WO2010058680A1 - Silicon wafer defect inspection device - Google Patents

Silicon wafer defect inspection device Download PDF

Info

Publication number
WO2010058680A1
WO2010058680A1 PCT/JP2009/068338 JP2009068338W WO2010058680A1 WO 2010058680 A1 WO2010058680 A1 WO 2010058680A1 JP 2009068338 W JP2009068338 W JP 2009068338W WO 2010058680 A1 WO2010058680 A1 WO 2010058680A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared laser
silicon wafer
infrared
subject
Prior art date
Application number
PCT/JP2009/068338
Other languages
French (fr)
Japanese (ja)
Inventor
靖 斉藤
Original Assignee
タカノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカノ株式会社 filed Critical タカノ株式会社
Publication of WO2010058680A1 publication Critical patent/WO2010058680A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks

Definitions

  • the present invention relates to a silicon wafer defect inspection apparatus using an infrared laser beam, and more particularly to a defect inspection apparatus for detecting the presence or absence of defects such as cracks generated in the wafer.
  • silicon wafers used as substrates for single crystal and polycrystalline crystal solar cell elements have been reduced in thickness for reasons such as cost reduction and reduction of silicon materials. In the cell process, cracks are likely to occur.
  • a solar cell element when a plurality of solar cell elements are combined to form a module, if even one solar cell element with a crack exists, the output power of the module is greatly reduced. Even in the case of a small crack, the crack expands as the manufacturing process of the solar cell element proceeds, and may reach a fatal size. For this reason, it is important to accurately detect the presence or absence of cracks and remove defective solar cell elements before modularizing the solar cell elements.
  • the first conventional technique for detecting cracks in a silicon wafer is to generate a vibration by applying an impact to the silicon wafer, convert this vibration frequency into an electrical signal through a sensor, and convert the power spectrum of this vibration frequency to There is a method of analyzing and detecting the presence or absence of cracks.
  • the infrared light irradiated on and transmitted through the silicon wafer surface has the same angle as the irradiation angle. It is divided into specularly transmitted light that is transmitted while being held, and diffused transmitted light that is diffused by the crystal orientation of the crystals that are irregularly arranged. It will be different for each direction.
  • a CCD camera with a focal length of about 30 cm is used for imaging, transmitted light having a different amount of light for each plane orientation is directly imaged, and a bright and dark pattern of crystal grain boundaries appears remarkably in the captured image.
  • the present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a silicon wafer defect inspection apparatus capable of appropriately and clearly detecting defects even in a polycrystalline silicon wafer. There is to do.
  • the silicon wafer defect inspection apparatus of the present invention has an infrared laser light source 1 that irradiates the subject 7 with an infrared laser beam, and an opening 4 that receives the infrared laser light that has passed through the subject 7.
  • a silicon wafer defect inspection apparatus comprising a hollow light receiving unit 2 for diffusing infrared laser light therein and an infrared light detection sensor 3 for detecting the amount of infrared laser light in the space 2b of the light receiving unit 2
  • a defect such as a crack in the silicon wafer is detected by detecting a change in the amount of infrared laser light in the light receiving unit 2.
  • a scanning mechanism that scans the infrared laser beam emitted from the infrared laser light source 1 in a first direction, and a transport unit 6 that can transport the subject 7 in a second direction substantially orthogonal to the first direction.
  • a silicon wafer defect inspection apparatus comprising an image processing means for converting a light quantity signal detected by the infrared light detection sensor 3 into a two-dimensional image, wherein an infrared laser beam generated by a scanning mechanism In synchronism with the scanning operation, the step of detecting the amount of infrared laser light transmitted through the subject 7 and the subject 7 are transported in the second direction with a moving distance substantially the same as the irradiation diameter of the infrared laser beam.
  • a series of steps consisting of the following steps are continuously performed within the examination range of the subject 7, and information on the infrared laser beam irradiation position is processed together with the light quantity signal detected by the infrared light detection sensor 3. It is input to the stage, and characterized in that it is converted into a two-dimensional image.
  • the wavelength of the infrared laser beam is in the range of 1 to 15 ⁇ m.
  • the irradiation diameter of the infrared laser beam is characterized by being approximately equal to or less than the thickness of the subject 7.
  • determination means for determining that a through crack or a pinhole 14 is present at an infrared laser beam irradiation location of the subject 7. It is a feature.
  • the subject 7 is a polycrystalline silicon wafer.
  • the silicon wafer defect inspection apparatus of the present invention when a defect such as a crack occurs in the infrared laser beam irradiation portion of the single crystal silicon wafer, the irradiated infrared laser beam is absorbed or diffused by the defect, Since the amount of transmitted light that enters the light receiving unit from the opening changes, it is possible to detect the defect clearly.
  • the subject is a polycrystalline silicon wafer having a plurality of plane orientations, it is irregularly arranged together with the regular transmitted light transmitted while maintaining the same angle as the irradiation angle by the opening provided in the light receiving unit. Since diffused and diffused light diffused by the crystal plane orientation can be incident on the light receiving unit, the amount of transmitted light entering the light receiving unit hardly changes depending on the crystal plane orientation and becomes a substantially constant light amount. . Then, after both the regular transmitted light and the diffuse transmitted light are uniformly diffused inside the light receiving unit, the amount of transmitted light is detected so that it is less affected by the crystal plane orientation.
  • the step of detecting the amount of infrared laser light transmitted through the subject and the subject has a moving distance that is substantially the same width as the irradiation diameter of the infrared laser beam.
  • a series of processes consisting of processes transported in the second direction is continuously performed within the examination range of the subject, and information on the irradiation position of the infrared laser beam is imaged together with the light quantity signal detected by the infrared light detection sensor.
  • the subject silicon wafer can be sufficiently transmitted, Can be detected.
  • the irradiation diameter of the infrared laser beam irradiated from the infrared laser light source toward the subject less than or equal to the thickness of the subject, a crack smaller than the thickness of the subject formed in the subject Such defects and defect locations can be detected accurately.
  • the infrared light detection sensor when the amount of infrared laser light detected by the infrared light detection sensor is lower than the threshold value, it is provided with a determination means that determines that a crack or a foreign substance exists in the infrared laser beam irradiation portion of the subject. Defects present in the object can be clearly detected.
  • the amount of light detected by the infrared light detection sensor is higher than the threshold value, it is present in the subject by having a determination means that determines that a penetration crack or a pinhole is present at the infrared laser beam irradiation portion of the subject. It is possible to clearly detect the defect to be performed.
  • the subject is a polycrystalline silicon wafer, it is almost unaffected by changes in the amount of transmitted light due to the crystal plane orientation, so the light amount signal detected by the infrared light detection sensor is converted into a two-dimensional image.
  • the bright and dark pattern of the crystal grain boundary which causes false detection or oversight, is remarkably reduced, and only defects present in the specimen can be clearly detected.
  • FIG. 1 It is a block diagram showing one embodiment of a silicon wafer defect inspection device of this invention. Similarly, it is a cross-sectional view of a main part where the subject is a polycrystalline silicon wafer. It is the important point sectional view showing the basic principle of the defect detection similarly. It is the detection result which similarly showed the detection signal in the defective part.
  • the silicon wafer defect inspection apparatus irradiates the silicon wafer 7 with a transfer device 6 that can place and transfer a silicon wafer 7 as a subject, and an infrared laser beam.
  • the infrared laser scanner 1, the hollow box type light receiving unit 2 that receives the infrared laser beam irradiated from the infrared laser scanner 1 and transmitted through the silicon wafer 7, and the detection unit are exposed to the space 2 b in the light receiving unit 2.
  • Control of the amplifier 13, the infrared laser scanner 1 and the conveying device 6 and the electric signal amplified by the sensor signal amplifier 13 are converted into a two-dimensional image, And an image processing board for detecting a defect of the rack 11 such as a computer 5 (control unit) provided with an (image processing means and judgment means).
  • the light source of the infrared laser scanner 1 used in the present embodiment is capable of irradiating a wavelength within the range because the single crystal or polycrystalline silicon wafer 7 serving as the subject transmits approximately 1 to 15 ⁇ m of infrared light. Things are used. Further, the spot size (irradiation diameter) of the emitted light 8 irradiated from the infrared laser scanner 1 on the silicon wafer 7 is adjusted to be approximately equal to or smaller than the thickness of the silicon wafer 7.
  • a semiconductor laser with a wavelength of 1.3 to 1.5 ⁇ m is appropriate from the viewpoint of availability.
  • the infrared laser scanner 1 is installed above the silicon wafer 7 as a subject so that the infrared laser beam can be irradiated to the silicon wafer 7 from obliquely above, and the moving direction of the silicon wafer 7 (conveyance described later)
  • a laser scanning mechanism capable of scanning an infrared laser beam in a direction orthogonal to the rail of the apparatus 6 is provided.
  • the laser scanning mechanism for example, there are a polygon mirror, a galvanometer, a MEMS scanner, etc., but any means can be used as long as it has a scanning area of a length that can cover the silicon wafer 7.
  • the transfer device 6 is provided below the infrared laser scanner 1 and includes two rails arranged substantially parallel to each other, and the silicon wafer 7 as the subject is placed so as to straddle the two rails. It can be transported above the light receiving unit 2 that is the irradiation position of the infrared laser scanner 1.
  • the light receiving unit 2 is substantially rectangular in a plan view and has a hollow box shape, and the silicon wafer 7 and the transfer device 6 are oriented in the longitudinal direction in a direction orthogonal to the rail of the transfer device 6. Below the silicon wafer 7 with a gap of about 1 to several mm. Further, a slit-like opening 4 having a width equal to or larger than substantially the same width of the silicon wafer 7 is formed on the upper surface of the light receiving unit 2 in a direction perpendicular to the rail of the transfer device 6.
  • the opening 4 of the light receiving unit 2 is provided at a position facing the infrared laser scanner 1, and an infrared laser beam irradiated from the infrared laser scanner 1 and transmitted through the silicon wafer 7 can enter the light receiving unit 2. It is formed as follows.
  • the inner side surface 2a of the light receiving unit 2 is made of a material having a high reflectance of the infrared laser beam, and passes through the silicon wafer 7 and is incident from the opening 4 like an integrating sphere (integrated light receiver). Can be uniformly diffused (and reflected).
  • a white powder having a high reflectance such as barium sulfate is sprayed or applied to the inner side surface 2a of the light receiving unit 2. Minute irregularities may be formed on the surface.
  • an opening 4a for exposing the detection portion of the infrared light detection sensor 3 to the space portion 2b of the light reception unit 2 is provided on the inner side surface 2a of the light reception unit 2, and the infrared light detection sensor 3 is The light receiving unit 2 is attached to the outer surface so as to close the opening 4a.
  • the infrared light detection sensor 3 is composed of, for example, a semiconductor photodiode or a photomultiplier tube capable of detecting the infrared wavelength used as the light source of the infrared laser scanner 1, and accurately detects the amount of infrared laser light. Is possible.
  • the infrared light detection sensor 3 is connected to the sensor signal amplifier 13 so as to be able to transmit signals. In the sensor signal amplifier 13, the infrared laser scanner 1, the transport device 6, the infrared light detection sensor 3, and the like.
  • the sensor signal amplifier 13 is controlled and connected to a computer 5 in which an image processing board is incorporated so that signals can be transmitted.
  • the silicon wafer 7 that is the subject is placed so as to straddle two rails of the transfer device 6 that are installed substantially parallel to each other, moves in a direction parallel to the rails, and the infrared laser beam of the infrared laser scanner 1. It is conveyed to the irradiation position.
  • An infrared laser beam is applied from the infrared laser scanner 1 to the upper surface of the silicon wafer 7 from an oblique direction of, for example, about 45 degrees with respect to the silicon wafer 7 transported to the irradiation position.
  • the emitted outgoing light 8 enters the silicon wafer 7 from an oblique direction. As shown in FIG. 2, the outgoing light 8 is divided into reflected light 9 reflected from the surface of the silicon wafer 7 and transmitted light 10 transmitted through the silicon wafer 7.
  • the crystal surface has a plurality of crystal plane orientations, so that the transmitted light 10 passing through the silicon wafer 7 maintains the same angle as the irradiation angle as shown in FIG.
  • the transmitted light 10a is transmitted as it is, and the diffuse transmitted light 10b is diffused in the direction according to the crystal plane orientation.
  • the specularly transmitted light 10a and the diffused transmitted light 10b that have passed through the silicon wafer 7 are provided on the upper surface of the light receiving unit 2, and the opening 4 is formed with a sufficient size to receive the regular transmitted light 10a and the diffused transmitted light 10b. And enters the space 2b of the light receiving unit 2. For this reason, the transmitted light amount of the transmitted light 10 hardly fluctuates depending on the crystal plane orientation, and a substantially constant light amount is incident on the space portion 2 b of the light receiving unit 2.
  • the positional relationship between the infrared laser scanner 1 and the light receiving unit 2 is not limited to the configuration shown in FIG.
  • the inner side surface 2a of the light receiving unit 2 is made of a material having a high reflectivity for infrared laser light, and has fine irregularities formed on the surface, or white powder having a high reflectance such as barium sulfate has minute irregularities. It is sprayed or applied to the inner side surface 2 a of the light receiving unit 2 so as to form, and the regular transmitted light 10 a and the diffuse transmitted light 10 b incident from the opening 4 of the light receiving unit 2 are minute on the inner side surface 2 a of the light receiving unit 2. It is uniformly diffused (and reflected) by the unevenness.
  • the shape of the space 2b of the light receiving unit 2 may be any of a spherical shape, a cylindrical shape, a rectangular parallelepiped shape, and the like, as long as the transmitted light 10 can be uniformly diffused.
  • the infrared light detection sensor 3 installed so as to expose the detection unit in the space 2b of the light receiving unit 2 is uniformly diffused (and reflected) by the minute unevenness of the inner side surface 2a of the light receiving unit 2.
  • the amount of transmitted light 10 is detected, the intensity of the amount of light is converted into an electrical signal, and the signal is transmitted to the sensor signal amplifier 13.
  • the sensor signal amplifier 13 amplifies the signal sent from the infrared light detection sensor 3 to an appropriate signal voltage value, and transmits the amplified signal to the computer 5.
  • the computer 5 takes in the light quantity change signal of the transmitted light 10 sent from the sensor signal amplifier 13 in synchronization with the scanning of the outgoing light 8 from the infrared laser scanner 1 and simultaneously moves the silicon wafer 7 by the transport device 6. .
  • a series of operations including irradiation of an infrared laser beam, detection of the amount of transmitted light, and movement of the silicon wafer 7 is performed over the entire surface of the silicon wafer 7, and the scanning direction of the emitted light 8 is set to the horizontal direction (of the transfer device 6).
  • the direction of movement of the silicon wafer 7 by the transfer device 6 is the vertical direction (the direction parallel to the rail of the transfer device 6), and the information on the irradiation position of the infrared laser beam along with the light quantity change signal of the transmitted light 10 is used as the computer 5 Is input to an image processing board incorporated in the image processing apparatus and captured as a two-dimensional image.
  • the amount of the transmitted light 10 incident on the light receiving unit 2 is almost independent of the crystal plane orientation and is kept almost constant.
  • the bright and dark pattern of the grain boundary 7a is remarkably reduced, and by performing image processing with the computer 5, only the light quantity change due to the defect such as the crack 11 of the transmitted light 10 can be visualized with light and shade, and the crack 11 etc. present on the silicon wafer 7 can be visualized.
  • the presence or absence of defects and the defect location are determined, and the inspection is completed.
  • the outgoing light 8 of the infrared laser scanner 1 enters the silicon wafer 7 from an oblique direction of about 45 degrees, and a part of the outgoing light 8 becomes reflected light 9 on the surface of the silicon wafer 7.
  • the light transmitted through the silicon wafer 7 enters the light receiving unit 2 as transmitted light 10 and is uniformly diffused in the light receiving unit 2 and then detected by the infrared light detection sensor 3.
  • the outgoing light 8 is incident on the place where the crack 11 exists, a part of the incident light 8 is reflected at the interface of the crack 11 as shown in FIG.
  • the light intensity of the transmitted light 10 detected by the infrared light detection sensor 3 changes depending on the presence or absence of the crack 11, and the crack 11 exists as shown in FIG.
  • the transmitted light 10 is attenuated only at the places where it appears, and a peak appears.
  • the light amount change signal of the transmitted light 10 is captured as a two-dimensional image and image processing is performed by the computer 5, it appears clearly as a dark portion compared to a portion having no defect.
  • this embodiment can be an effective means for detecting foreign matter existing on the silicon wafer 7. If foreign matter is present, the emitted light 8 is reflected or absorbed by the foreign matter, and the light intensity of the transmitted light 10 detected by the infrared light detection sensor 3 is attenuated in the same manner as the crack 11. When captured as a two-dimensional image and subjected to image processing, it appears clearly as a dark portion compared to a portion having no defect.
  • the outgoing light 8 passes directly without interposing the material of the silicon wafer 7 and enters the opening 4 of the light receiving unit 2, so that as shown in FIG.
  • the change in the light intensity of the transmitted light 10 detected by the light detection sensor 3 is in a brighter direction.
  • the light intensity change signal of the transmitted light 10 is captured as a two-dimensional image and image processing is performed, In comparison, it appears clearly as a bright part.
  • the silicon wafer defect inspection apparatus of the above embodiment even if the object 7 is a polycrystalline silicon wafer, it is diffused together with the regular transmitted light 10a by the crystal plane orientation that causes a bright and dark pattern due to the crystal grain boundary.
  • the diffused transmitted light 10b can enter the light receiving unit 2 through the opening 4 provided in the light receiving unit 2, so that the light receiving unit emits a substantially constant amount of transmitted light almost without being influenced by the crystal plane orientation. 2 can be made incident.
  • the regular transmitted light 10a and diffuse transmitted light 10b incident on the light receiving unit 2 are uniformly diffused inside the light receiving unit 2 and then detected by the infrared light detection sensor 3, so that the detection result is two-dimensional.
  • the light and dark pattern of the crystal grain boundary 7a is remarkably reduced, and only the shading due to the defect such as the crack 11 appears in the image, so that the defect such as the crack 11 can be clearly detected.
  • the spot size on the silicon wafer of the output light irradiated from the infrared laser scanner is preferably about the same as or smaller than the thickness of the silicon wafer, but a defect is detected even if it is larger than the thickness of the silicon wafer. be able to.
  • the number of rails of the transport device is not limited to two, but may be one or three or more, and a transport mechanism that does not use rails may be used.
  • defect inspection is possible if the mechanism moves the inspection apparatus relative to the inspection location of the subject, such as a mechanism that moves the infrared laser scanner instead of the subject.
  • the subject is a polycrystalline silicon wafer
  • the present invention is effective even for a single crystal silicon wafer, and defects can be clearly detected.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Provided is a silicon wafer defect inspection device capable of appropriately and clearly detecting a defect even in a polycrystalline silicon wafer. The silicon wafer defect inspection device is provided with an infrared laser light source (1) which applies infrared laser light to an object being inspected (7), a hollow light-receiving unit (2) which comprises an opening (4) for receiving the infrared laser light transmitted through the object being inspected (7) and diffuses the infrared laser light thereinside, and an infrared light detection sensor (3) which detects the amount of the infrared laser light transmitted through the object being inspected (7) with a detection portion thereof exposed to a space portion (2b) of the light-receiving unit (2), wherein the infrared light detection sensor (3) detects the amount of the infrared laser light which is transmitted through the object being inspected (7), enters the light-receiving unit (2) through the opening (4), and is diffused inside the light-receiving unit (2), whereby when the result of the detection is converted into an image, a light-dark pattern of a crystal grain boundary (7a) of a polycrystalline silicon wafer is markedly reduced, and a defect can be clearly detected.

Description

シリコンウェハ欠陥検査装置Silicon wafer defect inspection system
 この発明は、赤外レーザー光線を利用したシリコンウェハの欠陥検査装置に係るものであり、特にウェハ内に発生したクラック等の欠陥の有無を検出する欠陥検査装置に関するものである。 The present invention relates to a silicon wafer defect inspection apparatus using an infrared laser beam, and more particularly to a defect inspection apparatus for detecting the presence or absence of defects such as cracks generated in the wafer.
 近年、単結晶や多結晶の結晶系太陽電池素子の基板等として用いられるシリコンウェハは、コストダウンやシリコン材料の削減等の理由により薄型化が進められており、そのため、シリコンウェハを製造する工程やセル工程においてクラックが発生し易くなっている。 In recent years, silicon wafers used as substrates for single crystal and polycrystalline crystal solar cell elements have been reduced in thickness for reasons such as cost reduction and reduction of silicon materials. In the cell process, cracks are likely to occur.
 例えば、太陽電池素子においては、複数枚の太陽電池素子を組み合わせてモジュール化した場合、クラックのある太陽電池素子が1枚でも存在すると、そのモジュールの出力電力を大きく低下させてしまうことになる。また小さなクラックにおいても、太陽電池素子の製造工程が進むに連れてクラックが拡大し、致命的なサイズに至ることもある。このため太陽電池素子をモジュール化する以前にクラックの有無を精度良く検出し、欠陥のある太陽電池素子を除去しておくことが重要である。 For example, in a solar cell element, when a plurality of solar cell elements are combined to form a module, if even one solar cell element with a crack exists, the output power of the module is greatly reduced. Even in the case of a small crack, the crack expands as the manufacturing process of the solar cell element proceeds, and may reach a fatal size. For this reason, it is important to accurately detect the presence or absence of cracks and remove defective solar cell elements before modularizing the solar cell elements.
 シリコンウェハのクラックの検出方法の第一の従来技術としては、シリコンウェハに衝撃を加えて振動を発生させ、この振動周波数を、センサーを介して電気信号に変換し、この振動周波数のパワースペクトラムを解析してクラックの有無を検出する方法がある。 The first conventional technique for detecting cracks in a silicon wafer is to generate a vibration by applying an impact to the silicon wafer, convert this vibration frequency into an electrical signal through a sensor, and convert the power spectrum of this vibration frequency to There is a method of analyzing and detecting the presence or absence of cracks.
 また、第二の従来技術としては、赤外光をシリコンウェハに照射し、その反射光あるいは透過光による赤外線画像をCCDカメラで検出し、微小なクラックを検出する検査方法がある。詳しくは、赤外光をシリコンウェハに照射した際、クラック等の欠陥の無い部分においては、赤外光が一様な光量で反射あるいは透過するが、クラック等の欠陥が存在する部分では、赤外光の吸収及び散乱が局所的に起こって光量に変化が生じ、赤外線画像において影として出現するので、画像処理によって微小なクラックが視覚化され、クラックを発見できるという検出方法である(例えば、特許文献1参照)。 As a second conventional technique, there is an inspection method in which a silicon wafer is irradiated with infrared light, an infrared image by the reflected light or transmitted light is detected by a CCD camera, and minute cracks are detected. Specifically, when infrared light is irradiated onto a silicon wafer, infrared light is reflected or transmitted with a uniform amount of light in a portion where there is no defect such as a crack, but red in a portion where a defect such as a crack exists. Absorption and scattering of external light occurs locally, resulting in a change in the amount of light and appearing as a shadow in an infrared image, so that a small crack can be visualized by image processing and a crack can be found (for example, Patent Document 1).
特開2007-218638号公報JP 2007-218638 A
 しかしながら第一の従来技術では作業員によって打音検査を行うため、ウェハの薄型化に伴い、人手によるハンドリングが困難になりつつある。 However, in the first prior art, a hammering inspection is performed by an operator, so that manual handling is becoming difficult as the wafer becomes thinner.
 また、第二の従来技術では、結晶表面に複数の面方位を有するような多結晶シリコンウェハの検査を行う場合、シリコンウェハ表面に照射され、透過した赤外光は、照射角度と同角度を保持したまま透過した正透過光と、不規則に並ぶ結晶の面方位によって拡散された拡散透過光とに分かれるが、この拡散透過光の進行方向が結晶の面方位によって異なるため、透過光量が面方位毎に異なることとなる。この状態で、焦点距離を30cm程度としたCCDカメラで撮像すると、面方位毎に光量の異なる透過光を直接撮像することとなり、撮像画像に結晶の粒界の明暗模様が顕著に現れる。なお、シリコンウェハ表面に赤外光を照射し、反射光を撮像した場合でも同様に結晶の粒界の明暗模様が顕著に現れる。そのため、結晶の粒界の明暗模様とクラックとを明確に区別することが困難となり、誤検出あるいは見逃しを発生させるといった課題があった。 In the second prior art, when a polycrystalline silicon wafer having a plurality of plane orientations is inspected on the crystal surface, the infrared light irradiated on and transmitted through the silicon wafer surface has the same angle as the irradiation angle. It is divided into specularly transmitted light that is transmitted while being held, and diffused transmitted light that is diffused by the crystal orientation of the crystals that are irregularly arranged. It will be different for each direction. In this state, when a CCD camera with a focal length of about 30 cm is used for imaging, transmitted light having a different amount of light for each plane orientation is directly imaged, and a bright and dark pattern of crystal grain boundaries appears remarkably in the captured image. Even when the silicon wafer surface is irradiated with infrared light and the reflected light is imaged, the bright and dark pattern of the crystal grain boundary appears in a similar manner. For this reason, it is difficult to clearly distinguish the bright and dark patterns and cracks at the grain boundaries of the crystal, and there has been a problem that false detection or oversight occurs.
 この発明は、上記従来の課題を解決するためになされたものであって、その目的は、多結晶シリコンウェハであっても欠陥を適切かつ明確に検出することができるシリコンウェハ欠陥検査装置を提供することにある。 The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a silicon wafer defect inspection apparatus capable of appropriately and clearly detecting defects even in a polycrystalline silicon wafer. There is to do.
 そこでこの発明のシリコンウェハ欠陥検査装置は、被検体7に赤外レーザー光線を照射する赤外レーザー光源1と、前記被検体7を透過した赤外レーザー光を受光する開口部4を有し、その内部で赤外レーザー光を拡散させる中空の受光ユニット2と、前記受光ユニット2の空間部2bの赤外レーザー光の光量を検出する赤外光検出センサー3とを備えたシリコンウェハ欠陥検査装置であって、前記受光ユニット2の内部での赤外レーザー光の光量の変化を検出することでシリコンウェハのクラック等の欠陥を検出することを特徴としている。 Therefore, the silicon wafer defect inspection apparatus of the present invention has an infrared laser light source 1 that irradiates the subject 7 with an infrared laser beam, and an opening 4 that receives the infrared laser light that has passed through the subject 7. A silicon wafer defect inspection apparatus comprising a hollow light receiving unit 2 for diffusing infrared laser light therein and an infrared light detection sensor 3 for detecting the amount of infrared laser light in the space 2b of the light receiving unit 2 Thus, it is characterized in that a defect such as a crack in the silicon wafer is detected by detecting a change in the amount of infrared laser light in the light receiving unit 2.
 また、前記赤外レーザー光源1から照射された赤外レーザー光線を第一の方向に走査させる走査機構と、被検体7を第一の方向と略直交する第二の方向に搬送可能な搬送手段6と、前記赤外光検出センサー3によって検出された光量信号を二次元画像に変換する画像処理手段を備えた制御手段とを備えたシリコンウェハ欠陥検査装置であって、走査機構による赤外レーザー光線の走査動作と同期して、被検体7を透過した赤外レーザー光の光量を検出する工程と、被検体7が赤外レーザー光線の照射径と略同幅の移動距離をもって第二の方向に搬送される工程からなる一連の工程が、前記被検体7の検査範囲内で連続して行われ、前記赤外光検出センサー3によって検出された光量信号とともに赤外レーザー光線照射位置の情報が画像処理手段に入力され、二次元画像に変換されることを特徴としている。 In addition, a scanning mechanism that scans the infrared laser beam emitted from the infrared laser light source 1 in a first direction, and a transport unit 6 that can transport the subject 7 in a second direction substantially orthogonal to the first direction. And a silicon wafer defect inspection apparatus comprising an image processing means for converting a light quantity signal detected by the infrared light detection sensor 3 into a two-dimensional image, wherein an infrared laser beam generated by a scanning mechanism In synchronism with the scanning operation, the step of detecting the amount of infrared laser light transmitted through the subject 7 and the subject 7 are transported in the second direction with a moving distance substantially the same as the irradiation diameter of the infrared laser beam. A series of steps consisting of the following steps are continuously performed within the examination range of the subject 7, and information on the infrared laser beam irradiation position is processed together with the light quantity signal detected by the infrared light detection sensor 3. It is input to the stage, and characterized in that it is converted into a two-dimensional image.
 さらに、前記赤外レーザー光線の波長は、1~15μmの範囲内であることを特徴としている。 Furthermore, the wavelength of the infrared laser beam is in the range of 1 to 15 μm.
 さらにまた、前記赤外レーザー光線の照射径は、被検体7の厚さと略同幅以下とすることを特徴としている。 Furthermore, the irradiation diameter of the infrared laser beam is characterized by being approximately equal to or less than the thickness of the subject 7.
 また、前記赤外光検出センサー3で検出された光量が閾値より低い場合、前記被検体7の赤外レーザー光線照射箇所にクラック11又は異物が存在すると判定する判定手段を備えていることを特徴としている。 In addition, when the amount of light detected by the infrared light detection sensor 3 is lower than a threshold value, there is provided a determination means for determining that a crack 11 or a foreign object exists at an infrared laser beam irradiation portion of the subject 7. Yes.
 さらに、前記赤外光検出センサー3で検出された光量が閾値より高い場合、前記被検体7の赤外レーザー光線照射箇所に貫通クラック又はピンホール14が存在すると判定する判定手段を備えていることを特徴としている。 In addition, when the amount of light detected by the infrared light detection sensor 3 is higher than a threshold value, there is provided determination means for determining that a through crack or a pinhole 14 is present at an infrared laser beam irradiation location of the subject 7. It is a feature.
 さらにまた、前記被検体7が多結晶シリコンウェハであることを特徴としている。 Furthermore, the subject 7 is a polycrystalline silicon wafer.
 この発明のシリコンウェハ欠陥検査装置によれば、単結晶シリコンウェハの赤外レーザー光線照射箇所にクラック等の欠陥が生じていた場合、照射された赤外レーザー光線が欠陥によって吸収あるいは拡散され、受光ユニットの開口部から受光ユニット内に入射する透過光量が変化することから欠陥を明確に検出することができる。 According to the silicon wafer defect inspection apparatus of the present invention, when a defect such as a crack occurs in the infrared laser beam irradiation portion of the single crystal silicon wafer, the irradiated infrared laser beam is absorbed or diffused by the defect, Since the amount of transmitted light that enters the light receiving unit from the opening changes, it is possible to detect the defect clearly.
 また、被検体が複数の面方位を有する多結晶シリコンウェハであっても、受光ユニットに設けられた開口部によって、照射角度と同角度を保持したまま透過した正透過光とともに、不規則に並ぶ結晶の面方位によって拡散された拡散透過光を受光ユニット内に入射させることができるため、受光ユニット内に入射される透過光量が結晶の面方位によって殆ど変化することなく、ほぼ一定の光量となる。そして、正透過光と拡散透過光の双方を受光ユニットの内部で一様に拡散させた後、透過光量を検出することで結晶の面方位による影響を受けにくくなる。 Moreover, even if the subject is a polycrystalline silicon wafer having a plurality of plane orientations, it is irregularly arranged together with the regular transmitted light transmitted while maintaining the same angle as the irradiation angle by the opening provided in the light receiving unit. Since diffused and diffused light diffused by the crystal plane orientation can be incident on the light receiving unit, the amount of transmitted light entering the light receiving unit hardly changes depending on the crystal plane orientation and becomes a substantially constant light amount. . Then, after both the regular transmitted light and the diffuse transmitted light are uniformly diffused inside the light receiving unit, the amount of transmitted light is detected so that it is less affected by the crystal plane orientation.
 そして、走査機構による赤外レーザー光線の走査動作と同期して、被検体を透過した赤外レーザー光の光量を検出する工程と、被検体が赤外レーザー光線の照射径と略同幅の移動距離をもって第二の方向に搬送される工程からなる一連の工程が、被検体の検査範囲内で連続して行われ、赤外光検出センサーによって検出された光量信号とともに赤外レーザー光線照射位置の情報が画像処理手段に入力され、二次元画像に変換された場合、受光ユニット内に入射される透過光量が、結晶の面方位によって殆ど変化することなく、ほぼ一定の光量であるため、誤検出や見逃しの原因となっていた結晶の粒界の明暗模様が著しく軽減され、その結果、クラック等の欠陥の有無や大きさ、欠陥箇所を明確に検出することが可能になる。 In synchronism with the scanning operation of the infrared laser beam by the scanning mechanism, the step of detecting the amount of infrared laser light transmitted through the subject, and the subject has a moving distance that is substantially the same width as the irradiation diameter of the infrared laser beam. A series of processes consisting of processes transported in the second direction is continuously performed within the examination range of the subject, and information on the irradiation position of the infrared laser beam is imaged together with the light quantity signal detected by the infrared light detection sensor. When input to the processing means and converted into a two-dimensional image, the amount of transmitted light that enters the light receiving unit is almost constant with almost no change depending on the plane orientation of the crystal. The bright and dark pattern at the grain boundary of the crystal which is the cause is remarkably reduced, and as a result, it is possible to clearly detect the presence / absence and size of a defect such as a crack and the location of the defect.
 また、赤外レーザー光源から被検体に向けて照射される赤外レーザー光線の波長を1~15μmの範囲内としていることによって、被検体であるシリコンウェハを十分に透過させることができ、シリコンウェハ内部に生じた欠陥を検出することができる。 In addition, by setting the wavelength of the infrared laser beam emitted from the infrared laser light source toward the subject within the range of 1 to 15 μm, the subject silicon wafer can be sufficiently transmitted, Can be detected.
 さらに、赤外レーザー光源から被検体に向けて照射される赤外レーザー光線の照射径を被検体の厚さと略同幅以下とすることで、被検体内に形成された被検体の厚みより小さなクラック等の欠陥及び欠陥箇所を精確に検出することができる。 Furthermore, by making the irradiation diameter of the infrared laser beam irradiated from the infrared laser light source toward the subject less than or equal to the thickness of the subject, a crack smaller than the thickness of the subject formed in the subject Such defects and defect locations can be detected accurately.
 さらにまた、赤外光検出センサーで検出された赤外レーザー光の光量が閾値より低い場合、被検体の赤外レーザー光線照射箇所にクラック又は異物が存在すると判定する判定手段を備えていることで、被検体に存在する欠陥を明確に検出することができる。 Furthermore, when the amount of infrared laser light detected by the infrared light detection sensor is lower than the threshold value, it is provided with a determination means that determines that a crack or a foreign substance exists in the infrared laser beam irradiation portion of the subject. Defects present in the object can be clearly detected.
 また、赤外光検出センサーで検出された光量が閾値より高い場合、被検体の赤外レーザー光線照射箇所に貫通クラック又はピンホールが存在すると判定する判定手段を備えていることで、被検体に存在する欠陥を明確に検出することができる。 In addition, when the amount of light detected by the infrared light detection sensor is higher than the threshold value, it is present in the subject by having a determination means that determines that a penetration crack or a pinhole is present at the infrared laser beam irradiation portion of the subject. It is possible to clearly detect the defect to be performed.
 さらにまた、前記被検体が多結晶シリコンウェハであっても、結晶の面方位による透過光量の変化の影響を殆ど受けないため、赤外光検出センサーによって検出された光量信号を二次元画像に変換した場合、誤検出あるいは見逃しの原因となる結晶の粒界の明暗模様が著しく軽減され、被検体に存在する欠陥のみを明確に検出することができる。 Furthermore, even if the subject is a polycrystalline silicon wafer, it is almost unaffected by changes in the amount of transmitted light due to the crystal plane orientation, so the light amount signal detected by the infrared light detection sensor is converted into a two-dimensional image. In this case, the bright and dark pattern of the crystal grain boundary, which causes false detection or oversight, is remarkably reduced, and only defects present in the specimen can be clearly detected.
この発明のシリコンウェハ欠陥検査装置の一実施形態を示すブロック図である。It is a block diagram showing one embodiment of a silicon wafer defect inspection device of this invention. 同じくその被検体を多結晶シリコンウェハとした要所断面図である。Similarly, it is a cross-sectional view of a main part where the subject is a polycrystalline silicon wafer. 同じくその欠陥検出の基本原理を示した要所断面図である。It is the important point sectional view showing the basic principle of the defect detection similarly. 同じくその欠陥部位における検出信号を示した検出結果である。It is the detection result which similarly showed the detection signal in the defective part.
 次に、この発明のシリコンウェハ欠陥検査装置の具体的な実施の形態について、図面を参照しつつ詳細に説明する。この発明の実施形態に係るシリコンウェハ欠陥検査装置は、図1に示すように、被検体であるシリコンウェハ7を載置及び搬送可能な搬送装置6と、赤外レーザー光線をシリコンウェハ7に照射する赤外レーザースキャナー1と、赤外レーザースキャナー1から照射され、シリコンウェハ7を透過した赤外レーザー光線を受光する中空箱型の受光ユニット2と、受光ユニット2内の空間部2bに検出部を露出させた赤外光検出センサー3と、赤外光検出センサー3に接続され、赤外光検出センサー3で検出された赤外レーザー光量に応じた電気信号を適当な信号電圧値に増幅するセンサー信号増幅器13と、赤外レーザースキャナー1と搬送装置6の制御及びセンサー信号増幅器13によって増幅された電気信号を二次元的な画像に変換し、クラック11等の欠陥の検出を行う画像処理基板(画像処理手段及び判定手段)を備えたコンピュータ5(制御手段)から構成されている。 Next, specific embodiments of the silicon wafer defect inspection apparatus of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the silicon wafer defect inspection apparatus according to the embodiment of the present invention irradiates the silicon wafer 7 with a transfer device 6 that can place and transfer a silicon wafer 7 as a subject, and an infrared laser beam. The infrared laser scanner 1, the hollow box type light receiving unit 2 that receives the infrared laser beam irradiated from the infrared laser scanner 1 and transmitted through the silicon wafer 7, and the detection unit are exposed to the space 2 b in the light receiving unit 2. The infrared light detection sensor 3 and the sensor signal that is connected to the infrared light detection sensor 3 and amplifies an electric signal corresponding to the amount of infrared laser light detected by the infrared light detection sensor 3 to an appropriate signal voltage value. Control of the amplifier 13, the infrared laser scanner 1 and the conveying device 6 and the electric signal amplified by the sensor signal amplifier 13 are converted into a two-dimensional image, And an image processing board for detecting a defect of the rack 11 such as a computer 5 (control unit) provided with an (image processing means and judgment means).
 本実施形態で用いられる赤外レーザースキャナー1の光源は、被検体となる単結晶あるいは多結晶のシリコンウェハ7が、概ね1~15μmの赤外線を透過することから、その範囲での波長を照射できるものが用いられる。また、赤外レーザースキャナー1から照射された出射光8のシリコンウェハ7上でのスポットサイズ(照射径)は、シリコンウェハ7の厚みと同程度かそれ以下となるよう調節されている。なお、光源は、入手の容易さ等から例えば波長1.3~1.5μmの半導体レーザーが適宜である。 The light source of the infrared laser scanner 1 used in the present embodiment is capable of irradiating a wavelength within the range because the single crystal or polycrystalline silicon wafer 7 serving as the subject transmits approximately 1 to 15 μm of infrared light. Things are used. Further, the spot size (irradiation diameter) of the emitted light 8 irradiated from the infrared laser scanner 1 on the silicon wafer 7 is adjusted to be approximately equal to or smaller than the thickness of the silicon wafer 7. As the light source, for example, a semiconductor laser with a wavelength of 1.3 to 1.5 μm is appropriate from the viewpoint of availability.
 赤外レーザースキャナー1は、シリコンウェハ7に対して、斜め上方から赤外レーザー光線を照射できるよう、被検体であるシリコンウェハ7の上方に設置されており、シリコンウェハ7の移動方向(後述する搬送装置6のレールと平行方向)の直交方向に赤外レーザー光線を走査可能なレーザー走査機構を備えている。なお、レーザー走査機構として、例えばポリゴンミラー、ガルバノメータ、MEMSスキャナー等があるが、シリコンウェハ7を包括できる長さの走査領域を持っていれば手段は問わない。 The infrared laser scanner 1 is installed above the silicon wafer 7 as a subject so that the infrared laser beam can be irradiated to the silicon wafer 7 from obliquely above, and the moving direction of the silicon wafer 7 (conveyance described later) A laser scanning mechanism capable of scanning an infrared laser beam in a direction orthogonal to the rail of the apparatus 6 is provided. As the laser scanning mechanism, for example, there are a polygon mirror, a galvanometer, a MEMS scanner, etc., but any means can be used as long as it has a scanning area of a length that can cover the silicon wafer 7.
 搬送装置6は、赤外レーザースキャナー1の下方に設置され、互いに略平行に配設された2本のレールを備えており、被検体であるシリコンウェハ7は2本のレールに跨るように載置され、赤外レーザースキャナー1の照射位置となる受光ユニット2の上方へと搬送可能となっている。 The transfer device 6 is provided below the infrared laser scanner 1 and includes two rails arranged substantially parallel to each other, and the silicon wafer 7 as the subject is placed so as to straddle the two rails. It can be transported above the light receiving unit 2 that is the irradiation position of the infrared laser scanner 1.
 受光ユニット2は、図2及び図3に示すように、平面視略長方形でかつ中空箱型であり、搬送装置6のレールと直交する方向に長手方向を向けて、シリコンウェハ7及び搬送装置6の下方に、シリコンウェハ7と1~数mm程度の隙間をあけて設置されている。また、受光ユニット2の上面には、搬送装置6のレールと直行する方向に、シリコンウェハ7の略同幅以上の幅を持つスリット状の開口部4が形成されている。 As shown in FIGS. 2 and 3, the light receiving unit 2 is substantially rectangular in a plan view and has a hollow box shape, and the silicon wafer 7 and the transfer device 6 are oriented in the longitudinal direction in a direction orthogonal to the rail of the transfer device 6. Below the silicon wafer 7 with a gap of about 1 to several mm. Further, a slit-like opening 4 having a width equal to or larger than substantially the same width of the silicon wafer 7 is formed on the upper surface of the light receiving unit 2 in a direction perpendicular to the rail of the transfer device 6.
 受光ユニット2の開口部4は、赤外レーザースキャナー1と対向する位置に設けられており、赤外レーザースキャナー1から照射され、シリコンウェハ7を透過した赤外レーザー光線を受光ユニット2内に入射できるように形成されている。 The opening 4 of the light receiving unit 2 is provided at a position facing the infrared laser scanner 1, and an infrared laser beam irradiated from the infrared laser scanner 1 and transmitted through the silicon wafer 7 can enter the light receiving unit 2. It is formed as follows.
 受光ユニット2の内側面2aは、赤外レーザー光線の反射率の高い材料で作製され、積分球(積分受光器)のように、シリコンウェハ7を透過して開口部4から入射された赤外レーザー光線を一様に拡散(及び反射)できるようになっている。なお、受光ユニット2の内側面2aを赤外レーザー光線の反射率の高い材料で形成する代わりに、例えば硫酸バリウム等の反射率の高い白色粉体を噴霧又は塗布し、受光ユニット2の内側面2aに微小な凹凸を形成しても良い。 The inner side surface 2a of the light receiving unit 2 is made of a material having a high reflectance of the infrared laser beam, and passes through the silicon wafer 7 and is incident from the opening 4 like an integrating sphere (integrated light receiver). Can be uniformly diffused (and reflected). Instead of forming the inner side surface 2a of the light receiving unit 2 from a material having a high reflectance of infrared laser light, for example, a white powder having a high reflectance such as barium sulfate is sprayed or applied to the inner side surface 2a of the light receiving unit 2. Minute irregularities may be formed on the surface.
 また、受光ユニット2の内側面2aには、赤外光検出センサー3の検出部を受光ユニット2の空間部2bに露出させるための開口部4aが設けられており、赤外光検出センサー3が、この開口部4aを塞ぐようにして受光ユニット2の外側面に取り付けられている。 In addition, an opening 4a for exposing the detection portion of the infrared light detection sensor 3 to the space portion 2b of the light reception unit 2 is provided on the inner side surface 2a of the light reception unit 2, and the infrared light detection sensor 3 is The light receiving unit 2 is attached to the outer surface so as to close the opening 4a.
 赤外光検出センサー3は、赤外レーザースキャナー1の光源に使用された赤外線波長を検出可能な例えば半導体フォトダイオードまたは光電子増倍管から構成されており、赤外レーザー光の光量の正確な検出が可能となっている。また、赤外光検出センサー3は、センサー信号増幅器13と信号伝達可能な状態に接続されており、センサー信号増幅器13においては、赤外レーザースキャナー1と搬送装置6と赤外光検出センサー3とセンサー信号増幅器13の制御を行い、画像処理基板が内蔵されたコンピュータ5と信号伝達可能な状態に接続されている。 The infrared light detection sensor 3 is composed of, for example, a semiconductor photodiode or a photomultiplier tube capable of detecting the infrared wavelength used as the light source of the infrared laser scanner 1, and accurately detects the amount of infrared laser light. Is possible. The infrared light detection sensor 3 is connected to the sensor signal amplifier 13 so as to be able to transmit signals. In the sensor signal amplifier 13, the infrared laser scanner 1, the transport device 6, the infrared light detection sensor 3, and the like. The sensor signal amplifier 13 is controlled and connected to a computer 5 in which an image processing board is incorporated so that signals can be transmitted.
 上記に各部位の詳細な説明を行ったが、次にシリコンウェハ7の検査手順について詳細に説明する。被検体であるシリコンウェハ7は、搬送装置6の互いに略平行に設置された2本のレールに跨るようにして載置され、レールと平行方向に移動し、赤外レーザースキャナー1の赤外レーザー光線照射位置へと搬送される。照射位置へと搬送されたシリコンウェハ7に対して、赤外レーザー光線が、赤外レーザースキャナー1からシリコンウェハ7の上面に対し、例えば45度程度の斜め方向から照射される。つまり、照射された出射光8(赤外レーザー光線)は、シリコンウェハ7に対して斜め方向から入射することとなる。そして、出射光8は、図2に示すように、シリコンウェハ7の表面で反射する反射光9と、シリコンウェハ7を透過する透過光10に分かれる。 The detailed description of each part has been given above. Next, the inspection procedure of the silicon wafer 7 will be described in detail. The silicon wafer 7 that is the subject is placed so as to straddle two rails of the transfer device 6 that are installed substantially parallel to each other, moves in a direction parallel to the rails, and the infrared laser beam of the infrared laser scanner 1. It is conveyed to the irradiation position. An infrared laser beam is applied from the infrared laser scanner 1 to the upper surface of the silicon wafer 7 from an oblique direction of, for example, about 45 degrees with respect to the silicon wafer 7 transported to the irradiation position. That is, the emitted outgoing light 8 (infrared laser beam) enters the silicon wafer 7 from an oblique direction. As shown in FIG. 2, the outgoing light 8 is divided into reflected light 9 reflected from the surface of the silicon wafer 7 and transmitted light 10 transmitted through the silicon wafer 7.
 被検体が多結晶のシリコンウェハ7の場合、結晶表面に複数の結晶の面方位を有するため、シリコンウェハ7を通過した透過光10は、図2に示すように、照射角度と同角度を保持したまま透過した正透過光10aと、結晶の面方位に従った方向に拡散された拡散透過光10bに分かれることとなる。 When the subject is a polycrystalline silicon wafer 7, the crystal surface has a plurality of crystal plane orientations, so that the transmitted light 10 passing through the silicon wafer 7 maintains the same angle as the irradiation angle as shown in FIG. The transmitted light 10a is transmitted as it is, and the diffuse transmitted light 10b is diffused in the direction according to the crystal plane orientation.
 シリコンウェハ7を透過した正透過光10a及び拡散透過光10bは、受光ユニット2の上面に設けられ、正透過光10a及び拡散透過光10bを受光し得る十分な大きさで形成された開口部4を通って、受光ユニット2の空間部2bに入射される。そのため、結晶の面方位によって透過光10の透過光量が殆ど変動することなく、ほぼ一定の光量が受光ユニット2の空間部2bに入射することとなる。なお、赤外レーザースキャナー1と受光ユニット2の位置関係は図1の形態にこだわらず上下配置が逆でも良い。 The specularly transmitted light 10a and the diffused transmitted light 10b that have passed through the silicon wafer 7 are provided on the upper surface of the light receiving unit 2, and the opening 4 is formed with a sufficient size to receive the regular transmitted light 10a and the diffused transmitted light 10b. And enters the space 2b of the light receiving unit 2. For this reason, the transmitted light amount of the transmitted light 10 hardly fluctuates depending on the crystal plane orientation, and a substantially constant light amount is incident on the space portion 2 b of the light receiving unit 2. The positional relationship between the infrared laser scanner 1 and the light receiving unit 2 is not limited to the configuration shown in FIG.
 受光ユニット2の内側面2aは、赤外レーザー光線の反射率の高い材料で作製され、表面に微小な凹凸が形成されているか、あるいは硫酸バリウム等の反射率の高い白色粉体が微小な凹凸を形成するように受光ユニット2の内側面2aに噴霧又は塗布されており、受光ユニット2の開口部4から入射した正透過光10a及び拡散透過光10bは、受光ユニット2の内側面2aの微小な凹凸によって一様に拡散(及び反射)される。なお、受光ユニット2の空間部2bの形状は、透過光10を一様に拡散できれば十分であることから、球型、円筒型、直方体型等のいずれでも良い。 The inner side surface 2a of the light receiving unit 2 is made of a material having a high reflectivity for infrared laser light, and has fine irregularities formed on the surface, or white powder having a high reflectance such as barium sulfate has minute irregularities. It is sprayed or applied to the inner side surface 2 a of the light receiving unit 2 so as to form, and the regular transmitted light 10 a and the diffuse transmitted light 10 b incident from the opening 4 of the light receiving unit 2 are minute on the inner side surface 2 a of the light receiving unit 2. It is uniformly diffused (and reflected) by the unevenness. The shape of the space 2b of the light receiving unit 2 may be any of a spherical shape, a cylindrical shape, a rectangular parallelepiped shape, and the like, as long as the transmitted light 10 can be uniformly diffused.
 そして、受光ユニット2の空間部2bに検出部を露出させるようにして設置された赤外光検出センサー3が、受光ユニット2の内側面2aの微小な凹凸で一様に拡散(及び反射)された透過光10の光量を検出し、光量の強度を電気信号に変換して、信号をセンサー信号増幅器13へと送信する。 Then, the infrared light detection sensor 3 installed so as to expose the detection unit in the space 2b of the light receiving unit 2 is uniformly diffused (and reflected) by the minute unevenness of the inner side surface 2a of the light receiving unit 2. The amount of transmitted light 10 is detected, the intensity of the amount of light is converted into an electrical signal, and the signal is transmitted to the sensor signal amplifier 13.
 センサー信号増幅器13は、赤外光検出センサー3から送られてきた信号を適当な信号電圧値に増幅した後、コンピュータ5に送信する。 The sensor signal amplifier 13 amplifies the signal sent from the infrared light detection sensor 3 to an appropriate signal voltage value, and transmits the amplified signal to the computer 5.
 コンピュータ5は、赤外レーザースキャナー1からの出射光8の走査と同期してセンサー信号増幅器13から送られてきた透過光10の光量変化信号を取り込み、同時に搬送装置6によってシリコンウェハ7を移動させる。そして、赤外レーザー光線の照射、透過光量の検出、シリコンウェハ7の移動からなる一連の動作を、シリコンウェハ7表面の全域に亘って行い、出射光8の走査方向を水平方向(搬送装置6のレールと直行方向)とし、搬送装置6によるシリコンウェハ7の移動方向を垂直方向(搬送装置6のレールと平行方向)として、透過光10の光量変化信号とともに赤外レーザー光線照射位置の情報をコンピュータ5に内蔵された画像処理基板に入力し、二次元的な画像として取り込む。この際、上記に示したように、受光ユニット2内に入射される透過光10の光量は、結晶の面方位に左右されることが殆ど無く、ほぼ一定に保たれていることから、結晶の粒界7aの明暗模様が著しく軽減され、コンピュータ5で画像処理を行うことによって、透過光10のクラック11等の欠陥による光量変化のみを濃淡で視覚化でき、シリコンウェハ7に存在するクラック11等の欠陥の有無及び欠陥箇所を判定し、検査を完了する。 The computer 5 takes in the light quantity change signal of the transmitted light 10 sent from the sensor signal amplifier 13 in synchronization with the scanning of the outgoing light 8 from the infrared laser scanner 1 and simultaneously moves the silicon wafer 7 by the transport device 6. . A series of operations including irradiation of an infrared laser beam, detection of the amount of transmitted light, and movement of the silicon wafer 7 is performed over the entire surface of the silicon wafer 7, and the scanning direction of the emitted light 8 is set to the horizontal direction (of the transfer device 6). The direction of movement of the silicon wafer 7 by the transfer device 6 is the vertical direction (the direction parallel to the rail of the transfer device 6), and the information on the irradiation position of the infrared laser beam along with the light quantity change signal of the transmitted light 10 is used as the computer 5 Is input to an image processing board incorporated in the image processing apparatus and captured as a two-dimensional image. At this time, as described above, the amount of the transmitted light 10 incident on the light receiving unit 2 is almost independent of the crystal plane orientation and is kept almost constant. The bright and dark pattern of the grain boundary 7a is remarkably reduced, and by performing image processing with the computer 5, only the light quantity change due to the defect such as the crack 11 of the transmitted light 10 can be visualized with light and shade, and the crack 11 etc. present on the silicon wafer 7 can be visualized. The presence or absence of defects and the defect location are determined, and the inspection is completed.
 上記にシリコンウェハ7の検査手順を示したが、次に、シリコンウェハ7に欠陥が存在した場合における欠陥検出の基本原理を詳細に説明する。上記に示したように、赤外レーザースキャナー1の出射光8は、45度程度の斜め方向からシリコンウェハ7に入射し、出射光8の一部はシリコンウェハ7表面での反射光9となってしまうが、シリコンウェハ7の内部を透過した光は透過光10として受光ユニット2に入り込み、受光ユニット2内で一様に拡散された後、赤外光検出センサー3によって検出される。一方、クラック11が存在する箇所に出射光8が入射すると、図3に示すように、入射光8の一部がクラック11の界面で反射してクラック界面反射光12となり、受光ユニット2の開口部4に入射されないことから、クラック11の有無によって赤外光検出センサー3で検出される透過光10の光量強度が変化することになり、図4(a)に示すように、クラック11が存在した箇所だけ透過光10は減衰し、ピークが現れる。この透過光10の光量変化信号を二次元的な画像として取り込み、コンピュータ5で画像処理を行った場合、欠陥の無い箇所と比べて暗部として鮮明に現れる。 The inspection procedure for the silicon wafer 7 has been described above. Next, the basic principle of defect detection when a defect exists in the silicon wafer 7 will be described in detail. As described above, the outgoing light 8 of the infrared laser scanner 1 enters the silicon wafer 7 from an oblique direction of about 45 degrees, and a part of the outgoing light 8 becomes reflected light 9 on the surface of the silicon wafer 7. However, the light transmitted through the silicon wafer 7 enters the light receiving unit 2 as transmitted light 10 and is uniformly diffused in the light receiving unit 2 and then detected by the infrared light detection sensor 3. On the other hand, when the outgoing light 8 is incident on the place where the crack 11 exists, a part of the incident light 8 is reflected at the interface of the crack 11 as shown in FIG. Since it is not incident on the portion 4, the light intensity of the transmitted light 10 detected by the infrared light detection sensor 3 changes depending on the presence or absence of the crack 11, and the crack 11 exists as shown in FIG. The transmitted light 10 is attenuated only at the places where it appears, and a peak appears. When the light amount change signal of the transmitted light 10 is captured as a two-dimensional image and image processing is performed by the computer 5, it appears clearly as a dark portion compared to a portion having no defect.
 また、本実施形態は、クラック11の他に、シリコンウェハ7に存在する異物の検出にも有効な手段となり得る。異物が存在すると、異物によって出射光8が反射あるいは吸収されて、クラック11と同様に赤外光検出センサー3で検出される透過光10の光量強度は減衰し、透過光10の光量変化信号を二次元的な画像として取り込み、画像処理を行った場合、欠陥の無い箇所に比べて暗部として鮮明に現れることになる。 In addition to the crack 11, this embodiment can be an effective means for detecting foreign matter existing on the silicon wafer 7. If foreign matter is present, the emitted light 8 is reflected or absorbed by the foreign matter, and the light intensity of the transmitted light 10 detected by the infrared light detection sensor 3 is attenuated in the same manner as the crack 11. When captured as a two-dimensional image and subjected to image processing, it appears clearly as a dark portion compared to a portion having no defect.
 さらに、シリコンウェハ7にピンホール14あるいは極めて巨大な貫通クラック欠陥が存在する場合にも有効な検出手段となる。それらの欠陥の場合は、出射光8が、シリコンウェハ7の材料を介在せずに直接通過して受光ユニット2の開口部4に入射するため、図4(b)に示すように、赤外光検出センサー3で検出される透過光10の光量強度の変化は明るい方向になり、透過光10の光量変化信号を二次元的な画像として取り込み、画像処理を行った場合、欠陥の無い箇所に比べて明部として鮮明に現れることになる。 Furthermore, it is an effective detection means even when the pinhole 14 or an extremely large through crack defect exists in the silicon wafer 7. In the case of these defects, the outgoing light 8 passes directly without interposing the material of the silicon wafer 7 and enters the opening 4 of the light receiving unit 2, so that as shown in FIG. The change in the light intensity of the transmitted light 10 detected by the light detection sensor 3 is in a brighter direction. When the light intensity change signal of the transmitted light 10 is captured as a two-dimensional image and image processing is performed, In comparison, it appears clearly as a bright part.
 上記実施形態のシリコンウェハ欠陥検査装置によれば、被検体7が多結晶シリコンウェハであっても、正透過光10aとともに、結晶の粒界による明暗模様の原因となる結晶の面方位によって拡散された拡散透過光10bを、受光ユニット2に設けられた開口部4を通して受光ユニット2内に入射させることができるため、結晶の面方位に殆ど左右されること無く、ほぼ一定の透過光量を受光ユニット2内に入射させることができる。受光ユニット2内に入射された正透過光10aと拡散透過光10bは、受光ユニット2の内部で一様に拡散された後、赤外光検出センサー3によって検出されるため、検出結果を二次元的な画像として取り込んだ場合、結晶の粒界7aの明暗模様は著しく軽減され、クラック11等の欠陥による濃淡のみが画像に現れることから、クラック11等の欠陥を明確に検出することができる。 According to the silicon wafer defect inspection apparatus of the above embodiment, even if the object 7 is a polycrystalline silicon wafer, it is diffused together with the regular transmitted light 10a by the crystal plane orientation that causes a bright and dark pattern due to the crystal grain boundary. The diffused transmitted light 10b can enter the light receiving unit 2 through the opening 4 provided in the light receiving unit 2, so that the light receiving unit emits a substantially constant amount of transmitted light almost without being influenced by the crystal plane orientation. 2 can be made incident. The regular transmitted light 10a and diffuse transmitted light 10b incident on the light receiving unit 2 are uniformly diffused inside the light receiving unit 2 and then detected by the infrared light detection sensor 3, so that the detection result is two-dimensional. When captured as a typical image, the light and dark pattern of the crystal grain boundary 7a is remarkably reduced, and only the shading due to the defect such as the crack 11 appears in the image, so that the defect such as the crack 11 can be clearly detected.
 以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することが可能である。例えば、赤外レーザースキャナーから照射された出力光のシリコンウェハ上のスポットサイズは、好ましくはシリコンウェハの厚みと同程度かそれ以下であるが、シリコンウェハの厚み以上であっても欠陥を検出することができる。また、搬送装置のレールは2本に限らず、1本若しくは3本以上であっても良いし、レールを使用しない搬送機構を用いても良い。さらに、例えば被検体ではなく、赤外レーザースキャナーを移動させる機構とする等、検査装置を被検体の検査箇所に対して相対的に移動させる機構であれば欠陥検査は可能である。さらにまた、被検体を多結晶シリコンウェハとしていたが、単結晶シリコンウェハにおいても本発明は有効であり、欠陥を明確に検出することができる。 Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, the spot size on the silicon wafer of the output light irradiated from the infrared laser scanner is preferably about the same as or smaller than the thickness of the silicon wafer, but a defect is detected even if it is larger than the thickness of the silicon wafer. be able to. Further, the number of rails of the transport device is not limited to two, but may be one or three or more, and a transport mechanism that does not use rails may be used. Furthermore, defect inspection is possible if the mechanism moves the inspection apparatus relative to the inspection location of the subject, such as a mechanism that moves the infrared laser scanner instead of the subject. Furthermore, although the subject is a polycrystalline silicon wafer, the present invention is effective even for a single crystal silicon wafer, and defects can be clearly detected.
1   赤外レーザースキャナー
2   受光ユニット
2a  内側面
2b  空間部
3   赤外光検出センサー
4   開口部
5   コンピュータ
6   搬送装置
7   シリコンウェハ(被検体)
11  クラック
14  ピンホール
DESCRIPTION OF SYMBOLS 1 Infrared laser scanner 2 Light reception unit 2a Inner side surface 2b Space part 3 Infrared light detection sensor 4 Opening part 5 Computer 6 Conveying device 7 Silicon wafer (subject)
11 Crack 14 Pinhole

Claims (7)

  1.  被検体7に赤外レーザー光線を照射する赤外レーザー光源1と、前記被検体7を透過した赤外レーザー光を受光する開口部4を有し、その内部で赤外レーザー光を拡散させる中空の受光ユニット2と、前記受光ユニット2の空間部2bの赤外レーザー光の光量を検出する赤外光検出センサー3と、を備えたシリコンウェハ欠陥検査装置であって、前記受光ユニット2の内部での赤外レーザー光の光量の変化を検出することでシリコンウェハのクラック等の欠陥を検出することを特徴とするシリコンウェハ欠陥検査装置。 An infrared laser light source 1 that irradiates the subject 7 with an infrared laser beam, and an opening 4 that receives the infrared laser light transmitted through the subject 7, and a hollow that diffuses the infrared laser light therein. A silicon wafer defect inspection apparatus comprising: a light receiving unit 2; and an infrared light detection sensor 3 that detects the amount of infrared laser light in the space 2b of the light receiving unit 2. A silicon wafer defect inspection apparatus for detecting defects such as cracks in a silicon wafer by detecting a change in the amount of infrared laser light.
  2.  前記赤外レーザー光源1から照射された赤外レーザー光線を第一の方向に走査させる走査機構と、被検体7を第一の方向と略直交する第二の方向に搬送可能な搬送手段6と、前記赤外光検出センサー3によって検出された光量信号を二次元画像に変換する画像処理手段を備えた制御手段と、を備えたシリコンウェハ欠陥検査装置であって、走査機構による赤外レーザー光線の走査動作と同期して、被検体7を透過した赤外レーザー光の光量を検出する工程と、被検体7が赤外レーザー光線の照射径と略同幅の移動距離をもって第二の方向に搬送される工程からなる一連の工程が、前記被検体7の検査範囲内で連続して行われ、前記赤外光検出センサー3によって検出された光量信号とともに赤外レーザー光線照射位置の情報が画像処理手段に入力され、二次元画像に変換されることを特徴とする請求項1記載のシリコンウェハ欠陥検査装置。 A scanning mechanism that scans the infrared laser beam emitted from the infrared laser light source 1 in a first direction; and a transport unit 6 that can transport the subject 7 in a second direction substantially orthogonal to the first direction; A silicon wafer defect inspection apparatus comprising an image processing means for converting a light quantity signal detected by the infrared light detection sensor 3 into a two-dimensional image, and scanning the infrared laser beam by a scanning mechanism Synchronously with the operation, the step of detecting the amount of infrared laser light transmitted through the subject 7 and the subject 7 are transported in the second direction with a movement distance substantially the same as the irradiation diameter of the infrared laser beam. A series of steps consisting of steps are continuously performed within the examination range of the subject 7, and the information on the infrared laser beam irradiation position together with the light quantity signal detected by the infrared light detection sensor 3 is image processing means. Is input, the silicon wafer defect inspection apparatus according to claim 1, characterized in that it is converted into a two-dimensional image.
  3.  前記赤外レーザー光線の波長は、1~15μmの範囲内であることを特徴とする請求項1又は2記載のシリコンウェハ欠陥検査装置。 3. The silicon wafer defect inspection apparatus according to claim 1, wherein the wavelength of the infrared laser beam is in the range of 1 to 15 μm.
  4.  前記赤外レーザー光線の照射径は、被検体7の厚さと略同幅以下とすることを特徴とする請求項1~3のいずれかに記載のシリコンウェハ欠陥検査装置。 4. The silicon wafer defect inspection apparatus according to claim 1, wherein an irradiation diameter of the infrared laser beam is set to be substantially equal to or less than a thickness of the subject 7.
  5.  前記赤外光検出センサー3で検出された光量が閾値より低い場合、前記被検体7の赤外レーザー光線照射箇所にクラック11又は異物が存在すると判定する判定手段を備えていることを特徴とする請求項1~4のいずれかに記載のシリコンウェハ欠陥検査装置。 When the amount of light detected by the infrared light detection sensor 3 is lower than a threshold value, there is provided determination means for determining that a crack 11 or a foreign substance exists at an infrared laser beam irradiation location of the subject 7. Item 5. The silicon wafer defect inspection apparatus according to any one of Items 1 to 4.
  6.  前記赤外光検出センサー3で検出された光量が閾値より高い場合、前記被検体7の赤外レーザー光線照射箇所に貫通クラック又はピンホール14が存在すると判定する判定手段を備えていることを特徴とする請求項1~4のいずれかに記載のシリコンウェハ欠陥検査装置。 When the amount of light detected by the infrared light detection sensor 3 is higher than a threshold value, there is provided a determination means for determining that a through crack or a pinhole 14 is present at an infrared laser beam irradiation portion of the subject 7. The silicon wafer defect inspection apparatus according to any one of claims 1 to 4.
  7.  前記被検体7が多結晶シリコンウェハであることを特徴とする請求項1~6のいずれかに記載のシリコンウェハ欠陥検査装置。 7. The silicon wafer defect inspection apparatus according to claim 1, wherein the subject 7 is a polycrystalline silicon wafer.
PCT/JP2009/068338 2008-11-21 2009-10-26 Silicon wafer defect inspection device WO2010058680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-297846 2008-11-21
JP2008297846A JP2010122145A (en) 2008-11-21 2008-11-21 Silicon wafer defect inspection device

Publications (1)

Publication Number Publication Date
WO2010058680A1 true WO2010058680A1 (en) 2010-05-27

Family

ID=42198119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068338 WO2010058680A1 (en) 2008-11-21 2009-10-26 Silicon wafer defect inspection device

Country Status (2)

Country Link
JP (1) JP2010122145A (en)
WO (1) WO2010058680A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3298390B1 (en) * 2015-05-04 2021-07-07 Semilab SDI LLC Micro photoluminescence imaging with optical filtering
CN114858811A (en) * 2022-07-01 2022-08-05 波粒(北京)光电科技有限公司 Solar cell detection system and detection method based on laser penetration principle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633470B2 (en) * 2011-05-16 2014-12-03 三菱電機株式会社 Manufacturing method of semiconductor device
JP2014190797A (en) * 2013-03-27 2014-10-06 Tokushima Densei Kk Defect inspection device for silicon wafer
JP6405556B2 (en) 2013-07-31 2018-10-17 リンテック株式会社 Protective film forming film, protective film forming sheet and inspection method
SG10201508830PA (en) * 2015-10-26 2017-05-30 Bluplanet Pte Ltd Method and system to detect chippings on solar wafer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318945A (en) * 1988-06-20 1989-12-25 Toshiba Corp Inspecting device of surface
JP2002506526A (en) * 1997-06-23 2002-02-26 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー Method and apparatus for inspecting an item for defects
JP2003262594A (en) * 2002-03-08 2003-09-19 Fuji Photo Film Co Ltd Defect inspection machine
JP2004301705A (en) * 2003-03-31 2004-10-28 Toshiba Corp Method for inspecting flaw of pattern and inspection device therefor
JP2005351684A (en) * 2004-06-09 2005-12-22 Taiyo Denki Kk Light-receiving device for inspection
JP2006184177A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Infrared inspection device and method
JP2007218638A (en) * 2006-02-14 2007-08-30 Sharp Corp Crack inspection device of polycrystalline semiconductor wafer and crack inspection method
JP2008198966A (en) * 2007-02-08 2008-08-28 Nippon Electro Sensari Device Kk Wafer defect inspection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318945A (en) * 1988-06-20 1989-12-25 Toshiba Corp Inspecting device of surface
JP2002506526A (en) * 1997-06-23 2002-02-26 ネーデルランドセ・オルガニザテイエ・フール・テゲパスト−ナトウールベテンシヤツペリーク・オンデルツエク・テイエヌオー Method and apparatus for inspecting an item for defects
JP2003262594A (en) * 2002-03-08 2003-09-19 Fuji Photo Film Co Ltd Defect inspection machine
JP2004301705A (en) * 2003-03-31 2004-10-28 Toshiba Corp Method for inspecting flaw of pattern and inspection device therefor
JP2005351684A (en) * 2004-06-09 2005-12-22 Taiyo Denki Kk Light-receiving device for inspection
JP2006184177A (en) * 2004-12-28 2006-07-13 Mitsubishi Electric Corp Infrared inspection device and method
JP2007218638A (en) * 2006-02-14 2007-08-30 Sharp Corp Crack inspection device of polycrystalline semiconductor wafer and crack inspection method
JP2008198966A (en) * 2007-02-08 2008-08-28 Nippon Electro Sensari Device Kk Wafer defect inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3298390B1 (en) * 2015-05-04 2021-07-07 Semilab SDI LLC Micro photoluminescence imaging with optical filtering
CN114858811A (en) * 2022-07-01 2022-08-05 波粒(北京)光电科技有限公司 Solar cell detection system and detection method based on laser penetration principle

Also Published As

Publication number Publication date
JP2010122145A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP7373527B2 (en) Workpiece defect detection device and method
US8400630B2 (en) Method and device for the detection of defects in an object
WO2010058680A1 (en) Silicon wafer defect inspection device
CN106409716B (en) Detection system and detection method of electronic element
JP5830229B2 (en) Wafer defect inspection system
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
KR20090106249A (en) Apparatus for inspecting silicon structure utlizing a galbanometer scanneer and method of insepecting silicon structure utilizing the same
JP2008145428A (en) Rod lens array inspection device and method
WO2020105368A1 (en) Method for manufacturing glass plate and apparatus for manufacturing glass plate
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP3505655B2 (en) Glass container inspection equipment
KR101785069B1 (en) Darkfield illumination device
KR102592277B1 (en) Apparatus and method for performing internal defects inspection of an electronic component
JPH09218162A (en) Surface defect inspection device
JP4808162B2 (en) Substrate inspection apparatus and substrate inspection method
JP2005201880A (en) Apparatus for inspecting surface defect
KR101594224B1 (en) Surface condition insepecting method of planar substrate and surface condition inspecting device of planar substrate using the same
KR20240067222A (en) Device for measuring irregularities in sheet-shaped objects, method for measuring irregularities in sheet-shaped objects
Johnsen Transflection, a new illumination technique for in line crack detection in crystalline silicon wafers
KR101698642B1 (en) Method for inspecting surface state of flat substrate and apparatus for inspecting surface state of flat substrate using the same
JPH03152447A (en) Inspecting apparatus for flaw
JPH04299238A (en) Defect inspection apparatus and method in object by luminous flux
JPH03256341A (en) Pattern inspection device by comparison
JPS6148751A (en) Method for detecting surface defect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827461

Country of ref document: EP

Kind code of ref document: A1