WO2011132612A1 - 液体金属冷却型原子炉及びその除熱方法 - Google Patents

液体金属冷却型原子炉及びその除熱方法 Download PDF

Info

Publication number
WO2011132612A1
WO2011132612A1 PCT/JP2011/059393 JP2011059393W WO2011132612A1 WO 2011132612 A1 WO2011132612 A1 WO 2011132612A1 JP 2011059393 W JP2011059393 W JP 2011059393W WO 2011132612 A1 WO2011132612 A1 WO 2011132612A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid metal
filler
nuclear reactor
cooled nuclear
metal cooled
Prior art date
Application number
PCT/JP2011/059393
Other languages
English (en)
French (fr)
Inventor
英樹 堀江
靖 坪井
芙美絵 瀬部
竹澤 伸久
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN201180011602.1A priority Critical patent/CN102782768B/zh
Priority to CA2792108A priority patent/CA2792108C/en
Priority to RU2012137776/07A priority patent/RU2518066C2/ru
Publication of WO2011132612A1 publication Critical patent/WO2011132612A1/ja
Priority to US13/600,488 priority patent/US8873697B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • G21C15/12Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices from pressure vessel; from containment vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a liquid metal cooled nuclear reactor using liquid metal as a coolant and a heat removal method thereof.
  • a liquid metal cooled nuclear reactor In a liquid metal cooled nuclear reactor, it is necessary to stop the fission reaction in fuel and reach a low temperature state in order to cope with an emergency in operation or to perform maintenance and inspection.
  • the reactor In general, the reactor is shut down by inserting a reactor stop rod into the core and taking away neutrons that cause fission from the fuel.
  • the residual decay heat continues to be generated from the core for a certain period of time, so the temperature of the liquid metal coolant in the reactor vessel does not decrease rapidly. Therefore, in order to perform some work after the reactor shutdown, it is necessary to quickly dissipate this residual decay heat.
  • This liquid metal coolant and the adjacent furnace structure have a large heat capacity, which helps to dissipate the residual decay heat.
  • the residual decay heat accumulated in the liquid metal coolant is transferred from the reactor vessel to the containment vessel, and is discharged outside by a passive cooling system (RVACS) using air as a working fluid.
  • RVACS passive cooling system
  • the heat generated during the normal operation of the reactor and the residual decay heat generated when the reactor is shut down are passively cooled by radiation in the gap between the reactor vessel and the containment vessel, and heat conduction and convection of the enclosed inert gas. Is communicated to the system (RVACS).
  • RVACS system
  • the heat transfer in the gap between the reactor vessel and the containment vessel has a small contribution of heat conduction and convection, and radiation is dominant.
  • the outer wall of the reactor vessel and the inner wall of the containment vessel are processed so as to obtain a high emissivity so that the heat transfer efficiency by radiation is increased.
  • the present invention has been made in order to increase the efficiency of heat dissipation of a passive cooling system (RVACS), and an object thereof is to provide a liquid metal cooled nuclear reactor having a high heat removal capability and a heat removal method therefor.
  • a reactor vessel that holds a core and its coolant, a containment vessel that surrounds the outside of the reactor vessel, and an air flow that removes heat by flowing air to the outside of the containment vessel
  • a passage and an injection part for injecting a filler into a gap between the reactor vessel and the containment vessel A passage and an injection part for injecting a filler into a gap between the reactor vessel and the containment vessel.
  • a step of injecting filler into a gap between a reactor core and a reactor vessel holding the coolant and a containment vessel surrounding the reactor vessel, and air outside the containment vessel And a step of removing heat by flowing.
  • a filler having a good thermal conductivity such as liquid metal is injected into the gap between the reactor vessel and the containment vessel, thereby increasing the temperature of the outer wall of the containment vessel, and the passive cooling system (RVACS).
  • RVACS passive cooling system
  • FIG. 1 is a structural cross-sectional view showing a first embodiment of a liquid metal cooled nuclear reactor according to the present invention. It is operation
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG. It is a fragmentary sectional view showing the modification of a 1st embodiment. It is a fragmentary sectional view showing other modifications of a 1st embodiment.
  • FIG. 5 is a structural cross-sectional view of a liquid metal cooled nuclear reactor according to a second embodiment. It is BB sectional drawing of FIG. 5A.
  • the liquid metal cooled nuclear reactor 10 of the first embodiment (hereinafter simply referred to as “reactor”) includes a reactor core 22 that holds a reactor core 11 and its coolant L, and an atomic reactor.
  • the containment vessel 23 that surrounds the outside of the reactor vessel 22, the injection portion 30 that injects the filler T into the gap D between the reactor vessel 22 and the containment vessel 23, and the heat is removed by flowing air to the outside of the containment vessel 23.
  • the reactor vessel 22, the containment vessel 23, the injection part 30, and the air flow path U are formed inside a concrete silo 25 embedded in the ground.
  • the reactor vessel 22 and the containment vessel 23 are supported on the lower surface side of the support plate 21 at the upper opening.
  • the containment vessel 23 surrounds the core 11 with the reactor vessel 22 in a double manner, and even if the inner reactor vessel 22 is damaged and the coolant L leaks, the liquid level is secured, and the reactor core 11 It is intended to prevent exposure and airing.
  • Driving units 14 and 16 for driving the neutron reflector 12 and the furnace stop rod 15 are arranged on the upper surface side of the support plate 21, and the upper side thereof is covered with the top dome 41.
  • a neutron reflector 12 suspended by a wire 13 is annularly arranged outside the core 11, and moves up and down along the outer periphery of the core 11 by a drive unit 14.
  • the neutron reflector 12 adjusts neutrons emitted from the core 11 and controls the fission reaction.
  • this neutron reflector 12 is raised from the bottom side of the core 11 toward the head side, fast neutrons emitted from the core 11 are decelerated by the neutron reflector 12 and returned to the core 11 as thermal neutrons.
  • the core 11 absorbs the thermal neutrons to maintain the fission chain reaction and continuously outputs thermal energy.
  • the reactor stop rod 15 is moved up and down by the drive unit 16 and is inserted into the reactor core 11 to absorb thermal neutrons and interfere with the fission chain reaction, thereby stopping the reactor 10.
  • the coolant L is a liquid metal such as liquid sodium, and an inert gas is sealed between the liquid surface filled in the reactor vessel 22 and the support plate 21.
  • the coolant L circulates in the reactor vessel 22 from the outside to the inside of the cylindrical partition wall 17 by the driving force of the electromagnetic pump 18, and recovers thermal energy from the core 11 that generates heat.
  • the coolant L is cooled by exchanging heat with the secondary coolant flowing in the secondary coolant flow pipe (not shown) in the intermediate heat exchanger 19. Then, the cooled coolant L is increased in pressure by the electromagnetic pump 18 again, descends outside the partition wall 17, turns back at the lower end portion of the partition wall 17, rises inside, and receives heat supply from the core 11. .
  • RVACS Reactor Vessel Air Cooling System
  • the air flowing through the air flow path U is taken from the introduction path 27, descends along the outer surface of the flow guide plate 26, then turns back at the lower end thereof, and rises along the inner surface of the flow guide plate 26. Then, heat is taken from the outer surface of the storage container 23 and discharged from the discharge path 28 to the atmosphere.
  • the injection unit 30 includes a pressurization unit 31, a heater 32, a liquid storage unit 35, and a communication path 36. After the reactor core 11 is stopped, the injection section 30 configured in this way injects the filler T into the gap D between the reactor vessel 22 and the containment vessel 23 to thereby provide thermal conductivity between the reactor vessel 22 and the containment vessel 23. And the heat removal efficiency in the above RVACS of the generated decay heat is improved.
  • the liquid reservoir 35 is configured with a capacity larger than the capacity of the gap D, and accommodates the filler T at a level lower than the bottom surface of the coolant L.
  • the filler T can be applied as long as it has a liquid or gas state at the ultimate temperature of the reactor vessel 22 and the containment vessel 23 and has a high thermal conductivity.
  • the filler T is a low melting point metal. Examples thereof include solder (alloy of lead and tin), woods metal (alloy of bismuth, lead, tin, and cadmium), indium, and the like.
  • the filler T When these low melting point metals are used as the filler T, the filler T is heated by the heater 32 and maintained in a molten state so as not to solidify in the liquid reservoir 35.
  • the pressurizing unit 31 is configured by a piston that moves in the horizontal direction from the end of the liquid reservoir 35 toward the opening of the communication path 36. As shown in FIG. 2, the pressurizing unit 31 pressurizes the filler T and guides the filler T in the liquid reservoir 35 to the gap D via the communication path 36.
  • FIGS. 3A and 3B are shown in FIGS. 3A and 3B.
  • the piston of the pressurizing unit 31 is returned to the original outer position by the reverse operation, and the filler T injected into the gap D is returned to the inside of the liquid reservoir 35.
  • the partial cross section of FIG. 4A shows a modification of the first embodiment.
  • the pressurizing unit 33 is constituted by a piston that moves in the vertical direction from the lower end of the liquid reservoir 35 toward the opening of the communication passage 36.
  • the pressurizing unit 33 pressurizes the filler T in the vertical direction and guides the filler T melted by the heater 32 inside the liquid reservoir 35 to the gap D through the communication path 36.
  • the piston of the pressure unit 33 is returned to the original lower position by the reverse operation, and the filler T injected into the gap D is returned to the inside of the liquid reservoir 35.
  • the partial cross-sectional view of FIG. 4B shows another modification of the first embodiment.
  • the communication path 36 is composed of a plurality (three in the figure).
  • FIG. 5B shows a BB cross-sectional view of FIG. 5A.
  • FIG. 5A and 5B the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and the detailed description is omitted by using the already described description.
  • the circulation path 43 of the refrigerant W for cooling the filler T heated by the injection part 30 in the gap D and heated is formed.
  • One or a plurality (four in the drawing) of the circulation path 43 is arranged in the liquid reservoir 35 so as not to interfere with the operation of the pressurizing unit 31.
  • water, air, or the like is appropriately employed as the refrigerant W, and is circulated by a pump 46 provided in the circulation path 43 to remove heat from the heated filler T.
  • a tank 42 in which the refrigerant W is stored is disposed in the circulation path 43, and charging is performed by supplying the refrigerant W to the liquid reservoir 35 and operating the stop valve 45 disposed in the vicinity thereof.
  • the material T is removed from heat.
  • the refrigerant W whose temperature has been raised is cooled by a radiator 44 that is also arranged in the circulation path 43.
  • the transmitted decay heat reaches the liquid reservoir 35 via the communication path 36. Therefore, the heating by the heater 32 is stopped, the flow stop valve 45 is opened, and the refrigerant W is supplied from the tank 42 to the liquid reservoir 35. Thereby, the function of RVACS can be supported and the heat removal effect of decay heat can be further improved.
  • the injection unit 50 includes a liquid reservoir 51 that contains the filler T at a level higher than the upper surface of the coolant L, a communication passage 53 that communicates the liquid reservoir 51 and the gap D, and a filler.
  • the heater 55 which heats T and maintains a molten state, and the flow stop valve 52 of the filler T in the communicating path 53 are comprised.
  • one end of the communication path 53 is connected to the storage container 23.
  • a drainage part 37 for discharging T (see FIG. 7) is provided (see FIG. 8).
  • a flow stop valve 54 for the filler T is provided in the path 24 connecting the gap D and the drainage part 37.
  • the injection unit 50 is configured to have a larger capacity than the capacity of the gap D above the silo 25, and the filling material T is held in the liquid reservoir 51 (see FIG. 6).
  • the flow stop valve 52 is opened, the filler T held in the liquid reservoir 51 falls by gravity and is injected into the gap D through the communication path 53 (see FIG. 7).
  • the flow stop valve 54 is opened, and the filler T injected into the gap D is discharged to the drainage part 37 (see FIG. 8).
  • the injection part 50 is configured to have a larger capacity than the capacity of the gap D above the silo 25, and the filling material T is held in the liquid storage part 51 (see FIG. 9).
  • the flow stop valve 54 is opened, the filler T held in the liquid reservoir 51 falls by gravity and is injected into the gap D via the communication path 56 (see FIG. 10).
  • the flow stop valve 57 is opened and the filler T injected into the gap D is discharged to the drainage part 37 (see FIG. 11).
  • the injection part 50 includes a return path 59 for returning the filler T in the drainage part 37 to the liquid reservoir 51. Further, a pressurizing unit 31 for pushing out the filler T discharged to the drainage unit 37 toward the return path 59 is provided.
  • the process of injecting the filler T into the gap D in the fifth embodiment is the same as that in the fourth embodiment referred to in FIG. Further, the process of discharging the filler T in the gap D to the drainage part 37 after the decay heat removal is completed is the same as in the case of the fourth embodiment referred to in FIG.
  • the flow stop valve 58 of the return path 59 is opened and the piston of the pressurizing part 31 is operated to move the filler T to the return path 59. Push it out (see FIG. 14). Then, the filler T is collected in the liquid reservoir 51 against the gravity by the pump 46 provided in the return path 59.
  • the filler T such as a low melting point metal is injected into the gap D between the reactor vessel 22 and the containment vessel 23, thereby having an excellent heat removal capability.
  • a liquid metal cooled nuclear reactor capable of recovering the filler T is provided.
  • the present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented within the scope of the common technical idea.
  • the removal of decay heat has exemplified that the air outside the containment vessel is made to flow by natural convection, but is not limited to this. Forcibly flowing or combining with other heat removal means There is also.
  • radiator, 46 Pump, 53,56 ... Communication passage, 45,52,54,57,58 ... Stop valve, 55 ... Heater, 59 ... Return path, D ... Gap, L ... Coolant, T ... Filler, U ... Air Channel, W ... refrigerant.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】除熱能力の高い液体金属冷却型原子炉及びその除熱方法を提供する。 【解決手段】液体金属冷却型原子炉10において、炉心11及びその冷却材Lを保持する原子炉容器22と、原子炉容器22の外側を取り囲む格納容器23と、格納容器23の外側に空気を流動させて除熱を行う空気流路Uと、原子炉容器22及び格納容器23の間隙Dに充填材Tを注入する注入部30と、を備える。

Description

液体金属冷却型原子炉及びその除熱方法
 本発明は、液体金属を冷却材として用いる液体金属冷却型原子炉及びその除熱方法に関する。
 液体金属冷却型原子炉では、運転中の緊急事態に対処するため、又は保守点検を行うために、燃料における核分裂反応を停止して、低温状態に到達させる必要がある。一般に原子炉の停止は、炉心に炉停止棒を挿入して、核分裂を生じさせる中性子を燃料から奪うことにより行われる。 
 しかし、原子炉停止後も、ある一定時間は残留崩壊熱が炉心から発生し続けるため、原子炉容器内の液体金属冷却材の温度は、速やかには低下しない。従って、原子炉停止後に何らかの作業を行うためには、この残留崩壊熱を早急に消散させる必要がある。
 この液体金属冷却材、及び隣接する炉構造物は、熱容量が大きいため、残留崩壊熱の消散の助けになる。この液体金属冷却材に蓄積した残留崩壊熱は、原子炉容器から格納容器に伝達され、そして空気を作動流体とする受動冷却システム(RVACS)により外部に排出される。
 これにより、一般にSUSで製作される原子炉容器や格納容器が、長期間に亘り高温にさらされて強度低下することを防止するとともに、これらの外側に配置されたコンクリート製のサイロが脆く性質変化することを防止する。
 このような残留崩壊熱の除去を促進させるために、液体金属冷却型原子炉において、導流板(図面符号9参照)の壁に有孔流路を設けることが提案されている(例えば、特許文献1)。また、液体金属冷却型原子炉に適用された技術ではないものの、原子炉の格納容器の外側表面を水で濡らして格納容器の除熱を促進する技術も提案されている(例えば、特許文献2)。
特許第3499920号明細書 特許第2813412号明細書
 ところで、原子炉の通常運転時の発生熱及び原子炉停止時に発生する残留崩壊熱は、原子炉容器及び格納容器の間隙における輻射並びに封入されている不活性ガスの熱伝導及び対流によって、受動冷却システム(RVACS)に伝達される。 
 一方において、原子炉容器及び格納容器の間隙における熱伝達は、熱伝導や対流の寄与は小さく輻射が支配的であると考えられている。このために、輻射による熱伝達効率が増大するように、原子炉容器の外側壁及び格納容器の内側壁は、高輻射率が得られるように処理されている。
 しかし、現実には、原子炉容器及び格納容器の温度差は大きいことから、受動冷却システム(RVACS)の除熱において、原子炉容器から格納容器への熱伝達効率が悪いことが明らかである。 
 本発明は、受動冷却システム(RVACS)の徐熱効率を高めるためになされたものであり、除熱能力の高い液体金属冷却型原子炉及びその除熱方法を提供することを目的とする。
 液体金属冷却型原子炉において、炉心及びその冷却材を保持する原子炉容器と、前記原子炉容器の外側を取り囲む格納容器と、前記格納容器の外側に空気を流動させて除熱を行う空気流路と、前記原子炉容器及び前記格納容器の間隙に充填材を注入する注入部と、を備えることを特徴とする。 
 液体金属冷却型原子炉の除熱方法において、炉心及びその冷却材を保持する原子炉容器とその外側を取り囲む格納容器との間隙に充填材を注入する工程と、前記格納容器の外側に空気を流動させて除熱を行う工程と、を含むことを特徴とする。
 本発明によれば、原子炉容器及び格納容器の間隙に液体金属等の熱伝導性の良い充填材が注入されることにより、格納容器の外壁の温度を上昇させて、受動冷却システム(RVACS)等による除熱能力の高い液体金属冷却型原子炉及びその除熱方法が提供される。
本発明に係る液体金属冷却型原子炉の第1実施形態を示す構成断面図である。 第1実施形態に係る液体金属冷却型原子炉の動作説明図である。 図1のA-A断面図である。 図2のB-B断面図である。 第1実施形態の変形例を示す部分断面図である。 第1実施形態の他の変形例を示す部分断面図である。 第2実施形態に係る液体金属冷却型原子炉の構成断面図である。 図5AのB-B断面図である。 第3実施形態に係る液体金属冷却型原子炉の構成断面図である。 第3実施形態に係る液体金属冷却型原子炉の動作説明図である。 第3実施形態に係る液体金属冷却型原子炉の動作説明図である。 第4実施形態に係る液体金属冷却型原子炉の構成断面図である。 第4実施形態に係る液体金属冷却型原子炉の動作説明図である。 第4実施形態に係る液体金属冷却型原子炉の動作説明図である。 第5実施形態に係る液体金属冷却型原子炉の構成断面図である。 第5実施形態に係る液体金属冷却型原子炉の動作説明図である。 第5実施形態に係る液体金属冷却型原子炉の動作説明図である。
(第1実施形態)
 以下、本発明の実施形態を添付図面に基づいて説明する。 
 図1に示すように、第1実施形態の液体金属冷却型原子炉10は、(以下、単に「原子炉」という)は、炉心11及びその冷却材Lを保持する原子炉容器22と、原子炉容器22の外側を取り囲む格納容器23と、原子炉容器22及び格納容器23の間隙Dに充填材Tを注入する注入部30と、格納容器23の外側に空気を流動させて除熱を行う空気流路Uと、を備えている。 
 そして、これら原子炉容器22、格納容器23、注入部30及び空気流路Uは、地中に埋設されているコンクリート製のサイロ25の内部に形成されている。
 この原子炉容器22及び格納容器23は、その上部開口部分が支持板21の下面側において支持されている。この格納容器23は、原子炉容器22とともに炉心11を二重に取り囲み、内側の原子炉容器22が損傷して冷却材Lが漏洩してもその液面高さを確保して、炉心11が露出して空焚きにならないようにするものである。 
 そして、支持板21の上面側には、中性子反射体12及び炉停止棒15をそれぞれ駆動させる駆動部14,16が配置され、さらにその上側がトップドーム41により覆われている。
 炉心11の外側には、ワイヤ13により懸垂された中性子反射体12が環状に配置され、駆動部14によりこの炉心11の外周に沿って上下方向に移動する。 
 そして、中性子反射体12は、炉心11から放出される中性子を調整し核分裂反応を制御する。この中性子反射体12を炉心11の底部側から頭部側に向って上昇させると、炉心11から放出される高速中性子は中性子反射体12で減速され、熱中性子となって炉心11に戻される。そして、炉心11は、この熱中性子を吸収して核分裂の連鎖反応を持続させ、連続的に熱エネルギーを出力する。 
 炉停止棒15は、駆動部16により上下方向に移動し、炉心11に挿入されることにより熱中性子を吸収して核分裂の連鎖反応を妨害し、原子炉10を停止させるものである。
 冷却材Lは、液体ナトリウム等の液体金属で、原子炉容器22内に満たされる液面と支持板21との間には不活性ガスが封入されている。 
 そして、冷却材Lは、電磁ポンプ18の駆動力によって円筒状の隔壁17の外側から内側に向かって原子炉容器22の内部を循環し、発熱する炉心11から熱エネルギーを回収する。そして、冷却材Lは、中間熱交換器19において二次側冷却材通流配管(図示略)を流動する二次冷却材と熱交換して冷却される。 
 そして、冷却された冷却材Lは、再び電磁ポンプ18で昇圧されて隔壁17の外側を下降し、隔壁17の下端部で折り返しその内側を上昇して炉心11で熱供給を受けるといった循環を繰り返す。
 次に、格納容器23の外側に形成される受動冷却システム(RVACS:Reactor Vessel Air Cooling System)を説明する。 
 このRVACSは、格納容器23の外表面と、サイロ25の内表面と、円筒形の導流板26と、から形成される空気流路Uに空気が自然対流して除熱を行うものである。
 この空気流路Uを流動する空気は、導入路27から取り込まれて、導流板26の外側面に沿って下降してからその下端部で折り返し、導流板26の内側面に沿って上昇して格納容器23の外表面から熱を奪って排出路28から大気中に排出される。
 注入部30は、加圧部31と、ヒータ32と、液溜部35と、連通路36と、から構成されている。 
 このように構成される注入部30は、炉心11の停止後、原子炉容器22及び格納容器23の間隙Dに充填材Tを注入して原子炉容器22及び格納容器23の間の熱伝導性を向上させ、発生した崩壊熱の上記したRVACSにおける除熱効率を向上させるものである。
 液溜部35は、間隙Dの容量よりも大容量で構成され、充填材Tを冷却材Lの底面よりも低いレベルで収容する。ここで、充填材Tは、原子炉容器22及び格納容器23の到達温度において液体あるいは気体状態を示し、かつ熱伝導率の高いものであれば適用することができ、例えば、低融点金属である半田(鉛とすずの合金)、ウッズメタル(ビスマス、鉛、すず、カドミウムの合金)、インジウム等が挙げられる。
 なお、充填材Tとしてこれら低融点金属を採用する場合は、液溜部35で凝固しないように、充填材Tはヒータ32で加熱され溶融状態を維持している。 
 加圧部31は、液溜部35の内部をその端部から連通路36の開口の方向に向かって水平方向に移動するピストンで構成される。 
 そして、図2に示されるように、加圧部31は、充填材Tを加圧して連通路36を経由して液溜部35内部の充填材Tを間隙Dに導く。
 なお、その動作を示す図1のA-A断面及び図2のB-B断面がそれぞれ図3A、図3Bに示される。 
 また、崩壊熱の除熱が終了したところで、逆動作により、加圧部31のピストンを元の外側の位置まで戻し、間隙Dに注入された充填材Tを液溜部35の内部に戻す。
 図4Aの部分断面は第1実施形態の変形例を示している。 
 この変形例において加圧部33は、液溜部35の内部をその下端部から連通路36の開口の方向に向かって垂直方向に移動するピストンにより構成されている。 
 この加圧部33は、充填材Tを垂直方向に加圧して連通路36を経由して液溜部35内部のヒータ32で溶融状態にされた充填材Tを間隙Dに導く。 
 また、崩壊熱の除熱が終了したところで、逆動作により、加圧部33のピストンを元の下側の位置まで戻し、間隙Dに注入された充填材Tを液溜部35の内部に戻す。
 図4Bの部分断面図は第1実施形態の他の変形例を示す。 
 この変形例において連通路36は、複数(図では三本)で構成されている。 
 これにより、複数の連通路36のうちいずれかにおいて、仮に低融点金属である充填材Tが固化して閉塞した場合においても、他の連通路36において充填材Tを間隙Dに注入することができる。
(第2実施形態)
 次に図5A及び図5Bに基づいて本発明の第2実施形態を説明する。ここで図5Bは、図5AのB-B断面図を示している。 
 なお、図5A及び図5Bにおいて図1と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。
 第2実施形態における原子炉10は、注入部30が、間隙Dにおいて加熱されて昇温した充填材Tを冷却するための冷媒Wの循環路43が形成されている。そして、この循環路43は、加圧部31の動作に干渉しないように、単数または複数(図では4本)が、液溜部35に配置されている。 
 ここで冷媒Wは、水や空気等が適宜採用され、循環路43に設けられたポンプ46により循環して、昇温した充填材Tの除熱を行う。
 この循環路43の経路中には、冷媒Wが貯蔵されるタンク42が配置され、その近傍に配置される流止弁45の動作により冷媒Wを液溜部35に供給して昇温した充填材Tを除熱する。そして、昇温した冷媒Wは、同じく循環路43の経路中に配置される放熱器44により冷却される。
 この第2実施形態においては、充填材Tが間隙Dに注入された後、伝達された崩壊熱が連通路36を経由して液溜部35に到達することになる。そこで、ヒータ32による加熱を停止するとともに、流止弁45を開いてタンク42から冷媒Wが液溜部35に供給される。 
 これにより、RVACSの機能をサポートして崩壊熱の除熱効果をさらに向上させることができる。
(第3実施形態)
 次に図6、図7、図8に基づいて本発明の第3実施形態を説明する。なお、これら図面において図1と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。 
 この第3実施形態において注入部50は、充填材Tを冷却材Lの上面よりも高いレベルで収容する液溜部51と、液溜部51及び間隙Dを連通する連通路53と、充填材Tを加熱して溶融状態を維持するヒータ55と、連通路53における充填材Tの流止弁52とから構成されている。 
 そして、第3実施形態において連通路53の一端は、格納容器23に接続されている。
 さらに、第1実施形態及び第2実施形態の注入部30(図1参照)に対応する第3実施形態の位置には、冷却材Lの下面よりも低いレベルで間隙Dに充填された充填材T(図7参照)を排出する排液部37が設けられている(図8参照)。そして、間隙D及び排液部37を結ぶ経路24には、充填材Tの流止弁54が設けられている。
 第3実施形態において注入部50は、サイロ25の上部に、間隙Dの容量よりも大容量で構成され液溜部51に充填材Tが保持されている(図6参照)。そして、流止弁52を開くと液溜部51に保持される充填材Tが、重力落下して連通路53を経由して間隙Dに注入される(図7参照)。 
 そして、崩壊熱の除熱が終了したところで流止弁54を開いて間隙Dに注入された充填材Tを排液部37に排出する(図8参照)。
(第4実施形態)
 次に図9、図10、図11に基づいて本発明の第4実施形態を説明する。なお、これら図面において図6と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。 
 この第4実施形態において、液溜部51及び間隙Dを連通する連通路56の一端は、間隙D及び排液部37を結ぶ経路24に接続されている。
 第4実施形態において注入部50は、サイロ25の上部に、間隙Dの容量よりも大容量で構成され液溜部51に充填材Tが保持されている(図9参照)。そして、流止弁54を開くと液溜部51に保持される充填材Tが、重力落下して連通路56を経由して間隙Dに注入される(図10参照)。 
 そして、崩壊熱の除熱が終了したところで流止弁57を開いて間隙Dに注入された充填材Tを排液部37に排出する(図11参照)。
(第5実施形態)
 次に図12,図13,図14に基づいて本発明の第5実施形態を説明する。なお、この図面において図9と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。 
 この第5実施形態において注入部50は、排液部37における充填材Tを液溜部51に戻す返還路59を備える。さらに、排液部37に排出された充填材Tをこの返還路59に向けて押し出すための加圧部31が設けられている。
 第5実施形態において間隙Dに充填材Tを注入するプロセスは、図10に参照される第4実施形態の場合と同様である。さらに、崩壊熱の除熱が終了して間隙Dの充填材Tを排液部37に排出するプロセスも図11に参照される第4実施形態の場合と同様である。 
 そして、排液部37に充填材Tが排出されると(図13参照)、返還路59の流止弁58が開くとともに加圧部31のピストンが動作して充填材Tを返還路59に向けて押し出す(図14参照)。そして、返還路59に設けられたポンプ46により重力に逆らって充填材Tが液溜部51に回収される。
 以上説明したように、本発明の実施形態によれば、原子炉容器22と格納容器23との間隙Dに低融点金属等の充填材Tが注入されることにより、優れた除熱能力を有するとともに、この充填材Tの回収を可能とする液体金属冷却型原子炉が提供される。
 本発明は前記した実施形態に限定されるものでなく、共通する技術思想の範囲内において、適宜変形して実施することができる。 
 例えば、崩壊熱の除去は、格納容器の外側の空気を自然対流により流動させることを例示したが、これに限定されることはなく、強制流動させたり、他の除熱手段と組み合わせたりする場合もある。
 10…液体金属冷却型原子炉、11…炉心、12…中性子反射体、13…ワイヤ、14,16…駆動部、15…炉停止棒、17…隔壁、18…電磁ポンプ、19…中間熱交換器、21…支持板、22…原子炉容器、23…格納容器、24…経路、25…サイロ、26…導流板、27…導入路、28…排出路、30,50…注入部、31,33…加圧部、32…ヒータ、35,51…液溜部、36…連通路、37…排液部、41…トップドーム、42…タンク、43…循環路、44…放熱器、46…ポンプ、53,56…連通路、45,52,54,57,58…流止弁、55…ヒータ、59…返還路、D…間隙、L…冷却材、T…充填材、U…空気流路、W…冷媒。

Claims (9)

  1.  炉心及びその冷却材を保持する原子炉容器と、
     前記原子炉容器の外側を取り囲む格納容器と、
     前記格納容器の外側に空気を流動させて除熱を行う空気流路と、
     前記原子炉容器及び前記格納容器の間隙に充填材を注入する注入部と、を備えることを特徴とする液体金属冷却型原子炉。
  2.  請求項1に記載の液体金属冷却型原子炉において、
     前記注入部は、
     前記充填材を前記冷却材の底面よりも低いレベルで収容する液溜部と、前記液溜部及び前記間隙を連通する連通路と、前記充填材を加熱して溶融状態を維持するヒータと、前記充填材を加圧して前記液溜部から前記間隙に導く加圧部と、を有することを特徴とする液体金属冷却型原子炉。
  3.  請求項2に記載の液体金属冷却型原子炉において、
     前記連通路は、単数又は複数で構成され、
     前記加圧部は、前記液溜部の内部をその端部から前記連通路の開口の方向に向かって水平方向又は垂直方向に移動するピストンであることを特徴とする液体金属冷却型原子炉。
  4.  請求項1から請求項3のいずれか1項に記載の液体金属冷却型原子炉において、
     前記注入部は、前記間隙において加熱された前記充填材を冷却するための冷媒循環路が形成されていることを特徴とする液体金属冷却型原子炉。
  5.  請求項1に記載の液体金属冷却型原子炉において、
     前記注入部は、
     前記充填材を前記冷却材の上面よりも高いレベルで収容する液溜部と、前記液溜部及び前記間隙を連通する連通路と、前記充填材を加熱して溶融状態を維持するヒータと、前記連通路に設けられる前記充填材の流止弁と、を有することを特徴とする液体金属冷却型原子炉。
  6.  請求項5に記載の液体金属冷却型原子炉において、
     前記間隙に充填された前記充填材を前記冷却材の下面よりも低いレベルで排出させる排液部と、前記間隙及び前記排液部を結ぶ経路に設けられる前記充填材の流止弁と、を備えることを特徴とする液体金属冷却型原子炉。
  7.  請求項6に記載の液体金属冷却型原子炉において、
     前記連通路は、前記経路を経由して前記間隙に連通することを特徴とする液体金属冷却型原子炉。
  8.  請求項6又は請求項7に記載の液体金属冷却型原子炉において、
     前記排液部における前記充填材を前記液溜部に戻す返還路を備えることを特徴とする液体金属冷却型原子炉。
  9.  炉心及びその冷却材を保持する原子炉容器とその外側を取り囲む格納容器との間隙に充填材を注入する工程と、
     前記格納容器の外側に空気を流動させて除熱を行う工程と、を含むことを特徴とする液体金属冷却型原子炉の除熱方法。
PCT/JP2011/059393 2010-04-21 2011-04-15 液体金属冷却型原子炉及びその除熱方法 WO2011132612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180011602.1A CN102782768B (zh) 2010-04-21 2011-04-15 液态金属冷却反应堆及其除热方法
CA2792108A CA2792108C (en) 2010-04-21 2011-04-15 Liquid metal cooled nuclear reactor and heat removal method for same
RU2012137776/07A RU2518066C2 (ru) 2010-04-21 2011-04-15 Ядерный реактор с жидкометаллическим охлаждением и способ отвода от него теплоты
US13/600,488 US8873697B2 (en) 2010-04-21 2012-08-31 Liquid metal cooled nuclear reactor and heat removal method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-097825 2010-04-21
JP2010097825A JP5624355B2 (ja) 2010-04-21 2010-04-21 液体金属冷却型原子炉及びその除熱方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/600,488 Continuation US8873697B2 (en) 2010-04-21 2012-08-31 Liquid metal cooled nuclear reactor and heat removal method for the same

Publications (1)

Publication Number Publication Date
WO2011132612A1 true WO2011132612A1 (ja) 2011-10-27

Family

ID=44834132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059393 WO2011132612A1 (ja) 2010-04-21 2011-04-15 液体金属冷却型原子炉及びその除熱方法

Country Status (6)

Country Link
US (1) US8873697B2 (ja)
JP (1) JP5624355B2 (ja)
CN (1) CN102782768B (ja)
CA (1) CA2792108C (ja)
RU (1) RU2518066C2 (ja)
WO (1) WO2011132612A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623072A (zh) * 2012-03-30 2012-08-01 中国科学院合肥物质科学研究院 一种复合型的加速器驱动次临界堆事故余热排出系统
CN106782694A (zh) * 2016-12-30 2017-05-31 清华大学天津高端装备研究院 一种铅铋快堆压力容器
JP2017538940A (ja) * 2014-12-16 2017-12-28 ジョイント ストック カンパニー アトムエネルゴプロエクトJoint Stock Company Atomenergoproekt 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
US10937558B2 (en) 2017-07-24 2021-03-02 State Atomic Energy Corporation “Rosatom” On Behalf Of The Russian Federation Method of launching natural circulation of liquid metal coolant of a fast neutron nuclear chain reactor
CN113140337A (zh) * 2021-03-05 2021-07-20 国科中子能(青岛)研究院有限公司 多介质共用冷却通道的非能动冷却系统、方法及反应堆

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885160B (zh) * 2012-11-26 2017-10-10 伊胜工程联合股份公司 具有液体金属冷却剂的核反应堆
CN103021483B (zh) * 2012-12-31 2015-08-19 中国科学院合肥物质科学研究院 一种用于液态金属冷却自然循环反应堆的辅助加热系统
RU2545098C1 (ru) * 2014-01-31 2015-03-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Реакторная установка с реактором на быстрых нейтронах и свинцовым теплоносителем
US9875817B2 (en) 2014-06-09 2018-01-23 Bwxt Mpower, Inc. Nuclear reactor support and seismic restraint with in-vessel core retention cooling features
WO2016082843A1 (ru) * 2014-11-25 2016-06-02 Сергей Евгеньевич УГЛОВСКИЙ Способ интенсификации теплообмена ы устройство для осуществления спосова
CN105261401B (zh) * 2015-08-28 2017-07-11 中国科学院合肥物质科学研究院 一种池内液态重金属冷却反应堆非能动余热排出系统
CN106571579B (zh) * 2015-10-13 2019-02-26 中国科学院大连化学物理研究所 一种活塞式可调碟片激光器晶体冷却指
CN106710643B (zh) * 2015-11-13 2018-08-14 环境保护部核与辐射安全中心 核反应堆堆芯
US10460844B2 (en) * 2017-05-09 2019-10-29 Westinghouse Electric Company Llc Small nuclear reactor containment system
US10937557B2 (en) * 2017-10-17 2021-03-02 Ge-Hitachi Nuclear Energy Americas Llc Systems and methods for airflow control in reactor passive decay heat removal
US11482345B2 (en) * 2017-12-04 2022-10-25 Ge-Hitachi Nuclear Energy Americas Llc Methods of constructing nuclear power plants with geothermal passive cooling
CN113327694B (zh) * 2021-05-25 2022-11-22 西安热工研究院有限公司 一种钠冷反应堆系统
CN114220572B (zh) * 2021-11-02 2024-06-14 中国核电工程有限公司 一种移动式微型反应堆的非能动余热排出装置
CN114334192A (zh) * 2021-11-17 2022-04-12 中国核电工程有限公司 一种微小型卧式反应堆的非能动余热排出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216090A (ja) * 1983-05-24 1984-12-06 株式会社日立製作所 高速増殖炉
JPS6093383A (ja) * 1983-09-28 1985-05-25 アクチーボラグ アセア‐アトム 熱発生装置を冷却する装置
JPS63154992A (ja) * 1986-12-19 1988-06-28 株式会社東芝 高速増殖炉の除熱システム
JPH0318792A (ja) * 1989-05-11 1991-01-28 General Electric Co <Ge> 受動形冷却装置
JPH05264773A (ja) * 1992-01-13 1993-10-12 Nnc Ltd 熱伝導方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767593A (en) * 1987-06-15 1988-08-30 Wedellsborg Bendt W Multiple shell pressure vessel
US5049353A (en) * 1989-04-21 1991-09-17 Westinghouse Electric Corp. Passive containment cooling system
US5339340A (en) 1993-07-16 1994-08-16 General Electric Company Liquid metal reactor air cooling baffle
US5499277A (en) * 1994-08-19 1996-03-12 General Electric Company Method and apparatus for enhancing reactor air-cooling system performance
IT1289801B1 (it) * 1996-12-24 1998-10-16 Finmeccanica Spa Reattore nucleare a circolazione naturale migliorata del fluido di raffreddamento.
US8401142B2 (en) * 2007-02-20 2013-03-19 Westinghouse Electric Company Llc Nuclear reactor vessel fuel thermal insulating barrier
US20080219395A1 (en) * 2007-03-06 2008-09-11 Areva Np Nuclear power plant using nanoparticles in emergency situations and related method
RU2341834C1 (ru) * 2007-03-30 2008-12-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт атомного энергетического машиностроения" (ОАО "ВНИИАМ") Система аварийного расхолаживания реакторной установки с жидкометаллическим теплоносителем
KR100935089B1 (ko) * 2007-12-20 2010-01-06 한국원자력연구원 소듐냉각 고속로의 잔열제거용 중간 소듐루프에서의 소듐고화가능성을 배제한 피동 안전등급 잔열제거 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216090A (ja) * 1983-05-24 1984-12-06 株式会社日立製作所 高速増殖炉
JPS6093383A (ja) * 1983-09-28 1985-05-25 アクチーボラグ アセア‐アトム 熱発生装置を冷却する装置
JPS63154992A (ja) * 1986-12-19 1988-06-28 株式会社東芝 高速増殖炉の除熱システム
JPH0318792A (ja) * 1989-05-11 1991-01-28 General Electric Co <Ge> 受動形冷却装置
JPH05264773A (ja) * 1992-01-13 1993-10-12 Nnc Ltd 熱伝導方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623072A (zh) * 2012-03-30 2012-08-01 中国科学院合肥物质科学研究院 一种复合型的加速器驱动次临界堆事故余热排出系统
JP2017538940A (ja) * 2014-12-16 2017-12-28 ジョイント ストック カンパニー アトムエネルゴプロエクトJoint Stock Company Atomenergoproekt 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
CN106782694A (zh) * 2016-12-30 2017-05-31 清华大学天津高端装备研究院 一种铅铋快堆压力容器
US10937558B2 (en) 2017-07-24 2021-03-02 State Atomic Energy Corporation “Rosatom” On Behalf Of The Russian Federation Method of launching natural circulation of liquid metal coolant of a fast neutron nuclear chain reactor
CN113140337A (zh) * 2021-03-05 2021-07-20 国科中子能(青岛)研究院有限公司 多介质共用冷却通道的非能动冷却系统、方法及反应堆
CN113140337B (zh) * 2021-03-05 2023-09-15 国科中子能(青岛)研究院有限公司 多介质共用冷却通道的非能动冷却系统、方法及反应堆

Also Published As

Publication number Publication date
CN102782768A (zh) 2012-11-14
RU2518066C2 (ru) 2014-06-10
JP2011226955A (ja) 2011-11-10
CA2792108A1 (en) 2011-10-27
US20130114778A1 (en) 2013-05-09
CA2792108C (en) 2015-12-29
CN102782768B (zh) 2015-06-03
JP5624355B2 (ja) 2014-11-12
RU2012137776A (ru) 2014-03-10
US8873697B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
JP5624355B2 (ja) 液体金属冷却型原子炉及びその除熱方法
KR101229953B1 (ko) 사용후핵연료 저장조 피동형 냉각장치
JP5781013B2 (ja) 溶融塩原子炉
JP6655054B2 (ja) 原子力発電所を稼働させる方法
CN107251152B (zh) 核反应堆堆芯熔融物的冷却和封闭系统
KR100597722B1 (ko) 액체금속로의 안정적인 피동 잔열제거 계통
WO2016197807A1 (zh) 快堆型耦合核反应的实施方法及其核反应堆
US20100260302A1 (en) Nuclear reactor with improved cooling in an accident situation
CA2859179A1 (en) Emergency core cooling system (eccs) for nuclear reactor employing closed heat transfer pathways
WO2010131379A1 (ja) 溶融物の冷却促進装置及び原子炉格納容器
KR101559017B1 (ko) 중대사고방지 무인사고대처 원자로 및 그 동작 방법
JP2008241657A (ja) 原子炉格納容器
JP4746911B2 (ja) 高速炉および高速炉施設の建設方法
JP2012154644A (ja) 原子炉格納容器の熱輸送装置およびその方法
RU2649417C1 (ru) Система и способ отвода тепла от корпуса ядерного реактора
JP2014157029A (ja) 原子炉システムおよび原子炉溶融物保持装置
JP6756470B2 (ja) 原子炉および原子力プラント
KR101617161B1 (ko) 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법
JP2015078948A (ja) 高速炉の原子炉施設
JP2014173984A (ja) 原子炉
US20210174977A1 (en) Passive infinite cooling structure for nuclear reactor and method of operating the same
JP5595672B2 (ja) 原子炉
JP2018538509A (ja) ヒートパイプを利用した使用後核燃料受動冷却システム
JP2006010330A (ja) 使用済燃料の高密度貯蔵システム
JP2011242160A (ja) 液体金属冷却原子炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011602.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2792108

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012137776

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11771947

Country of ref document: EP

Kind code of ref document: A1