WO2023165103A1 - 作业机器人系统及其控制方法、计算机设备及存储介质 - Google Patents

作业机器人系统及其控制方法、计算机设备及存储介质 Download PDF

Info

Publication number
WO2023165103A1
WO2023165103A1 PCT/CN2022/115695 CN2022115695W WO2023165103A1 WO 2023165103 A1 WO2023165103 A1 WO 2023165103A1 CN 2022115695 W CN2022115695 W CN 2022115695W WO 2023165103 A1 WO2023165103 A1 WO 2023165103A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
distance
wall
working robot
printing
Prior art date
Application number
PCT/CN2022/115695
Other languages
English (en)
French (fr)
Inventor
逯世杰
闫礼强
张冬
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210206891.0A external-priority patent/CN116695998A/zh
Priority claimed from CN202210207252.6A external-priority patent/CN116696006A/zh
Priority claimed from CN202210206889.3A external-priority patent/CN116690645A/zh
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2023165103A1 publication Critical patent/WO2023165103A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/06Implements for applying plaster, insulating material, or the like
    • E04F21/08Mechanical implements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/06Implements for applying plaster, insulating material, or the like
    • E04F21/08Mechanical implements
    • E04F21/12Mechanical implements acting by gas pressure, e.g. steam pressure

Definitions

  • the present application relates to the technical field of construction operation robots, and in particular, relates to an operation robot system, a control method thereof, computer equipment and a storage medium.
  • the present application provides a working robot system and its control method, computer equipment and storage media, so as to improve the positioning efficiency and positioning accuracy of the working robot.
  • an embodiment of the present application provides a control method for a working robot system, the working robot system includes a working robot and a positioning system, and the control method includes: positioning the working robot through the positioning system; and The wall printing operation and/or the external wall printing operation are performed by the operation robot.
  • an embodiment of the present application provides a working robot system, including: a working robot for performing wall printing and/or exterior wall painting; and a positioning system for positioning the working robot.
  • an embodiment of the present application provides a computer device, the computer device comprising: a memory and at least one processor, the memory stores instructions; the at least one processor invokes the instructions in the memory , so that the computer device executes the control method of the working robot system according to any one of the foregoing implementation manners of the first aspect of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, on which instructions are stored, wherein, when the instructions are executed by a processor, any one of the foregoing ones according to the first aspect of the application can be realized.
  • a method of controlling a work robot system according to an embodiment.
  • the positioning system is used to position the working robot, which improves the positioning efficiency and positioning accuracy of the working robot.
  • FIG. 1 is a schematic structural diagram of a working robot system provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a positioning system for a working robot provided in an embodiment of the present application
  • Fig. 3 is a coordinate schematic diagram of a three-dimensional coordinate system of an exterior wall grid joint robot provided in an embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of another positioning system for a working robot provided in an embodiment of the present application.
  • Fig. 5 is a structural schematic diagram of a guide rail structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second positioning device provided by an embodiment of the present application.
  • FIG. 7 is a three-dimensional schematic diagram of a print nozzle device provided in an embodiment of the present application.
  • FIG. 8 is a flow chart of a method for drawing a wall grid joint provided by an embodiment of the present application.
  • Fig. 9 is a side plan view of a print head device provided in an embodiment of the present application.
  • Fig. 10 is a three-dimensional schematic diagram of another print head device provided in the embodiment of the present application.
  • Fig. 11 is a schematic diagram of the position of the printing nozzle in the joint of a wall surface provided by the embodiment of the present application;
  • FIG. 12 is a three-dimensional schematic diagram of a printing robot provided in an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a task of drawing a seam by a printing robot provided in an embodiment of the present application
  • Fig. 14 is a schematic structural diagram of a working robot in another embodiment of the present application.
  • Fig. 15 is a schematic diagram of a working robot working in a second plane in another embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of the printing head component of the working robot in another embodiment of the present application.
  • Fig. 17 is a schematic flow chart of a horizontal seam seaming method in an embodiment of the present application.
  • Fig. 18 is a schematic flow chart of a horizontal seam seaming method in another embodiment of the present application.
  • Fig. 19 is a schematic structural view of a horizontal seam seaming device in an embodiment of the present application.
  • Fig. 20 is a schematic structural view of a horizontal seam seaming device in another embodiment of the present application.
  • Fig. 21 is a schematic diagram of an embodiment of computer equipment in the embodiment of the present application.
  • the exterior wall grid joint robot is a kind of operating robot, which is mainly used for fully automatic construction of the building exterior wall grid joints (referring to the line characteristics of high-rise exterior wall buildings).
  • the operating robots also include exterior wall spraying robots, exterior wall cleaning robots, high-rise glass cleaning robots, etc.
  • the correct pose of a working robot in high altitude is usually determined manually, which is inefficient.
  • an embodiment of the present application provides a control method for a working robot system, which is applicable to positioning scenarios of various high-altitude robots.
  • the working robot system includes a working robot 2 and a positioning system 1 .
  • the working robot 2 is used for wall printing and/or exterior wall painting.
  • the working robot 2 is used for the construction of the wall grid joints.
  • the positioning system 1 is used for positioning the working robot 2 .
  • An embodiment of the present application also provides a method for controlling a working robot system, where the working robot system includes a working robot and a positioning system.
  • the control method includes: using the positioning system to position the working robot; and using the working robot to perform wall printing and/or external wall painting.
  • the job robot can perform wall printing operations.
  • the wall printing job includes the construction of wall divisions, wherein the divisions refer to the line features of the outer wall of the building.
  • the grid seam is the line to be printed on the outer wall.
  • the working robot is capable of painting exterior walls, or in some embodiments, the working robot is capable of printing walls and spraying exterior walls.
  • the positioning system includes a first positioning device in the first axis and a second positioning device in the second axis, the first axis and the second axis are perpendicular to each other, the first axis and the second axis are parallel to the target wall, the first positioning device includes a signal transmitting unit and a signal receiving unit, the signal receiving unit is set on the working robot, and the second positioning device is set on the working robot, and positioning the working robot through the positioning system includes: through the first The signal transmitting unit in the positioning device transmits a first positioning signal, and when the signal receiving unit receives the first positioning signal, based on the position of the signal transmitting unit on the first axis, the position of the working robot on the first axis is determined; The second positioning device transmits the second positioning signal to the target reference plane, and determines the position of the working robot on the second axis based on the reflection signal obtained by reflecting the second positioning signal from the target reference plane.
  • the embodiment of the present application provides a positioning system for a working robot, which includes a first positioning device 10 in the first axis and a second positioning device 20 in the second axis; the first axis The direction is perpendicular to the second axis, and both the first axis and the second axis are parallel to the target wall 40 .
  • the first positioning device includes a signal transmitting unit 10a and a signal receiving unit 10b.
  • the signal transmitting unit 10a can be arranged on the target reference level 60, or can be set on other levels. In FIG. 2, the setting and the target reference level are taken as an example.
  • the receiving unit 10 b is provided on the working robot 30 .
  • the second positioning device 20 is provided on the working robot 30 .
  • the signal transmitting unit transmits the first positioning signal; when the signal receiving unit receives the first positioning signal, based on the position of the signal transmitting unit on the first axis, it is determined that the working robot is on the first axis.
  • the second positioning device transmits a second positioning signal to the target reference plane, and determines the position of the working robot on the second axis based on the reflected signal obtained by reflecting the second positioning signal from the target reference plane.
  • the laser transmitting module can be used as the signal transmitting unit, and the laser receiving device can be used as the signal receiving unit.
  • the laser emitting module is set at the set position of the target horizontal reference plane; the set position is on the plane formed by the first axis and the second axis; the distance between the set position and the target wall and the distance between the laser receiving device and the The distances from the target walls are equal.
  • the above-mentioned set position is usually determined manually, and the projection point of the target position on the first axis that the working robot needs to reach on the target horizontal reference plane can be used as the set position, and then the working position of the working robot is adjusted, so that the laser
  • the receiving module receives the laser signal (that is, the above-mentioned first positioning signal), it determines that the working robot has reached the target position in the first axis.
  • the position of the working robot in the first axis can also be estimated, and the laser emission module can be set at the projection point of the estimated position of the working robot in the first axis on the target horizontal reference plane, and then adjusted on the target horizontal reference plane
  • the position of the laser emitting module so that the laser receiving module receives the laser signal emitted by the laser emitting module, and based on the moving distance of the signal receiving unit on the guide rail structure, the relative position of the guide rail structure and the working robot in the first axis, and the signal emission
  • the position of the unit on the first axis determines the position of the working robot on the first axis, wherein the guide rail structure drives the signal receiving unit to move, which can realize a certain measurement distance compensation.
  • a three-dimensional coordinate system in space may be established, and the above-mentioned position parameters may be position coordinates of the set position in the three-dimensional coordinate system in space.
  • the above target horizontal reference plane can be used as the XOZ plane, and the above position parameters usually include X coordinate and Y coordinate.
  • the first axis is usually the X axis, and the second axis is usually the Y axis.
  • the first positioning device may further include a guide rail structure.
  • the guide rail structure is fixed to the working robot; the guide rail structure drives the signal receiving unit to move in the horizontal direction, so that the signal receiving unit receives the first positioning signal.
  • a contact structure such as a wall wheel
  • the high-altitude robot has only one translational degree of freedom in the horizontal plane, that is, the above-mentioned first axis, and the guide rail structure can be Set along the direction of this parallel degree of freedom.
  • connection direction between the high-altitude robot and the high-rise building can be set as the Z direction, then the high-altitude robot only has translational freedom in the X-axis direction, and the guide rail structure can be set along the X-axis direction.
  • the above guide rail structure can be composed of a motor, a gear, a rack and a linear guide rail; wherein, the linear guide rail is fixed to the working robot along the first axis along the horizontal direction; the gear and the rack are arranged on the linear guide rail; the motor passes through The gear and the rack are connected to the signal receiving unit to drive the signal receiving unit to move along the first axis on the linear guide rail.
  • the signal receiving unit can determine the horizontal position of the working robot based on the position of the signal receiving unit on the guide rail structure and the position parameters. If the size of the working robot cannot be ignored, the position of the guide rail structure in the working robot is usually also needed in this process.
  • the above-mentioned target horizontal reference plane is usually the ground; or other horizontal planes, and the working robot works in the "high altitude" based on the horizontal plane.
  • the above-mentioned position of the working robot on the second axis is usually the distance between the working robot and the target horizontal reference plane.
  • the above-mentioned second positioning device may include a cross-axis structure and a ranging unit; wherein, the cross-axis structure is fixed to the working robot, and has a degree of freedom of rotation with the coordinate axis in the horizontal direction as the axis, that is, the second position can be changed.
  • the pitch angle and roll angle of the positioning device is connected to the cross-axis structure; the ranging unit rotates around the rotation axis of the cross-axis structure during the movement of the robot, so that the signal transmission direction of the ranging unit is aligned with the second axis Parallel; the ranging unit is used to transmit the second positioning signal to the target reference plane; and receive the reflection signal obtained by reflecting the second positioning signal from the target reference plane.
  • the ranging unit can determine the propagation time of the second positioning signal based on the transmission time of the second positioning signal and the receiving time of the reflected signal, that is, the difference between the receiving time and the transmitting time is the propagation time of the second positioning signal; when the ranging unit In the case of a laser range finder, since the propagation speed of light is known, the distance between the working robot and the target horizontal reference plane can be calculated based on the propagation time and propagation speed; the distance is determined as the position of the working robot on the second axis.
  • the system further includes a reflector, which is arranged on the target horizontal reference plane, and generates a reflection signal based on the second positioning signal emitted by the laser range finder.
  • the above-mentioned second positioning device may also include a counterweight module; wherein, the counterweight module is arranged on the cross shaft structure; the counterweight module is used to adjust the second positioning device during the movement of the working robot center of gravity, so that the signal transmission direction of the ranging unit is parallel to the second axis.
  • the working robot During the working process, the working robot often needs to measure the attitude, and the attitude measurement usually includes roll angle, pitch angle and yaw angle. These three angles can be measured by setting an inclination sensor in the above system; the inclination sensor is set on the working robot. Since the working robot is in contact with the surface of the target wall, the distance between the two is usually determined, so the yaw angle is 0; therefore, the inclination sensor is mainly used to measure the roll angle and pitch angle of the working robot.
  • An embodiment of the present application provides a positioning system for a working robot, the system includes a first positioning device in the first axis and a second positioning device in the second axis; both the first axis and the second axis are aligned with the target wall body parallel; the signal transmitting unit in the first positioning device is arranged on the target reference plane, and transmits the first positioning signal; when the signal receiving unit in the first positioning device receives the first positioning signal, based on the signal transmitting unit The position on the first axis determines the position of the working robot on the first axis; the second positioning device transmits a second positioning signal to the target reference plane, based on the reflected signal obtained by reflecting the second positioning signal on the target reference plane , to determine the position of the robot on the second axis. This method improves the positioning efficiency and positioning accuracy of the working robot.
  • the embodiment of the present application also provides another positioning system for a working robot, which is implemented on the basis of the system shown in FIG. 2 .
  • the system is described by taking the exterior wall grid joint robot as an example.
  • the coordinate schematic diagram of the three-dimensional coordinate system based on the external wall grid joint robot is shown in Figure 3.
  • the height direction is the Y-axis direction
  • the direction parallel to the wall and the ground is the X-axis direction
  • the vertical wall is the Z-axis direction.
  • the X-axis The positions of the Y-axis and the Z-axis can be determined by further selecting reference points.
  • the axis in the Y-axis direction passing through the center of gravity of the robot can be determined as the Y-axis
  • the projection point of the Y-axis on the ground can be set as the origin.
  • the axis of the pitch angle is the X axis
  • the axis of the roll angle is the Z axis
  • the axis of the yaw angle is the Y axis.
  • the spliced suspension built on the roof is large in size and heavy in weight. It can only be placed by the robot in the X-axis direction. initial positioning. After the suspension is built, place the laser emitting device 10x (equivalent to the above-mentioned "laser emitting module") at the designated position on the ground. The laser emitting device is required to be roughly located in the X direction of the robot, and the X axis of the laser emitting device relative to the corner of the wall is accurately measured. The direction position is the coordinate origin of the robot in the X-axis direction.
  • the laser receiving device 10y detects the light curtain emitted by the laser emitting device, as shown in Figure 4, due to the limited length of the laser receiving device, the deviation of the robot in the X direction may result
  • the measurement range of the device the system is equipped with a guide rail structure composed of a motor 10c, a gear 10d, a rack 10e, and a linear guide rail 10f, which can drive the receiving device to search for the light curtain (that is, the laser signal) in the X direction, increasing the laser receiving device. Measuring range.
  • the guide rail can measure the distance that the laser receiving device moves on the guide rail, so as to realize a certain distance compensation, thereby improving the measurement accuracy in the X direction.
  • the coordinates of the robot on the X-axis can be obtained; the robot is designed with a nozzle movement mechanism X-axis 30g, which can drive the printing nozzle 30h to move in the X-axis direction , to achieve X-axis coordinate adjustment.
  • the roof suspension is moved by a column distance, and the laser emitting device is correspondingly moved by a column distance.
  • the system is equipped with a second positioning device 20 (also called “height measuring device"), such as Figure 6 shows.
  • the laser rangefinder 20a is installed on the cross axis device 20b (equivalent to the above-mentioned "cross axis structure"), and the cross axis device can rotate in the X-axis and Z-axis directions.
  • the counterweight device 20c (equivalent to the above-mentioned “counterweight module”) is also arranged on the cross-axis device for adjusting the center of gravity. The center of gravity of the height measuring device can be adjusted to coincide with the Y axis.
  • the height measuring device rotates along the X-axis and Z-axis.
  • the laser rangefinder emits laser light along the Y-axis direction, which is reflected by the ground reflector to measure the Y-axis coordinates of the robot.
  • the robot builds a spliced suspension on the roof.
  • the suspension is connected to the first steel wire rope and the second steel wire rope.
  • the robot climbs or descends on the two steel wire ropes through the first hoist and the second hoist respectively, and can realize the Y-axis coordinate adjustment.
  • the robot is always in contact with the wall through the first wall wheel and the second wall wheel, and the distance L between the robot and the wall is kept fixed.
  • the Z-axis coordinate can be calculated as L ⁇ ; the motion mechanism Z-axis 30i is used to drive the nozzle to move to the printing (spraying) range to realize Z-axis coordinate adjustment.
  • the robot climbs or descends on the two wire ropes through the first hoist and the second hoist, detects the roll angle through the inclination sensor, and then controls the first hoist and the second hoist to adjust the roll angle.
  • the robot measures the pitch angle through the inclination sensor 50, and the pitch angle does not need to be adjusted.
  • the robot is always in contact with the wall through the first wall wheel and the second wall wheel, the distance between the robot and the wall is kept constant, and the yaw angle is fixed at 0.
  • X-axis, Y-axis, Z-axis coordinates, roll angle measurement and adjustment of the robot, and pitch angle and yaw angle measurement are performed to realize high-altitude positioning.
  • the working robot is a printing robot
  • the printing robot includes a motion mechanism, a printing nozzle, and a color sensor disposed on the printing nozzle.
  • the aforesaid performing the wall printing operation and/or the external wall painting operation by the operation robot includes: performing the construction of the wall grid joints by the operation robot, and performing the construction of the wall division joints by the operation robot
  • the method is, for example, a method for drawing wall divisions.
  • the method for the construction of wall grid joints by the working robot is a method for drawing wall grid joints. It can realize automatic drawing of wall division and joint, and realize automatic joint operation.
  • FIG. 7 is a three-dimensional schematic diagram of the print head device provided in this embodiment.
  • the print nozzle device includes a print nozzle 901, a distance sensor 902 and a color sensor; the distance sensor 902 is installed on the first side of the print nozzle 901; the color sensor is installed on the second side of the print nozzle 901; It is noted that the distance sensor and the color sensor can be arranged on the same side of the print head, that is, the first side and the second side refer to the same side of the print head.
  • color sensors 903a color sensor 903a
  • color sensor 903b color sensor 903c
  • one or more color sensors can be set in the print nozzle device according to actual needs, The position of the color sensor can also be flexibly set.
  • the printing nozzle 901 is used to spray paint to draw the target grid gap; specifically, the printing platform device can be moved under the drive of the motion mechanism. During the movement, the printing nozzle faces the target wall and can continuously spray paint, thereby drawing the target grid seam.
  • the distance sensor 902 is used to measure the distance parameter between the designated position of the first wall surface and the distance sensor; if the designated position is the drawing end point of the target grid seam, when the distance parameter indicates that the print head reaches the designated position, the print head sprays paint or stops The paint is sprayed; the distance sensor can specifically be an optical distance sensor, an infrared distance sensor, an ultrasonic distance sensor, etc.; in an implementation manner, the distance sensor can be a laser radar sensor.
  • the above designated position may be the top parapet of the first wall, the edge of the first wall, the bottom ground of the first wall, etc., which are iconic positions.
  • the designated position may be the starting point of the target grid slit, or the end point of the target grid slit.
  • the print nozzle starts to spray paint; when the specified position is the end point, when the print reaches the specified position, the print nozzle stops spraying paint.
  • the distance sensor can be used to control the print nozzle to draw the grid gap based on the specified position, and when the print nozzle reaches the specified position, stop printing or start printing. For example, on the first wall, draw the grid from bottom to top until it reaches the top parapet of the first wall. At this time, the print head device moves from bottom to top. During the movement, the distance sensor monitors the current Print the distance between the nozzle device and the top parapet, when the distance is less than the preset distance threshold, or when the distance is zero, control the print nozzle device to stop moving and stop spraying paint.
  • the present embodiment provides a method for drawing a wall grid seam, and the method is applied to a printing robot; the printing robot includes a motion mechanism, a printing nozzle, and a color sensor arranged on the printing nozzle; the above-mentioned printing nozzle
  • the device corresponds to the printing nozzle and the color sensor in the printing robot; as shown in Figure 8, the method includes the following steps:
  • Step S201 if the drawing starting point of the target grid seam to be drawn is the drawn grid seam, control the movement of the printing nozzle through the motion mechanism, and identify the drawn grid seam through the color sensor; when the color sensor recognizes the drawn grid seam , the print nozzle sprays paint to draw the target grid gap;
  • Step S202 if the drawing end point of the target grid seam is the drawn grid seam, control the movement of the printing nozzle through the motion mechanism, and the printing nozzle sprays paint during the moving process to draw the target grid seam; identify the drawn grid seam by the color sensor Grid gap; when the color sensor recognizes that the grid gap has been drawn, the print nozzle stops spraying paint, and the drawing of the target grid gap is completed.
  • the drawing endpoint of the target grid may also be the endpoint of the drawn grid.
  • the color sensor is used to identify the drawn grid; if the drawn grid is the drawing end point of the target grid, when the color sensor recognizes the drawn grid, the print head sprays paint or stops spraying coating.
  • the color sensor can be used to identify the specified color. During the movement of the print head device, it can recognize the color within the specified range on the wall. If the color of the drawn grid is recognized, it can be considered that the print head device has reached the target point. The position of the drawing end point of the grid, so as to control the starting point and end point of the drawing of the target grid.
  • the printing nozzle of the printing robot is provided with a color sensor, and the color sensor is used to identify the drawn grid seam; if the drawn grid seam is the drawing endpoint of the target grid seam, when the color sensor When it recognizes that a grid line has been drawn, the print head ejects paint or stops ejecting paint.
  • a color sensor is set in the printing nozzle device, and then the color sensor is used to identify the drawn grid seams, thereby controlling the relative position between the grid seams; this method can avoid discontinuous and dislocation of the wall surface grid seams. problem, improved the accuracy of wall painting.
  • automatic positioning through sensors reduces manual intervention and improves drawing efficiency.
  • the color sensor includes multiple; the top of the print head is provided with a first color sensor; the bottom of the print head is provided with a second color sensor.
  • 903a and 903b in Fig. 7 are the first color sensors, and Fig. 7 is provided with two first color sensors in total, when the print nozzle moves upwards, the position of the drawn grid seam can be identified by the first color sensor; Fig. 903c in 7 is the second color sensor.
  • multiple second color sensors can also be provided. When the printing nozzle moves downward, the position of the drawn grid can be identified by the second color sensor. In this manner, multiple color sensors are provided and located at different positions, which can improve the accuracy of grid seam recognition.
  • controlling the timing of spraying paint from the print head can be specifically implemented in the following manner.
  • the top of the print nozzle is provided with a top color sensor; the top color sensor is the above-mentioned first color sensor, and the bottom of the print nozzle is provided with a bottom color sensor; the bottom color sensor is the above-mentioned second color sensor; the top color sensor and the print nozzle
  • the distance is the first distance; the distance between the bottom color sensor and the printing nozzle is the second distance; it should be noted that the first distance and the second distance are distances along the moving direction of the printing nozzle.
  • Figure 9 is a side plan view of a print head assembly. Wherein, the length indicated by H1 is the first distance, and the length indicated by H2 is the second distance.
  • the print nozzle starts to spray paint; with the drawn grid As the starting point, when drawing the target grid slit downward, when the bottom color sensor recognizes the drawn grid slit, after the print nozzle moves a second distance, the print nozzle starts to spray paint.
  • the first distance between the top color sensor and the print nozzle is H1
  • the top color sensor recognizes the drawn grid
  • the drawn grid is located at the position of the top color sensor, and the print head does not reach the drawn grid
  • Spraying paint at this time will cause the target grid to exceed the drawn grid, causing the seam to fail. Therefore, after controlling the printing nozzle to move the first distance, the printing nozzle reaches the position of the drawn grid, and then sprays the paint.
  • the target grid and the drawn grid can achieve the correct seam, and no occurrence will occur.
  • the problem that the grid seam is drawn too long can improve the accuracy of the grid seam seam.
  • the print nozzle moves the second distance, and the print nozzle starts to spray paint. Since the first distance between the bottom color sensor and the print head is H2, when the bottom color sensor recognizes the drawn grid, the drawn grid is at the position of the bottom color sensor, and the print head does not reach the drawn grid, if Spraying paint at this time will cause the target grid to exceed the drawn grid, causing the seam to fail. Therefore, after controlling the printing nozzle to move the second distance, the printing nozzle reaches the position of the drawn grid, and then sprays the paint. At this time, the target grid and the drawn grid can realize the correct seam, and no occurrence will occur. The problem that the grid seam is drawn too long can improve the accuracy of the grid seam seam.
  • the print nozzle stops spraying paint;
  • the grid seam is the end point.
  • the print head stops spraying paint; because the top color sensor and the print head The first distance of the nozzle is H1.
  • the drawn grid is at the position of the top color sensor, and the print head has not reached the drawn grid. If this is the case, stop printing If the paint is sprayed out, the target grid seam will not be drawn to the drawn grid seam, that is, there will be a break between the target grid seam and the drawn grid seam, resulting in seam failure. Therefore, after controlling the printing nozzle to move the first distance, the printing nozzle reaches the position of the drawn grid, and then stops spraying paint. At this time, the target grid and the drawn grid can achieve the correct seam, and will not The problem of broken grid seam drawing occurs, and the accuracy of grid seam seams is improved.
  • the print nozzle stops spraying paint. Since the second distance between the bottom color sensor and the print head is H2, when the bottom color sensor recognizes the drawn grid, the drawn grid is at the position of the bottom color sensor, and the print head does not reach the drawn grid, if Just stop spraying paint at this moment, can cause target grid seam not drawn to have drawn grid seam, promptly break occurs between target grid seam and drawn grid seam, cause seam failure. Therefore, after controlling the printing nozzle to move the second distance, the printing nozzle reaches the position of the drawn grid seam, and then stops spraying paint. The problem of broken grid seam drawing occurs, and the accuracy of grid seam seams is improved.
  • the end point of the target grid may be an undrawn grid.
  • the color sensor and the distance sensor it is difficult for the color sensor and the distance sensor to determine the position of the undrawn grid.
  • the spraying of paint is stopped before the print head reaches the position of the undrawn grid slit.
  • the movement of the printing nozzle is controlled by the motion mechanism, and the printing nozzle sprays paint during the moving process to draw the target grid seam; Stop spraying paint at the middle position before the position of the grid.
  • the print nozzle can be controlled to stop spraying paint before the print nozzle reaches the undrawn grid seam by manual visual inspection;
  • the drawing length of the target grid seam can also be set in advance, and the drawing length is less than the target grid seam. The distance between the starting point and the undrawn grid.
  • the print head is controlled to stop spraying paint.
  • the target grid seam will reserve part of the undrawn grid seam.
  • the undrawn grid seam is drawn by the printing nozzle to obtain the drawn grid seam; the printing nozzle is controlled to move to the middle position, and when the target grid seam is recognized by the color sensor, the printing nozzle is controlled to spray paint , continue to draw the target grid; when the color sensor of the print nozzle recognizes that the grid has been drawn, the print nozzle stops spraying paint.
  • the color sensor can identify the position of the drawn grid seam, thereby accurately controlling the end position of the target grid seam, and realizing the accurate seam between the target grid seam and the drawn grid seam.
  • a distance sensor is also provided on the print nozzle; if the drawing starting point of the target grid seam to be drawn is the specified position on the first wall, the movement of the print nozzle is controlled by a motion mechanism, and the distance sensor is used to measure the first wall.
  • the print nozzle sprays paint during the movement, and the distance sensor measures the distance parameter between the specified position of the first wall and the distance sensor; when the distance parameter indicates that the print nozzle reaches the specified position, the print nozzle stops spraying. paint out.
  • the above printing head device further includes a rotating mechanism, which is arranged between the color sensor and the printing head; the rotating mechanism is used to adjust the orientation of the color sensor.
  • a rotating mechanism 904a is provided between the color sensor 903a and the printing nozzle
  • a rotating mechanism 904b is provided between the color sensor 903b and the printing nozzle; in Figure 7, the color sensor 903c is not provided with a rotating mechanism, in other ways
  • the color sensor arranged at the bottom of the print head can also be provided with a rotating mechanism.
  • the relative orientation of the color sensor and the printing nozzle is fixed, for example, the orientation clock of the color sensor 903c is the same as the orientation of the printing nozzle; for a color sensor provided with a rotating mechanism, the orientation of the printing nozzle can be Rotation variation, specifically, the maximum rotatable angle of the rotation mechanism along a specified direction is 90 degrees.
  • Figure 10 is used as an example, after the rotation mechanism 904a rotates 90 degrees clockwise, the angle between the direction of the color sensor 903a and the direction of the print head is 90 degrees; similarly, the rotation mechanism 904b can also rotate, after rotation, the direction of the color sensor 903b is also will change.
  • the recognition range of the color sensor can be widened.
  • the color sensor can also recognize and position it, which improves the positioning accuracy of the printing nozzle. Accuracy and applicability.
  • the top of the print head is provided with a first color sensor and the second color sensor; the bottom of the print head is provided with a third color sensor; a first rotation mechanism is provided between the print head and each color sensor ;In the initial state, the orientation of the first color sensor is the same as that of the printing nozzle; the motion mechanism is used to control the movement of the printing nozzle, the distance sensor is used to detect the positive corner edge of the first wall, and the printing nozzle is controlled to reach the positive corner edge; A rotating mechanism controls the first color sensor to face the first wall, identifies the drawn grid seam on the first wall surface through the first color sensor, and adjusts the height of the printing nozzle to be the same as the drawn grid seam through the distance sensor; Draw the grid seam as the starting point, and draw the target grid seam on the external corner wall.
  • the orientation of the print nozzle is opposite to the external corner wall, but to the first wall Parallel, if the direction of the color sensor is the same as that of the print head, it will be difficult for the color sensor to identify the drawn grids in the first wall. Based on this, the rotating mechanism at the top of the print head can be controlled to rotate so that the orientation of the first color sensor on the top of the print head is opposite to the first wall.
  • the first color sensor opposite to the first wall can identify the drawn grid seam on the first wall surface, so that the height of the printing nozzle can be determined, and then the printing nozzle can draw the target grid seam at this height, which can make the target
  • the starting point of the grid joint is accurately jointed with the drawn grid joint on the first wall surface, so as to realize the division joint seam of the external corner wall surface. This method can improve the accuracy of joints between the grid joints on the external corner wall surface and the first wall surface grid joints.
  • the second color sensor is located on the same longitudinal line as the print head; two first color sensors are arranged on the top of the print head, and the two first color sensors are symmetrically distributed on the left and right sides of the longitudinal line.
  • 903c is the second color sensor, the second color sensor is located at the bottom of the print head, 903c is located on the same longitudinal line as the print head, and 903a and 903b are the first color sensors, 903a and 903b are symmetrically distributed on the longitudinal line left and right sides.
  • the second color sensor can quickly identify the grid seams on the longitudinal line, and the two first color sensors can identify the grid seams on the left and right sides of the longitudinal line.
  • the position of the nozzle is deflected, and the position of the grid can also be identified, avoiding multiple adjustments of the printing nozzle.
  • multiple color sensors at different positions can realize precise positioning for the same grid seam, avoiding positioning errors caused by positioning of a single color sensor.
  • the print nozzle is provided with a second rotating mechanism; if the target grid seam is a vertical seam, the print nozzle is controlled to rotate to the first angle through the second rotation mechanism, and the print nozzle draws the target grid seam at the first angle; If the target grid seam is a horizontal seam, the print nozzle is controlled to rotate to the second angle by the second rotation mechanism, and the print nozzle draws the target grid seam at the second angle.
  • This embodiment also provides a printing robot, the printing robot includes a motion mechanism, a printing nozzle, and a color sensor arranged on the printing nozzle; the printing robot is used to implement the above-mentioned method for drawing the wall grid seam.
  • the kinematic mechanism includes a kinematic mechanism X-axis 906a and a kinematic mechanism Z-axis 906b, wherein the kinematic mechanism X-axis can control the lateral movement of the print nozzle device, and the kinematic mechanism Z-axis can control the distance between the print nozzle device and the wall .
  • the above-mentioned printing robot also includes a lifting device; the lifting device is arranged on the top of the first wall, and is used to control the movement mechanism and the print head device to move up and down along the first wall.
  • the lifting device may include a steel wire rope 907a, a steel wire rope 907b, a hoist 908a, a hoist 908b, a wall leaning wheel 909a, and a wall leaning wheel 909b.
  • the lifting device also includes a fixing mechanism positioned at the top of the first wall for pulling the wire rope.
  • a spliced suspension can be built on the top of the first wall. The spliced suspension is connected with steel wire ropes, and the printing robot climbs or descends on the two steel wire ropes through the hoist.
  • the above-mentioned printing nozzle device realizes the production of horizontal seams and vertical seams by printing, and can also be realized by spraying.
  • the printing nozzle can be specifically a spray gun.
  • the above-mentioned printing robot may also include a laser emitting device 910, a laser receiving device 911, an inclination sensor 912, a height measuring device 913, and the like.
  • the printing robot provided in this embodiment has the same technical effect as the above-mentioned method for drawing wall divisions.
  • the first wall is divided into the first column and the second column, and each column includes transverse seams and Vertical seam; the printing order is carried out according to the serial number in the figure, the intersection of the vertical seam and the horizontal seam between the areas in the same column needs to be lengthened, and the horizontal seam of adjacent columns needs to be lengthened.
  • the coordinates of the printing robot are defined as the Y axis in the height direction, the X axis in the direction parallel to the wall and the ground, and the Z axis in the vertical wall.
  • the printing robot can be controlled to move on the Y axis through the lifting device to realize vertical seam printing, and the X axis of the aforementioned nozzle movement mechanism drives the printing nozzle device to move along the X axis to realize horizontal seam printing.
  • the Z-axis of the nozzle moving mechanism replaces the printing nozzle device to move along the Z-axis to adjust the distance between the printing nozzle and the wall.
  • the printing direction can be from right to left or from left to right.
  • the horizontal seam at the starting point is identified by the color sensor, and the bottom-up or top-down spraying starts.
  • the vertical seam starts spraying from bottom to top at position 2, and when the color sensor recognizes the horizontal seam at the end point, the spraying stops at position 3.
  • the horizontal seam at the end point of the vertical seam when drawing the vertical seam, first draw part of the vertical seam, stop spraying at the middle position, and then continue to draw the horizontal seam at the end position. After the horizontal seam is drawn, Then continue to draw the vertical seam from the middle position until reaching the horizontal seam at the end. For example, identify the horizontal seam at position 1 by the color sensor, then start drawing from top to bottom, and stop drawing when it reaches the middle position, which is position 4. Continue to draw the horizontal seam at the bottom. After the horizontal seam at the bottom is drawn, use the color sensor to identify the position 4, and continue to draw from the position 4 from top to bottom until the color sensor recognizes the horizontal seam at the bottom, which is the position 5. Stop spraying.
  • the horizontal seam of the second column needs to be seamed with the horizontal seam of the first column.
  • the end point of the horizontal seam at the top of the first column is recognized by the color sensor, and the print head starts from the end point, from the left Right start spraying until you reach the end.
  • the color sensor is used to identify the end point of the horizontal seam at the bottom of the first row, and the print nozzle starts from the end point and sprays from left to right until it reaches the end point.
  • the horizontal seam at the starting point is identified by the color sensor, and the bottom-up or top-down spraying starts.
  • the vertical seam starts spraying from bottom to top at position 9, and stops spraying at position 10 after the color sensor recognizes the horizontal seam at the end point.
  • the horizontal seam at the end point of the vertical seam when drawing the vertical seam, first draw part of the vertical seam, stop spraying at the middle position, and then continue to draw the horizontal seam at the end position. After the horizontal seam is drawn, Then continue to draw the vertical seam from the middle position until reaching the horizontal seam at the end. For example, use the color sensor to identify the horizontal seam at position 7, then start drawing from top to bottom, and reach the middle position that is number position, stop drawing. Continue to draw the horizontal seam at the bottom. After the horizontal seam at the bottom is drawn, it will be identified by the color sensor No. position, from The number positions continue to be drawn from top to bottom until the color sensor recognizes the horizontal seam at the bottom, that is, position, stop spraying.
  • Cement mortar is usually used to fix the grid strips in the setting of the grid joints on the concrete surface of the wall, and the grid joints are used to reduce cracks. First set out the line for the positioning of the grid joints, put the grid strips in place, and then use cement mortar to fix the grid strips on both sides. After the strength of the cement mortar increases to the point where the grid strips can be firmly bonded, the concrete surface layer can be poured.
  • performing the wall printing operation and/or the external wall spray painting operation by the working robot includes: using the working robot to construct the wall grid joints, wherein the grid joints include horizontal joints and vertical joints.
  • the grid seam is the line to be printed on the outer wall
  • the horizontal peak is the horizontal line on the outer wall
  • the vertical seam is the vertical line on the outer wall. Therefore, the overlapping of horizontal seams and vertical seams is also the overlapping of horizontal lines and vertical lines.
  • the horizontal joints are required to be continuous and non-displaced at the joints of the adjacent external corner planes. In the related technology, the construction of this process is still manual construction, resulting in low seam accuracy when the horizontal joints are jointed.
  • using the working robot to construct the wall grid joints includes: using the working robot to perform horizontal joints.
  • a method of performing horizontal seam seaming by a working robot that is, a horizontal seam seaming method will be described.
  • FIG. 14 is a schematic structural diagram of the working robot provided in another embodiment of the present application.
  • Fig. 15 is a schematic diagram of the working robot working in the second plane provided by another embodiment of the present application.
  • the first plane is the working position of the main body of the working robot, and the first plane and the second plane are respectively perpendicular to the horizontal plane and the The first plane and the second plane are perpendicular to each other, wherein the working robot includes: a printing nozzle component 105 , a rotation axis 106 of the nozzle movement mechanism, a first coordinate axis 107 of the nozzle movement mechanism, and a second coordinate axis 108 of the nozzle movement mechanism.
  • Fig. 16 is a structural schematic diagram of the printing head components of the working robot provided by another embodiment of the present application.
  • the printing head components include: printing head 1051, color sensor 1052a, color sensor 1052b, color sensor 1052c and color sensor 1052d, laser radar 1053 and rotating Shaft 1054.
  • an embodiment of the horizontal seam seaming method in the embodiment of the present application includes:
  • the execution subject of the present application may be a horizontal seam seaming device, and may also be a working robot, which is not specifically limited here.
  • the working robot is taken as the execution subject as an example for illustration, wherein the working robot may include a grid seam robot, and the grid seam robot is used to carry out the grid joint of the building exterior wall (referring to the line characteristics of a high-rise exterior wall building) Fully automatic construction.
  • the working robot establishes coordinate axes according to the first plane, where the first coordinate axis is the horizontal axis of the first plane, the second coordinate axis is the horizontal axis of the second plane, and the third coordinate axis is perpendicular to the first plane.
  • the coordinate axis is the coordinate axis of the plane where the second coordinate axis intersects, and the first plane and the second plane are two mutually perpendicular planes corresponding to the male corner of the wall or the female corner of the wall.
  • the operating robot builds a spliced suspension on the roof, and the suspension is connected with a wire rope.
  • the operating robot climbs or descends on the wire rope through the hoist, which can realize the adjustment of the operating robot on the third coordinate axis of the preset coordinate axis.
  • the robot uses the steel wire rope, that is, the position adjustment structure to adjust the print nozzle to the first target position through the preset position adjustment member, wherein the first target position is the starting point of printing, and the working robot controls the print nozzle to be on the first plane. Carry out horizontal seam printing along the first coordinate axis of the preset plane coordinate system.
  • the working robot builds a spliced suspension on the roof. The suspension is connected with steel wire rope 101a and steel wire rope 101b.
  • the robot passes through the lifting device 102 and the hoist 103 climb or descend on the two steel wire ropes respectively.
  • the height measuring device 104 is used to measure the height of the hoist when the hoist is climbing or descending.
  • the moving distance can be controlled by measuring the height data, and the printing nozzle component 105 and the rotation axis of the nozzle movement mechanism 106 can realize the movement and rotation of the working robot on the first coordinate axis 107 of the extruder moving mechanism.
  • the corner type is identified to obtain the corresponding corner type, wherein the corner type is mainly divided into the positive corner type of the wall surface and the negative corner type of the wall surface Types, among them, the type of positive angle on the wall can be classified by the turning direction of the print head, and can be customized into counterclockwise positive angle and clockwise positive angle.
  • the preset position of the boundary is mainly set by the actual size of the print head, and the print head The actual size of the nozzle is within the range of 5 to 8 cm.
  • the laser radar on the printing nozzle device scans the first plane in real time.
  • the rotating shaft of the movement mechanism is rotated, the printing nozzle is adjusted to face the second plane, and the printing nozzle member is adjusted to a second target position, wherein the second target position is a seam printing point.
  • the preset length is set by the user or defaulted by the system. When set by the user, it can be determined according to the actual size of the second plane, which is not limited here.
  • the working robot uses the laser radar to measure the distance of the wall, cooperates with the movement of the nozzle movement mechanism, adjusts the print nozzle to the printable distance, and the nozzle movement mechanism continues to extend along the second coordinate axis, driving the print nozzle device to move, for seam Horizontal seam printing, specifically, please refer to Figure 15, the operating robot works along the first coordinate axis 107 of the nozzle movement mechanism in the second plane, and the operation robot can control the printing nozzle component 105 and the rotation axis 106 of the nozzle movement mechanism to perform seam printing , during seam printing, the printing nozzle component moves along the second coordinate axis 108 of the nozzle moving mechanism.
  • the working robot builds a spliced suspension on the roof, and the steel wire rope is connected to the suspension.
  • the working robot climbs or descends on the steel wire rope through the hoist, so that the working robot can move on the third coordinate axis of the preset coordinate axis.
  • Adjustment the working robot is constructed through the steel wire rope, that is, the position adjustment, and the print nozzle is adjusted to the first target position through the preset position adjustment member, which can increase the accuracy of the grid seam construction and avoid the division caused by human error. If there is any seam construction deviation, the working robot controls the printing head component to print on the first plane along the first coordinate axis of the preset plane coordinate system.
  • the working robot uses the laser radar to measure the wall distance, cooperates with the movement of the nozzle movement mechanism, adjusts the print nozzle to the printable distance, and the nozzle movement mechanism continues to extend along the second coordinate axis, driving the print nozzle device to move, and prints the seam with a horizontal seam , which can effectively improve the continuity and accuracy of horizontal seams.
  • the horizontal seam seaming method in another embodiment of the present application includes:
  • the operating robot controls the laser rangefinder to measure the height, and obtains the corresponding height to be adjusted; the operating robot adjusts the print head component to the Target height; the operating robot controls the inclination sensor to identify the inclination angle, determines the corresponding inclination angle value and performs leveling processing according to the inclination angle value, adjusts the printing nozzle component to the first target position, and controls the printing nozzle component along the plane coordinate system
  • the first coordinate axis is used for horizontal seam printing.
  • the working robot can measure the height of the working robot from the ground by controlling the laser rangefinder. After the height to be adjusted is obtained, the working robot determines the height to be adjusted according to the target height and the height to be adjusted, and lifts the robot to The seam height of the transverse seam and the inclination sensor feedback signal at the same time determine the inclination angle, and perform leveling processing according to the standard horizontal line.
  • the working robot adjusts the components by controlling the position, and controls the hoist to level the robot, so as to determine that the working robot is on the third coordinate axis coordinates, and determine the coordinates of the operating robot on the first coordinate axis through the laser rangefinder, and then the operating robot drives the printing nozzle device to move to the first target position through the movement of the nozzle moving mechanism on the first coordinate axis, and controls the
  • the print head component performs horizontal slit printing along the first coordinate axis.
  • the corner type identification is performed to obtain the corresponding corner type, wherein, the corner type is mainly divided into the positive corner type of the wall surface, and the wall surface corner type.
  • Types of negative corners the type of positive corners on the wall can be classified according to the turning direction of the print head. It can be customized into counterclockwise positive corners and clockwise positive corners.
  • the robot scans the plane according to the laser radar to determine Find out the corner direction of the adjacent plane, and then determine the turning direction of the print head, and obtain the corresponding corner type.
  • the operating robot analyzes the type of the wall corner, and when the type of the wall corner is the positive corner type of the wall surface, determines the first boundary position of the first plane and the switching direction of the first nozzle; when it is detected that the printing nozzle component has exceeded the first boundary position
  • the nozzle movement mechanism is used to control the printing nozzle component to move along the second coordinate axis of the plane coordinate system, and the rotation axis of the nozzle movement mechanism is controlled to rotate according to the first nozzle conversion direction; according to The preset printable distance corrects the position of the print head component, and controls the print head movement mechanism to adjust the print head component to the second target position.
  • the working robot analyzes the type of the corner to determine the first boundary position of the first plane and the switching direction of the first nozzle.
  • the first boundary position of the first plane refers to the distance between the first plane and the second plane.
  • the coordinate value of the first coordinate axis at the junction of the male and female corners is mainly used to calculate the distance of the printing nozzle component beyond the boundary position, and the operating robot determines the corresponding conversion direction of the first nozzle according to the type of the wall corner.
  • the nozzle moving mechanism is used to control the printing nozzle member to move along the second coordinate axis of the plane coordinate system, and the rotation axis of the nozzle moving mechanism is controlled to follow the first
  • the nozzle rotates in the direction of rotation; the robot corrects the position of the print nozzle component according to the preset printable distance, completes the operation of finding the horizontal seam at the male corner, and controls the nozzle movement mechanism to adjust the print nozzle component to the second target position.
  • the operating robot corrects the position of the printing nozzle member according to the preset printable distance
  • controlling the nozzle movement mechanism to adjust the printing nozzle member to the second target position may include: the working robot determines the printing nozzle member and the second target position through the laser radar. The distance to be adjusted is obtained from the distance of the plane; based on the preset printable distance and the distance to be adjusted, the robot determines the corresponding adjustment direction and adjustment distance, and controls the nozzle movement mechanism to adjust the position by adjusting the direction and adjustment distance. The spray head member is adjusted to the second target position.
  • the operating robot uses the laser radar to measure the distance between the print nozzle construction and the second plane, determines the corresponding distance to be adjusted, and determines the required adjustment direction and adjustment distance according to the preset printable distance, and through the adjustment direction and adjustment distance, The position correction is performed through the movement of the nozzle moving mechanism on the preset coordinate system, and the construction of the printing nozzle is adjusted to the second target position.
  • the operating robot determines the corresponding adjustment direction and adjustment distance based on the preset printable distance and the distance to be adjusted, and controls the nozzle movement mechanism to adjust the position by adjusting the direction and adjustment distance, and adjusts the printing nozzle component to the first position.
  • the second target position may include: the operating robot calculates the difference between the preset printable distance and the distance to be adjusted, and obtains the first adjustment direction and the first adjustment distance of the print nozzle component on the first coordinate axis of the plane coordinate system; According to the first adjustment direction and the first adjustment distance, the robot controls the nozzle movement mechanism to perform the first position correction, and adjusts the printing nozzle components to the candidate position; the working robot controls the nozzle movement mechanism to perform the second adjustment according to the second adjustment direction and the second adjustment distance.
  • the second position correction is to adjust the print head to the second target position, wherein the horizontal distance difference and the vertical distance difference between the candidate position and the second target position are both less than or equal to a preset distance threshold.
  • the operating robot calculates the difference between the preset printable distance and the distance to be adjusted, and obtains the first adjustment direction and the first adjustment distance of the printing nozzle component on the first coordinate axis of the plane coordinate system. Adjust the direction and the first adjustment distance, control the nozzle movement mechanism to correct the first position, and adjust the print nozzle component to the candidate position.
  • the operation robot Control the color sensor in the printing nozzle component to detect the transverse seam, determine the second adjustment direction and the second adjustment distance of the printing nozzle component on the third coordinate axis of the plane coordinate system, and the operating robot , control the nozzle movement mechanism to correct the second position, and adjust the print nozzle to the second target position, which can effectively improve the accuracy and continuity of the horizontal seam.
  • the print head component includes: print head, color sensor, color sensor, color sensor and color sensor, laser radar and rotation axis, wherein the color sensor is installed above and below the print head, and the laser radar is installed on the print head side.
  • the working robot controls the color sensor in the printing nozzle component to detect the transverse seam, and determining the second adjustment direction and the second adjustment distance of the printing nozzle component on the third coordinate axis of the plane coordinate system may also include: the working robot controls the color The sensor detects the boundary of the transverse seam on the first plane, and obtains the position information of the transverse seam boundary; the operating robot determines the second adjustment direction of the printing nozzle component on the third coordinate axis according to the position information of the transverse seam boundary and the position information of the printing nozzle component and a second adjustment distance.
  • the color sensor includes four different color sensors, and each color sensor has a rotating power under each color sensor, which can drive the color sensors to rotate respectively.
  • the working robot can detect the upper boundary of the transverse seam through the upper color sensor.
  • the color sensor below can detect the lower boundary of the transverse seam, and the robot performs boundary detection on the transverse seam of the first plane, specifically to determine the upper boundary of the transverse seam of the first plane and the lower boundary of the transverse seam , determine the coordinates of the upper boundary and the lower boundary in the third coordinate axis in the preset coordinate system, which can ensure the continuity of printing when the horizontal seam is seamed.
  • the wall corner type is a wall corner type
  • control the nozzle movement mechanism to adjust the print nozzle component to the second target position
  • the job robot determines the second boundary position of the first plane and the second nozzle conversion direction; when it is detected that the distance between the print nozzle component and the second boundary position is less than or equal to the second
  • the print nozzle component is controlled to move along the second coordinate axis of the plane coordinate system through the nozzle movement mechanism, and the rotation axis of the nozzle movement mechanism is controlled to rotate in accordance with the second nozzle conversion direction; according to the preset printable distance
  • the position of the printing head is corrected, and the moving mechanism of the printing head is controlled to adjust the printing head to the second target position.
  • the working robot analyzes the type of the corner to determine the second boundary position of the first plane and the switching direction of the second nozzle.
  • the second boundary position of the first plane refers to the distance between the first plane and the second plane.
  • the coordinate value on the first coordinate axis at the intersection of the inner corner is mainly used to calculate the distance between the printing nozzle component and the second boundary position, and the operating robot determines the corresponding second nozzle conversion direction according to the corner type.
  • the operating robot When it is detected that the distance between the printing nozzle member and the second boundary position is less than or equal to the preset distance of the second boundary, the printing nozzle moving mechanism is used to control the printing nozzle moving along the second coordinate axis of the plane coordinate system, and the rotation of the nozzle moving mechanism is controlled
  • the shaft rotates according to the direction of the second printhead conversion; the robot corrects the position of the printhead components according to the preset printable distance, completes the seam search operation of the male angle horizontal seam, and controls the printhead movement mechanism to adjust the printhead components to the second target Location.
  • step 505 is similar to that of step 403 above, and will not be repeated here.
  • the operating robot calculates the difference between the preset printable distance and the distance to be adjusted, and obtains the first adjustment direction and the first adjustment distance of the print nozzle component on the first coordinate axis of the plane coordinate system. According to the first adjustment direction and the first adjustment distance, the robot controls the nozzle movement mechanism to perform the first position correction, and adjusts the print head component to the candidate position.
  • the operating robot controls the color sensor in the print head component to detect the horizontal seam, and the operating robot detects the boundary of the horizontal seam on the first plane, specifically determining the upper boundary of the horizontal seam on the first plane and the lower boundary of the horizontal seam The determination is made to determine the coordinates of the upper boundary and the lower boundary on the third coordinate axis in the preset coordinate system, which can ensure the continuity of printing when the horizontal seam is jointed.
  • the work robot includes a transverse seam seaming device.
  • the horizontal seam seaming device in one embodiment of the present application includes:
  • the adjustment module 601 is configured to adjust the print head member to the first target position through the preset position adjustment member, and control the print head member to make transverse slits on the first plane along the first coordinate axis of the preset plane coordinate system Print;
  • the identification module 602 is configured to control the laser radar to identify the type of corner when the printing nozzle component moves to the preset position of the boundary of the first plane, obtain the corresponding corner type, and set the printing nozzle component according to the corner type adjusting to a second target position, wherein the first target position is at the same height as the second target position;
  • the printing module 603 is configured to control the print nozzle component to perform seam printing on the second plane, and to perform horizontal seam printing along the second coordinate axis of the plane coordinate system according to a preset length, wherein the first plane and The second planes are respectively perpendicular to a horizontal plane, the first plane and the second plane are perpendicular to each other, and the first coordinate axis and the second coordinate axis are perpendicular to each other.
  • the horizontal seam seaming device in another embodiment of the present application includes:
  • the adjustment module 601 is configured to adjust the print head member to the first target position through the preset position adjustment member, and control the print head member to make transverse slits on the first plane along the first coordinate axis of the preset plane coordinate system Print;
  • the identification module 602 is configured to control the laser radar to identify the type of corner when the printing nozzle component moves to the preset position of the boundary of the first plane, obtain the corresponding corner type, and set the printing nozzle component according to the corner type adjusting to a second target position, wherein the first target position is at the same height as the second target position;
  • the printing module 603 is configured to control the print nozzle component to perform seam printing on the second plane, and to perform horizontal seam printing along the second coordinate axis of the plane coordinate system according to a preset length, wherein the first plane and The second planes are respectively perpendicular to a horizontal plane, the first plane and the second plane are perpendicular to each other, and the first coordinate axis and the second coordinate axis are perpendicular to each other.
  • the adjustment module 601 is specifically used to: control the laser range finder to perform height measurement to obtain the corresponding height to be adjusted; according to the target height and the height to be adjusted, adjust the position along the coordinates of the plane through the position adjustment member
  • the third coordinate axis of the system adjusts the print nozzle component to the target height; controls the tilt angle sensor to identify the tilt angle, determines the corresponding tilt angle value and performs leveling processing according to the tilt angle value, and adjusts the print nozzle component to the first target position, and control the print head component to perform horizontal slit printing along the first coordinate axis of the plane coordinate system.
  • the identification module 602 specifically includes:
  • the scanning sub-module 6021 is configured to control the lidar to scan the plane when the printing head component moves to the preset position of the boundary of the first plane to obtain the corresponding wall corner type, wherein the wall corner type includes a wall surface External corner type and wall internal corner type;
  • the analysis sub-module 6022 is configured to analyze the type of the wall corner, and when the type of the wall corner is a male wall type, control the nozzle movement mechanism to adjust the printing nozzle component to the second target position;
  • the control sub-module 6023 is configured to control the nozzle movement mechanism to adjust the printing nozzle member to the second target position when the wall corner type is the wall corner type.
  • analysis submodule 6022 also includes:
  • Analyzing unit 6022 configured to analyze the wall corner type, and determine the first boundary position of the first plane and the first nozzle conversion direction when the wall corner type is a wall surface male corner type;
  • the moving unit 60222 is used to control the print head member along the plane coordinates through the print head movement mechanism when it is detected that the print head member has exceeded the first boundary position by a distance greater than or equal to the first boundary preset distance.
  • the second coordinate axis of the system is moved, and the rotation axis of the nozzle movement mechanism is controlled to rotate according to the first nozzle conversion direction;
  • the correction unit 60223 is configured to correct the position of the print head component according to the preset printable distance, and control the print head moving mechanism to adjust the print head component to the second target position.
  • control submodule 6023 is specifically configured to: determine the second boundary position of the first plane and the second nozzle switching direction when the wall corner type is a wall corner type;
  • the print head movement mechanism controls the movement of the print head component along the second coordinate axis of the plane coordinate system, and controls the The rotation axis of the nozzle moving mechanism rotates according to the second nozzle switching direction; the position of the printing nozzle member is corrected according to the preset printable distance, and the nozzle moving mechanism is controlled to adjust the printing nozzle member to the second target position .
  • correction unit 60223 specifically includes:
  • the determination sub-unit 602231 is used to determine the distance between the print nozzle member and the second plane by laser radar to obtain the distance to be adjusted;
  • the control subunit 602232 is used to determine the corresponding adjustment direction and adjustment distance based on the preset printable distance and the distance to be adjusted, and control the position of the nozzle movement mechanism through the adjustment direction and the adjustment distance Adjusting, adjusting the print head member to a second target position.
  • control subunit 602232 is specifically configured to: calculate the difference between the preset printable distance and the distance to be adjusted, to obtain the first coordinates of the print head component in the plane coordinate system A first adjustment direction and a first adjustment distance on the axis; according to the first adjustment direction and the first adjustment distance, the nozzle movement mechanism is controlled to perform a first position correction, and the print nozzle member is adjusted to a candidate position ; Controlling the color sensor in the printing nozzle component to detect the transverse seam, determining the second adjustment direction and the second adjustment distance of the printing nozzle component on the third coordinate axis of the plane coordinate system; according to the second adjustment direction and the second adjustment distance, controlling the nozzle movement mechanism to perform a second position correction, and adjusting the print nozzle to a second target position, wherein the horizontal distance difference between the candidate position and the second target position and the vertical distance difference are less than or equal to the preset distance threshold.
  • FIG. 21 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the computer device 800 may have relatively large differences due to different configurations or performances, and may include one or more than one processor (Central Processing Units, CPU) 810 (eg, one or more processors) and memory 820, and one or more storage media 830 (eg, one or more mass storage devices) for storing application programs 833 or data 832 .
  • the memory 820 and the storage medium 830 may be temporary storage or persistent storage.
  • the program stored in the storage medium 830 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the computer device 800 .
  • the processor 810 may be configured to communicate with the storage medium 830 , and execute a series of instruction operations in the storage medium 830 on the computer device 800 .
  • Computer device 800 can also include one or more power supplies 840, one or more wired or wireless network interfaces 850, one or more input and output interfaces 860, and/or, one or more operating systems 831, such as Windows Serve, Mac OS X, Unix, Linux, FreeBSD, etc.
  • operating systems 831 such as Windows Serve, Mac OS X, Unix, Linux, FreeBSD, etc.
  • An embodiment of the present application provides a computer device.
  • the computer device includes a memory and a processor.
  • Computer-readable instructions are stored in the memory.
  • the processor executes the method described in any of the above-mentioned embodiments.
  • a control method for a work robot system is a control method for a work robot system.
  • the embodiment of the present application also provides a computer device, the computer device includes a memory and a processor, and computer-readable instructions are stored in the memory, and when the computer-readable instructions are executed by the processor, the processor executes any of the above-mentioned embodiments.
  • the steps of the horizontal seam seaming method are described in detail below.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium.
  • the computer-readable storage medium may also be a volatile computer-readable storage medium. Instructions are stored in the computer-readable storage medium, and when the instructions are run on the computer, the computer is made to execute the control method of the working robot system in any one of the above embodiments.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be a non-volatile computer-readable storage medium.
  • the computer-readable storage medium may also be a volatile computer-readable storage medium. Instructions are stored in the computer-readable storage medium, and when the instructions are run on the computer, the computer is made to execute the steps of the horizontal seam seaming method in any of the above embodiments.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种作业机器人系统及其控制方法、计算机设备及存储介质,作业机器人系统包括作业机器人(2)以及定位系统(1),控制方法包括:通过定位系统(1)对作业机器人(2)进行定位;以及通过作业机器人(2)墙面打印作业和/或外墙喷绘作业。根据作业机器人(2)的作业机器人系统的控制方法,通过定位系统(1)对作业机器人(2)进行定位,提高了作业机器人(2)的定位效率及定位准确度。

Description

作业机器人系统及其控制方法、计算机设备及存储介质
相关申请的交叉引用
本申请要求2022年3月4日提交的、申请号为202210206889.3、申请名称为“高空作业机器人的定位系统及主系统”的中国专利申请的优先权,要求2022年3月4日提交的、申请号为202210207252.6、申请名称为“墙体分格缝的绘制方法和打印机器人”的中国专利申请的优先权,以及要求2022年3月4日提交的、申请号为202210206891.0、申请名称为“横缝接缝方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及施工作业机器人技术领域,具体而言,涉及一种作业机器人系统及其控制方法、计算机设备及存储介质。
背景技术
在工业生产和日常生活中,具有很多需要高空作业的场景。为保障工人的安全,通常采用作业机器人进行高空作业。例如,作业机器人可以对建筑物的外墙进行墙面打印、外墙喷绘等作业。相关技术中,通常采用人工的方式对正在高空作业的机器人进行定位,然而这种定位方式准确性和效率均较低。
发明内容
本申请提供一种作业机器人系统及其控制方法、计算机设备及存储介质,以提高作业机器人的定位效率及定位准确度。
第一方面,本申请实施例提供一种作业机器人系统的控制方法,所述作业机器人系统包括作业机器人以及定位系统,所述控制方法包括:通过 所述定位系统对所述作业机器人进行定位;以及通过所述作业机器人进行墙面打印作业和/或外墙喷绘作业。
第二方面,本申请实施例提供一种作业机器人系统,包括:作业机器人,用于进行墙面打印作业和/或外墙喷绘作业;以及定位系统,用于对所述作业机器人进行定位。
第三方面,本申请实施例提供一种计算机设备,所述计算机设备包括:存储器和至少一个处理器,所述存储器中存储有指令;所述至少一个处理器调用所述存储器中的所述指令,以使得所述计算机设备执行根据本申请第一方面的前述任一实施方式的作业机器人系统的控制方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,其中,所述指令被处理器执行时实现根据本申请第一方面的前述任一实施方式的作业机器人系统的控制方法。
根据本申请实施例的作业机器人系统的控制方法,通过所述定位系统对所述作业机器人进行定位,提高了作业机器人的定位效率及定位准确度。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种作业机器人系统的结构示意图;
图2为本申请实施例提供的一种用于作业机器人的定位系统的结构示意图;
图3为本申请实施例提供的一种外墙分格缝机器人的三维坐标系的坐标示意图;
图4为本申请实施例提供的另一种用于作业机器人的定位系统的结构示意图;
图5为本申请实施例提供的一种导轨结构的结构示意图;
图6为本申请实施例提供的一种第二定位装置的结构示意图;
图7为本申请实施例提供的一种打印喷头装置的三维立体示意图;
图8为本申请实施例提供的一种墙体分格缝的绘制方法的流程图;
图9为本申请实施例提供的一种打印喷头装置的侧视平面图;
图10为本申请实施例提供的另一种打印喷头装置的三维立体示意图;
图11为本申请实施例提供的一种阳角墙面接缝时打印喷头的位置示意图;
图12为本申请实施例提供的一种打印机器人的三维立体示意图;
图13为本申请实施例提供的一种打印机器人绘制接缝的任务示意图;
图14为本申请又一实施例中作业机器人的结构示意图;
图15为本申请又一实施例中作业机器人在第二平面内作业的示意图;
图16为本申请又一实施例中作业机器人的打印喷头构件结构示意图;
图17为本申请一个实施例中横缝接缝方法的流程示意图;
图18为本申请又一实施例中横缝接缝方法的流程示意图;
图19为本申请一个实施例中横缝接缝装置的结构示意图;
图20为本申请又一实施例中横缝接缝装置的结构示意图;
图21为本申请实施例中计算机设备的一个实施例示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容 以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前,外墙分格缝机器人为作业机器人的一种,主要用于对建筑外墙分格缝(指高层外墙建筑的线条特征)进行全自动施工。此外,作业机器人还包括外墙喷涂机器人、外墙面清洗机器人、高楼玻璃清洗作业机器人等。然而作业机器人在高空中的正确位姿通常采用人工的方式确定,该方式效率较低。
基于此,本申请实施例提供了一种作业机器人系统的控制方法,适用于各种高空作业的机器人的定位场景。
本申请实施例还提供了一种作业机器人系统,如图1所示,该作业机器人系统包括作业机器人2以及定位系统1。作业机器人2用于进行墙面打印作业和/或外墙喷绘作业。例如,作业机器人2用于进行墙体分格缝的施工。定位系统1用于对作业机器人2进行定位。
本申请实施例还提供了一种作业机器人系统的控制方法,作业机器人系统包括作业机器人以及定位系统。该控制方法包括:通过所述定位系统对所述作业机器人进行定位;以及通过所述作业机器人进行墙面打印作业和/或外墙喷绘作业。
在一些实施例中,作业机器人能够进行墙面打印作业,例如墙面打印作业包括墙体分格缝的施工,其中,分格缝指建筑物外墙的线条特征,在墙面打印作业中,分格缝即外墙待打印线条。在其它一些实施例中,作业机器人能够进行外墙喷绘作业,或者在一些实施例中,作业机器人能够墙面打印作业以及外墙喷绘作业。
在一些实施例中,定位系统包括第一轴向的第一定位装置及第二轴向的第二定位装置,第一轴向与第二轴向相互垂直,第一轴向和第二轴向均与目标墙体平行,第一定位装置包括信号发射单元和信号接收单元,信号 接收单元设置于作业机器人,第二定位装置设置于作业机器人,通过定位系统对作业机器人进行定位包括:通过第一定位装置中的信号发射单元发射第一定位信号,当信号接收单元接收到第一定位信号时,基于信号发射单元在第一轴向上的位置,确定作业机器人在第一轴向上的位置;通过第二定位装置向目标参考平面发射第二定位信号,基于目标参考平面反射第二定位信号得到的反射信号,确定作业机器人在第二轴向上的位置。
如图2所示,本申请实施例提供了一种用于作业机器人的定位系统,该系统包括第一轴向的第一定位装置10及第二轴向的第二定位装置20;第一轴向与第二轴向相互垂直,第一轴向和第二轴向均与目标墙体40平行。其中,第一定位装置包括信号发射单元10a和信号接收单元10b,信号发射单元10a可以设置于目标参考水平面60上,也可以设置与其他水平面,图2中以设置与目标参考水平面为例,信号接收单元10b设置于作业机器人30。第二定位装置20设置于作业机器人30。
在该系统的工作过程中,信号发射单元发射第一定位信号;当信号接收单元接收到第一定位信号时,基于信号发射单元在第一轴向上的位置,确定作业机器人在第一轴向上的位置;第二定位装置向目标参考平面发射第二定位信号,基于目标参考平面反射第二定位信号得到的反射信号,确定作业机器人在第二轴向上的位置。
由于激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,因此可以采用激光发射模块作为信号发射单元,采用激光接收装置作为信号接收单元。其中,激光发射模块设置于目标水平参考平面的设定位置;该设定位置处于第一轴向及第二轴向构成的平面上;该设定位置与目标墙面的距离和激光接收装置与目标墙面的距离相等。
上述设定位置通常为人为确定的,可以将作业机器人需要到达的在第一轴向的目标位置在该目标水平参考平面的投射点作为设定位置,然后调整作业机器人的作业位置,从而在激光接收模块接收到激光信号(即上述第一定位信号)时,确定作业机器人到达了第一轴向的目标位置。此外,还可以估计作业机器人在第一轴向的位置,将激光发射模块设置于估计得 到的作业机器人在第一轴向的位置在该目标水平参考平面的投射点,然后在目标水平参考平面调整激光发射模块的位置,以使得激光接收模块接收到激光发射模块发射的激光信号,并基于信号接收单元在导轨结构上的移动距离、导轨结构与作业机器人在第一轴向的相对位置以及信号发射单元在第一轴向上的位置(即上述设定位置),确定作业机器人在所述第一轴向上的位置,其中导轨结构带动信号接收单元移动,可以实现一定的测量距离补偿。
为了便于对位置进行描述,可以建立空间三维坐标系,上述位置参数可以为设定位置在空间三维坐标系中的位置坐标。通常可以将上述目标水平参考平面作为XOZ平面,上述位置参数通常包含X坐标及Y坐标。第一轴向通常为X轴,第二轴向通常为Y轴。
为了扩大信号接收单元的接收范围,上述第一定位装置还可以包括导轨结构。该导轨结构固定于作业机器人;导轨结构带动信号接收单元在水平方向运动,以使得信号接收单元接收第一定位信号。当高空机器人与目标墙体的表面接触,二者之间的距离通过接触结构,如靠墙轮固定时,高空机器人在水平面中仅有一个平移自由度,即上述第一轴向,导轨结构可以沿着该平行自由度的方向设置。例如,可以将高空机器人与高层建筑物的连线方向设置为Z方向,则高空机器人仅在X轴方向具有平移自由度,导轨结构可以沿着X轴方向设置。
在具体实现过程中,上述导轨结构可以由电机、齿轮、齿条及直线导轨构成;其中,直线导轨沿水平方向沿第一轴向固定于作业机器人;齿轮及齿条设置于直线导轨;电机通过齿轮以及齿条与信号接收单元连接,带动信号接收单元在直线导轨上沿第一轴向运动,信号接收单元可以基于信号接收单元在导轨结构的位置以及位置参数确定作业机器人的水平位置。如果将作业机器人的尺寸不能忽略时,该过程中通常也需要用到导轨结构在作业机器人中的位置。
上述目标水平参考平面通常为地面;或者为其他水平面,作业机器人在以该水平面为基准的“高空”进行作业。上述作业机器人在第二轴向上的位置通常为作业机器人与目标水平参考平面之间的距离。
在具体实现过程中,上述第二定位装置可以包括十字轴结构及测距单元;其中,十字轴结构固定于作业机器人,具有以水平方向的坐标轴为轴的旋转自由度,即可以改变第二定位装置的俯仰角及横滚角;测距单元与十字轴结构连接;测距单元在作业机器人运动过程中围绕十字轴结构的转轴转动,以使得测距单元的信号发射方向与第二轴向平行;测距单元用于向目标参考平面发射第二定位信号;接收目标参考平面反射第二定位信号得到的反射信号。
测距单元可以基于第二定位信号的发射时间及反射信号的接收时间,确定第二定位信号的传播时间,即接收时间与发射时间之差即为第二定位信号的传播时间;当测距单元为激光测距仪时,由于光的传播速度已知,进一步可以基于传播时间及传播速度,计算作业机器人与目标水平参考平面的距离;将距离确定为作业机器人在第二轴向上的位置。
为了反射激光测距仪发射的第二定位信号,该系统还包括反光板,该反光板设置于目标水平参考平面,基于激光测距仪发射的第二定位信号生成反射信号。
为确保测距单元的信号发射方向,上述第二定位装置还可以包括配重模块;其中,配重模块设置于十字轴结构;配重模块用于在作业机器人运动过程中,调整第二定位装置的重心,以使得测距单元的信号发射方向与所述第二轴向平行。
作业机器人在作业过程中,常常还需要对姿态进行测量,姿态测量通常包括横滚角、俯仰角及偏航角。可以通过在上述系统中设置倾角传感器来测量这三种角度;倾角传感器设置于作业机器人。由于作业机器人与目标墙体的表面接触,二者之间的距离通常是确定的,从而偏航角为0;因此,倾角传感器主要用于测量作业机器人的横滚角及俯仰角。
本申请实施例提供了一种作业机器人的定位系统,该系统包括第一轴向的第一定位装置及第二轴向的第二定位装置;第一轴向和第二轴向均与目标墙体平行;第一定位装置中的信号发射单元设置于目标参考平面上,并发射第一定位信号;当第一定位装置中的信号接收单元接收到所述第一定位信号时,基于信号发射单元在第一轴向上的位置,确定作业机器人在 所述第一轴向上的位置;第二定位装置向目标参考平面发射第二定位信号,基于目标参考平面反射第二定位信号得到的反射信号,确定作业机器人在第二轴向上的位置。该方式提高了作业机器人的定位效率及定位准确度。
本申请实施例还提供了另一种作业机器人的定位系统,该系统在图2所示的系统基础上实现。以作业机器人中的外墙分格缝机器人为例对该系统进行说明。
基于外墙分格缝机器人的三维坐标系的坐标示意图如图3所示,高度方向为Y轴方向,与墙面和地面平行方向为X轴方向,垂直墙面为Z轴方向,X轴、Y轴及Z轴的位置可以进一步选取参考点确定,例如,可以将通过该机器人的重心的Y轴方向的轴线确定为Y轴,并将Y轴在地面的投射点设置为原点。俯仰角的轴线为X轴,横滚角的轴线为Z轴,偏航角的轴线为Y轴。在楼顶架设该机器人的高空定位系统包括以下步骤:
一、X轴坐标测量与调整
在楼顶搭建拼接式悬架,悬架上连接第一钢丝绳30a、第二钢丝绳30b,机器人通过第一靠墙轮30c及第二靠墙轮30d与目标墙体40的外墙面接触,通过第一提升机30e及第二提升机30f沿第一钢丝绳、第二钢丝绳上升或下降,楼顶搭建的拼接式悬架体积大、重量重,由人工摆放,只能实现机器人在X轴方向的初定位。悬架搭建完成后,在地面指定位置放置激光发射装置10x(相当于上述“激光发射模块”),要求激光发射装置大致位于机器人X方向,并精确测量激光发射装置相对墙面边角的X轴方向位置,在作为机器人在X轴方向的坐标原点。
激光接收装置10y(相当于上述“激光接收模块”)检测激光发射装置所发射的光幕,如图4所示,由于激光接收装置长度有限,机器人在X方向的偏移,可能会导致超出接收装置测量范围,该系统设置了电机10c、齿轮10d、齿条10e、直线导轨10f组成的导轨结构,可以驱动接收装置在X方向进行寻找光幕(即激光信号),加大了激光接收装置的测量范围。其中,导轨可以测量激光接收装置在导轨上移动的距离,从而实现 一定的距离补偿,从而提高X方向的测量精度。如图5所示,结合激光发射装置的坐标、激光接收装置测量的坐标,可以获得机器人在X轴的坐标;机器人上设计有喷头运动机构X轴30g,可以带动打印喷头30h在X轴方向运动,实现X轴坐标调整。
当该列区域施工完成后,将楼顶悬架移动一列距离,并将激光发射装置对应移动一列距离。
二、Y轴坐标测量与调整
(1)Y轴坐标测量
机器人俯仰角、横滚角不为0时,机器人所在Y轴坐标难以直接测得,为解决该问题,该系统设置了一种第二定位装置20(也称为“测高装置”),如图6所示。将激光测距仪20a安装在十字轴装置20b(相当于上述“十字轴结构”)上,十字轴装置可以在X轴、Z轴方向旋转。配重装置20c(相当于上述“配重模块”)也设置于十字轴装置上,用于调整重心,可以把测高装置的重心调整至与Y轴重合,在机器人俯仰角、横滚角变化时,在重力作用下,测高装置随动沿X轴、Z轴旋转,稳定后激光测距仪沿Y轴方向发射激光,经地面反光板反射,可以测量机器人Y轴坐标。
(2)Y轴坐标调整
机器人在楼顶搭建拼接式悬架,悬架上连接第一钢丝绳、第二钢丝绳,机器人通过第一提升机、第二提升机分别在两根钢丝绳爬升或下降,可以实现Y轴坐标调整。
三、Z轴坐标测量与调整
机器人通过第一靠墙轮、第二靠墙轮与墙面始终接触,机器人与墙面距离L保持固定,结合测量的俯仰角α,可以计算出Z轴坐标为L×α;运动机构Z轴30i用于带动喷头运动至打印(喷涂)范围内,实现Z轴坐标调整。
四、横滚角测量与调整
机器人通过第一提升机、第二提升机分别在两根钢丝绳爬升或下降,通过倾角传感器的检测横滚角,再分别控制第一提升机、第二提升机进行调整,实现横滚角调整。
五、俯仰角测量
机器人通过倾角传感器50测量俯仰角,俯仰角不需调整。
六、偏航角测量
机器人通过第一靠墙轮、第二靠墙轮与墙面始终接触,机器人与墙面距离保持固定,偏航角固定为0。
通过上述系统对机器人进行X轴、Y轴、Z轴坐标、横滚角测量与调整,并进行俯仰角、偏航角测量,从而实现高空定位。
在一些实施例中,作业机器人为打印机器人,该打印机器人包括运动机构、打印喷头、以及设置在所述打印喷头上的颜色传感器。在一些实施例中,前述的通过作业机器人进行墙面打印作业和/或外墙喷绘作业包括:通过作业机器人进行墙体分格缝的施工,通过所述作业机器人进行墙体分格缝的施工的方法例如是一种墙体分格缝的绘制方法。
考虑到人工绘制分格缝易导致分格缝不连续、发生错位等问题,本申请实施例提供的作业机器人进行墙体分格缝的施工的方法即一种墙体分格缝的绘制方法,能够实现自动绘制墙面分格缝,并实现自动接缝作业。
为便于对本实施例进行理解,首先对本申请实施例所公开的打印喷头装置进行详细介绍,图7为本实施例提供的打印喷头装置的三维立体示意图。如图7所示,该打印喷头装置包括打印喷头901、距离传感器902和颜色传感器;距离传感器902安装在打印喷头901的第一侧部;颜色传感器安装在打印喷头901的第二侧部;需要说明的是,距离传感器和颜色传感器可以设置在打印喷头的同一侧,即,所述第一侧部和第二侧部指代的是打印喷头的同一个侧部。
在图7中,以三个颜色传感器为例进行说明,分别为颜色传感器903a、颜色传感器903b和颜色传感器903c;在实际实现时,打印喷头装 置中可以根据实际需求设置一个或多个颜色传感器,颜色传感器的位置也可以灵活设置。
其中,打印喷头901用于喷出涂料,以绘制目标分格缝;具体的,打印平台装置可以在运动机构的带动下进行移动,在移动过程中,打印喷头朝向目标墙体,可以持续喷出涂料,从而绘制目标分格缝。
距离传感器902用于测量第一墙面的指定位置与距离传感器的距离参数;如果指定位置为目标分格缝的绘制端点,当距离参数指示打印喷头到达指定位置时,打印喷头喷出涂料或停止喷出涂料;距离传感器具体可以为光学距离传感器、红外距离传感器、超声波距离传感器等多种;一种实现方式中,距离传感器可以为激光雷达传感器。上述指定位置可以为第一墙面的顶部女儿墙,第一墙面的墙面边缘、第一墙面的底部地面等具有标志性的位置。该指定位置可以为目标分格缝的起点,也可以为目标分格缝的终点。当指定位置为起点,打印喷头到达该指定位置时,打印喷头开始喷出涂料;当指定位置为终点,打印碰到到达该指定位置时,打印喷头停止喷出涂料。通过该距离传感器可以控制打印喷头以指定位置为基准绘制分格缝,当打印喷头到达指定位置时,停止打印,或者开始打印。例如,在第一墙面上自下而上绘制分格缝,直至到达第一墙面的顶部女儿墙,此时,打印喷头装置自下而上移动,在移动过程中,距离传感器实时监测当前打印喷头装置与顶部女儿墙的距离,当该距离小于预设的距离阈值时,或者距离为零时,控制打印喷头装置停止移动并且停止喷出涂料。
基于上述打印喷头装置,本实施例提供一种墙体分格缝的绘制方法,该方法应用于打印机器人;打印机器人包括运动机构、打印喷头、以及设置在打印喷头上的颜色传感器;上述打印喷头装置,对应的是打印机器人中的打印喷头、颜色传感器;如图8所示,该方法包括如下步骤:
步骤S201,如果待绘制的目标分格缝的绘制起点为已绘制分格缝,通过运动机构控制打印喷头移动,通过颜色传感器识别已绘制分格缝;当颜色传感器识别到已绘制分格缝时,打印喷头喷出涂料,以绘制目标分格缝;
步骤S202,如果目标分格缝的绘制终点为已绘制分格缝,通过运动机构控制打印喷头移动,打印喷头在移动过程中喷出涂料,以绘制目标分格缝;通过颜色传感器识别已绘制分格缝;当颜色传感器识别到已绘制分格缝时,打印喷头停止喷出涂料,目标分格缝绘制完成。
目标分格缝的绘制端点除了顶部女儿墙、墙面边缘以及墙面的底部地面以外,还可能以已绘制分格缝为端点。此时,颜色传感器用于识别已绘制分格缝;如果已绘制分格缝为目标分格缝的绘制端点,当颜色传感器识别到已绘制分格缝时,打印喷头喷出涂料或停止喷出涂料。颜色传感器可以用于识别指定的颜色,打印喷头装置在移动过程中,可以识别墙面上指定范围内的颜色,如果识别到已绘制分格缝的颜色,则可以认为打印喷头装置到达了目标分格缝的绘制端点位置,从而控制目标分格缝的绘制的起点和终点。
上述墙体分格缝的绘制方法,打印机器人的打印喷头上设置有颜色传感器,颜色传感器用于识别已绘制分格缝;如果已绘制分格缝为目标分格缝的绘制端点,当颜色传感器识别到已绘制分格缝时,打印喷头喷出涂料或停止喷出涂料。该方式中,打印喷头装置中设置了颜色传感器,进而通过颜色传感器识别已绘制分格缝,从而控制分格缝之间的相对位置;该方式可以避免墙面分格缝出现不连续、错位的问题,提高了墙面绘制的准确性。同时,通过传感器自动定位,减少了人工干预,提高了绘制效率。
继续参考图7,一种具体的实现方式中,颜色传感器包括多个;打印喷头的顶部设置有第一颜色传感器;打印喷头的底部设置有第二颜色传感器。其中,图7中的903a和903b为第一颜色传感器,图7中共设置有两个第一颜色传感器,当打印喷头向上移动时,可以通过第一颜色传感器识别已绘制分格缝的位置;图7中的903c为第二颜色传感器,其他方式中,第二颜色传感器也可以设置多个,当打印喷头向下移动时,可以通过第二颜色传感器识别已绘制分格缝的位置。该方式中,颜色传感器设置有多个,且位于不同位置,可以提高分格缝识别的准确性。
基于上述多个颜色传感器,控制打印喷头喷出涂料的时机具体可以通过下述方式实现。打印喷头的顶部和设置有顶部颜色传感器;该顶部颜色 传感器即上述第一颜色传感器,打印喷头的底部设置有底部颜色传感器;该底部颜色传感器即上述第二颜色传感器;顶部颜色传感器与打印喷头的距离为第一距离;底部颜色传感器与打印喷头的距离为第二距离;需要说明的是,第一距离和第二距离为沿着打印喷头的移动方向上的距离。图9为打印喷头装置的侧视平面图。其中,H1指示的长度为第一距离,H2指示的长度为第二距离。
以已绘制分格缝为起点,向上绘制目标分格缝时,当顶部颜色传感器识别到已绘制分格缝,打印喷头移动第一距离后,打印喷头开始喷出涂料;以已绘制分格缝为起点,向下绘制目标分格缝时,当底部颜色传感器识别到已绘制分格缝,打印喷头移动第二距离后,打印喷头开始喷出涂料。
由于顶部颜色传感器与打印喷头的第一距离为H1,当顶部颜色传感器识别到已绘制分格缝时,已绘制分格缝位于顶部颜色传感器位置,打印喷头并未到达已绘制分格缝,如果此时就开始喷出涂料,则会导致目标分格缝超出已绘制分格缝,导致接缝失败。因此,控制打印喷头移动第一距离后,打印喷头到达已绘制分格缝的位置,然后再喷出涂料,此时,目标分格缝与已绘制分格缝可以实现正确接缝,不会发生分格缝绘制过长的问题,提高分格缝接缝的准确率。
同理,以已绘制分格缝为起点,向下绘制目标分格缝时,当底部颜色传感器识别到已绘制分格缝,打印喷头移动第二距离后,打印喷头开始喷出涂料。由于底部颜色传感器与打印喷头的第一距离为H2,当底部颜色传感器识别到已绘制分格缝时,已绘制分格缝位于底部颜色传感器位置,打印喷头并未到达已绘制分格缝,如果此时就开始喷出涂料,则会导致目标分格缝超出已绘制分格缝,导致接缝失败。因此,控制打印喷头移动第二距离后,打印喷头到达已绘制分格缝的位置,然后再喷出涂料,此时,目标分格缝与已绘制分格缝可以实现正确接缝,不会发生分格缝绘制过长的问题,提高分格缝接缝的准确率。
进一步的,以已绘制分格缝为终点,向上绘制目标分格缝时,当顶部颜色传感器识别到已绘制分格缝,打印喷头移动第一距离后,打印喷头停 止喷出涂料;以已绘制分格缝为终点,向下绘制目标分格缝时,当底部颜色传感器识别到已绘制分格缝,打印喷头移动第二距离后,打印喷头停止喷出涂料。
以已绘制分格缝为终点,向上绘制目标分格缝时,当顶部颜色传感器识别到已绘制分格缝,打印喷头移动第一距离后,打印喷头停止喷出涂料;由于顶部颜色传感器与打印喷头的第一距离为H1,当第一颜色传感器识别到已绘制分格缝时,已绘制分格缝位于顶部颜色传感器位置,打印喷头并未到达已绘制分格缝,如果此时就停止喷出涂料,则会导致目标分格缝没有绘制到已绘制分格缝,即目标分格缝与已绘制分格缝之间出现断裂,导致接缝失败。因此,控制打印喷头移动第一距离后,打印喷头到达已绘制分格缝的位置,然后再停止喷出涂料,此时,目标分格缝与已绘制分格缝可以实现正确接缝,不会发生分格缝绘制断裂的问题,提高分格缝接缝的准确率。
同理,以已绘制分格缝为终点,向下绘制目标分格缝时,当底部颜色传感器识别到已绘制分格缝,打印喷头移动第二距离后,打印喷头停止喷出涂料。由于底部颜色传感器与打印喷头的第二距离为H2,当底部颜色传感器识别到已绘制分格缝时,已绘制分格缝位于底部颜色传感器位置,打印喷头并未到达已绘制分格缝,如果此时就停止喷出涂料,则会导致目标分格缝没有绘制到已绘制分格缝,即目标分格缝与已绘制分格缝之间出现断裂,导致接缝失败。因此,控制打印喷头移动第二距离后,打印喷头到达已绘制分格缝的位置,然后再停止喷出涂料,此时,目标分格缝与已绘制分格缝可以实现正确接缝,不会发生分格缝绘制断裂的问题,提高分格缝接缝的准确率。
当墙面上需要绘制的分格缝较多时,目标分格缝的终点可能是一条未绘制分格缝,此时,颜色传感器和距离传感器均难以确定未绘制分格缝的位置。该情况下,以未绘制分格缝为终点,绘制目标分格缝时,在打印喷头到达未绘制分格缝的位置之前,停止喷出涂料。具体的,如果目标分格缝的绘制终点为未绘制分格缝,通过运动机构控制打印喷头移动,打印喷 头在移动过程中喷出涂料,以绘制目标分格缝;在打印喷头达到未绘制分格缝的位置之前,在中间位置停止喷出涂料。
例如,可以通过人工目测的方式,在打印喷头快要到达未绘制分格缝之前,控制打印喷头停止喷出涂料;也可以预先设置目标分格缝的绘制长度,该绘制长度小于目标分格缝的起点与未绘制分格缝的距离,当绘制到达上述绘制长度时,控制打印喷头停止喷出涂料。此时,目标分格缝会预留部分未绘制的部分分格缝,当作为终点的未绘制分格缝绘制完成后,得到已绘制分格缝,再绘制目标分格缝的未绘制部分。一种具体的实现方式中,通过打印喷头绘制未绘制分格缝,得到已绘制分格缝;控制打印喷头移动至中间位置,通过颜色传感器识别出目标分格缝时,控制打印喷头喷出涂料,继续绘制目标分格缝;当打印喷头的颜色传感器识别到已绘制分格缝时,打印喷头停止喷出涂料。此时,颜色传感器可以识别到已绘制分格缝的位置,从而准确控制目标分格缝的终点位置,实现目标分格缝与已绘制分格缝的准确接缝。
上述方式中,当目标分格缝的终点为未绘制分格缝时,为了避免接缝处发生误差,预留部分分格缝。后续等未绘制分格缝绘制完成后,在绘制预留的部分分格缝,提高了分格缝绘制的准确性。
如前述实施例所述,打印喷头上还设置有距离传感器;如果待绘制的目标分格缝的绘制起点为第一墙面的指定位置,通过运动机构控制打印喷头移动,通过距离传感器测量第一墙面的指定位置与距离传感器的距离参数;当距离参数指示打印喷头到达指定位置时,打印喷头喷出涂料;如果待绘制的目标分格缝的绘制终点为第一墙面的指定位置,通过运动机构控制打印喷头移动,打印喷头在移动过程中喷出涂料,通过距离传感器测量第一墙面的指定位置与距离传感器的距离参数;当距离参数指示打印喷头到达指定位置时,打印喷头停止喷出涂料。
为了进一步提高颜色传感器的识别范围,上述打印喷头装置还包括旋转机构,该旋转机构设置在颜色传感器和打印喷头之间;旋转机构用于调整颜色传感器的朝向。如图7所示,颜色传感器903a与打印喷头之间设置有旋转机构904a,颜色传感器903b与打印喷头之间设置有旋转机构 904b;在图7中,颜色传感器903c没有设置旋转机构,在其他方式中,设置在打印喷头底部的颜色传感器也可以设置旋转机构。
对于没有设置旋转机构的颜色传感器,该颜色传感器与打印喷头的相对朝向是固定的,例如,颜色传感器903c的朝向时钟与打印喷头的朝向相同;对于设置旋转机构的颜色传感器,打印喷头的朝向可以旋转变化,具体的,旋转机构沿指定方向的最大可旋转角度为90度。图10作为示例,旋转机构904a顺时针旋转90度后,颜色传感器903a的朝向与打印喷头的朝向夹角为90度;同理,旋转机构904b也可以旋转,旋转后,颜色传感器903b的朝向也会发生变化。通过为颜色传感器设置旋转机构,可以扩宽颜色传感器的识别范围,当已绘制分格缝位于正上方和正下方以外的其他位置时,颜色传感器也可以识别到并进行定位,提高了打印喷头定位的准确度和可适用范围。
一种具体的实现方式中,打印喷头的顶部设置有第一颜色传感器和第二颜色传感器;打印喷头的底部设置有第三颜色传感器;打印喷头与每个颜色传感器之间设置有第一旋转机构;在初始状态下,第一颜色传感器的朝向与打印喷头的朝向相同;通过运动机构控制打印喷头移动,通过距离传感器检测第一墙面的阳角边缘,控制打印喷头到达阳角边缘;通过第一旋转机构控制第一颜色传感器朝向第一墙面,通过第一颜色传感器识别第一墙面上的已绘制分格缝,通过距离传感器调整打印喷头的高度与已绘制分格缝相同;以已绘制分格缝为起点,在阳角墙面上绘制目标分格缝。
以第一墙面中的已绘制分格缝为起点,在第一墙面的阳角墙面绘制目标分格缝之前,控制旋转机构旋转,以使第一颜色传感器中的部分颜色传感器朝向第一墙面,以识别第一墙面中的已绘制分格缝。为了便于理解,可以参考图11,第一墙面上有已绘制分格缝,需要在第一墙面的阳角墙面上绘制目标分格缝,该目标分格缝需要与第一墙面上的已绘制分格缝接缝;该情况下,将打印喷头装置905设置在图11所示的位置和朝向,此时,打印喷头的朝向与阳角墙面相对,但与第一墙面平行,如果颜色传感器与打印喷头的朝向相同,易导致颜色传感器难以识别到第一墙面中的已绘制分格缝。基于此,可以控制位于打印喷头顶部的旋转机构旋转,以使 打印喷头顶部的第一颜色传感器的朝向与第一墙面相对。与第一墙面相对的第一颜色传感器可以识别到第一墙面上的已绘制分格缝,从而可以确定打印喷头的高度,进而打印喷头在该高度向绘制目标分格缝,可以使目标分格缝的起点与第一墙面上的已绘制分格缝准确接缝,从而实现阳角墙面的分格缝接缝。该方式可以提高阳角墙面分格缝与第一墙面分格缝接缝的准确性。
继续参考图9,第二颜色传感器与打印喷头位于同一纵向线上;打印喷头的顶部设置有两个第一颜色传感器,两个第一颜色传感器对称分布在纵向线的左右两侧。在图9中,903c为第二颜色传感器,第二颜色传感器位于打印喷头的底部,903c与打印喷头位于同一纵向线上,而903a和903b为第一颜色传感器,903a和903b对称分布在纵向线的左右两侧。通过这种分布方式,可以扩宽识别范围,例如,第二颜色传感器可以快速识别到纵向线上的分格缝,两个第一颜色传感器可以识别纵向线左右两侧的分格缝,即使打印喷头位置发生偏斜,也可以识别到分格缝的位置,避免多次调整打印喷头。另外,多个不同位置上的颜色传感器,可以对同一分格缝实现精确定位,避免单一的颜色传感器定位导致的定位误差。
进一步地,打印喷头上设置有第二旋转机构;如果目标分格缝为竖向缝,通过第二旋转机构控制打印喷头旋转至第一角度,打印喷头在第一角度下绘制目标分格缝;如果目标分格缝为横向缝,通过第二旋转机构控制打印喷头旋转至第二角度,打印喷头在第二角度下绘制目标分格缝。
本实施例还提供打印机器人,该打印机器人包括运动机构、打印喷头、以及设置在打印喷头上的颜色传感器;打印机器人用于实现上述墙体分格缝的绘制方法。图12作为一个示例,运动机构包括运动机构X轴906a,以及运动机构Z轴906b,其中,运动机构X轴可以控制打印喷头装置横向移动,运动机构Z轴可以控制打印喷头装置与墙面的距离。
上述打印机器人还包括升降装置;该升降装置设置在第一墙面的顶部,用于控制运动机构和打印喷头装置沿着第一墙面升降。图12中,该升降装置可以包括钢丝绳907a、钢丝绳907b、提升机908a、提升机908b、靠墙轮909a、靠墙轮909b。升降装置还包括位于第一墙面顶部的 固定机构,用于牵引钢丝绳。第一墙面顶部可以搭建拼接式悬架,该搭建拼接式悬架连接钢丝绳,打印机器人通过提升机分别在两根钢丝绳爬升或下降。
另外,上述打印喷头装置通过打印的方式实现制作横缝和竖缝,也可用喷涂方式实现,此时,打印喷头具体可以为喷枪。上述打印机器人还可以包括激光发射装置910、激光接收装置911、倾角传感器912、测高装置913等。
本实施例提供的打印机器人与前述墙体分格缝的绘制方法具有相同的技术效果。
为了进一步理解本实施例提供的墙面分格缝的绘制方法,下面提供一个具体示例,如图13所示,第一墙面划分为第一列和第二列,每列中包括横向缝和竖向缝;打印顺序按照图中序号进行,同列内区域之间竖缝和横缝交接处需要接长,相邻列的横缝之间需要接长。
打印机器人的坐标定义为,高度方向为Y轴,与墙面和地面平行方向为X轴,垂直墙面为Z轴。通过升降装置可以控制打印机器人在Y轴移动,实现竖向缝打印,通过前述喷头运动机构X轴带动打印喷头装置沿着X轴移动,实现横向缝打印。喷头运动机构Z轴代用打印喷头装置沿着Z轴移动,调整打印喷头与墙面的距离。
在第一列中需要打印两个横向缝和两个竖向缝。两个竖向缝位于两个横向缝之间。对于横向缝的打印,打印方向可以为自右向左,也可以为自左向右,通过高度传感器控制打印喷头到达横向缝的起点后,打印喷头开始横向喷涂。
对于竖向缝的打印,如果竖向缝的起点和终点位置上的横向缝均已绘制完成,则通过颜色传感器识别起点的横向缝,开始自下而上或自上而下喷涂。例如,竖向缝从②号位置开始自下而上的喷涂,当颜色传感器识别终点的横向缝后,在③号位置停止喷涂。
如果竖向缝的终点的横向缝未绘制,则绘制竖向缝的时候,先绘制部分竖向缝,在中间位置停止喷涂,然后,继续绘制终点位置的横向缝,该横向缝绘制完成后,再继续从中间位置开始绘制竖向缝,直至到达终点的 横向缝。例如,通过颜色传感器识别①号位置的横向缝,然后开始自上而下绘制,到达中间位置即④号位置,停止绘制。继续绘制底部的横向缝,底部的横向缝绘制完成后,通过颜色传感器识别④号位置,从④号位置继续自上而下绘制,直至颜色传感器识别到底部的横向缝,即⑤号位置,停止喷涂。
至此,第一列的分格缝打印完成,开始打印第二列的分格缝。
第二列的横向缝需要与第一列的横向缝接缝,例如,绘制顶部的横向缝时,通过颜色传感器识别第一列顶部的横向缝的终点,打印喷头从该终点开始,自左向右开始喷涂,直至到达终点。同理,绘制底部的横向缝时,通过颜色传感器识别第一列低部的横向缝的终点,打印喷头从该终点开始,自左向右开始喷涂,直至到达终点。
对于竖向缝的打印,如果竖向缝的起点和终点位置上的横向缝均已绘制完成,则通过颜色传感器识别起点的横向缝,开始自下而上或自上而下喷涂。例如,竖向缝从⑨号位置开始自下而上的喷涂,当颜色传感器识别终点的横向缝后,在⑩号位置停止喷涂。
如果竖向缝的终点的横向缝未绘制,则绘制竖向缝的时候,先绘制部分竖向缝,在中间位置停止喷涂,然后,继续绘制终点位置的横向缝,该横向缝绘制完成后,再继续从中间位置开始绘制竖向缝,直至到达终点的横向缝。例如,通过颜色传感器识别⑦号位置的横向缝,然后开始自上而下绘制,到达中间位置即
Figure PCTCN2022115695-appb-000001
号位置,停止绘制。继续绘制底部的横向缝,底部的横向缝绘制完成后,通过颜色传感器识别
Figure PCTCN2022115695-appb-000002
号位置,从
Figure PCTCN2022115695-appb-000003
号位置继续自上而下绘制,直至颜色传感器识别到底部的横向缝,即
Figure PCTCN2022115695-appb-000004
号位置,停止喷涂。
至此,第二列的分格缝打印完成。
墙面混凝土面层分格缝设置通常采用水泥砂浆来固定分格条,分格缝是指为了减少裂缝。先对分格缝定位放线,将分格条就位,然后使用水泥砂浆在两侧嵌固分格条。待水泥砂浆强度增长至可将分格条粘接稳固后再进行混凝土面层浇筑。
在一些实施例中,通过作业机器人进行墙面打印作业和/或外墙喷绘作业包括:通过作业机器人进行墙体分格缝的施工,其中分格缝包括横缝和竖缝。在墙面打印作业中,分格缝即外墙待打印线条,横峰即外墙上的横向线条,竖缝即外墙上的竖向线条。因此,横缝、竖缝的搭接也即横向线条、竖向线条的搭接。横缝在相邻阳角平面接缝处要求连续、无错位,相关技术中,此工序的施工仍为人工施工,导致在横缝接缝时接缝准确度较低。
在一些实施例中,通过作业机器人进行墙体分格缝的施工包括:通过作业机器人进行横缝接缝。以下将对通过作业机器人进行横缝接缝的方法,即横缝接缝方法进行说明。
本申请实施例中主要通过作业机器人装置进行作业,下面对作业机器人的结构进行描述,图14为本申请又一实施例提供的作业机器人的结构示意图,作业机器人包括:钢丝绳101a及钢丝绳101b、提升装置102及提升机103、测高装置104、打印喷头构件105、喷头运动机构旋转轴106及喷头运动机构第一坐标轴107。
图15为本申请又一实施例提供的作业机器人在第二平面内作业的示意图,需要说明的是,第一平面为作业机器人主体作业位置,第一平面与第二平面分别与水平面垂直且所述第一平面与所述第二平面相互垂直,其中,作业机器人包括:打印喷头构件105、喷头运动机构旋转轴106、喷头运动机构第一坐标轴107及喷头运动机构第二坐标轴108。
图16为本申请又一实施例提供的作业机器人的打印喷头构件结构示意图,打印喷头构件包括:打印喷头1051、颜色传感器1052a、颜色传感器1052b、颜色传感器1052c及颜色传感器1052d、激光雷达1053及旋转轴1054。
为便于理解,下面对本申请实施例的具体流程进行描述,请参阅图17,本申请实施例中横缝接缝方法的一个实施例包括:
401、通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印;
可以理解的是,本申请的执行主体可以为横缝接缝装置,还可以是作业机器人,具体此处不做限定。本申请实施例以作业机器人为执行主体为例进行说明,其中,作业机器人可以包括分格缝机器人,分格缝机器人用于对建筑外墙分格缝(指高层外墙建筑的线条特征)进行全自动施工。
需要说明的是,作业机器人根据第一平面情况建立坐标轴,其中第一坐标轴为第一平面的横轴,第二坐标轴为第二平面的横轴,第三坐标轴为垂直于第一坐标轴与第二坐标轴相交面的坐标轴,且该第一平面与第二平面为墙面阳角或墙面阴角对应的互相垂直的两个平面。具体的,作业机器人在楼顶搭建拼接式悬架,悬架上连接钢丝绳,作业机器人通过提升机在钢丝绳爬升或下降,可以实现作业机器人在预设坐标轴的第三坐标轴上进行调整,作业机器人通过钢丝绳即该位置调节构建将打印喷头通过预置的位置调节构件将打印喷头构件调整至第一目标位置,其中,第一目标位置为打印起点,作业机器人并控制打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印,具体的,请参阅图14,作业机器人在楼顶搭建拼接式悬架,悬架上连接钢丝绳101a及钢丝绳101b,机器人通过提升装置102及提升机103分别在两根钢丝绳爬升或下降,测高装置104用于提升装置在爬升或下降时进行高度测量,可以通过测量高度数据控制移动距离,打印喷头构件105及喷头运动机构旋转轴106可以实现作业机器人在喷头运动机构第一坐标轴107上移动及旋转。
402、当打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达进行墙角类型识别,得到对应的墙角类型,并根据墙角类型将打印喷头构件调整至第二目标位置,其中,第一目标位置与第二目标位置所处高度相同;
需要说明的是,当打印喷头构件运动至第一平面的边界预设位置时,进行墙角类型识别,得到对应的墙角类型,其中,墙角类型主要分为墙面阳角类型,及墙面阴角类型,其中,墙面阳角类型可以通过打印喷头的转向方向进行分类,可以自定义分为逆时针阳角及顺时针阳角,边界预设位置主要通过打印喷头的实际尺寸进行设置,打印喷头的实际尺寸在5到8厘米范围内,打印喷头装置上激光雷达实时对第一平面扫描,检测到打印 喷头装置已位于第一平面外侧后,喷头运动机构沿着第二坐标轴前伸,喷头运动机构的旋转轴进行旋转,打印喷头调整至正对第二平面,并将打印喷头构件调整至第二目标位置,其中,第二目标位置为接缝打印点。
403、控制打印喷头构件在第二平面进行接缝打印,并按照预设长度沿平面坐标系的第二坐标轴进行横缝打印,其中,第一平面与第二平面分别与水平面垂直且第一平面与第二平面相互垂直,第一坐标轴与第二坐标轴相互垂直。
其中,预设长度为用户自行设定或者系统默认,当用户自行设定时,可以根据第二平面的实际尺寸进行确定,在此不作限定。具体的,作业机器人利用激光雷达测量墙面距离,配合喷头运动机构运动,打印喷头调整至可打印距离,喷头运动机构沿着第二坐标轴继续前伸,带动打印喷头装置移动,进行接缝用横缝打印,具体的,请参阅图15,作业机器人在第二平面内沿喷头运动机构第一坐标轴107进行作业,作业机器人可控制打印喷头构件105及喷头运动机构旋转轴106进行接缝打印,在接缝打印时,打印喷头构件沿喷头运动机构第二坐标轴108进行移动。
本申请实施例中,作业机器人在楼顶搭建拼接式悬架,悬架上连接钢丝绳,作业机器人通过提升机在钢丝绳爬升或下降,可以实现作业机器人在预设坐标轴的第三坐标轴上进行调整,作业机器人通过钢丝绳即该位置调节构建将打印喷头通过预置的位置调节构件将打印喷头构件调整至第一目标位置,能够增加分格缝施工的准确性,避免人为误差而导致的分格缝施工偏差,作业机器人并控制打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印。作业机器人利用激光雷达测量墙面距离,配合喷头运动机构运动,打印喷头调整至可打印距离,喷头运动机构沿着第二坐标轴继续前伸,带动打印喷头装置移动,进行接缝用横缝打印,可以有效提升在横缝接缝时的连续性与准确度。
请参阅图18,本申请又一实施例中横缝接缝方法包括:
501、通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印;
具体的,作业机器人控制激光测距仪进行高度测量,得到对应的待调整高度;作业机器人根据目标高度及待调整高度,通过位置调节构件沿平面坐标系的第三坐标轴将打印喷头构件调整至目标高度;作业机器人控制倾角传感器进行倾斜角识别,确定对应的倾斜角数值并根据倾斜角数值进行调平处理,将打印喷头构件调整至第一目标位置,并控制打印喷头构件沿平面坐标系的第一坐标轴进行横缝打印。
其中,作业机器人通过控制测激光测距仪可以测量作业机器人距离地面高度,当测量得到待调整高度后,作业机器人根据目标高度及待调整高度确定需要调整的高度,通过位置调节构建将机器人提升至横缝接缝高度,同时倾角传感器反馈信号,确定倾斜角,根据标准水平线进行调平处理,作业机器人通过控制位置调节构件,控制提升机将机器人调平,从而确定作业机器人在第三坐标轴上的坐标,并通过激光测距仪确定作业机器人在第一坐标轴上的坐标,进而作业机器人通过喷头运动机构在第一坐标轴上的移动来带动打印喷头装置运动至第一目标位置,并控制打印喷头构件沿着第一坐标轴进行横缝打印。
502、当打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达对平面进行扫描,得到对应的墙角类型,其中,墙角类型包括墙面阳角类型和墙面阴角类型;
需要说明的是,当打印喷头构件运动至第一平面的边界预设位置时,进行墙角类型识别,得到对应的墙角类型,其中,其中,墙角类型主要分为墙面阳角类型,及墙面阴角类型,其中,墙面阳角类型可以通过打印喷头的转向方向进行分类,可以自定义分为逆时针阳角及顺时针阳角,具体的,作业机器人根据激光雷达对平面进行扫描,确定出相邻平面的转角方向,进而确定打印喷头的转向方向,获得对应的墙角类型。
503、对墙角类型进行分析,当墙角类型为墙面阳角类型时,控制喷头运动机构将打印喷头构件调整至第二目标位置;
具体的,作业机器人对墙角类型进行解析,当墙角类型为墙面阳角类型时,确定第一平面的第一边界位置及第一喷头转换方向;当检测到打印喷头构件已超出第一边界位置的距离大于或等于第一边界预设距离时,通过喷头运动机构控制打印喷头构件沿平面坐标系的第二坐标轴移动,并控制喷头运动机构的旋转轴按照第一喷头转换方向进行旋转;根据预设的可打印距离对打印喷头构件进行位置修正,控制喷头运动机构将打印喷头构件调整至第二目标位置。
其中,当第一平面施工结束后,作业机器人需要转移到第二平面施工,
具体的,作业机器人对墙角类型进行解析,确定第一平面的第一边界位置及第一喷头转换方向,需要说明的是,第一平面的第一边界位置是指第一平面与第二平面的阳角相接处的处于第一坐标轴的坐标数值,主要用于计算打印喷头构件超出边界位置的距离,同时作业机器人根据墙角类型确定对应的第一喷头转换方向,具体的,作业机器人当检测到打印喷头构件已超出边界位置的距离大于或等于边界预设位置距离时,通过喷头运动机构控制打印喷头构件沿平面坐标系的第二坐标轴移动,并控制喷头运动机构的旋转轴按照第一喷头转换方向进行旋转;作业机器人根据预设的可打印距离对打印喷头构件进行位置修正,完成阳角横缝寻缝操作,同时控制喷头运动机构将打印喷头构件调整至第二目标位置。
可选的,作业机器人根据预设的可打印距离对打印喷头构件进行位置修正,控制喷头运动机构将打印喷头构件调整至第二目标位置可以包括:作业机器人通过激光雷达确定打印喷头构件与第二平面的距离,得到待调整距离;作业机器人基于预设的可打印距离及待调整距离,确定对应的调整方向及调整距离,并通过调整方向及调整距离,控制喷头运动机构进行位置调整,将打印喷头构件调整至第二目标位置。
其中,作业机器人利用激光雷达测量打印喷头构建与第二平面的距离,确定对应的待调整距离,并根据预设的可打印距离确定需要的调整方向与调整距离,并通过调整方向与调整距离,通过喷头运动机构在预设坐标系上的运动进行位置修正,将打印喷头构建调整至第二目标位置。
可选的,作业机器人基于预设的可打印距离及待调整距离,确定对应的调整方向及调整距离,并通过调整方向及调整距离,控制喷头运动机构进行位置调整,将打印喷头构件调整至第二目标位置可以包括:作业机器人对预设的可打印距离及待调整距离进行差值计算,得到打印喷头构件在平面坐标系的第一坐标轴上的第一调整方向及第一调整距离;作业机器人根据第一调整方向及第一调整距离,控制喷头运动机构进行第一位置修正,将打印喷头构件调整至候选位置;作业机器人根据第二调整方向及第二调整距离,控制喷头运动机构进行第二位置修正,将打印喷头调整至第二目标位置,其中,候选位置与第二目标位置的水平距离差值及竖直距离差值均小于或等于预设的距离阈值。
其中,作业机器人对预设的可打印距离及待调整距离进行差值计算,得到打印喷头构件在平面坐标系的第一坐标轴上的第一调整方向及第一调整距离,作业机器人根据第一调整方向及第一调整距离,控制喷头运动机构进行第一位置修正,将打印喷头构件调整至候选位置,当打印喷头位于候选位置之后,为了能够增加在横缝接缝时的准确度,作业机器人控制打印喷头构件中的颜色传感器进行横缝检测,确定打印喷头构件在平面坐标系的第三坐标轴上的第二调整方向和第二调整距离,作业机器人根据第二调整方向及第二调整距离,控制喷头运动机构进行第二位置修正,将打印喷头调整至第二目标位置,能够有效提升在横缝接缝时的准确度和连续性,具体的,请参阅图16所示的作业机器人的打印喷头构件结构,打印喷头构件包括:打印喷头、颜色传感器、颜色传感器、颜色传感器及颜色传感器、激光雷达及旋转轴,其中,颜色传感器分别安装在打印喷头上方和下方,激光雷达安装在打印喷头侧面。
进一步的,作业机器人控制打印喷头构件中的颜色传感器进行横缝检测,确定打印喷头构件在平面坐标系的第三坐标轴上的第二调整方向和第二调整距离还可以包括:作业机器人控制颜色传感器对第一平面的横缝进行边界检测,得到横缝边界位置信息;作业机器人根据横缝边界位置信息及打印喷头构件的位置信息,确定打印喷头构件在第三坐标轴上的第二调整方向和第二调整距离。其中,颜色传感器中包括四个不同的颜色传感 器,在每个颜色传感器的下方分别具备旋转动力,可以分别带动颜色传感器旋转,作业机器人可以通过上方的颜色传感器对横缝的上边界进行检测,位于下方的颜色传感器可以针对横缝的下边界进行边界检测,作业机器人对第一平面的横缝进行边界检测,具体为对第一平面的横缝上边界进行确定及对横缝的下边界进行确定,确定出上边界及下边界在预设坐标系中第三坐标轴的坐标,能够保证在横缝接缝时打印时的连续性。
504、当墙角类型为墙面阴角类型时,控制喷头运动机构将打印喷头构件调整至第二目标位置;
具体的,当墙角类型为墙面阴角类型时,作业机器人确定第一平面的第二边界位置及第二喷头转换方向;当检测到打印喷头构件与第二边界位置的距离小于或等于第二边界预设距离时,通过喷头运动机构控制打印喷头构件沿平面坐标系的第二坐标轴移动,并控制喷头运动机构的旋转轴按照第二喷头转换方向进行旋转;根据预设的可打印距离对打印喷头构件进行位置修正,控制喷头运动机构将打印喷头构件调整至第二目标位置。
其中,当第一平面施工结束后,作业机器人需要转移到第二平面施工,
具体的,作业机器人对墙角类型进行解析,确定第一平面的第二边界位置及第二喷头转换方向,需要说明的是,第一平面的第二边界位置是指第一平面与第二平面的阴角相接处的处于第一坐标轴的坐标数值,主要用于计算打印喷头构件与第二边界位置的距离,同时作业机器人根据墙角类型确定对应的第二喷头转换方向,具体的,作业机器人当检测到打印喷头构件与第二边界位置的距离小于或等于第二边界预设距离时,通过喷头运动机构控制打印喷头构件沿平面坐标系的第二坐标轴移动,并控制喷头运动机构的旋转轴按照第二喷头转换方向进行旋转;作业机器人根据预设的可打印距离对打印喷头构件进行位置修正,完成阳角横缝寻缝操作,同时控制喷头运动机构将打印喷头构件调整至第二目标位置。
505、控制打印喷头构件在第二平面进行接缝打印,并按照预设长度沿平面坐标系的第二坐标轴进行横缝打印。
具体的,在本实施例中,步骤505的具体实施方式与上述步骤403类似,此处不再赘述。
本申请实施例中,作业机器人对预设的可打印距离及待调整距离进行差值计算,得到打印喷头构件在平面坐标系的第一坐标轴上的第一调整方向及第一调整距离,作业机器人根据第一调整方向及第一调整距离,控制喷头运动机构进行第一位置修正,将打印喷头构件调整至候选位置,当打印喷头位于候选位置之后,为了能够增加在横缝接缝时的准确度,作业机器人控制打印喷头构件中的颜色传感器进行横缝检测,作业机器人对第一平面的横缝进行边界检测,具体为对第一平面的横缝上边界进行确定及对横缝的下边界进行确定,确定出上边界及下边界在预设坐标系中第三坐标轴的坐标,能够保证在横缝接缝时打印时的连续性。确定打印喷头构件在平面坐标系的第三坐标轴上的第二调整方向和第二调整距离,作业机器人根据第二调整方向及第二调整距离,控制喷头运动机构进行第二位置修正,将打印喷头调整至第二目标位置进行横缝接缝,能够有效提升在横缝接缝时的准确度。
在一些实施例中,作业机器人包括横缝接缝装置。
请参阅图19,本申请一个实施例中横缝接缝装置包括:
调节模块601,用于通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制所述打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印;
识别模块602,用于当所述打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达进行墙角类型识别,得到对应的墙角类型,并根据所述墙角类型将所述打印喷头构件调整至第二目标位置,其中,所述第一目标位置与所述第二目标位置所处高度相同;
打印模块603,用于控制所述打印喷头构件在第二平面进行接缝打印,并按照预设长度沿所述平面坐标系的第二坐标轴进行横缝打印,其中,所述第一平面与所述第二平面分别与水平面垂直且所述第一平面与所述第二平面相互垂直,所述第一坐标轴与所述第二坐标轴相互垂直。
请参阅图20,本申请又一实施例中横缝接缝装置包括:
调节模块601,用于通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制所述打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印;
识别模块602,用于当所述打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达进行墙角类型识别,得到对应的墙角类型,并根据所述墙角类型将所述打印喷头构件调整至第二目标位置,其中,所述第一目标位置与所述第二目标位置所处高度相同;
打印模块603,用于控制所述打印喷头构件在第二平面进行接缝打印,并按照预设长度沿所述平面坐标系的第二坐标轴进行横缝打印,其中,所述第一平面与所述第二平面分别与水平面垂直且所述第一平面与所述第二平面相互垂直,所述第一坐标轴与所述第二坐标轴相互垂直。
可选的,所述调节模块601具体用于:控制激光测距仪进行高度测量,得到对应的待调整高度;根据目标高度及所述待调整高度,通过所述位置调节构件沿所述平面坐标系的第三坐标轴将所述打印喷头构件调整至目标高度;控制倾角传感器进行倾斜角识别,确定对应的倾斜角数值并根据所述倾斜角数值进行调平处理,将所述打印喷头构件调整至所述第一目标位置,并控制所述打印喷头构件沿所述平面坐标系的第一坐标轴进行横缝打印。
可选的,所述识别模块602具体包括:
扫描子模块6021,用于当所述打印喷头构件运动至第一平面的边界预设位置时,控制所述激光雷达对平面进行扫描,得到对应的墙角类型,其中,所述墙角类型包括墙面阳角类型和墙面阴角类型;
分析子模块6022,用于对所述墙角类型进行分析,当所述墙角类型为墙面阳角类型时,控制喷头运动机构将所述打印喷头构件调整至第二目标位置;
控制子模块6023,用于当所述墙角类型为墙面阴角类型时,控制喷头运动机构将所述打印喷头构件调整至第二目标位置。
可选的,所述分析子模块6022还包括:
解析单元60221,用于对所述墙角类型进行解析,当所述墙角类型为墙面阳角类型时,确定所述第一平面的第一边界位置及第一喷头转换方向;
移动单元60222,用于当检测到打印喷头构件已超出所述第一边界位置的距离大于或等于第一边界预设距离时,通过所述喷头运动机构控制所述打印喷头构件沿所述平面坐标系的第二坐标轴移动,并控制所述喷头运动机构的旋转轴按照所述第一喷头转换方向进行旋转;
修正单元60223,用于根据预设的可打印距离对打印喷头构件进行位置修正,控制所述喷头运动机构将所述打印喷头构件调整至第二目标位置。
可选的,所述控制子模块6023具体用于:当所述墙角类型为墙面阴角类型时,确定所述第一平面的第二边界位置及第二喷头转换方向;当检测到打印喷头构件与所述第二边界位置的距离小于或等于第二边界预设距离时,通过所述喷头运动机构控制所述打印喷头构件沿所述平面坐标系的第二坐标轴移动,并控制所述喷头运动机构的旋转轴按照所述第二喷头转换方向进行旋转;根据预设的可打印距离对打印喷头构件进行位置修正,控制所述喷头运动机构将所述打印喷头构件调整至第二目标位置。
可选的,所述修正单元60223具体包括:
确定子单元602231,用于通过激光雷达确定所述打印喷头构件与第二平面的距离,得到待调整距离;
控制子单元602232,用于基于预设的可打印距离及所述待调整距离,确定对应的调整方向及调整距离,并通过所述调整方向及所述调整距离,控制所述喷头运动机构进行位置调整,将所述打印喷头构件调整至第二目标位置。
可选的,所述控制子单元602232具体用于:对所述预设的可打印距离及所述待调整距离进行差值计算,得到所述打印喷头构件在所述平面坐标系的第一坐标轴上的第一调整方向及第一调整距离;根据所述第一调整方向及所述第一调整距离,控制所述喷头运动机构进行第一位置修正,将 所述打印喷头构件调整至候选位置;控制打印喷头构件中的颜色传感器进行横缝检测,确定所述打印喷头构件在所述平面坐标系的第三坐标轴上的第二调整方向和第二调整距离;根据所述第二调整方向及所述第二调整距离,控制所述喷头运动机构进行第二位置修正,将所述打印喷头调整至第二目标位置,其中,所述候选位置与所述第二目标位置的水平距离差值及竖直距离差值均小于或等于预设的距离阈值。
图21是本申请实施例提供的一种计算机设备的结构示意图,该计算机设备800可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(Central Processing Units,CPU)810(例如,一个或一个以上处理器)和存储器820,一个或一个以上存储应用程序833或数据832的存储介质830(例如一个或一个以上海量存储设备)。其中,存储器820和存储介质830可以是短暂存储或持久存储。存储在存储介质830的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对计算机设备800中的一系列指令操作。更进一步地,处理器810可以设置为与存储介质830通信,在计算机设备800上执行存储介质830中的一系列指令操作。
计算机设备800还可以包括一个或一个以上电源840,一个或一个以上有线或无线网络接口850,一个或一个以上输入输出接口860,和/或,一个或一个以上操作系统831,例如Windows Serve,Mac OS X,Unix,Linux,FreeBSD等等。本领域技术人员可以理解,图21示出的计算机设备结构并不构成对计算机设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例提供一种计算机设备,所述计算机设备包括存储器和处理器,存储器中存储有计算机可读指令,计算机可读指令被处理器执行时,使得处理器执行上述任一实施例中的作业机器人系统的控制方法。
本申请实施例还提供一种计算机设备,所述计算机设备包括存储器和处理器,存储器中存储有计算机可读指令,计算机可读指令被处理器执行时,使得处理器执行上述任一实施例中的所述横缝接缝方法的步骤。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质也可以为易失性计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行上述任一实施例的作业机器人系统的控制方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质也可以为易失性计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行上述任一实施例的横缝接缝方法的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
另外,在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接, 也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为。

Claims (30)

  1. 一种作业机器人系统的控制方法,所述作业机器人系统包括作业机器人以及定位系统,所述控制方法包括:
    通过所述定位系统对所述作业机器人进行定位;以及
    通过所述作业机器人进行墙面打印作业和/或外墙喷绘作业。
  2. 根据权利要求1所述的作业机器人系统的控制方法,所述定位系统包括第一轴向的第一定位装置及第二轴向的第二定位装置,所述第一轴向与所述第二轴向相互垂直,所述第一轴向和所述第二轴向均与目标墙体平行,所述第一定位装置包括信号发射单元和信号接收单元,所述信号接收单元设置于所述作业机器人,所述第二定位装置设置于所述作业机器人,所述通过所述定位系统对所述作业机器人进行定位包括:
    通过所述第一定位装置中的信号发射单元发射第一定位信号,当所述信号接收单元接收到所述第一定位信号时,基于所述信号发射单元在所述第一轴向上的位置,确定所述作业机器人在所述第一轴向上的位置;
    通过所述第二定位装置向目标参考平面发射第二定位信号,基于所述目标参考平面反射所述第二定位信号得到的反射信号,确定所述作业机器人在所述第二轴向上的位置。
  3. 根据权利要求1所述的作业机器人系统的控制方法,所述作业机器人为打印机器人,所述打印机器人包括运动机构、打印喷头、以及设置在所述打印喷头上的颜色传感器,所述通过所述作业机器人进行墙面打印作业和/或外墙喷绘作业包括:通过所述作业机器人进行墙体分格缝的施工,
    所述通过所述作业机器人进行墙体分格缝的施工包括:
    如果待绘制的目标分格缝的绘制起点为已绘制分格缝,通过所述运动机构控制所述打印喷头移动,通过所述颜色传感器识别所述已绘制分格 缝;当所述颜色传感器识别到所述已绘制分格缝时,所述打印喷头喷出涂料,以绘制所述目标分格缝;
    如果所述目标分格缝的绘制终点为已绘制分格缝,通过所述运动机构控制所述打印喷头移动,所述打印喷头在移动过程中喷出涂料,以绘制所述目标分格缝;通过所述颜色传感器识别所述已绘制分格缝;当所述颜色传感器识别到所述已绘制分格缝时,所述打印喷头停止喷出涂料,所述目标分格缝绘制完成。
  4. 根据权利要求3所述的作业机器人系统的控制方法,其中,所述通过所述作业机器人进行墙体分格缝的施工还包括:
    如果所述目标分格缝的绘制终点为未绘制分格缝,通过所述运动机构控制所述打印喷头移动,所述打印喷头在移动过程中喷出涂料,以绘制所述目标分格缝;
    在所述打印喷头达到所述未绘制分格缝的位置之前,在中间位置停止喷出涂料。
  5. 根据权利要求4所述的作业机器人系统的控制方法,其中,在所述打印喷头达到所述未绘制分格缝的位置之前,在中间位置停止喷出涂料的步骤之后,所述通过所述作业机器人进行墙体分格缝的施工还包括:
    通过所述打印喷头绘制所述未绘制分格缝,得到已绘制分格缝;
    控制所述打印喷头移动至所述中间位置,通过所述颜色传感器识别出所述目标分格缝的中间位置时,控制所述打印喷头喷出涂料,继续绘制所述目标分格缝;
    当所述打印喷头的颜色传感器识别到所述已绘制分格缝时,所述打印喷头停止喷出涂料。
  6. 根据权利要求3所述的作业机器人系统的控制方法,其中,所述打印喷头的顶部和设置有顶部颜色传感器;所述打印喷头的底部设置有底部颜色传感器;所述顶部颜色传感器与所述打印喷头的距离为第一距离; 所述底部颜色传感器与所述打印喷头的距离为第二距离;所述通过所述作业机器人进行墙体分格缝的施工还包括:
    以所述已绘制分格缝为起点,向上绘制所述目标分格缝时,当所述顶部颜色传感器识别到所述已绘制分格缝,所述打印喷头移动所述第一距离后,所述打印喷头开始喷出涂料;
    以所述已绘制分格缝为起点,向下绘制所述目标分格缝时,当所述底部颜色传感器识别到所述已绘制分格缝,所述打印喷头移动所述第二距离后,所述打印喷头开始喷出涂料。
  7. 根据权利要求6所述的作业机器人系统的控制方法,其中,所述通过所述作业机器人进行墙体分格缝的施工还包括:
    以所述已绘制分格缝为终点,向上绘制所述目标分格缝时,当所述顶部颜色传感器识别到所述已绘制分格缝,所述打印喷头移动所述第一距离后,所述打印喷头停止喷出涂料;
    以所述已绘制分格缝为终点,向下绘制所述目标分格缝时,当所述底部颜色传感器识别到所述已绘制分格缝,所述打印喷头移动所述第二距离后,所述打印喷头停止喷出涂料。
  8. 根据权利要求3所述的作业机器人系统的控制方法,其中,所述打印喷头上还设置有距离传感器;所述通过所述作业机器人进行墙体分格缝的施工还包括:
    如果待绘制的目标分格缝的绘制起点为第一墙面的指定位置,通过所述运动机构控制所述打印喷头移动,通过所述距离传感器测量第一墙面的指定位置与所述距离传感器的距离参数;当所述距离参数指示所述打印喷头到达所述指定位置时,所述打印喷头喷出涂料;
    如果待绘制的目标分格缝的绘制终点为第一墙面的指定位置,通过所述运动机构控制所述打印喷头移动,所述打印喷头在移动过程中喷出涂料,通过所述距离传感器测量第一墙面的指定位置与所述距离传感器的距 离参数;当所述距离参数指示所述打印喷头到达所述指定位置时,所述打印喷头停止喷出涂料。
  9. 根据权利要求8所述的作业机器人系统的控制方法,其中,所述打印喷头的顶部设置有第一颜色传感器和第二颜色传感器;所述打印喷头的底部设置有第三颜色传感器;所述打印喷头与每个所述颜色传感器之间设置有第一旋转机构;所述通过所述作业机器人进行墙体分格缝的施工还包括:
    通过所述运动机构控制所述打印喷头移动,通过所述距离传感器检测所述第一墙面的阳角边缘,控制所述打印喷头到达所述阳角边缘;
    通过所述第一旋转机构控制所述第一颜色传感器朝向所述第一墙面,通过所述第一颜色传感器识别所述第一墙面上的已绘制分格缝,通过所述距离传感器调整所述打印喷头的高度与所述已绘制分格缝相同;
    以所述已绘制分格缝为起点,在所述阳角墙面上绘制所述目标分格缝。
  10. 根据权利要求3所述的作业机器人系统的控制方法,其中,所述打印喷头上设置有第二旋转机构;所述通过所述作业机器人进行墙体分格缝的施工还包括:
    如果所述目标分格缝为竖向缝,通过所述第二旋转机构控制所述打印喷头旋转至第一角度,所述打印喷头在所述第一角度下绘制所述目标分格缝;
    如果所述目标分格缝为横向缝,通过所述第二旋转机构控制所述打印喷头旋转至第二角度,所述打印喷头在所述第二角度下绘制所述目标分格缝。
  11. 根据权利要求1所述的作业机器人系统的控制方法,其中,所述通过所述作业机器人进行墙面打印作业和/或外墙喷绘作业包括:通过所述作业机器人进行墙体分格缝的施工,所述分格缝包括横缝和竖缝,所述通 过所述作业机器人进行墙体分格缝的施工包括:通过所述作业机器人进行横缝接缝,
    所述通过所述作业机器人进行横缝接缝包括:
    通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制所述打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印;
    当所述打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达进行墙角类型识别,得到对应的墙角类型,并根据所述墙角类型将所述打印喷头构件调整至第二目标位置,其中,所述第一目标位置与所述第二目标位置所处高度相同;
    控制所述打印喷头构件在第二平面进行接缝打印,并按照预设长度沿所述平面坐标系的第二坐标轴进行横缝打印,其中,所述第一平面与所述第二平面分别与水平面垂直且所述第一平面与所述第二平面相互垂直,所述第一坐标轴与所述第二坐标轴相互垂直。
  12. 根据权利要求11所述的作业机器人系统的控制方法,其中,所述通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制所述打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印包括:
    控制激光测距仪进行高度测量,得到对应的待调整高度;
    根据目标高度及所述待调整高度,通过所述位置调节构件沿所述平面坐标系的第三坐标轴将所述打印喷头构件调整至目标高度;
    控制倾角传感器进行倾斜角识别,确定对应的倾斜角数值并根据所述倾斜角数值进行调平处理,将所述打印喷头构件调整至所述第一目标位置,并控制所述打印喷头构件沿所述平面坐标系的第一坐标轴进行横缝打印。
  13. 根据权利要求11所述的作业机器人系统的控制方法,其中,所述当所述打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达 进行墙角类型识别,得到对应的墙角类型,并根据所述墙角类型将所述打印喷头构件调整至第二目标位置包括:
    当所述打印喷头构件运动至第一平面的边界预设位置时,控制所述激光雷达对平面进行扫描,得到对应的墙角类型,其中,所述墙角类型包括墙面阳角类型和墙面阴角类型;
    对所述墙角类型进行分析,当所述墙角类型为墙面阳角类型时,控制喷头运动机构将所述打印喷头构件调整至第二目标位置;
    当所述墙角类型为墙面阴角类型时,控制喷头运动机构将所述打印喷头构件调整至第二目标位置。
  14. 根据权利要求13所述的作业机器人系统的控制方法,其中,所述对所述墙角类型进行分析,当所述墙角类型为墙面阳角类型时,控制喷头运动机构将所述打印喷头构件调整至第二目标位置包括:
    对所述墙角类型进行解析,当所述墙角类型为墙面阳角类型时,确定所述第一平面的第一边界位置及第一喷头转换方向;
    当检测到打印喷头构件已超出所述第一边界位置的距离大于或等于第一边界预设距离时,通过所述喷头运动机构控制所述打印喷头构件沿所述平面坐标系的第二坐标轴移动,并控制所述喷头运动机构的旋转轴按照所述第一喷头转换方向进行旋转;
    根据预设的可打印距离对打印喷头构件进行位置修正,控制所述喷头运动机构将所述打印喷头构件调整至第二目标位置。
  15. 根据权利要求13所述的作业机器人系统的控制方法,其中,所述当所述墙角类型为墙面阴角类型时,控制喷头运动机构将所述打印喷头构件调整至第二目标位置包括:
    当所述墙角类型为墙面阴角类型时,确定所述第一平面的第二边界位置及第二喷头转换方向;
    当检测到打印喷头构件与所述第二边界位置的距离小于或等于第二边界预设距离时,通过所述喷头运动机构控制所述打印喷头构件沿所述平面 坐标系的第二坐标轴移动,并控制所述喷头运动机构的旋转轴按照所述第二喷头转换方向进行旋转;
    根据预设的可打印距离对打印喷头构件进行位置修正,控制所述喷头运动机构将所述打印喷头构件调整至第二目标位置。
  16. 根据权利要求14所述的作业机器人系统的控制方法,其中,所述根据预设的可打印距离对打印喷头构件进行位置修正,控制所述喷头运动机构将所述打印喷头构件调整至第二目标位置包括:
    通过激光雷达确定所述打印喷头构件与第二平面的距离,得到待调整距离;
    基于预设的可打印距离及所述待调整距离,确定对应的调整方向及调整距离,并通过所述调整方向及所述调整距离,控制所述喷头运动机构进行位置调整,将所述打印喷头构件调整至第二目标位置。
  17. 根据权利要求16所述的作业机器人系统的控制方法,其中,所述基于预设的可打印距离及所述待调整距离,确定对应的调整方向及调整距离,并通过所述调整方向及所述调整距离,控制所述喷头运动机构进行位置调整,将所述打印喷头构件调整至第二目标位置包括:
    对所述预设的可打印距离及所述待调整距离进行差值计算,得到所述打印喷头构件在所述平面坐标系的第一坐标轴上的第一调整方向及第一调整距离;
    根据所述第一调整方向及所述第一调整距离,控制所述喷头运动机构进行第一位置修正,将所述打印喷头构件调整至候选位置;
    控制打印喷头构件中的颜色传感器进行横缝检测,确定所述打印喷头构件在所述平面坐标系的第三坐标轴上的第二调整方向和第二调整距离;
    根据所述第二调整方向及所述第二调整距离,控制所述喷头运动机构进行第二位置修正,将所述打印喷头调整至第二目标位置,其中,所述候选位置与所述第二目标位置的水平距离差值及竖直距离差值均小于或等于预设的距离阈值。
  18. 一种作业机器人系统,包括:
    作业机器人,用于进行墙面打印作业和/或外墙喷绘作业;以及
    定位系统,用于对所述作业机器人进行定位。
  19. 根据权利要求18所述的作业机器人系统,所述定位系统包括第一轴向的第一定位装置及第二轴向的第二定位装置,所述第一轴向与所述第二轴向相互垂直,所述第一轴向和所述第二轴向均与目标墙体平行,所述第一定位装置包括信号发射单元和信号接收单元,所述信号接收单元设置于所述作业机器人,所述第二定位装置设置于所述作业机器人,
    所述第一定位装置中的信号发射单元发射第一定位信号,当所述信号接收单元接收到所述第一定位信号时,基于所述信号发射单元在所述第一轴向上的位置,确定所述作业机器人在所述第一轴向上的位置;
    所述第二定位装置向目标参考平面发射第二定位信号,基于所述目标参考平面反射所述第二定位信号得到的反射信号,确定所述作业机器人在所述第二轴向上的位置。
  20. 根据权利要求19所述的作业机器人系统,其中,所述第一定位装置还包括导轨结构;所述导轨结构固定于所述作业机器人;所述导轨结构带动所述信号接收单元沿第二轴向运动,以使得所述信号接收单元接收所述第一定位信号;
    所述信号接收单元用于在接收到所述第一定位信号时,基于所述信号接收单元在所述导轨结构上的移动距离、所述导轨结构与所述作业机器人在所述第一轴向的相对位置以及所述信号发射单元在所述第一轴向上的位置,确定所述作业机器人在所述第一轴向上的位置。
  21. 根据权利要求20所述的作业机器人系统,其中,所述导轨结构包括电机、齿轮、齿条及直线导轨;所述直线导轨沿第一轴向固定于所述作业机器人;所述齿轮及所述齿条设置于所述直线导轨;
    所述电机通过所述齿轮以及所述齿条与所述信号接收单元连接,带动所述信号接收单元在所述直线导轨上沿第一轴向运动。
  22. 根据权利要求19所述的作业机器人系统,其中,所述第二定位装置包括十字轴结构及测距单元;所述十字轴结构固定于所述作业机器人;所述测距单元与所述十字轴结构连接;
    所述测距单元在所述作业机器人运动过程中围绕所述十字轴结构的转轴转动,以使得所述测距单元的信号发射方向与所述第二轴向平行;
    所述测距单元用于向所述目标参考平面发射第二定位信号;接收所述目标参考平面反射所述第二定位信号得到的反射信号。
  23. 根据权利要求22所述的作业机器人系统,其中,所述第二定位装置还包括配重模块;所述配重模块设置于所述十字轴结构;
    所述配重模块用于在作业机器人运动过程中,调整所述第二定位装置的重心,以使得所述测距单元的信号发射方向与所述第二轴向平行。
  24. 根据权利要求22所述的作业机器人系统,其中,所述测距单元用于基于所述第二定位信号的发射时间及所述反射信号接收时间,确定所述第二定位信号的传播时间;基于所述传播时间及传播速度,计算所述作业机器人与所述目标水平参考平面的距离;将所述距离确定为所述作业机器人在所述第二轴向上的位置。
  25. 根据权利要求22所述的作业机器人系统,其中,所述测距单元包括激光测距仪;所述定位系统还包括反光板;所述反光板设置于所述目标水平参考平面;
    所述反光板用于反射所述激光测距仪发射的第二定位信号,生成反射信号。
  26. 根据权利要求19所述的作业机器人系统,其中,所述定位系统还包括倾角传感器;所述倾角传感器设置于所述作业机器人;所述倾角传感器用于测量所述作业机器人的横滚角及俯仰角。
  27. 根据权利要求20所述的作业机器人系统,其中,所述信号发射单元包括激光发射模块;所述信号接收单元包括激光接收模块。
  28. 根据权利要求20所述的作业机器人系统,其中,所述作业机器人包括横缝接缝装置,所述横缝接缝装置包括:
    调节模块,用于通过预置的位置调节构件将打印喷头构件调整至第一目标位置,并控制所述打印喷头构件在第一平面沿预置的平面坐标系的第一坐标轴进行横缝打印;
    识别模块,用于当所述打印喷头构件运动至第一平面的边界预设位置时,控制激光雷达进行墙角类型识别,得到对应的墙角类型,并根据所述墙角类型将所述打印喷头构件调整至第二目标位置;
    打印模块,用于控制所述打印喷头构件在第二平面进行接缝打印,并按照预设长度沿所述平面坐标系的第二坐标轴进行横缝打印。
  29. 一种计算机设备,所述计算机设备包括:存储器和至少一个处理器,所述存储器中存储有指令;
    所述至少一个处理器调用所述存储器中的所述指令,以使得所述计算机设备执行如权利要求1-17中任意一项所述的作业机器人系统的控制方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,所述指令被处理器执行时实现如权利要求1-17中任一项所述的作业机器人系统的控制方法。
PCT/CN2022/115695 2022-03-04 2022-08-30 作业机器人系统及其控制方法、计算机设备及存储介质 WO2023165103A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210206889.3 2022-03-04
CN202210206891.0A CN116695998A (zh) 2022-03-04 2022-03-04 横缝接缝方法、装置、设备及存储介质
CN202210206891.0 2022-03-04
CN202210207252.6 2022-03-04
CN202210207252.6A CN116696006A (zh) 2022-03-04 2022-03-04 墙体分格缝的绘制方法和打印机器人
CN202210206889.3A CN116690645A (zh) 2022-03-04 2022-03-04 高空作业机器人的定位系统及主系统

Publications (1)

Publication Number Publication Date
WO2023165103A1 true WO2023165103A1 (zh) 2023-09-07

Family

ID=87882872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115695 WO2023165103A1 (zh) 2022-03-04 2022-08-30 作业机器人系统及其控制方法、计算机设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023165103A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117907435A (zh) * 2024-03-20 2024-04-19 深圳市中科建设集团有限公司 一种建筑外墙裂缝检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106269359A (zh) * 2016-08-05 2017-01-04 广东银洋环保新材料有限公司 一种墙面喷涂打印系统及其喷涂方法
US20180318865A1 (en) * 2017-05-05 2018-11-08 John M. Harvison Autonomous painting robot
CN109318605A (zh) * 2018-10-31 2019-02-12 利生活(上海)智能科技有限公司 建筑外立面智能化打印机器人及其打印方法
CN209992862U (zh) * 2019-06-04 2020-01-24 厦门华蔚物联网科技有限公司 一种自动测量机器人坐标位置的系统
KR102088903B1 (ko) * 2019-04-03 2020-03-13 주식회사 로보프린트 도포 장치
CN111364736A (zh) * 2020-04-09 2020-07-03 利生活(上海)智能科技有限公司 一种具备定位功能的建筑外墙喷涂装置
CN112191408A (zh) * 2020-10-20 2021-01-08 贵州溪和谷大数据科技有限责任公司 一种外墙全自动喷涂智能设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106269359A (zh) * 2016-08-05 2017-01-04 广东银洋环保新材料有限公司 一种墙面喷涂打印系统及其喷涂方法
US20180318865A1 (en) * 2017-05-05 2018-11-08 John M. Harvison Autonomous painting robot
CN109318605A (zh) * 2018-10-31 2019-02-12 利生活(上海)智能科技有限公司 建筑外立面智能化打印机器人及其打印方法
KR102088903B1 (ko) * 2019-04-03 2020-03-13 주식회사 로보프린트 도포 장치
CN209992862U (zh) * 2019-06-04 2020-01-24 厦门华蔚物联网科技有限公司 一种自动测量机器人坐标位置的系统
CN111364736A (zh) * 2020-04-09 2020-07-03 利生活(上海)智能科技有限公司 一种具备定位功能的建筑外墙喷涂装置
CN112191408A (zh) * 2020-10-20 2021-01-08 贵州溪和谷大数据科技有限责任公司 一种外墙全自动喷涂智能设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117907435A (zh) * 2024-03-20 2024-04-19 深圳市中科建设集团有限公司 一种建筑外墙裂缝检测装置
CN117907435B (zh) * 2024-03-20 2024-05-28 深圳市中科建设集团有限公司 一种建筑外墙裂缝检测装置

Similar Documents

Publication Publication Date Title
WO2023165103A1 (zh) 作业机器人系统及其控制方法、计算机设备及存储介质
EP3469974B1 (en) Cooperative work system formed by mother robot and child robot, and operation method thereof
EP3960961A1 (en) Spraying robot, control method, and computer readable storage medium
CN110017012B (zh) 喷涂机器人、控制方法及计算机可读存储介质
CN107943073A (zh) 无人机起降方法、设备、系统及无人机
TWI626191B (zh) 無人機及其目標追蹤方法與裝置
US9037336B2 (en) Robot system
CN105563450B (zh) 一种船舶立面作业多功能爬行机器人
US20190130773A1 (en) Obstacle avoidance method and device, moveable object and computer readable storage medium
KR101071109B1 (ko) 벽 등반 인쇄 방법 및 시스템
CN111350361B (zh) 一种砌筑方法、砌筑系统及砌筑机器人
JP7156896B2 (ja) 昇降路内計測システム
KR102356752B1 (ko) 모바일 로봇의 초기화 진단 방법 및 시스템
CN110014437B (zh) 喷涂机器人及控制方法和控制装置、计算机可读存储介质
WO2021248844A1 (zh) 一种回充对接系统及激光对接方法
WO2023103326A1 (zh) 控制方法、机器人、机器人充电座及计算机可读存储介质
WO2022001760A1 (zh) 一种基于5g技术的远程可监控多轴协同智能控制器
CN116018304A (zh) 飞行机器人
CN112922282A (zh) 建筑墙面浆料自动喷涂机器人系统及自动喷涂方法
CN210426862U (zh) 一种喷水压力测量装置
KR102342189B1 (ko) 자율주행 로봇을 이용한 바닥 마감재 설치 시스템
WO2022248124A1 (en) An autonomous unmanned aerial vehicle for inspection of a vertical building passageway
US11541552B2 (en) Control device controlling robot and robot system
CN113338587A (zh) 建筑墙面浆料自动喷涂系统及自动喷涂方法
CN116696006A (zh) 墙体分格缝的绘制方法和打印机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929534

Country of ref document: EP

Kind code of ref document: A1