WO2023162341A1 - 基板処理方法および基板処理装置 - Google Patents
基板処理方法および基板処理装置 Download PDFInfo
- Publication number
- WO2023162341A1 WO2023162341A1 PCT/JP2022/040510 JP2022040510W WO2023162341A1 WO 2023162341 A1 WO2023162341 A1 WO 2023162341A1 JP 2022040510 W JP2022040510 W JP 2022040510W WO 2023162341 A1 WO2023162341 A1 WO 2023162341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- substrate
- liquid
- bath
- tank
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 506
- 239000000758 substrate Substances 0.000 title claims abstract description 384
- 238000003672 processing method Methods 0.000 title claims description 27
- 239000007788 liquid Substances 0.000 claims abstract description 322
- 238000007654 immersion Methods 0.000 claims abstract description 62
- 230000003028 elevating effect Effects 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 156
- 238000001704 evaporation Methods 0.000 abstract description 12
- 230000008020 evaporation Effects 0.000 abstract description 12
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 105
- 238000000034 method Methods 0.000 description 70
- 230000008569 process Effects 0.000 description 59
- 239000000243 solution Substances 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 229910001873 dinitrogen Inorganic materials 0.000 description 25
- 230000007246 mechanism Effects 0.000 description 21
- 238000005530 etching Methods 0.000 description 19
- 238000002156 mixing Methods 0.000 description 14
- 230000007723 transport mechanism Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000003860 storage Methods 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000012993 chemical processing Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
Definitions
- the present invention relates to a substrate processing method and a substrate processing apparatus that perform surface processing such as etching with a processing liquid on a substrate in a processing bath.
- Substrates to be processed include, for example, semiconductor substrates, liquid crystal display device substrates, flat panel display (FPD) substrates used in organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disks. substrates for photomasks, ceramic substrates, substrates for solar cells, and the like.
- substrate processing apparatuses have been used to perform various processes on semiconductor substrates (hereinafter simply referred to as "substrates").
- substrate processing apparatuses a so-called one-bath type substrate processing apparatus is known, in which a plurality of substrates are sequentially subjected to chemical treatment with a chemical solution and rinsing treatment with pure water in a single treatment bath.
- a one-bath substrate processing apparatus a plurality of substrates are typically immersed in a chemical solution stored in a processing bath, and the chemical solution is supplied from the bottom of the processing bath and overflows from the top of the processing bath.
- the substrate is subjected to chemical processing such as etching processing.
- chemical processing such as etching processing.
- the liquid inside the processing bath is discharged with the chemical solution by supplying pure water from the bottom of the processing bath and causing the liquid to overflow from the top of the processing bath. is gradually replaced with pure water.
- the substrate is rinsed with pure water in the inside of the processing tank after being replaced with pure water.
- the processing liquid overflowing from the processing bath is basically discarded.
- a substrate in a one-bath type substrate processing apparatus, may be immersed in a heated hot processing liquid.
- a heated hot processing liquid During such processing, water evaporates vigorously from the hot processing liquid, and the liquid level gradually lowers, so that the upper end of the substrate is likely to be exposed from the liquid level of the processing liquid.
- a first aspect of the present invention provides a substrate processing method for surface-treating a substrate with a processing liquid in a processing tank, wherein the substrate is in a state in which the substrate is present in the processing tank.
- a processing liquid supply step of supplying a processing liquid to a processing bath; and an immersion processing step of immersing a substrate in a heated hot processing liquid stored in the processing bath, wherein the processing liquid is supplied in the processing liquid supply step.
- the substrate is held at a first height position within the bath, and in the immersion treatment step, the substrate is held at a second height position within the treatment bath, and the second height position is the first height position. lower than the height position.
- a second aspect is a substrate processing method for surface-treating a substrate with a processing liquid in a processing bath, wherein the processing liquid is supplied to the processing bath while the substrate is present in the processing bath.
- a treatment liquid supply step a treatment liquid supply step; and an immersion treatment step of immersing the substrate in the heated temperature treatment liquid stored in the treatment bath.
- the liquid depth which is the distance from the liquid surface of the processing liquid on the substrate to the substrate, is made larger than the standard value.
- a third aspect is a substrate processing method for surface-treating a substrate with a processing liquid in a processing tank, wherein the processing liquid is supplied to the processing tank while the substrate is present in the processing tank.
- a treatment liquid supply step a treatment liquid supply step; and an immersion treatment step of immersing the substrate in the heated temperature treatment liquid stored in the treatment tank, and when an instruction to perform the immersion treatment step is detected in the recipe. , lowering the holding position of the substrate in the processing tank.
- the processing liquid in the substrate processing method according to any one of the first to third aspects, is supplied upward from a nozzle pipe arranged at the bottom of the processing tank. to dispense.
- the first processing liquid is discharged from the nozzle pipe to supply the second processing liquid stored in the processing bath.
- the treatment liquid is replaced with the first treatment liquid.
- a sixth aspect is the substrate processing method according to the fourth or fifth aspect, wherein in the immersion treatment step, discharge of the treatment liquid from the nozzle pipe is stopped.
- a seventh aspect is the substrate processing method according to any one of the first to sixth aspects, wherein the temperature of the hot treatment liquid is 30° C. or higher and 85° C. or lower.
- An eighth aspect is directed to a substrate processing apparatus for surface-treating a substrate with a processing liquid in a processing bath, wherein a processing liquid supply unit that supplies the processing liquid to the processing bath; An elevating unit for raising and lowering a holding position, and a control unit for controlling the operation of the elevating unit, wherein the processing liquid supply unit supplies the processing liquid to the processing bath while the substrate is present in the processing bath.
- the substrate is supplied, the substrate is held at the first height position within the processing tank, and when the substrate is immersed in the heated heat treatment liquid stored in the processing tank, the second height position within the processing tank is held.
- the substrate is held at a height position of , and the controller controls the lifter so that the second height position is lower than the first height position.
- a ninth aspect is directed to a substrate processing apparatus for surface-treating a substrate with a processing liquid in a processing bath, wherein a processing liquid supply unit that supplies the processing liquid to the processing bath; An elevating unit that raises and lowers a holding position, and a control unit that controls the operation of the elevating unit.
- the control unit controls the elevation unit so that the liquid depth, which is the distance from the liquid surface of the stored processing liquid to the substrate, becomes larger than a standard value.
- a tenth aspect is directed to a substrate processing apparatus for surface-treating a substrate with a processing liquid in a processing bath, wherein a processing liquid supply unit that supplies the processing liquid to the processing bath;
- a step of immersing the substrate in a heated hot treatment liquid stored in the treatment bath comprising: an elevating unit for elevating a holding position; and a control unit for controlling the operation of the elevating unit. is detected in the recipe, the elevating unit is controlled so that the holding position of the substrate in the processing tank is lowered.
- An eleventh aspect is the substrate processing apparatus according to any one of the eighth to tenth aspects, wherein the processing liquid supply section is disposed at the bottom of the processing tank and discharges the processing liquid upward. It has a nozzle tube.
- a twelfth aspect is the substrate processing apparatus according to any one of the eighth to eleventh aspects, wherein the temperature of the heat treatment liquid is 30° C. or higher and 85° C. or lower.
- the substrate is held at the first height position in the processing bath in the processing liquid supply step, and the substrate is held at the second height position in the processing bath in the immersion processing step. and the second height position is lower than the first height position. There is no exposure from the hot treatment liquid, and exposure of the substrate can be reliably prevented even during immersion treatment of the substrate in the hot treatment liquid.
- the liquid depth which is the distance from the surface of the processing liquid stored in the processing tank to the substrate, is made larger than the standard value. Even if the liquid level of the hot treatment liquid drops slightly due to the evaporation of water during the immersion process, the substrate is not exposed from the hot treatment liquid, and the substrate is reliably exposed even during the immersion treatment of the substrate in the hot treatment liquid. can be prevented.
- the holding position of the substrate in the processing tank is lowered. Even if the liquid level of the hot treatment liquid drops to some extent, the substrate is not exposed from the hot treatment liquid, and the exposure of the substrate can be reliably prevented even during the immersion treatment of the substrate in the hot treatment liquid.
- the processing liquid supply unit supplies the processing liquid to the processing bath while the substrates are present in the processing bath
- the first When the substrate is immersed in the heated hot treatment liquid stored in the treatment tank, the substrate is held at the second height position in the treatment tank. is lower than the first height position, even if the liquid level of the hot treatment liquid drops slightly due to evaporation of water during the immersion treatment, the substrate is not exposed from the hot treatment liquid. The exposure of the substrate can be reliably prevented even during the immersion treatment of the substrate.
- the substrate processing apparatus of the ninth aspect when the substrate is immersed in the heated hot processing liquid stored in the processing tank, the liquid surface of the processing liquid stored in the processing tank to the substrate Since the liquid depth, which is the distance, is set larger than the standard value, the substrate is not exposed from the hot treatment liquid even if the liquid level of the hot treatment liquid drops slightly due to the evaporation of water during the immersion treatment. The exposure of the substrate can be reliably prevented even during the immersion treatment.
- the controller detects in the recipe an instruction to execute the step of immersing the substrate in the heated heat treatment liquid stored in the processing bath, Since the elevating section is controlled so that the holding position of the substrate is lowered in the inside, even if the liquid level of the hot treatment liquid drops slightly due to the evaporation of water during the immersion treatment, the substrate is not exposed from the hot treatment liquid. Exposure of the substrate can be reliably prevented even during immersion treatment of the substrate in the treatment liquid.
- FIG. 4 is a flow chart showing a processing procedure in the substrate processing apparatus of the first embodiment
- FIG. 4 is a diagram schematically showing a state in which a processing liquid is stored in an inner tank of a processing tank
- FIG. 4 is a diagram schematically showing a state in which a substrate is held at an upper position within a processing tank
- FIG. 4 is a diagram schematically showing a state in which a substrate is held at a lower position within a processing tank
- FIG. 4 is a diagram schematically showing how a substrate is shower-rinsed
- 9 is a flow chart showing a procedure for processing a substrate according to the second embodiment
- 10 is a flow chart showing a substrate processing procedure according to the third embodiment.
- FIG. 1 is a diagram showing the configuration of a substrate processing apparatus 1 according to the present invention.
- the substrate processing apparatus 1 is a batch-type substrate processing apparatus that collectively performs surface treatment of a plurality of substrates W such as semiconductor wafers with a processing liquid.
- the dimensions and numbers of each part are exaggerated or simplified as necessary for easy understanding.
- the substrate processing apparatus 1 is a so-called one-bath substrate processing apparatus that sequentially performs chemical processing using a chemical solution and rinsing processing with pure water on a plurality of substrates W in one processing tank 10 .
- Examples of the above-mentioned chemical solutions include a solution for performing an etching process or a solution for removing particles.
- the SC-1 solution ammonium hydroxide, hydrogen water
- SC-2 solution mixed solution of hydrochloric acid, hydrogen peroxide and pure water
- hydrofluoric acid hydrofluoric acid
- the chemical solution also includes one diluted with pure water. Further, in this specification, various chemical solutions and pure water are collectively referred to as "treatment liquid".
- the substrate processing apparatus 1 mainly includes a processing bath 10 that stores a processing liquid, and a lifter 20 that holds a plurality of substrates (hereinafter simply referred to as "substrates") W and moves up and down.
- a processing liquid supply unit 30 for supplying the processing liquid to the processing bath 10;
- a processing liquid recovery unit 40 for recovering the processing liquid from the processing bath 10;
- a chamber 50 for accommodating the processing bath 10;
- a control unit 70 for controlling the operation of each part in the apparatus.
- the processing tank 10 is a storage container made of a chemical-resistant material such as quartz.
- the processing bath 10 has an inner bath 11 in which various processing liquids are sequentially stored and the substrates W are immersed therein, and an outer bath 12 formed on the outer peripheral portion of the upper end of the inner bath 11 .
- a pair of nozzle pipes 13 a and 13 b for discharging the processing liquid into the inner tank 11 is arranged at the bottom of the inner tank 11 .
- Each nozzle pipe 13a, 13b is a long cylindrical tubular member.
- Each nozzle pipe 13a, 13b is formed with a plurality of discharge ports (not shown) at regular intervals along the longitudinal direction.
- the processing liquid supplied to the nozzle pipes 13a and 13b is discharged into the inner tank 11 from the plurality of discharge ports and stored inside the inner tank 11 .
- the nozzle pipes 13a and 13b discharge the processing liquid toward the substrates W held in the processing tank 10, that is, obliquely upward.
- a pair of shower nozzles 14a and 14b are provided above the inner bath 11 for ejecting the processing liquid toward the inside of the inner bath 11 .
- the shower nozzles 14a and 14b are also long cylindrical tubular members, like the nozzle tubes 13a and 13b.
- Each of the shower nozzles 14a and 14b is formed with a plurality of discharge ports (not shown) at equal intervals along the longitudinal direction.
- the treatment liquid supplied to the shower nozzles 14a and 14b is discharged toward the inside of the inner bath 11 from the plurality of discharge ports.
- the shower nozzles 14a and 14b eject the processing liquid toward the substrates W held in the processing bath 10, ie, obliquely downward.
- a resistivity meter 15 for measuring the resistivity value of the treatment liquid is installed inside the inner tank 11.
- the resistivity meter 15 has a pair of metal electrodes, and measures the resistivity of the treatment liquid by measuring the electrical resistance between the metal electrodes immersed in the treatment liquid.
- the specific resistance meter 15 measures the specific resistance value of the processing liquid stored inside the processing tank 10 when the chemical solution in the processing tank 10 is replaced with pure water, and controls the information of the obtained specific resistance value.
- the resistivity meter 15 may have a built-in temperature sensor in the metal electrode and transmit the converted value of the resistivity value at a predetermined temperature to the controller 70 .
- the processing bath 10 of this embodiment has a smaller bath capacity than typical processing baths that have been conventionally used in order to reduce the amount of processing liquid to be consumed. Specifically, the depth from the top end to the bottom of the inner tank 11 is reduced, and the length of the inner tank 11 in the direction orthogonal to the paper surface of FIG. 1 is also shortened. As a result, the processing bath 10 has a bath volume about 5% smaller than that of a typical processing bath (hereinafter referred to as "conventional bath") that has been used conventionally.
- the lifter 20 is a transport mechanism for vertically transporting the substrate W while holding it inside the chamber 50 .
- the lifter 20 has three holding bars 21 extending in a direction perpendicular to the plane of FIG.
- the substrate W is held on the three holding bars 21 in parallel with each other in an upright posture (a posture in which the normal to the main surface is horizontal) with its peripheral edge fitted in the holding groove.
- the lifter 20 is also connected to a drive mechanism 22 conceptually shown in FIG. When the driving mechanism 22 is operated, the lifter 20 moves up and down, and the substrates W are placed in a immersion position inside the processing bath 10 (state shown in FIG. 1) and a lifted position above the processing bath 10 as indicated by an arrow AR1. is moved up and down between
- the lifter 20 also functions as an elevating unit that elevates the holding position of the substrate W in the processing tank 10 by making a minute vertical movement.
- the processing liquid supply unit 30 is a piping system for supplying the processing liquid to each of the nozzle pipes 13a, 13b and the shower nozzles 14a, 14b.
- the treatment liquid supply unit 30 is configured by combining a pure water supply source 31, a chemical solution supply source 37, a mixing valve 32, a heater 33, pipes 35a, 35b, 36, and valves 39a, 39b. It is A proximal end of a pipe 36 is connected to the pure water supply source 31 .
- the leading end of the pipe 36 is branched into a pipe 35a and a pipe 35b.
- the tip side of the pipe 35a is further bifurcated and connected to a pair of nozzle pipes 13a and 13b, respectively.
- a valve 39a, a mixing valve 32 and a heater 33 are interposed along the path of the pipe 35a.
- the tip side of the pipe 35b is bifurcated and connected to a pair of shower nozzles 14a and 14b, respectively.
- a valve 39b is inserted in the middle of the path of the pipe 35b.
- the mixing valve 32 is connected to a pipe 35a for supplying pure water, and is also connected to one or more chemical supply sources 37 via a valve 38.
- the one or more chemical supply sources 37 include, for example, an ammonium hydroxide supply source, a hydrochloric acid supply source, a hydrogen peroxide solution supply source, a hydrofluoric acid supply source, and the like.
- the valve 39a and the selected valve 38 are opened, the pure water supplied from the pure water supply source 31 and the chemical supplied from the chemical supply source 37 (the chemical supply source 37 corresponding to the selected valve 38) are separated. They are mixed at a predetermined ratio in the mixing valve 32 . As a result, a chemical solution diluted with pure water is produced, which is used as a treatment solution.
- the chemical solution for processing produced by the mixing valve 32 flows through the pipe 35a, is supplied to the pair of nozzle pipes 13a and 13b, and is supplied to the processing bath 10 from a plurality of outlets of the nozzle pipes 13a and 13b.
- two or more valves 38 may be selected at the time of chemical solution generation. For example, when the two valves 38 corresponding to the hydrochloric acid supply source and the hydrogen peroxide solution supply source are selected and opened, the hydrochloric acid, the hydrogen peroxide solution, and the pure water are mixed in the mixing valve 32 and SC- Two liquids are produced.
- the heater 33 can heat the treatment liquid flowing through the pipe 35a under the control of the controller 70.
- the heater 33 heats the chemical solution produced by the mixing valve 32 while it is flowing through the pipe 35a, the heated hot chemical solution is supplied to the processing bath 10 through the nozzle pipes 13a and 13b.
- heated warm pure water is supplied to the treatment tank 10 from the nozzle pipes 13a and 13b.
- the Rukoto In this specification, the warm chemical liquid and warm pure water are collectively referred to as "warm treatment liquid".
- valve 39b When the valve 39b is opened, the pure water supplied from the pure water supply source 31 flows through the pipe 35b and is supplied to the pair of shower nozzles 14a and 14b. is discharged to It should be noted that the valves 39a and 39b are not limited to being selectively opened, and they may be opened at the same time.
- the processing liquid recovery unit 40 is a piping system for recovering the processing liquid from the processing bath 10 and discharging the recovered processing liquid. As shown in FIG. 1 , the processing liquid recovery unit 40 includes pipes 41 , 42 , 43 and valves 44 , 45 .
- the tip side of the pipe 41 is connected to the outer tank 12 .
- the tip side of the pipe 42 is connected to the bottom of the inner tank 11 .
- the pipes 41 and 42 are joined at their proximal ends and connected to a pipe 43 .
- a valve 44 is inserted in the middle of the path of the pipe 41 .
- a valve 45 is inserted in the middle of the path of the pipe 42 .
- the base end side of the pipe 43 is connected to the drainage equipment of the factory where the substrate processing apparatus 1 is installed.
- the chamber 50 is a housing made of an airtight material.
- the inside of the chamber 50 serves as a processing space for processing the substrates W, and the processing bath 10 is arranged in the processing space.
- An opening 51 for loading or unloading the substrate W is formed in the upper portion of the chamber 50 .
- the opening 51 is closed and opened by a sliding lid 52 .
- the substrate W can be loaded and unloaded through the opening 51, and when the opening 51 is closed, the processing space inside the chamber 50 is isolated from the outside. It can be a closed space.
- the slide-type lid portion 52 is slid by a drive mechanism 53 conceptually shown in FIG.
- a pair of nitrogen gas nozzles 54 a and 54 b for discharging nitrogen gas into the chamber 50 is arranged above the processing bath 10 inside the chamber 50 .
- a plurality of discharge ports (not shown) are formed in each of the nitrogen gas nozzles 54a and 54b. Therefore, when nitrogen gas is supplied to the nitrogen gas nozzles 54a and 54b, the nitrogen gas is discharged into the chamber 50 from the plurality of outlets of the nitrogen gas nozzles 54a and 54b.
- an exhaust pipe 55 is connected to the vicinity of the bottom of the chamber 50 .
- a valve 56 is inserted in the middle of the path of the pipe 55, and the downstream side of the pipe 55 is connected to exhaust equipment in the factory. Therefore, by opening the valve 56, the gas inside the chamber 50 can be discharged through the pipe 55 to the exhaust equipment.
- the nitrogen gas supply unit 60 is a piping system for supplying nitrogen gas, which is an inert gas, to the nitrogen gas nozzles 54a and 54b.
- the nitrogen gas supply section 60 has a nitrogen gas supply source 61 , a pipe 62 and a valve 63 .
- a proximal end of the pipe 62 is connected to a nitrogen gas supply source 61 , and a valve 63 is inserted in the middle of the pipe 62 .
- the tip side of the pipe 62 is branched into two and connected to a pair of nitrogen gas nozzles 54a and 54b, respectively.
- nitrogen gas is supplied from the nitrogen gas supply source 61 through the pipe 62 to the pair of nitrogen gas nozzles 54a and 54b, and into the chamber 50 from the plurality of outlets of the nitrogen gas nozzles 54a and 54b. Nitrogen gas is discharged.
- the control unit 70 controls the various operating mechanisms provided in the substrate processing apparatus 1 .
- the hardware configuration of the control unit 70 is the same as that of a general computer. That is, the control unit 70 includes a CPU that is a circuit that performs various arithmetic processing, a ROM that is a read-only memory that stores basic programs, a RAM that is a readable and writable memory that stores various information, and control software and data.
- a storage unit for example, a magnetic disk for storing data is provided.
- the control unit 70 is electrically connected to the driving mechanism 22 of the lifter 20, the valves 39a and 39b, and the like.
- the storage unit of the control unit 70 stores a recipe (hereinafter referred to as "processing recipe") that defines the procedure and conditions for processing the substrate W.
- the processing recipe is acquired by the substrate processing apparatus 1 by, for example, being input by an operator of the apparatus via an input unit 72 described later and stored in a storage unit.
- a processing recipe may be transferred from a host computer that manages a plurality of substrate processing apparatuses 1 to the substrate processing apparatus 1 through communication and stored in the storage unit.
- the control unit 70 controls the operation of the driving mechanism 22, the valves 39a and 39b, etc. based on the description of the processing recipe stored in the storage unit, thereby performing the surface processing of the substrate W as described in the processing recipe. proceed.
- a display unit 71 and an input unit 72 are also connected to the control unit 70 .
- the display section 71 and the input section 72 function as a user interface of the substrate processing apparatus 1 .
- the control unit 70 displays various information on the display unit 71 .
- An operator of the substrate processing apparatus 1 can input various commands and parameters from the input section 72 while confirming the information displayed on the display section 71 .
- a keyboard or a mouse, for example, can be used as the input unit 72 .
- As the display unit 71 for example, a liquid crystal display can be used.
- a liquid crystal touch panel provided on the outer wall of the substrate processing apparatus 1 is adopted to have both functions.
- FIG. 2 is a flow chart showing a processing procedure in the substrate processing apparatus 1 of the first embodiment.
- the processing procedure described below proceeds as the control unit 70 controls each operating mechanism of the substrate processing apparatus 1 .
- step S10 warm pure water is stored in the processing tank 10 (step S10).
- the control unit 70 opens the valves 39a and 44 while the valve 38 is closed.
- pure water is supplied from the pure water supply source 31 to the nozzle pipes 13a and 13b through the pipes 36 and 35a.
- the heater 33 heats the pure water flowing through the pipe 35a. Therefore, heated warm pure water is discharged into the inner tank 11 of the processing tank 10 from the nozzle pipes 13a and 13b.
- the warm pure water discharged from the nozzle pipes 13 a and 13 b is gradually stored inside the inner tank 11 and eventually overflows from the top of the inner tank 11 to the outer tank 12 .
- FIG. 3 is a diagram schematically showing a state in which the processing liquid (here, warm pure water) is stored in the inner bath 11 of the processing bath 10. As shown in FIG.
- the control unit 70 operates the drive mechanism 53 to slide the lid 52 and open the opening 51 of the chamber 50 .
- a plurality of substrates W transported from the previous process are loaded into the chamber 50 through the opening 51 by a transport mechanism outside the apparatus.
- a lifter 20 stands by above the processing tank 10 , and the substrate W carried into the chamber 50 by the transport mechanism is delivered to the lifter 20 and held by the three holding rods 21 of the lifter 20 . placed on top.
- the transport mechanism moves out of the chamber 50 , and the controller 70 slides the lid 52 again to close the opening 51 of the chamber 50 . Thereby, the inside of the chamber 50 becomes a closed space.
- FIG. 4 is a diagram schematically showing a state in which the substrate W is held at the upper position within the processing bath 10. As shown in FIG. The “upper position” is a position relatively higher than the “lower position” described later. A liquid depth d1, which is the distance from the surface of the warm pure water stored in the processing bath 10 to the upper end of the substrate W held at the upper position, is 4 mm, for example.
- the processing bath 10 of the present embodiment has a smaller depth than typical processing baths that have been conventionally used.
- the distance between the lower end and the bottom of the processing tank 10 is the same as that in the conventional tank.
- the "upper position" is the holding position of the substrate W where the distance between the lower end of the lifter 20 and the bottom surface of the processing tank 10 is the same as that in the conventional tank.
- control unit 70 opens the valve 63 to discharge nitrogen gas from the nitrogen gas nozzles 54 a and 54 b into the chamber 50 , and opens the valve 56 to exhaust the air from the chamber 50 .
- the processing space inside the chamber 50 becomes a nitrogen gas atmosphere.
- Such discharge of nitrogen gas and evacuation from the chamber 50 are continued in subsequent processes. Therefore, the processing space inside the chamber 50 is always filled with nitrogen gas.
- the control unit 70 opens a predetermined valve 38 while maintaining the open state of the valves 39a and 44 (the number of valves 38 to be opened may be plural). is also good).
- the pure water supplied from the pure water supply source 31 and the chemical supplied from the predetermined chemical supply source 37 are mixed at the mixing valve 32 at a predetermined ratio. They are mixed to form a processing chemical.
- the processing chemical solution generated by the mixing valve 32 is heated by the heater 33 and fed to the nozzle pipes 13a and 13b as a hot chemical solution.
- the supplied hot chemical liquid is discharged into the inner tank 11 from the nozzle pipes 13a and 13b.
- step S12 When the hot chemical liquid is discharged obliquely upward from the nozzle pipes 13a and 13b in a state in which hot pure water is stored in the processing tank 10, an upward flow of the hot chemical liquid is formed in the processing tank 10. be. That is, the hot chemical is upflowed (step S12). As the hot chemical liquid is discharged from the nozzle pipes 13 a and 13 b , the hot pure water stored in the inner tank 11 overflows into the outer tank 12 and is discharged by the processing liquid recovery unit 40 . Then, as the amount of the hot chemical discharged from the nozzle pipes 13a and 13b increases, the hot pure water stored inside the processing tank 10 is gradually replaced with the chemical for processing, and the chemical in the processing liquid in the processing tank 10 is gradually replaced. Concentration increases.
- the hot chemical is upflowed while the substrate W is held at the upper position in the processing tank 10 . If the substrate W is held at a low position and the gap between the lower end of the lifter 20 and the bottom surface of the processing tank 10 is narrow, the hot chemical is flowed up, causing the flow of the hot chemical to become uneven, thereby degrading the uniformity of the etching process. may decrease. In this embodiment, the substrate W is held at the upper position, and the distance between the lower end of the lifter 20 and the bottom surface of the processing bath 10 is the same as that in the conventional bath. Uniformity of the etching process can be maintained.
- the processing liquid when the hot chemical liquid is being pumped up, the processing liquid constantly overflows from the upper end of the inner tank 11 to the outer tank 12. Therefore, the distance from the liquid surface of the processing liquid to the upper end of the substrate W is Even if the liquid depth d1 is short, there is no concern that the upper end of the substrate W will be exposed from the liquid surface of the processing liquid.
- the controller 70 closes the valves 39a and 38 to start the hot chemical upflow. Stop (step S13).
- the valve 44 may also be closed because overflow from the inner tank 11 to the outer tank 12 will not occur.
- the controller 70 operates the drive mechanism 22 to lower the lifter 20 so that the substrates W are moved to the lower position (second height position) in the processing bath 10. It is lowered (step S14). Specifically, when the control unit 70 detects in the description of the processing recipe an instruction to immerse the substrate W in the heat processing liquid stored in the processing bath 10 , the substrate in the processing bath 10 is The lifter 20 is controlled so that the holding position of W is lowered from the upper position to the lower position.
- FIG. 5 is a diagram schematically showing a state in which the substrate W is held at the lower position inside the processing tank 10.
- the "lower position" is a position relatively lower than the "upper position” shown in FIG.
- a liquid depth d2 which is the distance from the surface of the hot chemical stored in the processing tank 10 to the upper end of the substrate W held at the lower position, is 9 mm, for example.
- the distance between the lower end of the lifter 20 and the bottom surface of the processing tank 10 is shorter than that in the conventional tank.
- the liquid depth d2 when the substrate W is held at the lower position is equal to the liquid depth in the conventional tank.
- step S15 the substrate W is etched with a hot chemical solution.
- the hot chemical is caused to flow up. There is a possibility that unevenness will occur and the uniformity of the etching process will deteriorate.
- the upflow of the hot chemical is stopped during the immersion process, the flow of the hot chemical is not uneven, and the uniformity of the etching process can be maintained.
- the hot chemical whose temperature is raised to 30° C. or higher and 85° C. or lower continuously evaporates.
- the surface level of the hot chemical stored in the tank 10 gradually decreases.
- the substrate W is held at the upper position during the immersion process and the liquid depth d1 is 4 mm, the upper end of the substrate W may be exposed from the liquid surface even if the liquid surface level of the hot chemical liquid drops slightly.
- the substrate W is held at the lower position and the liquid depth d2 is 9 mm. The uniformity of the etching process can be maintained without being exposed from the liquid surface of the chemical solution.
- the control unit 70 raises the lifter 20 to raise the substrate W again to the upper position (see FIG. 4) in the treatment bath 10 (step S16). Specifically, when the control unit 70 detects an instruction to perform the rinsing process of the substrate W in the description of the processing recipe, the holding position of the substrate W in the processing tank 10 is raised from the lower position to the upper position.
- the lifter 20 is controlled so as to
- the control unit 70 opens the valves 39a and 44 while keeping the valve 38 closed.
- pure water is supplied from the pure water supply source 31 to the nozzle pipes 13a and 13b through the pipes 36 and 35a, and the pure water is discharged into the processing tank 10 from the nozzle pipes 13a and 13b.
- the pure water is not heated by the heater 33 .
- pure water is discharged obliquely upward from the nozzle pipes 13a and 13b while the hot chemical is stored in the processing bath 10, an upward flow of pure water is formed in the processing bath 10. and pure water upflow is executed.
- the substrate W is rinsed with pure water (step S17).
- the hot chemical liquid stored in the inner tank 11 overflows into the outer tank 12 and is discharged by the treatment liquid recovery unit 40. Then, as the amount of pure water discharged from the nozzle pipes 13a and 13b increases, the hot chemical stored inside the processing tank 10 is gradually replaced with pure water, and the concentration of the chemical in the processing liquid in the processing tank 10 increases. decreases.
- the specific resistance value of the processing liquid in the processing bath 10 is measured by the resistivity meter 15 .
- the specific resistance value measured by the specific resistance meter 15 is transmitted to the controller 70 .
- the control unit 70 monitors the replacement state in the processing tank 10 based on the measurement results of the resistivity meter 15 .
- the resistivity value measured by the resistivity meter 15 exceeds a predetermined threshold value, it can be considered that the processing liquid in the processing tank 10 has been replaced with pure water from the chemical liquid.
- the control unit 70 closes the valve 39a and opens the valve 39b when a predetermined time has passed since it was detected that the resistivity value measured by the resistivity meter 15 exceeded a predetermined threshold value.
- the bubble 39a is closed, pure water discharge from the nozzle pipes 13a and 13b is stopped.
- the valve 39b is opened, pure water is supplied from the pure water supply source 31 to the shower nozzles 14a and 14b through the pipes 36 and 35b, and the shower nozzles 14a and 14b hold the upper position in the processing tank 10. Pure water is discharged toward the substrate W that is being held.
- the control section 70 opens the valve 45 .
- the valve 45 When the valve 45 is opened, the pure water stored in the inner tank 11 of the processing tank 10 is rapidly discharged. Since the flow rate of pure water discharged from the shower nozzles 14a and 14b is remarkably larger than the flow rate of the pure water discharged from the shower nozzles 14a and 14b, the liquid level in the processing tank 10 also drops rapidly. As the liquid level in the processing bath 10 decreases, the substrates W are exposed from the liquid surface, and pure water is supplied to the exposed portions from the shower nozzles 14a and 14b to wash the substrates W. As shown in FIG. Thereby, the shower rinsing process for the substrate W proceeds (step S18).
- FIG. 6 is a diagram schematically showing how the substrate W is shower-rinsed.
- the control unit 70 closes the valve 39b to stop the pure water ejection from the shower nozzles 14a and 14b, and operates the drive mechanism 22 to raise the lifter 20.
- the substrate W is pulled up from the processing tank 10 (step S19).
- the controller 70 operates the drive mechanism 53 to slide the lid 52 and open the opening 51 of the chamber 50 .
- a transport mechanism outside the apparatus enters the chamber 50 through the opening 51 and receives the processed substrate W from the lifter 20 .
- the transport mechanism exits the chamber 50 and transports the substrate W to a post-process (eg, reduced-pressure drying process).
- a post-process eg, reduced-pressure drying process
- the upper position in the processing bath 10 is A substrate W is held (FIG. 4). Therefore, the distance between the lower end of the lifter 20 and the bottom surface of the processing tank 10 is the same as that in the conventional tank, and the flow of the hot chemical in the processing tank 10 is not uneven, thereby maintaining the uniformity of the etching process. be able to.
- the substrate W is held at the lower position in the treatment bath 10. (Fig. 5). That is, the holding position of the substrate W is lower during the immersion treatment process than during the treatment liquid supply process. Since the substrate W is held at the lower position in the processing tank 10 in the immersion treatment process, even if the liquid surface level of the hot chemical liquid is slightly lowered due to the evaporation of water during the treatment, the upper end of the substrate W remains the hot chemical liquid. There is no risk of exposure from the surface.
- the substrate W is held at the upper position in the processing tank 10 and the lower end of the lifter 20 and the bottom surface of the processing tank 10 are separated from each other. , the same interval as that in the conventional tank is ensured.
- the liquid depth d1 which is the distance from the liquid surface of the processing liquid stored in the processing tank 10 when the substrate W is held at the upper position in the processing tank 10 to the upper end of the substrate W, is the standard of the liquid depth. value.
- the lower part of the processing tank 10 is exposed.
- the liquid depth d2 which is the distance from the surface of the processing liquid stored in the processing tank 10 to the upper end of the substrate W, is made larger than the reference value.
- FIG. 7 is a flowchart showing the procedure for processing the substrate W according to the second embodiment.
- warm pure water is stored in the processing tank 10 (step S20). This process is the same as step S10 of the first embodiment (FIG. 2).
- Warm pure water heated by the heater 33 is discharged from the nozzle pipes 13 a and 13 b and stored in the processing tank 10 .
- the chemical liquid is upflowed without immersing the substrate W in the processing liquid (step S21). That is, the control unit 70 opens the valve 39a and the predetermined valve 38 in a state where there is no substrate W in the processing tank 10, so that the chemical solution and the pure water are mixed at a predetermined ratio in the mixing valve 32.
- a processing chemical is produced.
- the generated treatment chemical is heated by the heater 33 and fed to the nozzle pipes 13a and 13b as a hot chemical.
- the supplied hot chemical liquid is discharged from the nozzle pipes 13a and 13b into the processing tank 10 where the substrate W is not present.
- the hot chemical discharged from the nozzle pipes 13a and 13b forms a flow of the hot chemical from the bottom to the top in the processing bath 10.
- the warm chemical liquid is upflowed.
- the warm pure water stored inside the processing tank 10 is gradually replaced with the chemical liquid for processing.
- step S22 A predetermined time has passed since the upflow of the hot chemical started, and when the concentration of the chemical in the processing tank 10 reaches a predetermined value, the upflow of the hot chemical is stopped (step S22).
- the hot chemical of a predetermined concentration is quietly stored in the inner tank 11 of the processing tank 10 .
- the temperature of the hot chemical liquid at this time is 30° C. or higher and 85° C. or lower.
- the processing from steps S20 to S22 is preparatory processing before performing the main processing on the substrate W.
- control section 70 slides the lid section 52 to open the opening section 51 of the chamber 50 , and the transfer mechanism outside the apparatus loads the plurality of substrates W into the chamber 50 .
- the lifter 20 receives the substrate W from the transfer mechanism above the processing bath 10 .
- the transport mechanism moves out of the chamber 50 , and the controller 70 slides the lid 52 again to close the opening 51 of the chamber 50 .
- the control unit 70 operates the drive mechanism 22 to lower the lifter 20 and immerse the substrate W in the hot chemical liquid stored inside the processing tank 10 .
- the substrate W is held at the lower position (see FIG. 5) in the processing tank 10 by the lifter 20 (step S23).
- the control unit 70 detects in the description of the processing recipe an instruction to immerse the substrate W in the heat processing liquid stored in the processing bath 10
- the substrate in the processing bath 10 is The lifter 20 is controlled so that the holding position of W is the lower position.
- the liquid depth d2 which is the distance from the surface of the hot chemical stored in the processing tank 10 to the upper end of the substrate W held at the lower position, is 9 mm, for example.
- step S24 the substrate W is etched with a hot chemical solution during the immersion process.
- the substrate W is held at the lower position and the liquid depth d2 is 9 mm. Therefore, even if the liquid surface level of the hot chemical liquid drops slightly due to the evaporation of water, the upper end of the substrate W remains above the liquid surface of the hot chemical liquid. There is no exposure and the uniformity of the etching process can be maintained.
- the control unit 70 raises the lifter 20 to raise the substrate W to the upper position (see FIG. 4) in the treatment tank 10 (step S25). Specifically, when the control unit 70 detects an instruction to perform the rinsing process of the substrate W in the description of the processing recipe, the holding position of the substrate W in the processing tank 10 is raised from the lower position to the upper position.
- the lifter 20 is controlled so as to
- the control unit 70 opens the valves 39a and 44 to discharge pure water into the processing tank 10 from the nozzle pipes 13a and 13b. At this time, the pure water is not heated by the heater 33 .
- pure water is discharged obliquely upward from the nozzle pipes 13a and 13b while the hot chemical is stored in the processing bath 10, an upward flow of pure water is formed in the processing bath 10. and pure water upflow is executed. As a result, the substrate W is rinsed with pure water (step S26).
- the hot chemical liquid stored in the inner tank 11 overflows into the outer tank 12 and is discharged by the treatment liquid recovery unit 40. Then, as the amount of pure water discharged from the nozzle pipes 13a and 13b increases, the hot chemical stored inside the processing tank 10 is gradually replaced with pure water, and the concentration of the chemical in the processing liquid in the processing tank 10 increases. decreases. As the replacement in the treatment tank 10 progresses, the specific resistance value obtained from the specific resistance meter 15 gradually increases. When the resistivity value measured by the resistivity meter 15 exceeds a predetermined threshold value, it can be considered that the processing liquid in the processing tank 10 has been replaced with pure water from the chemical liquid.
- the control unit 70 closes the valve 39a and opens the valve 39b when a predetermined time has passed since it was detected that the resistivity value measured by the resistivity meter 15 exceeded a predetermined threshold value.
- the bubble 39a is closed, pure water discharge from the nozzle pipes 13a and 13b is stopped.
- the valve 39b is opened, pure water is discharged from the shower nozzles 14a and 14b toward the substrates W held at the upper position in the processing bath 10. As shown in FIG.
- the control section 70 opens the valve 45 .
- the valve 45 When the valve 45 is opened, the pure water stored in the inner tank 11 of the processing tank 10 is rapidly discharged. Since the flow rate of pure water discharged from the shower nozzles 14a and 14b is remarkably larger than the flow rate of the pure water discharged from the shower nozzles 14a and 14b, the liquid level in the processing tank 10 also drops rapidly. As the liquid level in the processing bath 10 decreases, the substrates W are exposed from the liquid surface, and pure water is supplied to the exposed portions from the shower nozzles 14a and 14b to wash the substrates W. As shown in FIG. Thereby, the shower rinsing process for the substrate W proceeds (step S27). In the second embodiment, the processing from steps S23 to S27 is the main processing for the substrate W. FIG.
- the control unit 70 closes the valve 39b to stop the pure water ejection from the shower nozzles 14a and 14b, and operates the drive mechanism 22 to raise the lifter 20.
- the substrate W is pulled up from the processing tank 10 (step S28).
- the controller 70 slides the lid 52 again to open the opening 51 of the chamber 50 .
- a transport mechanism outside the apparatus enters the chamber 50 through the opening 51 and receives the processed substrate W from the lifter 20 . After receiving the substrate W, the transport mechanism exits the chamber 50 and transports the substrate W to a post-process.
- the substrate W is held at the upper position in the processing tank 10 and the lower end of the lifter 20 and the lower end of the lifter 20 in the process where the upper end of the substrate W is not likely to be exposed from the liquid surface.
- the distance from the bottom surface of the processing tank 10 is secured to the same extent as in the conventional tank.
- the liquid depth d1 which is the distance from the liquid surface of the processing liquid stored in the processing tank 10 when the substrate W is held at the upper position in the processing tank 10 to the upper end of the substrate W, is the standard of the liquid depth. value.
- the liquid depth d2 which is the distance from the surface of the processing liquid stored in the processing tank 10 to the upper end of the substrate W, is made larger than the reference value.
- a third embodiment of the invention will be described.
- the configuration of the substrate processing apparatus 1 of the third embodiment is the same as that of the first embodiment (FIG. 1).
- the processing sequence of the substrate W is different from that in the first embodiment.
- FIG. 8 is a flowchart showing the procedure for processing the substrate W according to the third embodiment.
- warm pure water is stored in the processing tank 10 (step S30). This process is the same as step S10 of the first embodiment (FIG. 2). That is, the control unit 70 opens the valves 39a and 44 while the valve 38 is closed. Thus, pure water is supplied from the pure water supply source 31 to the nozzle pipes 13a and 13b through the pipes 36 and 35a. Also, the heater 33 heats the pure water flowing through the pipe 35a. Therefore, heated warm pure water is discharged into the inner tank 11 of the processing tank 10 from the nozzle pipes 13a and 13b. The warm pure water discharged from the nozzle pipes 13 a and 13 b is gradually stored inside the inner tank 11 .
- step S30 is the preparatory process before the substrate W is subjected to the main process.
- control section 70 slides the lid section 52 to open the opening section 51 of the chamber 50 , and the transfer mechanism outside the apparatus loads the plurality of substrates W into the chamber 50 .
- the lifter 20 receives the substrate W from the transfer mechanism above the processing bath 10 .
- the transport mechanism moves out of the chamber 50 , and the controller 70 slides the lid 52 again to close the opening 51 of the chamber 50 .
- the control unit 70 operates the drive mechanism 22 to lower the lifter 20 and immerse the substrates W in warm pure water stored inside the processing tank 10 .
- the substrate W is held at the lower position (see FIG. 5) in the processing tank 10 by the lifter 20 (step S31).
- the control unit 70 detects in the description of the processing recipe an instruction to immerse the substrate W in the heat processing liquid stored in the processing bath 10
- the substrate in the processing bath 10 is The lifter 20 is controlled so that the holding position of W is the lower position.
- the liquid depth d2 which is the distance from the surface of warm pure water stored in the processing tank 10 to the upper end of the substrate W held at the lower position, is 9 mm, for example.
- the entire substrate W is immersed in the warm pure water to perform the first immersion processing.
- the substrate W is immersed in warm pure water during the immersion process, but the etching process of the substrate W progresses slightly even with warm pure water.
- Such an etching process using hot pure water is suitable for etching in a very small amount.
- the substrate W is held at the lower position and the liquid depth d2 is 9 mm. Therefore, even if the liquid surface level of the hot chemical liquid drops slightly due to evaporation of water, the upper end of the substrate W is exposed from the liquid surface of the warm pure water. never do.
- the control unit 70 raises the lifter 20 to raise the substrate W to the upper position (see FIG. 4) in the treatment tank 10 (step S33).
- the controller 70 opens the valves 39a and 44 while the valve 38 is closed, and the heater 33 heats the pure water flowing through the pipe 35a. As a result, heated warm pure water is discharged into the inner tank 11 of the processing tank 10 from the nozzle pipes 13a and 13b.
- hot pure water is discharged obliquely upward from the nozzle pipes 13a and 13b while the hot pure water is stored in the processing tank 10, an upward flow of warm pure water is formed in the processing tank 10. That is, hot pure water is upflowed (step S34).
- hot pure water is upflowed, the surface of the substrate W is exposed to the hot pure water flow.
- hot pure water is upflowed while the substrates W are held at the upper position in the processing tank 10 .
- the gap between the lower end of the lifter 20 and the bottom surface of the processing tank 10 is the same as that in the conventional tank, thereby preventing uneven flow of hot pure water.
- the control unit 70 closes the valve 39a to stop warm pure water upflow.
- warm pure water is quietly stored again in the treatment tank 10 .
- the temperature of the warm pure water at this time is 30° C. or higher and 85° C. or lower.
- the controller 70 operates the drive mechanism 22 to lower the lifter 20, thereby lowering the substrate W to the lower position in the processing bath 10 (step S35).
- the control unit 70 detects in the description of the processing recipe an instruction to immerse the substrate W in the heat processing liquid stored in the processing bath 10 , the substrate in the processing bath 10 is The lifter 20 is controlled so that the holding position of W is lowered from the upper position to the lower position. Also at this time, the liquid depth d2, which is the distance from the surface of the warm pure water stored in the processing tank 10 to the upper end of the substrate W held at the lower position, is 9 mm, for example.
- the entire substrate W is immersed in the warm pure water and the second immersion processing is performed. Proceed (step S36). Also at this time, the substrate W is slightly etched by warm pure water. Also, during the second immersion process, the substrate W is held at the lower position and the liquid depth d2 is 9 mm. It is not exposed from the surface of warm pure water.
- the control unit 70 raises the lifter 20 to raise the substrate W to the upper position in the treatment tank 10 (step S37).
- the control unit 70 opens the valves 39a and 44 to discharge pure water into the processing tank 10 from the nozzle pipes 13a and 13b at the same time as the substrate W is lifted to the upper position. At this time, the pure water is not heated by the heater 33 .
- the pure water is discharged obliquely upward from the nozzle pipes 13a and 13b in a state in which warm pure water is stored in the processing bath 10, an upward flow of pure water is formed in the processing bath 10. , pure water upflow is performed. As a result, the substrate W is rinsed with pure water (step S38).
- the control unit 70 closes the valve 39a and opens the valve 39b when a predetermined time has passed since the start of the rinse process.
- the bubble 39a is closed, pure water discharge from the nozzle pipes 13a and 13b is stopped.
- the valve 39b is opened, pure water is discharged from the shower nozzles 14a and 14b toward the substrates W held at the upper position in the processing bath 10. As shown in FIG.
- the control section 70 opens the valve 45 .
- the valve 45 When the valve 45 is opened, the pure water stored in the inner tank 11 of the processing tank 10 is rapidly discharged. Since the flow rate of pure water discharged from the shower nozzles 14a and 14b is remarkably larger than the flow rate of the pure water discharged from the shower nozzles 14a and 14b, the liquid level in the processing tank 10 also drops rapidly. As the liquid level in the processing bath 10 decreases, the substrates W are exposed from the liquid surface, and pure water is supplied to the exposed portions from the shower nozzles 14a and 14b to wash the substrates W. As shown in FIG. Thereby, the shower rinsing process of the substrate W proceeds (step S39). In the third embodiment, the processing from steps S31 to S39 is the main processing for the substrate W. FIG.
- the control unit 70 closes the valve 39b to stop the pure water ejection from the shower nozzles 14a and 14b, and operates the drive mechanism 22 to raise the lifter 20.
- the substrate W is pulled up from the processing bath 10 (step S40).
- the controller 70 slides the lid 52 again to open the opening 51 of the chamber 50 .
- a transport mechanism outside the apparatus enters the chamber 50 through the opening 51 and receives the processed substrate W from the lifter 20 . After receiving the substrate W, the transport mechanism exits the chamber 50 and transports the substrate W to a post-process.
- the substrates W are held at the upper position in the processing tank 10 and the lower end of the lifter 20 and the lower end of the lifter 20 in the process where the upper end of the substrate W is not exposed from the liquid surface.
- the distance from the bottom surface of the processing tank 10 is secured to the same extent as in the conventional tank.
- the liquid depth d1 which is the distance from the liquid surface of the processing liquid stored in the processing tank 10 when the substrate W is held at the upper position in the processing tank 10 to the upper end of the substrate W, is the standard of the liquid depth. value.
- the liquid depth d2 which is the distance from the surface of the processing liquid stored in the processing tank 10 to the upper end of the substrate W, is made larger than the reference value.
- the substrate W is held at the lower position in the processing tank 10 when the substrate W is immersed in the hot chemical liquid, but in the third embodiment, the substrate W is held in the hot pure water.
- the substrate W is held at a lower position in the processing bath 10 during immersion. That is, in the immersion treatment step of immersing the substrate W in the heat treatment liquid stored in the treatment bath 10, if the substrate W is held at the lower position in the treatment bath 10, the water evaporation may occur. It is possible to prevent the upper end of the substrate W from being exposed from the liquid surface of the hot processing liquid due to the lowering of the liquid level of the hot processing liquid.
- the liquid depth d1 is 4 mm when the substrate W is held at the upper position
- the liquid depth d2 is 9 mm when the substrate W is held at the lower position.
- the etching process is performed as the surface treatment of the substrate W with the treatment liquid, but the present invention is not limited to this, and the substrate W may be cleaned with the treatment liquid, for example. .
- thermometer may be provided on the treatment layer 10 so that the holding position of the substrate W may be changed according to the temperature of the hot treatment liquid during the immersion treatment. Specifically, the higher the temperature of the hot treatment liquid during the immersion treatment, the more the moisture evaporates. .
- the capacity of the processing bath 10 is smaller than that of the conventional bath.
- the holding position may be lowered.
- Substrate Processing Apparatus 10 Processing Tank 11 Inner Tank 12 Outer Tank 13a, 13b Nozzle Pipes 14a, 14b Shower Nozzle 15 Resistivity Meter 20 Lifter 30 Processing Liquid Supply Section 33 Heater 40 Processing Liquid Recovery Section 50 Chamber 60 Nitrogen Gas Supply Section 70 Control Department
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Weting (AREA)
Abstract
処理槽内に基板が存在している状態で処理槽に処理液のアップフローを行う処理液供給工程では、処理槽内の上側位置に基板が保持される。一方、処理槽に貯留されている温処理液中に基板を浸漬する浸漬処理工程では、処理槽内の下側位置に基板が保持される。温処理液中に基板を浸漬するときには、基板の保持位置を低くして処理液の液面から基板までの距離である液深を大きくしているため、浸漬処理中に水分の蒸発によって温処理液の液面レベルが多少低下したとしても、基板の処理液からの露出を確実に防止することができる。
Description
本発明は、処理槽内で基板に対して処理液によるエッチング等の表面処理を行う基板処理方法および基板処理装置に関する。処理対象となる基板には、例えば、半導体基板、液晶表示装置用基板、有機EL(electroluminescence)表示装置などに用いるflat panel display(FPD)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、または、太陽電池用基板などが含まれる。
従来より、半導体装置の製造工程では、半導体基板(以下、単に「基板」と称する)に対して種々の処理を行う基板処理装置が用いられている。そのような基板処理装置の1つとして、単一の処理槽の中で複数の基板に対して薬液による薬液処理と純水によるリンス処理とを順次に行う、いわゆるワンバス方式の基板処理装置が知られている(例えば、特許文献1参照)。ワンバス方式の基板処理装置は、典型的には処理槽に貯留された薬液中に複数の基板を一括して浸漬し、処理槽の底部から薬液を供給しつつ処理槽の上部から薬液をオーバーフローさせることにより、基板に対してエッチング処理等の薬液処理を行う。また、ワンバス方式の基板処理装置は、所定時間の薬液処理が終了すると、処理槽の底部から純水を供給しつつ処理槽の上部から液体をオーバーフローさせることにより、処理槽の内部の液体を薬液から純水に徐々に置換する。そして、純水に置換された後の処理槽の内部において、基板に対して純水によるリンス処理を行う。ワンバス方式の基板処理装置においては、処理槽からオーバーフローさせた処理液は基本的には廃棄される。
一方、近年は持続可能な開発目標(SDGs)への取り組みも注目されており、廃棄される処理液をなるべく低減することが求められている。このような要求に応えるべく、より少量の処理液で基板処理が可能な処理槽が開発されている。具体的には、処理槽の長さおよび深さの寸法を短くして槽容量を約5%削減した処理槽が用いられている。
このような容量を削減した処理槽では、処理槽の寸法が小さくなっているため、処理槽の底面と基板との間隔が従来よりも狭くなり、処理液の流れが偏ることがあった。その結果、基板に対するエッチング特性等が不均一になることがある。これを解決するためには、処理槽内における基板の保持位置を高くして、処理槽の底面と基板との間隔を従来と同程度にすることが考えられる。しかし、処理槽内における基板の保持位置を高くすると、処理液の液面から基板の上端部が露出するおそれがあるという問題が生じる。特に、ワンバス方式の基板処理装置においては、加熱された温処理液中に基板を浸漬する処理を行うことがある。そのような処理中には温処理液から水分が盛んに蒸発するために液面が次第に低くなるため、処理液の液面から基板の上端部が露出しやすくなる。
本発明は、上記課題に鑑みてなされたものであり、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる基板処理方法および基板処理装置を提供することを目的とする。
上記課題を解決するため、この発明の第1の態様は、処理槽内で基板に対して処理液による表面処理を行う基板処理方法において、前記処理槽内に基板が存在している状態で前記処理槽に処理液を供給する処理液供給工程と、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する浸漬処理工程と、を備え、前記処理液供給工程では前記処理槽内の第1の高さ位置に基板が保持され、前記浸漬処理工程では前記処理槽内の第2の高さ位置に基板が保持され、前記第2の高さ位置は前記第1の高さ位置よりも低い。
また、第2の態様は、処理槽内で基板に対して処理液による表面処理を行う基板処理方法において、前記処理槽内に基板が存在している状態で前記処理槽に処理液を供給する処理液供給工程と、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する浸漬処理工程と、を備え、前記浸漬処理工程を実行するときには、前記処理槽に貯留されている処理液の液面から基板までの距離である液深を標準値よりも大きくする。
また、第3の態様は、処理槽内で基板に対して処理液による表面処理を行う基板処理方法において、前記処理槽内に基板が存在している状態で前記処理槽に処理液を供給する処理液供給工程と、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する浸漬処理工程と、を備え、レシピにて前記浸漬処理工程を実行する指示が検出されたときには、前記処理槽内における基板の保持位置を下降させる。
また、第4の態様は、第1から第3のいずれかの態様に係る基板処理方法において、前記処理液供給工程では、前記処理槽の底部に配置されたノズル管から上方に向けて処理液を吐出する。
また、第5の態様は、第4の態様に係る基板処理方法において、前記処理液供給工程では、前記ノズル管から第1の処理液を吐出して前記処理槽に貯留されている第2の処理液を第1の処理液に置換する。
また、第6の態様は、第4または第5の態様に係る基板処理方法において、前記浸漬処理工程では、前記ノズル管からの処理液の吐出が停止されている。
また、第7の態様は、第1から第6のいずれかの態様に係る基板処理方法において、前記温処理液の温度は30℃以上85℃以下である。
また、第8の態様は、処理槽内で基板に対して処理液による表面処理を行う基板処理装置において、前記処理槽に処理液を供給する処理液供給部と、前記処理槽内における基板の保持位置を昇降させる昇降部と、前記昇降部の動作を制御する制御部と、を備え、前記処理槽内に基板が存在している状態で前記処理液供給部が前記処理槽に処理液を供給するときには前記処理槽内の第1の高さ位置に基板が保持されるとともに、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬するときには前記処理槽内の第2の高さ位置に基板が保持され、前記制御部は、前記第2の高さ位置が前記第1の高さ位置よりも低くなるように前記昇降部を制御する。
また、第9の態様は、処理槽内で基板に対して処理液による表面処理を行う基板処理装置において、前記処理槽に処理液を供給する処理液供給部と、前記処理槽内における基板の保持位置を昇降させる昇降部と、前記昇降部の動作を制御する制御部と、を備え、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬するときには、前記処理槽に貯留されている処理液の液面から基板までの距離である液深が標準値よりも大きくなるように前記制御部が前記昇降部を制御する。
また、第10の態様は、処理槽内で基板に対して処理液による表面処理を行う基板処理装置において、前記処理槽に処理液を供給する処理液供給部と、前記処理槽内における基板の保持位置を昇降させる昇降部と、前記昇降部の動作を制御する制御部と、を備え、前記制御部は、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する工程を実行する指示をレシピに検出したときには、前記処理槽内における基板の保持位置が下降するように前記昇降部を制御する。
また、第11の態様は、第8から第10のいずれかの態様に係る基板処理装置において、前記処理液供給部は、前記処理槽の底部に配置されて上方に向けて処理液を吐出するノズル管を有する。
また、第12の態様は、第8から第11のいずれかの態様に係る基板処理装置において、前記温処理液の温度は30℃以上85℃以下である。
第1および第4から第7の態様に係る基板処理方法によれば、処理液供給工程では処理槽内の第1の高さ位置に基板が保持され、浸漬処理工程では処理槽内の第2の高さ位置に基板が保持され、第2の高さ位置は第1の高さ位置よりも低いため、浸漬処理工程で水分の蒸発によって温処理液の液面が多少低下したとしても基板が温処理液から露出することはなく、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる。
第2の態様に係る基板処理方法によれば、浸漬処理工程を実行するときには、処理槽に貯留されている処理液の液面から基板までの距離である液深を標準値よりも大きくするため、浸漬処理工程で水分の蒸発によって温処理液の液面が多少低下したとしても基板が温処理液から露出することはなく、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる。
第3の態様に係る基板処理方法によれば、レシピにて浸漬処理工程を実行する指示が検出されたときには、処理槽内における基板の保持位置を下降させるため、浸漬処理工程で水分の蒸発によって温処理液の液面が多少低下したとしても基板が温処理液から露出することはなく、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる。
第8および第11,12の態様に係る基板処理装置によれば、処理槽内に基板が存在している状態で処理液供給部が処理槽に処理液を供給するときには処理槽内の第1の高さ位置に基板が保持されるとともに、処理槽に貯留されている加熱された温処理液中に基板を浸漬するときには処理槽内の第2の高さ位置に基板が保持され、第2の高さ位置は第1の高さ位置よりも低いため、浸漬処理時に水分の蒸発によって温処理液の液面が多少低下したとしても基板が温処理液から露出することはなく、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる。
第9の態様に係る基板処理装置によれば、処理槽に貯留されている加熱された温処理液中に基板を浸漬するときには、処理槽に貯留されている処理液の液面から基板までの距離である液深を標準値よりも大きくするため、浸漬処理時に水分の蒸発によって温処理液の液面が多少低下したとしても基板が温処理液から露出することはなく、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる。
第10の態様に係る基板処理装置によれば、制御部は、処理槽に貯留されている加熱された温処理液中に基板を浸漬する工程を実行する指示をレシピに検出したときには、処理槽内における基板の保持位置が下降するように昇降部を制御するため、浸漬処理時に水分の蒸発によって温処理液の液面が多少低下したとしても基板が温処理液から露出することはなく、温処理液による基板の浸漬処理中にも基板の露出を確実に防止することができる。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
<第1実施形態>
図1は、本発明に係る基板処理装置1の構成を示す図である。基板処理装置1は、複数枚の半導体ウェハーなどの基板Wに対して一括して処理液による表面処理を行うバッチ式の基板処理装置である。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
図1は、本発明に係る基板処理装置1の構成を示す図である。基板処理装置1は、複数枚の半導体ウェハーなどの基板Wに対して一括して処理液による表面処理を行うバッチ式の基板処理装置である。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。
基板処理装置1は、1つの処理槽10の中で複数枚の基板Wに対して薬液を用いた薬液処理と純水によるリンス処理とを順次に行う、いわゆるワンバス方式の基板処理装置である。上記の薬液としては、例えば、エッチング処理を行うための液、または、パーティクルを除去するための液などが含まれ、具体的には、SC-1液(水酸化アンモニウムと過酸化水素水と純水との混合溶液)、SC-2液(塩酸と過酸化水素水と純水との混合溶液)、または、フッ酸などが用いられる。薬液は、純水によって希釈されたものも含む。また、本明細書では各種の薬液および純水を総称して「処理液」とする。
図1に示すように、基板処理装置1は、主として、処理液を貯留する処理槽10と、複数枚の基板(以下、単に「基板」とする)Wを保持して上下に昇降するリフタ20と、処理槽10に処理液を供給する処理液供給部30と、処理槽10から処理液を回収する処理液回収部40と、処理槽10を内部に収容するチャンバ50と、チャンバ50の内部に窒素ガスを供給する窒素ガス供給部60と、装置内の各部の動作を制御する制御部70とを備える。
処理槽10は、石英等の耐薬性の材料により構成された貯留容器である。処理槽10は、各種処理液を順次に貯留してその内部に基板Wを浸漬させる内槽11と、内槽11の上端外周部に形成された外槽12とを有している。
内槽11の底部には、内槽11の内部に処理液を吐出する一対のノズル管13a,13bが配置されている。各ノズル管13a,13bは長尺円筒形状の管状部材である。各ノズル管13a,13bには、長手方向に沿って等間隔で複数の吐出口(図示省略)が形設されている。ノズル管13a,13bに供給された処理液は、それら複数の吐出口から内槽11内に吐出されて内槽11の内部に貯留される。ノズル管13a,13bは、処理槽10内に保持される基板Wに向けて、つまり斜め上方に向けて処理液を吐出する。内槽11の内部に処理液が貯留されている状態でノズル管13a,13bから処理液が吐出されると、内槽11内に上方へと向かう処理液の流れが形成される(アップフロー)。また、内槽11の上端まで処理液が貯留されている状態でノズル管13a,13bから処理液が吐出されると、内槽11の上部から処理液が溢れて外槽12へとオーバーフローする。
また、内槽11の上方には、内槽11の内部に向けて処理液を吐出する一対のシャワーノズル14a,14bが設けられている。シャワーノズル14a,14bも、上記のノズル管13a,13bと同様に、長尺円筒形状の管状部材である。各シャワーノズル14a,14bには、長手方向に沿って等間隔で複数の吐出口(図示省略)が形設されている。シャワーノズル14a,14bに供給された処理液は、それら複数の吐出口から内槽11の内部に向けて吐出される。シャワーノズル14a,14bは、処理槽10内に保持される基板Wに向けて、つまり斜め下方に向けて処理液を吐出する。
また、内槽11の内部には、処理液の比抵抗値を計測する比抵抗計15が設置されている。比抵抗計15は、一対の金属電極を有しており、処理液に浸漬された金属電極間の電気抵抗を計測することにより、処理液の比抵抗値を計測する。比抵抗計15は、処理槽10内を薬液から純水に置換する際に、処理槽10の内部に貯留された処理液の比抵抗値を計測し、取得された比抵抗値の情報を制御部70に送信する。なお、比抵抗計15は、金属電極中に温度センサを内蔵し、所定温度における比抵抗値の換算値を制御部70に送信するものであってもよい。
本実施形態の処理槽10は、消費する処理液量を削減するため、従来より使用されている典型的な処理槽よりも槽容量が少ない。具体的には、内槽11の上端から底面までの深さが小さくなっているとともに、図1の紙面と直交する方向の内槽11の長さも短くなっている。これにより、処理槽10は、従来より使用されている典型的な処理槽(以下、「従来槽」とする)よりも槽容量を約5%少なくすることができている。
リフタ20は、チャンバ50の内部において基板Wを保持しつつ上下に搬送するための搬送機構である。リフタ20は、図1において紙面と直交する方向にのびる3本の保持棒21を有しており、各保持棒21には複数(例えば、50個)の保持溝が刻設されている。基板Wは、その周縁部を保持溝に嵌合させた状態で3本の保持棒21上に互いに平行に起立姿勢(主面の法線が水平方向となる姿勢)で保持される。また、リフタ20は、図1において概念的に示した駆動機構22と接続されている。駆動機構22を動作させるとリフタ20は上下に移動し、基板Wは矢印AR1にて示すように、処理槽10の内部の浸漬位置(図1の状態)と、処理槽10の上方の引き上げ位置との間で昇降移動される。また、リフタ20は、上下に微小移動することによって、処理槽10内における基板Wの保持位置を昇降させる昇降部としても機能する。
処理液供給部30は、ノズル管13a,13bおよびシャワーノズル14a,14bのそれぞれへ処理液を供給するための配管系である。図1に示すように、処理液供給部30は、純水供給源31、薬液供給源37、ミキシングバルブ32、ヒータ33、配管35a,35b,36、および、バルブ39a,39b等を組み合わせて構成されている。純水供給源31には、配管36の基端側が接続されている。配管36の先端側は配管35aおよび配管35bの二叉に分岐される。配管35aの先端側はさらに二叉に分岐して一対のノズル管13a,13bにそれぞれ接続されている。配管35aの経路途中には、バルブ39a、ミキシングバルブ32およびヒータ33が介挿されている。一方、配管35bの先端側は二叉に分岐して一対のシャワーノズル14a,14bにそれぞれ接続されている。配管35bの経路途中には、バルブ39bが介挿されている。
ミキシングバルブ32には、純水を送給する配管35aが接続されるとともに、バルブ38を介して1以上の薬液供給源37が接続されている。1以上の薬液供給源37は、例えば、水酸化アンモニウムの供給源、塩酸の供給源、過酸化水素水の供給源、フッ酸の供給源等を含む。バルブ39aおよび選択されたバルブ38を開放すると、純水供給源31から供給される純水と薬液供給源37(当該選択されたバルブ38に対応する薬液供給源37)から供給される薬液とがミキシングバルブ32において所定の比率で混合される。これにより処理液として用いられる、純水により希釈された薬液が生成される。ミキシングバルブ32にて生成された処理用の薬液は、配管35aを流れて一対のノズル管13a,13bに供給され、ノズル管13a,13bの複数の吐出口から処理槽10へと供給される。なお、薬液生成時に選択されるバルブ38は2以上であっても良い。例えば、塩酸の供給源および過酸化水素水の供給源に対応する2つのバルブ38が選択されて開放されると、ミキシングバルブ32では塩酸と過酸化水素水と純水とが混合されてSC-2液が生成される。
一方、全てのバルブ38を閉止するとともにバルブ39aのみを開放すると、ミキシングバルブ32における混合は行われず、純水供給源31から供給された純水はそのままミキシングバルブ32を通過して配管35aを流れて一対のノズル管13a,13bに供給される。この場合、ノズル管13a,13bの複数の吐出口からは純水が処理槽10に供給される。
また、ヒータ33は、制御部70の制御により、配管35aを流れる処理液を加熱することができる。ミキシングバルブ32にて生成された薬液が配管35aを流れているときにヒータ33がその薬液を加熱すると、ノズル管13a,13bから処理槽10に加熱された温薬液が供給されることとなる。一方、ミキシングバルブ32での混合が行われずに純水が配管35aを流れているときにヒータ33がその純水を加熱すると、ノズル管13a,13bから処理槽10に加熱された温純水が供給されることとなる。本明細書では、温薬液および温純水を総称して「温処理液」とする。
また、バルブ39bを開放すると、純水供給源31から供給された純水は配管35bを流れて一対のシャワーノズル14a,14bに供給され、シャワーノズル14a,14bの複数の吐出口から処理槽10に吐出される。なお、バルブ39aとバルブ39bとはいずれか一方が択一的に開放されることに限定されるものではなく、それらが同時に開放されても良い。
処理液回収部40は、処理槽10から処理液を回収し、回収した処理液を排出させるための配管系である。図1に示すように、処理液回収部40は、配管41,42,43と、バルブ44,45とを備えている。
配管41の先端側は外槽12に接続されている。一方、配管42の先端側は内槽11の底部に接続されている。配管41および配管42はそれらの基端側で合流して配管43に接続されている。配管41の経路途中にはバルブ44が介挿されている。配管42の経路途中にはバルブ45が介挿されている。配管43の基端側は、基板処理装置1が設置される工場の排液設備に接続されている。
このような処理液回収部40において、バルブ44を開放すると、内槽11からオーバーフローして外槽12に流れ込んだ処理液は配管41に回収されて配管43を通って排液設備へと排出される。また、バルブ45を開放すると、内槽11内に貯留されていた処理液が配管42に急速排出され、配管43を通って排液設備へと排出される。
チャンバ50は、気密性の材料により構成された筐体である。チャンバ50の内部は、基板Wの処理を行うための処理空間となっており、処理空間に処理槽10が配置されている。チャンバ50の上部には、基板Wを搬入または搬出させるための開口部51が形成されている。開口部51は、スライド式の蓋部52によって閉鎖および開放される。開口部51が開放されたときには、開口部51を介して基板Wを搬入・搬出することができ、また、開口部51が閉鎖されたときには、チャンバ50の内部の処理空間を外部から隔離された密閉空間とすることができる。なお、スライド式の蓋部52は、図1において概念的に示した駆動機構53によりスライド移動する。
チャンバ50の内部において処理槽10の上方には、チャンバ50の内部に窒素ガスを吐出する一対の窒素ガスノズル54a,54bが配置されている。各窒素ガスノズル54a,54bには、複数の吐出口(図示省略)が形成されている。このため、窒素ガスノズル54a,54bに窒素ガスが供給されると、窒素ガスが窒素ガスノズル54a,54bの複数の吐出口からチャンバ50の内部に向けて吐出される。また、チャンバ50の底部付近には、排気用の配管55が接続されている。配管55の経路途中にはバルブ56が介挿されており、配管55の下流側は工場内の排気設備に接続されている。このため、バルブ56を開放することにより、チャンバ50の内部の気体を、配管55を介して排気設備へ排出することができる。
窒素ガス供給部60は、不活性ガスである窒素ガスを窒素ガスノズル54a,54bに供給するための配管系である。図1に示すように、窒素ガス供給部60は、窒素ガス供給源61と、配管62と、バルブ63とを有している。配管62の基端側は窒素ガス供給源61に接続されており、配管62の経路途中にはバルブ63が介挿されている。また、配管62の先端側は2本に分岐して一対の窒素ガスノズル54a,54bにそれぞれ接続されている。このため、バルブ63を開放すると、窒素ガス供給源61から配管62を通って一対の窒素ガスノズル54a,54bへ窒素ガスが供給され、窒素ガスノズル54a,54bの複数の吐出口からチャンバ50の内部へ窒素ガスが吐出される。
制御部70は、基板処理装置1に設けられた上記の種々の動作機構を制御する。制御部70のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部70は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく記憶部(例えば、磁気ディスク)を備えている。制御部70は、リフタ20の駆動機構22やバルブ39a,39b等と電気的に接続されている。
また、制御部70の記憶部には、基板Wを処理する手順および条件を定めたレシピ(以下「処理レシピ」という)が記憶されている。処理レシピは、例えば、装置のオペレータが、後述する入力部72を介して入力して記憶部に記憶させることによって、基板処理装置1に取得される。或いは、複数の基板処理装置1を管理するホストコンピュータから基板処理装置1に処理レシピが通信により引き渡されて記憶部に記憶されても良い。制御部70は、記憶部に格納されている処理レシピの記述に基づいて、駆動機構22やバルブ39a,39b等の動作を制御することにより、処理レシピに記述された通りに基板Wの表面処理を進行させる。
また、制御部70には、表示部71および入力部72が接続されている。表示部71および入力部72は、基板処理装置1のユーザーインターフェイスとして機能する。制御部70は、表示部71に種々の情報を表示する。基板処理装置1のオペレータは、表示部71に表示された情報を確認しつつ、入力部72から種々のコマンドやパラメータを入力することができる。入力部72としては、例えばキーボードやマウスを用いることができる。表示部71としては、例えば液晶ディスプレイを用いることができる。本実施形態においては、表示部71および入力部72として、基板処理装置1の外壁に設けられた液晶のタッチパネルを採用して双方の機能を併せ持たせるようにしている。
次に、基板処理装置1における処理動作について説明する。図2は、第1実施形態の基板処理装置1における処理手順を示すフローチャートである。以下に示す処理手順は、制御部70が基板処理装置1の各動作機構を制御することによって進行する。
まず、処理槽10に温純水を貯留する(ステップS10)。具体的には、制御部70がバルブ38を閉止した状態でバルブ39aおよびバルブ44を開放する。これにより、純水供給源31から配管36,35aを介してノズル管13a,13bに純水が供給される。また、ヒータ33が配管35aを流れる純水を加熱する。よって、ノズル管13a,13bから処理槽10の内槽11の内部には加熱された温純水が吐出される。ノズル管13a,13bから吐出された温純水は、内槽11の内部に徐々に貯留され、やがて内槽11の上部から外槽12へオーバーフローする。図3は、処理槽10の内槽11に処理液(ここでは温純水)が貯留された状態を模式的に示す図である。
次に、制御部70は、駆動機構53を動作させて蓋部52をスライド移動させ、チャンバ50の開口部51を開放する。そして、装置外部の搬送機構によって前工程より搬送されてきた複数の基板Wが開口部51を介してチャンバ50の内部に搬入される。チャンバ50の内部では、処理槽10の上方においてリフタ20が待機しており、上記搬送機構によってチャンバ50内に搬入された基板Wはリフタ20に受け渡されてリフタ20の3本の保持棒21上に載置される。基板Wの搬入が完了すると上記搬送機構はチャンバ50から退出し、制御部70は再び蓋部52をスライド移動させてチャンバ50の開口部51を閉鎖する。これにより、チャンバ50の内部は密閉空間となる。
続いて、制御部70は、駆動機構22を動作させてリフタ20を下降させ、処理槽10の内部に貯留された温純水中に基板Wを浸漬する。この段階では、基板Wはリフタ20によって処理槽10内の上側位置(第1の高さ位置)に保持される(ステップS11)。図4は、基板Wが処理槽10内の上側位置に保持された状態を模式的に示す図である。「上側位置」とは、後述する「下側位置」よりも相対的に高い位置である。処理槽10に貯留されている温純水の液面から上側位置に保持されている基板Wの上端までの距離である液深d1は例えば4mmである。上述したように、本実施形態の処理槽10は、従来より使用されている典型的な処理槽よりも深さが小さいのであるが、基板Wが上側位置に保持されているときには、リフタ20の下端と処理槽10の底面との間隔は従来槽におけるそれと同じである。換言すれば、「上側位置」とは、リフタ20の下端と処理槽10の底面との間隔が従来槽におけるそれと同じになる基板Wの保持位置である。
また、制御部70は、バルブ63を開放して窒素ガスノズル54a,54bからチャンバ50の内部に窒素ガスを吐出するとともに、バルブ56を開放してチャンバ50からの排気を行う。これにより、チャンバ50の内部の処理空間は窒素ガス雰囲気となる。このような窒素ガスの吐出およびチャンバ50からの排気は、以降の処理においても継続して行われる。このため、チャンバ50の内部の処理空間は、常に窒素ガスが充填された状態とされる。
基板Wが処理槽10内の上側位置に保持された後、制御部70は、バルブ39a,44の開放状態を維持しつつ、所定のバルブ38を開放する(開放するバルブ38は複数であっても良い)。これにより、純水供給源31から供給される純水と所定の薬液供給源37(開放されたバルブ38に対応する薬液供給源37)から供給される薬液とがミキシングバルブ32において所定の比率で混合されて処理用の薬液が生成される。ミキシングバルブ32にて生成された処理用の薬液は、ヒータ33によって加熱されて温薬液としてノズル管13a,13bに送給される。送給された温薬液は、ノズル管13a,13bから内槽11の内部に吐出される。
処理槽10に温純水が貯留されている状態でノズル管13a,13bから斜め上方に向けて温薬液が吐出されると、処理槽10内には下方から上方へと向かう温薬液の流れが形成される。すなわち、温薬液のアップフローが実行される(ステップS12)。また、ノズル管13a,13bから温薬液が吐出されるにつれて、内槽11に貯留されていた温純水は外槽12へとオーバーフローして処理液回収部40によって排液される。そして、ノズル管13a,13bからの温薬液の吐出量が増えるにつれて、処理槽10の内部に貯留されていた温純水は徐々に処理用の薬液に置換され、処理槽10内の処理液中における薬液濃度が高まる。
温薬液のアップフローが実行されると、基板Wの表面が薬液に曝されることとなり、基板Wの表面処理(本実施形態ではエッチング処理)が進行する。ここで、本実施形態では、基板Wが処理槽10内の上側位置に保持された状態で温薬液のアップフローが実行される。基板Wの保持位置が低くてリフタ20の下端と処理槽10の底面との間隔が狭い状態で温薬液のアップフローが行われると、温薬液の流れに偏りが生じてエッチング処理の均一性が低下するおそれがある。本実施形態においては、基板Wが上側位置に保持されてリフタ20の下端と処理槽10の底面との間隔が従来槽におけるそれと同じであるため、温薬液の流れに偏りが生じることはなく、エッチング処理の均一性を維持することができる。
また、温薬液のアップフローが行われているときには、絶えず内槽11の上端から外槽12へと処理液がオーバーフローしているため、処理液の液面から基板Wの上端までの距離である液深d1が短くても、基板Wの上端が処理液の液面から露出する懸念はない。
温薬液のアップフローを開始してから所定時間が経過し、処理槽10内の薬液濃度が所定値に達した時点で制御部70がバルブ39aおよびバルブ38を閉止して温薬液のアップフローを停止する(ステップS13)。温薬液のアップフローが停止すると、内槽11から外槽12へのオーバーフローも生じないため、バルブ44も閉止するようにしても良い。
温薬液のアップフローが停止すると、処理槽10の内槽11に所定濃度の温薬液が静かに貯留された状態となる。このときの温薬液の温度は30℃以上85℃以下である。そして、温薬液のアップフローが停止した後、制御部70は、駆動機構22を動作させてリフタ20を下降させ、基板Wを処理槽10内の下側位置(第2の高さ位置)に下降させる(ステップS14)。具体的には、制御部70は、処理槽10に貯留されている温処理液中に基板Wを浸漬する工程を実行する指示を処理レシピの記述に検出したときに、処理槽10内における基板Wの保持位置が上側位置から下側位置に下降するようにリフタ20を制御する。
図5は、基板Wが処理槽10内の下側位置に保持された状態を模式的に示す図である。「下側位置」は、図4に示した「上側位置」よりも相対的に低い位置である。処理槽10に貯留されている温薬液の液面から下側位置に保持されている基板Wの上端までの距離である液深d2は例えば9mmである。基板Wが下側位置に保持されているときには、リフタ20の下端と処理槽10の底面との間隔は従来槽におけるそれよりも短い。なお、基板Wが下側位置に保持されているときの液深d2は、従来槽における液深と等しい。
処理液供給を停止し、かつ、処理槽10に温薬液が貯留されている状態で基板Wが下側位置に保持されると、基板Wの全体が温薬液中に浸漬されて浸漬処理が進行する(ステップS15)。本実施形態では、温薬液による基板Wのエッチング処理が進行する。基板Wが下側位置に保持されてリフタ20の下端と処理槽10の底面との間隔が従来槽におけるそれよりも狭くなっているときに温薬液のアップフローを行うと、温薬液の流れに偏りが生じてエッチング処理の均一性が低下するおそれがある。しかし、浸漬処理時には温薬液のアップフローが停止されているため、温薬液の流れに偏りが生じることはなく、エッチング処理の均一性を維持することができる。
また、浸漬処理時には、処理槽10に新たな温薬液の供給がなされない一方で、30℃以上85℃以下に昇温している温薬液からは水分が持続的に蒸発しているため、処理槽10に貯留されている温薬液の液面レベルが徐々に低下する。仮に、浸漬処理時に基板Wが上側位置に保持されて液深d1が4mmであったとすると、温薬液の液面レベルが少し低下しただけでも基板Wの上端が液面から露出するおそれがある。そうすると、液面から露出した部位ではエッチングが停止するため、エッチング処理の面内均一性が損なわれることとなる。本実施形態では、浸漬処理時には基板Wが下側位置に保持されて液深d2が9mmであるため、水分の蒸発によって温薬液の液面レベルが多少低下したとしても、基板Wの上端が温薬液の液面から露出することはなく、エッチング処理の均一性を維持することができる。
浸漬処理を開始してから所定時間が経過した時点で制御部70がリフタ20を上昇させて基板Wを再び処理槽10内の上側位置(図4参照)に上昇させる(ステップS16)。具体的には、制御部70は、基板Wのリンス処理工程を実行する指示を処理レシピの記述に検出したときに、処理槽10内における基板Wの保持位置が下側位置から上側位置に上昇するようにリフタ20を制御する。
また、制御部70は、基板Wを上側位置に上昇させるのと同時に、バルブ38を閉止したままバルブ39aおよびバルブ44を開放する。これにより、純水供給源31から配管36,35aを介してノズル管13a,13bに純水が供給され、ノズル管13a,13bから処理槽10内に純水が吐出される。このときには、ヒータ33による純水の加熱は行わない。処理槽10に温薬液が貯留されている状態でノズル管13a,13bから斜め上方に向けて純水が吐出されると、処理槽10内には下方から上方へと向かう純水の流れが形成され、純水のアップフローが実行される。これにより、純水による基板Wのリンス処理が進行する(ステップS17)。
リンス処理時には、ノズル管13a,13bから純水が吐出されるにつれて、内槽11に貯留されていた温薬液は外槽12へとオーバーフローして処理液回収部40によって排液される。そして、ノズル管13a,13bからの純水の吐出量が増えるにつれて、処理槽10の内部に貯留されていた温薬液は徐々に純水に置換され、処理槽10内の処理液中における薬液濃度が低下する。
また、リンス処理時には、比抵抗計15によって処理槽10内の処理液の比抵抗値が計測されている。比抵抗計15によって測定された比抵抗値は制御部70に伝達される。純水のアップフローが開始されて処理槽10内の純水の純度が高くなるにつれて(つまり、薬液濃度が低くなるにつれて)、比抵抗計15から取得される比抵抗値は徐々に高くなる。制御部70は、比抵抗計15の測定結果に基づいて処理槽10内の置換状態を監視している。比抵抗計15によって測定された比抵抗値が所定の閾値を超えると、処理槽10内の処理液が薬液から純水へ置換されたとみなすことができる。処理槽10内の処理液が純水に置換されることにより、基板Wのエッチングが停止するとともに、エッチングされた基板Wの表面が純水によって洗浄されることとなる。
制御部70は、比抵抗計15によって測定された比抵抗値が所定の閾値を超えたことを検知してから所定時間が経過した時点でバルブ39aを閉止するとともにバルブ39bを開放する。バブル39aが閉止されると、ノズル管13a,13bからの純水吐出が停止される。一方、バルブ39bが開放されると、純水供給源31から配管36,35bを介してシャワーノズル14a,14bに純水が供給され、シャワーノズル14a,14bから処理槽10内の上側位置に保持されている基板Wに向けて純水が吐出される。
続いて、制御部70は、バルブ45を開放する。バルブ45が開放されると、処理槽10の内槽11に貯留されていた純水が急速に排出される。シャワーノズル14a,14bから吐出される純水の流量よりも急速排水にともなう排出流量の方が顕著に多いため、処理槽10内の液面レベルも急速に低下する。処理槽10内の液面レベルが低下するにつれて、基板Wが液面から露出し、その露出部分にシャワーノズル14a,14bから純水が供給されて基板Wが洗浄される。これにより、基板Wのシャワーリンス処理が進行する(ステップS18)。図6は、基板Wのシャワーリンスが行われる様子を模式的に示す図である。
所定時間のシャワーリンス処理が終了した後、制御部70は、バルブ39bを閉止してシャワーノズル14a,14bからの純水吐出を停止するとともに、駆動機構22を動作させてリフタ20を上昇させ、処理槽10から基板Wを引き上げる(ステップS19)。その後、制御部70は、駆動機構53を動作させて蓋部52をスライド移動させ、チャンバ50の開口部51を開放する。続いて、装置外部の搬送機構が開口部51からチャンバ50内に進入してリフタ20から処理後の基板Wを受け取る。そして、基板Wを受け取った当該搬送機構は、チャンバ50から退出して基板Wを後工程(例えば、減圧乾燥処理)へと搬送する。以上のようにして基板処理装置1における一連の処理が完了する。
第1実施形態においては、処理槽10内に基板Wが存在している状態で処理槽10に温薬液のアップフローを行う処理液供給工程(ステップS12)では、処理槽10内の上側位置に基板Wが保持される(図4)。このため、リフタ20の下端と処理槽10の底面との間隔が従来槽におけるそれと同じになり、処理槽10内における温薬液の流れに偏りが生じることはなくなり、エッチング処理の均一性を維持することができる。
一方、処理液供給を停止した状態で処理槽10に貯留されている温薬液中に基板Wを浸漬する浸漬処理工程(ステップS15)では、処理槽10内の下側位置に基板Wが保持される(図5)。すなわち、処理液供給工程のときよりも浸漬処理工程のときの方が基板Wの保持位置が低い。浸漬処理工程では処理槽10内の下側位置に基板Wが保持されるため、処理中に水分の蒸発によって温薬液の液面レベルが多少低下したとしても、基板Wの上端が温薬液の液面から露出するおそれはない。また、浸漬処理工程ではノズル管13a,13bからの処理液の吐出が停止されているため、処理槽10内に処理液の流れが形成されることはなく、リフタ20の下端と処理槽10の底面との間隔が狭かったとしても、処理液の流れに偏りが生じることはない。
要するに、処理液供給を実行している基板Wの上端が液面から露出するおそれのない工程では、処理槽10内の上側位置に基板Wを保持してリフタ20の下端と処理槽10の底面との間隔を従来槽におけるそれと同程度に確保しているのである。そして、処理槽10内の上側位置に基板Wを保持しているときの処理槽10に貯留されている処理液の液面から基板Wの上端までの距離である液深d1が液深の基準値となる。一方、温処理液を用いた浸漬処理、つまり水分の蒸発に起因した液面レベルの低下によって基板Wの上端が液面から露出するおそれのある工程を実行するときのみ、処理槽10内の下側位置に基板Wを下降させて処理槽10に貯留されている処理液の液面から基板Wの上端までの距離である液深d2を基準値よりも大きくしているのである。これにより、温処理液による基板Wの浸漬処理中にも基板Wの露出を確実に防止することができる。
<第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態の基板処理装置1の構成は第1実施形態(図1)と同じである。第2実施形態では、基板Wの処理シーケンスが第1実施形態とは異なる。
次に、本発明の第2実施形態について説明する。第2実施形態の基板処理装置1の構成は第1実施形態(図1)と同じである。第2実施形態では、基板Wの処理シーケンスが第1実施形態とは異なる。
図7は、第2実施形態の基板Wの処理手順を示すフローチャートである。まず、処理槽10に温純水を貯留する(ステップS20)。この処理は第1実施形態(図2)のステップS10と同じである。ヒータ33によって加熱された温純水がノズル管13a,13bから吐出されて処理槽10に貯留される。
続いて、第2実施形態においては、基板Wを処理液に浸漬することなく、薬液のアップフローを実行する(ステップS21)。すなわち、処理槽10内に基板Wが存在していない状態で制御部70がバルブ39aおよび所定のバルブ38を開放することにより、ミキシングバルブ32において薬液と純水とが所定の比率で混合されて処理用の薬液が生成される。生成された処理用の薬液は、ヒータ33によって加熱されて温薬液としてノズル管13a,13bに送給される。送給された温薬液は、ノズル管13a,13bから基板Wの存在していない処理槽10の内部に吐出される。ノズル管13a,13bから吐出された温薬液は処理槽10内にて下方から上方へと向かう温薬液の流れを形成する。すなわち、温薬液のアップフローが行われる。ノズル管13a,13bから温薬液が吐出されるにつれて、処理槽10の内部に貯留されていた温純水は徐々に処理用の薬液に置換される。
温薬液のアップフローを開始してから所定時間が経過し、処理槽10内の薬液濃度が所定値に達した時点で温薬液のアップフローを停止する(ステップS22)。温薬液のアップフローが停止すると、処理槽10の内槽11に所定濃度の温薬液が静かに貯留された状態となる。このときの温薬液の温度は30℃以上85℃以下である。第2実施形態では、ステップS20~S22までの処理が基板Wに本処理を行う前の準備処理となる。
次に、制御部70が蓋部52をスライド移動させてチャンバ50の開口部51を開放し、装置外部の搬送機構が複数の基板Wをチャンバ50内に搬入する。リフタ20は処理槽10の上方において当該搬送機構から基板Wを受け取る。基板Wの搬入が完了すると上記搬送機構はチャンバ50から退出し、制御部70は再び蓋部52をスライド移動させてチャンバ50の開口部51を閉鎖する。
続いて、制御部70は、駆動機構22を動作させてリフタ20を下降させ、処理槽10の内部に貯留された温薬液中に基板Wを浸漬する。この段階では、基板Wはリフタ20によって処理槽10内の下側位置(図5参照)に保持される(ステップS23)。具体的には、制御部70は、処理槽10に貯留されている温処理液中に基板Wを浸漬する工程を実行する指示を処理レシピの記述に検出したときに、処理槽10内における基板Wの保持位置が下側位置となるようにリフタ20を制御する。第1実施形態と同じく、処理槽10に貯留されている温薬液の液面から下側位置に保持されている基板Wの上端までの距離である液深d2は例えば9mmである。
処理液供給を停止し、かつ、処理槽10に温薬液が貯留されている状態で基板Wが下側位置に保持されると、基板Wの全体が温薬液中に浸漬されて浸漬処理が進行する(ステップS24)。第2実施形態においても、浸漬処理時には温薬液による基板Wのエッチング処理が進行する。浸漬処理時には基板Wが下側位置に保持されて液深d2が9mmであるため、水分の蒸発によって温薬液の液面レベルが多少低下したとしても、基板Wの上端が温薬液の液面から露出することはなく、エッチング処理の均一性を維持することができる。
浸漬処理を開始してから所定時間が経過した時点で制御部70がリフタ20を上昇させて基板Wを処理槽10内の上側位置(図4参照)に上昇させる(ステップS25)。具体的には、制御部70は、基板Wのリンス処理工程を実行する指示を処理レシピの記述に検出したときに、処理槽10内における基板Wの保持位置が下側位置から上側位置に上昇するようにリフタ20を制御する。
また、制御部70は、基板Wを上側位置に上昇させるのと同時に、バルブ39aおよびバルブ44を開放してノズル管13a,13bから処理槽10内に純水を吐出させる。このときには、ヒータ33による純水の加熱は行わない。処理槽10に温薬液が貯留されている状態でノズル管13a,13bから斜め上方に向けて純水が吐出されると、処理槽10内には下方から上方へと向かう純水の流れが形成され、純水のアップフローが実行される。これにより、純水による基板Wのリンス処理が進行する(ステップS26)。
リンス処理時には、ノズル管13a,13bから純水が吐出されるにつれて、内槽11に貯留されていた温薬液は外槽12へとオーバーフローして処理液回収部40によって排液される。そして、ノズル管13a,13bからの純水の吐出量が増えるにつれて、処理槽10の内部に貯留されていた温薬液は徐々に純水に置換され、処理槽10内の処理液中における薬液濃度が低下する。処理槽10内の置換が進行するにつれて、比抵抗計15から取得される比抵抗値は徐々に高くなる。比抵抗計15によって測定された比抵抗値が所定の閾値を超えると、処理槽10内の処理液が薬液から純水へ置換されたとみなすことができる。
制御部70は、比抵抗計15によって測定された比抵抗値が所定の閾値を超えたことを検知してから所定時間が経過した時点でバルブ39aを閉止するとともにバルブ39bを開放する。バブル39aが閉止されると、ノズル管13a,13bからの純水吐出が停止される。一方、バルブ39bが開放されると、シャワーノズル14a,14bから処理槽10内の上側位置に保持されている基板Wに向けて純水が吐出される。
続いて、制御部70は、バルブ45を開放する。バルブ45が開放されると、処理槽10の内槽11に貯留されていた純水が急速に排出される。シャワーノズル14a,14bから吐出される純水の流量よりも急速排水にともなう排出流量の方が顕著に多いため、処理槽10内の液面レベルも急速に低下する。処理槽10内の液面レベルが低下するにつれて、基板Wが液面から露出し、その露出部分にシャワーノズル14a,14bから純水が供給されて基板Wが洗浄される。これにより、基板Wのシャワーリンス処理が進行する(ステップS27)。第2実施形態では、ステップS23~S27までの処理が基板Wに対する本処理となる。
所定時間のシャワーリンス処理が終了した後、制御部70は、バルブ39bを閉止してシャワーノズル14a,14bからの純水吐出を停止するとともに、駆動機構22を動作させてリフタ20を上昇させ、処理槽10から基板Wを引き上げる(ステップS28)。その後、制御部70は、再び蓋部52をスライド移動させてチャンバ50の開口部51を開放する。続いて、装置外部の搬送機構が開口部51からチャンバ50内に進入してリフタ20から処理後の基板Wを受け取る。そして、基板Wを受け取った当該搬送機構は、チャンバ50から退出して基板Wを後工程へと搬送する。
第2実施形態においても、第1実施形態と同様に、基板Wの上端が液面から露出するおそれのない工程では、処理槽10内の上側位置に基板Wを保持してリフタ20の下端と処理槽10の底面との間隔を従来槽におけるそれと同程度に確保している。そして、処理槽10内の上側位置に基板Wを保持しているときの処理槽10に貯留されている処理液の液面から基板Wの上端までの距離である液深d1が液深の基準値となる。一方、温処理液を用いた浸漬処理、つまり水分の蒸発に起因した液面レベルの低下によって基板Wの上端が液面から露出するおそれのある工程を実行するときには、処理槽10内の下側位置に基板Wを下降させて処理槽10に貯留されている処理液の液面から基板Wの上端までの距離である液深d2を基準値よりも大きくしている。これにより、温処理液による基板Wの浸漬処理中にも基板Wの露出を確実に防止することができる。
<第3実施形態>
次に、本発明の第3実施形態について説明する。第3実施形態の基板処理装置1の構成は第1実施形態(図1)と同じである。第3実施形態では、基板Wの処理シーケンスが第1実施形態とは異なる。
次に、本発明の第3実施形態について説明する。第3実施形態の基板処理装置1の構成は第1実施形態(図1)と同じである。第3実施形態では、基板Wの処理シーケンスが第1実施形態とは異なる。
図8は、第3実施形態の基板Wの処理手順を示すフローチャートである。まず、処理槽10に温純水を貯留する(ステップS30)。この処理は第1実施形態(図2)のステップS10と同じである。すなわち、制御部70がバルブ38を閉止した状態でバルブ39aおよびバルブ44を開放する。これにより、純水供給源31から配管36,35aを介してノズル管13a,13bに純水が供給される。また、ヒータ33が配管35aを流れる純水を加熱する。よって、ノズル管13a,13bから処理槽10の内槽11の内部には加熱された温純水が吐出される。ノズル管13a,13bから吐出された温純水は、内槽11の内部に徐々に貯留される。内槽11の上端にまで温純水が貯留されたら、制御部70はバルブ39aを閉止してノズル管13a,13bからの温純水の供給を停止する。これにより、処理槽10に温純水が静かに貯留された状態となる。処理槽10に貯留された温純水の温度は30℃以上85℃以下である。第2実施形態では、ステップS30の処理が基板Wに本処理を行う前の準備処理となる。
次に、制御部70が蓋部52をスライド移動させてチャンバ50の開口部51を開放し、装置外部の搬送機構が複数の基板Wをチャンバ50内に搬入する。リフタ20は処理槽10の上方において当該搬送機構から基板Wを受け取る。基板Wの搬入が完了すると上記搬送機構はチャンバ50から退出し、制御部70は再び蓋部52をスライド移動させてチャンバ50の開口部51を閉鎖する。
続いて、制御部70は、駆動機構22を動作させてリフタ20を下降させ、処理槽10の内部に貯留された温純水中に基板Wを浸漬する。この段階では、基板Wはリフタ20によって処理槽10内の下側位置(図5参照)に保持される(ステップS31)。具体的には、制御部70は、処理槽10に貯留されている温処理液中に基板Wを浸漬する工程を実行する指示を処理レシピの記述に検出したときに、処理槽10内における基板Wの保持位置が下側位置となるようにリフタ20を制御する。第1実施形態と同じく、処理槽10に貯留されている温純水の液面から下側位置に保持されている基板Wの上端までの距離である液深d2は例えば9mmである。
処理液供給を停止し、かつ、処理槽10に温純水が貯留されている状態で基板Wが下側位置に保持されると、基板Wの全体が温純水中に浸漬されて1回目の浸漬処理が進行する(ステップS32)。第3実施形態においては、浸漬処理時に温純水中に基板Wが浸漬されるのであるが、温純水であってもわずかに基板Wのエッチング処理が進行する。このような温純水を用いたエッチング処理は極微量なエッチングを行いときに好適である。浸漬処理時には基板Wが下側位置に保持されて液深d2が9mmであるため、水分の蒸発によって温薬液の液面レベルが多少低下したとしても、基板Wの上端が温純水の液面から露出することはない。
浸漬処理を開始してから所定時間が経過した時点で制御部70がリフタ20を上昇させて基板Wを処理槽10内の上側位置(図4参照)に上昇させる(ステップS33)。基板Wが処理槽10内の上側位置に上昇された後、制御部70がバルブ38を閉止した状態でバルブ39aおよびバルブ44を開放するとともに、ヒータ33が配管35aを流れる純水を加熱する。これにより、ノズル管13a,13bから処理槽10の内槽11の内部に加熱された温純水が吐出される。
処理槽10に温純水が貯留されている状態でノズル管13a,13bから斜め上方に向けて温純水が吐出されると、処理槽10内には下方から上方へと向かう温純水の流れが形成される。すなわち、温純水のアップフローが実行される(ステップS34)。温純水のアップフローが実行されると、基板Wの表面が温純水の流れに曝されることとなる。第3実施形態では、基板Wが処理槽10内の上側位置に保持された状態で温純水のアップフローが実行される。基板Wが上側位置に保持されている状態では、リフタ20の下端と処理槽10の底面との間隔が従来槽におけるそれと同じであるため、温純水の流れに偏りが生じることは防がれる。
温純水のアップフローを開始してから所定時間が経過した時点で制御部70がバルブ39aを閉止して温純水のアップフローを停止する。温純水のアップフローが停止すると、処理槽10に再び温純水が静かに貯留された状態となる。このときの温純水の温度は30℃以上85℃以下である。そして、温純水のアップフローが停止した後、制御部70は、駆動機構22を動作させてリフタ20を下降させ、基板Wを処理槽10内の下側位置に下降させる(ステップS35)。具体的には、制御部70は、処理槽10に貯留されている温処理液中に基板Wを浸漬する工程を実行する指示を処理レシピの記述に検出したときに、処理槽10内における基板Wの保持位置が上側位置から下側位置に下降するようにリフタ20を制御する。このときにも、処理槽10に貯留されている温純水の液面から下側位置に保持されている基板Wの上端までの距離である液深d2は例えば9mmである。
処理液供給を停止し、かつ、処理槽10に温純水が貯留されている状態で基板Wが下側位置に保持されると、基板Wの全体が温純水中に浸漬されて2回目の浸漬処理が進行する(ステップS36)。このときにも、温純水によって基板Wが微量にエッチングされる。また、2回目の浸漬処理時にも基板Wが下側位置に保持されて液深d2が9mmであるため、水分の蒸発によって温薬液の液面レベルが多少低下したとしても、基板Wの上端が温純水の液面から露出することはない。
2回目の浸漬処理を開始してから所定時間が経過した時点で制御部70がリフタ20を上昇させて基板Wを処理槽10内の上側位置に上昇させる(ステップS37)。制御部70は、基板Wを上側位置に上昇させるのと同時に、バルブ39aおよびバルブ44を開放してノズル管13a,13bから処理槽10内に純水を吐出させる。このときには、ヒータ33による純水の加熱は行わない。処理槽10に温純水が貯留されている状態でノズル管13a,13bから斜め上方に向けて純水が吐出されると、処理槽10内には下方から上方へと向かう純水の流れが形成され、純水のアップフローが実行される。これにより、純水による基板Wのリンス処理が進行する(ステップS38)。
リンス処理時には、ノズル管13a,13bから純水が吐出されるにつれて、内槽11に貯留されていた温純水は外槽12へとオーバーフローして処理液回収部40によって排液される。制御部70は、リンス処理を開始してから所定時間が経過した時点でバルブ39aを閉止するとともにバルブ39bを開放する。バブル39aが閉止されると、ノズル管13a,13bからの純水吐出が停止される。一方、バルブ39bが開放されると、シャワーノズル14a,14bから処理槽10内の上側位置に保持されている基板Wに向けて純水が吐出される。
続いて、制御部70は、バルブ45を開放する。バルブ45が開放されると、処理槽10の内槽11に貯留されていた純水が急速に排出される。シャワーノズル14a,14bから吐出される純水の流量よりも急速排水にともなう排出流量の方が顕著に多いため、処理槽10内の液面レベルも急速に低下する。処理槽10内の液面レベルが低下するにつれて、基板Wが液面から露出し、その露出部分にシャワーノズル14a,14bから純水が供給されて基板Wが洗浄される。これにより、基板Wのシャワーリンス処理が進行する(ステップS39)。第3実施形態では、ステップS31~S39までの処理が基板Wに対する本処理となる。
所定時間のシャワーリンス処理が終了した後、制御部70は、バルブ39bを閉止してシャワーノズル14a,14bからの純水吐出を停止するとともに、駆動機構22を動作させてリフタ20を上昇させ、処理槽10から基板Wを引き上げる(ステップS40)。その後、制御部70は、再び蓋部52をスライド移動させてチャンバ50の開口部51を開放する。続いて、装置外部の搬送機構が開口部51からチャンバ50内に進入してリフタ20から処理後の基板Wを受け取る。そして、基板Wを受け取った当該搬送機構は、チャンバ50から退出して基板Wを後工程へと搬送する。
第3実施形態においても、第1実施形態と同様に、基板Wの上端が液面から露出するおそれのない工程では、処理槽10内の上側位置に基板Wを保持してリフタ20の下端と処理槽10の底面との間隔を従来槽におけるそれと同程度に確保している。そして、処理槽10内の上側位置に基板Wを保持しているときの処理槽10に貯留されている処理液の液面から基板Wの上端までの距離である液深d1が液深の基準値となる。一方、温処理液を用いた浸漬処理、つまり水分の蒸発に起因した液面レベルの低下によって基板Wの上端が液面から露出するおそれのある工程を実行するときには、処理槽10内の下側位置に基板Wを下降させて処理槽10に貯留されている処理液の液面から基板Wの上端までの距離である液深d2を基準値よりも大きくしている。これにより、温処理液による基板Wの浸漬処理中にも基板Wの露出を確実に防止することができる。
また、第1および第2実施形態では温薬液中に基板Wを浸漬するときに処理槽10内の下側位置に基板Wを保持していたが、第3実施形態では温純水中に基板Wを浸漬するときに処理槽10内の下側位置に基板Wを保持している。すなわち、処理槽10に貯留されている温処理液中に基板Wを浸漬する浸漬処理工程において、処理槽10内の下側位置に基板Wを保持するようにすれば、水分の蒸発に起因した温処理液の液面レベルの低下によって基板Wの上端が温処理液の液面から露出するのを防止することができる。
<変形例>
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、基板Wが上側位置に保持されているときの液深d1が4mmであり、基板Wが下側位置に保持されているときの液深d2が9mmであったが、これに限定されるものではなく、少なくとも液深d2は液深d1よりも大きければ良い。これにより、温処理液中に基板Wを浸漬する浸漬処理工程において、処理槽10内の下側位置に基板Wを保持することにより、基板Wの処理液からの露出を防止することができる。
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、基板Wが上側位置に保持されているときの液深d1が4mmであり、基板Wが下側位置に保持されているときの液深d2が9mmであったが、これに限定されるものではなく、少なくとも液深d2は液深d1よりも大きければ良い。これにより、温処理液中に基板Wを浸漬する浸漬処理工程において、処理槽10内の下側位置に基板Wを保持することにより、基板Wの処理液からの露出を防止することができる。
また、上記実施形態においては、処理液による基板Wの表面処理としてエッチング処理を行っていたが、これに限定されるものではなく、例えば処理液によって基板Wの洗浄処理を行うようにしても良い。
また、処理層10に温度計を設け、浸漬処理時に温処理液の温度に応じて基板Wの保持位置を変化させるようにしても良い。具体的には、浸漬処理時の温処理液の温度が高いほど水分の蒸発が盛んになるため、基板Wの保持位置が低くなるように制御部70がリフタ20を制御するようにしても良い。
また、上記実施形態においては、処理槽10の槽容量が従来槽よりも少ないものであったが、容量の大きな従来槽において温処理液中に基板Wを浸漬するときに処理槽内の基板の保持位置を下降させるようにしても良い。
1 基板処理装置
10 処理槽
11 内槽
12 外槽
13a,13b ノズル管
14a,14b シャワーノズル
15 比抵抗計
20 リフタ
30 処理液供給部
33 ヒータ
40 処理液回収部
50 チャンバ
60 窒素ガス供給部
70 制御部
10 処理槽
11 内槽
12 外槽
13a,13b ノズル管
14a,14b シャワーノズル
15 比抵抗計
20 リフタ
30 処理液供給部
33 ヒータ
40 処理液回収部
50 チャンバ
60 窒素ガス供給部
70 制御部
Claims (12)
- 処理槽内で基板に対して処理液による表面処理を行う基板処理方法であって、
前記処理槽内に基板が存在している状態で前記処理槽に処理液を供給する処理液供給工程と、
前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する浸漬処理工程と、
を備え、
前記処理液供給工程では前記処理槽内の第1の高さ位置に基板が保持され、
前記浸漬処理工程では前記処理槽内の第2の高さ位置に基板が保持され、
前記第2の高さ位置は前記第1の高さ位置よりも低い基板処理方法。 - 処理槽内で基板に対して処理液による表面処理を行う基板処理方法であって、
前記処理槽内に基板が存在している状態で前記処理槽に処理液を供給する処理液供給工程と、
前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する浸漬処理工程と、
を備え、
前記浸漬処理工程を実行するときには、前記処理槽に貯留されている処理液の液面から基板までの距離である液深を標準値よりも大きくする基板処理方法。 - 処理槽内で基板に対して処理液による表面処理を行う基板処理方法であって、
前記処理槽内に基板が存在している状態で前記処理槽に処理液を供給する処理液供給工程と、
前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する浸漬処理工程と、
を備え、
レシピにて前記浸漬処理工程を実行する指示が検出されたときには、前記処理槽内における基板の保持位置を下降させる基板処理方法。 - 請求項1から請求項3のいずれかに記載の基板処理方法において、
前記処理液供給工程では、前記処理槽の底部に配置されたノズル管から上方に向けて処理液を吐出する基板処理方法。 - 請求項4記載の基板処理方法において、
前記処理液供給工程では、前記ノズル管から第1の処理液を吐出して前記処理槽に貯留されている第2の処理液を第1の処理液に置換する基板処理方法。 - 請求項4または請求項5に記載の基板処理方法において、
前記浸漬処理工程では、前記ノズル管からの処理液の吐出が停止されている基板処理方法。 - 請求項1から請求項6のいずれかに記載の基板処理方法において、
前記温処理液の温度は30℃以上85℃以下である基板処理方法。 - 処理槽内で基板に対して処理液による表面処理を行う基板処理装置であって、
前記処理槽に処理液を供給する処理液供給部と、
前記処理槽内における基板の保持位置を昇降させる昇降部と、
前記昇降部の動作を制御する制御部と、
を備え、
前記処理槽内に基板が存在している状態で前記処理液供給部が前記処理槽に処理液を供給するときには前記処理槽内の第1の高さ位置に基板が保持されるとともに、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬するときには前記処理槽内の第2の高さ位置に基板が保持され、
前記制御部は、前記第2の高さ位置が前記第1の高さ位置よりも低くなるように前記昇降部を制御する基板処理装置。 - 処理槽内で基板に対して処理液による表面処理を行う基板処理装置であって、
前記処理槽に処理液を供給する処理液供給部と、
前記処理槽内における基板の保持位置を昇降させる昇降部と、
前記昇降部の動作を制御する制御部と、
を備え、
前記処理槽に貯留されている加熱された温処理液中に基板を浸漬するときには、前記処理槽に貯留されている処理液の液面から基板までの距離である液深が標準値よりも大きくなるように前記制御部が前記昇降部を制御する基板処理装置。 - 処理槽内で基板に対して処理液による表面処理を行う基板処理装置であって、
前記処理槽に処理液を供給する処理液供給部と、
前記処理槽内における基板の保持位置を昇降させる昇降部と、
前記昇降部の動作を制御する制御部と、
を備え、
前記制御部は、前記処理槽に貯留されている加熱された温処理液中に基板を浸漬する工程を実行する指示をレシピに検出したときには、前記処理槽内における基板の保持位置が下降するように前記昇降部を制御する基板処理装置。 - 請求項8から請求項10のいずれかに記載の基板処理装置において、
前記処理液供給部は、前記処理槽の底部に配置されて上方に向けて処理液を吐出するノズル管を有する基板処理装置。 - 請求項8から請求項11のいずれかに記載の基板処理装置において、
前記温処理液の温度は30℃以上85℃以下である基板処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022026734A JP2023122952A (ja) | 2022-02-24 | 2022-02-24 | 基板処理方法および基板処理装置 |
JP2022-026734 | 2022-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023162341A1 true WO2023162341A1 (ja) | 2023-08-31 |
Family
ID=87765436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040510 WO2023162341A1 (ja) | 2022-02-24 | 2022-10-28 | 基板処理方法および基板処理装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2023122952A (ja) |
TW (1) | TW202333894A (ja) |
WO (1) | WO2023162341A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006332425A (ja) * | 2005-05-27 | 2006-12-07 | Dainippon Screen Mfg Co Ltd | ウエハ処理装置 |
JP2013069979A (ja) * | 2011-09-26 | 2013-04-18 | Dainippon Screen Mfg Co Ltd | 基板処理装置および基板処理方法 |
WO2019054083A1 (ja) * | 2017-09-15 | 2019-03-21 | 株式会社Screenホールディングス | 基板処理装置、基板処理方法及び基板処理装置の制御方法 |
-
2022
- 2022-02-24 JP JP2022026734A patent/JP2023122952A/ja active Pending
- 2022-10-28 WO PCT/JP2022/040510 patent/WO2023162341A1/ja unknown
-
2023
- 2023-01-06 TW TW112100494A patent/TW202333894A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006332425A (ja) * | 2005-05-27 | 2006-12-07 | Dainippon Screen Mfg Co Ltd | ウエハ処理装置 |
JP2013069979A (ja) * | 2011-09-26 | 2013-04-18 | Dainippon Screen Mfg Co Ltd | 基板処理装置および基板処理方法 |
WO2019054083A1 (ja) * | 2017-09-15 | 2019-03-21 | 株式会社Screenホールディングス | 基板処理装置、基板処理方法及び基板処理装置の制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2023122952A (ja) | 2023-09-05 |
TW202333894A (zh) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5599754B2 (ja) | 基板処理装置、基板処理方法、およびこの基板処理方法を実行するためのコンピュータプログラムが記録された記録媒体 | |
KR102280703B1 (ko) | 기판 액처리 장치, 기판 액처리 방법 및 기판 액처리 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체 | |
CN105845602B (zh) | 基板液体处理装置和基板液体处理方法 | |
KR102381166B1 (ko) | 기판액 처리 장치, 기판액 처리 방법 및 기억 매체 | |
JP6472726B2 (ja) | 基板液処理装置、基板液処理方法及び記憶媒体 | |
KR102549290B1 (ko) | 기판 액처리 장치, 기판 액처리 방법, 및 기판 액처리 프로그램이 기록된 컴퓨터 판독 가능한 기억 매체 | |
US10458010B2 (en) | Substrate liquid processing apparatus, substrate liquid processing method, and storage medium | |
CN108885988B (zh) | 基片液处理装置、基片液处理方法和存储有基片液处理程序的计算机可读存储介质 | |
WO2023162341A1 (ja) | 基板処理方法および基板処理装置 | |
JP6909620B2 (ja) | 基板処理方法 | |
JP2019029417A (ja) | 基板液処理方法、基板液処理装置及び記憶媒体 | |
JP6786429B2 (ja) | 基板処理装置、基板処理システム、および基板処理方法 | |
JP6850650B2 (ja) | 基板処理方法および基板処理装置 | |
JP2017117938A (ja) | 基板液処理装置および基板液処理方法 | |
JP4412540B2 (ja) | 基板処理装置 | |
TW202338968A (zh) | 基板處理裝置及基板處理方法 | |
TW202238766A (zh) | 置換結束時間點的判定方法、基板處理方法以及基板處理裝置 | |
JP2024037214A (ja) | 基板処理装置および基板処理方法 | |
CN116889994A (zh) | 基板处理装置和基板处理方法 | |
JP2009130250A (ja) | 基板処理装置及び処理液置換方法 | |
JP2001210616A (ja) | 基板処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928859 Country of ref document: EP Kind code of ref document: A1 |