WO2023166834A1 - 原子炉停止システム及び原子炉停止方法 - Google Patents
原子炉停止システム及び原子炉停止方法 Download PDFInfo
- Publication number
- WO2023166834A1 WO2023166834A1 PCT/JP2022/047997 JP2022047997W WO2023166834A1 WO 2023166834 A1 WO2023166834 A1 WO 2023166834A1 JP 2022047997 W JP2022047997 W JP 2022047997W WO 2023166834 A1 WO2023166834 A1 WO 2023166834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- opening
- heat
- shutdown system
- communicating
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
- G21C7/06—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
- G21C7/22—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/02—Means for effecting very rapid reduction of the reactivity factor under fault conditions, e.g. reactor fuse; Control elements having arrangements activated in an emergency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- This disclosure relates to a reactor shutdown system and a reactor shutdown method.
- Patent Literature 1 discloses a fuel assembly containing a control element pin containing a neutron absorber fixed to the upper portion by a stopper that melts when the reactor power is increased. In a nuclear reactor equipped with such fuel assemblies, when the reactor power is increased, the stopper melts and the neutron absorber falls between the fuel parts to stop the reactor.
- the present disclosure is intended to solve the above-described problems, and to provide a reactor shutdown system and a reactor shutdown method for emergency shutdown that are applicable to small nuclear reactors while maintaining safety and promptness. aim.
- a reactor shutdown system is arranged above core fuel that is hermetically stored in a reactor vessel, contains a plurality of neutron absorbers, and includes: a containment vessel having an opening at the bottom through which a neutron absorbing material can pass; a shielding passage extending vertically through the core fuel and having an upper end communicating with the opening of the containment vessel and a lower end closing the opening; and a communication portion that connects the storage container and the shielded passage when the temperature exceeds a threshold temperature.
- a reactor shutdown method includes a plurality of neutron absorbers arranged above a core fuel hermetically stored in a reactor vessel, a containment vessel having an opening at the bottom through which a neutron absorbing material can pass; a shielding passage extending vertically through the core fuel and having an upper end communicating with the opening of the containment vessel and a lower end closing the opening; and a communicating portion that communicates between the containing container and the shielded passage when the temperature exceeds the threshold temperature, wherein the communicating portion is arranged to block the container and the shielding passage when the temperature exceeds the threshold temperature.
- FIG. 1 is a schematic diagram showing a schematic configuration of a nuclear power generation system according to this embodiment.
- FIG. 2 is a schematic diagram showing a schematic configuration of the reactor shutdown system according to this embodiment.
- FIG. 3 is a schematic diagram showing a state in which the reactor shutdown system shown in FIG. 2 is activated.
- FIG. 4 is a schematic diagram showing another example of the reactor shutdown system.
- FIG. 5 is a schematic diagram showing another example of the reactor shutdown system.
- FIG. 6 is a schematic diagram showing another example of the reactor shutdown system.
- FIG. 1 is a schematic diagram showing the schematic configuration of the nuclear power generation system according to this embodiment.
- the nuclear installation shown in FIG. 1 will be described as a case of nuclear power generation in which heat generated in a nuclear reactor is used to generate electricity, but the present disclosure is not limited to this. It can also be applied to equipment that uses the heat generated in a nuclear reactor for purposes other than power generation. It can also be used as equipment for producing radioactive substances using radiation generated in a nuclear reactor.
- a nuclear power generation system 10 shown in FIG. 1 includes a reactor unit 12 and a power generation unit 13 .
- the power generation unit 13 has a refrigerant circulation means 16 , a turbine 18 , a generator 20 , a cooler 22 , a compressor 24 and a regenerative heat exchanger 26 .
- the reactor unit 12 has a reactor 30 , a heat conduction section 32 and a reactor shutdown system 50 .
- Reactor 30 includes reactor vessel 40 , core fuel 42 , and control unit 44 .
- the reactor vessel 40 stores core fuel 42 therein.
- the reactor vessel 40 stores core fuel 42 in a sealed state.
- the reactor vessel 40 is provided with an opening/closing part so that the core fuel 42 placed inside can be inserted/extracted.
- the opening/closing part is, for example, a lid.
- the reactor vessel 40 can maintain a sealed state even when a nuclear reaction occurs inside and the inside becomes high temperature and high pressure.
- the reactor vessel 40 is made of a material having a neutron beam shielding performance, and is formed with a thickness that prevents neutron beams generated inside from leaking to the outside.
- the reactor vessel 40 is made of concrete, for example.
- the reactor vessel 40 may contain highly shielding elements such as boron.
- the core fuel 42 includes a plurality of fuel holding plates 43. A plurality of nuclear fuels are arranged inside the fuel holding plate 43 .
- the fuel holding plate 43 is made of a material that conducts heat generated by the nuclear fuel. Graphite, silicon carbide, or the like can be used for the fuel holding plate 43 . Reaction heat is generated in the core fuel 42 by the nuclear reaction of the nuclear fuel.
- the control unit 44 has a movable shield between the core fuels 42 .
- the shielding material is a so-called control rod that has the function of shielding radiation and suppressing nuclear reactions.
- Reactor 30 controls the reaction of core fuel 42 by moving control unit 44 and adjusting the position of the shield.
- the heat conducting part 32 is arranged inside the reactor vessel 40 and is in contact with the fuel holding plate 43, as shown in FIG.
- the heat conducting portion 32 of the present embodiment has a plurality of plate shapes, and has a structure in which the fuel holding plates 43 and the fuel holding plates 43 are alternately laminated.
- the heat conducting portion 32 is a plate having an outer shape larger than that of the fuel holding plate 43, and protrudes into a region where the fuel holding plate 43 is not arranged.
- titanium, nickel, copper, graphite, and graphene can be used for the heat conducting portion 32 .
- the heat conducting portion 32 preferably uses graphene arranged in a direction that facilitates heat conduction in the direction along the surface of the plate.
- the heat conducting portion 32 transfers heat by solid heat conduction. That is, the heat conducting part 32 transfers heat without using a heat medium (fluid). Specifically, the heat conducting part 32 transfers the heat generated in the core fuel 42 to the power generation unit 13 by solid heat conduction.
- a nuclear reaction occurs in the core fuel 42 inside the nuclear reactor 30 to generate reaction heat.
- the generated heat is accumulated inside the reactor vessel 40, and the inside becomes high temperature.
- part of the heat generated in the nuclear reactor 30 is transferred to the heat conducting section 32 .
- the heat conducting portion 32 heats the coolant flowing through the coolant circulation means 16 of the power generation unit 13 .
- carbon dioxide (CO 2 ) it is preferable to use carbon dioxide (CO 2 ) as the refrigerant.
- the reactor shutdown system 50 is a system for emergency shutdown of the nuclear reaction of the core fuel 42 .
- a detailed configuration of the reactor shutdown system 50 of the embodiment will be described later.
- the refrigerant circulation means 16 has a circulation path 34 that circulates outside the reactor vessel 40 and a heat exchange section 36 that circulates inside the reactor vessel 40 .
- the refrigerant circulation means 16 is circulated with the circulation path 34 and the heat exchange section 36 forming a closed loop.
- the circulation path 34 is a path for circulating the coolant outside the reactor vessel 40, and the turbine 18, the cooler 22, the compressor 24, and the regenerative heat exchanger 26 are connected.
- the heat exchange section 36 is inserted into the reactor vessel 40 and arranged therein. Both ends of the heat exchange section 36 are exposed outside the reactor vessel 40 and connected to the circulation path 34 .
- the heat exchange section 36 is a conduit through which a coolant flows, and is in contact with a region of the heat transfer section 32 that is not in contact with the core fuel 42 . That is, the heat exchanging portion 36 contacts the portion of the heat conducting portion 32 that protrudes from the core fuel 42 . The heat exchanging portion 36 exchanges heat with the heat conducting portion 32 to heat the refrigerant.
- the refrigerant flowing through the refrigerant circulation means 16 is supplied to the heat exchange section 36 .
- the nuclear power generation system 10 exchanges heat between the heat conducting section 32 and the refrigerant supplied from the refrigerant circulation means 16 .
- the heat exchanger of this embodiment is composed of a heat conducting portion 32 and a heat exchanging portion 36 of the refrigerant circulation means 16 .
- the heat exchanger recovers the heat of the heat conducting part 32 with the refrigerant flowing through the refrigerant circulation means 16 . That is, the coolant is heated by the heat conducting portion 32 .
- the heat medium heated in the heat exchange section 36 flows through the turbine 18, the cooler 22, the compressor 24, and the regenerative heat exchanger 26 in this order.
- the refrigerant that has passed through the regeneration heat exchanger 26 is supplied to the heat exchange section 36 again.
- the refrigerant is thus circulated through the refrigerant circulation means 16 .
- the coolant that has passed through the heat conducting section 32 flows into the turbine 18 .
- Turbine 18 is rotated by the energy of the heated refrigerant.
- the turbine 18 thus converts the energy of the refrigerant into rotational energy and absorbs energy from the refrigerant.
- the generator 20 is connected to the turbine 18 and rotates together with the turbine 18 .
- the generator 20 generates electricity by rotating with the turbine 18 .
- the cooler 22 cools the coolant that has passed through the turbine 18 .
- the cooler 22 is a condenser or the like when the chiller or refrigerant is temporarily liquefied.
- the compressor 24 is a pump that pressurizes the refrigerant.
- the regenerative heat exchanger 26 exchanges heat between the refrigerant that has passed through the turbine 18 and the refrigerant that has passed through the compressor 24 .
- a regenerative heat exchanger 26 heats the refrigerant that has passed through the compressor 24 with the refrigerant that has passed through the turbine 18 .
- the regenerative heat exchanger 26 exchanges heat between the refrigerant before it is cooled by the cooler 22 and the refrigerant after it is cooled by the cooler 22, and converts the heat discarded by the cooler 22 into atomic
- the refrigerant is recovered before it is supplied to the furnace unit 12 .
- the heat generated by the reaction of the nuclear fuel in the nuclear reactor unit 12 is transferred to the refrigerant in the heat exchange portion 36 by the heat conduction portion 32, and the heat in the heat conduction portion 32 heats the refrigerant flowing through the refrigerant circulation means 16. do. That is, the coolant absorbs the heat transferred by the heat conducting portion 32 . As a result, the heat generated in the nuclear reactor unit 12 is transferred by solid heat conduction through the heat conducting portion 32 and recovered by the refrigerant. After being compressed in the compressor 24 , the refrigerant is heated as it passes through the heat transfer section 32 , is compressed, and uses the heated energy to rotate the turbine 18 . After that, it is cooled to a reference state by the cooler 22 and supplied to the compressor 24 again.
- the nuclear power generation system 10 uses the heat conducting section 32 that transfers heat by solid heat conduction to transfer the heat of the nuclear reactor 30 to the coolant that is the medium that rotates the turbine 18 .
- the nuclear power generation system 10 can suppress contamination of the coolant even when the coolant is circulated inside the nuclear reactor 30 . This can reduce the risk of contamination of the medium rotating the turbine 18 . Further, by providing the heat conducting portion 32 that transfers heat by solid heat conduction, the heat conducting portion 2 can shield neutron beams.
- the reactor vessel 40 is preferably made of a material having a lower thermal conductivity than the thermally conductive portion 32 . As a result, it is possible to suppress the heat in the nuclear reactor 30 from being discharged to the outside from portions other than the heat conducting portion 32, which is a path for discharging heat to the outside.
- FIG. 2 is a schematic diagram showing a schematic offensive of the reactor shutdown system according to this embodiment.
- FIG. 3 is a schematic diagram showing a state in which the reactor shutdown system shown in FIG. 2 is activated.
- the reactor shutdown system 50 includes a neutron absorber 60 , a containment vessel 52 , a shielded passageway 54 and a communication section 56 .
- the neutron absorber 60 is a substance that absorbs neutrons and contains, for example, boron (B), cadmium (Cd), xenon (Xe), hafnium (Hf), and the like.
- the neutron absorbing material 60 is a plurality of solid spheres, but the shape of each neutron absorber 60 is not particularly limited as long as it can move finely and separately. Moreover, it is not limited to a solid form, and may include a gel form, a liquid form, and a gas form, but is preferably a solid spherical form.
- the neutron absorber 60 is introduced into the core to reduce the neutrons absorbed by the nuclear fuel, suppress the nuclear reaction, or stop the reactor 30. It is possible.
- the container 52 is arranged above the core fuel 42 .
- the storage container 52 stores a plurality of neutron absorbers 60 .
- the container 52 has an opening 52a at its bottom.
- the opening 52a is at least larger in diameter than the neutron absorbing material 60, and the neutron absorbing material 60 can pass through.
- the opening 52a of the embodiment is positioned in the center of the container 52 in the horizontal direction.
- the storage container 52 of the embodiment has a tapered inclined inner wall 52b that tapers toward the opening 52a.
- the shielding passage 54 is a passage extending vertically through the core fuel 42 .
- the upper end of the shielding passage 54 communicates with the opening 52 a at the bottom of the container 52 .
- the lower end of the shielded passage 54 is closed.
- the shielded passage 54 can accommodate the neutron absorbing material 60 that has fallen through the opening 52a of the container 52.
- the shielding passage 54 of the embodiment is formed extending vertically in the center of the core.
- the communication part 56 is arranged so as to block the opening 52a at the bottom of the container 52, as shown in FIG.
- the communicating portion 56 keeps the opening 52a sealed as shown in FIG.
- the communicating portion 56 opens the opening 52a as shown in FIG.
- the communicating portion 56 is made of, for example, a material that melts or changes in quality at a threshold temperature or higher.
- the communicating portion 56 is made of a material whose melting point is equal to or higher than the temperature during rated operation of the reactor vessel 40 .
- the communicating portion 56 is made of metal such as brass, for example.
- the communication part 56 may be, for example, a plate-like shape that melts at a threshold temperature or higher to form a hole or is degraded and detached from the opening 52a.
- the communicating portion 56 may include, for example, an outer peripheral portion fixed along the peripheral edge of the opening 52a, and a plate-shaped inner peripheral portion that melts at a threshold temperature or higher to open a hole or degenerate and separate from the outer peripheral portion. good.
- at least the outer peripheral portion of the communicating portion 56 may be degraded at a temperature equal to or higher than the threshold temperature and detached from the opening 52a.
- the communicating portion 56 may include, for example, a valve body that opens at a threshold temperature or higher.
- the reactor shutdown system 50 keeps the temperature of the communicating section 56 lower than the threshold temperature during rated operation of the reactor 30 . In this state, the communicating portion 56 closes the opening 52 a of the container 52 , so the neutron absorber 60 is kept inside the container 52 .
- the reactor shutdown system 50 closes the communication part 56 as shown in FIG. opens the opening 52 a of the container 52 .
- the opening 52a is released, the neutron absorbing material 60 in the container 52 held by the communicating portion 56 drops into the shielded passage 54 through the opening 52a.
- the neutron absorbing material 60 that has fallen inside the shielding passage 54 that is, has reached the inside of the core, absorbs neutrons in the core and suppresses the nuclear reaction of the core fuel 42 .
- the shielding passages 54 are filled with neutron absorbing materials 60 one after another, and the nuclear reaction of the core fuel 42 is stopped by the plurality of neutron absorbing materials 60 absorbing neutrons in the core.
- the neutron absorbing material 60 can roll on the inclined inner wall 52b. . This can prevent the neutron absorbers 60 from clogging the openings 52a when the plurality of neutron absorbers 60 successively fall from the openings 52a.
- FIG. 4 is a schematic diagram showing another example of the reactor shutdown system. Compared with the reactor shutdown system 50 shown in FIGS. 2 and 3, the reactor shutdown system 50a shown in FIG. 3 sets) are different in that they are provided. Since each containment vessel 52, shielding passage 54, and communication section 56 have the same configuration as each section of the reactor shutdown system 50, detailed description thereof will be omitted.
- Each container 52 is arranged horizontally above the core fuel 42 .
- Each container 52 contains a neutron absorber 60 .
- Each shielded passageway 54 is arranged horizontally side by side so as to pass between the core fuels 42 .
- one communicating portion 56 is arranged at the boundary between the opening 52a of each storage container 52 and the upper end of the shielding passage 54.
- the reactor shutdown system 50a keeps the temperature of each communication part 56 lower than the threshold temperature during rated operation of the reactor 30 (see FIG. 1). In this state, each communication part 56 closes the opening 52a of each container 52, so that the neutron absorber 60 is kept inside each container 52. As shown in FIG.
- the reactor shutdown system 50a an abnormality occurs in the reactor 30 (see FIG. 1), the temperature inside the reactor vessel 40 (see FIG. 1) rises, and the temperature of any of the communication parts 56 rises above the threshold temperature. Then, the communication portion 56 whose temperature is equal to or higher than the threshold temperature opens the corresponding opening 52a of the container 52 . When the opening 52a is released, the neutron absorbing material 60 in the container 52 held by the communicating portion 56 drops into the shielded passage 54 through the opening 52a.
- the plurality of communicating parts 56 open the corresponding opening 52a of the storage container 52 when each reaches the threshold temperature or higher.
- Each shielding passage 54 is filled with neutron absorbing materials 60 one after another, and the nuclear reaction of the core fuel 42 is stopped by the neutron absorbing materials 60 absorbing neutrons in the core.
- the reactor shutdown system 50a opens the opening 52a of the storage container 52 to which at least one of the communication parts 56 corresponds, so that the neutron absorber 60 stored in at least one of the storage containers 52 is It drops into the corresponding shielded passageway 54 .
- the reactor shutdown system 50a can prevent the opening 52a from being opened due to a failure of one of the communicating parts 56, or even if the opening 52a is clogged with the neutron absorbing material 60, the reactor shutdown system 50a A neutron absorber 60 can be introduced between the core fuels 42 from the .
- the reactor shutdown system 50a shown in FIG. 4 includes three sets of containment vessel 52, shielding passage 54, and communication section 56, the number of sets may be two or four or more. Further, the shape and size of each storage container 52, shielding passage 54, and communication portion 56 may not be the same. It may be set thicker than
- FIG. 5 is a schematic diagram showing another example of the reactor shutdown system. Unlike the reactor shutdown system 50 shown in FIGS. 2 and 3, the reactor shutdown system 50b shown in FIG. In the example, three shield passages 54a, 54b, and 54b are included, and a plurality of communication portions 56 (three in the example shown in FIG. 5) are provided.
- the storage container 53 has a plurality of (three in the example shown in FIG. 5) openings 53a at the bottom. Each opening 53a is at least larger in diameter than the neutron absorbing material 60 and allows the neutron absorbing material 60 to pass through.
- One opening 53 a is positioned in the center of the container 53 in the horizontal direction, and the other two openings 53 a are positioned near the outer periphery of the container 52 .
- the storage container 53 has a tapered inclined inner wall 53b that tapers toward each opening 53a.
- the shielded passage 54 includes a shielded passage 54a and a shielded passage 54b.
- the shielding passage 54a is a passage extending vertically through the central portion of the core fuel 42. As shown in FIG. The upper end of the shielding passage 54 a communicates with an opening 53 a arranged in the center of the bottom of the container 53 . The lower end of the shield passage 54a is closed. A neutron absorbing material 60 that has fallen through an opening 53a disposed in the center of the container 53 can be accommodated in the shielded passage 54a.
- the shielding passage 54b is a passage that extends vertically through a portion of the core fuel 42 that is horizontally separated from the central portion.
- the upper end of the shielding passage 54b communicates with an opening 53a arranged near the outer peripheral portion of the bottom of the container 53 .
- the vicinity of the upper end of the shielding passage 54b is bent upward and inward.
- the lower end of the shield passage 54b is closed.
- the neutron absorbing material 60 that has fallen through the opening 53a arranged near the outer periphery of the container 53 can be accommodated in the shielded passage 54b.
- the communication part 57 is arranged so as to block the opening 53 a of the container 53 .
- One communicating portion 56 is arranged in each opening 53a.
- the communicating portion 57 keeps the corresponding opening 53a sealed.
- the communicating portion 57 opens the corresponding arranged opening 53a when the temperature becomes equal to or higher than the threshold temperature.
- the reactor shutdown system 50b keeps the temperature of each communication part 57 lower than the threshold temperature during rated operation of the reactor 30 (see FIG. 1). In this state, each communication part 57 closes each opening 53 a of the container 53 , so that the neutron absorber 60 is kept inside the container 53 .
- the reactor shutdown system 50b an abnormality occurs in the reactor 30 (see FIG. 1), the temperature inside the reactor vessel 40 (see FIG. 1) rises, and the temperature of any of the communicating parts 57 rises above the threshold temperature. Then, the communicating portion 57 whose temperature is equal to or higher than the threshold temperature opens the corresponding opening 53 a of the container 53 . When one of the openings 53a is opened, the neutron absorbing material 60 in the container 52 held by the communicating portion 57 falls through the opened openings 53a into the shielded passages 54a and 54b.
- the plurality of communicating parts 57 open the corresponding openings 53a of the container 53 when each reaches the threshold temperature or higher.
- the neutron absorbing material 60 that has fallen inside the shielding passages 54 a and 54 b with the corresponding opening 53 a opened, that is, has reached the inside of the core absorbs neutrons in the core and suppresses the nuclear reaction of the core fuel 42 .
- the shielding passages 54a and 54b are successively filled with neutron absorbing materials 60, and a plurality of neutron absorbing materials 60 absorb neutrons in the core, thereby stopping the nuclear reaction of the core fuel 42.
- the reactor shutdown system 50b at least one of the communicating portions 57 opens the corresponding opening 53a, so that the neutron absorbing material 60 accommodated in the container 53 corresponds to the opened opening 53a. It falls into the shielded passage 54 where it does.
- the reactor shutdown system 50b can prevent the opening 53a from being opened due to a failure of one of the communicating parts 57, or even if the opening 53a is clogged with the neutron absorbing material 60, A neutron absorber 60 may be introduced between the core fuels 42 .
- the reactor shutdown system 50b shown in FIG. 5 includes three sets of shielding passages 54 and communicating portions 57, the number of sets may be two or four or more. Moreover, the shape and size of each of the shielding passages 54 and the communicating portions 57 may not be the same. good too.
- FIG. 6 is a schematic diagram showing another example of the reactor shutdown system.
- a reactor shutdown system 50c shown in FIG. 6 further includes a heating unit 58 and a controller 70 in addition to the configuration of the reactor shutdown system 50 shown in FIGS.
- the heating unit 58 and the control unit 70 which are unique configurations of the reactor shutdown system 50c, will be described below, and detailed descriptions of the same configurations as those of the reactor shutdown system 50 will be omitted.
- the heating unit 58 can heat the communicating section 56 to a threshold temperature or higher based on the control signal received from the control section 70 .
- the configuration and heating method of the heating unit 58 are not particularly limited, and for example, heating may be performed by directly energizing the communicating portion 56, or heating may be performed by radiating heat from a heat source that heats by energizing.
- the control section 70 sends a control signal to the heating unit 58 to heat the communication section 56 .
- the control unit 70 may send a control signal for heating the communication unit 56 when receiving a predetermined operation by the operator. If any abnormality is detected, the control unit 70 may send a control signal for heating the communication unit 56 based on a predetermined criterion.
- the control unit 70 may be provided as a function of a part of a control system that controls the operation of the reactor unit 12, and cooperates with the reactor unit 12 or the nuclear power generation system 10, for example, as an auxiliary power supply system in the event of an abnormality. may be provided as part of the function of
- the reactor shutdown systems 50, 50a, 50b, and 50c according to the first aspect are arranged above the core fuel 42 that is hermetically stored in the reactor vessel 40, contain a plurality of neutron absorbers 60, and It extends vertically through the storage containers 52 and 53 having openings 52a and 53a at the bottom through which the absorbent 60 can pass and the core fuel 42, and the upper ends communicate with the openings 52a and 53a of the storage containers 52 and 53.
- Shielding passages 54, 54a, 54b whose lower ends are closed and openings 52a, 53a are arranged so as to communicate with the containing containers 52, 53 and the shielding passages 54, 54a, 54b when the temperature exceeds the threshold temperature. Sections 56 and 57 are provided.
- the communication portions 56 and 57 holding the neutron absorber 60 rise above the threshold temperature as the temperature inside the reactor vessel 40 rises during an abnormality. neutron absorber 60 is released. That is, no special control function is required, and the neutron absorber 60 falls between the core fuels 42 when the communicating portions 56 and 57 reach the threshold temperature or higher, so that the temperature rise in the reactor vessel 40 in an abnormal state can be prevented. Sometimes it can passively suppress a nuclear reaction and shut it down safely and quickly.
- the overall shape of the neutron absorber 60 while held by the communicating portions 56 and 57 has a degree of freedom. be. That is, there is a degree of freedom in the shape of the storage container 52 that stores the neutron absorbing material 60, and the longitudinal direction (the direction in which the neutron absorbing material 60 is introduced into the core fuel 42) can be shortened, so it can be applied to a small nuclear reactor. is.
- the reactor shutdown systems 50, 50a, 50b, and 50c according to the second aspect are arranged inside the reactor 30 including the core fuel 42 and the reactor vessel 40, and the reactor vessel 40, and the heat of the core fuel 42 is is provided in the reactor unit 12 including a heat conducting portion 32 that transfers the heat through solid heat conduction.
- the reactor shutdown systems 50, 50a, 50b, and 50c do not require a special control function, and are configured such that the neutron absorber 60 falls between the core fuels 42 when the communication sections 56 and 57 reach a threshold temperature or higher. can be realized, it can also be applied to the nuclear reactor unit 12 that transfers the heat of the core fuel 42 by solid heat conduction.
- the communication parts 56 and 57 are made of a material that melts or transforms at a temperature equal to or higher than the threshold temperature. Such communicating portions 56 and 57 are melted at a threshold temperature or higher to open holes or degenerate and separate from the outer peripheral portion. As a result, the configuration for opening the openings 52a and 53a of the storage containers 52 and 53 when the communication portions 56 and 57 reach the threshold temperature or higher can be realized with a simple configuration.
- the containment vessels 52, 53 have tapered inclined inner walls 52b, 53b that gradually taper toward the openings 52a, 53a.
- the openings 52a and 53a of the storage containers 52 and 53 are opened and the neutron absorbing materials 60 drop from the openings 52a and 53a one after another, the neutron absorbing materials 60 in the storage containers 52 and 53 move toward the inclined inner walls 52b and 53b. It is possible to prevent the neutron absorber 60 from remaining in the storage containers 52 and 53 or clogging the openings 52a and 53a due to sliding or rolling.
- the neutron absorbers 60 are solid spheres.
- the neutron absorbing material 60 can roll on the bottoms of the containers 52 and 53, so that the openings 52a and 53a of the containing containers 52 and 53 are opened and the neutron absorbing materials 60 fall one after another from the openings 52a and 53a. It is possible to prevent the openings 52a and 53a from being clogged during the opening.
- the reactor shutdown system 50a includes a plurality of sets of containment vessels 52, shielding passages 54, and communication portions 56. Therefore, when at least one of the communicating portions 56 opens the opening 52a of the corresponding storage container 52, the neutron absorbing material 60 stored in at least one of the storage containers 52 falls into the corresponding shielded passage 54. . That is, even if one of the communicating parts 56 fails to open the opening 52a, or if the opening 52a is clogged with the neutron absorbing material 60, the neutron absorbing material 60 is removed from the other containment vessel 52. It can be introduced between the fuels 42 .
- the containment vessel 53 has a plurality of openings 53a, and the plurality of shielding passages 54, 54a, 54b are arranged so as to communicate with the plurality of openings 53a.
- a plurality of sets of 57 are provided according to the opening 53a. Therefore, when at least one of the communicating portions 57 opens the corresponding opening 53a, the neutron absorbing material 60 stored in the storage container 53 is transferred to the shield passages 54, 54a, 54b corresponding to the opened opening 53a.
- a reactor shutdown system 50c includes a heating unit 58 capable of heating the communicating part 56 to a threshold temperature or higher, a control part 70 sending a control signal for causing the heating unit 58 to heat the communicating part 56, further provide. That is, even in a state in which the communicating portion 56 has not risen to the threshold temperature in the event of an abnormality, if a further temperature rise in the reactor vessel 40 is predicted or if another abnormality is detected, a positive method can be used. However, it can suppress the nuclear reaction and stop functioning safely and quickly.
- the reactor shutdown method is disposed above the core fuel 42 stored in a sealed state in the reactor vessel 40, accommodates a plurality of neutron absorbers 60, and allows the neutron absorbers 60 to pass through.
- a shielding passage 54 that extends vertically through the containment vessels 52 and 53 having openings 52a and 53a at the bottom and the core fuel 42, the upper end of which communicates with the openings 52a and 53a of the containment vessels 52 and 53 and the lower end of which is closed.
- 54a, 54b, and communicating portions 56, 57 arranged to block the openings 52a, 53a and communicating the containing containers 52, 53 with the shielding passages 54, 54a, 54b when the temperature exceeds the threshold temperature.
- the plurality of neutron absorbers 60 accommodated in the containers 52 and 53 are communicated with the containers 52 and 53 and the shielding passages 54, 54a and 54b when the communication portions 56 and 57 reach a temperature equal to or higher than the threshold temperature. falls through openings 52a, 53a into shielded passages 54, 54a, 54b.
- the neutron absorbers 60 release the retention of That is, no special control function is required, and the neutron absorber 60 falls between the core fuels 42 when the communicating portions 56 and 57 reach the threshold temperature or higher, so that the temperature rise in the reactor vessel 40 in an abnormal state can be prevented. Sometimes it can passively suppress a nuclear reaction and shut it down safely and quickly.
- the overall shape of the neutron absorber 60 while held by the communicating portions 56 and 57 has a degree of freedom. be. That is, there is a degree of freedom in the shape of the storage container 52 that stores the neutron absorbing material 60, and the longitudinal direction (the direction in which the neutron absorbing material 60 is introduced into the core fuel 42) can be shortened, so it can be applied to a small nuclear reactor. is.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
安全性及び迅速性を維持しつつ、小型の原子炉に適用可能な緊急停止用の原子炉停止システム及び原子炉停止方法を提供する。原子炉停止システムは、原子炉容器に密閉状態に格納される炉心燃料の上方に配置され、複数の中性子吸収材を収容し、中性子吸収材が通過可能な開口を底部に有する収容容器と、炉心燃料の間を通って上下方向に延び、上端が収容容器の開口に連通し下端が閉塞する遮へい通路と、開口を塞ぐように配置され、閾値温度以上になった場合に収容容器と遮へい通路とを連通させる連通部と、を備える。
Description
本開示は、原子炉停止システム及び原子炉停止方法に関する。
核燃料を用い、核反応の熱を利用して発電を行う原子力発電システムでは、原子炉で生じた熱を原子炉と二次冷却系統との間で一次冷却材が循環する一次冷却系統で回収し、一次冷却材と二次冷却材とで熱交換を行い、二次冷却系統に設けられたタービンを二次冷却材のエネルギーで回転させて発電を行う。このような原子力設備では、緊急時に原子炉の核反応を停止させるためのシステムが備えられている。例えば、特許文献1には、炉出力増大時に溶断するストッパーによって上部に固定された中性子吸収体を含む制御要素ピンが内包される燃料集合体が開示されている。このような燃料集合体を備える原子炉では、炉出力増大時にストッパーが溶断して中性子吸収体が燃料部の間に落下して原子炉を停止させる。
近年、原子炉を用いた発電設備等として、比較的小型の原子炉を用いた設備が検討されており、例えば、一次冷却材が循環する一時冷却系統を有さず、原子炉容器内の熱を外部に固体熱伝導で伝える熱伝導部を有するマイクロ炉が提案されている。このような小型の原子炉を用いる場合、従来の原子炉停止システムをそのまま適用することが困難な場合がある。
本開示は、上述した課題を解決するものであり、安全性及び迅速性を維持しつつ、小型の原子炉に適用可能な緊急停止用の原子炉停止システム及び原子炉停止方法を提供することを目的とする。
上述の目的を達成するために、本開示の一態様に係る原子炉停止システムは、原子炉容器に密閉状態に格納される炉心燃料の上方に配置され、複数の中性子吸収材を収容し、前記中性子吸収材が通過可能な開口を底部に有する収容容器と、前記炉心燃料の間を通って上下方向に延び、上端が前記収容容器の前記開口に連通し下端が閉塞する遮へい通路と、前記開口を塞ぐように配置され、閾値温度以上になった場合に前記収容容器と前記遮へい通路とを連通させる連通部と、を備える。
上述の目的を達成するために、本開示の一態様に係る原子炉停止方法は、原子炉容器に密閉状態に格納される炉心燃料の上方に配置され、複数の中性子吸収材を収容し、前記中性子吸収材が通過可能な開口を底部に有する収容容器と、前記炉心燃料の間を通って上下方向に延び、上端が前記収容容器の前記開口に連通し下端が閉塞する遮へい通路と、前記開口を塞ぐように配置され、閾値温度以上になった場合に前記収容容器と前記遮へい通路とを連通させる連通部と、において、前記連通部が前記閾値温度以上になった場合に前記収容容器と前記遮へい通路とが連通することで、前記収容容器に収容された複数の前記中性子吸収材が前記開口を通って前記遮へい通路に落下する。
本開示によれば、安全性及び迅速性を維持しつつ、小型の原子炉に適用可能であるいう効果を得ることができる。
(実施形態)
以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、実質的に同一のもの、あるいは均等の範囲のものが含まれる。さらに、下記実施形態における構成要素は、本開示の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。下記実施形態では、実施形態を例示する上で、必要となる構成要素を説明し、その他の構成要素を省略するとともに、同一構成には同一符号を付し、異なる構成には異なる符号を付すものとする。
以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、実質的に同一のもの、あるいは均等の範囲のものが含まれる。さらに、下記実施形態における構成要素は、本開示の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。下記実施形態では、実施形態を例示する上で、必要となる構成要素を説明し、その他の構成要素を省略するとともに、同一構成には同一符号を付し、異なる構成には異なる符号を付すものとする。
図1は、本実施形態に係る原子力発電システムの概略構成を示す模式図である。図1に示す原子力設備は、原子炉で発生した熱を用いて発電を行う原子力発電の場合として説明するが、本開示はこれに限定されない。原子炉で発生した熱を発電以外の用途に用いる設備にも適用可能である。また、原子炉で発生する放射線を用いて放射性物質を製造する設備としても用いることができる。図1に示す原子力発電システム10は、原子炉ユニット12と、発電ユニット13と、を含む。発電ユニット13は、冷媒循環手段16と、タービン18と、発電機20と、冷却器22と、圧縮機24と、再生熱交換器26と、を有する。
原子炉ユニット12は、原子炉30と、熱伝導部32と、原子炉停止システム50と、を有する。原子炉30は、原子炉容器40と、炉心燃料42と、制御ユニット44と、を有する。原子炉容器40は、内部に炉心燃料42が格納されている。原子炉容器40は、炉心燃料42を密閉状態で格納する。原子炉容器40は、内部に載置する炉心燃料42が挿抜できるように、開閉部が設けられている。開閉部は、例えば蓋である。原子炉容器40は、内部で核反応がおき、内部が高温、高圧になった場合でも、密閉状態を維持することができる。また、原子炉容器40は、中性子線の遮へい性能を備える材料で形成され、内部で生じた中性子線が外部に漏えいしない厚みで形成されている。原子炉容器40は、例えばコンクリートで形成されている。原子炉容器40は、ボロン等の遮へい性の高い元素を含めてもよい。
炉心燃料42は、複数の燃料保持板43を含む。燃料保持板43は、内部に複数の核燃料が配置される。燃料保持板43は、核燃料で発生した熱を伝熱する材料で形成される。燃料保持板43は、グラファイト、シリコンカーバイド等を用いることができる。炉心燃料42は、核燃料が核反応を生じることで反応熱が生じる。
制御ユニット44は、炉心燃料42の間に移動可能な遮へい材を有する。遮へい材は、放射線を遮へいし、核反応を抑制する機能を備える、いわゆる制御棒である。原子炉30は、制御ユニット44を移動させ、遮へい材の位置を調整することで、炉心燃料42の反応を制御する。
熱伝導部32は、図1示すように、原子炉容器40の内部に配置され、燃料保持板43と接している。本実施形態の熱伝導部32は、複数の板形状であり、燃料保持板43と交互に積層された構造である。熱伝導部32は、燃料保持板43よりも外形形状が大きい板であり、燃料保持板43が配置されていない領域に突出している。ここで、熱伝導部32は、例えば、チタン、ニッケル、銅、グラファイト、グラフェンを用いることができる。
熱伝導部32は、突出している部分への熱伝達効率を高くするために、板の表面に沿った方向に熱が伝導しやすい向きに配置したグラフェンを用いることが好ましい。熱伝導部32は、固体熱伝導で熱を伝達する。つまり、熱伝導部32は、熱媒(流体)を用いずに、熱を伝達する。具体的には、熱伝導部32は、炉心燃料42で生じた熱を固体熱伝導で発電ユニット13に伝達する。
原子炉ユニット12は、原子炉30の内部の炉心燃料42で核反応が生じ、反応熱が発生する。発生した熱は、原子炉容器40の内部に溜められ、内部が高温となる。また、原子炉ユニット12は、原子炉30で発生した熱の一部が、熱伝導部32に伝達される。熱伝導部32は、発電ユニット13の冷媒循環手段16に流れる冷媒を加熱する。ここで、冷媒としては、二酸化炭素(CO2)を用いることが好ましい。
原子炉停止システム50は、炉心燃料42の核反応を緊急停止するためのシステムである。実施形態の原子炉停止システム50の詳細な構成については、後述にて説明する。
冷媒循環手段16は、原子炉容器40の外を循環する循環経路34と、原子炉容器40の内部を循環する熱交換部36と、を有する。冷媒循環手段16は、循環経路34と、熱交換部36とが閉ループを形成し、循環される。循環経路34は、原子炉容器40の外で冷媒を循環させる経路であり、タービン18と、冷却器22と、圧縮機24と、再生熱交換器26とが接続されている。熱交換部36は、原子炉容器40に挿入され、内部に配置される。熱交換部36の両端は、原子炉容器40の外側に露出し、循環経路34と接続される。熱交換部36は、冷媒が流通する管路であり、熱伝導部32の炉心燃料42と接していない領域と接触する。つまり、熱交換部36は、熱伝導部32の炉心燃料42よりも突出している部分と接触する。熱交換部36は、熱伝導部32と熱交換し、冷媒を加熱する。
冷媒循環手段16を流れる冷媒は、熱交換部36に供給される。原子力発電システム10は、熱伝導部32と、冷媒循環手段16から供給される冷媒との間で熱交換を行う。本実施形態の熱交換器は、熱伝導部32と冷媒循環手段16の熱交換部36で構成されている。熱交換器は、冷媒循環手段16を流れる冷媒で、熱伝導部32の熱を回収する。つまり冷媒は、熱伝導部32で加熱される。熱交換部36で加熱された熱媒は、タービン18、冷却器22、圧縮機24、再生熱交換器26の順で流れる。再生熱交換器26を通過した冷媒は、再度熱交換部36に供給される。このように冷媒は、冷媒循環手段16を循環される。
タービン18は、熱伝導部32を通過した冷媒が流入する。タービン18は、加熱された冷媒のエネルギーにより回転される。つまりタービン18は、冷媒のエネルギーを回転エネルギーに変換して、冷媒からエネルギーを吸収する。発電機20は、タービン18と連結されており、タービン18と一体で回転する。発電機20は、タービン18と回転することで発電する。
冷却器22は、タービン18を通過した冷媒を冷却する。冷却器22は、チラーや冷媒を一時的に液化する場合、復水器等である。圧縮機24は、冷媒を加圧するポンプである。再生熱交換器26は、タービン18を通過した冷媒と、圧縮機24を通過した冷媒との間で熱交換を行う。再生熱交換器26は、タービン18を通過した冷媒で、圧縮機24を通過した冷媒を加熱する。つまり、再生熱交換器26は、冷却器22で冷却される前の冷媒と、冷却器22で冷却された後の冷媒との間で熱交換を行い、冷却器22で捨てられる熱を、原子炉ユニット12に供給される前の冷媒で回収する。
原子力発電システム10は、原子炉ユニット12の核燃料の反応で生じた熱を熱伝導部32で熱交換部36の冷媒に伝え、熱伝導部32の熱で、冷媒循環手段16を流れる冷媒を加熱する。つまり、冷媒は、熱伝導部32で伝達された熱を吸収する。これにより、原子炉ユニット12で発生した熱は、熱伝導部32により固体熱伝導で伝達され、冷媒で回収される。冷媒は、圧縮機24で圧縮された後、熱伝導部32の通過時に加熱され、圧縮され、加熱されたエネルギーでタービン18を回転させる。その後、冷却器22で基準状態まで冷却され、再び圧縮機24に供給される。
原子力発電システム10は、以上のように、固体熱伝導で熱を伝達する熱伝導部32を用いて原子炉30の熱を、タービン18を回転する媒体となる冷媒に伝達する。
原子力発電システム10は、冷媒として二酸化炭素を用いることで、冷媒を原子炉30の内部を流通させた場合でも、冷媒の汚染を抑制することができる。これにより、タービン18を回転する媒体が汚染される恐れを低減することができる。また、固体熱伝導で熱を伝達する熱伝導部32を設けることで、熱伝導部2で中性子線を遮へいすることができる。
また、原子炉容器40は、熱伝導部32よりも熱伝導性が低い材料で形成されることが好ましい。これにより、熱を外に排出する経路である熱伝導部32以外の部分から原子炉30内の熱が外に排出されることを抑制できる。
図2は、本実施形態に係る原子炉停止システムの概略攻勢を示す模式図である。図3は、図2に示す原子炉停止システムが作動した状態を示す模式図である。原子炉停止システム50は、中性子吸収材60と、収容容器52と、遮へい通路54と、連通部56と、を備える。
中性子吸収材60は、中性子を吸収する、例えば、ボロン(B)、カドミウム(Cd)、ゼノン(Xe)、ハフニウム(Hf)等を含む物質である。実施形態において、中性子吸収材60は、複数の固形の球体であるが、細かくバラバラに移動可能であれば個々の形状は特に限定されず、例えば、楕円体や棒状を含んでもよい。また、固形に限定されず、ゲル状、液体、気体を含んでもよいが、固形の球体であることが好ましい。中性子吸収材60は、図3に示すように、炉心に導入されることで、核燃料が吸収する中性子を減少させ、核反応を抑制させる、又は原子炉30を停止させることが可能である。
収容容器52は、炉心燃料42の上方に配置される。収容容器52は、複数の中性子吸収材60を収容する。収容容器52は、底部に開口52aを有する。開口52aは、少なくとも、中性子吸収材60より大径であり、中性子吸収材60が通過可能である。実施形態の開口52aは、水平方向において、収容容器52の中央に位置する。実施形態の収容容器52は、開口52aに向かって徐々に細くなるようなテーパ状の傾斜内壁52bを有する。
遮へい通路54は、炉心燃料42の間を通って上下方向に延びる通路である。遮へい通路54の上端は、収容容器52の底部の開口52aに連通する。遮へい通路54の下端は、閉塞している。図3に示すように、遮へい通路54には、収容容器52の開口52aを通って落下した中性子吸収材60を収容可能である。実施形態の遮へい通路54は、炉心中央に垂直方向に延びて形成される。
連通部56は、図2に示すように、収容容器52の底部の開口52aを塞ぐように配置される。連通部56は、所定の閾値温度より低い場合には、図2に示すように、開口52aを封止した状態を維持する。連通部56は、閾値温度以上になった場合には、図3に示すように、開口52aを開放する。連通部56は、例えば、閾値温度以上で溶融する又は変質する材料で形成される。連通部56は、融点が、原子炉容器40の定格運転時の温度以上の材料で形成される。連通部56は、例えば、真鍮等の金属で形成される。
連通部56は、例えば、閾値温度以上で溶融して穴が開く又は変質して開口52aから離脱する板形状であってもよい。連通部56は、例えば、開口52aの周縁に沿って固定される外周部と、閾値温度以上で溶融して穴が開く又は変質して外周部から離脱する板形状の内周部とを含んでもよい。連通部56は、例えば、少なくとも外周部が閾値温度以上で変質して開口52aから離脱するものであってもよい。連通部56は、例えば、閾値温度以上で開く弁体を含むものであってもよい。
原子炉停止システム50は、原子炉30の定格運転時には、連通部56の温度が閾値温度より低く維持される。この状態では、連通部56が収容容器52の開口52aを塞いでいるため、中性子吸収材60が収容容器52の内部に留められた状態を維持する。
原子炉停止システム50は、原子炉30に異常が発生し、原子炉容器40内の温度が上昇して、連通部56の温度が閾値温度以上になると、図3に示すように、連通部56が収容容器52の開口52aを開放する。開口52aが解放されると、連通部56によって留められていた収容容器52内の中性子吸収材60が、開口52aを通って遮へい通路54へ落下する。
遮へい通路54の内部に落下した、すなわち炉心の内部に到達した中性子吸収材60は、炉心の中性子を吸収して、炉心燃料42の核反応を抑制する。遮へい通路54には、次々と中性子吸収材60が充填されていき、複数の中性子吸収材60が炉心の中性子を吸収することによって、炉心燃料42の核反応が停止する。
実施形態の原子炉停止システム50では、収容容器52に開口52aに向かう傾斜内壁52bを有し、中性子吸収材60が固形の球体であるため、中性子吸収材60が傾斜内壁52bを転がることができる。これにより、複数の中性子吸収材60が次々に開口52aから落下する際に、中性子吸収材60が開口52aで詰まってしまうことを抑制することができる。
図4は、原子炉停止システムの他の例を示す模式図である。図4に示す原子炉停止システム50aは、図2及び図3に示す原子炉停止システム50と比較して、収容容器52、遮へい通路54、及び連通部56を複数組(図4に示す例では3組)備える点で異なる。各々の収容容器52、遮へい通路54、及び連通部56は、原子炉停止システム50の各部と同様の構成であるため、詳細な説明を省略する。
各々の収容容器52は、炉心燃料42の上方において水平方向に並んで配置される。各々の収容容器52には、中性子吸収材60が収容されている。各々の遮へい通路54は、炉心燃料42の間を通るよう、水平方向に並んで配置される。各々の収容容器52の開口52aと遮へい通路54の上端との境界部には、1つずつ連通部56が配置される。
原子炉停止システム50aは、原子炉30(図1参照)の定格運転時には、各々の連通部56の温度が閾値温度より低く維持される。この状態では、各々の連通部56が各々の収容容器52の開口52aを塞いでいるため、中性子吸収材60が各々の収容容器52の内部に留められた状態を維持する。
原子炉停止システム50aは、原子炉30(図1参照)に異常が発生し、原子炉容器40(図1参照)内の温度が上昇して、いずれかの連通部56の温度が閾値温度以上になると、閾値温度以上になった連通部56が、対応する収容容器52の開口52aを開放する。開口52aが解放されると、連通部56によって留められていた収容容器52内の中性子吸収材60が、開口52aを通って遮へい通路54へ落下する。
複数の連通部56は、各々が閾値温度以上になると、対応する収容容器52の開口52aを開放する。対応する開口52aが解放されて遮へい通路54の内部に落下した、すなわち炉心の内部に到達した中性子吸収材60は、炉心の中性子を吸収して、炉心燃料42の核反応を抑制する。各々の遮へい通路54には、次々と中性子吸収材60が充填されていき、複数の中性子吸収材60が炉心の中性子を吸収することによって、炉心燃料42の核反応が停止する。
このように、原子炉停止システム50aは、少なくともいずれかの連通部56が対応する収容容器52の開口52aを開放することにより、少なくともいずれかの収容容器52に収容された中性子吸収材60が、対応する遮へい通路54へ落下する。すなわち、原子炉停止システム50aは、いずれかの連通部56が不具合を起こして開口52aを開放しなかった場合や、中性子吸収材60が開口52aに詰まってしまった場合でも、他の収容容器52から中性子吸収材60を炉心燃料42の間に導入させることが可能である。
なお、図4に示す原子炉停止システム50aは、収容容器52、遮へい通路54、及び連通部56を3組備えるが、2組でもよいし、4組以上でもよい。また、各々の収容容器52、遮へい通路54、及び連通部56の形状及びサイズは全て同一でなくともよく、例えば、炉心燃料42の水平方向中央に位置する遮へい通路54を、周りの遮へい通路54よりも太く設けてもよい。
図5は、原子炉停止システムの他の例を示す模式図である。図5に示す原子炉停止システム50bは、図2及び図3に示す原子炉停止システム50と比較して、収容容器52の代わりに収容容器53を備え、遮へい通路54が複数(図5に示す例では3つ)の遮へい通路54a、54b、54bを含み、連通部56を複数(図5に示す例では3つ)備える点で異なる。
以下、収容容器53について、図2及び図3に示す収容容器52と異なる構成について説明し、同様の構成については、詳細な説明を省略する。収容容器53は、底部に複数(図5に示す例では3つ)の開口53aを有する。各々の開口53aは、少なくとも、中性子吸収材60より大径であり、中性子吸収材60が通過可能である。1つの開口53aは、水平方向において、収容容器53の中央に位置し、別の2つの開口53aは、収容容器52の外周部近傍に位置する。収容容器53は、各々の開口53aに向かって徐々に細くなるようなテーパ状の傾斜内壁53bを有する。
遮へい通路54は、遮へい通路54aと、遮へい通路54bと、を含む。遮へい通路54aは、炉心燃料42の中央部の間を通って上下方向に延びる通路である。遮へい通路54aは、収容容器53の底部の中央部に配置された開口53aに上端が連通する。遮へい通路54aの下端は、閉塞している。遮へい通路54aには、収容容器53の中央部に配置された開口53aを通って落下した中性子吸収材60を収容可能である。
遮へい通路54bは、炉心燃料42の中央部から水平方向に離隔した部分の間を通って上下方向に延びる通路である。遮へい通路54bは、収容容器53の底部の外周部近傍に配置された開口53aに上端が連通する。遮へい通路54bの上端部近傍は、上方に向かって内側に屈曲している。遮へい通路54bの下端は、閉塞している。遮へい通路54bには、収容容器53の外周部近傍に配置された開口53aを通って落下した中性子吸収材60を収容可能である。
以下、連通部57について、図2及び図3に示す連通部56と異なる構成について説明し、同様の構成については、詳細な説明を省略する。連通部57は、収容容器53の開口53aを塞ぐように配置される。各々の開口53aには、1つずつ連通部56が配置される。連通部57は、所定の閾値温度より低い場合には、配置された対応する開口53aを封止した状態を維持する。連通部57は、閾値温度以上になった場合には、配置された対応する開口53aを開放する。
原子炉停止システム50bは、原子炉30(図1参照)の定格運転時には、各々の連通部57の温度が閾値温度より低く維持される。この状態では、各々の連通部57が収容容器53の各々の開口53aを塞いでいるため、中性子吸収材60が収容容器53の内部に留められた状態を維持する。
原子炉停止システム50bは、原子炉30(図1参照)に異常が発生し、原子炉容器40(図1参照)内の温度が上昇して、いずれかの連通部57の温度が閾値温度以上になると、閾値温度以上になった連通部57が、収容容器53の対応する開口53aを開放する。いずれかの開口53aが解放されると、連通部57によって留められていた収容容器52内の中性子吸収材60が、解放された開口53aを通って遮へい通路54a、54bへ落下する。
複数の連通部57は、各々が閾値温度以上になると、収容容器53の対応する開口53aを開放する。対応する開口53aが解放されて遮へい通路54a、54bの内部に落下した、すなわち炉心の内部に到達した中性子吸収材60は、炉心の中性子を吸収して、炉心燃料42の核反応を抑制する。各々の遮へい通路54a、54bには、次々と中性子吸収材60が充填されていき、複数の中性子吸収材60が炉心の中性子を吸収することによって、炉心燃料42の核反応が停止する。
このように、原子炉停止システム50bは、少なくともいずれかの連通部57が、対応する開口53aを開放することにより、収容容器53に収容された中性子吸収材60が、開放された開口53aに対応する遮へい通路54へ落下する。すなわち、原子炉停止システム50bは、いずれかの連通部57が不具合を起こして開口53aを開放しなかった場合や、中性子吸収材60が開口53aに詰まってしまった場合でも、他の開口53aから中性子吸収材60を炉心燃料42の間に導入させることが可能である。
なお、図5に示す原子炉停止システム50bは、遮へい通路54及び連通部57を3組備えるが、2組でもよいし、4組以上でもよい。また、各々の遮へい通路54及び連通部57の形状及びサイズは全て同一でなくともよく、例えば、炉心燃料42の水平方向中央に位置する遮へい通路54aを、周りの遮へい通路54bよりも太く設けてもよい。
図6は、原子炉停止システムの他の例を示す模式図である。図6に示す原子炉停止システム50cは、図2及び図3に示す原子炉停止システム50の構成に加え、加熱ユニット58と、制御部70と、をさらに備える。以下、原子炉停止システム50cの特有の構成である加熱ユニット58及び制御部70について説明し、原子炉停止システム50と同様の構成については、詳細な説明を省略する。
加熱ユニット58は、制御部70から受け付けた制御信号に基づいて、連通部56を閾値温度以上まで加熱可能である。加熱ユニット58の構成及び加熱方式は、特に限定されず、例えば、連通部56に直接通電することで加熱してもよいし、通電により加熱する熱源からの放熱により加熱してもよい。
制御部70は、加熱ユニット58に、連通部56を加熱させるための制御信号を送る。制御部70は、操作者による所定の操作を受け付けた場合に、連通部56を加熱させるための制御信号を送ってもよい。制御部70は、何らかの異常を検出した場合、所定の判断基準に基づいて、連通部56を加熱させるための制御信号を送ってもよい。制御部70は、原子炉ユニット12の運転を制御する制御システムの一部の機能として備えられてもよく、原子炉ユニット12又は原子力発電システム10と連携した、例えば、異常発生時の補助電源システムの一部の機能として備えられてもよい。
(実施形態の作用効果)
実施形態に記載の原子炉停止システム50、50a、50b、50c、及び原子炉停止方法は、例えば以下のように把握される。
実施形態に記載の原子炉停止システム50、50a、50b、50c、及び原子炉停止方法は、例えば以下のように把握される。
第1の様態に係る原子炉停止システム50、50a、50b、50cは、原子炉容器40に密閉状態に格納される炉心燃料42の上方に配置され、複数の中性子吸収材60を収容し、中性子吸収材60が通過可能な開口52a、53aを底部に有する収容容器52、53と、炉心燃料42の間を通って上下方向に延び、上端が収容容器52、53の開口52a、53aに連通し下端が閉塞する遮へい通路54、54a、54bと、開口52a、53aを塞ぐように配置され、閾値温度以上になった場合に収容容器52、53と遮へい通路54、54a、54bとを連通させる連通部56、57と、を備える。
第1の様態に係る原子炉停止システム50、50a、50b、50cは、異常時に原子炉容器40内の温度上昇に伴い、中性子吸収材60を保持する連通部56、57が閾値温度以上になった場合に中性子吸収材60の保持を解除する。すなわち、特別な制御機能を必要とせず、連通部56、57が閾値温度以上になることで中性子吸収材60が炉心燃料42の間に落下するので、原子炉容器40内の異常時な温度上昇時に、受動的に核反応を抑制し、安全かつ迅速に機能を停止することができる。また、中性子吸収材60は、一塊の物質でなく、開口52a、53aを通過可能な複数の物質であるため、連通部56、57によって保持されている状態での全体的な形状に自由度がある。すなわち、中性子吸収材60を収容する収容容器52の形状に自由度があり、長手方向(中性子吸収材60を炉心燃料42に導入する方向)の短縮が図れるため、小型の原子炉にも適用可能である。
第2の様態に係る原子炉停止システム50、50a、50b、50cは、炉心燃料42と原子炉容器40とを含む原子炉30と、原子炉容器40の内部に配置され、炉心燃料42の熱を固体熱伝導で伝達する熱伝導部32と、を備える原子炉ユニット12に設けられる。原子炉停止システム50、50a、50b、50cは、特別な制御機能を必要とせず、制連通部56、57が閾値温度以上になることで中性子吸収材60が炉心燃料42の間に落下する構成が実現できるので、固体熱伝導で炉心燃料42の熱を伝達する原子炉ユニット12にも適用可能である。
第3の様態に係る原子炉停止システム50、50a、50b、50cにおいて、連通部56、57は、閾値温度以上で溶融する又は変質する材料で形成される。このような連通部56、57は、閾値温度以上で溶融して穴が開く又は変質して外周部から離脱する。これにより、連通部56、57が閾値温度以上になった場合に収容容器52、53の開口52a、53aを開放する構成を、簡素な構成で実現できる。
第4の様態に係る原子炉停止システム50、50a、50b、50cにおいて、収容容器52、53は、開口52a、53aに向かって徐々に細くなるようなテーパ状の傾斜内壁52b、53bを有する。収容容器52、53の開口52a、53aが開放されて中性子吸収材60が開口52a、53aから次々に落下していく際に、収容容器52、53内の中性子吸収材60が傾斜内壁52b、53bを滑る又は転がることで、中性子吸収材60が収容容器52、53内に留まったり、開口52a、53aで詰まったりしてしまうことを抑制することができる。
第5の様態に係る原子炉停止システム50、50a、50b、50cにおいて、中性子吸収材60は、固形の球体である。これにより、中性子吸収材60は、収容容器52、53の底部を転がることができるので、収容容器52、53の開口52a、53aが開放されて中性子吸収材60が開口52a、53aから次々に落下していく際に、開口52a、53aで詰まってしまうことを抑制することができる。
第6の様態に係る原子炉停止システム50aは、収容容器52、遮へい通路54及び連通部56を複数組備える。このため、少なくともいずれかの連通部56が対応する収容容器52の開口52aを開放することにより、少なくともいずれかの収容容器52に収容された中性子吸収材60が、対応する遮へい通路54へ落下する。すなわち、いずれかの連通部56が不具合を起こして開口52aを開放しなかった場合や、中性子吸収材60が開口52aに詰まってしまった場合でも、他の収容容器52から中性子吸収材60を炉心燃料42の間に導入させることが可能である。
第7の様態に係る原子炉停止システム50bにおいて、収容容器53は、複数の開口53aを有し、遮へい通路54、54a、54bは、複数の開口53aに各々連通するよう複数配置され、連通部57は、開口53aに応じて複数組設けられる。このため、少なくともいずれかの連通部57が、対応する開口53aを開放することにより、収容容器53に収容された中性子吸収材60が、開放された開口53aに対応する遮へい通路54、54a、54bへ落下する。すなわち、いずれかの連通部57が不具合を起こして開口53aを開放しなかった場合や、中性子吸収材60が開口53aに詰まってしまった場合でも、他の開口53aから中性子吸収材60を炉心燃料42の間に導入させることが可能である。
第8の様態に係る原子炉停止システム50cは、連通部56を閾値温度以上まで加熱可能な加熱ユニット58と、加熱ユニット58に連通部56を加熱させるための制御信号を送る制御部70と、をさらに備える。すなわち、異常時において連通部56が閾値温度まで上昇していない状態においても、原子炉容器40内のさらなる温度上昇が予測された場合や、別の異常が検出された場合に、積極的な方法でも核反応を抑制し、安全かつ迅速に機能を停止することができる。
第9の様態に係る原子炉停止方法は、原子炉容器40に密閉状態に格納される炉心燃料42の上方に配置され、複数の中性子吸収材60を収容し、中性子吸収材60が通過可能な開口52a、53aを底部に有する収容容器52、53と、炉心燃料42の間を通って上下方向に延び、上端が収容容器52、53の開口52a、53aに連通し下端が閉塞する遮へい通路54、54a、54bと、開口52a、53aを塞ぐように配置され、閾値温度以上になった場合に収容容器52、53と遮へい通路54、54a、54bとを連通させる連通部56、57と、において、連通部56、57が閾値温度以上になった場合に収容容器52、53と遮へい通路54、54a、54bとが連通することで、収容容器52、53に収容された複数の中性子吸収材60が開口52a、53aを通って遮へい通路54、54a、54bに落下する。
第9の様態に係る原子炉停止方法は、異常時に原子炉容器40内の温度上昇に伴い、中性子吸収材60を保持する連通部56、57が閾値温度以上になった場合に中性子吸収材60の保持を解除する。すなわち、特別な制御機能を必要とせず、連通部56、57が閾値温度以上になることで中性子吸収材60が炉心燃料42の間に落下するので、原子炉容器40内の異常時な温度上昇時に、受動的に核反応を抑制し、安全かつ迅速に機能を停止することができる。また、中性子吸収材60は、一塊の物質でなく、開口52a、53aを通過可能な複数の物質であるため、連通部56、57によって保持されている状態での全体的な形状に自由度がある。すなわち、中性子吸収材60を収容する収容容器52の形状に自由度があり、長手方向(中性子吸収材60を炉心燃料42に導入する方向)の短縮が図れるため、小型の原子炉にも適用可能である。
以上、本開示の実施形態を説明したが、これらの実施形態の記載内容によって実施形態が限定されるものではない。
10 原子力発電システム
12 原子炉ユニット
13 発電ユニット
14 熱交換器
16 冷媒循環手段
18 タービン
20 発電機
22 チラー(冷却器)
24 ポンプ(圧縮機)
26 再生熱交換器
30 原子炉
32 熱伝導部
34 循環経路
36 熱交換部
40 原子炉容器
42 炉心燃料
43 燃料保持板
44 制御ユニット
50、50a、50b、50c 原子炉停止システム
52、53 収容容器
52a、53a 開口
52b、53b 傾斜内壁
54、54a、54b 遮へい通路
56、57 連通部
58 加熱ユニット
60 中性子吸収材
70 制御部
12 原子炉ユニット
13 発電ユニット
14 熱交換器
16 冷媒循環手段
18 タービン
20 発電機
22 チラー(冷却器)
24 ポンプ(圧縮機)
26 再生熱交換器
30 原子炉
32 熱伝導部
34 循環経路
36 熱交換部
40 原子炉容器
42 炉心燃料
43 燃料保持板
44 制御ユニット
50、50a、50b、50c 原子炉停止システム
52、53 収容容器
52a、53a 開口
52b、53b 傾斜内壁
54、54a、54b 遮へい通路
56、57 連通部
58 加熱ユニット
60 中性子吸収材
70 制御部
Claims (9)
- 原子炉容器に密閉状態に格納される炉心燃料の上方に配置され、複数の中性子吸収材を収容し、前記中性子吸収材が通過可能な開口を底部に有する収容容器と、
前記炉心燃料の間を通って上下方向に延び、上端が前記収容容器の前記開口に連通し下端が閉塞する遮へい通路と、
前記開口を塞ぐように配置され、閾値温度以上になった場合に前記収容容器と前記遮へい通路とを連通させる連通部と、
を備える原子炉停止システム。 - 前記炉心燃料と前記原子炉容器とを含む原子炉と、
前記原子炉容器の内部に配置され、前記炉心燃料の熱を固体熱伝導で伝達する熱伝導部と、
を備える原子炉ユニットに設けられる請求項1に記載の原子炉停止システム。 - 前記連通部は、前記閾値温度以上で溶融する又は変質する材料で形成される請求項1又は2に記載の原子炉停止システム。
- 前記収容容器は、前記開口に向かって徐々に細くなるようなテーパ状の傾斜内壁を有する請求項1から3のいずれか1項に記載の原子炉停止システム。
- 前記中性子吸収材は、固形の球体である請求項1から4のいずれか1項に記載の原子炉停止システム。
- 前記収容容器、前記遮へい通路及び前記連通部を複数組備える請求項1から5のいずれか1項に記載の原子炉停止システム。
- 前記収容容器は、複数の前記開口を有し、
前記遮へい通路は、複数の前記開口に各々連通するよう複数配置され、
前記連通部は、前記開口に応じて複数組設けられる請求項1から5のいずれか1項に記載の原子炉停止システム。 - 前記連通部を前記閾値温度以上まで加熱可能な加熱ユニットと、
前記加熱ユニットに前記連通部を加熱させるための制御信号を送る制御部と、をさらに備える請求項1から7のいずれか1項に記載の原子炉停止システム。 - 原子炉容器に密閉状態に格納される炉心燃料の上方に配置され、複数の中性子吸収材を収容し、前記中性子吸収材が通過可能な開口を底部に有する収容容器と、
前記炉心燃料の間を通って上下方向に延び、上端が前記収容容器の前記開口に連通し下端が閉塞する遮へい通路と、
前記開口を塞ぐように配置され、閾値温度以上になった場合に前記収容容器と前記遮へい通路とを連通させる連通部と、において、
前記連通部が前記閾値温度以上になった場合に前記収容容器と前記遮へい通路とが連通することで、前記収容容器に収容された複数の前記中性子吸収材が前記開口を通って前記遮へい通路に落下する原子炉停止方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022032592A JP2023128323A (ja) | 2022-03-03 | 2022-03-03 | 原子炉停止システム及び原子炉停止方法 |
JP2022-032592 | 2022-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166834A1 true WO2023166834A1 (ja) | 2023-09-07 |
Family
ID=87883695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/047997 WO2023166834A1 (ja) | 2022-03-03 | 2022-12-26 | 原子炉停止システム及び原子炉停止方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023128323A (ja) |
WO (1) | WO2023166834A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54139198U (ja) * | 1978-03-22 | 1979-09-27 | ||
JPS56150392A (en) * | 1980-03-22 | 1981-11-20 | Ght Hochtemperaturreak Tech | Pebble bed type reactor having neutron absorber charging device , and its operation method |
JPS6247585A (ja) * | 1985-08-28 | 1987-03-02 | 財団法人 電力中央研究所 | 燃料集合体 |
JPS63184095A (ja) * | 1987-01-27 | 1988-07-29 | 株式会社東芝 | 原子炉停止装置 |
JPH07209468A (ja) * | 1994-01-20 | 1995-08-11 | Power Reactor & Nuclear Fuel Dev Corp | 原子炉用制御フロート装置 |
JP2019531472A (ja) * | 2016-09-13 | 2019-10-31 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | 滞留する液体の炉心を有するヒートパイプ式溶融塩高速炉 |
-
2022
- 2022-03-03 JP JP2022032592A patent/JP2023128323A/ja active Pending
- 2022-12-26 WO PCT/JP2022/047997 patent/WO2023166834A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54139198U (ja) * | 1978-03-22 | 1979-09-27 | ||
JPS56150392A (en) * | 1980-03-22 | 1981-11-20 | Ght Hochtemperaturreak Tech | Pebble bed type reactor having neutron absorber charging device , and its operation method |
JPS6247585A (ja) * | 1985-08-28 | 1987-03-02 | 財団法人 電力中央研究所 | 燃料集合体 |
JPS63184095A (ja) * | 1987-01-27 | 1988-07-29 | 株式会社東芝 | 原子炉停止装置 |
JPH07209468A (ja) * | 1994-01-20 | 1995-08-11 | Power Reactor & Nuclear Fuel Dev Corp | 原子炉用制御フロート装置 |
JP2019531472A (ja) * | 2016-09-13 | 2019-10-31 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | 滞留する液体の炉心を有するヒートパイプ式溶融塩高速炉 |
Also Published As
Publication number | Publication date |
---|---|
JP2023128323A (ja) | 2023-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5781013B2 (ja) | 溶融塩原子炉 | |
JP2019531472A (ja) | 滞留する液体の炉心を有するヒートパイプ式溶融塩高速炉 | |
JP6243903B2 (ja) | モジュール式小型炉の安全系統 | |
US3935063A (en) | Emergency heat removal system for a nuclear reactor | |
JP2018049027A (ja) | 一体型溶融塩原子炉 | |
JP2014119429A (ja) | 熔融塩炉 | |
WO2011132612A1 (ja) | 液体金属冷却型原子炉及びその除熱方法 | |
WO2018169044A1 (ja) | 仕切り部材及び組電池 | |
CN104205239B (zh) | 用于排除压水核反应堆的残余能量的系统 | |
EP0410667B1 (en) | Liquid metal cooled nuclear reactors with passive cooling system | |
JP5690202B2 (ja) | 原子炉の崩壊熱除去装置 | |
WO2023166834A1 (ja) | 原子炉停止システム及び原子炉停止方法 | |
WO2017030107A1 (ja) | 小型溶融塩炉 | |
JP2008241657A (ja) | 原子炉格納容器 | |
WO2023166985A1 (ja) | 原子炉停止システム及び原子炉停止方法 | |
US20210174977A1 (en) | Passive infinite cooling structure for nuclear reactor and method of operating the same | |
JP2014173984A (ja) | 原子炉 | |
CN115938620A (zh) | 包括具有模块化冷源的完全非能动衰变热排出(dhr)系统的液态金属冷却核反应堆 | |
JP2004226217A (ja) | 放射性物質乾式貯蔵施設 | |
WO2022075058A1 (ja) | 原子炉ユニット及び原子炉ユニットの冷却方法 | |
JP2015078948A (ja) | 高速炉の原子炉施設 | |
WO2023162500A1 (ja) | 原子炉遮へい設備、原子力設備及び原子炉遮へい設備の建設方法 | |
JP2011242160A (ja) | 液体金属冷却原子炉 | |
JP2021135237A (ja) | 原子炉 | |
JP4341876B2 (ja) | 固体冷却原子炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929976 Country of ref document: EP Kind code of ref document: A1 |