WO2023163480A1 - Inspection apparatus using terahertz waves - Google Patents

Inspection apparatus using terahertz waves Download PDF

Info

Publication number
WO2023163480A1
WO2023163480A1 PCT/KR2023/002443 KR2023002443W WO2023163480A1 WO 2023163480 A1 WO2023163480 A1 WO 2023163480A1 KR 2023002443 W KR2023002443 W KR 2023002443W WO 2023163480 A1 WO2023163480 A1 WO 2023163480A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected
reflector
light source
unit
terahertz wave
Prior art date
Application number
PCT/KR2023/002443
Other languages
French (fr)
Korean (ko)
Inventor
김장선
조수영
김이섭
고상주
김선재
박민우
안영환
Original Assignee
(주)팬옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)팬옵틱스 filed Critical (주)팬옵틱스
Publication of WO2023163480A1 publication Critical patent/WO2023163480A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to an apparatus for inspecting an object such as a semiconductor using terahertz waves.
  • a semiconductor chip is a core component required by computers, all electronic products, and information processing products, and performs arithmetic operations, information storage/transmission, and control of other chips.
  • the semiconductor chip may be implemented as a very miniaturized plastic packaging chip having a size of about 10X10mm 2 . Due to this, it is almost impossible for an inspector to visually identify defects such as cracks, peelings, and voids in packaged semiconductor chips.
  • a method using terahertz waves radiates terahertz electromagnetic waves to an object, and compares an electrical signal generated based on the terahertz electromagnetic waves reflected from the object with a reference signal to analyze the object.
  • An object of one embodiment of the present invention is to provide an apparatus for inspecting the structure or state of an object existing in a black box using terahertz waves.
  • a light source for irradiating a beam of a terahertz frequency band and a beam emitted from the light source are reflected to the object, and the object
  • the light reflected from the reflector for reflecting back toward the light source, the lens unit for focusing the beam reflected from the reflector to the object, the light receiver for receiving the beam reflected from the object, and analyzing the reflected beam received from the light receiver
  • a terahertz wave inspection device characterized in that it includes a control unit for controlling the operation.
  • the reflector is characterized in that implemented as a galvano mirror.
  • the inspection unit is characterized in that the conversion of the reflected beam received by the light receiving unit into a complex number dimension.
  • the inspection unit is characterized in that the amplitude function and phase function of the reflected beam is calculated using the reflected beam received by the light receiving unit and the reflected beam converted to a complex number dimension.
  • the inspection unit is characterized in that the structure or state of the object is inspected using the calculated phase function of the reflected beam.
  • the inspection unit is characterized in that to remove noise in the reflected beam signal.
  • the inspection unit is characterized in that the noise is removed by removing the phase information of the portion where the reflected beam signal does not exist.
  • the beam splitter is characterized in that it is disposed on the light path formed by the light source and the reflector.
  • the beam splitter is characterized in that the reflective surface is disposed toward the light receiving unit.
  • the structure or state of the object in that state using terahertz waves has the advantage of being able to inspect
  • FIG. 1 is a diagram showing the configuration of a terahertz wave inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a state in which a path of a beam output by a reflector according to an embodiment of the present invention changes.
  • FIG. 3 is a diagram showing the configuration of an inspection unit according to an embodiment of the present invention.
  • FIG. 4 is a graph showing phase information of an object for recognizing an object by an object recognition unit according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention.
  • the terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
  • each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not contradict each other technically.
  • FIG. 1 is a diagram showing the configuration of a terahertz wave inspection apparatus according to an embodiment of the present invention.
  • a terahertz wave inspection apparatus 100 includes a light source 110, a beam splitter 120, a reflector 130, a lens unit 140, a light receiving unit 160, It includes an inspection unit 170 and a control unit (not shown).
  • the terahertz wave inspection apparatus 100 irradiates a beam of a frequency band of terahertz (0.1 to several tens of THz) to an object, receives and analyzes a reflected beam reflected therefrom, and recognizes the structure or state of the object.
  • the terahertz wave inspection apparatus 100 extracts the amplitude and phase of the reflected beam, and recognizes the structure or state of the object from the extracted phase. Since the terahertz wave inspection apparatus 100 uses the phase of the reflected beam, even if the object is disposed in a black box or a separate (having a certain purpose) exterior material, even if the object is disposed in the exterior material, it is distinguished from the exterior material.
  • the structure or state of an object can be recognized.
  • the object to be inspected may be a semiconductor chip, but is not necessarily limited thereto, and may be replaced with any material that receives and reflects a beam of the terahertz frequency band.
  • the light source 110 radiates a terahertz frequency band beam to the reflector 130 .
  • the light source 110 generates a beam with a frequency of 0.1 to tens of terahertz (Hz) and a wavelength band of tens to hundreds of ⁇ m and irradiates the beam with the reflector 130 .
  • a beam irradiated onto an object is reflected to have a unique phase according to the structure or state of the object. Accordingly, the phase of the reflected beam may include information on the unique structure or state of the object.
  • the beam splitter 120 passes a beam traveling from the light source 110 to itself, but reflects a beam reflected from the reflector 130 and traveling towards itself.
  • the beam splitter 120 is disposed so that its reflective surface faces the light receiving unit 160 on the light path formed by the light source 110 and the reflector 130 . Accordingly, the beam splitter 120 passes the beam irradiated from the light source 110 to the reflector 130, and reflects the reflected beam reflected from the object and reflected from the reflector 130 to the light receiver 160.
  • the reflector 130 reflects a beam incident thereto at a predetermined angle.
  • the reflector 130 is disposed at a point of contact between the path between itself and the light source 110 and between itself and the object 155, and reflects a beam traveling on one path to the other path.
  • the reflector 130 reflects a beam irradiated from the light source 110 and incident to itself through the beam splitter 120 toward an object 155, and a beam reflected from the object 155 and incident to itself. is reflected toward the beam splitter 120.
  • the reflector 130 may adjust a reflection angle of an incident beam under the control of a controller (not shown). The operation of reflector 130 is shown in FIG. 2 .
  • FIG. 2 is a diagram illustrating a state in which a path of a beam output by a reflector according to an embodiment of the present invention changes.
  • the reflector 130 may adjust a reflection angle of an incident beam under the control of a controller (not shown). When the reflection angle of the reflector 130 is adjusted, a traveling path of a beam incident to the reflector 130 may be adjusted. 2a, the beam irradiated from the light source 110 by the reflector 130 may be irradiated to the center of the object 155, or may be irradiated to the end of the object 155 as shown in FIGS. 2b or 2c. In addition, the reflector 130 reflects the reflected beam reflected from the object 155 after being irradiated at the corresponding angle toward the beam splitter 120 .
  • the reflector 130 may adjust the angle of reflection under the control of a controller (not shown), so that beams may be incident to various positions of the object 155 .
  • the terahertz wave inspection apparatus 100 includes the reflector 130, so that the fixed object 155 can be scanned in two dimensions.
  • a conventional inspection device has been scanning while moving a cradle on which an object is mounted.
  • the terahertz wave inspection apparatus 100 includes a reflector 130 and adjusts an angle of the reflector 130 to perform two-dimensional scanning of an object without moving the cradle.
  • the reflector 130 may be implemented as a galvano mirror, but is not necessarily limited thereto, and may be replaced with anything as long as the reflection angle can be controlled.
  • the lens unit 140 focuses the beam reflected by the reflector 130 onto an object 155 .
  • the lens unit 140 is positioned between the reflector 130 and the light path of the object 155, and adjusts the path of the beam so that the beam reflected from the reflector 130 proceeds to the object 155 without being dispersed.
  • the lens unit 140 may be implemented as a single lens, but is not necessarily limited thereto, and may be implemented as a combination of a plurality of lenses.
  • the lens unit 140 may be implemented as an f- ⁇ lens or a collimator.
  • the light receiving unit 160 receives the reflected beam reflected from the target object 155 .
  • the light receiving unit 160 is implemented as an optical sensor and senses a reflected beam that is reflected from the object 155 and is incident thereon through the reflector 130 and the beam splitter 120 .
  • the inspecting unit 170 can recognize the structure or state of the object based on the sensed value.
  • the inspection unit 170 extracts phase information of the object from the reflected beam (sensing value) and inspects the structure or state of the object.
  • the inspection unit 170 converts the reflected beam into a complex dimension, and calculates the amplitude and phase of the reflected beam using the converted value.
  • the inspection unit 170 finally recognizes the structure or state of the object after removing the area where the object exists and the area where the object does not exist, that is, noise.
  • a specific configuration of the inspection unit 170 is shown in FIG. 3 .
  • FIG. 3 is a diagram showing the configuration of an inspection unit according to an embodiment of the present invention.
  • the inspection unit 170 includes a reflection beam conversion unit 310 , a noise removal unit 320 and an object recognition unit 330 .
  • the reflected beam conversion unit 310 converts the reflected beam into a complex number dimension.
  • a reflected beam sensed by the light receiver 160 corresponds to a real dimension.
  • the reflected beam conversion unit 310 goes through the following process and converts the real-dimensional reflected beam into a complex-numbered dimension.
  • the reflected beam conversion unit 310 converts the reflected beam into a complex number dimension based on the above equation, and obtains an amplitude function and a phase function of the reflected beam using the following equation.
  • A(t) is the amplitude function of the reflected beam
  • ⁇ (t) is the phase function of the reflected beam
  • f real (t) is the reflected beam in real dimension
  • f img (t) is the transformed complex dimension means reflected beam.
  • the reflected beam conversion unit 310 goes through the above process and calculates an amplitude function and a phase function of the reflected beam from the (real dimension) reflected beam sensed by the light receiving unit 160 .
  • the noise removal unit 320 removes noise by removing phase information of a portion where the reflected beam signal does not exist.
  • the noise removal unit removes noise as follows.
  • a function with an upper bar means a normalized function.
  • the phase function of the reflected beam is multiplied by the normalized amplitude function (of the reflected beam)
  • the phase function of the final reflected beam obtained by removing the phase information of the portion where the reflected beam signal does not exist is calculated as described above.
  • the object recognition unit 330 recognizes the object from the phase function finally calculated by the noise removal unit 320 .
  • the finally calculated phase function of the reflected beam is shown in FIG. 4 .
  • FIG. 4 is a graph showing phase information of an object for recognizing an object by an object recognition unit according to an embodiment of the present invention.
  • the object recognizing unit 330 calculates the remaining phase values as relative values of the reference based on the phase value of any one point from the finally calculated phase function.
  • point 410 is the top of the black box (eg, cover)
  • point 420 is the bottom of the black box
  • point 430 is the top (surface) of the object
  • point 440 is the top of the black box.
  • point 450 may indicate a void or other material generated in the object.
  • the object recognizing unit 330 uses a point in the phase function of the finally calculated reflected beam, for example, the topmost point 410 of the black box as a reference (for example, designates as ⁇ / 2),
  • the remaining points 420 to 450 may be expressed as relative values of the reference.
  • the object recognizing unit 330 does not need to calculate the absolute phase value of each point, so the calculation process can be significantly reduced.
  • the phase value is relatively small compared to the point 410. It is confirmed that there is no separate phase value because there is a blank between the points 420 and 430, and the phase value at the point 430 is relatively significantly higher because a relatively dense medium exists therefrom. Similarly, point 440 has a relatively small phase value compared to point 430 because it is implemented with a smaller medium.
  • the inspection unit 170 may determine whether the object 155 exists in the black box and what the structure or state of the object 155 is by using the phase function. Since scanning can be performed on all parts of the object by two-dimensional scanning of the reflector 130, the structure or state of all parts of the object 155 can be confirmed.
  • the inspection unit 170 may check whether a gap has occurred in the object 155 or whether a separate component such as an adhesive component such as epoxy is included using the phase function. For example, when points having different phase values, such as point 450, exist within the object 155, the inspection unit 170 may anticipate the above-described case. At this time, if the phase value is the same as the phase value between the point 420 (one end of the black box) and the point 430 (the surface of the object), the corresponding part corresponds to a gap. Conversely, if the phase value is different from points 430 and 440 and also different from the phase value between point 420 (one end of the black box) and point 430 (surface of the object), the corresponding part is a separate component within the object 155. (eg, adhesive composition such as epoxy).
  • adhesive composition such as epoxy
  • the inspection unit 170 can accurately grasp the structure or state of the object in the black box as it is without complicated calculation by using the phase function.
  • a controller (not shown) controls the operation of each component.
  • a controller (not shown) controls the light source 110 to emit a beam.
  • the controller (not shown) controls the reflector 130 to scan the object 155 in two dimensions.
  • the controller (not shown) controls the inspector 170 to check the structure or state of the object based on the value sensed by the light receiver 160 .

Abstract

An inspection apparatus using terahertz waves is disclosed. One aspect of the present embodiment provides an inspection apparatus using terahertz waves, which is an inspection apparatus for inspecting the structure or state of an object in a black box, comprising: a light source that irradiates a beam of a terahertz frequency band; a reflector that reflects the beam irradiated from the light source to an object, and reflects the light reflected from the object back toward the light source; a lens unit that focuses the beam reflected by the reflector onto the object; a light receiving unit that receives a beam reflected from the object; an inspection unit that analyzes the reflected beam received from the light receiving unit and inspects the structure or state of the object; a beam splitter that passes the beam irradiated from the light source and reflects the light reflected from the reflector to the light receiving unit after being reflected from the object; and a control unit that controls operations of the light source, the reflector, and the inspection unit.

Description

테라헤르츠파를 이용한 검사장치Inspection device using terahertz waves
본 발명은 테라헤르츠파를 이용하여 반도체 등의 대상물을 검사하는 장치에 관한 것이다.The present invention relates to an apparatus for inspecting an object such as a semiconductor using terahertz waves.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this part merely provide background information on the present embodiment and do not constitute prior art.
일반적으로, 반도체 칩은 컴퓨터, 모든 전자제품 그리고 정보 처리 제품이 필요로 하는 핵심 부품으로, 산술 연산, 정보저장/전송 및 다른 칩의 제어 등을 수행한다.In general, a semiconductor chip is a core component required by computers, all electronic products, and information processing products, and performs arithmetic operations, information storage/transmission, and control of other chips.
특히, 반도체 칩은 10X10mm2 내외의 크기를 갖는, 매우 소형화한 플라스틱 패키지징 칩으로 구현될 수 있다. 이로 인해, 검사자가 육안으로 식별하여 패키지된 반도체 칩의 균열, 박리 및 공극 등의 결함 유무를 확인하는 것이 거의 불가능하다.In particular, the semiconductor chip may be implemented as a very miniaturized plastic packaging chip having a size of about 10X10mm 2 . Due to this, it is almost impossible for an inspector to visually identify defects such as cracks, peelings, and voids in packaged semiconductor chips.
근래에는 테라헤르츠파를 이용하여 반도체칩 등을 검사하는 방법이 등장하고 있다. 테라헤르츠파를 이용한 방법은 대상물에 테라헤르츠 전자기파를 방사하고, 대상물로부터 반사되는 테라헤르츠 전자기파를 기초로 생성한 전기적 신호를 기준 신호와 비교하여 대상물을 분석한다.Recently, a method of inspecting a semiconductor chip or the like using terahertz waves has emerged. A method using terahertz waves radiates terahertz electromagnetic waves to an object, and compares an electrical signal generated based on the terahertz electromagnetic waves reflected from the object with a reference signal to analyze the object.
다만, 종래의 검사 방법은 반드시 전자기파가 대상물에 직접 조사된 후 그로부터 반사되어야만 검사가 가능했다. 그로 인해, 블랙박스 내에 배치된 대상이나 외부에 별도로 밀봉이나 차폐 등의 처리가 되어 있을 경우, 대상물의 검사가 곤란한 문제가 있었다. However, in the conventional inspection method, inspection was possible only when electromagnetic waves were directly irradiated onto an object and then reflected therefrom. Therefore, there is a problem in that it is difficult to inspect the object when the object disposed in the black box or the outside is separately sealed or shielded.
본 발명의 일 실시예는, 테라헤르츠파를 이용하여 블랙박스 내에 존재하는 대상물의 구조나 상태를 검사하는 장치를 제공하는 데 일 목적이 있다.An object of one embodiment of the present invention is to provide an apparatus for inspecting the structure or state of an object existing in a black box using terahertz waves.
본 발명의 일 측면에 의하면, 블랙박스 내 대상물의 구조나 상태를 검사하는 검사장치에 있어서, 테라헤르츠 주파수 대역의 빔을 조사하는 광원과 상기 광원에서 조사된 빔을 상기 대상물로 반사시키고, 상기 대상물에서 반사된 광은 다시 상기 광원 방향으로 반사시키는 반사경과 상기 반사경에서 반사된 빔을 상기 대상물로 포커싱하는 렌즈부와 상기 대상물에서 반사된 빔을 수광하는 수광부와 상기 수광부에서 수광된 반사빔을 분석하여 대상물의 구조나 상태를 검사하는 검사부와 상기 광원에서 조사된 빔은 통과시키되, 상기 대상물에서 반사된 후 상기 반사경에서 반사된 광을 상기 수광부로 반사시키는 빔 스플리터 및 상기 광원, 상기 반사경, 상기 검사부의 동작을 제어하는 제어부를 포함하는 것을 특징으로 하는 테라헤르츠파 검사장치를 제공한다.According to one aspect of the present invention, in the inspection apparatus for inspecting the structure or state of an object in a black box, a light source for irradiating a beam of a terahertz frequency band and a beam emitted from the light source are reflected to the object, and the object The light reflected from the reflector for reflecting back toward the light source, the lens unit for focusing the beam reflected from the reflector to the object, the light receiver for receiving the beam reflected from the object, and analyzing the reflected beam received from the light receiver An inspection unit that inspects the structure or state of an object, a beam splitter that passes the beam emitted from the light source, and reflects the light reflected from the object and then reflected from the reflector to the light receiver, and the light source, the reflector, and the inspection unit Provided is a terahertz wave inspection device characterized in that it includes a control unit for controlling the operation.
본 발명의 일 측면에 의하면, 상기 반사경은 갈바노 미러로 구현되는 것을 특징으로 한다.According to one aspect of the present invention, the reflector is characterized in that implemented as a galvano mirror.
본 발명의 일 측면에 의하면, 상기 검사부는 상기 수광부에서 수광된 반사빔을 복소수 차원으로 변환하는 것을 특징으로 한다.According to one aspect of the present invention, the inspection unit is characterized in that the conversion of the reflected beam received by the light receiving unit into a complex number dimension.
본 발명의 일 측면에 의하면, 상기 검사부는 상기 수광부에서 수광된 반사빔과 복소수 차원으로 변환된 반사빔을 이용하여 반사빔의 진폭 함수 및 위상 함수를 연산하는 것을 특징으로 한다.According to one aspect of the present invention, the inspection unit is characterized in that the amplitude function and phase function of the reflected beam is calculated using the reflected beam received by the light receiving unit and the reflected beam converted to a complex number dimension.
본 발명의 일 측면에 의하면, 상기 검사부는 연산된 반사빔의 위상 함수를 이용하여, 대상물의 구조나 상태를 검사하는 것을 특징으로 한다.According to one aspect of the present invention, the inspection unit is characterized in that the structure or state of the object is inspected using the calculated phase function of the reflected beam.
본 발명의 일 측면에 의하면, 상기 검사부는 반사빔 신호 내 노이즈를 제거하는 것을 특징으로 한다.According to one aspect of the present invention, the inspection unit is characterized in that to remove noise in the reflected beam signal.
본 발명의 일 측면에 의하면, 상기 검사부는 반사빔 신호가 존재하지 않는 부분의 위상 정보를 제거함으로서, 노이즈를 제거하는 것을 특징으로 한다.According to one aspect of the present invention, the inspection unit is characterized in that the noise is removed by removing the phase information of the portion where the reflected beam signal does not exist.
본 발명의 일 측면에 의하면, 상기 빔 스플리터는 상기 광원 및 상기 반사경이 이루는 광 경로 상에 배치되는 것을 특징으로 한다.According to one aspect of the present invention, the beam splitter is characterized in that it is disposed on the light path formed by the light source and the reflector.
본 발명의 일 측면에 의하면, 상기 빔 스플리터는 반사면이 상기 수광부를 향하도록 배치되는 것을 특징으로 한다.According to one aspect of the present invention, the beam splitter is characterized in that the reflective surface is disposed toward the light receiving unit.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 대상물이 블랙박스 내에 존재하거나 대상물의 외부에 별도로 밀봉이나 차폐 등의 처리가 되어 있더라도, 테라헤르츠파를 이용하여 그 상태에서 대상물의 구조나 상태를 검사할 수 있는 장점이 있다.As described above, according to one aspect of the present invention, even if the object exists in the black box or is separately sealed or shielded on the outside of the object, the structure or state of the object in that state using terahertz waves has the advantage of being able to inspect
도 1은 본 발명의 일 실시예에 따른 테라헤르츠파 검사장치의 구성을 도시한 도면이다.1 is a diagram showing the configuration of a terahertz wave inspection apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 반사경에 의해 출력되는 빔의 경로가 달라지는 모습을 도시한 도면이다. 2 is a diagram illustrating a state in which a path of a beam output by a reflector according to an embodiment of the present invention changes.
도 3은 본 발명의 일 실시예에 따른 검사부의 구성을 도시한 도면이다. 3 is a diagram showing the configuration of an inspection unit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 대상물 인식부가 대상물을 인식하기 위한 대상물의 위상정보를 도시한 그래프이다.4 is a graph showing phase information of an object for recognizing an object by an object recognition unit according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention. Like reference numerals have been used for like elements throughout the description of each figure.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. The terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, but other elements may exist in the middle. It should be. On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no intervening element exists.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. It should be understood that terms such as "include" or "having" in this application do not exclude in advance the possibility of existence or addition of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in the present application, they should not be interpreted in an ideal or excessively formal meaning. don't
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호간 모순되지 않는 범위 내에서 공유될 수 있다.In addition, each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not contradict each other technically.
도 1은 본 발명의 일 실시예에 따른 테라헤르츠파 검사장치의 구성을 도시한 도면이다.1 is a diagram showing the configuration of a terahertz wave inspection apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 테라헤르츠파 검사장치(100)는 광원(110), 빔 스플리터(120), 반사경(130), 렌즈부(140), 수광부(160), 검사부(170) 및 제어부(미도시)를 포함한다. Referring to FIG. 1 , a terahertz wave inspection apparatus 100 according to an embodiment of the present invention includes a light source 110, a beam splitter 120, a reflector 130, a lens unit 140, a light receiving unit 160, It includes an inspection unit 170 and a control unit (not shown).
테라헤르츠파 검사장치(100)는 테라헤르츠(0.1 내지 수십 THz) 주파수 대역의 빔을 대상물로 조사하고, 그로부터 반사된 반사빔을 수광하고 분석하여 대상물의 구조나 상태를 인식한다. 특히, 테라헤르츠파 검사장치(100)는 반사빔의 진폭과 위상을 추출하며, 추출된 위상으로부터 대상물의 구조나 상태를 인식한다. 테라헤르츠파 검사장치(100)는 반사빔의 위상을 이용하기에, 대상물이 블랙박스나 별도의 (일정한 목적을 갖는) 외장재 내에 배치되어 있더라도, 해당 외장재 내에 배치된 상태에서도 대상물을 외장재와 구분하여 대상물의 구조나 상태를 인식할 수 있다. The terahertz wave inspection apparatus 100 irradiates a beam of a frequency band of terahertz (0.1 to several tens of THz) to an object, receives and analyzes a reflected beam reflected therefrom, and recognizes the structure or state of the object. In particular, the terahertz wave inspection apparatus 100 extracts the amplitude and phase of the reflected beam, and recognizes the structure or state of the object from the extracted phase. Since the terahertz wave inspection apparatus 100 uses the phase of the reflected beam, even if the object is disposed in a black box or a separate (having a certain purpose) exterior material, even if the object is disposed in the exterior material, it is distinguished from the exterior material. The structure or state of an object can be recognized.
검사되는 대상물은 반도체 칩일 수 있으나, 반드시 이에 한정되는 것은 아니고, 테라헤르츠 주파수 대역의 빔을 입사받아 반사시키는 물질이면 어떠한 것으로 대체되어도 무방하다.The object to be inspected may be a semiconductor chip, but is not necessarily limited thereto, and may be replaced with any material that receives and reflects a beam of the terahertz frequency band.
광원(110)은 테라헤르츠 주파수 대역의 빔을 반사경(130)으로 조사한다. 광원(110)은 0.1 내지 수십 테라(T) 헤르츠(Hz)의 주파수 및 수십 내지 수백㎛ 파장대역의 빔을 생성하여 반사경(130)으로 조사한다. 대상물로 조사되는 빔은 대상물의 구조나 상태에 따라 고유의 위상을 갖도록 반사된다. 이에 따라, 반사빔의 위상은 대상물의 고유의 구조나 상태 정보를 포함할 수 있다.The light source 110 radiates a terahertz frequency band beam to the reflector 130 . The light source 110 generates a beam with a frequency of 0.1 to tens of terahertz (Hz) and a wavelength band of tens to hundreds of μm and irradiates the beam with the reflector 130 . A beam irradiated onto an object is reflected to have a unique phase according to the structure or state of the object. Accordingly, the phase of the reflected beam may include information on the unique structure or state of the object.
빔 스플리터(120)는 광원(110)에서 자신으로 진행하는 빔은 통과시키되, 반사경(130)에서 반사되어 자신으로 진행하는 빔은 반사시킨다. 빔 스플리터(120)는 광원(110) 및 반사경(130)이 이루는 광 경로 상에서, 반사면이 수광부(160)를 향하도록 배치된다. 이에 따라, 빔 스플리터(120)는 광원(110)에서 조사된 빔을 반사경(130)으로 통과시키되, 대상물에서 반사되어 반사경(130)에서 반사된 반사빔은 수광부(160)로 반사시킨다.The beam splitter 120 passes a beam traveling from the light source 110 to itself, but reflects a beam reflected from the reflector 130 and traveling towards itself. The beam splitter 120 is disposed so that its reflective surface faces the light receiving unit 160 on the light path formed by the light source 110 and the reflector 130 . Accordingly, the beam splitter 120 passes the beam irradiated from the light source 110 to the reflector 130, and reflects the reflected beam reflected from the object and reflected from the reflector 130 to the light receiver 160.
반사경(130)은 자신으로 입사되는 빔을 기 설정된 각도로 반사시킨다. The reflector 130 reflects a beam incident thereto at a predetermined angle.
반사경(130)은 자신과 광원(110) 및 자신과 대상물(155) 간 경로의 접점 지점에 배치되어, 어느 하나의 경로로 진행하는 빔을 나머지 하나의 경로로 반사시킨다. 예를 들어, 반사경(130)은 광원(110)에서 조사되어 빔 스플리터(120)를 거쳐 자신으로 입사하는 빔은 대상물(155) 방향으로 반사시키고, 대상물(155)에서 반사되어 자신으로 입사하는 빔은 빔 스플리터(120) 방향으로 반사시킨다.The reflector 130 is disposed at a point of contact between the path between itself and the light source 110 and between itself and the object 155, and reflects a beam traveling on one path to the other path. For example, the reflector 130 reflects a beam irradiated from the light source 110 and incident to itself through the beam splitter 120 toward an object 155, and a beam reflected from the object 155 and incident to itself. is reflected toward the beam splitter 120.
반사경(130)은 제어부(미도시)의 제어를 받아 입사되는 빔의 반사각을 조정할 수 있다. 반사경(130)의 동작은 도 2에 도시되어 있다.The reflector 130 may adjust a reflection angle of an incident beam under the control of a controller (not shown). The operation of reflector 130 is shown in FIG. 2 .
도 2는 본 발명의 일 실시예에 따른 반사경에 의해 출력되는 빔의 경로가 달라지는 모습을 도시한 도면이다. 2 is a diagram illustrating a state in which a path of a beam output by a reflector according to an embodiment of the present invention changes.
도 2a 내지 2c와 같이, 반사경(130)은 제어부(미도시)의 제어에 따라, 입사되는 빔의 반사각을 조정할 수 있다. 반사경(130)의 반사각이 조정되는 경우, 반사경(130)으로 입사되는 빔의 진행 경로가 조정될 수 있다. 도 2a와 같이, 반사경(130)에 의해 광원(110)에서 조사된 빔이 대상물(155)의 중심으로 조사될 수도 있고, 도 2b나 2c와 같이 대상물(155)의 끝단으로 조사될 수도 있다. 또한, 반사경(130)은 해당 각도로 조사된 후 대상물(155)에서 반사된 반사빔을 빔 스플리터(120) 방향으로 반사시킨다. As shown in FIGS. 2A to 2C , the reflector 130 may adjust a reflection angle of an incident beam under the control of a controller (not shown). When the reflection angle of the reflector 130 is adjusted, a traveling path of a beam incident to the reflector 130 may be adjusted. 2a, the beam irradiated from the light source 110 by the reflector 130 may be irradiated to the center of the object 155, or may be irradiated to the end of the object 155 as shown in FIGS. 2b or 2c. In addition, the reflector 130 reflects the reflected beam reflected from the object 155 after being irradiated at the corresponding angle toward the beam splitter 120 .
반사경(130)은 제어부(미도시)의 제어에 따라 반사각을 조정할 수 있어, 대상물(155)의 다양한 위치로 빔을 입사시킬 수 있다. 테라헤르츠파 검사장치(100)는 반사경(130)을 포함함으로서, 고정된 대상물(155)을 2차원적으로 스캐닝할 수 있다. 종래의 검사장치는 대상물의 2차원적인 스캐닝을 위해, 대상물이 거치된 거치대를 이동시키며 스캐닝해왔다. 그러나 이처럼 거치대를 이동시키며 스캐닝할 경우, 충분한 스캐닝 속도를 확보하기 곤란한 문제가 있었다. 테라헤르츠파 검사장치(100)는 반사경(130)을 포함하며 반사경(130)의 각도를 조정함으로서 거치대의 이동없이 대상물의 2차원적인 스캐닝을 수행할 수 있다.The reflector 130 may adjust the angle of reflection under the control of a controller (not shown), so that beams may be incident to various positions of the object 155 . The terahertz wave inspection apparatus 100 includes the reflector 130, so that the fixed object 155 can be scanned in two dimensions. For two-dimensional scanning of an object, a conventional inspection device has been scanning while moving a cradle on which an object is mounted. However, when scanning is performed while moving the cradle, there is a problem in that it is difficult to secure a sufficient scanning speed. The terahertz wave inspection apparatus 100 includes a reflector 130 and adjusts an angle of the reflector 130 to perform two-dimensional scanning of an object without moving the cradle.
다시 도 1을 참조하면, 반사경(130)은 갈바노 미러로 구현될 수 있으나 반드시 이에 한정되는 것은 아니고, 반사각을 제어할 수 있다면 어떠한 것으로 대체되어도 무방하다.Referring back to FIG. 1 , the reflector 130 may be implemented as a galvano mirror, but is not necessarily limited thereto, and may be replaced with anything as long as the reflection angle can be controlled.
렌즈부(140)는 반사경(130)에서 반사된 빔을 대상물(155)로 포커싱한다. 렌즈부(140)는 반사경(130)과 대상물(155)의 광 경로 상의 사이에 위치하여, 반사경(130)에서 반사된 빔이 분산되지 않고 대상물(155)로 진행하도록 빔의 경로를 조정한다. 렌즈부(140)는 도 1에 도시된 바와 같이 하나의 렌즈로 구현될 수도 있으나 반드시 이에 한정되는 것은 아니고, 복수의 렌즈의 조합으로 구현될 수도 있다. 예를 들어, 렌즈부(140)는 f-θ렌즈 또는 콜리메이터 등으로 구현될 수도 있다.The lens unit 140 focuses the beam reflected by the reflector 130 onto an object 155 . The lens unit 140 is positioned between the reflector 130 and the light path of the object 155, and adjusts the path of the beam so that the beam reflected from the reflector 130 proceeds to the object 155 without being dispersed. As shown in FIG. 1 , the lens unit 140 may be implemented as a single lens, but is not necessarily limited thereto, and may be implemented as a combination of a plurality of lenses. For example, the lens unit 140 may be implemented as an f-θ lens or a collimator.
수광부(160)는 대상물(155)로부터 반사된 반사빔을 수광한다. 수광부(160)는 광센서로 구현되어, 대상물(155)로부터 반사되어 반사경(130)과 빔 스플리터(120)를 거쳐 자신에 입사되는 반사빔을 센싱한다. 수광부(160)가 반사빔을 센싱함에 따라, 검사부(170)가 센싱값을 토대로 대상물의 구조나 상태를 인식할 수 있도록 한다.The light receiving unit 160 receives the reflected beam reflected from the target object 155 . The light receiving unit 160 is implemented as an optical sensor and senses a reflected beam that is reflected from the object 155 and is incident thereon through the reflector 130 and the beam splitter 120 . As the light receiving unit 160 senses the reflected beam, the inspecting unit 170 can recognize the structure or state of the object based on the sensed value.
검사부(170)는 반사빔(센싱값)으로부터 대상물의 위상 정보를 추출하여, 대상물의 구조나 상태를 검사한다. 검사부(170)는 반사빔을 복소수 차원으로 변환하고, 변환된 값을 이용하여 반사빔의 진폭과 위상을 연산한다. 검사부(170)는 대상물이 존재하는 영역과 존재하지 않는 영역, 즉, 노이즈를 제거한 후 최종적으로 대상물의 구조나 상태를 인식한다. 검사부(170)의 구체적인 구성은 도 3에 도시되어 있다.The inspection unit 170 extracts phase information of the object from the reflected beam (sensing value) and inspects the structure or state of the object. The inspection unit 170 converts the reflected beam into a complex dimension, and calculates the amplitude and phase of the reflected beam using the converted value. The inspection unit 170 finally recognizes the structure or state of the object after removing the area where the object exists and the area where the object does not exist, that is, noise. A specific configuration of the inspection unit 170 is shown in FIG. 3 .
도 3은 본 발명의 일 실시예에 따른 검사부의 구성을 도시한 도면이다. 3 is a diagram showing the configuration of an inspection unit according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 실시예에 따른 검사부(170)는 반사빔 변환부(310), 노이즈 제거부(320) 및 대상물 인식부(330)를 포함한다.Referring to FIG. 3 , the inspection unit 170 according to an embodiment of the present invention includes a reflection beam conversion unit 310 , a noise removal unit 320 and an object recognition unit 330 .
반사빔 변환부(310)는 반사빔을 복소수 차원으로 변환한다. 수광부(160)에 의해 센싱되는 반사빔은 실수 차원에 해당한다. 반사빔 변환부(310)는 다음의 과정을 거치며, 실수 차원의 반사빔을 복소수 차원으로 변환한다.The reflected beam conversion unit 310 converts the reflected beam into a complex number dimension. A reflected beam sensed by the light receiver 160 corresponds to a real dimension. The reflected beam conversion unit 310 goes through the following process and converts the real-dimensional reflected beam into a complex-numbered dimension.
Figure PCTKR2023002443-appb-img-000001
Figure PCTKR2023002443-appb-img-000001
반사빔 변환부(310)는 전술한 수식을 토대로 반사빔을 복소수 차원으로 변환하고, 다음의 수식을 이용하여 반사빔의 진폭 함수와 위상 함수를 획득한다.The reflected beam conversion unit 310 converts the reflected beam into a complex number dimension based on the above equation, and obtains an amplitude function and a phase function of the reflected beam using the following equation.
Figure PCTKR2023002443-appb-img-000002
Figure PCTKR2023002443-appb-img-000002
Figure PCTKR2023002443-appb-img-000003
Figure PCTKR2023002443-appb-img-000003
여기서, A(t)는 반사빔의 진폭 함수를, Φ(t)는 반사빔의 위상 함수를, freal(t)는 실수 차원의 반사빔을, fimg(t)는 변환된 복소수 차원의 반사빔을 의미한다. Here, A(t) is the amplitude function of the reflected beam, Φ(t) is the phase function of the reflected beam, f real (t) is the reflected beam in real dimension, and f img (t) is the transformed complex dimension means reflected beam.
반사빔 변환부(310)는 전술한 과정을 거치며, 수광부(160)가 센싱한 (실수 차원의) 반사빔으로부터 반사빔의 진폭함수와 위상함수를 연산한다.The reflected beam conversion unit 310 goes through the above process and calculates an amplitude function and a phase function of the reflected beam from the (real dimension) reflected beam sensed by the light receiving unit 160 .
노이즈 제거부(320)는 반사빔 신호가 존재하지 않는 부분의 위상 정보를 제거하여 노이즈를 제거한다. 노이즈 제거부는 다음과 같이 노이즈를 제거한다.The noise removal unit 320 removes noise by removing phase information of a portion where the reflected beam signal does not exist. The noise removal unit removes noise as follows.
Figure PCTKR2023002443-appb-img-000004
Figure PCTKR2023002443-appb-img-000004
여기서, 상단 바가 존재하는 함수는 정규화된 함수를 의미한다. 반사빔의 위상함수에 정규화된 (반사빔의) 진폭함수를 곱하면, 전술한 바와 같이 반사빔 신호가 존재하지 않는 부분의 위상정보가 제거된 최종적인 반사빔의 위상함수가 연산된다. Here, a function with an upper bar means a normalized function. When the phase function of the reflected beam is multiplied by the normalized amplitude function (of the reflected beam), the phase function of the final reflected beam obtained by removing the phase information of the portion where the reflected beam signal does not exist is calculated as described above.
대상물 인식부(330)는 노이즈 제거부(320)에 의해 최종적으로 연산된 위상함수로부터 대상물을 인식한다. 최종적으로 연산된 반사빔의 위상함수는 도 4에 도시되어 있다.The object recognition unit 330 recognizes the object from the phase function finally calculated by the noise removal unit 320 . The finally calculated phase function of the reflected beam is shown in FIG. 4 .
도 4는 본 발명의 일 실시예에 따른 대상물 인식부가 대상물을 인식하기 위한 대상물의 위상정보를 도시한 그래프이다.4 is a graph showing phase information of an object for recognizing an object by an object recognition unit according to an embodiment of the present invention.
대상물 인식부(330)는 최종적으로 연산된 위상함수로부터, 어느 하나의 지점의 위상값을 기준으로 하여, 나머지 위상값은 기준의 상대값으로 연산한다. 도 4에 도시된 위상함수에 있어, 410 지점은 블랙박스의 최상단(예를 들어, 덮개)을, 420 지점은 블랙박스의 하단 지점을, 430 지점은 대상물의 최상단(표면)을, 440 지점은 대상물의 하단을, 450 지점은 대상물에 발생한 공극 또는 기타 물질을 가리킬 수 있다. 이때, 대상물 인식부(330)는 최종적으로 연산된 반사빔의 위상함수에서 일 지점, 예를 들어, 블랙박스의 최상단 지점(410)을 기준(예를 들어, π/2로 지정)으로 하여, 나머지 지점(420 내지 450)을 기준의 상대적인 수치로 표현할 수 있다. 이러할 경우, 대상물 인식부(330)는 블랙박스(150) 내 대상물(155)를 인지함에 있어, 각 지점들의 절대적인 위상값을 연산할 필요가 없어 연산 과정을 현저히 줄일 수 있다. The object recognizing unit 330 calculates the remaining phase values as relative values of the reference based on the phase value of any one point from the finally calculated phase function. In the phase function shown in FIG. 4, point 410 is the top of the black box (eg, cover), point 420 is the bottom of the black box, point 430 is the top (surface) of the object, and point 440 is the top of the black box. At the lower end of the object, point 450 may indicate a void or other material generated in the object. At this time, the object recognizing unit 330 uses a point in the phase function of the finally calculated reflected beam, for example, the topmost point 410 of the black box as a reference (for example, designates as π / 2), The remaining points 420 to 450 may be expressed as relative values of the reference. In this case, in recognizing the object 155 in the black box 150, the object recognizing unit 330 does not need to calculate the absolute phase value of each point, so the calculation process can be significantly reduced.
410 지점을 기준으로 420 지점은 상대적으로 소(疎)한 매질로 구현되기 때문에, 410 지점에 비해 상대적으로 위상값이 작음을 알 수 있다. 420 지점과 430 지점의 사이에는 공백이 존재하기에 별도의 위상값이 없는 것으로 확인되며, 그로부터 상대적으로 밀(密)한 매질이 존재하기에 430 지점의 위상값은 상대적으로 현저히 높게 나타난다. 마찬가지로, 440 지점도 430에 비해 소한 매질로 구현되기에 상대적으로 위상값이 작게 나타난다. Since the point 420 is implemented with a relatively small medium based on the point 410, it can be seen that the phase value is relatively small compared to the point 410. It is confirmed that there is no separate phase value because there is a blank between the points 420 and 430, and the phase value at the point 430 is relatively significantly higher because a relatively dense medium exists therefrom. Similarly, point 440 has a relatively small phase value compared to point 430 because it is implemented with a smaller medium.
이에 따라, 검사부(170)는 위상 함수를 이용하여 블랙박스 내에 대상물(155)이 존재하는지, 대상물(155)의 구조나 상태가 어떠한지를 판단할 수 있다. 반사경(130)의 2차원적인 스캐닝에 의해 대상물의 전부분으로 스캐닝이 수행될 수 있어, 대상물(155)의 모든 부분의 구조나 상태를 확인할 수 있다.Accordingly, the inspection unit 170 may determine whether the object 155 exists in the black box and what the structure or state of the object 155 is by using the phase function. Since scanning can be performed on all parts of the object by two-dimensional scanning of the reflector 130, the structure or state of all parts of the object 155 can be confirmed.
또한, 검사부(170)는 위상 함수를 이용해 대상물(155) 내에 공극이 발생하였거나, 에폭시와 같은 접착 구성 등 별도의 구성이 포함되었는지 여부도 모두 확인할 수 있다. 예를 들어, 450 지점과 같이 위상값이 다른 지점이 대상물(155) 내에 존재하는 경우, 검사부(170)는 전술한 경우를 예상할 수 있다. 이때, 위상값이 420 지점(블랙박스의 일단)과 430 지점(대상물의 표면) 사이의 위상값과 동일한 위상값일 경우, 해당 부분은 공극에 해당하게 된다. 반대로, 위상값이 430 지점 및 440 지점과 상이한 동시에 420 지점(블랙박스의 일단)과 430 지점(대상물의 표면) 사이의 위상값과도 상이할 경우, 해당 부분은 대상물(155) 내에 별도의 구성(예를 들어, 에폭시 등의 접착 구성)에 해당하게 된다. In addition, the inspection unit 170 may check whether a gap has occurred in the object 155 or whether a separate component such as an adhesive component such as epoxy is included using the phase function. For example, when points having different phase values, such as point 450, exist within the object 155, the inspection unit 170 may anticipate the above-described case. At this time, if the phase value is the same as the phase value between the point 420 (one end of the black box) and the point 430 (the surface of the object), the corresponding part corresponds to a gap. Conversely, if the phase value is different from points 430 and 440 and also different from the phase value between point 420 (one end of the black box) and point 430 (surface of the object), the corresponding part is a separate component within the object 155. (eg, adhesive composition such as epoxy).
이처럼, 검사부(170)는 위상 함수를 이용하여 블랙박스 내의 대상물을 그 상태 그대로 대상물의 구조나 상태를 복잡한 연산없이도 정확히 파악할 수 있다. As such, the inspection unit 170 can accurately grasp the structure or state of the object in the black box as it is without complicated calculation by using the phase function.
다시 도 1을 참조하면, 제어부(미도시)는 각 구성의 동작을 제어한다. Referring back to FIG. 1 , a controller (not shown) controls the operation of each component.
제어부(미도시)는 광원(110)이 빔을 조사하도록 제어한다.A controller (not shown) controls the light source 110 to emit a beam.
제어부(미도시)는 대상물(155)을 2차원적으로 스캐닝할 수 있도록 반사경(130)을 제어한다.The controller (not shown) controls the reflector 130 to scan the object 155 in two dimensions.
제어부(미도시)는 수광부(160)가 센싱한 값을 토대로, 대상물의 구조나 상태를 확인하도록 검사부(170)를 제어한다.The controller (not shown) controls the inspector 170 to check the structure or state of the object based on the value sensed by the light receiver 160 .
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an example of the technical idea of the present embodiment, and various modifications and variations can be made to those skilled in the art without departing from the essential characteristics of the present embodiment. Therefore, the present embodiments are not intended to limit the technical idea of the present embodiment, but to explain, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of this embodiment should be construed according to the claims below, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of rights of this embodiment.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2022년 02월 22일 한국에 출원한 특허출원번호 제10-2022-0022916호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.If this patent application claims priority in accordance with U.S. Patent Act Article 119 (a) (35 U.S.C § 119 (a)) for Patent Application No. 10-2022-0022916 filed in Korea on February 22, 2022, that All contents are incorporated into this patent application by reference. In addition, if this patent application claims priority for the same reason as above for countries other than the United States, all the contents are incorporated into this patent application as references.

Claims (9)

  1. 블랙박스 내 대상물의 구조나 상태를 검사하는 검사장치에 있어서,In the inspection device for inspecting the structure or state of an object in a black box,
    테라헤르츠 주파수 대역의 빔을 조사하는 광원;a light source irradiating a beam of a terahertz frequency band;
    상기 광원에서 조사된 빔을 상기 대상물로 반사시키고, 상기 대상물에서 반사된 광은 다시 상기 광원 방향으로 반사시키는 반사경;a reflector for reflecting the beam irradiated from the light source to the object, and reflecting the light reflected from the object back toward the light source;
    상기 반사경에서 반사된 빔을 상기 대상물로 포커싱하는 렌즈부;a lens unit for focusing the beam reflected by the reflector onto the object;
    상기 대상물에서 반사된 빔을 수광하는 수광부;a light receiving unit for receiving a beam reflected from the object;
    상기 수광부에서 수광된 반사빔을 분석하여 대상물의 구조나 상태를 검사하는 검사부;an inspection unit for inspecting a structure or state of an object by analyzing the reflected beam received by the light receiving unit;
    상기 광원에서 조사된 빔은 통과시키되, 상기 대상물에서 반사된 후 상기 반사경에서 반사된 광을 상기 수광부로 반사시키는 빔 스플리터; 및a beam splitter for passing the beam irradiated from the light source and reflecting the light reflected from the reflector after being reflected from the object to the light receiving unit; and
    상기 광원, 상기 반사경, 상기 검사부의 동작을 제어하는 제어부A control unit for controlling operations of the light source, the reflector, and the inspection unit
    를 포함하는 것을 특징으로 하는 테라헤르츠파 검사장치.Terahertz wave tester comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 반사경은,The reflector is
    갈바노 미러로 구현되는 것을 특징으로 하는 테라헤르츠파 검사장치.A terahertz wave inspection device, characterized in that implemented as a galvano mirror.
  3. 제1항에 있어서,According to claim 1,
    상기 검사부는.the inspection department.
    상기 수광부에서 수광된 반사빔을 복소수 차원으로 변환하는 것을 특징으로 하는 테라헤르츠파 검사장치.The terahertz wave inspection device characterized in that for converting the reflected beam received by the light receiving unit into a complex number dimension.
  4. 제3항에 있어서,According to claim 3,
    상기 검사부는,The inspector,
    상기 수광부에서 수광된 반사빔과 복소수 차원으로 변환된 반사빔을 이용하여 반사빔의 진폭 함수 및 위상 함수를 연산하는 것을 특징으로 하는 테라헤르츠파 검사장치.The terahertz wave inspection apparatus according to claim 1 , wherein an amplitude function and a phase function of the reflected beam are calculated using the reflected beam received by the light receiving unit and the reflected beam converted into a complex number dimension.
  5. 제4항에 있어서,According to claim 4,
    상기 검사부는,The inspector,
    연산된 반사빔의 위상 함수를 이용하여, 대상물의 구조나 상태를 검사하는 것을 특징으로 하는 테라헤르츠파 검사장치.A terahertz wave inspection device, characterized in that for inspecting the structure or state of an object by using the phase function of the calculated reflected beam.
  6. 제4항에 있어서,According to claim 4,
    상기 검사부는,The inspector,
    반사빔 신호 내 노이즈를 제거하는 것을 특징으로 하는 테라헤르츠파 검사장치.A terahertz wave inspection device characterized in that for removing noise in the reflected beam signal.
  7. 제6항에 있어서,According to claim 6,
    상기 검사부는,The inspector,
    반사빔 신호가 존재하지 않는 부분의 위상 정보를 제거함으로서, 노이즈를 제거하는 것을 특징으로 하는 테라헤르츠파 검사장치.A terahertz wave inspection apparatus characterized in that noise is removed by removing phase information of a portion where a reflected beam signal does not exist.
  8. 제1항에 있어서,According to claim 1,
    상기 빔 스플리터는,The beam splitter,
    상기 광원 및 상기 반사경이 이루는 광 경로 상에 배치되는 것을 특징으로 하는 테라헤르츠파 검사장치.The terahertz wave inspection device, characterized in that disposed on the light path formed by the light source and the reflector.
  9. 제8항에 있어서,According to claim 8,
    상기 빔 스플리터는,The beam splitter,
    반사면이 상기 수광부를 향하도록 배치되는 것을 특징으로 하는 테라헤르츠파 검사장치.A terahertz wave inspection device, characterized in that the reflective surface is disposed facing the light receiving unit.
PCT/KR2023/002443 2022-02-22 2023-02-21 Inspection apparatus using terahertz waves WO2023163480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0022916 2022-02-22
KR1020220022916A KR102638751B1 (en) 2022-02-22 2022-02-22 Inspecting Apparatus Using Tera Hertz Wave

Publications (1)

Publication Number Publication Date
WO2023163480A1 true WO2023163480A1 (en) 2023-08-31

Family

ID=87766389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002443 WO2023163480A1 (en) 2022-02-22 2023-02-21 Inspection apparatus using terahertz waves

Country Status (2)

Country Link
KR (1) KR102638751B1 (en)
WO (1) WO2023163480A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205926A (en) * 2006-02-02 2007-08-16 Ricoh Co Ltd Surface defect inspection device, surface defect inspection method, and surface defect inspection program
WO2017203662A1 (en) * 2016-05-26 2017-11-30 オリンパス株式会社 Digital holographic imaging apparatus and imaging method
KR20190118875A (en) * 2018-04-11 2019-10-21 한양대학교 산학협력단 Terahertz wave based defect measurement apparatus and measuring method using the same
KR102043881B1 (en) * 2017-10-30 2019-12-02 한국식품연구원 Inspection apparatus for hign speed and large area
KR20210076598A (en) * 2019-12-16 2021-06-24 (주)미래컴퍼니 Inspection system using terahertz wave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205926A (en) * 2006-02-02 2007-08-16 Ricoh Co Ltd Surface defect inspection device, surface defect inspection method, and surface defect inspection program
WO2017203662A1 (en) * 2016-05-26 2017-11-30 オリンパス株式会社 Digital holographic imaging apparatus and imaging method
KR102043881B1 (en) * 2017-10-30 2019-12-02 한국식품연구원 Inspection apparatus for hign speed and large area
KR20190118875A (en) * 2018-04-11 2019-10-21 한양대학교 산학협력단 Terahertz wave based defect measurement apparatus and measuring method using the same
KR20210076598A (en) * 2019-12-16 2021-06-24 (주)미래컴퍼니 Inspection system using terahertz wave

Also Published As

Publication number Publication date
KR20230125991A (en) 2023-08-29
KR102638751B1 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2016090311A1 (en) Apparatus, method and computer program product for defect detection in work pieces
WO2023163480A1 (en) Inspection apparatus using terahertz waves
WO2015126111A1 (en) Apparatus and method for testing conductivity of graphene
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
WO2010058680A1 (en) Silicon wafer defect inspection device
WO2017039170A1 (en) Device and method for measuring change in thickness or height of object
WO2023113274A1 (en) Ai-based product surface inspection device and method
US5880825A (en) Method and apparatus for detecting defects in an optical fiber
CN109596640B (en) Foreign matter detection method and device
WO2017069388A1 (en) Automatic inspection device and method of laser processing equipment
CN105044017A (en) Terahertz wave safety inspection imaging device
JPS59232344A (en) Detector for wiring pattern
JP2003240730A (en) Semiconductor chip examining apparatus
KR102146983B1 (en) Apparatus for Probing Optical Device
JPS61260147A (en) Device for inspecting surface defect
KR20190057635A (en) Electronic scanning equipment using terahertz wave
WO2016140377A1 (en) Slit antenna probe, and apparatus and method for inspecting defects of multi-junction semiconductor using same
CN218481422U (en) Double-light-path detection device and system
JPH01143940A (en) Method and device for inspecting defect of sheet-like etching precision component
JPH10142162A (en) Coated layer flaw inspecting light selecting method, coated layer flaw inspecting method, and coated layer flaw inspecting device
JPS58500038A (en) Optical fiber continuous testing equipment
JPH06317537A (en) Board inspection equipment
JPH01214743A (en) Optical apparatus for checking
JPH03235041A (en) Apparatus for inspecting quality of vegetable and fruit
JPH0414281B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760354

Country of ref document: EP

Kind code of ref document: A1