JP2017117938A - 基板液処理装置および基板液処理方法 - Google Patents

基板液処理装置および基板液処理方法 Download PDF

Info

Publication number
JP2017117938A
JP2017117938A JP2015251895A JP2015251895A JP2017117938A JP 2017117938 A JP2017117938 A JP 2017117938A JP 2015251895 A JP2015251895 A JP 2015251895A JP 2015251895 A JP2015251895 A JP 2015251895A JP 2017117938 A JP2017117938 A JP 2017117938A
Authority
JP
Japan
Prior art keywords
sulfuric acid
layer
substrate
hydrogen peroxide
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015251895A
Other languages
English (en)
Inventor
波 宏 光 難
Hiromitsu Nanba
波 宏 光 難
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2015251895A priority Critical patent/JP2017117938A/ja
Publication of JP2017117938A publication Critical patent/JP2017117938A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】SPM(硫酸と過酸化水素水との混合液)を用いて効率良くアモルファスカーボン膜等の有機膜を除去する。【解決手段】基板液処理方法は、処理槽(10)の下部に硫酸を貯留して、硫酸からなる液層である硫酸層(SA)を前記処理槽内に形成する工程と、硫酸層の上に過酸化水素水を供給し、これにより、硫酸と過酸化水素とが互いに反応しつつある反応層(R)を硫酸層の上に形成する反応層形成工程と、基板(W)を、直立させた状態で、反応層に通過させる通過工程と、を備える。【選択図】図1

Description

本発明は、硫酸と過酸化水素水との混合液を用いて基板を処理する技術に関する。
アモルファスカーボンはエッチング耐性があるので、高アスペクト比エッチング工程でハードマスクとして多用されている。ハードマスクとしての役割を終えたアモルファスカーボン膜を除去するための手法としては、SPM(Sulfuric acid-hydrogen Peroxide Mixture,硫酸と過酸化水素水との混合液)を用いたウエットエッチングと、ドライエッチング(アッシング)とが考えられる。
SPMによるアモルファスカーボンのウエットエッチングは、下地膜ダメージ量は非常に少ないが、処理液温度を十分に高くし、かつ、薬液を多量に消費しなければ、十分な処理結果を得ることができず、処理コストが非常に高くなるという欠点がある。このため、ドライエッチングによりアモルファスカーボン膜を除去する方式が主流となっている(例えば特許文献1を参照)。しかし、アモルファスカーボン膜を完全に除去するためにドライエッチングによるオーバーエッチングを行うと、下地膜、例えばシリコン酸化膜が比較的大きなダメージを受ける。それ故にオーバーエッチングは最小限に抑制しなければならず、ウエハ間または処理ロット間での処理条件のばらつきにより、アモルファスカーボン膜が残存するウエハが生じてしまうという問題がある。
特開2012−151338号公報
本発明は、SPMを用いて効率良くアモルファスカーボン膜等のカーボン膜を除去する技術を提供することを目的としている。
本発明の一実施形態によれば、処理槽の下部に硫酸を貯留して、前記硫酸からなる液層である硫酸層を前記処理槽内に形成する工程と、前記硫酸層の上に過酸化水素水を供給し、これにより、前記硫酸と前記過酸化水素と含み、かつ、前記硫酸と前記過酸化水素の反応が生じている液層である反応層を前記硫酸層の上に形成する反応層形成工程と、基板を、直立させた状態で、前記反応層に通過させる通過工程と、を備えたことを特徴とする基板液処理方法が提供される。
本発明の他の実施形態によれば、処理液を貯留する処理槽と、前記処理槽の下部に設定された供給位置から前記処理槽内に硫酸を供給する硫酸供給部と、前記処理槽の上部に設定された供給位置から前記処理槽内に過酸化水素水を供給する過酸化水素水供給部と、基板を直立姿勢で保持する基板保持部と、前記基板保持部を昇降させる昇降機構と、少なくとも前記硫酸供給部、前記過酸化水素水供給部および前記昇降機構を制御する制御部とを備えた基板液処理装置が提供される。前記制御部は、処理槽の下部に硫酸を貯留して、前記硫酸からなる液層である硫酸層を前記処理槽内に形成する工程と、前記硫酸層の上に過酸化水素水を供給し、これにより、前記硫酸と前記過酸化水素と含み、かつ、前記硫酸と前記過酸化水素の反応が生じている液層である反応層を前記硫酸層の上に形成する反応層形成工程と、前記基板を、直立させた状態で、前記反応層に通過させる通過工程と、が実施されるように制御を行う。
上記の実施形態によれば、SPMを用いて効率良くアモルファスカーボン膜等のカーボン膜を除去することができる。
本発明の一実施形態に係る基板液処理装置を示す概略構成図。 処理槽内へのノズルの配置を説明するための平面図。 処理対象の基板であるウエハの構成を示す概略断面図。 アモルファスカーボン層のウエットエッチング処理について説明する工程図。 処理槽内における鉛直方向の温度分布およびカロ酸濃度分布を説明する図。
以下に添付図面を参照して発明の実施形態について説明する。
図1に示すように、基板液処理装置は処理槽10を有している。処理槽10の底部に液供給口12が設けられ、処理槽10の側壁上部に液排出口14が設けられている。液供給口12及び液排出口14に、配管などからなる循環ライン16が接続されている。
循環ライン16には、処理槽10の液排出口14に近い側から順に、開閉弁18、第1三方弁20、ポンプ22、ヒータ24、フィルタ26、第2三方弁28及び開閉弁30が介設されている。
第1三方弁20を介して、硫酸供給ライン32が循環ライン16に接続されている。硫酸供給ライン32の端部には、硫酸供給源36が接続されている。硫酸供給ライン32には、ポンプ34が介設されている。硫酸供給源36は、硫酸を貯留するタンクから構成することができる。硫酸供給源36から、例えば96%濃度の硫酸(密度は約1.84g/ml)が供給される。
第1三方弁20は、循環ライン16の第1三方弁20よりも上流側の部分16aに接続された第1ポート20aと、循環ライン16の第1三方弁20よりも下流側の部分16bに接続された第2ポート20bと、硫酸供給ライン32が接続された第3ポート20cと、を有する。第1三方弁20は、第1ポート20aと第2ポート20bとが連通するとともに第3ポート20cと第1および第2ポート20a,20bとの連通が絶たれる第1状態と、第2ポート20bと第3ポート20cとが連通するとともに第1ポート20aと第2および第3ポート20b,20cとの連通が絶たれる第2状態とをとることができる。
第2三方弁28を介して、ドレンライン38が循環ライン16に接続されている。第2三方弁28は、循環ライン16の第2三方弁28よりも上流側の部分16cに接続された第1ポート28aと、循環ライン16の第2三方弁28よりも下流側の部分16dに接続された第2ポート28bと、ドレンライン38が接続された第3ポート28cと、を有する。第2三方弁28は、第1ポート28aと第2ポート28bとが連通するとともに第3ポート28cと第1および第2ポート28a,28bとの連通が絶たれる第1状態と、第2ポート28bと第3ポート28cとが連通するとともに第1ポート28aと第2および第3ポート28b,28cとの連通が絶たれる第2状態とをとることができる。
処理槽10の上端部周囲を、処理槽10からオーバーフローする液を受け止める外槽(オーバーフロー槽)40が囲んでいる。外槽40の底部にはドレンライン42が接続されている。
処理槽10の内部の上部に、過酸化水素水を供給するノズル44が設けられている。このノズル44は、図2に示すように、処理槽10の上部内壁面に沿って間隔を空けて設けられた多数の吐出口44aが形成された管状体として構成することができる。図2中の矢印は、各吐出口44aから吐出される過酸化水素水を示している。
ノズル44には、過酸化水素水供給ライン46が接続されている。過酸化水素水供給ライン46の端部には、過酸化水素水供給源48が接続されている。過酸化水素水供給源48は、過酸化水素水を貯留するタンクから構成することができる。過酸化水素水供給源48から、例えば、30%濃度の過酸化水素水(密度が約1.11/ml)または35%濃度の過酸化水素水(密度は約1.13/ml)を供給することができる。
過酸化水素水供給ライン46には流量計50および開閉弁52が接続されている。流量計50は、ノズル44から吐出した過酸化水素水の総量を管理するために設けられている。過酸化水素水供給源48には図示しないヒータが内蔵され、過酸化水素水供給源48内の過酸化水素水を90℃程度の温度に維持している。過酸化水素水供給ライン46および当該ライン46上の機器を断熱材(図示せず)で保温することが好ましい。
基板液処理装置は、基板保持部54を有している。基板保持部54は、複数例えば50〜52枚程度のウエハ(被処理基板)を直立姿勢で、水平方向(図1の紙面垂直方向)に間隔を空けて並べられた状態で保持することができる。基板保持部54は、昇降機構56により昇降可能である。
基板保持部54は、図1に概略的に示されるように、昇降機構56により昇降する鉛直方向に延びる支持板54aと、支持板54aに取り付けられるとともに水平方向(図1の紙面垂直方向)に延びる3〜4本の支持棒54bとから構成することができる。各支持棒54bには水平方向に等間隔を空けて保持溝(図示せず)が形成されている。保持溝にウエハWの周縁部が挿入されることにより、ウエハWが基板保持部54により保持される。このような基板保持部54の構成は当該技術分野において周知であるので、詳細な説明は省略する。基板保持部54は、上記構成を有するものに限定されるものではなく、バッチ式の基板液処理装置の処理槽内において複数枚のウエハを直立姿勢で水平方向に並べて保持することができかつ昇降可能であるならば、任意の形式のものを用いることができる。
処理槽10内に貯留された液の液位を検出するための液位センサ58が設けられている。また、処理槽10内に貯留された液の温度を検出するための温度センサ60が設けられている。
基板液処理装置は、制御装置100を備える。制御装置100は、たとえばコンピュータであり、制御部101と記憶部102とを備える。記憶部102には、基板液処理装置において実行される各種の処理を制御するプログラムが格納される。制御部101は、記憶部102に記憶されたプログラムを読み出して実行することによって基板液処理装置1の動作を制御する。
なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置100の記憶部102にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
次に、上記基板液処理装置を用いたハードマスクとしてのアモルファスカーボン層をSPMウエットエッチングによって除去する処理の各工程について説明する。図3に示すように、処理対象のウエハWは、アモルファスカーボン(AC)層201をマスクとして用いたドライエッチングにより削られた結果、柱状となったシリコン酸化物(SiO)層200の上にアモルファスカーボン層201が存在する構成を有する。シリコン酸化物200に与えるダメージを最小限にしつつ、アモルファスカーボン層201を完全に除去することが下記の処理の目的である。以下に説明する各工程は、制御装置100の記憶部102に記憶されたプロセスレシピに基づいて、制御装置100の制御の下で自動的に実行される。
[硫酸供給工程]
処理槽10および循環ライン16内に液が無い状態を出発点として説明する。まず、第1三方弁20を第2状態とし、第2三方弁28を第1状態とし、かつ、開閉弁18,30を開状態とした状態で、ポンプ34、22を駆動する。これにより硫酸供給源36から、硫酸供給ライン32を介して、循環ライン16および処理槽10内に新しい硫酸が流入する。液位センサ58により検出された処理槽10内の液位が第1液位となったら、第1三方弁20を第1状態とし、ポンプ22を動かしたままでポンプ34を停止する。すると、処理槽10および循環ライン16からなる循環系内を硫酸が循環するようになる。次いで、硫酸の循環を継続しつつ、ヒータ24による硫酸の加熱を開始する。
なお、上記の第1液位とは、処理槽10および循環ライン16からなる循環系内に当該循環系内を硫酸で満たすのに十分な量の硫酸が供給されたときの処理槽10内の液位である。
[槽内液位調節工程]
温度センサ60により検出された処理槽10内の硫酸の温度が予め定められた設定温度(例えば90度)で安定したら、ポンプ22を停止するとともに開閉弁18,30を閉状態とする。このとき液位センサ58により検出された処理槽10内の液位が第2液位より高かった場合には。開閉弁30を開状態とするとともに第2三方弁28を第2状態とすることにより、ドレンライン38を介して処理槽10内の硫酸を排出し、処理槽10内の液位が第2液位となるようにし、その後、開閉弁30を閉状態とするとともに第2三方弁28を第1状態とする。
上記の第2液位とは、基板保持部54およびこれに保持されたウエハWの全体が、処理槽10内に貯留された硫酸に完全に浸漬されることが保証される液位であって、かつ、予め定められた量の過酸化水素水を処理槽10からあふれさせることなく処理槽10に追加しうる液位である。この第2液位により、後述の反応層Rが存在する高さ位置が決定されるので、後述のエッチング工程において基板保持部54を低速で降下させてゆくときの動作基準位置となる。第2液位は第1液位と同じであっても構わない。硫酸の循環が停止され、かつ、処理槽10内の液位が第2液位に調節され、処理槽10内に硫酸からなる液層である硫酸層SAが形成されたた状態が図4(a)に示されている。
[反応層形成工程]
次に、過酸化水素水供給ライン46の開閉弁52を開き、ノズル44から流量計50の積分値により管理された予め定められた量の過酸化水素水(温度が約90℃)を、処理槽10内に貯留された硫酸の液面付近に穏やかに供給する。つまり、ノズル44から吐出される過酸化水素水が硫酸の液面に着液したときに、過酸化水素水と硫酸との混合が抑制され、密度が小さい(約1.11g/ml)過酸化水素水からなる液層である過酸化水素層HPが比重の大きい硫酸(比重1.84g/ml)の上に形成されるように、過酸化水素水を供給する。
この穏やかな過酸化水素水の供給を達成すべく、1つの吐出口44aからの吐出流量が低く抑えられるように、図2に示したようにノズル44に多数の吐出口44aが設けられる。ノズル44の吐出口は、処理槽10内に貯留された硫酸の液面に近い高さ位置に設置されることが好ましい。また、ノズル44の吐出口44aは、鉛直方向下方にではなく、水平方向またはそれに近い向きに過酸化水素水を吐出することが好ましい。過酸化水素水を供給してゆく途中にノズル44の吐出口44aが過酸化水素水中に浸漬されてもかまわない。
予め定められた量の過酸化水素水が供給された後、過酸化水素水の供給を停止する。過酸化水素水の供給量の管理は、流量計50を用いることなく、液位センサ58の検出値に基づいて行ってもよい。つまり、適正な量の過酸化水素水が供給されたときに実現される処理槽10内の液位(第3液位)を液位センサ58が検出したときに、ノズル44からの過酸化水素水の供給を停止してもよい。
上記のように穏やかに供給された過酸化水素水は、容易に硫酸と混じり合わない。しかしながら、処理槽10内の下部にある硫酸層SAの上面と、その上に形成された過酸化水素水層HPの下面との界面付近に、硫酸および過酸化水素水の相互拡散により、硫酸と過酸化水素水とを含みかつ硫酸と過酸化水素水との反応が生じている液層である反応層Rが生じる(図4(b)参照)。反応層Rの厚さは例えば10〜15mm程度である。この反応層Rでは、過酸化水素水と硫酸とが反応し酸化力の強いカロ酸(H2SO5 )が大量に生じている。反応層Rには、これに接する硫酸層SAと過酸化水素水層HPとから劣化していない(水分であまり希釈されていない)硫酸および過酸化水素水が供給されるので、過酸化水素水と硫酸との反応熱により反応層R中の液の温度は180℃程度に達する。なお、この温度でSPM液の沸点を超えているため、比較的激しい沸騰が生じている。この状態は、例えば、過酸化水素水層HPの初期厚さを10mmとした場合、10分間程度継続する。なお、このときの処理槽10内の液の温度分布およびカロ酸濃度分布は、例えば図4に示すようなものとなる。
反応層Rを長時間維持するために、反応層Rが一旦形成された後に、ノズル44から過酸化水素水を補充してもよい。
[エッチング工程(通過工程)]
次に、複数のウエハWを保持した基板保持部54を下降させてゆき、垂直姿勢のウエハWを、過酸化水素水層HPおよび反応層Rを順次通過させ(図4(c)参照)、最終的にウエハWの全体が硫酸層SA内に完全に収まるようにする(図4(d)参照)。ウエハWの各部分が反応層Rを通過するときに、反応層R中に含まれるカロ酸により、アモルファスカーボンが酸化されて二酸化炭素となり(HSO+C→HSO+CO)、ウエハWから除去される。ウエハの下降速度は、除去すべきアモルファスカーボンの膜厚に応じて設定すべきものであるが、例えば、ウエハWの各部位が30〜90秒程度の間反応層内にあるような速度に設定することができる。なお、実験により、180℃の反応層中に60秒間浸漬することにより、試験用ウエハW上に形成した厚さ13000オングストロームのアモルファスカーボンが完全に除去されることが確認されている。
[反応層除去工程]
次に、第1三方弁20を第2状態とし、第2三方弁28を第1状態とし、開閉弁18を閉状態とし、開閉弁30を開状態とした状態で、ポンプ34およびポンプ22を駆動し、硫酸供給源36から循環ライン16および液供給口12を介して処理槽10の内部の底部に新しい硫酸を送り込み、処理槽10内の液をオーバーフローさせて外槽40に流出させる(図4(e)参照)。これにより、処理槽10内の上部にある過酸化水素水層HP、反応層Rおよびこれらの液層中に含まれる反応生成物が外槽40に流出し、処理槽10内には実質的に硫酸(硫酸層SA)のみが存在するようになる。
[ウエハ取り出し工程]
次に、複数のウエハWを保持した基板保持部54を上昇させ、処理槽10から取り出す(図4(f)参照)。このウエハ取り出し工程の前に反応層及び反応生成物を除去する反応層除去工程を実行しているため、取り出されたウエハWに付着している汚染物質の量を低減することができる。
以上により、基板液処理装置を用いたアモルファスカーボン層の除去処理が終了する。
その後、表面に硫酸および反応生成物が付着しているウエハWは、基板保持部54から図示しないバッチ搬送機に渡され、このバッチ搬送機を用いてリンス槽(図示せず)に搬送され、そこでウエハWに純水リンス処理が施される。次に、ウエハWは薬液洗浄槽(図示せず)に搬送され、そこでウエハにSC−1洗浄処理が施される。次いで、ウエハWはリンス槽と乾燥室とが一体化されたリンス/乾燥処理装置(図示せず)に搬送され、リンス槽でウエハWに純水リンス処理が施された後に、乾燥室でウエハWにIPA等の乾燥用溶剤を用いた乾燥処理が施される。このようなリンス槽、薬液洗浄槽およびリンス/乾燥処理装置については、半導体製造装置の技術分野において周知であり、詳細な説明は省略する。
上記の実施形態によれば、高カロ酸濃度および高温度が維持されている処理槽10内に局所的に形成された反応層Rを利用してウエハWを処理するため、ウエハWを非常に効率良く処理することができる。
従来のSPM処理においては、処理槽およびこれに接続された循環ライン中に、硫酸と過酸化水素水との混合液(SPM液)を循環させ続けた状態で処理を行っている。SPM液中では以下の反応が生じている。
→HO+1/2O(過酸化水素自己分解反応)
SO+H→HSO+HO→HSO+HO+1/2O(酸化還元反応)
つまり、過酸化水素自己分解反応により、常に、過酸化水素濃度が減少し、SPM液中の水分濃度が増加している。また、酸化還元反応によっても、常に、SPM液中の水分濃度が増加している。水分濃度の増大により硫酸濃度が低下し、SPM液の沸点が低下することにより水分の気化が促進され、気化熱によりSPM液の温度を高く維持することが困難となる。また、一旦生成されたカロ酸(H2SO5)は時間の経過とともに再び分解して硫酸(H2SO4)となる。このため、生成されたカロ酸の一部しかアモルファスカーボンの酸化反応に寄与しないこととなる。
上記問題を解決するために、従来では、ヒータ発熱量の増加、多量の硫酸および過酸化水素水の補充を行っており、装置運用コストが非常に高くなっている。なお、このことが、アモルファスカーボンのエッチング方法として、SPMウエットエッチングよりもドライエッチングが好まれていた理由でもある。
これに対し上記実施形態によれば、上記の酸化還元反応を処理槽10内の反応層R中でのみ行わせるため、硫酸および過酸化水素水がエッチングに直接関与しない領域で無駄に消費されることを防止することができ、また、生成されたカロ酸の利用効率を高めることができる。また、反応層Rには、これに接する硫酸層SAおよび過酸化水素水層HPから劣化していない(有効成分が消耗しておらず、かつ、反応により生じた水分によりあまり希釈されていないという意味で)硫酸および過酸化水素が供給される。このため、反応層R内のカロ酸濃度を高く維持することができ、かつ、反応層Rの温度を硫酸と過酸化水素との反応熱により高い温度(180℃程度)に維持することができる。このため、エッチングレートを高くすることができる。しかも、SPMによるウエットエッチングでは、下地のシリコン酸化膜にダメージを与えないため、オーバーエッチングを行うことができる。このため、除去すべきアモルファスカーボン膜が残留することを防止することができる。
上記実施形態では、エッチング対象膜はアモルファスカーボン膜であったが、これに限定されるものではなく、SPMにより除去可能なSOC(スピンオンカーボン)などの任意のカーボン膜とすることができる。また、エッチング対象膜はカーボン膜に限定されるものではなく、SPMにより除去可能な任意の有機膜(例えばレジスト膜)とすることができる。また下地膜もシリコン酸化膜に限定されず、SPMによりダメージを全く受けないか無視できる程度のダメージしか受けない酸化膜であってもよい。被処理基板は、半導体ウエハに限定されるものではなく、SPMによりダメージを全く受けないか無視できる程度のダメージしか受けない材質の基板であってもよい。
W 基板(ウエハ)
SA 硫酸層
R 反応層
HP 過酸化水素水層
10 処理槽
32,34,36 硫酸供給部
44,46,48,50,52 過酸化水素水供給部
44a 過酸化水素水吐出口(ノズルの吐出口)
54 基板保持部
56 昇降機構
100 制御部(制御装置)

Claims (10)

  1. 処理槽の下部に硫酸を貯留して、前記硫酸からなる液層である硫酸層を前記処理槽内に形成する工程と、
    前記硫酸層の上に過酸化水素水を供給し、これにより、前記硫酸と前記過酸化水素と含み、かつ、前記硫酸と前記過酸化水素の反応が生じている液層である反応層を前記硫酸層の上に形成する反応層形成工程と、
    基板を、直立させた状態で、前記反応層に通過させる通過工程と、
    を備えたことを特徴とする基板液処理方法。
  2. 前記通過工程は、前記処理槽の上方にある前記基板を降下させることにより、前記基板を反応層に通過させた後に、前記反応層の下方にある前記硫酸層の中に入れる工程である、請求項1記載の基板液処理方法。
  3. 前記通過工程の後に、前記処理槽の下部に硫酸を供給することにより、前記処理槽の上部にある前記反応層を構成する液体を、前記処理槽からオーバーフローさせることにより前記処理槽から排出する工程と、
    その後、前記処理槽内の前記硫酸層の中にある前記基板を上昇させて、前記処理槽から取り出す工程と、
    をさらに備えた請求項2記載の基板液処理方法。
  4. 前記反応層の厚さが10〜15mmの範囲内である、請求項1記載の基板液処理方法。
  5. 前記基板はカーボン膜を有しており、前記基板液処理方法は、前記カーボン膜を除去するために用いられる、請求項1から4のうちのいずれか一項に記載の基板液処理方法。
  6. 処理液を貯留する処理槽と、
    前記処理槽の下部に設定された供給位置から前記処理槽内に硫酸を供給する硫酸供給部と、
    前記処理槽の上部に設定された供給位置から前記処理槽内に過酸化水素水を供給する過酸化水素水供給部と、
    基板を直立姿勢で保持する基板保持部と、
    前記基板保持部を昇降させる昇降機構と、
    少なくとも前記硫酸供給部、前記過酸化水素水供給部および前記昇降機構を制御する制御部と、
    を備え、
    前記制御部は、処理槽の下部に硫酸を貯留して、前記硫酸からなる液層である硫酸層を前記処理槽内に形成する工程と、前記硫酸層の上に過酸化水素水を供給し、これにより、前記硫酸と前記過酸化水素と含み、かつ、前記硫酸と前記過酸化水素の反応が生じている液層である反応層を前記硫酸層の上に形成する反応層形成工程と、前記基板を、直立させた状態で、前記反応層に通過させる通過工程と、が実施されるように制御を行うことを特徴とする基板液処理装置。
  7. 前記過酸化水素水供給部は、前記処理槽の側壁の上部の近傍に水平方向に並んだ複数の過酸化水素水吐出口を有している、請求項6記載の基板液処理装置。
  8. 前記通過工程は、前記処理槽の上方にある前記基板を降下させることにより、前記基板を反応層に通過させた後に、前記反応層の下方にある前記硫酸層の中に入れる工程である、請求項6記載の基板液処理装置。
  9. 前記制御部は、前記通過工程の後に、前記処理槽の下部に硫酸を供給することにより、前記処理槽の上部にある前記反応層を構成する液体を、前記処理槽からオーバーフローさせることにより前記処理槽から排出する工程と、その後、前記処理槽内の前記硫酸層の中にある前記基板を上昇させて、前記処理槽から取り出す工程と、がさらに実施されるように制御を行うことを特徴とする、請求項6記載の基板液処理装置。
  10. 前記反応層の厚さが10〜15mmの範囲内である、請求項6記載の基板液処理装置。
JP2015251895A 2015-12-24 2015-12-24 基板液処理装置および基板液処理方法 Pending JP2017117938A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251895A JP2017117938A (ja) 2015-12-24 2015-12-24 基板液処理装置および基板液処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251895A JP2017117938A (ja) 2015-12-24 2015-12-24 基板液処理装置および基板液処理方法

Publications (1)

Publication Number Publication Date
JP2017117938A true JP2017117938A (ja) 2017-06-29

Family

ID=59234668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251895A Pending JP2017117938A (ja) 2015-12-24 2015-12-24 基板液処理装置および基板液処理方法

Country Status (1)

Country Link
JP (1) JP2017117938A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200006499A (ko) 2018-07-10 2020-01-20 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 기판 처리 장치 및 기억 매체
US11222781B2 (en) 2017-12-27 2022-01-11 Tokyo Ohka Kogyo Co., Ltd. Method for removing organic cured film on substrate, and acidic cleaning liquid
WO2023181943A1 (ja) * 2022-03-22 2023-09-28 株式会社Screenホールディングス 基板処理方法および基板処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222781B2 (en) 2017-12-27 2022-01-11 Tokyo Ohka Kogyo Co., Ltd. Method for removing organic cured film on substrate, and acidic cleaning liquid
KR20200006499A (ko) 2018-07-10 2020-01-20 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 기판 처리 장치 및 기억 매체
WO2023181943A1 (ja) * 2022-03-22 2023-09-28 株式会社Screenホールディングス 基板処理方法および基板処理装置

Similar Documents

Publication Publication Date Title
TWI490936B (zh) A substrate processing apparatus, a substrate processing method, and a recording medium on which a computer program for carrying out the substrate processing method is recorded
JP5454108B2 (ja) 基板処理装置、基板処理方法及び記憶媒体
TWI345808B (en) Substrate processing apparatus
KR20120033250A (ko) 기판처리장치 및 기판처리방법
JP2001023952A (ja) エッチング方法及びエッチング装置
JP6472726B2 (ja) 基板液処理装置、基板液処理方法及び記憶媒体
JP2012129496A (ja) 液処理方法、その液処理方法を実行させるためのプログラムを記録した記録媒体及び液処理装置
US10458010B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
JP4584783B2 (ja) 基板処理装置および基板処理方法、ならびにコンピュータ読取可能な記憶媒体
JP7345401B2 (ja) 基板処理方法および基板処理装置
JP2017117938A (ja) 基板液処理装置および基板液処理方法
US11875991B2 (en) Substrate treatment method and substrate treatment device
US20060130880A1 (en) Substrate treating apparatus and method
KR20200105755A (ko) 기판 처리 방법, 기판 처리 장치 및 기억 매체
JP6909620B2 (ja) 基板処理方法
CN111223773A (zh) 基板处理方法及基板处理装置
KR101523351B1 (ko) 액처리 방법, 액처리 장치 및 기억 매체
KR20190004224A (ko) 기판 처리 방법 및 기판 처리 장치
JP7142461B2 (ja) 基板処理方法、基板処理装置および基板処理システム
US6941956B2 (en) Substrate treating method and apparatus
WO2023120229A1 (ja) 基板処理装置および基板処理方法
KR101987810B1 (ko) 기판 처리 장치
WO2023282064A1 (ja) 基板処理システム、及び基板処理方法
JP2006080420A (ja) 基板処理法及び基板処理装置
JP2017010959A (ja) 基板処理方法、基板処理装置および記憶媒体