WO2023165077A1 - 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用 - Google Patents

基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023165077A1
WO2023165077A1 PCT/CN2022/109310 CN2022109310W WO2023165077A1 WO 2023165077 A1 WO2023165077 A1 WO 2023165077A1 CN 2022109310 W CN2022109310 W CN 2022109310W WO 2023165077 A1 WO2023165077 A1 WO 2023165077A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenazine
activated delayed
acceptor
bispyrido
preparation
Prior art date
Application number
PCT/CN2022/109310
Other languages
English (en)
French (fr)
Inventor
李艳青
周经雄
曾馨逸
唐建新
唐艳青
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023165077A1 publication Critical patent/WO2023165077A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of organic electroluminescent materials, in particular to an industrializable thermally activated delayed fluorescent material with good performance and an electroluminescent device thereof.
  • OLEDs organic light-emitting devices
  • the first-generation light-emitting device OLED based on conventional fluorescent materials shows an internal quantum efficiency (IQE) as high as 25%.
  • IQE internal quantum efficiency
  • Phosphorescent materials can utilize singlet and triplet excitons through a strong spin-orbit coupling effect with the help of heavy metals, and increase the IQE. to 100%.
  • phosphorescent materials have shown high efficiency and have been successfully used in commercial OLED products, there is a disadvantage in terms of cost.
  • thermally activated delayed fluorescence (TADF) materials Compared with phosphorescent complexes, thermally activated delayed fluorescence (TADF) materials have significant resource advantages and lower costs due to the absence of metal elements. TADF materials can also achieve 100% IQE by converting triplet excitons from the lowest triplet excited state (T 1 ) to the singlet excited state (S 1 ) through inverse intersystem crossing into photons, which can be compared with phosphorescence devices are comparable. Thus, in the past few years, great attention has been drawn in the field of organic electroluminescence.
  • the invention discloses a thermally activated delayed fluorescence red light material based on bispyrido[3,2-a:2',3'-c]phenazine acceptor and a preparation method thereof, based on bispyrido[3, 2-a: Thermal activation of 2',3'-c]phenazine acceptors
  • the chemical name of the delayed fluorescence red light material is 11-(9,9-dimethylacridin-10(9H)-yl)linked Pyridin[3,2-a:2',3'-c]phenazine (abbreviated as DPPZ-DMAC) or 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bis Pyridine[3,2-a:2',3'-c]phenazine (abbreviated as DPPZ-2DMAC).
  • the existing orange-red/red-light TADF materials have fewer types, poor solubility, and difficulty in achieving high efficiency; especially, the TADF-OLED prepared by doping the light-emitting layer with the orange-red thermally activated delayed fluorescent material, its The device EQE exceeds 27%, and the wavelength exceeds 590 nm.
  • the present invention adopts the following technical scheme: a thermally activated delayed fluorescent material based on bispyrido[3,2-a:2',3'-c]phenazine acceptor, the chemical structural formula of which is as follows: .
  • the invention discloses a method for preparing the above-mentioned heat-activated delayed fluorescence based on bispyrido[3,2-a:2',3'-c]phenazine acceptor, comprising the following steps: using 11-fluorobipyrido[3, 2-a: 2',3'-c]phenazine and 9,9-dimethyl-9,10-dihydroacridine were used as raw materials to prepare DPPZ-DMAC; 11,12-fluorobipyridine[3 ,2-a: 2',3'-c]phenazine and 9,9-dimethyl-9,10-dihydroacridine were used as raw materials to prepare DPPZ-2DMAC by reaction.
  • the molar ratio of (6-oxo-1,10-phenanthroline-5(6H)-subphyllin)oxyketone to 4-fluorobenzene-1,2-diamine is 1:1.1 ⁇ 1.2 ;
  • the molar ratio of (6-oxo-1,10-phenanthroline-5(6H)-subphyllin)oxyketone to 4,5-difluorobenzene-1,2-diamine is 1:1.1 ⁇ 1.2; the reaction is carried out in an organic solvent, the reaction temperature is 90-100°C, and the reaction time is 4-8 h.
  • the molar ratio of 11-fluorobipyridino[3,2-a:2',3'-c]phenazine to 9,9-dimethyl-9,10-dihydroacridine is 1:1.1 ⁇ 1.2;
  • the molar ratio of 11,12-fluorobipyridino[3,2-a:2',3'-c]phenazine to 9,9-dimethyl-9,10-dihydroacridine is 1: 1.1-1.2;
  • the reaction is carried out in the presence of an alkali catalyst under nitrogen protection, the reaction temperature is 100-140 °C, and the reaction time is 12-30 h.
  • the invention discloses the application of the thermally activated delayed fluorescence based on bispyrido[3,2-a:2',3'-c]phenazine acceptor in the preparation of organic electroluminescent devices or in the preparation of organic electroluminescent Application in the light-emitting layer of the device; the organic electroluminescent device is a red or orange-red organic electroluminescent device.
  • the thermally activated delayed fluorescence based on bispyrido[3,2-a:2',3'-c]phenazine acceptor is used as a guest material doped in a host material as a light-emitting layer, preferably, the The doping concentration of the thermally activated delayed fluorescence based on bispyrido[3,2-a:2',3'-c]phenazine acceptor is 1-15 wt%, preferably 2-10 wt%.
  • the present invention provides a novel synthesis and preparation method of a thermally activated delayed fluorescence red light material based on bispyrido[3,2-a:2',3'-c]phenazine acceptor; and based on the bispyridine-based [3,2-a:2',3'-c] phenazine receptor thermally activated delayed fluorescence red light material OLED, to achieve the goal of its EQE exceeding 25%; to solve the problem based on bispyrido[3 ,2-a:2',3'-c]Phenazine acceptor thermally activated delayed fluorescence red light materials are difficult to synthesize and prepare, there are few types of materials, and the efficiency of delayed fluorescence devices is low; at the same time, it solves the existing orange-red light/red There are many steps in the synthesis and preparation of TADF materials, expensive raw materials, complex synthesis and purification processes, low yields, and difficulty in mass production.
  • the organic electroluminescent device formed by the thermally activated delayed fluorescence red light material based on the bispyrido[3,2-a:2',3'-c]phenazine acceptor of the present invention and Other raw materials are not particularly limited.
  • the organic thin film formed by the invention has high surface smoothness, stable chemical and physical properties and high luminous efficiency, and the formed organic electroluminescent device has good performance.
  • the beneficial effects of the present invention are as follows: 1. 11-(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phene provided by the present invention oxazine (DPPZ-DMAC) and 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine ( DPPZ-2DMAC) thermally activated delayed fluorescent material has the characteristics of rigid large planar twisted structure and significant internal charge transfer (ICT), has thermally activated delayed fluorescent properties (TADF) properties, high fluorescence quantum yield (PLQY), thermal stability Good and other advantages.
  • ICT internal charge transfer
  • TADF thermally activated delayed fluorescent properties
  • PLQY high fluorescence quantum yield
  • the heat-activated delayed fluorescence synthesis based on bispyrido[3,2-a:2',3'-c]phenazine receptor provided by the present invention has few preparation steps, easy to obtain raw materials, simple synthesis and purification process, and high yield High efficiency, large-scale synthetic preparation.
  • the organic electroluminescent device based on it has a good application prospect in the fields of lighting, flat panel display and the like.
  • the thermally activated delayed fluorescence red light material device based on bispyrido[3,2-a:2',3'-c]phenazine acceptor provided by the present invention, it has low driving voltage and good luminescence stability Among them, the turn-on voltage of the device based on DPPZ-DMAC is as low as 2.6 V, and the external quantum efficiency EQE of the two material devices is as high as 27.8% and 12.9%, respectively.
  • Fig. 1 is the NMR spectrum of the compound DPPZ-DMAC prepared in Example 1.
  • Fig. 2 is the C NMR spectrum of the compound DPPZ-DMAC prepared in Example 1.
  • Fig. 3 is the mass spectrum of the compound DPPZ-DMAC prepared in Example 1.
  • Fig. 4 is the H NMR spectrum of the compound DPPZ-2DMAC prepared in Example 2.
  • Fig. 5 is the C NMR spectrum of the compound DPPZ-2DMAC prepared in Example 2.
  • Fig. 6 is the mass spectrum of the compound DPPZ-2DMAC prepared in Example 2.
  • the raw materials involved in the present invention are conventional commercially available products, and the specific operation methods and testing methods are conventional methods in the art;
  • the specific preparation process of the organic electroluminescent device and the materials of each layer of the thermally activated delayed fluorescence red light material of the body are existing technologies, such as vacuum evaporation, the vacuum degree is ⁇ 2 ⁇ 10 -4 Pa, and the deposition rate of the functional layer is 2 ⁇ /s, the deposition rate of the host material is 1 ⁇ /s, the deposition rate of the LiF layer is 0.1 ⁇ /s, and the deposition rate of Al is 8 ⁇ /s.
  • the inventiveness of the present invention lies in providing a new heat-activated delayed fluorescent material, which is used as a red or orange light-emitting layer of an organic electroluminescence device by doping with a host material.
  • the invention provides two thermally activated delayed fluorescent materials 11-(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine ( DPPZ-DMAC) and 11,12-bis(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ- 2DMAC).
  • DPPZ-DMAC thermally activated delayed fluorescent materials 11-(9,9-dimethylacridin-10(9H)-yl)bipyridyl[3,2-a:2',3'-c]phenazine
  • the preparation method of the thermally activated delayed fluorescent material based on the bispyrido[3,2-a:2',3'-c]phenazine acceptor of the present invention is as follows.
  • 11-fluorobipyridino[3,2-a:2',3'-c]phenazine (or 11,12-fluorobipyridino[3,2-a:2',3'-c]phenazine)
  • the molar ratio of 9,9-dimethyl-9,10-dihydroacridine is 1:1.2 (or 1:2.4) for reaction; the reaction is carried out in the presence of NaH and nitrogen protection; the reaction temperature is 100-140 °C, The reaction time is 12-24 h.
  • the reaction liquid is extracted, and then the organic phases are combined, and then filtered, separated and purified by column chromatography to obtain the thermally activated delayed fluorescent material 11-(9,9-dimethylacridine-10(9H)- base) bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-DMAC) and 11,12-bis(9,9-dimethylacridin-10(9H)-yl) Bipyridyl[3,2-a:2',3'-c]phenazine (DPPZ-2DMAC); preferably, the extraction solvent can be dichloromethane or chloroform.
  • the eluent used in column chromatography is composed of one of the less polar organic solvents such as petroleum ether, isopentane, n-pentane, hexane, and cyclohexane, mixed with another more polar organic solvent.
  • Ratio such as dichloromethane, chloroform, ethyl acetate, ethanol, etc., the volume ratio is 1:2 ⁇ 5.
  • the reaction can be shown as follows: .
  • 6-Oxo-1,10-phenanthroline-5(6H)-subphyllin) oxyketone (0.70 g, 3.31 mmol) and 4-fluorobenzene-1,2-diamine (0.46 g, 3.65 mmol) was dissolved in 50 mL ethanol.
  • the mixed solution was refluxed at 90 °C for 12 h under nitrogen atmosphere, and poured into ice water to stir after stopping the reaction. The precipitate was collected by filtration and washed with ethanol.
  • the crude product of DPPZ-F (0.81 g, 2.70 mmol) was obtained, which was directly used in the next reaction. The yield was 81.57%.
  • the crude product was further purified by column chromatography using dichloromethane (DCM) and ethanol (50/1, v/v) as the eluent to obtain orange-red solid DPPZ-DMAC (0.45 g, 0.92 mmol). The yield is 34.55%.
  • the eluent used in column chromatography is petroleum ether and ethanol in a volume ratio of 1:3.
  • Fig. 1 is the proton nuclear magnetic spectrum of the compound DPPZ-DMAC obtained above;
  • Fig. 2 is the carbon nuclear magnetic spectrum of the compound DPPZ-DMAC obtained above;
  • 6-Oxo-1,10-phenanthroline-5(6H)-subphyllin) oxyketone (0.70 g, 3.31 mmol) and 4,5-difluorobenzene-1,2-diamine (0.57 g, 7.94 mmol) was dissolved in 50 mL ethanol.
  • the mixed solution was refluxed at 90 °C under a nitrogen atmosphere, and a large amount of precipitation appeared after 12 h.
  • the mixture was cooled to room temperature, and the precipitate was collected by filtration and washed with ethanol to give DPPZ-2F as a solid (0.95 g, 2.98 mmol), which was used without further purification.
  • the yield was 90.03%.
  • the crude product was further purified by column chromatography with dichloromethane (DCM) and ethanol (50/1, v/v) as the eluent to obtain an orange solid (1.43 g, 2.05 mmol). The yield was 72.44%.
  • the eluent used in column chromatography is petroleum ether and ethanol in a volume ratio of 1:3.
  • Fig. 4 is the proton nuclear magnetic spectrum of the compound DPPZ-2DMAC obtained above;
  • Fig. 5 is the carbon nuclear magnetic spectrum of the compound DPPZ-2DMAC obtained above;
  • Fabrication and performance evaluation of organic electroluminescent devices doped with DPPZ-DMAC as the light-emitting layer (1) Pretreatment of glass anode: select indium tin oxide (ITO) glass (3 ⁇ 3 mm) as the transparent electrode and the substrate; the glass substrate is cleaned with ethanol, and then treated with UV-ozone to obtain a pretreated glass substrate; (2) Vacuum evaporation: each method is carried out on the pretreated glass substrate by vacuum evaporation.
  • ITO indium tin oxide
  • the device structure is as follows: ITO/HATCN (10 nm)/TAPC (45 nm)/TCTA ( 10 nm)/CBP: TADF material (X wt%) (25 nm)/B3PYMPM (50 nm)/LiF (1 nm)/Al (100 nm); specific evaporation of each layer is a conventional technology, and X% is TADF material
  • the doping mass ratio of TADF is specifically the mass percentage of TADF in the light-emitting layer;
  • device packaging the fabricated organic electroluminescent device is sealed in a nitrogen atmosphere glove box with a water oxygen concentration below 1 ppm, and then used with The epoxy-type ultraviolet curing resin glass sealing cover covers the film-forming substrate and is sealed by ultraviolet curing; the specific packaging is a conventional technology.
  • a DC current was applied to the fabricated organic electroluminescent device, and the PhotoResearch PR655 luminance meter was used to evaluate the luminous performance; a computer-controlled Keithley 2400 digital source meter was used to measure the current-voltage characteristics.
  • the luminescent properties of the organic electroluminescent device are measured under the condition of changing the applied DC voltage. The performance of the device is shown in Table 2 and Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明涉及一种基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光材料及其制备方法,为11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)和11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)。本发明所提供的化合物具有刚性大平面扭曲结构和极小的单线态-三线态能隙值的特点,具有典型的热激活延迟荧光性质(TADF)、高荧光量子产率(PLQY)和良好的热稳定性等优点。且其合成制备步骤少,原料易得,合成及纯化工艺简单,产率高,可大规模合成制备。

Description

基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用 技术领域
本发明涉及有机电致发光材料领域,尤其涉及一种可工业化、性能好的热激活延迟荧光材料及其电致发光器件。
背景技术
由于低功耗、抗震、柔性、高效率和高亮度的独特优势,有机发光器件(OLED)在显示和固态照明领域越来越突出。基于常规荧光材料的第一代发光器件OLED显示内部量子效率(IQE)高达25%,磷光材料可以在重金属的帮助下通过强自旋轨道耦合效应利用单线态和三线态激子,并将 IQE 提高到 100%。虽然磷光材料显示出高效率并已成功应用于商业OLED产品,但成本问题存在劣势。与磷光配合物相比,热激活延迟荧光(TADF)材料由于不存在金属元素而具有显着的资源优势和较低的成本。TADF材料可以通过将三线态激子通过从最低三重激发态(T 1)通过逆系间穿越到单重激发态(S 1)上,转化成光子而使IQE也可达到100%,可与磷光器件相媲美。因而在过去几年,在有机电致发光领域引起了极大的关注。
近年来,橙红色TADF发射器引起了极大的兴趣。现有技术中, TADF材料通常伴随着强烈的非辐射过程和小的Φ PL值。此外,红色TADF材料存在严重的浓度猝灭效应。因此,现有TADF材料很难实现良好的外部量子效率(EQE)。通过创新的分子设计进一步开发长波长TADF材料仍然是一个巨大的挑战。
技术问题
本发明公开了一种基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料及其制备方法,基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料的化学名称为11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(简称为DPPZ-DMAC)或者11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(简称为DPPZ-2DMAC)。用以解决现有橙红光/红光TADF材料种类较少,溶解性较差,难以实现高效率的问题;尤其是,该橙红光热激活延迟荧光材料掺杂发光层制备的TADF-OLED,其器件EQE超过27%,波长超过590 nm。
技术解决方案
本发明采用如下技术方案:一种基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光材料,其化学结构式如下:
本发明公开了上述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的制备方法,包括以下步骤:以11-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶为原料,反应制备DPPZ-DMAC;以11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶为原料,反应制备DPPZ-2DMAC。具体的,以(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4-氟苯-1,2-二胺为原料,反应制备11-氟双吡啶[3,2-a:2',3'-c]吩嗪;以(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4,5-二氟苯-1,2-二胺为原料,反应制备11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪。优选的,(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4-氟苯-1,2-二胺的摩尔比为1∶1.1~1.2;(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4,5-二氟苯-1,2-二胺的摩尔比为1∶1.1~1.2;所述反应在有机溶剂下进行,反应的温度为90~100℃,反应的时间为4~8 h。
本发明中,11-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶的摩尔比为1∶1.1~1.2;11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶的摩尔比为1∶1.1~1.2;所述反应在碱催化剂存在下、氮气保护下进行,反应的温度为100~140 ℃,反应的时间为12~30 h。
本发明公开了上述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光在制备有机电致发光器件中的应用或者在制备有机电致发光器件发光层中的应用;所述有机电致发光器件为红光或者橙红色有机电致发光器件。具体的,所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光作为客体材料掺杂在主体材料作为发光层,优选的,所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的掺杂浓度为1~15 wt%,优选为2~10wt%。
本发明提供一种新型基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料的合成制备方法;以及基于所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料的OLED,实现其EQE超过25%的目标;用以解决基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料合成制备难、材料种类少、延迟荧光器件效率低的难题;同时解决现有橙红光/红光TADF材料合成制备步骤多,原料昂贵,合成及纯化工艺复杂,产率不高,难于大规模量产的问题。
对于本发明所述的基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料所形成的有机电致发光器件的制备方法以及其他原料没有特殊的限制。利用本发明所形成的有机薄膜具有高表面光滑性、化学物理性质稳定、高发光效率,所形成的有机电致发光器件性能良好。
有益效果
本发明有益效果如下:1. 本发明提供的11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)和11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)热激活延迟荧光材料具有刚性大平面扭曲结构和显著的内电荷转移(ICT)的特点,具有热激活延迟荧光性质(TADF)性质,高荧光量子产率(PLQY)、热稳定性好等优点。
2. 本发明提供的基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光合成制备步骤少,原料易得,合成及纯化工艺简单,产率高,可大规模合成制备。基于其的有机电致发光器件在照明、平板显示等领域具有很好的应用前景。
3. 基于本发明提供的基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料器件,具有驱动电压低,发光稳定性好的优点,其中基于DPPZ-DMAC制备的器件的开启电压低至2.6 V,两个材料器件的外量子效率EQE分别高达27.8%和12.9%。
附图说明
图1是实施例1制备所得的化合物DPPZ-DMAC的核磁氢谱。
图2是实施例1制备所得的化合物DPPZ-DMAC的核磁碳谱。
图3是实施例1制备所得的化合物DPPZ-DMAC的质谱。
图4是实施例2制备所得的化合物DPPZ-2DMAC的核磁氢谱。
图5是实施例2制备所得的化合物DPPZ-2DMAC的核磁碳谱。
图6是实施例2制备所得的化合物DPPZ-2DMAC的质谱。
本发明的实施方式
本发明涉及的原料都为常规市售产品,具体操作方法以及测试方法为本领域常规方法;尤其基于本发明基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的红光材料的有机电致发光器件的具体制备过程以及各层材料为现有技术,比如真空蒸镀,真空度≤2×10 -4Pa,功能层沉积速率为2Å/s,主体材料的沉积速率为1Å/s,LiF层沉积速率为0.1Å/s,Al的沉积速率8Å/s。本发明的创造性在于提供新的热激活延迟荧光材料,掺杂主体材料共同用作有机电致发光器件的红色或者橘红色发光层。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明提供两种热激活延迟荧光材料11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)和11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC)。结构式如下所示:
本发明基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光材料的制备方法如下。
以6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4-氟苯-1,2-二胺(或4,5-二氟苯-1,2-二胺)为原料,反应制备得到11-氟双吡啶[3,2-a:2',3'-c]吩嗪(或11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪);反应完毕后,将反应液直接抽滤得大量固体,粗产物用乙醇不断淋洗,得到11-氟双吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-F),或11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2F)。反应可示意如下:
11-氟双吡啶[3,2-a:2',3'-c]吩嗪(或11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪)、9,9-二甲基-9,10-二氢吖啶的摩尔比1:1.2(或1:2.4)反应;反应在NaH存在下、氮气保护下进行;反应的温度为100~140 ℃,反应的时间为12~24 h。反应完毕后,萃取反应液,然后合并有机相,再抽滤,经过柱层析分离纯化,得到所述热激活延迟荧光材料11-(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-DMAC)和11,12-双(9,9-二甲基吖啶-10(9H)-基)联吡啶[3,2-a:2',3'-c]吩嗪(DPPZ-2DMAC);优选的,萃取溶剂可以是二氯甲烷或三氯甲烷。柱层析采用洗脱剂是由石油醚、异戊烷、正戊烷、己烷、环己烷等极性较小的有机溶剂中的一种与另一种极性较大的有机溶剂配比而成,如二氯甲烷、三氯甲烷、乙酸乙酯、乙醇等,其体积比为1:2~5。反应可示意如下:
实施例1。
 。
将6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮(0.70 g, 3.31 mmol)和4-氟苯-1,2-二胺 (0.46 g, 3.65 mmol) 溶于50 mL乙醇中。将混合溶液在90℃、氮气气氛下回流12 h,停止反应后倒入冰水中搅拌。沉淀物通过过滤收集,用乙醇洗涤。得到DPPZ-F粗产物(0.81 g, 2.70 mmol),直接用于下一步反应。收率为81.57%。
9,9-二甲基-9,10-二氢吖啶(0.67 g, 3.20 mmol)溶于10 ml N,N-二甲基甲酰胺(DMF)中;然后在冰水浴下,氮气氛围中,将0.09 g (3.83 mmol)的氢化钠加入到溶液中,搅拌30分钟,再加入DPPZ-F (0.80 g, 2.66 mmol);然后在90℃加热24小时后,将反应混合物倒入冰水中。沉淀物通过过滤收集,用水清洗。粗产物以二氯甲烷(DCM)和乙醇(50/1,v/v)为洗脱液,柱层析进一步纯化得到橘红色固体DPPZ-DMAC (0.45 g, 0.92 mmol)。收率为34.55%。柱层析采用洗脱剂是由石油醚、乙醇,其体积比为1∶3。
图1是上述所得的化合物DPPZ-DMAC的核磁氢谱;图2是上述所得的化合物DPPZ-DMAC的核磁碳谱;图3是上述所得的化合物DPPZ-DMAC的质谱;化合物DPPZ-DMAC结构检测具体如下: 1H NMR (400 MHz, DMSO) δ 9.58-9.50 (m, 2H), 9.28 – 9.21 (m, 2H), 8.64 (d, J = 8.9 Hz, 1H), 8.44 (d, J = 2.2 Hz, 1H), 8.05 – 7.91 (m, 3H), 7.58 (dd, J = 7.4, 1.8 Hz, 2H), 7.02 (pd, J = 7.2, 1.5 Hz, 4H), 6.45 (dd, J = 7.8, 1.4 Hz, 2H), 1.70 (s, 6H). 13C NMR (101 MHz, CDCl 3) δ 152.78, 152.70, 148.36, 148.28, 143.65, 143.53, 141.86, 141.45, 141.39, 140.54, 133.99, 133.65, 132.35, 131.33, 130.63, 127.54, 127.45, 126.50, 125.40, 124.36, 121.53, 114.91, 36.25, 30.90. MALDI-TOF-MS: m/z: calculated for C33H23N5: 489.20 (100%), found:490.19。
实施例2:  。
将6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮 (0.70 g, 3.31 mmol) 和4,5-二氟苯-1,2-二胺 (0.57 g, 7.94 mmol)溶于50 mL乙醇中。混合溶液在90℃、氮气气氛下回流,12 h后出现大量沉淀。将混合物冷却至室温,过滤收集沉淀,用乙醇洗涤得到DPPZ-2F固体(0.95 g, 2.98 mmol),无需进一步纯化即可使用。收率为90.03%。
9,9-二甲基-9,10-二氢吖啶(0.67 g, 3.20 mmol)溶于10 ml N,N-二甲基甲酰胺(DMF)中。然后在冰水浴下,氮气氛围中,将0.09 g (3.83 mmol)的氢化钠加入到溶液中,搅拌30分钟,再加入DPPZ-2F (0.90 g, 2.83 mmol),然后在90℃加热24小时后,将反应混合物倒入冰水中。沉淀物通过过滤收集,用水清洗。粗产物以二氯甲烷(DCM)和乙醇(50/1,v/v)为洗脱液,柱层析进一步纯化得到橘红色固体(1.43 g, 2.05 mmol)。收率为72.44%。柱层析采用洗脱剂是由石油醚、乙醇,其体积比为1∶3。
图4是上述所得的化合物DPPZ-2DMAC的核磁氢谱;图5是上述所得的化合物DPPZ-2DMAC的核磁碳谱;图6是上述所得的化合物DPPZ-2DMAC的质谱;化合物DPPZ-2DMAC结构检测具体如下: 1H NMR (400 MHz, CDCl 3) δ 9.67 (dd, J = 8.1, 1.7 Hz, 2H), 9.34 (dd, J = 4.4, 1.7 Hz, 2H), 8.82 (s, 2H), 7.84 (dd, J = 8.1, 4.5 Hz, 2H), 7.27 (d, J = 1.5 Hz, 2H), 7.25 (d, J = 1.5 Hz, 2H), 6.80-6.69 (m, 8H), 6.55 (dd, J = 8.2, 1.1 Hz, 4H), 1.32 (s, 12H). 13C NMR (101 MHz, CDCl 3) δ 153.02, 148.51, 143.17, 142.39, 142.12, 139.20, 136.41, 134.17, 130.32, 127.42, 125.78, 125.68, 124.51, 121.14, 114.46, 35.64, 30.95. MALDI-TOF-MS: m/z: calculated for C 33H 23N 5: 697.41 (100%), found: 696.30。
由上述检测结果可知,化合物DPPZ-DMAC和DPPZ-2DMAC的结构正确。化合物的物理性质见表1。
以下通过应用实施例说明本发明合成的化合物在器件中作为发光层材料的应用效果。
应用实施例:掺杂DPPZ-DMAC为发光层的有机电致发光器件的制作与性能评价:(1)玻璃阳极的预处理:选取氧化铟锡(ITO)玻璃(3×3 mm)作为透明电极及基板;用乙醇将玻璃基板洗净后,再用UV-臭氧进行处理,得到预处理的玻璃基板;(2)真空蒸镀:在所述预处理的玻璃基板上用真空蒸镀法进行各层的真空蒸镀,将处理后的玻璃基板放入真空蒸镀腔内,真空度≤2×10 -4Pa,器件结构如下:ITO/HATCN(10 nm)/TAPC(45 nm)/TCTA(10 nm)/CBP∶TADF材料(X wt%)(25 nm)/B3PYMPM(50 nm)/LiF(1 nm)/Al(100 nm);具体各层蒸镀为常规技术,X%为TADF材料的掺杂质量比,具体为TADF占发光层的质量百分数;(3)器件封装:将制作好的有机电致发光器件密封在水氧浓度1 ppm以下的氮气氛围手套箱内,然后使用带有环氧型紫外线固化树脂玻璃质的密封盖盖住上述成膜基板并紫外固化进行密封;具体封装为常规技术。
对所制作的有机电致发光器件施加直流电流,使用PhotoResearch PR655亮度计来评价发光性能;使用电脑控制的Keithley 2400型数字源表测量电流-电压特性。所述有机电致发光器件的发光性质是在外加直流电压变化的情况下进行测定的。器件性能见表2、表3。

Claims (10)

  1. 一种基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光材料,其特征在于:所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光材料为DPPZ-DMAC或者DPPZ-2DMAC。
  2. 权利要求1所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的制备方法,其特征在于,包括以下步骤:以11-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶为原料,反应制备DPPZ-DMAC;以11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶为原料,反应制备DPPZ-2DMAC。
  3. 根据权利要求2所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的制备方法,其特征在于,以(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4-氟苯-1,2-二胺为原料,反应制备11-氟双吡啶[3,2-a:2',3'-c]吩嗪;以(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4,5-二氟苯-1,2-二胺为原料,反应制备11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪。
  4. 根据权利要求3所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的制备方法,其特征在于,(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4-氟苯-1,2-二胺的摩尔比为1∶1.1~1.2;(6-氧代-1,10-邻菲罗啉-5(6H)-亚叶状)氧酮和4,5-二氟苯-1,2-二胺的摩尔比为1∶1.1~1.2;所述反应在有机溶剂下进行,反应的温度为90~100℃,反应的时间为4~8 h。
  5. 根据权利要求2所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的制备方法,其特征在于,11-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶的摩尔比为1∶1.1~1.2;11,12-氟双吡啶[3,2-a:2',3'-c]吩嗪和9,9-二甲基-9,10-二氢吖啶的摩尔比为1∶1.1~1.2;所述反应在碱催化剂存在下、氮气保护下进行,反应的温度为100~140 ℃,反应的时间为12~30 h。
  6. 根据权利要求2所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的制备方法,其特征在于,反应完毕后,萃取反应液,然后合并有机相,再抽滤,得到所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光。
  7. 权利要求1所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光在制备有机电致发光器件中的应用。
  8. 权利要求1所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光在制备有机电致发光器件发光层中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光作为客体材料掺杂在主体材料作为发光层。
  10. 根据权利要求9所述的应用,其特征在于,所述基于双吡啶并[3,2-a:2',3'-c]吩嗪受体的热激活延迟荧光的掺杂浓度为1~15 wt%。
PCT/CN2022/109310 2022-03-01 2022-07-31 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用 WO2023165077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210195894.9A CN114644632B (zh) 2022-03-01 2022-03-01 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用
CN202210195894.9 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023165077A1 true WO2023165077A1 (zh) 2023-09-07

Family

ID=81993733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109310 WO2023165077A1 (zh) 2022-03-01 2022-07-31 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114644632B (zh)
WO (1) WO2023165077A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649489B (zh) * 2022-03-01 2024-02-02 苏州大学 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件
CN114644632B (zh) * 2022-03-01 2023-06-16 苏州大学 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735855A (zh) * 2021-09-08 2021-12-03 苏州大学 一种深红/近红外光热激活延迟荧光材料及其制备方法与在有机电致发光材料中的应用
CN113896719A (zh) * 2021-11-18 2022-01-07 姚明明 一类纯有机高激子利用率荧光小分子及应用
CN114605412A (zh) * 2022-03-01 2022-06-10 苏州大学 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件
CN114644632A (zh) * 2022-03-01 2022-06-21 苏州大学 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用
CN114649489A (zh) * 2022-03-01 2022-06-21 苏州大学 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104650040B (zh) * 2015-02-14 2017-03-08 上海道亦化工科技有限公司 一种吩嗪类衍生物的有机电致发光化合物
CN106749243B (zh) * 2017-01-06 2019-06-07 上海天马有机发光显示技术有限公司 双偶极化合物、包含其的发光层主体材料、oled显示面板和电子设备
CN109232661B (zh) * 2018-10-23 2021-03-02 常州大学 一类聚集诱导发光和压致变色发光的近红外离子型铱(iii)配合物及应用
CN109678844B (zh) * 2019-02-02 2021-04-27 苏州科技大学 一种橙红光热激活延迟荧光材料及有机电致发光器件
CN110028506B (zh) * 2019-04-30 2021-10-15 黑龙江大学 二吡啶并吩嗪基红/橙光热激发延迟荧光材料、合成方法及其应用
CN110229154A (zh) * 2019-05-16 2019-09-13 武汉华星光电半导体显示技术有限公司 电致发光材料、电致发光材料的制备方法及发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735855A (zh) * 2021-09-08 2021-12-03 苏州大学 一种深红/近红外光热激活延迟荧光材料及其制备方法与在有机电致发光材料中的应用
CN113896719A (zh) * 2021-11-18 2022-01-07 姚明明 一类纯有机高激子利用率荧光小分子及应用
CN114605412A (zh) * 2022-03-01 2022-06-10 苏州大学 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件
CN114644632A (zh) * 2022-03-01 2022-06-21 苏州大学 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用
CN114649489A (zh) * 2022-03-01 2022-06-21 苏州大学 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JEE HYUN MAENG ET AL.: "Efficiency enhancement in orange red thermally activated delayed fluorescence OLEDs by using a rigid di-indolocarbazole donor moiety", DYES AND PIGMENTS, vol. 194, 25 June 2021 (2021-06-25), XP086730146, DOI: 10.1016/j.dyepig.2021.109580 *
KOTHAVALE SHANTARAM, CHUNG WON JAE, LEE JUN YEOB: "Color tuning of dibenzo[ a , c ]phenazine-2,7-dicarbonitrile-derived thermally activated delayed fluorescence emitters from yellow to deep-red", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 8, no. 21, 4 June 2020 (2020-06-04), GB , pages 7059 - 7066, XP093089416, ISSN: 2050-7526, DOI: 10.1039/D0TC00960A *
KOTHAVALE SHANTARAM, CHUNG WON JAE, LEE JUN YEOB: "Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 12, no. 16, 22 April 2020 (2020-04-22), US , pages 18730 - 18738, XP093089413, ISSN: 1944-8244, DOI: 10.1021/acsami.9b22826 *
SHANTARAM KOTHAVALE ET AL.: "Rational design of CN substituted dibenzo[a, c]phenazine acceptor for color tuning of thermally activated delayed fluorescent emitters", CHEMICAL ENGINEERING JOURNAL, vol. 431, 17 December 2021 (2021-12-17), XP086916521, DOI: 10.1016/j.cej.2021.134216 *
ZHOU CHANGJIANG, CHEN WEN-CHENG, LIU HE, CAO XIAOSONG, LI NENGQUAN, ZHANG YOUMING, LEE CHUN-SING, YANG CHULUO: "Isomerization enhanced quantum yield of dibenzo[ a,c ]phenazine-based thermally activated delayed fluorescence emitters for highly efficient orange OLEDs", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 8, no. 28, 23 July 2020 (2020-07-23), GB , pages 9639 - 9645, XP093089415, ISSN: 2050-7526, DOI: 10.1039/D0TC01995J *

Also Published As

Publication number Publication date
CN114644632B (zh) 2023-06-16
CN114644632A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Hua et al. Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza [6] helicene
JP5432147B2 (ja) 有機金属錯体誘導体およびこれを用いた有機発光素子
CN107021926A (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用
CN110467536A (zh) 含氮化合物、有机电致发光器件和光电转化器件
WO2023165077A1 (zh) 基于双吡啶并吩嗪受体的热激活延迟荧光材料及其制备方法与应用
CN107056783A (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在有机电致发光器件上的应用
CN114605412B (zh) 一种双吡啶吩嗪热激活延迟荧光材料掺杂的白光电致发光器件
CN114649489B (zh) 一种基于双吡啶吩嗪热激活延迟荧光材料的红光电致发光器件
WO2019056932A1 (zh) 咪唑衍生物、包含该咪唑衍生物的材料和有机电致发光器件
Wu et al. Two thermally stable and AIE active 1, 8-naphthalimide derivatives with red efficient thermally activated delayed fluorescence
Sun et al. Synthesis and characterization of heteroatom substituted carbazole derivatives: potential host materials for phosphorescent organic light-emitting diodes
CN110818675A (zh) 一类有机化合物及其应用
CN107021925B (zh) 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
CN110343048A (zh) 一种含有螺二苯并环庚烯芴结构的有机化合物及其应用
WO2019196948A1 (zh) 一种以芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN110526905B (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
CN110642732B (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN110551132A (zh) 一种含酮的化合物及其在有机电致发光器件上的应用
Li et al. Novel thieno-[3, 4-b]-pyrazine derivatives for non-doped red organic light-emitting diodes
CN110551112A (zh) 一种含二氰基吡嗪的化合物及其在有机电致发光器件上的应用
CN107337678A (zh) 一种用于有机电致发光器件的化合物
CN110343049B (zh) 一种以螺二苯并环庚烯芴为骨架的有机化合物及其应用
CN111423455A (zh) 一种并二噻吩并稠杂环类有机化合物及其应用
CN112480092A (zh) 一种以二苯基吖啶为核心的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929510

Country of ref document: EP

Kind code of ref document: A1