械搅拌的方法溶解,转速300rpm,搅拌时间3h,得到羧甲基纤维素钠完全溶解的分散液。
步骤5)配置短切碳纤维分散液:取1g~2g的短切碳纤维加入到分散液中,用机械搅拌装置充分搅拌,转速300rpm,搅拌时间1h,使短切碳纤维在分散液中充分分散,形成短切碳纤维分散液,如图2中左下所示。
步骤6)制成短切碳纤维毡薄片:将短切碳纤维分散液导入带有双层金属滤网的布氏漏斗中,充分搅拌后静置10min,打开真空抽滤装置进行抽滤,得到短切碳纤维毡薄片,其克重在10g/m2~80g/m2之间,如图2中的右下所示。
步骤7)烘干:将带有短切碳纤维毡薄片的上层金属滤网取下,放入烘箱进行干燥,烘箱温度为60℃,干燥3h,得到直径为90mm的圆形短切碳纤维毡,将其裁剪成50mm×50mm尺寸的毡片。
步骤8)制作电极:电极采用紫铜电极,在裁剪后的短切碳纤维毡的两端粘结电极,将导电银胶均匀涂抹在电极上并粘贴在短切碳纤维毡两端,然后放入烘箱烘干;尺寸为80mm×5mm×0.02mm。将导电银胶均匀涂抹在电极上,贴在短切碳纤维毡两端,并放入60℃烘箱中烘干30min,使导电银胶完全干燥,从而保证电极与短切碳纤维毡粘合更牢固。
步骤9)制备TPU薄片:将TPU(热塑性聚氨酯,1185A,聚醚型)粒料放入60℃烘箱中10h以完全除去TPU中含有的水分,厚度可控0.1mm~2mm。将烘干的TPU粒料用真空压膜机以210℃的温度,4MPa的压力,制备出尺寸为60mm×60mm×0.5mm的薄片,备用。
步骤10)产品成型:将两层TPU薄片中间加入一层贴有电极的短切碳纤维毡,用真空压膜机进行塑封,制成产品,如图3所示,1指电极,2指短切碳纤维毡片,3指TPU薄片。
如图4所示,为产品进行电磁屏蔽效率实验的数据图。
如图5所示,为产品通电加热后,分别在3V、4V、5V和6V下的热量分布图。
如图6所示,为产品通电加热后,分别在3V、4V、5V和6V下温度随时间变化的图。
以上所述仅是本发明的优选实施方式,并非对本发明作任何形式上的限制。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理 的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种利用碳纤维编织物边角料制备碳纤维毡并粘贴电极的方法,其特征在于:包括以下步骤:
    步骤1)整理:将团状无序的碳纤维编织物边角料进行裁剪,控制裁剪长度在5mm~10mm,形成短切碳纤维;
    步骤2)静置:将所述短切碳纤维放在盛有丙酮的烧杯中,在通风环境下静置10h~14h;
    步骤3)清洗烘干:将静置后的短切碳纤维分别用丙酮和去离子水反复清洗后,放入烘箱中进行干燥;
    步骤4)配置分散液:用两个容器分别取去离子水和无水乙醇,再取羧甲基纤维素钠粉末分散在无水乙醇中,羧甲基纤维素钠粉末与无水乙醇的配比为每10mL~13mL的无水乙醇中分散1g羧甲基纤维素钠,去离子水和无水乙醇的体积配比为8~10:1,将分散有羧甲基纤维素钠的无水乙醇与去离子水充分混合,形成分散液;
    步骤5)配置短切碳纤维分散液:取1g~2g所述步骤3)得到的短切碳纤维加入到分散液中充分搅拌,使短切碳纤维在分散液中充分分散,形成短切碳纤维分散液;
    步骤6)制成短切碳纤维毡薄片:将所述短切碳纤维分散液导入带有双层金属滤网的布氏漏斗中,充分搅拌后静置10min,打开真空抽滤装置进行抽滤,得到短切碳纤维毡薄片,其克重在10g/m2~80g/m2之间;
    步骤7)烘干:将带有短切碳纤维毡薄片的上层金属滤网取下,放入烘箱进行干燥,得到圆形短切碳纤维毡,对其进行裁剪;
    步骤8)制作电极:在裁剪后的短切碳纤维毡的两端粘贴电极,将导电银胶均匀涂抹在电极上并粘贴在短切碳纤维毡两端,然后放入烘箱烘干,得到贴有电极的碳纤维毡片。
  2. 一种利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:包括以下步骤:
    步骤1)整理:将团状无序的碳纤维编织物边角料进行裁剪,控制裁剪长度在5mm~10mm,得到短切碳纤维;
    步骤2)静置:将所述短切碳纤维放在盛有丙酮的烧杯中,在通风环境下静置10h~14h;
    步骤3)清洗烘干:将静置后的短切碳纤维分别用丙酮和去离子水反复清洗后,放入烘箱中进行干燥;
    步骤4)配置分散液:用两个容器分别取去离子水和无水乙醇,再取羧甲基纤维素钠粉末分散在无水乙醇中,羧甲基纤维素钠粉末与无水乙醇的配比为每10mL~13mL的无水乙醇中分散1g羧甲基纤维素钠,去离子水和无水乙醇的体积配比为8~10:1,将分散有羧甲基纤维素钠的无水乙醇与去离子水充分混合,形成分散液;
    步骤5)配置短切碳纤维分散液:取1g~2g所述步骤3)得到的短切碳纤维加入到分散液中充分搅拌,使短切碳纤维在分散液中充分分散,形成短切碳纤维分散液;
    步骤6)制成短切碳纤维毡薄片:将所述短切碳纤维分散液导入带有双层金属滤网的布氏漏斗中,充分搅拌后静置10min,打开真空抽滤装置进行抽滤,得到短切碳纤维毡薄片,其克重在10g/m2~80g/m2之间;
    步骤7)烘干:将带有短切碳纤维毡薄片的上层金属滤网取下,放入烘箱进行干燥,得到圆形短切碳纤维毡,对其进行裁剪;
    步骤8)制作电极:在裁剪后的短切碳纤维毡的两端粘结电极,将导电银胶均匀涂抹在电极上并粘贴在短切碳纤维毡两端,然后放入烘箱烘干;
    步骤9)制备TPU薄片:将TPU粒料放入烘箱中去除水分,然后用真空压膜机制备成TPU薄片,其厚度范围可控制在0.1mm~2mm;
    步骤10)产品成型:将两层TPU薄片中间加入一层贴有电极的短切碳纤维毡,用真空压膜机进行塑封,制成电致热加热片。
  3. 根据权利要求2所述的利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤3)中,烘箱中进行干燥的温度为60℃,时间为1h。
  4. 根据权利要求3所述的利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤4)中,去离子水的量为420mL~460mL,无水乙醇为42mL~50mL,羧甲基纤维素钠粉末的量为3g~5g,将羧甲基纤维素钠、 去离子水、无水乙醇的混合液采用机械搅拌的方法溶解,转速300rpm,搅拌时间3h,得到羧甲基纤维素钠完全溶解的分散液。
  5. 根据权利要求3所述的利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤5)中,短切碳纤维加入到分散液中采用机械搅拌装置搅拌,转速300rpm,搅拌时间1h。
  6. 根据权利要求5所述的利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤7)中,烘箱温度为60℃,干燥3h,所述圆形短切碳纤维毡的直径为90mm,对圆形碳纤维粘片进行裁剪,得到毡片。
  7. 根据权利要求6所述的利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤7)中,所述毡片的尺寸为50mm×50mm。
  8. 根据权利要求6所述的采用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤8)中,所述电极为紫铜电极,烘箱温度为60℃,烘干时间30min。
  9. 根据权利要求8所述的利用碳纤维编织物边角料制备电致热加热片的方法,其特征在于:步骤9)中,TPU粒料去除水分的温度为60℃,去除水分的时间为10h,真空压膜机的温度为210℃,压力为4MPa。
PCT/CN2023/080392 2022-03-11 2023-03-09 利用碳纤维编织物边角料制备电致热加热片的方法 WO2023169492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210239068.X 2022-03-11
CN202210239068.XA CN114567941B (zh) 2022-03-11 2022-03-11 利用碳纤维编织物边角料制备电致热加热片的方法

Publications (1)

Publication Number Publication Date
WO2023169492A1 true WO2023169492A1 (zh) 2023-09-14

Family

ID=81717276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080392 WO2023169492A1 (zh) 2022-03-11 2023-03-09 利用碳纤维编织物边角料制备电致热加热片的方法

Country Status (2)

Country Link
CN (1) CN114567941B (zh)
WO (1) WO2023169492A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567941B (zh) * 2022-03-11 2024-03-15 郑州大学 利用碳纤维编织物边角料制备电致热加热片的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147183A (ja) * 1993-11-24 1995-06-06 Dairin Shoji:Kk 面状発熱体およびその製造方法
JPH09260034A (ja) * 1996-03-22 1997-10-03 Harada Sangyo:Kk 炭素繊維混抄シート発熱体を備えた防水シート及びその製造方法
CN106671502A (zh) * 2017-01-16 2017-05-17 华南理工大学 一种短切碳纤维电磁屏蔽复合材料及其制备方法
CN109809829A (zh) * 2019-04-11 2019-05-28 航天睿特碳材料有限公司 利用碳纤维编织物废料制备碳/碳保温材料的方法
CN111278177A (zh) * 2019-12-13 2020-06-12 中航复材(北京)科技有限公司 一种碳材料电加热片的制备方法
CN113416327A (zh) * 2021-04-08 2021-09-21 常州市宏发纵横新材料科技股份有限公司 一种将碳纤维编织物边角料在建筑施工再利用的方法
CN114567941A (zh) * 2022-03-11 2022-05-31 郑州大学 利用碳纤维编织物边角料制备电致热加热片的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062408C (zh) * 1994-12-06 2001-02-21 北京寰海智业科技发展有限公司 导电发热用的碳纤维复合纸及其制备方法
CN1201358A (zh) * 1997-05-29 1998-12-09 天津市轻工业造纸技术研究所 导电发热无纺布及其制造方法
JP3995861B2 (ja) * 2000-03-24 2007-10-24 東邦テナックス株式会社 ポリアクリロニトリル系酸化繊維、炭素繊維構造体、及び炭素繊維構造体の製造方法
JP3972674B2 (ja) * 2002-02-14 2007-09-05 東レ株式会社 炭素繊維その製造方法および炭素繊維強化樹脂組成物
CN100534238C (zh) * 2003-09-23 2009-08-26 黄斌锋 一种远红外辐射电热片及其制备方法
CN2899365Y (zh) * 2006-04-26 2007-05-09 付成山 碳纤维毡电加热装置
CN100588298C (zh) * 2006-06-27 2010-02-03 黄喆官 利用碳纤维制造面状发热体的方法
CN100588299C (zh) * 2006-06-27 2010-02-03 黄喆官 利用碳纤维制备多功能发热纸的方法
CN201039475Y (zh) * 2006-12-05 2008-03-19 魏文才 高温碳纤维电热纸
CN201667765U (zh) * 2010-03-18 2010-12-08 上海科斗电子科技有限公司 内置导电纤维的电器塑料外壳
US10763490B2 (en) * 2011-09-30 2020-09-01 Ppg Industries Ohio, Inc. Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles
KR101585393B1 (ko) * 2015-03-18 2016-01-14 주식회사 유니웜 부착식 전극을 이용한 카본사 면상발열체의 전극 형성방법
CN105178090B (zh) * 2015-09-13 2017-04-12 北京化工大学 一种短切纤维取向毡的制备方法
CN106488593A (zh) * 2015-11-04 2017-03-08 石家庄邦迪高分子材料有限公司 一种远红外碳纤维复合发热膜
CN108024393A (zh) * 2016-11-04 2018-05-11 陆上驰 用于地板或瓷砖的发热体及制备方法
CN206879120U (zh) * 2017-05-19 2018-01-12 连云港磐石复合材料有限公司 一种柔性片状碳纤维发热体
CN107613587B (zh) * 2017-08-10 2020-06-19 华南理工大学 一种基于碳纤维的透明导电发热薄膜的制备方法
KR101813685B1 (ko) * 2017-09-05 2017-12-29 주식회사 명신메디칼 면상발열체의 제조방법
KR102135515B1 (ko) * 2018-12-14 2020-07-17 재단법인 한국탄소융합기술원 금속도금 탄소섬유가 첨가된 탄소섬유 부직포 제조방법
CN110072302A (zh) * 2019-04-26 2019-07-30 江苏骏源新材料有限公司 远红外碳纤维发热板及其制备方法
CN110284322A (zh) * 2019-07-01 2019-09-27 深圳市尼森实业有限公司 一种柔性导电发热碳基阻燃复合织物及其制备方法
KR102289991B1 (ko) * 2019-09-30 2021-08-20 주식회사 엔바이오니아 탄소섬유 스크랩을 활용한 재생탄소섬유 매트 제조방법
CN111748905B (zh) * 2020-06-15 2023-06-06 上海交通大学 一种回收碳纤维的再处理方法
CN111935858A (zh) * 2020-08-18 2020-11-13 领航博创新能源电池技术研究院(北京)有限公司 一种柔性碳纤维电热膜及其制备方法
CN214125549U (zh) * 2020-12-03 2021-09-03 上海骏源实业股份有限公司 一种柔性热电器件
CN113809336B (zh) * 2021-08-23 2023-10-24 安徽大学 一种碳纤维与石墨烯复合的高强度多孔材料和气体扩散层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147183A (ja) * 1993-11-24 1995-06-06 Dairin Shoji:Kk 面状発熱体およびその製造方法
JPH09260034A (ja) * 1996-03-22 1997-10-03 Harada Sangyo:Kk 炭素繊維混抄シート発熱体を備えた防水シート及びその製造方法
CN106671502A (zh) * 2017-01-16 2017-05-17 华南理工大学 一种短切碳纤维电磁屏蔽复合材料及其制备方法
CN109809829A (zh) * 2019-04-11 2019-05-28 航天睿特碳材料有限公司 利用碳纤维编织物废料制备碳/碳保温材料的方法
CN111278177A (zh) * 2019-12-13 2020-06-12 中航复材(北京)科技有限公司 一种碳材料电加热片的制备方法
CN113416327A (zh) * 2021-04-08 2021-09-21 常州市宏发纵横新材料科技股份有限公司 一种将碳纤维编织物边角料在建筑施工再利用的方法
CN114567941A (zh) * 2022-03-11 2022-05-31 郑州大学 利用碳纤维编织物边角料制备电致热加热片的方法

Also Published As

Publication number Publication date
CN114567941B (zh) 2024-03-15
CN114567941A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN103966907B (zh) 一种基于纳米纤维素的柔性导电纸及其制备方法
WO2023169492A1 (zh) 利用碳纤维编织物边角料制备电致热加热片的方法
CN104658757A (zh) 一种锂离子电容器电极浆料中复合导电剂的分散方法
CN103966844A (zh) 一种石墨烯导电复合纤维的制备方法
CN103103869A (zh) 一种碳纤维复合功能纸的制备方法
CN111509231B (zh) 负极浆料、负极片及其制备方法
CN107197549A (zh) 石墨烯纳米远红外负离子复合纤维导电发热板及制作工艺
CN102206371B (zh) 一种具有电磁屏蔽性能的再生橡胶复合材料及其制备方法
CN101532243A (zh) 一种纳米复合增强织物定型剂及其应用
CN105932288A (zh) 一种石墨烯复合导电剂及其制备方法
CN105504093A (zh) 甲壳素纳米纤维/碳纳米管复合制备薄膜电极的方法
CN111424341B (zh) 废弃皮革超细纤维及其与聚乙烯醇复合的高电磁屏蔽材料和它们的制备方法
CN108630351A (zh) 一种低成本柔性绿色可降解金属网络透明导电电极的方法
CN108735528A (zh) 一种含ptfe纤维的超级电容器电极片的制备工艺
CN101718038B (zh) 高性能镀镍碳纤维的制备方法
CN107105528A (zh) 石墨烯复合纤维远红外负离子柔性导电发热板及制作工艺
CN104078102A (zh) 一种改性纳米碳导电银浆及其制作方法
CN108047471A (zh) 一种石墨烯薄膜预浸料的连续制备方法
CN103606680B (zh) 一种天然石墨复合含氮碳纤维网负极材料的制备方法
CN114716706A (zh) 一种超薄热反应无基材膜的制作方法
CN102064328A (zh) 质子交换膜燃料电池用的复合材料双极板及其制作方法
CN108439903A (zh) 一种抗压型导电混凝土
CN112812376A (zh) 一种3d打印纤维素/纳米无机填料复合凝胶墨水及其制备方法
CN104327461B (zh) 利用废弃电路板粉粒料生产高密度环保板材的方法
CN103103870A (zh) 一种功能化碳纤维复合电热纸的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766069

Country of ref document: EP

Kind code of ref document: A1