WO2023165147A1 - 显示面板的 led 挡墙的打印设备及方法 - Google Patents

显示面板的 led 挡墙的打印设备及方法 Download PDF

Info

Publication number
WO2023165147A1
WO2023165147A1 PCT/CN2022/128177 CN2022128177W WO2023165147A1 WO 2023165147 A1 WO2023165147 A1 WO 2023165147A1 CN 2022128177 W CN2022128177 W CN 2022128177W WO 2023165147 A1 WO2023165147 A1 WO 2023165147A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
target
module
needle
led
Prior art date
Application number
PCT/CN2022/128177
Other languages
English (en)
French (fr)
Inventor
孙文灏
茹李波
徐恩毅
吉祥
李赛锋
黄飞
Original Assignee
芯体素(杭州)科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210203951.3A external-priority patent/CN114571725B/zh
Priority claimed from CN202210292190.3A external-priority patent/CN114379091B/zh
Application filed by 芯体素(杭州)科技发展有限公司 filed Critical 芯体素(杭州)科技发展有限公司
Priority to EP22912784.0A priority Critical patent/EP4261015A1/en
Publication of WO2023165147A1 publication Critical patent/WO2023165147A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the invention relates to the technical field of display panel processing, in particular to a printing device and method for an LED retaining wall of a display panel.
  • Sub-millimeter light-emitting diodes Mini-Light Emitting Diode, Mini-LED
  • micro-Light Emitting Diode Micro-Light Emitting Diode
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • inorganic LEDs show a trend of miniaturization. However, its size is still at the level of tens of microns.
  • the height of the LED is about 110 ⁇ m, and the height of the barrier wall needs to be greater than 120 ⁇ m.
  • steps such as coating/exposure/development are required to complete the barrier wall.
  • Production calculated at 1 ⁇ m/min, requires more than 100 minutes to produce a single panel retaining wall, which is extremely inefficient and cannot guarantee the consistency of width and height.
  • the gap between LEDs is smaller, and the application of traditional photolithography to the production of Micro-LED barriers faces greater challenges.
  • Light-emitting diode referred to as LED
  • LED is a commonly used light-emitting device, which releases energy and emits light through the recombination of electrons and holes.
  • Light-emitting diodes can efficiently convert electrical energy into light energy, and have a wide range of uses in modern society, such as lighting, flat panel displays, medical devices, etc.
  • adding a retaining wall to the LED display is an effective method to improve the luminous performance of the display; the retaining wall is required to be manufactured in the slit between the LEDs, and has certain height, position accuracy, and consistency requirements.
  • the existing retaining wall manufacturing solutions include screen printing, transfer printing, etc., but no 3D printing method has been found to realize retaining wall manufacturing.
  • the silk screen printing process for manufacturing retaining walls is only suitable for flat substrates, and the high printing cost
  • the width ratio is small, and the retaining wall needs to be manufactured by multiple printing and curing methods. During the forming process, it is difficult to align multiple times, and the yield rate needs to be investigated.
  • the minimum width of the printed circuit is large and generally only suitable for flat substrates. Manufacturing retaining walls by printing also has problems such as difficulty in transfer alignment and difficulty in transferring lines with large aspect ratios.
  • Chinese Patent No. CN201210166648.7 discloses a method for manufacturing LED packaging retaining walls, the method includes the following steps: providing a ceramic substrate; providing a soft mold; providing photosensitive ceramic paste material; forming several groups of electrode, filling the photosensitive ceramic slurry material in the mold groove; making the mold groove filled with the photosensitive ceramic slurry material face each group of electrodes respectively, and press the soft mold on the mold groove On the ceramic substrate; the photosensitive ceramic slurry material in the model groove is cured by UV curing to form a retaining wall, and at the same time, the soft mold is pressurized to cure the photosensitive ceramic slurry material While forming a retaining wall, it is fixedly bonded to the ceramic substrate; and the soft mold is removed.
  • the manufacturing method of the retaining wall disclosed above uses a mold to manufacture the LED packaging retaining wall. Due to the small size of the diode, the accuracy of the method disclosed above is limited, it is not suitable for printing the led retaining wall, and the yield is low, and The method disclosed above does not disclose the carrier module, nor discloses how to achieve better positioning of the diodes during the printing process.
  • the present invention provides a printing device and method for an LED retaining wall of a display panel, which is used to solve the defect that a high-precision retaining wall cannot be produced in a narrow LED gap in the prior art, and realize the manufacturing efficiency and precision of an LED retaining wall.
  • the invention provides a printing device for an LED retaining wall of a display panel, comprising:
  • the motion control system is connected with the control terminal, and is used to control the printing of the target LED retaining wall on the upper surface of the target substrate on the target station;
  • An adsorption device connected to the motion control system, includes a vacuum pump for adsorbing the lower surface of the target substrate on the suction cup;
  • a measurement system connected to the control terminal, including a sensor and a sensor controller, the sensor is used to measure the flatness data of the target substrate;
  • a Z-axis controller connected to the control terminal, for controlling the printing receiving distance between the target multi-needle module and the upper surface of the target substrate;
  • the target multi-needle module connected to the Z-axis controller, includes the printing needle and a fluid control system, and the fluid control system is used to provide predetermined air pressure parameters to the printing needle;
  • the target station is connected with the motion control system and is used to accommodate the target substrate, so that the target multi-needle module performs stack printing of the target LED retaining wall on the upper surface of the target substrate;
  • the target station includes the first station and/or the second station
  • the target LED barrier includes a horizontal LED barrier and a vertical LED barrier
  • the target multi-pin module includes the first module and /or a second module
  • the first module matches the first station
  • the second module matches the second station
  • the target substrate includes a PCB substrate or a glass substrate.
  • the target station further includes:
  • the pre-printing area is used to perform pre-printing under predetermined air pressure parameters, and the motion control system controls the adsorption device to leave the pre-printing area until the printing needle is discharged stably.
  • the motion control system is specifically used to control the adsorption device when the target station includes a first station and a second station moving in the XY plane, so that the first module prints the longitudinal LED retaining wall on the target substrate in the first station;
  • the motion control system is specifically used to control the adsorption device when the target station includes the first station or the second station moving in the XY plane, so that the target multi-needle module prints the longitudinal LED retaining wall on the target substrate in the target station;
  • a needle module prints the lateral LED barrier on the target substrate in the target station.
  • the Z-axis controller includes one or more.
  • the present invention also provides a printing method for an LED retaining wall of a display panel, comprising:
  • the preparation operation before printing is carried out, and the target substrate is scanned by the measurement system of the printing device of the LED retaining wall of the display panel, and the flatness data of the target substrate is obtained;
  • the motion control system moves the target multi-needle module to the printing start point of the target substrate, and adjusts the printing receiving distance of the target multi-needle module by using the Z-axis controller based on the received flatness data;
  • the target multi-needle module is stacked and printed on the upper surface of the target substrate at the target station, and when the printing height meets the target height range, the target LED is cured. retaining wall;
  • the target station includes the first station and/or the second station
  • the target LED barrier includes a horizontal LED barrier and a vertical LED barrier
  • the target multi-pin module includes the first module and/or In the second module
  • the printing height is a cumulative layer height corresponding to the number of printing layers
  • the printing task includes at least determining a target line width and a target height according to the target substrate.
  • the Z-axis controller is used to adjust the printing reception distance of the target multi-needle module based on the received flatness data, including:
  • the vertical distance between each printing point of the target substrate and the target multi-needle module is obtained as an actual value of the printing receiving distance
  • the Z-axis controller adjusts the actual value of the printing receiving distance to the target value of the printing receiving distance
  • the target value of the printing receiving distance corresponding to each printing point is the same.
  • the preparatory operation before printing includes:
  • the printing material matches the aspect ratio of the printing material
  • the inner diameter parameter of the printing needle matches the target line width
  • the number of printing layers is based on the aspect ratio of the target LED retaining wall , the target line width and the target height are set.
  • pre-printing is performed under predetermined air pressure parameters until After the printing needle is discharged stably, the motion control system controls the adsorption device to leave the pre-printing area.
  • the target multi-needle module is placed on the upper surface of the target substrate at the target station based on the predetermined air pressure parameters and the target line width. Carry out stacked printing, and when the printing height meets the target height range, solidify to generate the target LED barrier, including:
  • the first module Based on the predetermined air pressure parameters and the target line width, the first module performs stack printing on the upper surface of the target substrate at the first station, and when the printing height meets the target height, Generate vertical LED retaining wall;
  • the second module Based on the predetermined air pressure parameters and the target line width, the second module performs stack printing on the upper surface of the target substrate at the second station, and when the printing height meets the target height, Generate a horizontal LED retaining wall.
  • the target multi-needle module is placed on the upper surface of the target substrate at the target station based on the predetermined air pressure parameters and the target line width. Carry out stacked printing, and when the printing height meets the target height range, solidify to generate the target LED barrier, including:
  • the target multi-needle module Based on the predetermined air pressure parameters and the target line width, the target multi-needle module performs stack printing on the upper surface of the target substrate on the first station or the second station, and When the printing height meets the target height, a vertical LED retaining wall is generated;
  • the target multi-needle module performs layered printing on the upper surface of the target substrate, and generates a horizontal LED when the printing height meets the target height retaining wall.
  • the present invention also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the printing method of LED retaining wall is also provided.
  • the present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the method for printing the LED retaining wall of the display panel as described in any one of the above is realized.
  • the present invention also provides a computer program product, including a computer program.
  • the computer program is executed by a processor, the method for printing the LED retaining wall of the display panel as described in any one of the above is realized.
  • the printing equipment and method of the LED retaining wall of the display panel control the target multi-needle module in the target station based on the Z-axis controller, and control the movement process of the target substrate on the XY plane through the motion control system to make the target multiple
  • the needle module uses the direct writing 3D printing technology to produce a target LED retaining wall with uniform width and high verticality in the target substrate through stack printing.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • a barrier wall with the same height and width is built around the sub-pixels to prevent light leakage and at the same time enhance the contrast of the LED display, which is more obvious for Mini-LED products and Micro-LED products.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide a printing device for LED packaging retaining walls with high precision and good at printing retaining walls with large aspect ratios.
  • a printing device for LED packaging retaining walls including a processing table and a three-axis motion module arranged on the processing table, and the three-axis motion module is connected with a corresponding printing machine.
  • the three-axis motion module includes a horizontal motion module connected to the processing table and a lifting motion module overhead set on the processing table, the printing head module is located on the lifting motion module, and the horizontal motion module is provided with the printing head module
  • the carrier module includes a base set from bottom to top, a three-axis rotary table and a vacuum suction cup, the surface of the vacuum suction cup is formed with an adsorption groove, and several bosses are formed in the adsorption groove, and the side of the vacuum suction cup A number of positioning pins are arranged at the corners, and the number of positioning pins are located on two adjacent sides of the vacuum suction cup;
  • the processing table is also provided with a visual and measuring device corresponding to the carrier module.
  • a gantry frame is formed on the processing table, the lifting movement module is arranged on the gantry frame, and the printing head module and the visual and measuring device are all arranged on the gantry frame.
  • a number of air extraction holes are formed on the adsorption tank, and the air extraction holes are arranged symmetrically along the center of the adsorption tank, and a vacuum pressure valve connected with the air extraction holes is installed on the lower part of the vacuum suction cup.
  • At least two positioning pins are provided on each side of the adjacent side of the vacuum chuck.
  • the print head module includes a material extruding device, a needle clamp and a printing needle connected sequentially from top to bottom, the needle clamp is fixedly connected to the lifting movement module, and the material extruding device is fixedly connected On the needle holder, the printing needle is connected to the bottom of the needle holder.
  • the needle clamp includes a hoop bracket and an adapter, the adapter is connected to the bottom of the hoop bracket, the top of the hoop bracket is formed with a hoop that is compatible with the material extrusion device, and the hoop Lock material extrusion device.
  • the upper part of the adapter is a Luer female connector
  • the Luer female connector is connected to the outlet of the material extrusion device
  • the lower part of the adapter is a Luer male connector
  • the Luer male connector is connected to the printing needle connected.
  • the printing needle includes a needle base and a ceramic needle tip, and the upper part of the needle base is a corresponding Luer female connector.
  • the vision and measurement device includes an oblique observation component and a sensing and measuring component, the sensing and measuring component is vertically connected to the gantry, and the oblique observation component is obliquely arranged on the side of the print head module , and tilt the viewing assembly towards the print tip.
  • the processing table is also provided with a corresponding cleaning device and a contact height measuring device.
  • the direct writing printing of the print head module on the printed circuit board can be realized through the movement of the horizontal movement module, which can meet the rapid manufacturing of ultra-small line width led retaining wall, and the line width can be at 10-200 microns;
  • Fig. 1 is a schematic structural view of a printing device for an LED retaining wall of a display panel provided by the present invention
  • Fig. 2 is one of the process flow diagrams of the printing equipment for the LED retaining wall of the display panel provided by the present invention
  • Fig. 3 is the second schematic diagram of the process flow of the printing equipment for the LED retaining wall of the display panel provided by the present invention
  • Fig. 4 is a schematic flowchart of a printing method for an LED retaining wall of a display panel provided by the present invention
  • Fig. 5 is an effect diagram of the barrier wall of the printing method of the LED barrier wall of the display panel provided by the present invention.
  • Fig. 6 is a schematic structural diagram of an electronic device provided by the present invention.
  • Fig. 7 is a schematic structural view of the printing equipment of the LED package retaining wall of the present invention.
  • Fig. 8 is the structural representation of workbench
  • Fig. 9 is a schematic structural diagram of a carrier module
  • Fig. 10 is a schematic diagram of the use state of the carrier module
  • Fig. 11 is a schematic diagram of the use state of the oblique viewing assembly
  • Figure 12 is a schematic structural view of the needle clamp
  • Fig. 13 is a structural schematic diagram of a printing needle
  • Figure 14 is a sectional view of the printing needle
  • Fig. 15 is the structural representation of cleaning device
  • Fig. 16 is a schematic diagram of the use state of the sensing and measuring components
  • Fig. 17 is a schematic structural view of a contact height measuring device
  • processing table 1 gantry frame 1-1, bottom plate 1-2, three-axis motion module 2, horizontal motion module 2-1, lifting motion module 2-2, carrier module 3, base 3-1, three Shaft rotation table 3-2, vacuum suction cup 3-3, suction groove 3-4, boss 3-5, positioning pin 3-6, air extraction hole 3-7, print head module 4, material extrusion device 4-1, Needle clamp 4-2, hoop bracket 4-2-1, adapter 4-2-2, hoop 4-2-3, needle base 4-3-1, ceramic needle tip 4-3-2, printing needle 4 -3, vision and measurement device 5, oblique observation component 5-1, sensing and measurement component 5-2, cleaning device 6, contact height measuring device 7.
  • FIG. 1 is a schematic structural view of a printing device for an LED retaining wall of a display panel provided by the present invention.
  • the printing equipment for the LED retaining wall of the display panel provided by the embodiment of the present invention includes: a motion control system 110 connected to the control terminal 100 for controlling the upper surface of the target substrate on the target station 160 Print the target LED barrier.
  • the target LED barrier includes a horizontal LED barrier and a vertical LED barrier
  • the target substrate includes a PCB substrate or a glass substrate.
  • the target substrate refers to a substrate with a display panel to be printed.
  • the display panel includes but is not limited to ordinary LED, Mini-LED or Micro-LED, etc., which is not specifically limited in the embodiment of the present invention.
  • the upper surface of the target substrate accommodates the LED light-emitting array of the display panel, and the printed target LED barriers are used to isolate two adjacent LED light-emitting components in the LED light-emitting array.
  • the embodiment of the present invention does not specifically limit the target substrate.
  • the target substrate may be a PCB substrate.
  • the LED light-emitting array can be formed on the PCB substrate in the arrangement of "blue 1-green-blue 2", and after printing the target LED retaining wall in the gap between two adjacent LED light-emitting components, in the space where all blue 1 is located Phosphor powder is filled to convert the light-emitting components here from blue light to red light to form a "red-green-blue" light-emitting array.
  • the target substrate may be a glass substrate.
  • the target LED retaining wall can be printed on the glass substrate, and the target LED retaining wall defines a plurality of accommodation parts, each of which can accommodate a blue LED, and the blue LED in the corresponding accommodation space covers the quantum dot light conversion film, respectively converting it into red light and green light to form a "red-green-blue" light-emitting array.
  • the motion control system 110 in the printing device of the LED retaining wall of the display panel is connected to the control terminal 100, and can be programmed and controlled according to different needs, and different components in the drive device perform corresponding actions in the corresponding process flow, so as to The complete target LED barrier is printed in the target substrate.
  • the embodiment of the present invention does not specifically limit the driving operation of the motion control system 110 .
  • the motion control system 110 can drive the target substrate to move along the X-axis and Y-axis of the worktable at the station, so that the target substrate is pre-printed in the pre-printing area, and the target substrate is moved to the target station 160 The starting point for printing in .
  • the motion control system 110 may drive the target substrate to perform a printing operation on the target substrate in the target station 160 at a certain moving speed, so that a target LED blocking wall is generated on the upper surface of the target substrate.
  • the motion control system 110 may drive various components to zero the device.
  • the driving operations of the motion control system 110 are not listed here.
  • the adsorption device 120 is connected with the motion control system 110 and includes a vacuum pump 121 for adsorbing the lower surface of the target substrate on the suction cup 122 .
  • the vacuum pump 121 is connected to the pneumatic connector on the back of the suction cup 122 through an air pipe.
  • the negative pressure of the vacuum pump 121 is controlled by a vacuum solenoid valve to provide suction force for the suction cup 122 .
  • the adsorption device 120 in the printing equipment of the LED retaining wall of the display panel is connected with the motion control system 110, places the lower surface of the target substrate on the suction cup 122, and starts the operation when it is determined that the lower surface of the target substrate is in full contact with the suction cup 122.
  • the vacuum solenoid valve is connected with the vacuum pump 121, so that the target substrate is sucked under the vacuum of the suction cup 122, and the flatness of the entire surface of the target substrate is improved.
  • the embodiment of the present invention does not specifically limit the material of the suction cup 122 .
  • the material of the suction cup 122 may be a metal material with a certain degree of rigidity and corrosion resistance, for example, aluminum and other synthetic metals.
  • the material of the suction cup 122 can be a non-metallic material with a certain degree of rigidity and corrosion resistance, such as ceramics, graphite or marble.
  • operations such as fixing the target substrate to the suction cup, removing the target substrate, or re-fixing the target substrate to the suction cup can be done manually by the operator, or by a robotic arm controlled by a control terminal. Not limited.
  • the measurement system 130 is connected with the control terminal 100 and includes a sensor 131 and a sensor controller 132.
  • the sensor 131 is used to measure the flatness data of the target substrate.
  • the measurement system 130 in the printing device of the LED retaining wall of the display panel includes a sensor 131 and a sensor controller 132.
  • the sensor 131 and the sensor controller 132 are respectively connected to the control terminal 100 to quickly scan the entire target substrate and record the substrate flatness data.
  • the sensor controller 132 generates the scanning route of the sensor 131 according to the instruction received from the control terminal 100, so that after the sensor 131 is fixed at a certain height of the Z axis, the sensor 131 is perpendicular to the horizontal plane of the station (that is, the X axis and the Y axis are composed of plane), taking this plane as a reference, traversing each printing point on the upper surface of the target substrate according to the scanning route, and scanning, recording the reference vertical distance between the sensor 131 and each printing point as flatness data, and stored in the local database of the control terminal 100.
  • the flatness data includes the position information of each printing point and the corresponding reference vertical distance.
  • the embodiment of the present invention does not specifically limit the type of the sensor 131 .
  • the senor 131 may be a distance measuring sensor based on the principle of time of flight (Time of Flight), and the distance to be measured is obtained by using the speed of light of the modulated light beam and the round-trip propagation time over the distance to be measured.
  • Time of Flight the principle of time of flight
  • the senor 131 may be a distance measuring sensor based on the principle of geometric triangulation.
  • the Z-axis controller 140 is connected with the control terminal 100 and is used for controlling the print receiving distance between the target multi-needle module 150 and the upper surface of the target substrate.
  • the Z-axis controller 140 is connected to the control terminal 100 , and the control terminal generates an adjustment strategy for the printing receiving distance by calling the locally stored flatness data in software, and sends it to the Z-axis controller 140 .
  • the Z-axis controller 140 in the printing device of the LED retaining wall of the display panel is connected to the target multi-needle module 150. After the Z-axis controller 140 receives the adjustment strategy sent by the control terminal 100, it adjusts the target multi-needle module The print acceptance distance between the set 150 and each print dot on the upper surface of the target substrate.
  • the print reception distance refers to the reference vertical distance between the target multi-needle module 150 and any print point on the target substrate during the printing process, and the print reception distance of each print point is consistent by adjusting the strategy.
  • the target multi-needle module 150 is connected with the Z-axis controller 140 and includes a printing needle 150-1 and a fluid control system 150-2.
  • the fluid control system 150-2 is used to provide predetermined air pressure parameters to the printing needle 150-1.
  • the target multi-needle module 150 includes a first module 151 and/or a second module 152 .
  • the target multi-pin module 150 is vertically fixed at a certain distance from the upper surface of the target substrate through a mechanical structure.
  • the target multi-needle module 150 in the printing device of the LED retaining wall of the display panel is connected to the Z-axis controller 140 to drive the target multi-needle module 150 in accordance with the pre-acquired adjustment strategy of the printing receiving distance to the adsorption device.
  • the target multi-needle module 150 traverse each printing point to adjust the printing receiving distance and print.
  • the target multi-needle module 150 includes one or more printing needles 150-1, and a fluid control system 150-2.
  • the embodiment of the present invention does not specifically limit the types of the printing needle 150-1 and the fluid control system 150-2.
  • the material of the printing needle 150-1 includes but is not limited to ceramics, glass, resin, or steel, etc., and its slurry flow channel is wide at the top and narrow at the bottom, which can reduce the resistance of the slurry and ensure the stability of the multi-needle module.
  • the output of each needle is stable and the output rate is the same.
  • the inner diameter of the lower port of the slurry flow channel is used as the printing needle head 150-1, and the completely consistent inner diameter parameters are set in advance for each printing needle head 150-1 in the target multi-needle module 150, so as to ensure the printing of the target LED retaining wall
  • the line width is consistent.
  • the fluid control system 150-2 which can be a pneumatic glue dispenser, is connected with the control terminal to control the flow rate of the slurry.
  • the fluid control system 150-2 which can be a pneumatic glue dispenser, is connected with the control terminal to control the flow rate of the slurry.
  • the target multi-needle module 150 in the printing device of the LED retaining wall of the display panel includes more than one sub-module, wherein each sub-module may include one or more printing needles 150-1, and a fluid control system 150-2.
  • each sub-module may include one or more printing needles 150-1, and a fluid control system 150-2.
  • This embodiment of the present invention does not specifically limit it.
  • the target multi-needle module 150 may include two sub-modules, that is, a first module 151 and a second module 152, wherein a plurality of printing needle heads 150 in the first module 151 and the second module 152 -1 arranges horizontally and vertically respectively with preset spacing parameters.
  • the target multi-needle module 150 may include a sub-module, that is, the first module 151 or the second module 152, wherein the first module 151 (or the second module 152) only includes one printing needle 150-1, or multiple print heads arranged with preset spacing parameters.
  • the target station 160 is connected with the motion control system 110 and is used for accommodating the target substrate, so that the target multi-needle module 150 performs layered printing of the target LED retaining wall on the upper surface of the target substrate.
  • the target station 160 includes the first station 161 and/or the second station 162, the target LED barrier includes a horizontal LED barrier and a vertical LED barrier, the first module 151 matches the first station 161, and the second The second module 152 is matched with the second station 162 .
  • the suction cup 122 in the printing equipment for the LED retaining wall of the display panel is transferred to the horizontal platform of the target station (that is, the plane formed by the X-axis and the Y-axis), so that the target substrate adsorbed by the suction cup 122 is completely in the horizontal plane. range, and the adsorption device 120 is driven by the motion control system to drive the target substrate to move along a predetermined trajectory on the horizontal platform.
  • the upper surface of the target substrate is printed with the target LED retaining wall.
  • the target station 160 in the printing device of the LED wall of the display panel includes more than one station, wherein each station can accommodate the target substrate, and the target LED wall is printed by using 3D direct-writing printing technology.
  • This embodiment of the present invention does not specifically limit it.
  • the target station 160 may include two stations, namely a first station 161 and a second station 162, wherein the first station 161 may correspond to the first module 151, and the second station 162 may It corresponds to the second module 152 .
  • the motion control system 110 drives the adsorption device 120 to vertically align each printing point on the Y axis with the upper left of the target substrate as the initial point. Move straight to the bottom of the target substrate, and perform stack printing during the back and forth process to generate a complete vertical LED retaining wall.
  • the motion control system 110 drives the suction device 120 to print horizontally along the X-axis with the upper left of the target substrate as the initial point. Move to the right side of the target substrate, and perform stack printing during the back and forth process to generate a complete horizontal LED barrier.
  • the target station 160 may include one station, that is, the first station 161 or the second station 162 .
  • the motion control system 110 drives the adsorption device 120 to move vertically to the bottom with the upper left of the target substrate as the initial point, and performs After printing in layers, a complete vertical LED retaining wall is generated.
  • the motion control system 110 drives the first station 161 (or the second station 162 ) to rotate by 90°, the adsorption device 120 is then driven to perform stacked printing with the same motion track to generate a complete horizontal LED barrier.
  • the embodiment of the present invention does not specifically limit the color of the target LED retaining wall.
  • the target LED retaining wall can have a uniform color to achieve uniform reflectivity of the wall.
  • the entire body of the target LED retaining wall can be set to white, so that the white light formed by each group of LEDs will not be doped with other colors, greatly improving the contrast and increasing the overall brightness. high. Even for Mini-LED products and Micro-LED products with small LED gaps, it is possible to generate a retaining wall with uniform width and height, and a uniform wall body. In a real sense, the accuracy and efficiency of retaining wall preparation are improved, and further, large Significantly improves the overall brightness and contrast.
  • the target LED retaining wall may have non-uniform colors, so as to have corresponding reflectivity at different positions of the wall.
  • the color of the bottom retaining wall is set to white, and the saturation of the color is gradually increased in the process of layer-by-layer printing to form a wall with a gradient color, so as to improve the color of each wall.
  • the luminous efficiency of an LED lamp bead.
  • a colored coating can also be provided on the inner wall or the outer wall of the target LED retaining wall according to actual task requirements, so as to achieve corresponding effects.
  • a black coating may be provided on the top of the retaining wall (upper outer wall), so that the black displayed to the outside is consistent.
  • the wall with the same width and height can still ensure that each LED has a better reflection effect and improve the luminosity.
  • the embodiment of the present invention controls the target multi-needle module in the target station based on the Z-axis controller, controls the movement process of the target substrate in the XY plane through the motion control system, and makes the target multi-needle module adjust the printing reception in each printing point.
  • the target LED retaining wall with uniform width and high verticality is produced in the target substrate by stack printing.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • a barrier wall with the same height and width is built around the sub-pixels to prevent light leakage and at the same time enhance the contrast of the LED display, which is more obvious for Mini-LED products and Micro-LED products.
  • the target station 160 further includes: a cleaning area for cleaning and storing the printing needles.
  • the motion control system 110 receives an instruction from the control terminal to drive the cleaning area to move to the position where the target multi-needle module 150 is located, so as to Each printing needle 150 - 1 in the target multi-needle module 150 is soaked into the solvent in the cleaning area for liquid-sealed storage at room temperature.
  • the pre-printing area is used for pre-printing under predetermined air pressure parameters, and the motion control system 110 controls the adsorption device 120 to leave the pre-printing area until the printing needle is stably discharged.
  • the motion control system 110 drives the adsorption device 120 to move to the pre-printing area, and the control terminal 100 Predetermined air pressure parameters drive the fluid control system 150-2.
  • the suction device 120 is controlled to carry The target substrate is transferred to the printing start point.
  • the embodiment of the present invention is based on setting a pre-printing area and a cleaning area in the target station, and before printing, work is performed through the pre-printing area, so that the output speed of each printing needle is consistent. After printing, wash storage is carried out through the wash area.
  • the service life can be improved when the printing task is not performed, and the production stability of the LED retaining wall can be improved when the printing task is performed.
  • the motion control system 110 is specifically used to control the movement of the adsorption device 120 in the XY plane when the target station 160 includes the first station 161 and the second station 162, so that The first module 151 prints the vertical LED barrier on the target substrate in the first station.
  • the application scenario of the printing equipment for the LED retaining wall of the display panel is that there are two operating stations and two multi-needle modules, and the relative positions of each group of operating stations and multi-needle modules are set in advance. relationship, by using different multi-needle modules at different operating stations for horizontal and vertical printing.
  • the motion control system 110 drives the suction cup 122 to transfer to the first station 161.
  • the suction cup 122 carries the target substrate to move in the XY plane according to a predetermined trajectory, so that the fixed A good first module 151 performs layer-by-layer printing across each printing point in each column of the target substrate in the first station 161 to generate a plurality of complete vertical LED barriers.
  • the motion control system 110 will receive a corresponding feedback message to know that the printing of the horizontal LED retaining wall is completed.
  • the motion control system 110 sends the first motion command to the adsorption device 120 after knowing that the printing of the vertical LED retaining wall is completed.
  • the first movement instruction refers to an action instruction for controlling the transfer station of the adsorption device 120 .
  • the first motion instruction is used to make the suction cup 122 in the adsorption device 120 carry the target substrate that has generated the longitudinal LED wall, and transfer it to the second station 162.
  • the motion control system 110 drives the suction cup 122 carries the target substrate and moves in the XY plane according to a predetermined trajectory, so that the fixed second module 152 performs layer-by-layer printing at each printing point in each row of the target substrate in the second station 162, Generate multiple complete horizontal LED retaining walls.
  • the embodiment of the present invention is based on the direct writing 3D printing technology through the corresponding first module and the second module in the first station and the second station, respectively, to make the same width in the target substrate through stack printing, Horizontal LED retaining wall and vertical LED retaining wall with high verticality.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • the motion control system 110 is specifically used to control the movement of the adsorption device in the XY plane when the target station includes the first station or the second station, so that the target multi-needle mold
  • the group prints a vertical LED barrier on the target substrate in target station 160 .
  • the application scenario of the printing equipment for the LED retaining wall of the display panel is that there is only one operating station and one multi-needle module, and the relative position of the operating station and the multi-needle module can be made The relationship changes to enable landscape and portrait printing, respectively.
  • the target station may be any one of the first station 161 or the second station 162 .
  • a target multi-needle module 150 is correspondingly set in this station, and this module can be the first module 151 with the printing needles arranged in the horizontal direction, or the first module 152 with the printed needles arranged in the longitudinal direction .
  • the motion control system 110 drives the suction cup 122 to transfer to the target station 160.
  • the suction cup 122 carries the target substrate to move in the XY plane according to a predetermined trajectory, so that the fixed
  • the target multi-needle module 150 in the target station 160 traverses each print point in each column of the target substrate to perform layer-by-layer printing to generate a complete vertical LED retaining wall. It can be understood that after the target multi-needle module 150 has traversed all the printing points, the motion control system 110 will receive a corresponding feedback message to know that the printing of the vertical LED wall is completed.
  • the motion control system 110 sends the second motion command to the target station 160 after knowing that the printing of the vertical LED retaining wall is completed.
  • the second motion instruction refers to an action instruction for controlling the rotation of the target station 160 .
  • the second motion instruction is used to make the target station 160 cooperate with the target substrate that has generated the longitudinal LED barrier.
  • the motion control system 110 drives the suction cup 122 to carry the target substrate according to the predetermined The trajectory of the track moves in the XY plane, so that the fixed target multi-needle module 150 is printed layer by layer at each print point in each row of the target substrate in the target station 160, generating multiple complete horizontal LEDs. retaining wall.
  • the embodiment of the present invention is based on the direct writing 3D printing technology of the corresponding target multi-needle module in the first station or the second station, and the rotation change of the direction through the first station or the second station in cooperation with the target substrate , respectively laminated and printed to produce a horizontal LED retaining wall and a vertical LED retaining wall with the same width and high verticality.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • the Z-axis controller 140 includes one or more.
  • the Z-axis controller 140 in the printing device of the LED retaining wall of the display panel has a one-to-one connection relationship with the target multi-needle module 150, so that the Z-axis controller 140 can control the corresponding target multi-needle module 150 moves on the Z axis to adjust the printing receiving distance.
  • the embodiment of the present invention does not specifically limit the number of Z-axis controllers 140 .
  • the target multi-needle module 150 arranges a plurality of printing needles 151 with smaller outlet inner diameters at a small interval. So that the target multi-needle module 150 is at any printing point, the Z-axis controller controls it to adjust the printing receiving distance, so that the target multi-needle module 150 with multiple printing needle heads 151 can print out the corresponding wall width.
  • each target multi-needle module 150 may be set, each target multi-needle module 150 has a printing needle 151 with a larger outlet inner diameter, and multiple target multi-needle modules 150 Arrange with larger spacing.
  • it is controlled by the corresponding Z-axis controller to adjust the printing receiving distance, so that one target multi-needle module 150 can print out the corresponding wall width, and Simultaneous printing of multiple target LED retaining walls is realized by multiple target multi-needle modules 150 .
  • the embodiment of the present invention is based on setting up one or more Z-axis controllers, adjusting the printing receiving distance in the target station by manipulating the target multi-needle module, and then using the direct writing 3D printing technology to produce Produce a target LED retaining wall with consistent width and high verticality.
  • the manufacturing efficiency, precision and flexibility of the LED retaining wall can be improved.
  • FIG. 2 is one of the process flow diagrams of the printing equipment for the LED retaining wall of the display panel provided by the present invention.
  • FIG. 3 is the second schematic diagram of the process flow of the printing method for the LED retaining wall of the display panel provided by the present invention. As shown in FIG. 2 and FIG. 3 , a specific embodiment of the printing process flow of a target LED retaining wall is given.
  • the pneumatic dispensing machine is automatically turned on, and the automation software controls the flow rate. After the slurry is extruded, each needle will start to discharge steadily (only the first piece of product needs to be extruded for pre-printing after the material is changed. ), the multi-needle starts to transfer to the printing starting point;
  • the distance between the needle head and the substrate is automatically adjusted to the height of the barrier wall, and the software calls the flatness data of the substrate to adjust the printing height. Make sure that the distance between the needle and the substrate is consistent during printing;
  • the ceramic suction cup is automatically transferred to station 1 for movement to complete the printing of the horizontal retaining wall;
  • the ceramic suction cup is automatically transferred to station 2 for movement to complete the printing of the longitudinal retaining wall;
  • FIG. 4 is a schematic flowchart of a printing method for an LED retaining wall of a display panel provided by the present invention.
  • the printing method of the LED retaining wall of the display panel includes: Step 401, taking the printing task as the guide, performing preparatory operations before printing, and passing through the LED retaining wall of the display panel
  • the measurement system of the printing device scans the target substrate to obtain the flatness data of the target substrate.
  • the printing task at least includes determining the target line width and target height according to the target substrate.
  • the execution subject of the method for printing the LED barrier of the display panel provided in the embodiment of the present invention is the printing device of the LED barrier of the display panel.
  • the application scenario of the printing method for the LED retaining wall of the display panel provided by the embodiment of the present invention is determined by the printing task of the target substrate.
  • the printing task includes but is not limited to determining the target substrate as the printing object, and determining the target line width and target height of the retaining wall according to the size of each LED light-emitting component in the LED light-emitting array in the target substrate.
  • step 401 the operator, guided by the printing task, performs loading and machine preparation operations in the printing device for the LED retaining wall of the display panel. After the preparation is ready, the measurement system of the printing device for the LED retaining wall quickly Scan the entire target substrate and record the flatness data of the target substrate.
  • the flatness data refers to the measured vertical distance from the measuring system sensor to the printing point when the measuring system traverses each printing point on the target substrate.
  • Step 402 the motion control system moves the target multi-needle module to the printing starting point of the target substrate, and adjusts the printing receiving distance of the multi-needle module by using the Z-axis controller based on the received flatness data.
  • the printing starting point refers to the first printing point on the target substrate.
  • the print starting point is used to print at this point to form an LED barrier.
  • the location of the printing starting point has a relative positional relationship with the target substrate.
  • the printing starting point can be in the upper left corner, upper right corner, lower left corner, or lower right corner of the target substrate, which is not specifically limited in this embodiment of the present invention.
  • the starting point of printing can determine the trajectory of the target substrate carried by the adsorption device in the XY plane of the target station.
  • step 402 after the motion control system in the printing device of the LED retaining wall of the display panel moves the multi-needle module to the printing start point of the target substrate, according to the flatness data obtained in step 401, the control terminal
  • the vision algorithm generates an adjustment strategy, and drives the Z-axis controller to adjust the printing receiving distance between the target multi-needle module and the target substrate according to the adjustment strategy.
  • the printing receiving distance refers to the vertical distance between the target multi-needle module and the printing point when the target multi-needle module traverses to each printing point in the target substrate.
  • the embodiment of the present invention does not specifically limit the printing receiving distance.
  • the print receiving distance is the vertical distance between the printing needle at any printing point and the printing point.
  • the print receiving distance is the target multi-needle module and the printing Vertical distance between point arrays where N is a positive integer.
  • Step 403 Based on the predetermined air pressure parameters and target line width, the target multi-needle module performs layered printing on the upper surface of the target substrate at the target station, and solidifies to generate the target LED block when the printing height meets the target height range. wall.
  • the target station includes the first station and/or the second station
  • the target LED wall includes a horizontal LED wall and a vertical LED wall
  • the target multi-pin module includes the first module and/or the second module
  • the printing height is the accumulative layer height corresponding to the number of printing layers.
  • parameters set before step 403 include but not limited to predetermined air pressure parameters and target line width.
  • the air pressure parameter is used to drive the fluid control system in the printing device of the LED wall of the display panel to control the discharge.
  • Air pressure parameters can be expressed in megapascals (MPa) or pounds per square inch (Pounds per square inch, psi) to measure the gas pressure, which is not specifically limited in the present invention.
  • the target line width corresponds to the inner diameter parameter of the printing needle, and printing needles with different inner diameters can print retaining walls with different line widths.
  • the embodiment of the present invention does not specifically limit the value range of each parameter.
  • the value range of the inner diameter parameter of the printing needle can be 20 ⁇ m to 70 ⁇ m. Since the inner diameter of the printing needle largely affects the printed target line width, the embodiment of the present invention does not specifically limit the value of the inner diameter parameter of the printing needle. .
  • the value range of the inner diameter parameter of the printing needle is 45 ⁇ m to 60 ⁇ m.
  • the value range of the target line width may be 10 ⁇ m to 100 ⁇ m. Since different display panels have different sub-pixel pitches, the embodiment of the present invention does not specifically limit the value of the target line width.
  • the value range of the target line width is 50 ⁇ m to 80 ⁇ m.
  • the movement speed of the adsorption device is used to drive the adsorption device in the printing device of the LED retaining wall of the display panel to move.
  • Target height range refers to the limit condition of printing height.
  • the target height range may be a range interval divided by the target height, and the target height range may be a range interval formed by the target height and its acceptable tolerance range.
  • the value range of the retaining wall height may be 10 ⁇ m to 200 ⁇ m. Since different display panels have different manufacturing processes and different thicknesses, the embodiment of the present invention does not specifically limit the value of the target height.
  • the value range of the target height is 150 ⁇ m to 200 ⁇ m.
  • the air pressure parameters, the moving speed of the printing needle and the target line width are preset for the printing equipment of the LED retaining wall of the display panel, so as to drive the printing needle of the target multi-needle module on the target substrate from the printing start point to , move to the last printing point in the row or column where the point is located, generate the first printing layer with the corresponding line width and layer height, and so on, after superposition of multiple printing layers, through curing operation, forming Target LED barrier.
  • the target LED retaining wall includes a horizontal LED retaining wall and a vertical LED retaining wall, both of which are different in size.
  • the width of the target LED retaining wall is the target line width
  • the height of the target LED retaining wall is the printing height, that is, the product of the number of printing layers and the layer height.
  • the length of the target LED retaining wall is the product of the moving speed of the printing needle and the moving time.
  • the printing device of the LED retaining wall of the display panel drives the printing needle to generate the first printing layer with the corresponding line width and layer height by pre-setting the air pressure parameters, the moving speed of the printing needle and the target line width.
  • the measurement system can quickly scan to obtain the actual value of the printing height, and compare it with the target height range set in the printing task.
  • the comparison results are divided into: comparison success and comparison failure, of which:
  • the target substrate can be unloaded and moved to the heating oven for baking.
  • the wall is fully cured, and the target LED retaining wall of the target substrate is printed.
  • the comparison fails, it means that the actual value of the printing height formed by stack printing is not within the target height range, that is, the difference between the two has exceeded the acceptable tolerance range, and the target substrate needs to be further processed according to the actual failure situation until it reaches the following material standard.
  • FIG. 4 is an effect diagram of the barrier wall of the printing method of the LED barrier wall of the display panel provided by the present invention. As shown in FIG. 4 , the embodiment of the present invention provides a schematic diagram of the shape of a target LED retaining wall formed after blanking of the target substrate.
  • the material can also be cured in the form of infrared light curing, which can achieve the effect of baking in a high-temperature oven for one hour in a few minutes and improve the curing efficiency.
  • the infrared light curing device is small in size and can be easily integrated into printing equipment, making the equipment highly integrated.
  • the printing material is also optional, and the printing material is generally not conductive, and can be materials such as silica gel and epoxy resin.
  • the embodiment of the present invention controls the target multi-needle module in the target station based on the Z-axis controller, controls the movement process of the target substrate in the XY plane through the motion control system, and makes the target multi-needle module adjust the printing reception in each printing point.
  • the target LED retaining wall with uniform width and high verticality is produced in the target substrate by stack printing.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • a barrier wall with the same height and width is built around the sub-pixels to prevent light leakage and at the same time enhance the contrast of the LED display, which is more obvious for Mini-LED products and Micro-LED products.
  • adjusting the printing receiving distance of the multi-needle module includes: based on the flatness data and the corresponding relationship between the target, obtaining each printing point of the target substrate and the target multi-needle The vertical distance between the modules, as the actual value of the print receiving distance.
  • target correspondence refers to the relative positional relationship between the sensor in the measurement system and the target multi-pin module.
  • the printing equipment of the LED retaining wall of the display panel calls the flatness data of the substrate, uses the target correspondence, converts the distance between the sensor and the corresponding printing point into the vertical distance between the target multi-needle module and the corresponding printing point, and converts it Actual value as print reception distance.
  • the target value of the printing receiving distance corresponding to each printing point is the same.
  • the target value of the print receiving distance needs to be set in advance.
  • the target value of the printing receiving distance can be set.
  • the printing equipment for the LED retaining wall of the display panel aligns each printing point on the target substrate carried by the adsorption device with the target multi-needle module, and then the Z-axis controller drives the target multi-needle module.
  • the needle module adjusts the actual value of the printing receiving distance to the target value along the Z axis at the printing point (that is, the fixed X-axis coordinates and Y-axis coordinates), so that after adjustment, each needle head will be at the corresponding printing point Both print at the same print receiving distance.
  • the embodiment of the present invention is based on the Z-axis controller controlling the target multi-needle module in the target station to perform direct writing 3D printing at each printing point with the same printing receiving distance.
  • the error caused by the unevenness of the target substrate can be eliminated, thereby improving the manufacturing efficiency and precision of the LED retaining wall.
  • the preparatory operation before printing includes: after filling the printing material into the syringe, installing the printing needle on the syringe, and connecting the syringe and the fluid control system through the printing needle.
  • the printing material matches the aspect ratio of the printing material
  • the inner diameter parameter of the printing needle matches the target line width
  • the number of printing layers is set based on the aspect ratio, target line width and target height of the target LED retaining wall.
  • the target line width of the printed LED retaining wall is jointly determined by the material properties of the printing material, the pressure exerted by the fluid control system, and the inner diameter of the printing needle.
  • Printing materials refer to fluid materials with a certain viscosity, which can be cured after treatment.
  • the viscosity of the printing material may range from 400000cp to 800000cp. Since the requirements of printing tasks are different, the embodiment of the present invention does not specifically limit the viscosity of the printing material.
  • the viscosity of the printing material may range from 500000cp to 600000cp.
  • step 401 based on the target line width in the printing task, according to the corresponding relationship between the viscosity of the printing material and the aspect ratio of the printing needle, select the appropriate printing material to pour into the syringe, and Install the printing needle at the lower end of the syringe so that the printing needle is facing down, and the fluid control system controls the printing material to flow out of the printing needle to form a line width corresponding to the inner diameter parameter and a layer height derived from the aspect ratio print layer.
  • the layer height deduced according to the line width and aspect ratio can be divided into the target height to obtain the number of printing layers. Furthermore, in the process of actually executing the printing task, after the printing of the specified number of printing layers is completed, the printing height formed by the layers is compared with the target height to determine whether the printing task is completed.
  • the color of the retaining wall can be a solid color or a gradient color, it is necessary to adjust the printing material to a corresponding color.
  • the color of the printing material is adjusted to white, and poured into the syringe for layer-by-layer printing, a white retaining wall with the same width and height can be generated.
  • the automation software is started on the control terminal to drive the motion control system to perform automatic mechanical zero alignment and level adjustment of the machine equipment.
  • the embodiment of the present invention is based on selecting a suitable printing material and performing mechanical zeroing before printing. It can select materials according to different printing requirements, and make the conditions for performing different printing tasks consistent, thereby improving the production efficiency and precision of LED retaining walls.
  • pre-printing is performed under predetermined air pressure parameters until the printing needle is stably discharged, and the motion
  • the control system controls the suction device to leave the pre-printing area.
  • the fluid control system is driven at a predetermined air pressure parameter to control the flow rate of the printing material, and the slurry is extruded to each needle.
  • the motion control system drives the adsorption device to transfer the target substrate to the printing start point.
  • the embodiment of the present invention is based on performing operations in the pre-printing area, so that the output speed of each printing needle is consistent. It can improve the production stability of the LED retaining wall when performing printing tasks.
  • the target multi-needle module performs layered printing on the upper surface of the target substrate on the target station, under the condition that the printing height meets the target height , to generate the target LED retaining wall, including: based on the predetermined air pressure parameters and target line width, the first module performs stack printing on the upper surface of the target substrate at the first station, and when the printing height meets the target height range, Generate a horizontal LED retaining wall.
  • the application scenario of the printing equipment for the LED retaining wall of the display panel is that there are two operating stations and two multi-needle modules, and the relative positions of each group of operating stations and multi-needle modules are set in advance. relationship, by using different multi-needle modules at different operating stations for horizontal and vertical printing.
  • the suction cup carries the target substrate and transfers to the first station.
  • the control terminal controls the motion control system to drive the suction cup to carry the target substrate at a certain speed according to the preset
  • the specified trajectory route moves in the XY plane.
  • the motion control system will receive a corresponding feedback message to know that the printing of the horizontal LED retaining wall is completed. And send the first motion command to the suction device, so that the suction device transfers the target substrate to the second station according to the first motion command, so that the second module can print out the horizontal LED barrier.
  • the second module Based on the predetermined air pressure parameters and the target line width, the second module performs layered printing on the upper surface of the target substrate at the second station, and generates a horizontal LED barrier when the printing height meets the target height range.
  • the suction cup in the adsorption device carries the target substrate that has generated the longitudinal LED retaining wall and transfers it to the second station.
  • the control terminal controls the motion control system to drive the suction cup Carrying the target substrate moves in the XY plane at a certain speed according to the pre-specified trajectory.
  • the embodiment of the present invention is based on the direct writing 3D printing technology through the corresponding first module and the second module in the first station and the second station, respectively, to make the same width in the target substrate through stack printing, Horizontal LED retaining wall and vertical LED retaining wall with high verticality.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • the target multi-needle module performs layered printing on the upper surface of the target substrate on the target station, when the printing height meets the target height range
  • generate the target LED retaining wall including: based on the predetermined air pressure parameters and target line width, the target multi-needle module performs stack printing on the upper surface of the target substrate on the first station or the second station, at the printing height If the target height is met, generate a vertical LED retaining wall.
  • the application scenario of the printing equipment for the LED retaining wall of the display panel is that there is only one operating station and one multi-needle module, and the relative position of the operating station and the multi-needle module can be made The relationship changes to enable landscape and portrait printing, respectively.
  • the target station can be any one of the first station or the second station.
  • a target multi-needle module is correspondingly set in the station, and the module can be the first module with the printing needles arranged in the horizontal direction, or the first module with the printing needles arranged in the vertical direction.
  • the suction cup is transferred to the target station, starting from the initial printing point of the target substrate, the control terminal controls the motion control system, so that it drives the suction cup to carry the target substrate to move in the XY plane at a certain speed according to a predetermined trajectory .
  • the appropriate target multi-needle module according to the preset target line width, and set the predetermined air pressure parameters to the fluid control system under the control of the control terminal, so that the target multi-needle module can traverse each column of the target substrate in the target station
  • the motion control system will receive a corresponding feedback message to know that the printing of the horizontal LED retaining wall is completed. And send the second motion command to the target station, so that the target station rotates 90° according to the second motion command, so that the target multi-needle module prints a horizontal LED barrier.
  • the target station cooperates with the target substrate that has generated the horizontal LED retaining wall.
  • the control terminal controls the motion control system so that it drives the suction cup to carry the target substrate at a certain speed.
  • the speed moves in the XY plane according to the pre-specified trajectory.
  • print layer by layer to generate multiple complete horizontal LED retaining walls.
  • FIG. 5 is an effect diagram of the barrier wall of the printing method of the LED barrier wall of the display panel provided by the present invention. Exemplarily, as shown in FIG. 5 , after the above-mentioned LED barrier wall printing method executes the corresponding process flow, a barrier wall with uniform width and height can be established around three single LEDs in each group of LEDs on the substrate.
  • the embodiment of the present invention is based on the direct writing 3D printing technology of the corresponding target multi-needle module in the first station or the second station, and the rotation change of the direction through the first station or the second station in cooperation with the target substrate , respectively laminated and printed to produce a horizontal LED retaining wall and a vertical LED retaining wall with the same width and high verticality.
  • the manufacturing efficiency and precision of the LED retaining wall can be improved.
  • FIG. 6 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 610, a communication interface (Communications Interface) 620, a memory (memory) 630 and a communication bus 640, Wherein, the processor 610 , the communication interface 620 , and the memory 630 communicate with each other through the communication bus 640 .
  • the processor 610 can call the logic instructions in the memory 630 to execute the method for printing the LED wall of the display panel.
  • the measurement system of the printing equipment scans the target substrate to obtain the flatness data of the target substrate; the motion control system moves the target multi-needle module to the printing start point of the target substrate, and based on the received flatness data, uses the Z-axis controller Adjust the print receiving distance of each printing needle in the target multi-needle module; based on the predetermined air pressure parameters, predetermined printing needle movement speed and target line width, make the target multi-needle module on the target substrate on the target station
  • the surface is stacked and printed, and when the printing height meets the target height range, it is cured to generate the target LED barrier; wherein, the target station includes the first station and/or the second station, and the target LED barrier includes a horizontal LED barrier and the longitudinal LED retaining wall, the target multi-needle module includes the first module and/or the second module, the printing height is the cumulative layer height corresponding to the number of printing layers, and the printing task includes at least determining the target line width and target line width according to the target substrate high.
  • the logic instructions in the above-mentioned memory 630 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical discs and other media that can store program codes.
  • the present invention also provides a computer program product.
  • the computer program product includes a computer program that can be stored on a non-transitory computer-readable storage medium.
  • the computer program executes the printing method of the LED retaining wall of the display panel provided by the above methods, the method includes: taking the printing task as the guide, performing preparatory operations before printing, and measuring the target by the measurement system of the printing device of the LED retaining wall of the display panel The substrate is scanned to obtain the flatness data of the target substrate; the motion control system moves the target multi-needle module to the printing starting point of the target substrate, and based on the received flatness data, the Z-axis controller is used to adjust the target multi-needle module.
  • the printing receiving distance of each printing needle based on the predetermined air pressure parameters, the predetermined printing needle movement speed and the target line width, the target multi-needle module is stacked and printed on the upper surface of the target substrate on the target station.
  • the target station includes the first station and/or the second station
  • the target LED barrier includes a horizontal LED barrier and a vertical LED barrier
  • the target The multi-needle module includes the first module and/or the second module
  • the printing height is the cumulative layer height corresponding to the number of printing layers
  • the printing task includes at least determining the target line width and target height according to the target substrate.
  • the present invention also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the printing of the LED retaining wall of the display panel provided by the above methods.
  • the method includes: taking the printing task as the guide, performing preparatory operations before printing, and scanning the target substrate through the measurement system of the printing device of the LED retaining wall of the display panel to obtain the flatness data of the target substrate; the motion control system Move the target multi-needle module to the printing starting point of the target substrate, and use the Z-axis controller to adjust the printing receiving distance of each printing needle in the target multi-needle module based on the received flatness data; based on the predetermined air pressure parameters , the predetermined printing needle movement speed and target line width, so that the target multi-needle module can be stacked and printed on the upper surface of the target substrate on the target station, and when the printing height meets the target height range, the target LED retaining wall can be solidified and generated ;
  • the target station includes the first station and/or the second station
  • the target LED wall includes a horizontal LED wall and a vertical LED wall
  • the target multi-pin module includes the first module and/or the second module group
  • the printing height is the cumulative layer height corresponding
  • a printing device for LED packaging retaining walls includes a processing table 1 and a three-axis motion module 2 set on the processing table 1, and the three-axis motion module 2 is connected with a corresponding print head Module 4;
  • the three-axis motion module 2 includes a horizontal motion module 2-1 connected to the processing table 1 and an elevating motion module 2-2 overhead on the processing table 1, and the print head module 4 is located on the elevating motion module 2- 2,
  • the horizontal movement module 2-1 is provided with a carrier module 3 corresponding to the print head module 4;
  • the carrier module 3 includes a bottom-up base 3-1, a three-axis rotary table 3-2
  • vacuum chuck 3-3 the surface of vacuum chuck 3-3 is formed with adsorption groove 3-4, is formed with some bosses 3-5 in the adsorption groove 3-4, and the corner of vacuum chuck 3-3 is provided with some positioning pins 3-6, a number of positioning pins 3-6 are located on two adjacent sides of the vacuum chuck 3-3;
  • the processing table 1 is also
  • the horizontal motion module 2-1 includes a connected X-axis moving device and a Y-axis moving device, the X-axis moving device is installed on the processing table 1, the Y-axis moving device is installed on the X-axis moving device, and the X-axis moving device and the Y-axis moving device The moving direction of the axis moving device is set vertically, the X-axis moving device and the Y-axis moving device are both driven by a linear motor, and the lifting motion module 2-2 is driven by a servo motor.
  • the gantry 1-1 is provided with a bottom plate 1-2, the vision and measuring device 5, the print head module 4 and the lifting movement module 2-2 are all arranged on the bottom plate 1-2, and the bottom plate 1-2 is formed with a
  • the matching holes corresponding to the measuring device 5 , the print head module 4 and the lifting movement module 2 - 2 , and the positions of the matching holes are set according to actual needs.
  • a gantry 1-1 is formed on the processing table 1, the lifting movement module 2-2 is set on the gantry 1-1, and the printing head module 4 and the visual and measuring device 5 are both set on the gantry 1-1.
  • a plurality of air extraction holes 3-7 are formed on the adsorption tank 3-4, and the air extraction holes 3-7 are arranged symmetrically along the center of the adsorption tank 3-4.
  • a pressure valve, the lower part of the vacuum suction cup 3-3 is installed with an air joint to communicate with the vacuum pressure valve to obtain a stable and adjustable vacuum pressure, so as to ensure the stable adsorption of the printed circuit board on the carrier module 3.
  • Each side of the adjacent sides of the vacuum chuck 3-3 is at least provided with two positioning pins 3-6, the vacuum chuck 3-3 is a rectangular structure, and the suction groove 3-4 is also corresponding to the vacuum chuck 3-3. Rectangular structure, vacuum chuck 3-3 corresponds to the center of the adsorption groove 3-4, and the positioning pin 3-6 is arranged on two adjacent sides of the adsorption groove 3-4, and under the action of the positioning pin 3-6 , move the printed circuit board on the suction groove 3-4, and when it moves to a certain position, the two sides of the printed circuit board will be offset against the positioning pins 3-6 at the same time to realize the positioning of the printed circuit board, thereby realizing the printing Positioning of the circuit board.
  • the bosses 3-5 are set in dislocation with the components on the printed circuit board, the bosses 3-5 are used to support the printed circuit board, and as many bosses 3-5 as possible are set at the positions where the printed circuit board has no components , so that the boss 3-5 can better support the printed circuit board.
  • the boss 3-5 can better support the printed circuit board.
  • the raised boss 3-5 is set in the adsorption area of the vacuum chuck 3-3 to support the printed circuit board.
  • PCB shape design the position of the boss 3-5 corresponds to the position where the printed circuit board is flat, has no components and can be contacted; in the design, set as many bosses as possible in the position without components to obtain good support and Ensure smoothness of adsorption.
  • the three-axis rotary table 3-2 is a standard part, with three-axis manual rotation function, used to level the vacuum suction cup 3-3, the vacuum suction cup 3-3 is made of aluminum alloy, the surface is finely ground, and has a high flatness. Improve the leveling effect of pcb.
  • the print head module 4 includes a material extruding device 4-1, a needle clamp 4-2, a printing needle 4-3 and a printing base 4-4, the needle clamp 4-2 is fixedly connected to the lifting movement module 2-2, and the printing base 4 -4 is connected to the lifting movement module 2-2, the upper part of the needle clamp 4-2 is connected to the material extruding device 4-1, and the lower part of the needle clamp 4-2 is connected to the printing needle 4-3.
  • the material extrusion device 4-1 is used to control the extrusion of printing materials.
  • the material extrusion device 4-1 is driven by compressed air and controls the material extrusion pressure by controlling the compressed air pressure.
  • the compressed air pressure is controlled by a precision air pressure controller; the material
  • the discharge port of the extrusion device 4-1 is a male luer connector, and the material extrusion device 4-1 is fixed on the needle clamp 4-2 through a hoop.
  • the needle clamp 4-2 includes a threaded hoop bracket 4-2-1 and an adapter 4-2-2, and the hoop bracket 4-2-1 and the adapter 4-2-2 are respectively used for fixing and extruding connecting materials
  • the device 4-1, the printing needle 4-3, and the adapter 4-2-2 are connected to the bottom of the hoop bracket 4-2-1, and the top of the hoop bracket 4-2-1 is formed with the material extruding device 4-1.
  • Adapted hoop 4-2-3, the size of hoop 4-2-3 corresponds to the size of material extrusion device 4-1, under the action of hoop 4-2-3, the material extrusion device 4-1 to lock.
  • the upper part of the adapter 4-2-2 is a Luer female connector, and the Luer female connector is connected to the outlet of the material extrusion device 4-1, and the lower part of the adapter 4-2-2 is a Luer male connector, and the Luer male connector is connected to the The printing needles 4-3 are connected.
  • the printing needle 4-3 includes a connected needle base 4-3-1 and a ceramic needle tip 4-3-2, the needle base 4-3-1 and the ceramic needle tip 4-3-2 are bonded by epoxy resin and can withstand 1000 psi Under the internal pressure, the upper part of the needle base 4-3-1 is the corresponding Luer female connector.
  • the printing needle 4-3 and the needle holder 4-2 are connected through the Luer connector.
  • the needle 4-3 is stably connected with the needle clamp 4-2, the lower part of the needle base 4-3-1 is bonded with the ceramic needle point 4-3-2 with epoxy resin, and the ceramic needle point 4-3-2 is bonded with ceramic precision casting Obtained by the grinding process, the pore size can be in the range of 10-200 microns to meet the printing requirements of different width retaining walls.
  • the vision and measuring device 5 includes an oblique observation assembly 5-1 and a sensing and measuring assembly 5-2, the sensing and measuring assembly 5-2 is vertically connected to the gantry 1-1, and the oblique observation assembly 5-1 is obliquely arranged on The side of the print head module 4, and the oblique viewing assembly 5-1 is set towards the print needle 4-3.
  • the oblique observation assembly 5-1 is installed on the side of the print head module 4.
  • the oblique observation assembly 5-1 has a high-magnification camera assembly for observation.
  • the high-magnification camera assembly is divided into a camera, a lens barrel, and an objective lens.
  • the camera assembly is installed on the camera fixture, and the camera fixture has a three-axis manual adjustment device.
  • the oblique observation assembly 5 - 1 includes a ring light source and a backlight for illumination; the ring light source is installed on the objective lens through a hoop, and the backlight is installed under the print head module 4 .
  • the hoop of the tilting observation component 5-1 is connected to the print head module 4 through a three-axis manual adjustment device.
  • the tilting observation component 5-1 is adjusted by adjusting the three-axis manual adjustment device. Adjust, so that the oblique observation assembly 5-1 corresponds to the ceramic needle tip 4-3-2, and the oblique observation assembly 5-1 includes a corresponding high-magnification camera assembly, which can realize the magnification of the ceramic needle tip 4-3-2, thereby facilitating The operator directly observes the printing situation of the ceramic tip 4-3-2.
  • the sensing and measuring component 5-2 is installed on the base plate 1-2, and the sensing and measuring component 5-2 is located on the side of the oblique observation component 5-1, and the sensing and measuring component 5-2 includes a High-magnification camera components, laser ranging sensors for height measurement, and large-field camera components for observing printing effects.
  • the high-magnification camera assembly includes a camera, a lens barrel with coaxial light, and an objective lens.
  • the high-magnification camera assembly is installed on the bottom plate 1-2 through a manual sliding table; the laser ranging sensor is installed on the high-magnification camera assembly through a manual sliding table. Above; the large field of view camera assembly is installed on the laser ranging sensor through a manual sliding table.
  • the processing table 1 is also equipped with a corresponding cleaning device 6 and a contact height measuring device 7.
  • the cleaning device 6 is driven by compressed air, and the compressed air is blown out through the annular slit inside the cleaning device 6 to obtain an annular high-speed airflow.
  • the operation process of the cleaning device 6 is as follows: insert the tip of the needle into the hole on the top of the cleaning device 6 by operating the machine, and turn on the compressed air source; under the action of high-speed air flow, the remaining material on the outer wall of the needle is taken away; It can evenly blow through the outer wall of the needle.
  • the contact height measuring device 7 is provided with a contact sensor, an angle adjustment mechanism and a lifting adjustment mechanism.
  • the lifting adjustment mechanism is a Z-axis horizontal lifting displacement slide table with cross guide rails. It is made of high-strength aluminum alloy, sandblasted and black anodized, and then assembled with high-precision cross roller guide rails. It is suitable for light and heavy loads and frequent adjustments. It is a Direct motion platform with excellent performance, the angle adjustment mechanism 7-6 can use OMO-VM series cylindrical V-shaped adjustment frame, with 2 M6x0. The device is designed with a flexible locking mechanism to provide long-term reliability.
  • the contact sensor is leveled, and the laser ranging sensor is used to measure the processing surface and the contact height measuring device 7 to obtain the height relationship between the processing surface and the contact height measurement device 7, Touch the ceramic needle point 4-3-2 of the print head module 4 to the contact height measuring device 7 to obtain the height relationship between the ceramic needle point 4-3-2 and the contact height measuring device 7;
  • the height relationship of the processing surface adjust the descending amount of the print head module 4 to control the distance between the ceramic needle point 4-3-2 of the print head module 4 and the processing surface, so as to facilitate the adjustment of the printing height of the print head module 4.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of a software product, and the control terminal software product can be stored in a control terminal readable storage medium, such as ROM/RAM , a magnetic disk, an optical disk, etc., including several instructions to enable a control terminal device (which may be a personal control terminal, server, or network device, etc.) to execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Screen Printers (AREA)
  • Coating Apparatus (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Abstract

本发明提供一种显示面板的LED挡墙的打印设备及方法,该设备包括:运动控制系统,用于控制在目标工位上的目标基板的上表面打印目标LED挡墙;吸附装置,包括用于通过真空泵使目标基板的下表面吸附在吸盘上;测量系统,包括传感器和传感器控制器,传感器用于测量目标基板的平整度数据;Z轴控制器,用于控制目标多针模组与目标基板的上表面之间的打印接收距离;目标多针模组,包括打印针头和流体控制系统,流体控制系统用于向打印针头提供预定的气压参数;目标工位,用于容纳目标基板,以使得目标多针模组在目标基板的上表面进行目标LED挡墙的层叠打印。本发明提供的显示面板的LED挡墙的打印设备及方法,提高LED挡墙制作效率和精度。

Description

显示面板的LED挡墙的打印设备及方法
相关申请的交叉引用
本申请要求于2022年03月24日提交的申请号为CN202210292190.3的中国专利申请以及2022年03月03日提交的申请号为CN202210203951.3的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本发明涉及显示面板加工技术领域,尤其涉及一种显示面板的LED挡墙的打印设备及方法。
背景技术
次毫米发光二极管(Mini-Light Emitting Diode,Mini-LED)和微型发光二极管(Micro-Light Emitting Diode,Micro-LED)有着高发光效率,高对比度等显示优势,具备寿命长,性能稳定特点。同时,其相对简洁的制造流程和技术轮廓使其成为未来替代液晶显示器(Liquid Crystal Display,LCD)和有机发光二极管(Organic Light-EmittingDiode,OLED)主流显示技术。
目前,选用氮化镓制作蓝光二极管的技术较为成熟,而红光二极管得制作成本偏高且效果不佳,故现阶段会采用在蓝光二极管上点转色粒子(红色荧光粉或绿色荧光粉)的方式使蓝光二极管发出红色光或绿色光。为避免不同颜色的转色粒子在相邻子像素发生混色,需要在每组LED周围建筑挡墙,来防止不同转色粒子注入时接触发生串色,从而提高色纯度。
虽然无机LED呈现微缩趋势。但其尺寸仍然在几十微米级别,对于Mini-LED产品,LED高度约为110μm,则挡墙需求高度大于120μm,使用传统的光刻工艺,需要进行涂胶/曝光/显影等步骤进行挡墙制作,以1μm/min计算,制作单片面板挡墙需要超过100min,效率极低,且不能保证宽高的一致性。而对于Micro-LED产品,LED之间的间隙更小,传统光刻工艺应用于Micro-LED挡墙制作面临更大的挑战。
发光二极管,简称为LED,是一种常用的发光器件,通过电子与空穴复合释放能量发光。发光二极管可高效地将电能转化为光能,在现代社会具有广泛的用途,如照明、平板显示、医疗器件等。
其中为LED显示屏增加挡墙是一种有效提高显示屏发光性能的方法;挡墙被要求制造在led间的狭缝中,并具有一定的高度、位置精度、一致性要求。
现有的挡墙制造方案包括丝网印刷、转印等,暂未发现通过3d打印的方式实现挡墙制造,其中丝网印制造挡墙的工艺仅适用于平面基材,且其印刷的高宽比较小,需要通过多次印刷、固化的方式制造挡墙,其成型过程中多次对位难度大、良品率有待考察,印刷线路最小宽度较大且一般只适用于平面基材,而转印方式制造挡墙也具有转印对位难度大、大高宽比线路转印困难等问题。
中国专利号CN201210166648.7公开了一种LED封装挡墙的制造方法,该方法包括如下步骤:提供一陶瓷基板;提供一软模具;提供感光性陶瓷浆材料;在所述陶瓷基板上形成若干组电极,将所述感光性陶瓷浆材料填充在所述模型槽内;使填充有所述感光性陶瓷浆材料的模型槽分别正对每组所述电极后将所述软模具压设在所述陶瓷基板上;通过UV硬化的方法对所述模型槽内的所述感光性陶瓷浆材料进行固化使其形成挡墙,同时对所述软模具进行加压,使所述感光性陶瓷浆材料固化成挡墙的同时与所述陶瓷基板固定黏接;移除所述软模具。
上述公开的这种挡墙制造方法,通过模具进行LED封装挡墙的制造,由于二极管尺寸较小,上述公开的这种方式精度受限,不适用于led挡墙打印,成品率较低,且上述公开的这种方式并未公开载具模块,并未公开在打印过程中如何实现二极管具有更好的定位性。
技术问题
本发明提供一种显示面板的LED挡墙的打印设备及方法,用以解决现有技术中无法在狭小的LED间隙中制作高精度挡墙的缺陷,实现LED挡墙的制作效率和精度。
本发明提供一种显示面板的LED挡墙的打印设备,包括:
运动控制系统,与控制终端连接,用于控制在目标工位上的目标基板的上表面打印目标LED挡墙;
吸附装置,与所述运动控制系统连接,包括用于通过真空泵使所述目标基板的下表面吸附在吸盘上;
测量系统,与所述控制终端连接,包括传感器和传感器控制器,所述传感器用于测量所述目标基板的平整度数据;
Z轴控制器,与所述控制终端连接,用于控制目标多针模组与所述目标基板的上表面之间的打印接收距离;
所述目标多针模组,与所述Z轴控制器连接,包括所述打印针头和流体控制系统,所述流体控制系统用于向所述打印针头提供预定的气压参数;
目标工位,与所述运动控制系统连接,用于容纳所述目标基板,以使得所述目标多针模组在所述目标基板的上表面进行目标LED挡墙的层叠打印;
其中,所述目标工位包括第一工位和/或第二工位,所述目标LED挡墙包括横向LED挡墙和纵向LED挡墙,所述目标多针模组包括第一模组和/或第二模组,所述第一模组与所述第一工位匹配,所述第二模组与所述第二工位匹配,所述目标基板包括PCB基板或者玻璃基板。
根据本发明提供的一种显示面板的LED挡墙的打印设备,所述目标工位还包括:
清洗区,用于清洗和保存所述打印针头;
预打印区,用于在预定的气压参数下进行预打印,直至所述打印针头稳定出料后,由所述运动控制系统控制所述吸附装置离开所述预打印区。
根据本发明提供的一种显示面板的LED挡墙的打印设备,所述运动控制系统具体用于在所述目标工位包括第一工位和第二工位的情况下,控制所述吸附装置在XY平面内运动,以使得所述第一模组在所述第一工位中的所述目标基板上打印出所述纵向LED挡墙;
向所述吸附装置发送第一运动指令,以使得所述吸附装置根据所述第一运动指令将所述目标基板转移至所述第二工位的XY平面内进行运动,以使得所述第二模组在所述第二工位中的所述目标基板上打印出所述横向LED挡墙。
根据本发明提供的一种显示面板的LED挡墙的打印设备,所述运动控制系统具体用于在所述目标工位包括第一工位或第二工位的情况下,控制所述吸附装置在XY平面内运动,以使得所述目标多针模组在所述目标工位中的所述目标基板上打印出所述纵向LED挡墙;
向所述目标工位发送第二运动指令,以使得所述目标工位根据所述第二运动指令进行90°的旋转后,驱动所述吸附装置在XY平面内运动,以使得所述目标多针模组在所述目标工位中的所述目标基板上打印出所述横向LED挡墙。
根据本发明提供的一种显示面板的LED挡墙的打印设备,所述Z轴控制器包括一个或者多个。
本发明还提供一种显示面板的LED挡墙的打印方法,包括:
以打印任务为导向,进行打印前的准备操作,并通过显示面板的LED挡墙的打印设备的测量系统对所述目标基板进行扫描,获取所述目标基板的平整度数据;
所述运动控制系统将目标多针模组移动至目标基板的打印起始点,基于接收到的所述平整度数据,利用Z轴控制器调整所述目标多针模组的打印接收距离;
基于预定的气压参数和目标线宽,使所述目标多针模组在目标工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙;
其中,所述目标工位包括第一工位和/或第二工位,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,所述目标多针模组包括第一模组和/或第二模组,所述打印高度为与打印层数对应的累加层高,所述打印任务至少包括根据所述目标基板确定目标线宽和目标高度。
根据本发明提供的一种显示面板的LED挡墙的打印方法,所述基于接收到的所述平整度数据,利用Z轴控制器调整所述目标多针模组的打印接收距离,包括:
基于所述平整度数据和目标对应关系,获取所述目标基板的各打印点与所述目标多针模组之间的垂直距离,作为打印接收距离的实际值;
在所述目标多针模组处于所述打印点的情况下,通过所述Z轴控制器,将所述打印接收距离的实际值调整为所述打印接收距离的目标值;
其中,各所述打印点对应的打印接收距离的目标值相同。
根据本发明提供的一种显示面板的LED挡墙的打印方法,所述进行打印前的准备操作,包括:
在将打印材料灌入针筒中后,将所述打印针头安装在所述针筒上,通过所述打印针头连接所述针筒和所述流体控制系统;
通过控制终端控制所述运动控制系统,以进行机械归零的操作;
其中,所述打印材料与所述打印材料成形的宽高比匹配,所述打印针头的内径参数与所述目标线宽匹配,所述打印层数是基于所述目标LED挡墙的宽高比、所述目标线宽和所述目标高度设定。
根据本发明提供的一种显示面板的LED挡墙的打印方法,在所述运动控制系统将目标多针模组移动至目标基板的打印起始点之前,在预定的气压参数下进行预打印,直至所述打印针头稳定出料后,由所述运动控制系统控制所述吸附装置离开所述预打印区。
根据本发明提供的一种显示面板的LED挡墙的打印方法,所述基于预定的气压参数和目标线宽,使所述目标多针模组在目标工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙,包括:
基于预定的所述气压参数和所述目标线宽,所述第一模组在所述第一工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙;
基于预定的所述气压参数和所述目标线宽,所述第二模组在所述第二工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成横向LED挡墙。
根据本发明提供的一种显示面板的LED挡墙的打印方法,所述基于预定的气压参数和目标线宽,使所述目标多针模组在目标工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙,包括:
基于在预定的所述气压参数和所述目标线宽,所述目标多针模组在所述第一工位或者所述第二工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙;
将所述第一工位或者所述第二工位旋转90°,所述目标多针模组在所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成横向LED挡墙。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述显示面板的LED挡墙的打印方法。
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述显示面板的LED挡墙的打印方法。
本发明还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述显示面板的LED挡墙的打印方法。
本发明提供的显示面板的LED挡墙的打印设备及方法,基于Z轴控制器操控目标多针模组在目标工位中,通过运动控制系统控制目标基板在XY平面的运动过程,使目标多针模组在每一个打印点中调整打印接收距离后,利用直写3D打印技术,在目标基板中通过叠层打印制作出宽度一致,垂直度高的目标LED挡墙。能够提高LED挡墙的制作效率和精密度。进而,在子像素周围建立高度和宽度一致的挡墙,防止漏光的同时,能够增强LED显示屏的对比度,对于Mini-LED产品和Micro-LED产品增益更加明显。
本发明是为了克服上述现有技术中的缺陷,提供一种精度高,擅长打印大高宽比的挡墙的LED封装挡墙的打印设备。
技术解决方案
为了实现上述发明目的,本发明采用以下技术方案:一种LED封装挡墙的打印设备,包括加工台和设置于加工台上的三轴运动模块,且三轴运动模块上连有相对应的打印头模块;所述三轴运动模块包括连接于加工台上的水平运动模块和架空设置于加工台上的升降运动模块,打印头模块位于升降运动模块上,水平运动模块上设有与打印头模块相对应的载具模块;所述载具模块包括自下而上设置的底座、三轴旋转台和真空吸盘,真空吸盘表面成型有吸附槽,吸附槽内形成有若干凸台,且真空吸盘边角处设有若干定位销,若干定位销位于真空吸盘的两个相邻侧边上;所述加工台上还设有与载具模块相对应的视觉与测量装置。
作为本发明的一种优选方案,所述加工台上形成有龙门架,升降运动模块设置于龙门架上,打印头模块和视觉与测量装置均设置于龙门架上。
作为本发明的一种优选方案,所述吸附槽上形成有若干抽气孔,抽气孔沿吸附槽中心处对称设置,真空吸盘下部安装有与抽气孔相连通的真空调压阀。
作为本发明的一种优选方案,所述真空吸盘相邻侧边的各侧边上至少设有两个定位销。
作为本发明的一种优选方案,所述打印头模块包括自上而下依次连接的材料挤出装置、针头夹具和打印针头,针头夹具固定连接于升降运动模块上,且材料挤出装置固定连接于针头夹具上,打印针头连接于针头夹具底部。
作为本发明的一种优选方案,所述针头夹具包括抱箍支架和转接头,转接头连接于抱箍支架底部,抱箍支架顶部形成有与材料挤出装置相适配的抱箍,抱箍锁紧材料挤出装置。
作为本发明的一种优选方案,所述转接头上部为鲁尔母接头,鲁尔母接头与材料挤出装置出料口相连,转接头下部为鲁尔公接头,鲁尔公接头与打印针头相连。
作为本发明的一种优选方案,所述打印针头包括针头底座和陶瓷针尖,针头底座上部为对应的鲁尔母接头。
作为本发明的一种优选方案,所述视觉与测量装置包括倾斜观察组件和传感与测量组件,传感与测量组件竖直连接于龙门架上,倾斜观察组件倾斜设置于打印头模块侧面上,且倾斜观察组件朝向打印针头设置。
作为本发明的一种优选方案,所述加工台上还设有相对应的清洗装置和接触测高装置。
有益效果
与现有技术相比,本发明的有益效果是:
1、通过真空吸盘吸附pcb,提高pcb表面的平面度,极大降低打印难度、提升打印效率,真空吸盘通过在pcb下方设置与pcb相同尺寸的吸附槽,实现对pcb的吸附,通过在吸附槽内尽可能多的设置凸台对印刷电路板底部可接触区域进行支撑以防吸附过度造成变形,从而提升吸附后pcb平面度,通过定位销的设置,可实现将印刷电路板在吸附槽上移动到一定位置后,印刷电路板的相邻两侧同时与定位销相抵,实现pcb的定位;
2、通过在将打印头模块升降到一定位置后,通过水平运动模块的移动实现打印头模块在印刷电路板上的直写式打印,满足超小线宽led挡墙的快速制造,线宽度可以在10-200微米;
3、通过调节打印头模块的升降高度,通过多层打印堆叠可以直接实现较大高宽比挡墙的制造。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的显示面板的LED挡墙的打印设备的结构示意图;
图2是本发明提供的显示面板的LED挡墙的打印设备的工艺流程示意图之一;
图3是本发明提供的显示面板的LED挡墙的打印设备的工艺流程示意图之二;
图4是本发明提供的显示面板的LED挡墙的打印方法的流程示意图;
图5是本发明提供的显示面板的LED挡墙的打印方法的挡墙效果图;
图6是本发明提供的电子设备的结构示意图;
图7是本发明的LED封装挡墙的打印设备的结构示意图;
图8是工作台的结构示意图;
图9是载具模块的结构示意图;
图10是载具模块的使用状态示意图;
图11是倾斜观察组件的使用状态示意图;
图12是针头夹具的结构示意图;
图13是打印针头的结构示意图;
图14是打印针头的剖视图;
图15是清洗装置的结构示意图;
图16是传感与测量组件的使用状态示意图;
图17是接触测高装置的结构示意图;
附图标记:加工台1,龙门架1-1,底板1-2,三轴运动模块2,水平运动模块2-1,升降运动模块2-2,载具模块3,底座3-1,三轴旋转台3-2,真空吸盘3-3,吸附槽3-4,凸台3-5,定位销3-6,抽气孔3-7,打印头模块4,材料挤出装置4-1,针头夹具4-2,抱箍支架4-2-1,转接头4-2-2,抱箍4-2-3,针头底座4-3-1,陶瓷针尖4-3-2,打印针头4-3,视觉与测量装置5,倾斜观察组件5-1,传感与测量组件5-2,清洗装置6,接触测高装置7。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
应当理解,在本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
图1是本发明提供的显示面板的LED挡墙的打印设备的结构示意图。如图1所示,本发明实施例提供的显示面板的LED挡墙的打印设备,包括:运动控制系统110,与控制终端100连接,用于控制在目标工位160上的目标基板的上表面打印目标LED挡墙。
其中,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,目标基板包括PCB基板或者玻璃基板。
需要说明的是,目标基板,是指带进行打印的显示面板的基板。其中,显示面板包括但不限于普通LED、Mini-LED或者Micro-LED等,本发明实施例对此不作具体限定。
目标基板的上表面容置显示面板的LED发光阵列,并利用打印出的目标LED挡墙将LED发光阵列中两两相邻的LED发光部件进行隔离。
本发明实施例对目标基板不作具体限定。
示例性地,目标基板可以为PCB基板。该PCB基板上可以以“蓝1-绿-蓝2”的排布方式形成LED发光阵列,并在两两相邻的LED发光部件的间隙打印目标LED挡墙后,在所有蓝1所在的空间填充荧光粉,使该处的发光部件由蓝光转换为红光,以形成“红-绿-蓝”的发光阵列。
示例性地,目标基板可以为玻璃基板。该玻璃基板上可以打印目标LED挡墙,目标LED挡墙限定出多个容纳部,每个容纳部都可以容置一个蓝光LED,并在对应的容置空间中的蓝光LED覆盖量子点光转换膜,分别使其转换为红光和绿光,以形成“红-绿-蓝”的发光阵列。
具体地,显示面板的LED挡墙的打印设备中的运动控制系统110与控制终端100连接,可根据不同需求进行编程控制,驱动设备中不同部件在对应的工艺流程中执行对应的动作,以在目标基板中打印出完整的目标LED挡墙。
本发明实施例对运动控制系统110的驱动作业不作具体限定。
可选地,运动控制系统110可以带动目标基板在工位沿着工作台的X轴和Y轴进行移动,以使得目标基板在预打印区进行预打印,以及将目标基板移动至目标工位160中的打印起始点。
可选地,运动控制系统110可以带动目标基板以一定的运动速度在目标工位160中对目标基板进行打印作业,以使得在目标基板的上表面生成目标LED挡墙。
可选地,运动控制系统110可以驱动各部件使设备归零。本发明实施例在此对于运动控制系统110的驱动作业不作一一列举。
吸附装置120,与运动控制系统110连接,包括用于通过真空泵121使目标基板的下表面吸附在吸盘122上。
需要说明的是,真空泵121通过气管,与吸盘122背面的气动接头连接。真空泵121由真空电磁阀控制负压,用于为吸盘122提供吸附力。
具体地,显示面板的LED挡墙的打印设备中的吸附装置120与运动控制系统110连接,将目标基板的下表面放置在吸盘122上,当确定目标基板的下表面与吸盘122完全接触后开启真空电磁阀连通真空泵121,使目标基板在吸盘122的真空吸附下,提高目标基板整体表面的平整度。
本发明实施例对吸盘122的材质不作具体限定。
示例性地,吸盘122的材质可以为具有一定刚度和抗腐蚀度的金属材料,例如,铝材以及其他合成金属。
吸盘122的材质可以为具有一定刚度和抗腐蚀度的非金属材料,例如,陶瓷、石墨或大理石等。
可以理解的是,将目标基板固定到吸盘上、取下目标基板或重新将目标基板固定到吸盘上等操作可以由操作员手动完成,或由控制终端控制的机械臂等完成,本发明对此不作限定。
测量系统130,与控制终端100连接,包括传感器131和传感器控制器132,传感器131用于测量目标基板的平整度数据。
具体地,显示面板的LED挡墙的打印设备中的测量系统130包括传感器131和传感器控制器132,传感器131和传感器控制器132分别与控制终端100连接,对整个目标基板进行快速扫描,记录基板平整度数据。
传感器控制器132根据接收控制终端100的指令生成传感器131的扫描路线,以使得传感器131在Z轴的某一高度固定后,使传感器131垂直于工位的水平台面(即X轴和Y轴组成的平面),以该平面为基准,根据扫描路线在目标基板的上表面遍历每一个打印点,并进行扫描,将传感器131与每一个打印点之间的基准垂直距离记录为平整度数据,并存储在控制终端100的本地数据库中。
其中,平整度数据包括每一个打印点的位置信息,以及对应的基准垂直距离。
本发明实施例对传感器131的类型不作具体限定。
示例性地,传感器131可以为一种基于光飞行时间(Time of Flight)原理的测距传感器,利用调制光束的光速,以及在待测距离上往返传播的时间,求得待测距离。
示例性地,传感器131可以为一种几何三角光学测量原理的测距传感器。
Z轴控制器140,与控制终端100连接,用于控制目标多针模组150与目标基板的上表面之间的打印接收距离。
需要说明的是,Z轴控制器140与控制终端100连接,控制终端通过在软体调用本地存储的平整度数据,生成打印接收距离的调整策略,并发送至Z轴控制器140。
具体地,显示面板的LED挡墙的打印设备中的Z轴控制器140与目标多针模组150连接,在Z轴控制器140接收到控制终端100发送的调整策略,对调节目标多针模组150与目标基板的上表面的各打印点之间的打印接收距离。
打印接收距离,是指打印的过程中,目标多针模组150与目标基板的任一打印点之间的基准垂直距离,通过调整策略使得各打印点的打印接收距离一致。
目标多针模组150,与Z轴控制器140连接,包括打印针头150-1和流体控制系统150-2,流体控制系统150-2用于向打印针头150-1提供预定的气压参数。
其中,目标多针模组150包括第一模组151和/或第二模组152。
需要说明的是,目标多针模组150通过机械结构,以距离目标基板上表面的一定距离下进行垂直固定。
具体地,显示面板的LED挡墙的打印设备中的目标多针模组150与Z轴控制器140连接,以驱动目标多针模组150按照预先获取的打印接收距离的调整策略,在吸附装置携带目标基板的运动过程中,遍历每一个打印点调整打印接收距离,并进行打印。
其中,目标多针模组150包括一个或者多个打印针头150-1,以及流体控制系统150-2。
本发明实施例对打印针头150-1和流体控制系统150-2的类型不作具体限定。
示例性地,打印针头150-1的材质包括但不限于陶瓷、玻璃、树脂或钢材等,其出浆流道为上宽下窄,该流道可减小浆料阻力,确保多针模组各针头出料稳定且出料速率相同。并将出浆流道下端口的内径作为打印针头150-1,通过对目标多针模组150中的各打印针头150-1,预先设置完全一致的内径参数,以保证目标LED挡墙的打印线宽一致。
流体控制系统150-2,可以为气动点胶机,与控制终端连连接,控制浆料的流速。通过对目标多针模组150中的各打印针头150-1,预先设置完全一致的气压参数,以保证待浆料挤出至每个打印针头150-1均开始稳定出料。
优选地,显示面板的LED挡墙的打印设备中的目标多针模组150包括不止一个子模组,其中,每个子模组都可以包括一个或者多个打印针头150-1,以及流体控制系统150-2。本发明实施例对此不作具体限定。
示例性地,目标多针模组150可以包括两个子模组,即第一模组151和第二模组152,其中,第一模组151和第二模组152内的多个打印针头150-1以预先设置的间距参数分别进行横向排列和纵向排列。
示例性地,目标多针模组150可以包括一个子模组,即第一模组151或第二模组152,其中,第一模组151(或者第二模组152)仅包含一个打印针头150-1,或者包含以预先设定的间距参数进行排列的多个打印针头。
目标工位160,与运动控制系统110连接,用于容纳目标基板,以使得目标多针模组150在目标基板的上表面进行目标LED挡墙的层叠打印。
其中,目标工位160包括第一工位161和/或第二工位162,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,第一模组151与第一工位161匹配,第二模组152与第二工位162匹配。
具体地,显示面板的LED挡墙的打印设备中的吸盘122转移至目标工位的水平台面(即为X轴和Y轴组成的平面),使吸盘122所吸附的目标基板完全处于水平台面的范围内,并通过运动控制系统驱动吸附装置120,带动目标基板在水平台面沿着预定的轨迹运动,同时,由Z轴控制器140驱动与该目标工位160对应的目标多针模组150在目标基板的上表面进行目标LED挡墙的打印。
优选地,显示面板的LED挡墙的打印设备中的目标工位160包括不止一个工位,其中,每个工位都可以容纳目标基板,利用3D直写打印技术进行目标LED挡墙的打印。本发明实施例对此不作具体限定。
示例性地,目标工位160可以包括两个工位,即第一工位161和第二工位162,其中,第一工位161可以与第一模组151对应,第二工位162可以与第二模组152对应。
通过在第一工位161中,固定好第一模组151横向排列的针头后,以目标基板的左上方为初始点,由运动控制系统110驱动吸附装置120沿Y轴上的各打印点竖直运动至目标基板的底端,在来回过程中进行叠层打印,生成完整的纵向LED挡墙。
通过在第二工位162中,固定好第一模组152纵向排列的针头后,以目标基板的左上方为初始点,由运动控制系统110驱动吸附装置120沿X轴上的各打印点水平运动至目标基板的右侧,在来回过程中进行叠层打印,生成完整的横向LED挡墙。
示例性地,目标工位160可以包括一个工位,即第一工位161或者第二工位162。固定好第一模组151(或者第二模组152)后,以目标基板的左上方为初始点,由运动控制系统110驱动吸附装置120进行竖直方向移动至底端,在来回过程中进行叠层打印,生成完整的纵向LED挡墙后。由运动控制系统110驱动第一工位161(或者第二工位162)旋转90°后,再驱动吸附装置120以同样的运动轨迹进行叠层打印,生成完整的横向LED挡墙。
其中,本发明实施例对目标LED挡墙的颜色不作具体限定。
可选地,目标LED挡墙可以具有统一的颜色,以实现墙体具有一致的反射率。
示例性地,由于白色具有较高的反射率,可以将目标LED挡墙通体设置为白色,则可以使每组LED所形成的白光不存在其他颜色的掺杂,大大提升对比度,使整体亮度升高。即使是对于LED间隙较小的Mini-LED产品和Micro-LED产品,也能够生成宽高一致、墙体均匀的挡墙,真正意义上的实现提高挡墙制备的精确度和效率,进而,大幅度提升整体亮度和对比度。
可选地,目标LED挡墙可以具有不统一的颜色,以实现在墙体的不同位置具有对应的反射率。
示例性地,在打印目标LED挡墙的过程中,将最底层的挡墙颜色设置为白色,在逐层打印的过程中使颜色的饱和度依次递增,形成渐变色的墙体,以提高每颗LED灯珠的发光效率。
可以理解的是,在显示面板的LED挡墙的打印设备的制备工艺中,还可以根据实际的任务需求,在目标LED挡墙的内壁或者外壁设置有色涂层,以实现对应的效果。
示例性地,在LED不能正常发光的情况下,可以在挡墙顶部(上方的外壁)设置有黑色涂层,以使得对外所显示的黑色具有一致性。同时,在LED正常发光的情况下,宽高一致的墙体仍可以保证每个LED都具有较好的反射效果,提升发光度。
本发明实施例基于Z轴控制器操控目标多针模组在目标工位中,通过运动控制系统控制目标基板在XY平面的运动过程,使目标多针模组在每一个打印点中调整打印接收距离后,利用直写3D打印技术,在目标基板中通过叠层打印制作出宽度一致,垂直度高的目标LED挡墙。能够提高LED挡墙的制作效率和精密度。进而,在子像素周围建立高度和宽度一致的挡墙,防止漏光的同时,能够增强LED显示屏的对比度,对于Mini-LED产品和Micro-LED产品增益更加明显。
在上述任一实施例的基础上,目标工位160还包括:清洗区,用于清洗和保存打印针头。
具体地,显示面板的LED挡墙的打印设备在目标工位160完成所有的打印任务后,运动控制系统110接收控制终端的指令,驱动清洗区移动至目标多针模组150所处位置,以使得目标多针模组150中的每个打印针头150-1浸泡入清洗区溶剂中进行室温条件下的液封保存。
预打印区,用于在预定的气压参数下进行预打印,直至打印针头稳定出料后,由运动控制系统110控制吸附装置120离开预打印区。
具体地,显示面板的LED挡墙的打印设备在目标工位160中由测量系统130完成平整度扫描任务后,由运动控制系统110驱动吸附装置120移动至预打印区,在由控制终端100以预定的气压参数驱动流体控制系统150-2,待浆料挤出至多针每个针头均开始稳定出料(仅换料后第一片产品需要挤出进行预打印)后,控制吸附装置120携带目标基板转移至打印起始点。
本发明实施例基于在目标工位中设置预打印区和清洗区,在打印之前,通过预打印区进行作业,使各打印针头的出料速度一致。在打印之后,通过清洗区进行清洗保存。能够在不执行打印任务时提高使用寿命,在执行打印任务时提高LED挡墙的制作稳定性。
在上述任一实施例的基础上,运动控制系统110具体用于在目标工位160包括第一工位161和第二工位162的情况下,控制吸附装置120在XY平面内运动,以使得第一模组151在第一工位中的目标基板上打印出纵向LED挡墙。
需要说明的是,显示面板的LED挡墙的打印设备的应用场景为,有两个操作工位和两个多针模组,预先对每一组操作工位和多针模组设置好相对位置关系,通过在不同的操作工位利用不同的多针模组进行横向和纵向打印。
具体地,由运动控制系统110驱动吸盘122转移至第一工位161中,从目标基板的打印初始点开始,由吸盘122携带目标基板按照预先规定的轨迹路线在XY平面内运动,以使得固定好的第一模组151在第一工位161中遍历目标基板的每一列中的各个打印点处进行逐层打印,生成多个完整的纵向LED挡墙。
可以理解的是,当吸附装置120执行完轨迹路线,即第一模组151将所有打印点遍历完成之后,运动控制系统110会接收到相应的反馈消息,以获知横向LED挡墙打印完成。
向吸附装置发送第一运动指令,以使得吸附装置根据第一运动指令将目标基板转移至第二工位的XY平面内进行运动,以使得第二模组在第二工位中的目标基板上打印出横向LED挡墙。
具体地,运动控制系统110在获知纵向LED挡墙打印完成之后,向吸附装置120发送第一运动指令。
第一运动指令,是指控制吸附装置120转移工位的动作指令。第一运动指令用于使吸附装置120中的吸盘122携带已经生成纵向LED挡墙的目标基板,转移至第二工位162中,从上一次的打印终结点开始,由运动控制系统110驱动吸盘122携带目标基板按照预先规定的轨迹路线在XY平面内运动,以使得固定好的第二模组152在第二工位162中遍历目标基板的每一行中的各个打印点处进行逐层打印,生成多个完整的横向LED挡墙。
本发明实施例基于在第一工位和第二工位中,分别通过对应的第一模组和第二模组以直写3D打印技术,在目标基板中通过叠层打印制作出宽度一致,垂直度高的横向LED挡墙和纵向LED挡墙。能够提高LED挡墙的制作效率和精密度。
在上述任一实施例的基础上,运动控制系统110具体用于在目标工位包括第一工位或第二工位的情况下,控制吸附装置在XY平面内运动,以使得目标多针模组在目标工位160中的目标基板上打印出纵向LED挡墙。
需要说明的是,显示面板的LED挡墙的打印设备的应用场景为,仅有一个操作工位和一个多针模组,通过扭转操作工位,以使得操作工位和多针模组相对位置关系改变,分别能够进行横向和纵向打印。
目标工位,可以为第一工位161或者第二工位162中的任意一个。
对应地,在该工位中相应设置一个目标多针模组150,该模组可以是打印针头具有横向排列规律的第一模组151,或者是打印针头具有纵向排列规律的第一模组152。
具体地,由运动控制系统110驱动吸盘122转移至目标工位160中,从目标基板的打印初始点开始,由吸盘122携带目标基板按照预先规定的轨迹路线在XY平面内运动,以使得固定好的目标多针模组150在目标工位160中遍历目标基板的每一列中的各个打印点处进行逐层打印,生成完整的纵向LED挡墙。可以理解的是,当目标多针模组150将所有打印点遍历完成之后,运动控制系统110会接收到相应的反馈消息,以获知纵向LED挡墙打印完成。
向目标工位160发送第二运动指令,以使得目标工位160根据第二运动指令进行90°的旋转后,驱动吸附装置在XY平面内运动,以使得目标多针模组150在目标工位160中的目标基板上打印出横向LED挡墙。
具体地,运动控制系统110在获知纵向LED挡墙打印完成之后,向目标工位160发送第二运动指令。
第二运动指令,是指控制目标工位160旋转的动作指令。第二运动指令用于使目标工位160协同已经生成纵向LED挡墙的目标基板,旋转90°后,从上一次的打印终结点开始,由运动控制系统110驱动吸盘122携带目标基板按照预先规定的轨迹路线在XY平面内运动,以使得固定好的目标多针模组150在目标工位160中遍历目标基板的每一行中的各个打印点处进行逐层打印,生成多个完整的横向LED挡墙。可以理解的是,纵向LED挡墙和横向LED挡墙并无绝对的打印顺序,而是由目标多针模组150和吸附装置120携带目标基板的轨迹路线共同决定,即需要保证目标多针模组150的针头排列方向与目标基板从初始打印点开始运动的运动方向垂直。
本发明实施例基于在第一工位或第二工位中,由对应的目标多针模组以直写3D打印技术,通过第一工位或第二工位协同目标基板进行方向的旋转变化,分别叠层打印制作出宽度一致,垂直度高的横向LED挡墙和纵向LED挡墙。能够提高LED挡墙的制作效率和精密度。
在上述任一实施例的基础上,Z轴控制器140包括一个或者多个。
具体地,显示面板的LED挡墙的打印设备中的Z轴控制器140与目标多针模组150具有一一对应的连接关系,以使得Z轴控制器140可以控制对应的目标多针模组150在Z轴上发生运动,以实现对打印接收距离的调整。
本发明实施例对Z轴控制器140的数量不作具体限定。
可选地,Z轴控制器140的数量可以为一个。对应地,目标多针模组150将多个出口内径较小的打印针头151,以微小的间距进行排列。以使得目标多针模组150在任一打印点中,Z轴控制器控制其进行打印接收距离的调整,实现由存在多个打印针头151的目标多针模组150打印出对应的墙宽。
可选地,Z轴控制器140的数量可以为多个。对应地,设置与各Z轴控制器140对应连接的目标多针模组150,每个目标多针模组150具有一个出口内径较大的打印针头151,并将多个目标多针模组150以较大的间距进行排列。以使得各目标多针模组150在任一对应的打印点中,由对应的Z轴控制器控制其进行打印接收距离的调整,实现由一个目标多针模组150打印出对应的墙宽,并由多个目标多针模组150实现同时打印多个目标LED挡墙。
本发明实施例基于设置一个或者多个Z轴控制器,通过操控目标多针模组在目标工位中调整打印接收距离,进而,利用直写3D打印技术,在目标基板中通过叠层打印制作出宽度一致,垂直度高的目标LED挡墙。能够提高LED挡墙的制作效率、精密度和灵活度。
示例性地,图2是本发明提供的显示面板的LED挡墙的打印设备的工艺流程示意图之一。图3是本发明提供的显示面板的LED挡墙的打印方法的工艺流程示意图之二。如图2和图3所示,给出一个目标LED挡墙的打印工艺流程的具体实施方式。
一、上料和机台准备:
(1)针筒中灌入打印材料后安装到气动点胶机;
(2)上料区基板自动上料,启动自动化软件,真空泵开启吸盘自动吸附基板,陶瓷吸盘自动转移至工位1,并实现自动机械归零对位和调节水平度;
(3)用高精度测高仪器快速扫描整个基板,记录基板平整度数据。
(4)在预打印区,气动点胶机自动开启,自动化软件控制流速,待浆料挤出至多针每个针头均开始稳定出料(仅换料后第一片产品需要挤出进行预打印)后,多针开始转移至打印起始点;
二、样品打印:
(5)横向及纵向挡墙多针模组转移至打印起始点后,依据控制终端视觉算法,自动调至针头和基板的距离为挡墙的高度,软体调用基板平整度数据,调节打印高度,确保打印的过程中针头和基板距离保持一致;
(6)调节连接横纵挡墙多针模组的气阀参数 完全一致,以保证横纵挡墙的打印线宽一致;
(7)陶瓷吸盘自动转移至工位1中进行运动,完成横向挡墙的打印;
(8)陶瓷吸盘自动转移至工位2中进行运动,完成纵向挡墙的打印;
(9)重复(6)-(8)步骤,进行叠层打印,直至打印出目标高度的挡墙。
(10)真空泵关闭,基板下料,手动移动基板至加热烘箱内烘烤,待挡墙完全固化,单片基板挡墙打印完成;
(11)陶瓷吸盘载台自动转移至工位1,重复(2)-(8)步骤,进行后续样品打印。
图4是本发明提供的显示面板的LED挡墙的打印方法的流程示意图。基于上述任一实施例的内容,如图4所示,显示面板的LED挡墙的打印方法包括:步骤401、以打印任务为导向,进行打印前的准备操作,并通过显示面板的LED挡墙的打印设备的测量系统对目标基板进行扫描,获取目标基板的平整度数据。
其中,打印任务至少包括根据目标基板确定目标线宽和目标高度。
需要说明的是,本发明实施例提供的显示面板的LED挡墙的打印方法的执行主体是显示面板的LED挡墙的打印设备。
本发明实施例提供的显示面板的LED挡墙的打印方法的应用场景由目标基板的打印任务决定。其中,打印任务包括但不限于对确定打印对象为目标基板,以及根据目标基板中的LED发光阵列中每颗LED发光部件的尺寸大小,确定挡墙的目标线宽和目标高度。
具体地,在步骤401中,操作人员以打印任务为导向,在显示面板的LED挡墙的打印设备中进行上料和机台准备操作,准备就绪后,LED挡墙的打印设备的测量系统快速扫描整个目标基板,记录目标基板平整度数据。
平整度数据,是指测量系统遍历目标基板上的各打印点时,所测量的测量系统传感器到该打印点的垂直距离。
步骤402、运动控制系统将目标多针模组移动至目标基板的打印起始点,基于接收到的平整度数据,利用Z轴控制器调整多针模组的打印接收距离。
需要说明的是,打印起始点,是指目标基板中的第一个打印点。打印起始点用于以该点进行打印作业,形成LED挡墙。打印起始点所处的位置和目标基板具有相对的位置关系,打印起始点可以在目标基板左上角、右上角、左下角和右下角等位置,本发明实施例对此不作具体限定。
可以理解的是,打印起始点可以决定吸附装置携带对目标基板,在目标工位中的XY平面内进行运动的轨迹路线。
具体地,在步骤402中,显示面板的LED挡墙的打印设备中的述运动控制系统将多针模组移动至目标基板的打印起始点后,根据步骤401获取的平整度数据,利用控制终端视觉算法,生成调整策略,并驱动Z轴控制器根据调整策略调节目标多针模组与目标基板之间的打印接收距离。
打印接收距离,是指目标多针模组遍历至目标基板中的每一个打印点时,目标多针模组与该打印点之间的垂直距离。本发明实施例对打印接收距离不作具体限定。
示例性地,若目标多针模组仅存在一个打印针头,则打印接收距离为该打印针头在任一打印点处,与该打印点之间的垂直距离。
示例性地,若目标多针模组存在N个横向排列或者竖向排列的打印针头,每个针头对应的N个打印点形成一个打印点阵列,则打印接收距离为目标多针模组与打印点阵列之间的垂直距离其中,N是正整数。
步骤403、基于在预定的气压参数和目标线宽,目标多针模组在目标工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙。
其中,目标工位包括第一工位和/或第二工位,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,目标多针模组包括第一模组和/或第二模组,打印高度为与打印层数对应的累加层高。
需要说明的是,在步骤403之前进行设置的参数包括但不限于预定的气压参数和目标线宽。
气压参数,用于驱动显示面板的LED挡墙的打印设备中的流体控制系统控制出料。气压参数可以以兆帕(MPa)或者磅力/平方英寸(Pounds per square inch,psi)进行气体压强的计量,本发明对此不作具体限定。
目标线宽,与打印针头的内径参数对应,不同内径的打印针头可以打印出不同线宽的挡墙。本发明实施例对各参数的取值范围不作具体限定。
打印针头的内径参数的取值范围可以20μm至70μm,由于打印针头的内径很大程度上影响着所打印出的目标线宽,所以本发明实施例对打印针头的内径参数的取值不作具体限定。
优选地,打印针头的内径参数的取值范围45μm至60μm。
目标线宽的取值范围可以为10μm至100μm,由于不同的显示面板,具有不同的子像素间距,所以本发明实施例对目标线宽的取值不作具体限定。
优选地,目标线宽的取值范围为50μm至80μm。
还可以预先设置:
吸附装置运动速度,用于驱动显示面板的LED挡墙的打印设备中的吸附装置进行运动。
目标高度范围,是指打印高度的限制条件。目标高度范围可以由目标高度划分的范围区间,目标高度范围可以是由目标高度及其可接受的公差范围所形成的范围区间。挡墙高度的取值范围可以为10μm至200μm,由于不同的显示面板的制备工艺不同,其厚度不同,本发明实施例对目标高度的取值不作具体限定。
优选地,目标高度的取值范围为150μm至200μm。
具体地,在步骤403中,对显示面板的LED挡墙的打印设备预先设置好气压参数、打印针头运动速度和目标线宽,以驱动目标多针模组的打印针头在目标基板从打印起始点,运动到该点所处的行或者列中的最后一个打印点,以对应的线宽和层高生成第一个打印层,以此类推,经由多个打印层叠加后,经由固化操作,形成目标LED挡墙。
目标LED挡墙包括横向LED挡墙和纵向LED挡墙,二者的尺寸大小不同。其中,目标LED挡墙的宽度为目标线宽,目标LED挡墙的高度为打印高度,即打印层数与层高的乘积。目标LED挡墙的长度为打印针头运动速度与运动时间的乘积。
优选地,显示面板的LED挡墙的打印设备以预先设置好气压参数、打印针头运动速度和目标线宽,驱动打印针头以对应的线宽和层高生成第一个打印层,经由多个打印层叠加后,可以再由测量系统进行快速扫描,获取打印高度的实际值,并与打印任务中设定的目标高度范围进行对比,对比结果分为:对比成功和对比失败,其中:
对比成功,说明层叠打印形成的打印高度的实际值在目标高度范围内,即二者之差等于0,或者接近于0,则目标基板可以下料,并移动至加热烘箱内烘烤,待挡墙完全固化,目标基板的目标LED挡墙打印完成。
对比失败,说明层叠打印形成的打印高度的实际值不在目标高度范围内,即二者之差已超出可接受的公差范围内,则目标基板需要根据实际的失败情况做进一步地加工,直至达到下料标准。
图4是本发明提供的显示面板的LED挡墙的打印方法的挡墙效果图。如图4所示,本发明实施例给出一种目标基板下料后固化成形的目标LED挡墙的形状示意图。
可以理解的是,还可以采用红外光固化的形式进行材料固化,能在几分钟内达到高温烘箱烘烤一小时的效果,提高固化效率。另外,红外光固化装置体积小,可以轻易集成至打印设备,使得设备集成度高。
除此之外,对打印材料也具有可选择性,其中,打印材料一般不具有导电性,可以为硅胶、环氧树脂等材料。
本发明实施例基于Z轴控制器操控目标多针模组在目标工位中,通过运动控制系统控制目标基板在XY平面的运动过程,使目标多针模组在每一个打印点中调整打印接收距离后,利用直写3D打印技术,在目标基板中通过叠层打印制作出宽度一致,垂直度高的目标LED挡墙。能够提高LED挡墙的制作效率和精密度。进而,在子像素周围建立高度和宽度一致的挡墙,防止漏光的同时,能够增强LED显示屏的对比度,对于Mini-LED产品和Micro-LED产品增益更加明显。
在上述任一实施例的基础上,基于接收到的平整度数据,调整多针模组的打印接收距离,包括:基于平整度数据和目标对应关系,获取目标基板的各打印点与目标多针模组之间的垂直距离,作为打印接收距离的实际值。
需要说明的是,目标对应关系,是指测量系统中的传感器与目标多针模组的相对位置关系。
具体地,显示面板的LED挡墙的打印设备调用基板平整度数据,利用目标对应关系,将传感器与对应打印点的距离转换为目标多针模组与对应的打印点的垂直距离,并将其作为打印接收距离的实际值。
在目标多针模组处于打印点的情况下,通过Z轴控制器,将打印接收距离的实际值调整为打印接收距离的目标值;
其中,各打印点对应的打印接收距离的目标值相同。
需要说明的是,打印接收距离的目标值需要提前进行设定。示例性地,可以在明确打印任务时,设置打印接收距离的目标值。
具体地,显示面板的LED挡墙的打印设备在实际执行打印任务的过程中,使吸附装置携带目标基板中的每一个打印点与目标多针模组对齐后,由Z轴控制器驱动目标多针模组在该打印点(即固定的X轴坐标和Y轴坐标)中,沿着Z轴将打印接收距离的实际值调整为目标值,以使得调整后,每一个针头在对应的打印点都以同样的打印接收距离进行打印。
本发明实施例基于Z轴控制器操控目标多针模组在目标工位中,在各打印点以同样的打印接收距离进行直写3D打印。能够消除由目标基板的不平整所引起的误差,进而,提高LED挡墙的制作效率和精密度。
在上述任一实施例的基础上,进行打印前的准备操作,包括:在将打印材料灌入针筒中后,将打印针头安装在针筒上,通过打印针头连接针筒和流体控制系统。
其中,打印材料与打印材料成形的宽高比匹配,打印针头的内径参数与目标线宽匹配,打印层数是基于目标LED挡墙的宽高比、目标线宽和目标高度设定。
需要说明的是,打印出的LED挡墙的目标线宽是由打印材料的材料特性、流体控制系统施加的压力和打印针头内径参数共同决定。
打印材料,是指具有一定粘度的流体材料,可以经处理后固化。打印材料的粘度的取值范围可以是400000cp至800000cp。由于打印任务的需求不同,所以本发明实施例对打印材料的粘度不作具体限定。
优选地,打印材料的粘度范围可以是500000cp至600000cp。
具体地,在步骤401中,以打印任务中的目标线宽为导向,根据打印材料的粘度与打印针头打印成形的宽高比之间的对应关系,选取合适的打印材料灌入针筒中,并将打印针头安装在针筒的下端,使打印针头朝下,并由流体控制系统控制打印材料从打印针头流出,形成尺寸为与内径参数对应的线宽,以及由宽高比推导出的层高的打印层。
可以理解的是,在进行实际的打印任务之前,还可以根据线宽和宽高比推导出的层高,除目标高度,可以得到打印层数。进而在实际执行打印任务的过程中,在完成指定打印层数后的打印后,对层叠形成的打印高度与目标高度进行对比,以判定打印任务是否完成。
可以理解的是,由于挡墙的颜色可以为纯色或者渐变色,所以需要将打印材料调配成对应的颜色。
示例性地,将打印材料的颜色调配成白色,并灌入针筒中进行逐层打印,可以生成宽高一致的白色挡墙。
示例性地,在打印第一层时,将打印材料的颜色调配成白色进行打印,随后移至清洗区将针筒内的残余材料清洗干净后,注入颜色饱和度递增的打印材料进行第二层的打印,以此类推,生成宽高一致的渐变色挡墙。
通过控制终端控制运动控制系统,以进行机械归零的操作。
具体地,显示面板的LED挡墙的打印设备在每执行一个打印任务之前,在控制终端启动自动化软件,以驱动运动控制系统对机台设备进行自动机械归零对位和调节水平度。
本发明实施例基于在进行打印前,通过选取合适的打印材料并执行机械归零。能够根据不同的打印需求进行选材,并使执行不同打印任的条件具有一致性,进而,提高LED挡墙的制作效率和精密度。
在上述任一实施例的基础上,在运动控制系统将目标多针模组移动至目标基板的打印起始点之前,在预定的气压参数下进行预打印,直至打印针头稳定出料后,由运动控制系统控制吸附装置离开预打印区。
具体地,显示面板的LED挡墙的打印设备在实际执行打印任务之前,在预打印区,在预定的气压参数驱动流体控制系统,以控制打印材料的流速,待浆料挤出至每个针头均开始稳定出料(仅换料后第一片产品需要挤出进行预打印)后,由运动控制系统驱动吸附装置将目标基板转移至打印起始点。
本发明实施例基于在预打印区进行作业,使各打印针头的出料速度一致。能够在执行打印任务时提高LED挡墙的制作稳定性。
在上述任一实施例的基础上,基于在预定的气压参数和目标线宽,目标多针模组在目标工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成目标LED挡墙,包括:基于预定的气压参数和目标线宽,第一模组在第一工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,生成横向LED挡墙。
需要说明的是,显示面板的LED挡墙的打印设备的应用场景为,有两个操作工位和两个多针模组,预先对每一组操作工位和多针模组设置好相对位置关系,通过在不同的操作工位利用不同的多针模组进行横向和纵向打印。
具体地,在步骤403中,吸盘携带目标基板转移至第一工位中,从目标基板的打印初始点开始,由控制终端控制运动控制系统,使其驱动吸盘携带目标基板以一定的速度按照预先规定的轨迹路线在XY平面内运动。同时,根据预先设定的目标线宽配置合适的第一模组,由控制终端控制向流体控制系统设置预定的气压参数,使第一模组在第一工位中遍历目标基板的每一列中的各个打印点处,在该打印点处沿Z轴调整打印接收距离后进行逐层打印,生成多个完整的纵向LED挡墙。可以理解的是,当第一模组将所有打印点遍历完成之后,运动控制系统会接收到相应的反馈消息,以获知横向LED挡墙打印完成。并向吸附装置发送第一运动指令,以使得吸附装置根据第一运动指令将目标基板转移至第二工位,以使得第二模组打印出横向LED挡墙。
基于预定的气压参数和目标线宽,第二模组在第二工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,生成横向LED挡墙。
具体地,吸附装置中的吸盘携带已经生成纵向LED挡墙的目标基板,转移至第二工位中,从目标基板的上一次打印终结点开始,由控制终端控制运动控制系统,使其驱动吸盘携带目标基板以一定的速度按照预先规定的轨迹路线在XY平面内运动。同时,根据预先设定的目标线宽配置合适的第二模组,由控制终端控制向流体控制系统设置预定的气压参数,使第二模组在第二工位中遍历目标基板的每一行中的各个打印点处,在该打印点处沿Z轴调整打印接收距离后进行逐层打印,生成多个完整的横向LED挡墙可以理解的是,纵向LED挡墙和横向LED挡墙并无绝对的打印顺序,而是由目标多针模组和吸附装置携带目标基板的轨迹路线共同决定,即需要保证目标多针模组的针头排列方向与目标基板从初始打印点开始运动的运动方向垂直。
本发明实施例基于在第一工位和第二工位中,分别通过对应的第一模组和第二模组以直写3D打印技术,在目标基板中通过叠层打印制作出宽度一致,垂直度高的横向LED挡墙和纵向LED挡墙。能够提高LED挡墙的制作效率和精密度。
在上述任一实施例的基础上,基于在预定的气压参数和目标线宽,目标多针模组在目标工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,生成目标LED挡墙,包括:基于在预定的气压参数和目标线宽,目标多针模组在第一工位或者第二工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙。
需要说明的是,显示面板的LED挡墙的打印设备的应用场景为,仅有一个操作工位和一个多针模组,通过扭转操作工位,以使得操作工位和多针模组相对位置关系改变,分别能够进行横向和纵向打印。
目标工位,可以为第一工位或者第二工位中的任意一个。
对应地,在该工位中相应设置一个目标多针模组,该模组可以是打印针头具有横向排列规律的第一模组,或者是打印针头具有纵向排列规律的第一模组。
具体地,吸盘转移至目标工位中,从目标基板的打印初始点开始,由控制终端控制运动控制系统,使其驱动吸盘携带目标基板以一定的速度按照预先规定的轨迹路线在XY平面内运动。同时,根据预先设定的目标线宽配置合适的目标多针模组,由控制终端控制向流体控制系统设置预定的气压参数,使目标多针模组在目标工位中遍历目标基板的每一列中的各个打印点处,在该打印点处沿Z轴调整打印接收距离后进行逐层打印,生成多个完整的纵向LED挡墙可以理解的是,当目标多针模组将所有打印点遍历完成之后,运动控制系统会接收到相应的反馈消息,以获知横向LED挡墙打印完成。并向目标工位发送第二运动指令,以使得目标工位根据第二运动指令进行90°的旋转后,以使得目标多针模组打印出横向LED挡墙。
将第一工位或者第二工位旋转90°,目标多针模组在目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙。
具体地,目标工位协同已经生成横向LED挡墙的目标基板,旋转90°后,从目标基板的上一次打印终结点点开始,由控制终端控制运动控制系统,使其驱动吸盘携带目标基板以一定的速度按照预先规定的轨迹路线在XY平面内运动。同时,根据预先设定的目标线宽配置合适的目标多针模组,由控制终端控制向流体控制系统设置预定的气压参数,使目标多针模组在目标工位中遍历目标基板的每一列中的各个打印点处,在该打印点处沿Z轴调整打印接收距离后进行逐层打印,生成多个完整的横向LED挡墙。
图5是本发明提供的显示面板的LED挡墙的打印方法的挡墙效果图。示例性地,如图5所示,经上述的LED挡墙打印方法执行对应的工艺流程后,可以在基板上的每组LED中三个单颗LED周围建立好宽高一致的挡墙。
本发明实施例基于在第一工位或第二工位中,由对应的目标多针模组以直写3D打印技术,通过第一工位或第二工位协同目标基板进行方向的旋转变化,分别叠层打印制作出宽度一致,垂直度高的横向LED挡墙和纵向LED挡墙。能够提高LED挡墙的制作效率和精密度。
图6示例了一种电子设备的实体结构示意图,如图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行显示面板的LED挡墙的打印方法,该方法包括:以打印任务为导向,进行打印前的准备操作,并通过显示面板的LED挡墙的打印设备的测量系统对目标基板进行扫描,获取目标基板的平整度数据;运动控制系统将目标多针模组移动至目标基板的打印起始点,基于接收到的平整度数据,利用Z轴控制器调整目标多针模组中每一打印针头的打印接收距离;基于在预定的气压参数、预定的打印针头运动速度和目标线宽,使目标多针模组在目标工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙;其中,目标工位包括第一工位和/或第二工位,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,目标多针模组包括第一模组和/或第二模组,打印高度为与打印层数对应的累加层高,打印任务至少包括根据目标基板确定目标线宽和目标高度。
此外,上述的存储器630中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本发明还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的显示面板的LED挡墙的打印方法,该方法包括:以打印任务为导向,进行打印前的准备操作,并通过显示面板的LED挡墙的打印设备的测量系统对目标基板进行扫描,获取目标基板的平整度数据;运动控制系统将目标多针模组移动至目标基板的打印起始点,基于接收到的平整度数据,利用Z轴控制器调整目标多针模组中每一打印针头的打印接收距离;基于在预定的气压参数、预定的打印针头运动速度和目标线宽,使目标多针模组在目标工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙;其中,目标工位包括第一工位和/或第二工位,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,目标多针模组包括第一模组和/或第二模组,打印高度为与打印层数对应的累加层高,打印任务至少包括根据目标基板确定目标线宽和目标高度。
又一方面,本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的显示面板的LED挡墙的打印方法,该方法包括:以打印任务为导向,进行打印前的准备操作,并通过显示面板的LED挡墙的打印设备的测量系统对目标基板进行扫描,获取目标基板的平整度数据;运动控制系统将目标多针模组移动至目标基板的打印起始点,基于接收到的平整度数据,利用Z轴控制器调整目标多针模组中每一打印针头的打印接收距离;基于在预定的气压参数、预定的打印针头运动速度和目标线宽,使目标多针模组在目标工位上的目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙;其中,目标工位包括第一工位和/或第二工位,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,目标多针模组包括第一模组和/或第二模组,打印高度为与打印层数对应的累加层高,打印任务至少包括根据目标基板确定目标线宽和目标高度。
如图7-17所示,一种LED封装挡墙的打印设备,包括加工台1和设置于加工台1上的三轴运动模块2,且三轴运动模块2上连有相对应的打印头模块4;所述三轴运动模块2包括连接于加工台1上的水平运动模块2-1和架空设置于加工台1上的升降运动模块2-2,打印头模块4位于升降运动模块2-2上,水平运动模块2-1上设有与打印头模块4相对应的载具模块3;所述载具模块3包括自下而上设置的底座3-1、三轴旋转台3-2和真空吸盘3-3,真空吸盘3-3表面形成有吸附槽3-4,吸附槽3-4内形成有若干凸台3-5,且真空吸盘3-3边角处设有若干定位销3-6,若干定位销3-6位于真空吸盘3-3的两个相邻侧边上;所述加工台1上还设有与载具模块3相对应的视觉与测量装置5。
水平运动模块2-1包括相连接的X轴移动装置和Y轴移动装置,X轴移动装置安装于加工台1上,Y轴移动装置安装于X轴移动装置上,且X轴移动装置和Y轴移动装置移动方向垂直设置,X轴移动装置和Y轴移动装置均通过直线电机驱动,升降运动模块2-2由伺服电机驱动。
龙门架1-1上设有底板1-2,视觉与测量装置5、打印头模块4和升降运动模块2-2均设置于底板1-2上,且底板1-2上形成有与视觉与测量装置5、打印头模块4和升降运动模块2-2相对应的配合孔,配合孔的位置根据实际需要进行设置。
加工台1上形成有龙门架1-1,升降运动模块2-2设置于龙门架1-1上,打印头模块4和视觉与测量装置5均设置于龙门架1-1上。
吸附槽3-4上形成有若干抽气孔3-7,抽气孔3-7沿吸附槽3-4中心处对称设置,真空吸盘3-3下部安装有与抽气孔3-7相连通的真空调压阀,真空吸盘3-3下部安装气接头联通真空调压阀以获得稳定可调的真空压力,确保印刷电路板在载具模块3上稳定吸附。
真空吸盘3-3相邻侧边的各侧边上至少设有两个定位销3-6,真空吸盘3-3为矩形结构,吸附槽3-4也为与真空吸盘3-3相对应的矩形结构,真空吸盘3-3和吸附槽3-4中心相对应,定位销3-6设置于吸附槽3-4的其中两个相邻侧边上,且在定位销3-6的作用下,将印刷电路板在吸附槽3-4上进行移动,当移动到一定位置后,实现印刷电路板的两个侧边同时与定位销3-6相抵,实现印刷电路板的定位,从而实现印刷电路板的定位。
凸台3-5与印刷电路板上的元器件错位设置,凸台3-5用于对印刷电路板进行支撑,在印刷电路板没有元器件的位置处设置尽可能多的凸台3-5,从而凸台3-5能对印刷电路板进行更好的支撑。真空吸盘3-3在吸附过程中,真空吸盘3-3与印刷电路板之间存在负压,在凸台3-5的作用下,防止印刷电路板的受压变形过度。
在实际使用过程中,真空吸盘3-3吸附区域内设置凸起的凸台3-5用于支撑印刷电路板,因为印刷电路板背面贴有大量元器件,故凸台3-5形貌根据印刷电路板形貌设计,凸台3-5位置对应印刷电路板平整、无元器件且可以接触的位置;设计中在没有元器件的位置尽可能多的设置凸台,以获得良好的支撑以保证吸附平整度。
三轴旋转台3-2为标准件,具有三轴手动旋转功能,用于调平真空吸盘3-3,真空吸盘3-3为铝合金材质、表面精磨,具有很高的平面度,以提升pcb的吸平效果。
打印头模块4包括材料挤出装置4-1、针头夹具4-2、打印针头4-3和打印底座4-4,针头夹具4-2固定连接于升降运动模块2-2上,打印底座4-4与升降运动模块2-2相连,针头夹具4-2上部连接材料挤出装置4-1上,针头夹具4-2下部连接打印针头4-3。
材料挤出装置4-1用于控制打印材料的挤出,材料挤出装置4-1由压缩空气驱动并通过控制压缩空气气压控制材料挤出压力,压缩气体气压由精密气压控制器控制;材料挤出装置4-1出料口为鲁尔接头公头,且材料挤出装置4-1通过抱箍固定于针头夹具4-2之上。
针头夹具4-2包括螺纹连接的抱箍支架4-2-1和转接头4-2-2,抱箍支架4-2-1和转接头4-2-2分别用于固定连接材料挤出装置4-1和打印针头4-3,转接头4-2-2连接于抱箍支架4-2-1底部,抱箍支架4-2-1顶部形成有与材料挤出装置4-1相适配的抱箍4-2-3,抱箍4-2-3尺寸与材料挤出装置4-1尺寸相对应,在抱箍4-2-3的作用下对材料挤出装置4-1进行锁紧。
转接头4-2-2上部为鲁尔母接头,鲁尔母接头与材料挤出装置4-1出料口相连,转接头4-2-2下部为鲁尔公接头,鲁尔公接头与打印针头4-3相连。
打印针头4-3包括相连接的针头底座4-3-1和陶瓷针尖4-3-2,针头底座4-3-1和陶瓷针尖4-3-2通过环氧树脂粘接,可以承受1000psi以内压力,针头底座4-3-1上部为对应的鲁尔母接头,打印针头4-3与针头夹具4-2通过鲁尔接头连接,鲁尔接头内部通过螺纹固定、锥面密封,使得打印针头4-3与针头夹具4-2稳定连接,针头底座4-3-1下半部分与陶瓷针尖4-3-2使用环氧树脂粘接,陶瓷针尖4-3-2通过陶瓷精密铸造与磨削工艺得到,其孔径可以在10-200微米,以适应不同宽度挡墙的打印需求。
视觉与测量装置5包括倾斜观察组件5-1和传感与测量组件5-2,传感与测量组件5-2竖直连接于龙门架1-1上,倾斜观察组件5-1倾斜设置于打印头模块4侧面,且倾斜观察组件5-1朝向打印针头4-3设置。
倾斜观察组件5-1安装于打印头模块4侧面,倾斜观察组件5-1具有用于观察的高倍率相机组件,高倍率相机组件分为相机、镜筒与物镜。相机组件安装于相机夹具之上,相机夹具具有三轴手动调节装置。倾斜观察组件5-1包括用于照明的环形光源与背光源;环形光源通过抱箍安装在物镜上、背光源安装在打印头模块4下方。
同时倾斜观察组件5-1的抱箍通过三轴手动调节装置连接于打印头模块4上,当打印通模块4升降到一定高度之后,通过调节三轴手动调节装置对倾斜观察组件5-1进行调整,从而使得倾斜观察组件5-1对应陶瓷针尖4-3-2处,倾斜观察组件5-1包括相对应的高倍率相机组件,可实现对陶瓷针尖4-3-2的放大,从而便于操作人员直接观察陶瓷针尖4-3-2的打印情况。
传感与测量组件5-2安装于底板1-2上,且传感与测量组件5-2位于倾斜观察组件5-1一侧,传感与测量组件5-2包括用于视觉对位的高倍率相机组件、用于测高的激光测距传感器、用于观察打印效果的大视野相机组件。高倍率相机组件包括相机、带有同轴光的镜筒、物镜,高倍率相机组件通过手调滑台安装于底板1-2上;激光测距传感器通过手调滑台安装于高倍率相机组件上;大视野相机组件通过手调滑台安装于激光测距传感器上。
加工台1上还设有相对应的清洗装置6和接触测高装置7,清洗装置6由压缩空气驱动,清洗装置6内部通过环形狭缝将压缩空气吹出,获得一个环形高速气流。清洗装置6的运行流程为:操作机台将针头尖端插入清洗装置6顶部的孔内,打开压缩气源;在高速气流作用下,针头外壁残留的材料的被带走;匀速提升针头使得高速气流可以均匀吹过针头外壁。
接触测高装置7上设有接触感应器、角位调节机构和升降调节机构。
升降调节机构为十字交叉导轨Z轴水平升降位移滑台,采用高强度铝合金,经喷砂黑色阳极氧化,然后装配高精度十字交叉滚柱导轨,适合轻较重载荷,频繁调整,是一款性能优良的直动平台,角位调节机构7-6可采用OMO-VM系列圆柱型V型调整架,具有2个M6x0.25细牙促进器,可实现±3°的精密调节,细牙促进器设计有挠性锁紧机构,用以提供长期可靠性。
在角位调节机构和升降调节机构的作用下对接触感应器进行调平,将激光测距传感器测量加工面和接触测高装置7,得到加工面和接触测高装置7之间的高度关系,将打印头模块4的陶瓷针尖4-3-2触碰接触测高装置7,得到陶瓷针尖4-3-2与接触测高装置7的高度关系;进而计算得到陶瓷针尖4-3-2与加工面的高度关系;调节打印头模块4的下降量控制打印头模块4的陶瓷针尖4-3-2与加工面之间的间距,从而便于对打印头模块4的打印高度进行调节。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现;因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
尽管本文较多地使用了图中附图标记:加工台1,龙门架1-1,三轴运动模块2,水平运动模块2-1,升降运动模块2-2,载具模块3,底座3-1,三轴旋转台3-2,真空吸盘3-3,吸附槽3-4,凸台3-5,定位销3-6,抽气孔3-7,打印头模块4,材料挤出装置4-1,针头夹具4-2,抱箍支架4-2-1,转接头4-2-2,抱箍4-2-3,针头底座4-3-1,陶瓷针尖4-3-2,打印针头4-3,视觉与测量装置5,倾斜观察组件5-1,传感与测量组件5-2,清洗装置6,接触测高装置7等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该控制终端软件产品可以存储在控制终端可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台控制终端设备(可以是个人控制终端,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种显示面板的LED挡墙的打印方法,其特征在于,包括:
    以打印任务为导向,进行打印前的准备操作,并通过显示面板的LED挡墙的打印设备的测量系统对所述目标基板进行扫描,获取所述目标基板的平整度数据;
    所述运动控制系统将目标多针模组移动至目标基板的打印起始点,基于接收到的所述平整度数据,利用Z轴控制器调整所述目标多针模组的打印接收距离;
    基于预定的气压参数和目标线宽,使所述目标多针模组在目标工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙;
    其中,所述目标工位包括第一工位和/或第二工位,目标LED挡墙包括横向LED挡墙和纵向LED挡墙,所述目标多针模组包括第一模组和/或第二模组,所述打印高度为与打印层数对应的累加层高,所述打印任务至少包括根据所述目标基板确定目标线宽和目标高度。
  2. 根据权利要求1所述的显示面板的LED挡墙的打印方法,其特征在于,所述基于接收到的所述平整度数据,利用Z轴控制器调整所述目标多针模组的打印接收距离,包括:
    基于所述平整度数据和目标对应关系,获取所述目标基板的各打印点与所述目标多针模组之间的垂直距离,作为打印接收距离的实际值;
    在所述目标多针模组处于所述打印点的情况下,通过所述Z轴控制器,将所述打印接收距离的实际值调整为所述打印接收距离的目标值;
    其中,各所述打印点对应的打印接收距离的目标值相同。
  3. 根据权利要求1所述的显示面板的LED挡墙的打印方法,其特征在于,所述进行打印前的准备操作,包括:
    在将打印材料灌入针筒中后,将所述打印针头安装在所述针筒上,通过所述打印针头连接所述针筒和所述流体控制系统;
    通过控制终端控制所述运动控制系统,以进行机械归零的操作;
    其中,所述打印材料与所述打印材料成形的宽高比匹配,所述打印针头的内径参数与所述目标线宽匹配,所述打印层数是基于所述目标LED挡墙的宽高比、所述目标线宽和所述目标高度设定。
  4. 根据权利要求3所述的显示面板的LED挡墙的打印方法,其特征在于,在所述运动控制系统将目标多针模组移动至目标基板的打印起始点之前,在预定的气压参数下进行预打印,直至所述打印针头稳定出料后,由所述运动控制系统控制所述吸附装置离开所述预打印区。
  5. 根据权利要求1所述的显示面板的LED挡墙的打印方法,其特征在于,所述基于预定的气压参数和目标线宽,使所述目标多针模组在目标工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙,包括:
    基于预定的所述气压参数和所述目标线宽,所述第一模组在所述第一工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙;
    基于预定的所述气压参数和所述目标线宽,所述第二模组在所述第二工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成横向LED挡墙。
  6. 根据权利要求1所述的显示面板的LED挡墙的打印方法,其特征在于,所述基于预定的气压参数和目标线宽,使所述目标多针模组在目标工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度范围的情况下,固化生成目标LED挡墙,包括:
    基于预定的所述气压参数和所述目标线宽,所述目标多针模组在所述第一工位或者所述第二工位上的所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙;
    将所述第一工位或者所述第二工位旋转90°,所述目标多针模组在所述目标基板的上表面进行层叠打印,在打印高度符合目标高度的情况下,生成纵向LED挡墙。
  7. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述显示面板的LED挡墙的打印方法。
  8. 一种显示面板的LED挡墙的打印设备,其特征在于,包括:
    运动控制系统,与控制终端连接,用于控制在目标工位上的目标基板的上表面打印目标LED挡墙;
    吸附装置,与所述运动控制系统连接,包括用于通过真空泵使所述目标基板的下表面吸附在吸盘上;
    测量系统,与所述控制终端连接,包括传感器和传感器控制器,所述传感器用于测量所述目标基板的平整度数据;
    Z轴控制器,与所述控制终端连接,用于控制目标多针模组与所述目标基板的上表面之间的打印接收距离;
    所述目标多针模组,与所述Z轴控制器连接,包括所述打印针头和流体控制系统,所述流体控制系统用于向所述打印针头提供预定的气压参数;
    目标工位,与所述运动控制系统连接,用于容纳所述目标基板,以使得所述目标多针模组在所述目标基板的上表面进行目标LED挡墙的层叠打印;
    其中,所述目标工位包括第一工位和/或第二工位,所述目标LED挡墙包括横向LED挡墙和纵向LED挡墙,所述目标多针模组包括第一模组和/或第二模组,所述第一模组与所述第一工位匹配,所述第二模组与所述第二工位匹配,所述目标基板包括PCB基板或者玻璃基板。
  9. 根据权利要求8所述的显示面板的LED挡墙的打印设备,其特征在于,所述目标工位还包括:
    清洗区,用于清洗和保存所述打印针头;
    预打印区,用于在预定的气压参数下进行预打印,直至所述打印针头稳定出料后,由所述运动控制系统控制所述吸附装置离开所述预打印区;
    优选地,所述运动控制系统具体用于在所述目标工位包括第一工位和第二工位的情况下,控制所述吸附装置在XY平面内运动,以使得所述第一模组在所述第一工位中的所述目标基板上打印出所述纵向LED挡墙;
    向所述吸附装置发送第一运动指令,以使得所述吸附装置根据所述第一运动指令将所述目标基板转移至所述第二工位的XY平面内进行运动,以使得所述第二模组在所述第二工位中的所述目标基板上打印出所述横向LED挡墙;
    优选地,所述运动控制系统具体用于在所述目标工位包括第一工位或第二工位的情况下,控制所述吸附装置在XY平面内运动,以使得所述目标多针模组在所述目标工位中的所述目标基板上打印出所述纵向LED挡墙;
    向所述目标工位发送第二运动指令,以使得所述目标工位根据所述第二运动指令进行90°的旋转后,驱动所述吸附装置在XY平面内运动,以使得所述目标多针模组在所述目标工位中的所述目标基板上打印出所述横向LED挡墙;
    优选地,所述Z轴控制器包括一个或者多个。
  10. 一种LED封装挡墙的打印设备,包括加工台和设置于加工台上的三轴运动模块,且三轴运动模块上连有相对应的打印头模块;其特征在于,所述三轴运动模块包括连接于加工台上的水平运动模块和架空设置于加工台上的升降运动模块,打印头模块位于升降运动模块上,水平运动模块上设有与打印头模块相对应的载具模块;所述载具模块包括自下而上设置的底座、三轴旋转台和真空吸盘,真空吸盘表面成型有吸附槽,吸附槽内形成有若干凸台,且真空吸盘边角处设有若干定位销,若干定位销位于真空吸盘的两个相邻侧边上;所述加工台上还设有与载具模块相对应的视觉与测量装置。
  11. 根据权利要求10所述的一种LED封装挡墙的打印设备,其特征在于,所述加工台上形成有龙门架,升降运动模块设置于龙门架上,打印头模块和视觉与测量装置均设置于龙门架上;
    优选地,所述吸附槽上形成有若干抽气孔,抽气孔沿吸附槽中心处对称设置,真空吸盘下部安装有与抽气孔相连通的真空调压阀;
    优选地,所述真空吸盘相邻侧边的各侧边上至少设有两个定位销;
    优选地,所述打印头模块包括自上而下依次连接的材料挤出装置、针头夹具和打印针头,针头夹具固定连接于升降运动模块上,且材料基础装置固定连接于针头夹具上,打印针头连接于针头夹具底部;
    优选地,所述针头夹具包括螺纹连接的抱箍支架和转接头,转接头连接于抱箍支架底部,抱箍支架顶部形成有与材料挤出装置相适配的抱箍,抱箍锁紧材料挤出装置;
    优选地,所述转接头上部为鲁尔母接头,鲁尔母接头与材料挤出装置出料口相连,转接头下部为鲁尔公接头,鲁尔公接头与打印针头相连;
    优选地,所述打印针头包括针头底座和陶瓷针尖,针头底座上部为对应的鲁尔母接头;
    优选地,所述视觉与测量装置包括倾斜观察组件和传感与测量组件,传感与测量组件竖直连接于龙门架上,倾斜观察组件倾斜设置于打印头模块侧面,且倾斜观察组件朝向打印针头设置;
    优选地,其特征在于,所述加工台上还设有相对应的清洗装置和接触测高装置。
PCT/CN2022/128177 2022-03-03 2022-10-28 显示面板的 led 挡墙的打印设备及方法 WO2023165147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22912784.0A EP4261015A1 (en) 2022-03-03 2022-10-28 Printing apparatus and method for led dam of display panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210203951.3 2022-03-03
CN202210203951.3A CN114571725B (zh) 2022-03-03 2022-03-03 一种led封装挡墙的打印设备
CN202210292190.3 2022-03-24
CN202210292190.3A CN114379091B (zh) 2022-03-24 2022-03-24 显示面板的led挡墙的打印设备及方法

Publications (1)

Publication Number Publication Date
WO2023165147A1 true WO2023165147A1 (zh) 2023-09-07

Family

ID=87748026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128177 WO2023165147A1 (zh) 2022-03-03 2022-10-28 显示面板的 led 挡墙的打印设备及方法

Country Status (2)

Country Link
EP (1) EP4261015A1 (zh)
WO (1) WO2023165147A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105528A1 (en) * 2010-11-01 2012-05-03 Alleyne Andrew High Resolution Sensing and Control of Electrohydrodynamic Jet Printing
CN107932894A (zh) * 2017-12-22 2018-04-20 青岛理工大学 一种高精度电场驱动喷射沉积3d打印机及其工作方法
CN107932898A (zh) * 2017-12-22 2018-04-20 青岛理工大学 一种电场驱动熔融喷射沉积3d打印机及其工作方法
CN207617119U (zh) * 2017-12-22 2018-07-17 青岛理工大学 一种电场驱动熔融喷射沉积3d打印机
CN110154396A (zh) * 2019-06-11 2019-08-23 深圳市深科达智能装备股份有限公司 显示或触控模组的上料中转结构
WO2020032929A1 (en) * 2018-08-07 2020-02-13 Hewlett-Packard Development Company, L.P. Determining cleaning fluid thickness
CN110978508A (zh) * 2019-11-01 2020-04-10 清华大学 硅胶3d打印装置及其打印方法
CN111452365A (zh) * 2020-03-24 2020-07-28 慧灵科技(深圳)有限公司 打印控制的方法、控制器、3d打印系统及存储介质
CN111591051A (zh) * 2020-05-26 2020-08-28 武汉数字化设计与制造创新中心有限公司 一种面向印刷显示的打印高度控制系统及方法
US20210039315A1 (en) * 2017-07-25 2021-02-11 Northworks Automation, Inc. Vacuum bed with base member for three-dimensional printing
CN213472209U (zh) * 2020-10-13 2021-06-18 青岛理工大学 多材料跨尺度多层柔性结构混合电子一体化3d打印系统
CN213564383U (zh) * 2020-08-21 2021-06-29 上海易信塑胶科技有限公司 一种3d打印真空正负压集成结构
US20210362178A1 (en) * 2020-05-21 2021-11-25 The Boeing Company Inkjet printing system having dynamically controlled meniscus pressure
CN113696638A (zh) * 2021-08-06 2021-11-26 西湖未来智造(杭州)科技发展有限公司 玻璃基板电路打印方法和设备
CN113844023A (zh) * 2021-09-29 2021-12-28 芯体素(杭州)科技发展有限公司 基于直写3d打印工艺的栅极线打印针头及打印方法
CN114379091A (zh) * 2022-03-24 2022-04-22 芯体素(杭州)科技发展有限公司 显示面板的led挡墙的打印设备及方法
CN114571725A (zh) * 2022-03-03 2022-06-03 芯体素(杭州)科技发展有限公司 一种led封装挡墙的打印设备

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105528A1 (en) * 2010-11-01 2012-05-03 Alleyne Andrew High Resolution Sensing and Control of Electrohydrodynamic Jet Printing
US20210039315A1 (en) * 2017-07-25 2021-02-11 Northworks Automation, Inc. Vacuum bed with base member for three-dimensional printing
CN107932894A (zh) * 2017-12-22 2018-04-20 青岛理工大学 一种高精度电场驱动喷射沉积3d打印机及其工作方法
CN107932898A (zh) * 2017-12-22 2018-04-20 青岛理工大学 一种电场驱动熔融喷射沉积3d打印机及其工作方法
CN207617119U (zh) * 2017-12-22 2018-07-17 青岛理工大学 一种电场驱动熔融喷射沉积3d打印机
WO2020032929A1 (en) * 2018-08-07 2020-02-13 Hewlett-Packard Development Company, L.P. Determining cleaning fluid thickness
CN110154396A (zh) * 2019-06-11 2019-08-23 深圳市深科达智能装备股份有限公司 显示或触控模组的上料中转结构
CN110978508A (zh) * 2019-11-01 2020-04-10 清华大学 硅胶3d打印装置及其打印方法
CN111452365A (zh) * 2020-03-24 2020-07-28 慧灵科技(深圳)有限公司 打印控制的方法、控制器、3d打印系统及存储介质
US20210362178A1 (en) * 2020-05-21 2021-11-25 The Boeing Company Inkjet printing system having dynamically controlled meniscus pressure
CN111591051A (zh) * 2020-05-26 2020-08-28 武汉数字化设计与制造创新中心有限公司 一种面向印刷显示的打印高度控制系统及方法
CN213564383U (zh) * 2020-08-21 2021-06-29 上海易信塑胶科技有限公司 一种3d打印真空正负压集成结构
CN213472209U (zh) * 2020-10-13 2021-06-18 青岛理工大学 多材料跨尺度多层柔性结构混合电子一体化3d打印系统
CN113696638A (zh) * 2021-08-06 2021-11-26 西湖未来智造(杭州)科技发展有限公司 玻璃基板电路打印方法和设备
CN113844023A (zh) * 2021-09-29 2021-12-28 芯体素(杭州)科技发展有限公司 基于直写3d打印工艺的栅极线打印针头及打印方法
CN114571725A (zh) * 2022-03-03 2022-06-03 芯体素(杭州)科技发展有限公司 一种led封装挡墙的打印设备
CN114379091A (zh) * 2022-03-24 2022-04-22 芯体素(杭州)科技发展有限公司 显示面板的led挡墙的打印设备及方法

Also Published As

Publication number Publication date
TW202336953A (zh) 2023-09-16
EP4261015A1 (en) 2023-10-18
EP4261015A8 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
CN114379091B (zh) 显示面板的led挡墙的打印设备及方法
US20130122610A1 (en) Apparatus and Method for Die Bonding
CN113696638B (zh) 玻璃基板电路打印方法和设备
CN110102908A (zh) 一种基于三维视觉定位的激光除胶装置及方法
JP2010027793A (ja) アライメント装置
JP5061421B2 (ja) 塗布方法およびディスプレイ用部材の製造方法
KR101107501B1 (ko) 시린지 자동교체시스템 및 이를 구비하는 페이스트 디스펜서
JP2004223439A (ja) 塗布装置および塗布方法並びにディスプレイ用部材の製造方法
WO2023165147A1 (zh) 显示面板的 led 挡墙的打印设备及方法
TWI838997B (zh) 顯示面板的led擋牆的列印設備及方法
CN114571725B (zh) 一种led封装挡墙的打印设备
JP3912635B2 (ja) 凹凸基材への塗液の塗布装置および方法並びにプラズマディスプレイの製造装置および方法
KR101700477B1 (ko) 표시 장치의 제조 장치 및 표시 장치의 제조 방법
KR20070074269A (ko) 페이스트 도포장치의 디스펜스 헤드
JP3199239B2 (ja) プラズマディスプレイ用部材の製造方法および装置
JP4403802B2 (ja) ペースト塗布機
JP2003178677A (ja) プラズマディスプレイパネルの蛍光体充填装置
CN113751238B (zh) 一种led荧光粉涂装设备及涂装工艺
JP2001087693A (ja) ペースト塗布機
JP2019060027A (ja) 基板載置装置、成膜装置、基板載置方法、成膜方法、および電子デバイスの製造方法
JPH11300258A (ja) 塗布装置および塗布方法並びにカラーフィルタの製造装置およびその製造方法
JP2000033289A (ja) ノズル並びに凹凸基材への塗液の塗布装置および方法並びにプラズマディスプレイの製造装置および方法
JP2005353811A (ja) 載置装置、載置台
CN217955890U (zh) 显示器件封装贴合设备
JP2000048716A (ja) 塗液の塗布装置および方法並びにプラズマディスプレイの製造装置および方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022912784

Country of ref document: EP

Effective date: 20230704