WO2023168585A1 - 电化学装置和电子设备 - Google Patents

电化学装置和电子设备 Download PDF

Info

Publication number
WO2023168585A1
WO2023168585A1 PCT/CN2022/079670 CN2022079670W WO2023168585A1 WO 2023168585 A1 WO2023168585 A1 WO 2023168585A1 CN 2022079670 W CN2022079670 W CN 2022079670W WO 2023168585 A1 WO2023168585 A1 WO 2023168585A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
conductive agent
electrode
negative
Prior art date
Application number
PCT/CN2022/079670
Other languages
English (en)
French (fr)
Inventor
刘明举
李娅洁
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2022/079670 priority Critical patent/WO2023168585A1/zh
Priority to CN202280005092.5A priority patent/CN116097489A/zh
Publication of WO2023168585A1 publication Critical patent/WO2023168585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemical technology, and in particular to an electrochemical device and electronic equipment.
  • Electrochemical devices such as lithium-ion batteries
  • the requirements for the energy density of electrochemical devices are getting higher and higher.
  • some technologies increase the capacity or voltage of active materials, while other technologies increase the content of active materials per unit volume and reduce the content of inactive materials.
  • Existing solutions do not fully meet the needs and further improvements are expected.
  • an electrochemical device including an electrode.
  • the electrode includes a current collector and an active material layer located on one or both sides of the current collector.
  • the surface of the active material layer has a porous structure; the active material layer is in an inert state.
  • the results of the thermogravimetric analysis test under the atmosphere at a temperature rise rate of 10°C/min showed that the mass change of the active material layer from 350°C to 800°C was 0% to 0.2%.
  • the results of thermogravimetric analysis show that the number of weight loss peaks of the active material layer at 350°C to 800°C is 0.
  • the energy density can be increased, the dynamic performance can be improved, and the rate performance can be improved.
  • the pore-like structure has a diameter of 5 ⁇ m to 50 ⁇ m. In some embodiments, the pore structure has a pore depth of 2 ⁇ m to 50 ⁇ m. In some embodiments, the distance between the hole centers of two adjacent semi-through hole structures is 200 ⁇ m to 500 ⁇ m, which is beneficial to reducing the ion transmission path and ensuring energy density.
  • the active material layer includes active material, and based on the total weight of the active material layer, the mass percentage of the active material in the active material layer is 90% to 99.5%, so that the capacity can be guaranteed.
  • the active material layer includes an active material and a conductive agent.
  • the conductive agent accounts for 0.5% to 10% of the mass of the active material layer, so that Improve conductivity while avoiding impact on capacity.
  • the conductive agent forms composite aggregates, the composite aggregates are interwoven to form a cage network, and at least part of the particles of the active material are located inside the cage network.
  • the conductive agent includes a zero-dimensional conductive agent and a one-dimensional conductive agent, thereby improving both long-range and short-range conductivity.
  • the mass percentage of the zero-dimensional conductive agent in the conductive agent ranges from 0% to 50%.
  • the one-dimensional conductive agent has a length of 1 ⁇ m to 100 ⁇ m.
  • the zero-dimensional conductive agent has a D50 of 10 nm to 100 nm.
  • the zero-dimensional conductive agent includes: at least one of conductive carbon black or Ketjen black.
  • the one-dimensional conductive agent includes: at least one of carbon nanotubes or carbon fibers.
  • the electrode is a positive electrode
  • the active material layer is a positive active material layer.
  • the positive active material layer includes a positive electrode material
  • the positive electrode material includes at least one of lithium iron phosphate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, lithium manganate, lithium cobalt oxide, or lithium-rich materials.
  • the thickness of one side of the positive active material layer is 20 ⁇ m to 1300 ⁇ m.
  • the positive active material layer has a compacted density of 2.2g/cm 3 to 4.3g/cm 3 .
  • the cathode active material layer has a porosity of 25% to 35%.
  • the electrode is a positive electrode
  • the active material layer is a positive active material layer.
  • the thickness of one side of the positive active material layer is 25 ⁇ m to 130 ⁇ m.
  • the positive active material layer has a compacted density of 2.3 to 4.1 g/cm 3 .
  • the electrode is a negative electrode
  • the active material layer is a negative active material layer.
  • the negative active material layer includes negative electrode materials
  • the negative electrode materials include lithium titanate, silicon-based materials, silicon oxide, silicon, At least one of silicon carbon materials or carbon materials.
  • the thickness of one side of the negative active material layer is 15 ⁇ m to 1500 ⁇ m.
  • the negative active material layer has a compacted density of 0.65g/cm 3 to 1.83g/cm 3 .
  • the negative active material layer has a porosity of 40% to 50%.
  • the electrode is a negative electrode
  • the active material layer is a negative active material layer.
  • the thickness of one side of the negative active material layer is 30 ⁇ m to 150 ⁇ m.
  • the negative active material layer has a compacted density of 1.35g/cm 3 to 1.78g/cm 3 .
  • This application also proposes an electronic device, including any of the electrochemical devices proposed in this application.
  • the content of polymer compounds in the active material layer is zero or extremely low, which avoids obstruction of electron and ion transmission, which is conducive to improving ion and electron conduction in the active material layer, thereby conducive to improving the electrical performance of the electrochemical device. Since there is no mass occupied by the binder, it is beneficial to increase the energy density.
  • the surface of the active material layer in this application has a porous structure. Due to the existence of the porous structure, the porosity of the active material layer is increased, which is beneficial to reducing the energy density. The path for ions to be transported to the interior of the active material layer, as well as increasing the contact area, improves rate performance.
  • Figure 1 is a schematic diagram of an electrode in an embodiment of the present application.
  • the electrodes of electrochemical devices are made by mixing active materials, conductive agents and binders in a solvent and then coating them on the current collector.
  • the conductive agent, binder and current collector have A certain mass reduces the energy density.
  • the binder does not conduct electrons and ions.
  • the presence of the binder directly hinders the electron and ion transmission process and increases their movement distance, thus limiting the rate performance of the battery.
  • the presence of the binder will also increase the volume of the active material layer of the electrode, increasing the thickness of the active material layer of the electrode, thereby reducing the volumetric energy density.
  • an electrochemical device (such as a lithium ion battery) includes an electrode.
  • the electrode may be a positive electrode or a negative electrode.
  • the electrode includes a current collector 10 and a current collector located on one side or both sides of the current collector.
  • the active material layer 50 and the current collector 10 can be copper foil or aluminum foil, and the surface of the active material layer 50 has a porous structure 40; perform thermogravimetric analysis on the active material layer 50 at a heating rate of 10°C/min in an inert atmosphere. The results of the analysis show that the mass change of the active material layer 50 at 350°C to 800°C is 0% to 0.2%. In some embodiments, the detection accuracy of the thermogravimetric analysis equipment is 0.2%.
  • the mass change of the active material layer 50 is not greater than the detection accuracy, which indicates that the content of the polymer compound 50 in the active material layer in this application is Zero or extremely low, that is, the active material layer 50 of the present application does not contain a polymer binder, which avoids the binder's hindrance to the transmission of electrons and ions, which is conducive to improving the conduction of ions and electrons in the active material layer 50.
  • This is beneficial to improving the electrical performance of the electrochemical device. Since there is no mass occupied by the binder, it is beneficial to increase the energy density.
  • the surface of the active material layer 50 has a porous structure 40. Since the porous structure 40 The existence of the active material layer 50 increases the porosity of the active material layer 50 , which is beneficial to reducing the path for ions to be transmitted to the interior of the active material layer 50 , increasing the contact area, and improving the rate performance.
  • the results of thermogravimetric analysis show that the number of weight loss peaks of the active material layer 50 at 350°C to 800°C is 0.
  • the polymer compound when performing thermogravimetric analysis in the range of 350°C to 800°C, the polymer compound will produce a weight loss peak due to thermal decomposition. In this application, there is no weight loss peak in the above range, that is, the active material in this application There is no polymer binder in the layer, thereby ensuring the conductivity of the active material layer 50 .
  • the diameter of the hole-like structure 40 is 5 ⁇ m to 50 ⁇ m.
  • the porous structure 40 may be a cylindrical hole extending along the thickness direction of the active material layer 50. If the diameter of the porous structure 40 is too small, it is not conducive to the infiltration of the electrolyte. Large, it will reduce the volume energy density.
  • the diameter of the hole structure 40 may further be 10 ⁇ m to 40 ⁇ m, further may be 15 ⁇ m to 35 ⁇ m, and further may be 20 ⁇ m to 30 ⁇ m.
  • the hole depth of the porous structure 40 is 2 ⁇ m to 50 ⁇ m. If the hole depth of the porous structure 40 is too small, ions cannot enter the interior of the active material layer 50 well. If the hole depth is too large, it will affect the volumetric energy density.
  • the hole depth of the porous structure 40 may further be 15 ⁇ m to 45 ⁇ m, further may be 20 ⁇ m to 40 ⁇ m, and further may be 25 ⁇ m to 35 ⁇ m.
  • the distance between the hole centers of two adjacent semi-through hole structures 40 is 200 ⁇ m to 500 ⁇ m.
  • the interface of the porous structure 40 is circular, and the central axis of the circle is the hole center of the porous structure 40.
  • the semi-open porous structure 40 means that the hole depth of the porous structure 40 is smaller than the active material layer.
  • the thickness of 50 is about half of the thickness of the active material layer 50.
  • the porous structure 40 in this application can be partially or completely a semi-through porous structure 40. The spacing distance between the hole centers of the porous structure 40 is too small.
  • the distance between the hole centers of two adjacent semi-through hole structures 40 may further be 250 ⁇ m to 450 ⁇ m, and further may be 300 ⁇ m to 400 ⁇ m.
  • the active material layer 50 includes an active material 20 , and based on the total weight of the active material layer 50 , the mass percentage of the active material 20 in the active material layer 50 is 90% to 99.5. %. In some embodiments, the mass percentage of the active material 20 in the active material layer 50 affects the energy density of the electrochemical device. The higher the mass percentage, the higher the energy density and the higher the energy density. By limiting it to the above range The energy density can be ensured. Furthermore, the mass percentage of the active material 20 in the active material layer 50 is 94% to 98%.
  • the active material layer includes an active material and a conductive agent, and the conductive agent accounts for 0.5% to 10% of the mass of the active material layer 50 based on the total mass of the active material layer.
  • the conductive agent can enhance the conductivity of the active material layer, but will reduce the energy density of the active material layer 50. By controlling the mass percentage of the conductive agent, the conductivity of the active material layer 50 can be ensured while ensuring Energy Density.
  • the conductive agent forms a composite aggregate
  • the composites 30 are interwoven to form a cage network, and at least part of the particles of the active material are located inside the cage network.
  • the conductive agent may be intertwined to form linear aggregates 301 and point-like aggregates 302 .
  • the linear aggregates 301 enhance long-range conductivity
  • the point-like aggregates 302 302 filling in the gaps can enhance the short-range conductivity
  • the cage network formed by the composite aggregates 30 can enhance the conductivity between the active materials 20 .
  • the conductive agent includes a zero-dimensional conductive agent and a one-dimensional conductive agent.
  • the zero-dimensional conductive agent can be in the form of granules, which include conductive carbon black
  • the one-dimensional conductive agent can be in the form of lines, which can include carbon nanotubes, specifically single-walled carbon nanotubes. Zero-dimensional isomorphic combinations are used. Conductive agents and one-dimensional conductive agents can simultaneously ensure short-range electron transmission and long-range electron transmission, which is beneficial to improving rate performance.
  • the mass percentage of the zero-dimensional conductive agent in the conductive agent ranges from 0% to 50%. In some embodiments, the mass percentage of the zero-dimensional conductive agent does not exceed 50%, thus ensuring the structural stability of the cage network.
  • the length of the one-dimensional conductive agent is 1 ⁇ m to 100 ⁇ m. In some embodiments, if the length of the one-dimensional conductive agent is too small, it is difficult to form a stable cage network. The length of the one-dimensional conductive agent is if Too large and may break easily. In some embodiments, the zero-dimensional conductive agent has a D50 of 10 to 100 nm.
  • D50 may refer to the equivalent diameter of the largest particle when the cumulative distribution in the particle size distribution curve is 50%. If the particle size of the zero-dimensional conductive agent is too small, multiple zero-dimensional conductive agents may be needed to fill a gap, which will increase the contact resistance and affect the conductive agent. If the particle size of the zero-dimensional conductive agent is too large, it may be larger than the size of the gap. Doesn't fill in gaps well.
  • the zero-dimensional conductive agent includes: at least one of conductive carbon black or Ketjen black.
  • the one-dimensional conductive agent includes: at least one of carbon nanotubes or carbon fibers.
  • the electrode is a positive electrode
  • the active material layer is a positive active material layer
  • the positive active material layer includes a positive electrode material
  • the positive electrode material includes lithium iron phosphate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate, manganese At least one of lithium acid oxide, lithium cobalt oxide or lithium-rich materials.
  • the thickness of one side of the positive active material layer is 20 ⁇ m to 1300 ⁇ m.
  • the thickness of one side of the positive active material layer is 25 ⁇ m to 130 ⁇ m.
  • the thickness of the positive active material layer on one side of the current collector is the thickness of one side of the positive active material layer. If the thickness of one side of the positive active material layer is too small, the capacity of the electrochemical device will be too small and the positive electrode activity will be reduced. If the thickness of one side of the material layer is too large, the positive active material layer may be desorbed from the current collector.
  • the compacted density of the positive active material layer is 2.2g/cm 3 to 4.3g/cm 3 .
  • the compacted density of the positive active material layer is 2.3g/cm 3 to 4.1g/cm 3 .
  • the porosity of the positive active material layer is 25% to 35%. If the porosity of the positive active material layer is too small, it will reduce the ion transmission channel, which is not conducive to ion conduction. If the porosity of the positive active material layer is too large, the volumetric energy density will be degraded.
  • the electrode is a negative electrode
  • the active material layer is a negative active material layer.
  • the negative active material layer includes negative electrode materials
  • the negative electrode materials include lithium titanate, silicon-based materials, silicon oxide, silicon, and silicon carbon materials. Or at least one of carbon materials.
  • the thickness of one side of the negative active material layer is 15 ⁇ m to 1500 ⁇ m, optionally, the thickness of one side of the negative active material layer is 30 ⁇ m to 150 ⁇ m; in some embodiments, the thickness of the negative active material layer on one side of the current collector The thickness is the thickness of one side of the negative active material layer. If the thickness of one side of the negative active material layer is too small, it will be detrimental to the capacity of the electrochemical device. If the thickness of one side of the negative active material layer is too large, it may cause negative electrode activity. The material layer desorbs from the current collector.
  • the compacted density of the negative active material layer is 0.65g/cm 3 to 1.83g/cm 3 , optionally, the compacted density of the negative active material layer is 1.35g/cm 3 to 1.78 g/cm 3 .
  • the compaction density of the negative active material layer is too small, it will be detrimental to the volume energy density, and if the compaction density of the negative active material layer is too high, it will be detrimental to ion conduction.
  • the porosity of the negative active material layer is 40% to 50%. In some embodiments, if the porosity of the negative active material layer is too small, it will reduce the ion conduction path, which is detrimental to the rate performance. If the porosity of the negative active material layer is too large, it will be detrimental to the volumetric energy density.
  • an electrode preparation method which can be used to manufacture the electrode of any electrochemical device of this application, including: adding a conductive agent and a dispersant to a dispersion medium, and using ultrasonic, stirring, and sanding to Form a uniform dispersion by other methods; add the active material to the dispersion and stir evenly to form a slurry; apply the slurry on at least one side of the current collector, dry it at 80°C to 120°C and cold-press it to form the initial electrode ; Initial place the electrode within the working range of the laser transmitter, the laser intensity is greater than 30W, the distance between the laser and the pole piece is 3cm to 10cm, and the process is 1s to 600s to form an array of cylindrical holes on the surface of the active material layer to form the electrode.
  • Optional dispersants include sodium dodecyl sulfate (SDS), sodium dodecyl sulfonate (SDBS), cetyltrimethylammonium bromide (C16TMAB), polyvinylpyrrolidone (PVP), carboxylic acid At least one of sodium methylcellulose (CMC-Na) or lithium carboxymethylcellulose (CMC-Li); the preparation method of the electrode proposed in the embodiment of this application can remove the activity by treating the electrode
  • the polymer compounds in the material layer are conducive to improving the conductivity of the electrochemical device, which is conducive to increasing the energy density.
  • the active material layer of the electrode includes active materials and conductive agents, and does not contain polymer compounds (such as polymer binders and thickeners), thereby avoiding the impact of polymer compounds on the transmission of electrons and ions. hinder.
  • the binder-free electrode active material layer only contains active materials and conductive agents, without polymer binders, which avoids the binder's obstruction to electron and ion transmission, reduces the proportion of inactive materials, and increases energy density.
  • the addition of through holes increases the porosity of the electrode, reduces the transmission distance of lithium ions, and improves the rate performance
  • the conductive agent includes single-walled carbon nanotubes and conductive carbon black. The addition of single-walled carbon nanotubes increases the long-range Electron transmission, the addition of conductive carbon black increases short-range electron transmission and improves rate performance.
  • the electrochemical device includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
  • the positive electrode or the negative electrode may be any of the above-mentioned electrodes.
  • Al foil can be used as the current collector of the positive electrode. Of course, other current collectors commonly used in the art can also be used.
  • the release film includes at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyethylene terephthalate, polyimide, or aramid.
  • polyethylene includes at least one selected from high-density polyethylene, low-density polyethylene, or ultra-high molecular weight polyethylene.
  • the thickness of the isolation film ranges from about 5 ⁇ m to 50 ⁇ m.
  • the surface of the isolation membrane may also include a porous layer.
  • the porous layer is disposed on at least one surface of the isolation membrane.
  • the porous layer includes inorganic particles and a binder.
  • the inorganic particles are selected from aluminum oxide (Al 2 O 3 ), Silicon oxide (SiO 2 ), magnesium oxide (MgO), titanium oxide (TiO 2 ), hafnium dioxide (HfO 2 ), tin oxide (SnO 2 ), ceria (CeO 2 ), nickel oxide (NiO), oxide Zinc (ZnO), calcium oxide (CaO), zirconium oxide (ZrO 2 ), yttrium oxide (Y 2 O 3 ), silicon carbide (SiC), boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide or sulfuric acid At least one of barium.
  • the pores of the isolation film have a diameter in the range of about 0.01 ⁇ m to 1 ⁇ m.
  • the binder of the porous layer is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethylcellulose, poly At least one of vinylpyrrolidone, polyvinyl ether, polymethylmethacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • the porous layer on the surface of the isolation membrane can improve the heat resistance, oxidation resistance and electrolyte wetting performance of the isolation membrane, and enhance the adhesion between the isolation membrane and the pole piece.
  • the electrochemical device may be of a rolled or stacked type.
  • the positive electrode and/or negative electrode of the electrochemical device may be a multi-layer structure formed by being rolled or stacked, or may be a single-layer structure in which a single-layer positive electrode, a separator, and a single-layer negative electrode are stacked.
  • the electrochemical device includes a lithium-ion battery, although the application is not limited thereto.
  • the electrochemical device may also include an electrolyte.
  • the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolyte solution, and the electrolyte solution includes a lithium salt and a non-aqueous solvent.
  • the lithium salt is selected from LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 , one or more of LiSiF 6 , LiBOB or lithium difluoroborate.
  • LiPF 6 was chosen for the lithium salt because it has high ionic conductivity and improves cycling characteristics.
  • the non-aqueous solvent may be a carbonate compound, a carboxylate compound, an ether compound, other organic solvents, or a combination thereof.
  • the carbonate compound may be a chain carbonate compound, a cyclic carbonate compound, a fluorocarbonate compound, or a combination thereof.
  • chain carbonate compounds are diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl carbonate Ethyl ester (MEC) and its combinations.
  • chain carbonate compounds are diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl carbonate Ethyl ester (MEC) and its combinations.
  • Examples of the cyclic carbonate compound are ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylethylene carbonate (VEC) or combinations thereof.
  • fluorocarbonate compound are fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate.
  • carboxylate compounds are methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, decanolactone, Valerolactone, mevalonolactone, caprolactone, methyl formate or combinations thereof.
  • ether compounds are dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxy ethane, 2-methyltetrahydrofuran, tetrahydrofuran or combinations thereof.
  • organic solvents examples include dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, methane Amides, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, and phosphate esters or combinations thereof.
  • the positive electrode, separator, and negative electrode are wound or stacked in order to form an electrode piece, and then put into, for example, an aluminum-plastic film for packaging, and the electrolyte is injected to form, Encapsulated to make a lithium-ion battery. Then, the prepared lithium-ion battery was tested for performance.
  • electrochemical devices eg, lithium-ion batteries
  • electrochemical devices eg, lithium-ion batteries
  • Other methods commonly used in the art can be used without departing from the content disclosed in this application.
  • This application proposes an electronic device, including an electrochemical device; the electrochemical device is any electrochemical device of this application.
  • the electronic device in the embodiment of the present application is not particularly limited and may be used in any electronic device known in the prior art.
  • electronic devices may include, but are not limited to, laptop computers, pen computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, stereo headsets, Video recorders, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, cars, motorcycles, power-assisted bicycles, bicycles, Drones, lighting equipment, toys, game consoles, clocks, power tools, flashes, cameras or large household batteries, etc.
  • the positive electrode material lithium cobalt oxide, conductive agent (one-dimensional conductive agent carbon nanotube: zero-dimensional conductive agent conductive carbon black (Super P) mass ratio is 8:2) and polyvinylpyrrolidone according to the Mix at a mass ratio of 97.5:2.5:1.0, use N-methylpyrrolidone (NMP) as the solvent, prepare a slurry, and stir evenly to form a slurry for the positive electrode active material layer.
  • NMP N-methylpyrrolidone
  • Preparation of the negative electrode sheet Mix the negative electrode materials graphite, styrene acrylate and carboxymethyl cellulose lithium according to the mass ratio of 98:1:1, use deionized water as the solvent to form the slurry of the negative electrode active material layer, and use The copper foil is used as the negative electrode current collector.
  • the slurry of the negative electrode active material layer is coated on the negative electrode current collector and dried at 90°C to obtain the negative electrode piece.
  • the isolation film is 8 ⁇ m thick polyethylene (PE).
  • Preparation of lithium-ion battery Stack the positive electrode sheet, isolation film, and negative electrode sheet in order, so that the isolation film is between the positive electrode sheet and the negative electrode sheet for isolation, and wind it to obtain the electrode assembly.
  • the electrode assembly is placed in the outer packaging aluminum plastic film, and after the moisture is removed at 80°C, the above-mentioned electrolyte is injected and packaged. After formation, degassing, trimming and other processes, a lithium-ion battery is obtained.
  • the positive electrode material is lithium cobalt oxide
  • the mass percentage of the positive electrode material in the positive electrode active material layer is 97.5%
  • the mass percentage of the conductive agent in the positive electrode active material layer is 2.5%
  • the zero-dimensional conductive agent The mass percentage of the conductive agent accounts for 20%
  • the mass percentage of the one-dimensional conductive agent accounts for 80%
  • the length of the one-dimensional conductive agent is 10 ⁇ m
  • the D50 of the zero-dimensional conductive agent is 50 nm
  • the thickness of one side of the positive electrode active material layer is 20 ⁇ m
  • the positive electrode activity The compacted density of the material is 4.1g/cm 3
  • the porosity of the positive active material layer is 25%.
  • the positive active material layer has cylindrical holes as pore-like structures, with a diameter of 5 ⁇ m and a hole depth of 2 ⁇ m. Two adjacent The distance between the pore structures is 200 ⁇ m.
  • the compacted density of the negative active material layer is 1.78g. /cm 3 , the thickness of one side of the negative active material layer is 25 ⁇ m, the number of weight loss peaks of the positive active material layer from 350°C to 800°C is 0, the mass change of the positive active material layer from 350°C to 800°C is 0, and the DC resistance is 30m ⁇ , 800 cycles capacity retention rate of 90%.
  • Preparation of the positive electrode sheet Mix the positive electrode materials lithium cobalt oxide, polyvinylidene fluoride (PVDF), conductive carbon black (Super P) and carbon nanotubes (CNT) according to the mass ratio of 97.2:1.5::0.8:0.5 to N-methylpyrrolidone (NMP) is used as a solvent to form a slurry, and the mixture is stirred evenly to form a slurry for the positive electrode active material layer. The slurry is evenly coated on the positive electrode current collector aluminum foil and dried at 90°C to obtain a positive electrode sheet.
  • PVDF polyvinylidene fluoride
  • Super P conductive carbon black
  • CNT carbon nanotubes
  • Preparation of the negative electrode sheet Combine the negative electrode material graphite, conductive agent (one-dimensional conductive agent carbon nanotube: zero-dimensional conductive agent conductive carbon black mass ratio is 1:1), and carboxymethylcellulose lithium according to the mass ratio of 90:10: 2. Mix, use deionized water as the solvent to form a negative electrode active material layer slurry, use copper foil as the negative electrode current collector, apply the negative electrode active material layer slurry on the negative electrode current collector, and dry it at 90°C. After drying, place the negative electrode piece within the working range of the laser transmitter. The laser intensity is >30W, and the distance between the laser and the electrode piece is 5cm. Process for 200 seconds to form an array of cylindrical holes on the surface of the negative active material layer, and then obtain the negative electrode piece.
  • Preparation of the positive electrode sheet Mix the positive electrode materials lithium cobalt oxide, polyvinylidene fluoride, conductive carbon black (Super P) and carbon nanotubes (CNT) according to the mass ratio of 97.2:1.5::0.8:0.5, and use N-methyl NMP was used as a solvent to form a slurry, and the mixture was stirred evenly to form a slurry for the positive electrode active material layer. The slurry is evenly coated on the positive electrode current collector aluminum foil and dried at 90°C to obtain a positive electrode piece.
  • NMP conductive carbon black
  • CNT carbon nanotubes
  • Preparation of the negative electrode sheet Mix the negative electrode material graphite, the binder carboxymethyl cellulose lithium and the dispersant styrene acrylate in a mass ratio of 95:3.5:1.5, and use deionized water as the solvent to form a negative electrode active material layer
  • the slurry uses copper foil as the negative electrode current collector.
  • the slurry of the negative electrode active material layer is coated on the negative electrode current collector and dried at 90°C to obtain the negative electrode sheet.
  • Comparative Examples 2 and 3 were obtained by changing parameters based on Comparative Example 1. The specific differences are shown in the table below.
  • thermogravimetric analysis to measure the positive active material layer and negative active material layer of the prepared lithium-ion battery for thermogravimetric analysis. Test the mass change and the number of weight loss peaks during the thermogravimetric analysis. The test range is 350°C to 800°C, and the temperature is increased. The rate is 10°C/min, and the test atmosphere is an inert atmosphere.
  • 3C discharge capacity retention rate (3C discharge capacity/discharge capacity at 0.2C) ⁇ 100%
  • Table 1 and Table 2 show the parameter differences and performance test results of the lithium-ion batteries in Examples 1 to 5, and the remaining preparation parameters not shown are the same.
  • thermogravimetric mass changes of the positive electrode active material layer from 350°C to 800°C are less than 0.2%, and the number of weight loss peaks is 0. It can be seen that as the positive electrode active material layer in Examples 1 to 5 The thermogravimetric mass change of the layer from 350°C to 800°C is reduced, the DC resistance is reduced, the 3C rate performance is improved, and the 800 cycle capacity retention rate is increased. This may be because the thermogravimetric mass change is related to the polymer compounds in the cathode active material layer. As the content of polymer compounds decreases, the conductive properties can be improved, which is beneficial to the rate performance and cycle performance.
  • Table 3 and Table 4 show the parameter differences and performance test results of the lithium-ion batteries in Examples 6 to 14. The remaining preparation parameters not shown are the same as Example 1.
  • the lithium-ion battery can maintain good performance.
  • Examples 10 to 14 it can be seen from Examples 10 to 14 that when the type of cathode material is changed, the performance of the lithium-ion battery changes accordingly.
  • the cathode material is lithium iron phosphate, lithium nickel cobalt manganate, lithium manganate or nickel cobalt aluminum oxide
  • the performance of lithium-ion batteries is better. Among them, the best is when the cathode material is lithium nickel cobalt manganate.
  • Table 5 and Table 6 show the parameter differences and performance test results of the lithium-ion batteries in Examples 15 to 23. The remaining preparation parameters not shown are the same as Example 1.
  • thermogravimetric mass change of the negative active material layer at 350°C to 800°C is less than 0.2%, smaller DC resistance, better rate performance and cycle performance can also be obtained.
  • the porosity is 40% to 50%
  • the thickness of one side of the negative active material layer is 15 ⁇ m to 1500 ⁇ m
  • the compacted density of the negative active material layer is 0.65g/ cm 3 to 1.83g/cm 3 can meet the performance requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电化学装置和电子设备,其中电化学装置包括电极,电极包括集流体(10)和位于集流体(10)一侧或两侧的活性物质层(50),活性物质层(50)表面具有孔状结构(40);活性物质层(50)在惰性气氛下以10℃/min的升温速度进行热重分析测试的结果显示,活性物质层(50)在350℃至800℃的质量变化为0%至0.2%。该电极能够提高能量密度,改善动力学性能,进而提高倍率性能。

Description

电化学装置和电子设备 技术领域
本申请涉及电化学技术领域,尤其涉及一种电化学装置和电子设备。
背景技术
电化学装置,例如锂离子电池,具有能量密度大、功率高、循环寿命长等优点,在各个领域被广泛使用,随着技术的发展,对电化学装置的能量密度的要求越来越高。为了提高电化学装置的能量密度,一些技术中提高活性物质的容量或电压,另一些技术中提高单位体积内活性物质的含量,降低非活性物质的含量。已有的解决方案未能完全满足需求,期待进一步的改善。
发明内容
本申请的一些实施例中提出了一种电化学装置,包括电极,电极包括集流体和位于集流体一侧或两侧的活性物质层,活性物质层表面具有孔状结构;活性物质层在惰性气氛下以10℃/min的升温速度进行热重分析测试的结果显示,活性物质层在350℃至800℃的质量变化为0%至0.2%。在一些实施例中,热重分析的结果显示活性物质层在350℃至800℃的失重峰数量为0。本申请实施例中能够提高能量密度,改善动力学性能,进而提高倍率性能
在一些实施例中,孔状结构的直径为5μm至50μm。在一些实施例中,孔状结构的孔深为2μm至50μm。在一些实施例中,相邻的两个半通的孔状结构的孔中心的间隔距离为200μm至500μm,从而有利于减小离子传输路径,并保证能量密度。
在一些实施例中,活性物质层包括活性物质,基于活性物质层的总重量,活性物质占活性物质层的质量百分含量为90%至99.5%,从而能 够保证容量。在一些实施例中,活性物质层包括活性物质和导电剂,在一些实施例中,基于活性物质层的总质量,导电剂占活性物质层的质量百分含量为0.5%至10%,从而能够改善导电性的同时避免对容量的影响。
在一些实施例中,导电剂形成复合聚集体,复合聚集体交织形成笼状网络,至少部分活性物质的颗粒位于笼状网络内部。在一些实施例中,导电剂包括零维导电剂和一维导电剂,从而能够同时改善长程和短程导电性。
在一些实施例中,基于导电剂的总质量,零维导电剂占导电剂的质量百分含量为0%至50%。在一些实施例中,一维导电剂的长度为1μm至100μm。在一些实施例中,零维导电剂的D50为10nm至100nm。在一些实施例中,零维导电剂包括:导电炭黑或科琴黑中的至少一种。在一些实施例中,一维导电剂包括:碳纳米管或碳纤维中的至少一种。
在一些实施例中,电极为正极,活性物质层为正极活性物质层。在一些实施例中,正极活性物质层包括正极材料,正极材料包括磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、锰酸锂、钴酸锂或富锂材料中的至少一种。在一些实施例中,正极活性物质层单侧的厚度为20μm至1300μm。在一些实施例中,正极活性物质层的压实密度为2.2g/cm 3至4.3g/cm 3。在一些实施例中,正极活性物质层的孔隙率为25%至35%。
在一些实施例中,电极为正极,活性物质层为正极活性物质层,在一些实施例中,正极活性物质层单侧的厚度为25μm至130μm。在一些实施例中,正极活性物质层的压实密度为2.3g/cm 3至4.1g/cm 3
在一些实施例中,电极为负极,活性物质层为负极活性物质层,在一些实施例中,负极活性物质层包括负极材料,负极材料包括钛酸锂、硅基材料、氧化亚硅、硅、硅碳材料或碳材料中的至少一种。在一些实施例中,负极活性物质层单侧的厚度为15μm至1500μm。在一些实施例中,负极活性物质层的压实密度为0.65g/cm 3至1.83g/cm 3。在一些实施例中,负极活性物质层的孔隙率为40%至50%。
在一些实施例中,电极为负极,活性物质层为负极活性物质层,在一些实施例中,负极活性物质层单侧的厚度为30μm至150μm。在一些实施例中,负极活性物质层的压实密度为1.35g/cm 3至1.78g/cm 3
本申请还提出一种电子装置,包括本申请提出的任一项的电化学装置。本申请中活性物质层中高分子化合物的含量为零或极低,避免了电子、离子传输的阻碍,这有利于提高活性物质层中离子和电子传导,从而有利于提高电化学装置的电性能,由于没有粘结剂所占的质量,因此有利于提高能量密度,而且,本申请中活性物质层表面具有孔状结构,由于孔状结构的存在,增加了活性物质层的孔隙率,有利于降低离子传输到活性物质层内部的路径,以及增加接触面积,提高倍率性能。
附图说明
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,原件和元素不一定按照比例绘制。
图1为本申请一种实施例中电极的示意图。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本申请,但不以任何方式限制本申请。
电化学装置,例如锂离子电池,其电极是将活性物质、导电剂和粘结剂等在溶剂中搅拌混合均匀后涂覆在集流体上,在电极中导电剂、粘结剂和集流体具有一定质量,降低了能量密度。且粘结剂不导电子和离子,粘结剂的存在直接阻碍电子、离子传输过程,增大其移动距离,从而限制电池的倍率性能。粘结剂的存在还会导致电极的活性物质层体积的增加,使得电极的活性物质层的厚度增加,进而降低体积能量密度。本申请提出一种电化学装置,能够至少部分解决上述问题。
在本申请的一些实施例中,电化学装置(例如锂离子电池),包括电极,电极可以是正极或负极,可以参考图1,电极包括集流,10和位于集流体一侧或两侧的活性物质层50,集流体10可以是铜箔或铝箔,活性物质层50表面具有孔状结构40;在惰性气氛下以10℃/min的升温速度对活性物质层50进行热重分析,热重分析的结果显示活性物质层50在350℃至800℃的质量变化为0%至0.2%。在一些实施例中,热重分析的设备的检测精度为0.2%,本实施例中活性物质层50的质量变化不大于检测精度,这表明本申请中活性物质层中50高分子化合物的含量为零或极低,即本申请的活性物质层50中不包含高分子类粘结剂,避免了粘结剂对电子、离子传输的阻碍,这有利于提高活性物质层50中离子和电子传导,从而有利于提高电化学装置的电性能,由于没有粘结剂所占的质量,因此有利于提高能量密度,而且,本申请中活性物质层50表面具有孔状结构40,由于孔状结构40的存在,增加了活性物质层50的孔隙率,有利于降低离子传输到活性物质层50内部的路径,以及增加接触面积,提高倍率性能。
在本申请的一些实施例中,热重分析的结果显示活性物质层50在350℃至800℃的失重峰数量为0。一些实施例中,在350℃至800℃范围内进行热重分析时,高分子化合物会因为受热分解而产生失重峰,本申请中在上述范围内不存在失重峰,也即本申请中活性物质层中不存在高分子粘结剂,从而保证了活性物质层50的导电性。
在本申请的一些实施例中,孔状结构40的直径为5μm至50μm。一些实施例中,孔状结构40可以是沿活性物质层50的厚度方向延伸的圆柱状孔,孔状结构40的直径如果太小,不利于电解液的浸润,孔状结构40的直径如果太大,会降低体积能量密度。孔状结构40的直径进一步可以是10μm至40μm,进一步可以是15μm至35μm,进一步可以还是20μm至30μm。
在本申请的一些实施例中,孔状结构40的孔深为2μm至50μm,孔状结构40的孔深如果过小,离子无法很好的进入活性物质层50的内部,孔状结构40的孔深如果过大,将会影响体积能量密度。孔状结构40的孔深进一步可以是15μm至45μm,进一步可以是20μm至 40μm,进一步可以还是25μm至35μm。
在本申请的一些实施例中,相邻的两个半通的孔状结构40的孔中心的间隔距离为200μm至500μm。一些实施例中,孔状结构40的界面为的圆形,圆形的中心轴为孔状结构40的孔中心,半通的孔状结构40是指孔状结构40的孔深小于活性物质层50的厚度,约为活性物质层50的厚度的一半,本申请中的孔状结构40可以部分或全部为半通的孔状结构40,孔状结构40的孔中心的间隔距离过小,则影响体积能量密度,间隔距离太大时,位于两个孔状结构40之间的活性物质层50距离两个孔状结构40的距离都较远,因此离子不易进入。相邻的两个半通的孔状结构40的孔中心的间隔距离进一步可以是250μm至450μm,进一步可以是300μm至400μm。
在本申请的一些实施例中,可以参考图1,活性物质层50包括活性物质20,基于活性物质层50的总重量,活性物质20占活性物质层50的质量百分含量为90%至99.5%。一些实施例中,活性物质20在活性物质层50中的质量百分含量影响了电化学装置的能量密度,质量百分含量越高其能量密度越高则能量密度越高,通过限定在上述范围内能够保证能量密度,进一步的,活性物质20占活性物质层50的质量百分含量为94%至98%。
在本申请的一些实施例中,活性物质层包括活性物质和导电剂,基于活性物质层的总质量,导电剂占活性物质层50的质量百分含量为0.5%至10%。一些实施例中,导电剂能够增强活性物质层的导电性,但会降低活性物质层50的能量密度,通过控制导电剂的质量百分含量,在保证活性物质层50的导电性的同时,保证能量密度。
在本申请的一些实施例中,导电剂形成复合聚集体,复合30交织形成笼状网络,至少部分活性物质的颗粒位于笼状网络内部。一些实施例中,可以看参考图1,导电剂可以是相互交缠形成线状的聚集体301以及点状的聚集体302,线状的聚集体301增强了长程导电性,点状的聚集体302填充在间隙中,可以增强短程导电性,通过复合聚集体30形成的笼状网络能够增强活性物质20之间的导电性。
在本申请的一些实施例中,导电剂包括零维导电剂和一维导电剂。 一些实施例中,零维导电剂可以是颗粒状,其包括导电炭黑,一维导电剂可以是线条状,可以包括碳纳米管,具体可以是单壁碳纳米管,同构配合使用零维导电剂和一维导电剂可以同时保证短程电子传输和长程电子传输,有利于提高倍率性能。
在本申请的一些实施例中,基于导电剂的总质量,零维导电剂占导电剂的质量百分含量为0%至50%。一些实施例中,零维导电剂的质量百分含量不超过50%,这样保证笼状网络的结构稳定性。在本申请的一些实施例中,一维导电剂的长度为1μm至100μm,一些实施例中,一维导电剂的长度如果过小,不易形成稳定的笼状网络,一维导电剂的长度如果过大,可能容易断裂。在一些实施例中,零维导电剂的D50为10至100nm。一些实施例中,D50可以是指粒度分布曲线中累积分布为50%时的最大颗粒的等效直径。零维导电剂的粒径如果太小,可能需要多个零维导电剂填充在一个间隙,增加接触电阻,影响导电剂,零维导电剂的粒径如果过大,可能会大于间隙的尺寸,无法很好的填充在间隙。在一些实施例中,零维导电剂包括:导电炭黑或科琴黑中的至少一种。在一些实施例中,一维导电剂包括:碳纳米管或碳纤维中的至少一种。
在本申请的一些实施例中,电极为正极,活性物质层为正极活性物质层,正极活性物质层包括正极材料,正极材料包括磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、锰酸锂、钴酸锂或富锂材料中的至少一种。
在本申请的一些实施例中,正极活性物质层单侧的厚度为20μm至1300μm。可选的,正极活性物质层单侧的厚度为25μm至130μm。一些实施例中,集流体一侧的正极活性物质层的厚度为正极活性物质层单侧的厚度,正极活性物质层单侧的厚度如果太小,将导致电化学装置的容量过小,正极活性物质层单侧的厚度如果太大,可能会导致正极活性物质层从集流体上脱附。
在本申请的一些实施例中,正极活性物质层的压实密度为2.2g/cm 3至4.3g/cm 3。可选的,正极活性物质层的压实密度为2.3g/cm 3至4.1g/cm 3。一些实施例中,压实密度如果过小,可能会导致体积能量密度较小,压实密度如果过大,可能会导致正极材料的颗粒破碎, 且不利于电解液浸润正极活性物质层。一些实施例中,正极活性物质层的孔隙率为25%至35%。正极活性物质层的孔隙率如果过小,会减小离子传输的通道,不利于离子传导,正极活性物质层的孔隙率如果过大,会劣化体积能量密度。
在本申请的一些实施例中,电极为负极,活性物质层为负极活性物质层,负极活性物质层包括负极材料,负极材料包括钛酸锂、硅基材料、氧化亚硅、硅、硅碳材料或碳材料中的至少一种。在一些实施例中,负极活性物质层单侧的厚度为15μm至1500μm,可选的,负极活性物质层单侧的厚度为30μm至150μm;一些实施例中,集流体一侧的负极活性物质层的厚度为负极活性物质层单侧的厚度,负极活性物质层单侧的厚度如果太小,将不利于电化学装置的容量,负极活性物质层单侧的厚度如果太大,可能会导致负极活性物质层从集流体上脱附。
在本申请的一些实施例中,负极活性物质层的压实密度为0.65g/cm 3至1.83g/cm 3,可选的,负极活性物质层的压实密度为1.35g/cm 3至1.78g/cm 3。一些实施例中,负极活性物质层的压实密度太小会不利于体积能量密度,负极活性物质层的压实密度太大会不利于离子传导。一些实施例中,负极活性物质层的孔隙率为40%至50%。一些实施例中,负极活性物质层的孔隙率如果太小,会减小离子传导的途径,不利于倍率性能,负极活性物质层的孔隙率如果太大,会不利于体积能量密度。
在本申请的一些实施例中提出一种电极的制备方法,可以用于制造本申请任一的电化学装置的电极,包括:将导电剂和分散剂加入分散介质,通过超声、搅拌、砂磨等方法形成均匀的分散液;将活性物质加入分散液,搅拌均匀,形成浆料;将浆料涂布于集流体的至少一面,在80℃至120℃下烘干并冷压,形成初始电极;初始将电极置于激光发射器工作范围内,激光强度大于30W,激光与极片间距3cm至10cm,处理1s至600s,在活性物质层表面形成阵列状的圆柱孔,形成电极。可选的,分散剂包括十二烷基硫酸钠(SDS)、十二烷基磺酸钠(SDBS)、十六烷基三甲基溴化铵(C16TMAB)、聚乙烯吡咯烷酮(PVP)、羧甲基纤维 素钠(CMC-Na)或羧甲基纤维素锂(CMC-Li)中的至少一种;本申请实施例中提出的电极的制备方法,通过对电极进行处理,从而可以去除活性物质层中的高分子类化合物,从而有利于提高电化学装置的导电性,进而有利于提高能量密度。本公开一些实施例中,电极的活性物质层包括活性物质和导电剂,不包含高分子化合物(例如高分子类粘结剂和增稠剂),避免了高分子化合物对电子和离子的传输的阻碍。无粘结剂电极活性物质层只包含活性物质和导电剂,不含高分子类粘结剂,避免了粘结剂对电子、离子传输的阻碍,降低了非活性物质占比,提升了能量密度,直通孔的加入增加了电极的孔隙率,降低了锂离子的传输距离,提升了倍率性能,且导电剂中包括单壁碳纳米管和导电炭黑,单壁碳纳米管的加入增加了长程电子传输,导电炭黑的加入增加了短程电子传输,提高了倍率性能。
一些实施例中,电化学装置包括正极、负极、设置在正极和负极之间的隔离膜。在一些实施例中,正极或负极可以为上述任一种电极。在一些实施例中,正极的集流体可以采用Al箔,当然,也可以采用本领域常用的其他集流体。
在一些实施例中,隔离膜包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。例如,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯或超高分子量聚乙烯中的至少一种。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善电池的稳定性。在一些实施例中,隔离膜的厚度在约5μm至50μm的范围内。
在一些实施例中,隔离膜表面还可以包括多孔层,多孔层设置在隔离膜的至少一个表面上,多孔层包括无机颗粒和粘结剂,无机颗粒选自氧化铝(Al 2O 3)、氧化硅(SiO 2)、氧化镁(MgO)、氧化钛(TiO 2)、二氧化铪(HfO 2)、氧化锡(SnO 2)、二氧化铈(CeO 2)、氧化镍(NiO)、氧化锌(ZnO)、氧化钙(CaO)、氧化锆(ZrO 2)、氧化钇(Y 2O 3)、碳化硅(SiC)、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙或硫酸钡中的至少一种。在一些实施例中,隔离膜的孔具有在约0.01μm至1μm的范围的直径。多孔层的粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯 的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。隔离膜表面的多孔层可以提升隔离膜的耐热性能、抗氧化性能和电解质浸润性能,增强隔离膜与极片之间的粘结性。
在本申请的一些实施例中,电化学装置的可以为卷绕式或堆叠式。在一些实施例中,电化学装置的正极和/或负极可以是卷绕或堆叠式形成的多层结构,也可以是单层正极、隔离膜、单层负极叠加的单层结构。
在一些实施例中,电化学装置包括锂离子电池,但是本申请不限于此。在一些实施例中,电化学装置还可以包括电解质。电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。锂盐选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB或者二氟硼酸锂中的一种或多种。例如,锂盐选用LiPF 6,因为它具有高的离子导电率并可以改善循环特性。
非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。
链状碳酸酯化合物的实例为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。所述环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)或者其组合。所述氟代碳酸酯化合物的实例为碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯或者其组合。
羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内 酯、甲瓦龙酸内酯、己内酯、甲酸甲酯或者其组合。
醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃或者其组合。
其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、和磷酸酯或者其组合。
在本申请的一些实施例中,以锂离子电池为例,将正极、隔离膜、负极按顺序卷绕或堆叠成电极件,之后装入例如铝塑膜中进行封装,注入电解液,化成、封装,即制成锂离子电池。然后,对制备的锂离子电池进行性能测试。
本领域的技术人员将理解,以上描述的电化学装置(例如,锂离子电池)的制备方法仅是实施例。在不背离本申请公开的内容的基础上,可以采用本领域常用的其他方法。
本申请提出一种电子装置,包括电化学装置;电化学装置为本申请任一项的电化学装置。本申请实施例的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、无人机、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机或家庭用大型蓄电池等。
下面列举了一些具体实施例和对比例以更好地对本申请进行说明,其中,采用锂离子电池作为示例。
实施例1
正极极片的制备:将正极材料钴酸锂、导电剂(一维导电剂碳纳米管:零维导电剂导电炭黑(Super P)质量比为8:2)和聚乙烯吡络烷酮 按照质量比97.5:2.5:1.0进行混合,以N-甲基吡咯烷酮(NMP)作为溶剂,调配成为浆料,并搅拌均匀形成正极活性物质层的浆料。将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,将正极极片置于激光发射器工作范围内,激光强度>30W,激光与极片间距5cm,处理200s,在正极活性物质层表面形成阵列状的圆柱孔,得到正极极片。
负极极片的制备:将负极材料石墨、苯乙烯丙烯酸酯和羧甲基纤维素锂按照质量比98:1:1进行混合,以去离子水为溶剂,形成负极活性物质层的浆料,采用铜箔作为负极集流体,将负极活性物质层的浆料涂覆于负极集流体上,90℃条件下烘干,得到负极极片。
隔离膜的制备:隔离膜为8μm厚的聚乙烯(PE)。
电解液的制备:在含水量小于10ppm的环境下,将六氟磷酸锂与非水有机溶剂(碳酸乙烯酯(EC):碳酸二乙酯(DEC):碳酸亚丙酯(PC):丙酸丙酯(PP):碳酸亚乙烯酯(VC)=20:30:20:28:2,重量比)按重量比8:92配制以形成电解液。
锂离子电池的制备:将正极极片、隔离膜、负极极片按顺序依次叠好,使隔离膜处于正极极片和负极极片中间起到隔离的作用,并卷绕得到电极组件。将电极组件置于外包装铝塑膜中,在80℃下脱去水分后,注入上述电解液并封装,经过化成,脱气,切边等工艺流程得到锂离子电池。
实施例1具体参数:正极材料为钴酸锂,正极活性物质层中正极材料的质量百分含量为97.5%、正极活性物质层中导电剂的质量百分含量为2.5%,导电剂中零维导电剂质量百分含量占20%,一维导电剂质量百分含量占80%,一维导电剂长度为10μm,零维导电剂D50为50nm,正极活性物质层单侧厚度为20μm,正极活性物质压实密度为4.1g/cm 3,正极活性物质层孔隙率为25%,正极活性物质层上具有作为孔状结构的圆柱孔,其直径为5μm,孔深为2μm,相邻的两个孔状结构的距离为200μm,负极活性物质层中各组分即质量比为石墨:苯乙烯丙烯酸酯:羧甲基纤维素锂=98:1:1,负极活性物质层压实密度为1.78g/cm 3,负极活性物质层单侧厚度为25μm,正极活性物质层在350℃至800℃的失重峰数量 为0,正极活性物质层在350℃至800℃的质量变化为0,直流电阻为30mΩ,800圈循环容量保持率为90%。
实施例2到实施例14是在实施例1的步骤的基础上进行参数变更,具体变更的参数如下面的表格所示。
实施例15
正极极片的制备:将正极材料钴酸锂、聚偏氟乙烯(PVDF)、导电炭黑(Super P)和碳纳米管(CNT)按照质量比97.2:1.5::0.8:0.5进行混合,以N-甲基吡咯烷酮(NMP)作为溶剂,调配成为浆料,并搅拌均匀形成正极活性物质层的浆料。将浆料均匀涂覆在正极集流体铝箔上,90℃下烘干,得到正极极片。
负极极片的制备:将负极材料石墨、导电剂(一维导电剂碳纳米管:零维导电剂导电炭黑质量比为1:1)、羧甲基纤维素锂按照质量比90:10:2进行混合,以去离子水为溶剂,形成负极活性物质层浆料,采用铜箔作为负极集流体,将负极活性物质层的浆料涂覆于负极集流体上,90℃条件下烘干,烘干后将负极极片置于激光发射器工作范围内,激光强度>30W,激光与极片间距5cm,处理200s,在负极活性物质层表面形成阵列状的圆柱孔,以后得到负极极片。
实施例16至实施例23是在实施例15的步骤的基础上进行参数变更,具体变更的参数如下面的表格所示
对比例1
正极极片的制备:将正极材料钴酸锂、聚偏氟乙烯、导电炭黑(Super P)和碳纳米管(CNT)按照质量比97.2:1.5::0.8:0.5进行混合,以N-甲基吡咯烷酮(NMP)作为溶剂,调配成为浆料,并搅拌均匀形成正极活性物质层的浆料。将浆料均匀涂覆在正极集流体铝箔上,90℃条件下烘干,得到正极极片。
负极极片的制备:将负极材料石墨、粘结剂羧甲基纤维素锂和分散剂苯乙烯丙烯酸酯按照质量比95:3.5:1.5进行混合,以去离子水为溶剂,形成负极活性物质层的浆料,采用铜箔作为负极集流体,将负极活性物质层的浆料涂覆于负极集流体上,90℃条件下烘干,得到负极极片。
其余制备步骤与实施例1相同。
对比例2和3是在对比例1的基础上变更参数得到的,具体区别见下面的表格所示。
下面描述本申请的测试方法。
1、热重测试
采用热重分析法测定制备的锂离子电池的正极活性物质层和负极活性物质层进行热重分析,测试热重分析过程中的质量变化以及失重峰数量,测试范围为350℃至800℃,升温速率为10℃/min,测试气氛为惰性气氛。
2、25℃直流电阻DCR测试
在25℃下,以0.5C将锂离子电池恒流充电至3.95V,再恒压充电至0.05C;静置30min;以0.1C放电10s(0.1s取点一次,记录对应电压值U 1),以1C放电360s(0.1s取点一次,记录对应电压值U 2)。重复充放电步骤5次。其中,“1C”是在1小时内将电池容量完全放完的电流值。按如下公式计算得出电池的DCR:DCR=(U 2-U 1)/(1C-0.1C)。
3、倍率性能的测试
在25℃的环境中,将电池恒流放电至3V,进行第一次充电和放电,在0.7C的充电电流下进行恒流充电,直到上限电压为4.48V,再恒压充电至0.05C,然后在0.2C的放电电流下进行恒流放电,直到最终电压为3V,此时记录0.2C的放电容量,然后重复对电池进行0.7C的充电电流下充电,直到上限电压为4.48V,再恒压充电至0.05C,然后设置放电倍率为3C恒流放电,直到最终电压为3V,此时记录3C的放电容量。
3C放电容量保持率=(3C放电容量/0.2C时的放电容量)×100%
4、循环性能测试:
将锂离子电池置于45℃±2℃的恒温箱中静置2小时,以1C倍率进行充电至4.48V,然后在4.48V下恒压充电至0.05C。随后以1C倍率放电至3.0V进行循环性能测试,循环充放电800圈,以第800圈的放电容量和第1圈的放电容量的比值作为800圈循环容量保持率。
表1
Figure PCTCN2022079670-appb-000001
表2
Figure PCTCN2022079670-appb-000002
表1和表2示出了实施例1至5中锂离子电池的参数差异和性能测试结果,其余未显示的制备参数相同。
在实施例1至5中,正极活性物质层在350℃至800℃的热重质量变化均小于0.2%,失重峰数量均为0,可以看出,随着实施例1至5中正极活性物质层在350℃至800℃的热重质量变化的减小,直流电阻随之减小,3C倍率性能得到改善,800圈循环容量保持率增加。这可能是因为热重质量变化与正极活性物质层中的高分子类化合物相关,随着高分子类化合物含量的降低,能够改善导电性能,因此有利于倍率性能和循环性能。
在实施例1至5中可以看出,当正极活性物质层单侧的厚度为20μm至1300μm,圆柱孔(孔状结构)的直径在5μm到50μm,孔深在2μm至50μm,相邻的两个圆柱孔的控中心的间隔距离为200μm至500μm时,能具有较好的性能。
表3
Figure PCTCN2022079670-appb-000003
Figure PCTCN2022079670-appb-000004
表4
Figure PCTCN2022079670-appb-000005
表3和表4示出了实施例6至14中锂离子电池的参数差异和性能测试结果,其余未显示的制备参数与实施例1相同。
从实施例6至9中可以看出,随着正极活性物质层中导电剂质量百分含量的降低,直流电阻增加,3C倍率性能降低,800圈循环容量保持率降低,这可能是因为正极活性物质层中导电剂的减少劣化了导电性能,不利于离子传输,因此影响倍率性能和循环性能。
从实施例6至9中可以看出,当一维导电剂(碳纳米管)的长度为1μm至100μm,零维导电剂的D50为10nm至100nm,零维导电剂占所述导电剂的质量百分含量为0%至50%,正极活性物质层的孔隙率为25%至35%时,锂离子电池能够保持较好的性能。
从实施例10至14中可以看出,当改变正极材料的种类时,锂离子 电池的性能随之变化,当正极材料为磷酸铁锂、镍钴锰酸锂、锰酸锂或镍钴铝酸锂时,锂离子电池的性能均较好,其中,当正极材料为镍钴锰酸锂时最佳。
表5
Figure PCTCN2022079670-appb-000006
表6
Figure PCTCN2022079670-appb-000007
表5和表6示出了实施例15至23中锂离子电池的参数差异和性能测试结果,其余未显示的制备参数与实施例1相同。
实施例15至23可以看出当负极活性物质层在350℃至800℃的热 重质量变化小于0.2%时,也能够获得较小的直流电阻、较好的倍率性能和循环性能。从上述实施例中可以看出,在负极活性物质层中,孔隙率为40%至50%,负极活性物质层单侧的厚度为15μm至1500μm,负极活性物质层的压实密度为0.65g/cm 3至1.83g/cm 3时可以满足性能要求。
表7
Figure PCTCN2022079670-appb-000008
表8
Figure PCTCN2022079670-appb-000009
“/”表示无,表7和表8示出了对比例1至3中锂离子电池的参数差异和性能测试结果。
在实施例1至3中,其直流电阻较大,3C倍率性能较差,且800圈循环容量保持率较小,这是因为对比例1至3中正极活性物质层和负极活性物质层中均含有粘结剂,从其负极活性物质层的热重结果可以看出,负极活性物质层在350℃至800℃的失重峰数量为1,且质量变化较大,这表明了存在高分子类化合物,这导致锂离子电池的动力学性能降低,阻碍离子传输,因此造成循环性能和倍率性能劣化。
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范 围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (11)

  1. 一种电化学装置,包括电极,所述电极包括集流体和位于所述集流体一侧或两侧的活性物质层,其特征在于,所述活性物质层表面具有孔状结构;所述活性物质层在惰性气氛下以10℃/min的升温速度进行热重分析测试的结果显示,所述活性物质层在350℃至800℃的质量变化为0%至0.2%。
  2. 根据权利要求1所述的电化学装置,其特征在于,
    所述热重分析的结果显示所述活性物质层在350℃至800℃的失重峰数量为0。
  3. 根据权利要求1所述的电化学装置,其特征在于,满足如下条件中的至少一项:
    (a)所述孔状结构的直径为5μm至50μm;
    (b)所述孔状结构的孔深为2μm至50μm;
    (c)相邻的两个半通的所述孔状结构的孔中心的间隔距离为200μm至500μm。
  4. 根据权利要求1所述的电化学装置,其特征在于,所述活性物质层包括活性物质,基于所述活性物质层的总重量,所述活性物质占所述活性物质层的质量百分含量为90%至99.5%。
  5. 根据权利要求1所述的电化学装置,其特征在于,所述活性物质层包括活性物质和导电剂,且满足如下的至少一项:
    (d)基于所述活性物质层的总质量,所述导电剂占所述活性物质层的质量百分含量为0.5%至10%;
    (e)所述导电剂形成复合聚集体,所述复合聚集体交织形成笼状网络,至少部分所述活性物质的颗粒位于所述笼状网络内部;
    (f)所述导电剂包括零维导电剂和一维导电剂。
  6. 根据权利要求5所述的电化学装置,其特征在于,满足如下的至少一项:
    (g)基于所述导电剂的总质量,所述零维导电剂占所述导电剂的质量百分含量为0%至50%;
    (h)所述一维导电剂的长度为1μm至100μm;
    (i)所述零维导电剂的D50为10nm至100nm;
    (j)所述零维导电剂包括:导电炭黑或科琴黑中的至少一种;
    (k)所述一维导电剂包括:碳纳米管或碳纤维中的至少一种。
  7. 根据权利要求1所述的电化学装置,其特征在于,所述电极为正极,所述活性物质层为正极活性物质层,且满足如下的至少一项:
    (l)所述正极活性物质层包括正极活性物质,所述正极活性物质包括磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂、锰酸锂、钴酸锂或富锂材料中的至少一种;
    (m)所述正极活性物质层单侧的厚度为20μm至1300μm;
    (n)所述正极活性物质层的压实密度为2.2g/cm 3至4.3g/cm 3
    (o)所述正极活性物质层的孔隙率为25%至35%。
  8. 根据权利要求1所述的电化学装置,其特征在于,所述电极为正极,所述活性物质层为正极活性物质层,且满足如下的至少一项:
    (p)所述正极活性物质层单侧的厚度为25μm至130μm;
    (q)所述正极活性物质层的压实密度为2.3g/cm 3至4.1g/cm 3
  9. 根据权利要求1所述的电化学装置,其特征在于,所述电极为负极,所述活性物质层为负极活性物质层,且满足如下的至少一项:
    (r)所述负极活性物质层包括负极活性物质,所述负极活性物质包括钛酸锂、硅基材料、氧化亚硅、硅、硅碳材料或碳材料中的至少一种;
    (s)所述负极活性物质层单侧的厚度为15μm至1500μm;
    (t)所述负极活性物质层的压实密度为0.65g/cm 3至1.83g/cm 3
    (u)所述负极活性物质层的孔隙率为40%至50%。
  10. 根据权利要求1所述的电化学装置,其特征在于,所述电极为负极,所述活性物质层为负极活性物质层,且满足如下的至少一项:
    (v)所述负极活性物质层单侧的厚度为30μm至150μm;
    (w)所述负极活性物质层的压实密度为1.35g/cm 3至1.78g/cm 3
  11. 一种电子装置,其特征在于,包括权利要求1至10任一项所述的电化学装置。
PCT/CN2022/079670 2022-03-08 2022-03-08 电化学装置和电子设备 WO2023168585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/079670 WO2023168585A1 (zh) 2022-03-08 2022-03-08 电化学装置和电子设备
CN202280005092.5A CN116097489A (zh) 2022-03-08 2022-03-08 电化学装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079670 WO2023168585A1 (zh) 2022-03-08 2022-03-08 电化学装置和电子设备

Publications (1)

Publication Number Publication Date
WO2023168585A1 true WO2023168585A1 (zh) 2023-09-14

Family

ID=86206833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079670 WO2023168585A1 (zh) 2022-03-08 2022-03-08 电化学装置和电子设备

Country Status (2)

Country Link
CN (1) CN116097489A (zh)
WO (1) WO2023168585A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244428A1 (en) * 2011-03-24 2012-09-27 Samsung, Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
CN203932198U (zh) * 2014-05-30 2014-11-05 比亚迪股份有限公司 一种锂离子电池电极片及锂离子电池
CN107317036A (zh) * 2017-06-27 2017-11-03 中南大学 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
CN109546103A (zh) * 2018-10-25 2019-03-29 北京化工大学 一种粘结剂作为炭前驱体的电极材料及其制备方法和应用
CN110165143A (zh) * 2019-05-24 2019-08-23 东莞市安德丰电池有限公司 一种锂电池电极片及其制备方法与应用
CN111244456A (zh) * 2020-01-16 2020-06-05 东莞市沃泰通新能源有限公司 高倍率磷酸铁锂电池
CN113285053A (zh) * 2021-05-06 2021-08-20 路华置富电子(深圳)有限公司 负极片及其制造方法、电池
WO2022035606A1 (en) * 2020-08-12 2022-02-17 Cabot Corporation Compositions containing carbon black, graphite and carbon nanotubes, related electrodes and related batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120244428A1 (en) * 2011-03-24 2012-09-27 Samsung, Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
CN203932198U (zh) * 2014-05-30 2014-11-05 比亚迪股份有限公司 一种锂离子电池电极片及锂离子电池
CN107317036A (zh) * 2017-06-27 2017-11-03 中南大学 一种具有超低电阻的极片、其制备方法以及含有这种极片的锂离子电池
CN109546103A (zh) * 2018-10-25 2019-03-29 北京化工大学 一种粘结剂作为炭前驱体的电极材料及其制备方法和应用
CN110165143A (zh) * 2019-05-24 2019-08-23 东莞市安德丰电池有限公司 一种锂电池电极片及其制备方法与应用
CN111244456A (zh) * 2020-01-16 2020-06-05 东莞市沃泰通新能源有限公司 高倍率磷酸铁锂电池
WO2022035606A1 (en) * 2020-08-12 2022-02-17 Cabot Corporation Compositions containing carbon black, graphite and carbon nanotubes, related electrodes and related batteries
CN113285053A (zh) * 2021-05-06 2021-08-20 路华置富电子(深圳)有限公司 负极片及其制造方法、电池

Also Published As

Publication number Publication date
CN116097489A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2021184531A1 (zh) 电化学装置和电子装置
CN113366673B (zh) 电化学装置和电子装置
CN113066961B (zh) 负极极片、电化学装置和电子装置
WO2022205152A1 (zh) 一种负极极片、包含该负极极片的电化学装置和电子装置
WO2022262287A1 (zh) 电化学装置和电子装置
WO2022140982A1 (zh) 一种负极极片、包含该负极极片的电化学装置及电子装置
WO2022206128A1 (zh) 电化学装置和电子装置
WO2022140973A1 (zh) 负极极片、电化学装置和电子装置
WO2023160182A1 (zh) 电化学装置和电子装置
CN114068864A (zh) 一种负极极片及包含其的电化学装置和电子设备
WO2023082245A1 (zh) 电极及其制作方法、电化学装置和电子装置
WO2023102766A1 (zh) 电极、电化学装置和电子装置
WO2023082247A1 (zh) 电极及其制备方法、电化学装置和电子装置
WO2022140978A1 (zh) 一种负极极片、包含该负极极片的电化学装置及电子装置
CN113346140A (zh) 一种电解液及其应用
KR20230097199A (ko) 전기화학 디바이스 및 전자 디바이스
CN113097474B (zh) 电化学装置和电子装置
WO2023039750A1 (zh) 一种负极复合材料及其应用
WO2023168585A1 (zh) 电化学装置和电子设备
WO2022241642A1 (zh) 负极极片、电化学装置和电子装置
JP2018097935A (ja) 炭素質材料、リチウム二次電池および炭素質材料の製造方法
WO2023168584A1 (zh) 电化学装置和电子装置
WO2023082248A1 (zh) 电极及其制备方法、电化学装置和电子装置
WO2022266798A1 (zh) 负极材料、电化学装置和电子装置
CN114843518B (zh) 负极活性材料、负极活性材料的制备方法及电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930231

Country of ref document: EP

Kind code of ref document: A1