WO2023162284A1 - Electric blower and electric vacuum cleaner using same - Google Patents

Electric blower and electric vacuum cleaner using same Download PDF

Info

Publication number
WO2023162284A1
WO2023162284A1 PCT/JP2022/024771 JP2022024771W WO2023162284A1 WO 2023162284 A1 WO2023162284 A1 WO 2023162284A1 JP 2022024771 W JP2022024771 W JP 2022024771W WO 2023162284 A1 WO2023162284 A1 WO 2023162284A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric blower
stator core
motor case
hole
impeller
Prior art date
Application number
PCT/JP2022/024771
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 竹内
武史 本多
将太 山上
賢宏 伊藤
聡 菊地
誠二 坂上
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2023162284A1 publication Critical patent/WO2023162284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present invention relates to an electric blower and a vacuum cleaner using the same.
  • an electric blower described in Patent Document 1 is known.
  • the electric blower described in Patent Document 1 cools the rotating electrical machine by providing openings on the side and side of the storage portion of the rotating electrical machine farther from the impeller, so that the air pressure difference in the flow field draws air from the side farther from the impeller. and form a cooling air flow path that is exhausted from the side and joins the main stream.
  • the electric blower described in Patent Document 1 can increase the flow rate of the main flow and improve the blowing efficiency, as opposed to the method in which a part of the main flow is guided and applied directly to the rotating electrical machine for cooling. can.
  • the present invention has been made to solve the above-described problems, and the main object thereof is to provide an electric blower that improves the cooling performance of a rotating electric machine, and a vacuum cleaner using the same.
  • the present invention provides an electric blower comprising: a rotor having a rotating shaft and bearings supporting the rotating shaft; a stator having a stator core and an armature winding; A cylindrical frame enclosing a rotor and the stator, a housing fixing the frame, and an impeller fixed to one end side of the rotating shaft, wherein the frame includes the stator core and a first through hole having a motor case abutting thereon and an end bracket fixed to the motor case in the axial direction, and formed in the stator core on the far side from the impeller in the axial direction; and a second through hole formed radially through a side surface of the stator core on the impeller side of the stator core in the axial direction, the stator core being recessed from the cylindrical side surface.
  • the motor case of the frame is configured to cover the stator core in the rotation axis direction, , the portion facing the recess is configured to be fully closed radially outward, and the space surrounded by the recess and the motor case is axially open at the axial end face of the stator core. Configuration. Other means will be described later.
  • FIG. 1 is a perspective view showing the appearance of a stick state electric vacuum cleaner equipped with an electric blower according to Embodiment 1.
  • FIG. 1 is a perspective view showing the appearance of a handy state electric vacuum cleaner equipped with an electric blower according to Embodiment 1.
  • FIG. Fig. 2 is a vertical cross-sectional view of a vacuum cleaner main body on which the electric blower according to Embodiment 1 is mounted; 1 is an external view of an electric blower according to Embodiment 1.
  • FIG. 5 is a sectional view of the electric blower when the electric blower is cut along the line Y1-Y1 shown in FIG. 4;
  • FIG. 2 is an exploded perspective view of a rotating electric machine used in the electric blower according to Embodiment 1.
  • FIG. 1 is a perspective view of a rotating electrical machine
  • FIG. FIG. 8 is a cross-sectional view of the electric blower when the rotating electric machine is cut along the line X1-X1 shown in FIGS. 5 and 7
  • FIG. 4 is a conceptual diagram showing the flow of fluid in the electric blower
  • It is a structural diagram of a rotating electric machine of an electric blower of a comparative example.
  • FIG. 10 is a result of actual measurement of the temperature rise of the stator core of the rotating electric machine of the comparative example and the stator core of the rotating electric machine of the first embodiment
  • FIG. FIG. 11 is a perspective view of a rotating electrical machine used in the electric blower according to Embodiment 2
  • FIG. 11 is a perspective view of a rotating electric machine used in an electric blower according to Embodiment 3;
  • FIG. 1 is a perspective view showing the appearance of a vacuum cleaner 300 equipped with an electric blower 100 according to the first embodiment.
  • FIG. 2 is a side view showing the appearance of vacuum cleaner 300.
  • FIG. 3 is a vertical cross-sectional view of the main body of the cleaner.
  • FIG. 1 shows the configuration of a vacuum cleaner 300 when used in a stick type.
  • FIG. 2 shows the configuration of the electric vacuum cleaner 300 when the form of use is a handy type.
  • the vacuum cleaner 300 is a rechargeable vacuum cleaner that can be used by appropriately switching between a stick type and a handy type.
  • the electric vacuum cleaner 300 can be configured to have only a stick type usage pattern, only a handy type configuration, or various other types of configurations.
  • the electric vacuum cleaner 300 includes a dust collection chamber 301 for collecting dust, an electric blower 100 for generating a suction airflow necessary for dust collection, and a cleaner body 310 for housing the electric blower 100. , is equipped with A flow path 340 is formed inside the cleaner main body 310 to pass the intake airflow.
  • the electric vacuum cleaner 300 also includes a telescopic pipe 302 that is telescopically provided with respect to the cleaner main body 310 , a grip portion 303 that is provided at one end of the telescopic pipe 302 , and an electric blower 100 that is provided at the grip portion 303 . and a switch unit 304 for turning on and off the power.
  • the vacuum cleaner 300 is in a stick state with the telescopic pipe 302 extended.
  • a suction body 305 is attached to the other end of the cleaner body 310 , and the cleaner body 310 and the suction body 305 are connected by a connecting portion 306 .
  • the electric vacuum cleaner 300 is in a handy state, the telescopic pipe 302 is housed in the cleaner main body 310, and the grip part 303 is close to the telescopic pipe 302 side.
  • a handy grip portion 307 that serves as a handle in the handy state is provided on the upper surface side of the cleaner main body 310 between the grip portion 303 and the dust collection chamber 301 that are close to each other.
  • a suction body (gap nozzle) 308 is attached to the other end of the cleaner body 310 , and the cleaner body 310 and the suction body 308 are connected by a connecting portion 306 .
  • FIG. 3 shows a state in which the suction body 308 is removed from the vacuum cleaner main body 310 in the electric vacuum cleaner 300 in the handy state shown in FIG.
  • an electric blower 100 that generates a suction force
  • a battery unit 320 that supplies electric power to the electric blower 100
  • a drive circuit 330 that drives the electric blower 100.
  • the electric blower 100 housed in the vacuum cleaner main body 310 is operated to generate an intake airflow. Dust is sucked from the suction body 305 (see FIG. 1) or the suction body 308 (see FIG. 2). The air sucked from the suction body 305 (see FIG. 1) or the suction body 308 (see FIG. 2) passes through the connecting part 306 and further passes through the flow path provided in the main body 310 of the cleaner to the front of the electric blower 100. It is sent to the arranged dust collection chamber 301 and collected in the dust collection chamber 301 . The air from which the dust is separated in the dust collection chamber 301 passes through the electric blower 100 and is discharged to the outside through an exhaust port (not shown) formed in the cleaner body 310 .
  • FIG. 4 is an external view of the electric blower 100.
  • FIG. 5 is a cross-sectional view of rotating electric machine 200 when electric blower 100 is cut along line Y1-Y1 shown in FIG.
  • FIG. 6 is an exploded view of rotating electric machine 200 used in electric blower 100 .
  • FIG. 7 is a perspective view of rotating electric machine 200 .
  • FIG. 8 is a cross-sectional view of rotating electrical machine 200 when rotating electrical machine 200 is cut along line X1-X1 shown in FIGS.
  • the radial direction of the rotor 120 is defined as “r (see FIG. 6)"
  • the axial direction (rotating axis direction) of the rotating shaft 121 of the rotor 120 is defined as “z (see FIG. 6)”
  • the rotor 120 The direction of rotation will be described as “ ⁇ (see FIG. 6)”.
  • the rotation axis direction z of the rotor 120 is simply referred to as the "axial direction” and the rotation direction ⁇ is referred to as the "circumferential direction”.
  • the electric blower 100 includes a fan cover 10 covering the impeller 20 (see FIG. 5), and a housing 29 having a first housing 30 and a second housing 40.
  • the claw projections 37 of the first housing 30 and the protrusions 44a and fitting holes 44b of the second housing 40 will be described later.
  • the fan cover 10 has a hollow conical shape.
  • the fan cover 10 has a structure in which upper and lower axial end faces are opened, and accommodates a part or the whole of the impeller 20 (see FIG. 5).
  • the fan cover 10 is attached to the first housing 30 so as to cover the impeller 20 (see FIG. 5) from above in the axial direction.
  • the electric blower 100 fixes the fan cover 10 and the first housing 30 together by inserting the projecting portion 11 of the fan cover 10 into the pocket portion 38 of the first housing 30 and injecting an adhesive or the like into the pocket portion 38 . , prevent fluid leakage.
  • Examples of the material of the fan cover 10 include resin.
  • the first housing 30 includes a disc-shaped mounting portion 34 including a plane perpendicular to the axial direction, and a first inner wall 31 extending downward in the axial direction from the outer periphery of the mounting portion 34. , the fluid is decelerated and the pressure is increased while connecting the first outer wall 33 provided on the radially outer side of the first inner wall 31 with a gap to the first inner wall 31 and the first outer wall 33 .
  • a first diffuser 32 that allows the
  • the second housing 40 includes a second inner wall 41, a second outer wall 43, and a second diffuser 42 that connects the second inner wall 41 and the second outer wall 43 while decelerating the fluid and increasing the pressure. And prepare.
  • the first housing 30 and the second housing 40 are fixed by fitting the claw projections 37 of the first housing 30 into the fitting holes 44b provided in the projecting portion 44a of the second housing 40 .
  • the first housing 30 and the second housing 40 may be fixed by additionally using an adhesive or the like in addition to the fitting between the claw projections 37 and the fitting holes 44b.
  • the first inner wall 31 and the second inner wall 41 integrally form a substantially thick cylindrical inner wall 51 extending in the axial direction.
  • the first outer wall 33 and the second outer wall 43 are integrated to form a substantially thick cylindrical outer wall 52 extending in the axial direction.
  • the first housing 30 and the second housing 40 have an inner wall 51 (first side wall) facing radially outwardly of the exhaust hole 131 (second through hole) shown in FIG.
  • the housing 29 is divided into the first housing 30 and the second housing 40 in the present embodiment, it may be constructed as one body. Examples of materials for the first housing 30 and the second housing 40 include resins and aluminum alloys.
  • the electric blower 100 includes an impeller 20 and a rotating electric machine 200 inside.
  • the rotary electric machine 200 inserts the bearing housing portion 132 of the motor case 130 into the fitting hole 35 of the first housing 30 from the axially lower side, and the mounting portion 34 of the first housing 30 and the disk portion 133 of the motor case 130 are engaged with each other. Anchor and fix.
  • the positioning projections 36 of the first housing 30 are inserted into the positioning holes 134 of the motor case 130 for positioning in the circumferential direction.
  • the electric blower 100 fixes the first housing 30 and the rotary electric machine 200 with screws, but other fixing methods such as adhesion, press-fitting, and welding may be used.
  • rotating electrical machine 200 is arranged so that the upper part of rotating electrical machine 200 shown in FIG. showing.
  • rotating electric machine 200 includes stator 110 , rotor 120 that is rotatable inside stator 110 , and cylindrical frame 150 that includes stator 110 and rotor 120 . And prepare.
  • the frame 150 has a cylindrical motor case 130 with one end open, and a plate-like end bracket 140 that closes the opening of the motor case 130 .
  • the stator 110 is held by the motor case 130.
  • the stator 110 has a stator core 111 , a bobbin 112 arranged inside the stator core 111 , and an armature winding 113 wound around the bobbin 112 .
  • the outer peripheral surface of the rotor 120 is arranged so as to face the inner peripheral surface of the stator core 111 with a gap Gp (see FIG. 8) interposed therebetween.
  • a material of the stator core 111 an electromagnetic steel sheet containing iron as a main component can be mentioned.
  • resin such as PBT (polybutylene terephthalate) can be used.
  • examples of materials for the armature winding 113 include copper and aluminum alloys.
  • the rotor 120 includes a rotating shaft 121 serving as the center of rotation, a bearing 122 supporting the rotating shaft 121, a balance ring 123 suppressing vibration of the rotor 120 during rotation, and a plurality of poles fixed to the rotating shaft 121. and a cover 125 for preventing breakage of the permanent magnet 124 during high-speed rotation.
  • the rotor 120 is rotatable around the rotating shaft 121 .
  • the rotating shaft 121 may be called a shaft.
  • the rotary shaft 121 is rotatably held by bearings 122 on both sides in the axial direction.
  • the bearing 122 is fitted and held in the bearing storage portion 132 of the motor case 130 and the bearing storage portion 142 of the end bracket 140 .
  • the balance ring 123 is formed by cutting or the like, and has a function of correcting imbalance of the rotor 120 .
  • Materials for the balance ring 123 include resin, copper, and aluminum alloy.
  • materials for the permanent magnet 124 include samarium iron nitrogen magnets, neodymium magnets, and ferrite magnets.
  • materials for the cover 125 include SUS (Steel Use Stainless) and CFRP (carbon fiber reinforced plastics).
  • the motor case 130 has a disc portion 133 and side walls 135 .
  • Disc portion 133 is arranged at an end portion of rotary electric machine 200 on the side away from end bracket 140 .
  • a bearing housing portion 132 is formed in the central portion of the disc portion 133 .
  • the bearing housing portion 132 has a cylindrical convex shape and is formed so as to extend in a direction away from the end bracket 140 .
  • a plurality of positioning holes 134 are formed around the bearing housing portion 132 of the disk portion 133 .
  • the positioning hole 134 has a circular shape, and the motor case 130 is arranged at a predetermined position with respect to the first housing 30 by inserting the positioning projection 36 (see FIG. 5) of the first housing 30 .
  • the side wall 135 is formed in a thick cylindrical shape extending from the outer peripheral portion of the disk portion 133 toward the end bracket 140 .
  • Side wall 135 is open at the end near end bracket 140 .
  • a plurality of exhaust holes 131 are formed on the peripheral surface of the side wall 135 near the disk portion 133 .
  • Each exhaust hole 131 is formed on the peripheral surface of the side wall 135 so as to extend in the circumferential direction.
  • the exhaust hole 131 is a through hole formed so as to radially penetrate the side surface of the stator core 111 toward the impeller 20 (see FIG. 5 ) in the axial direction of the motor case 130 .
  • the end bracket 140 has a disk portion 143 and a fitting convex portion 144 that is inserted into the side wall 135 of the motor case 130 .
  • a bearing housing portion 142 is formed at the center of the disc portion 143 .
  • a plurality of intake holes 141 are formed around the bearing housing portion 142 of the disk portion 143 .
  • the intake hole 141 is a through hole formed on the far side of the stator core 111 from the impeller 20 (see FIG. 5) in the axial direction of the motor case 130 . In the example shown in FIG. 6, each intake hole 141 has an arc shape.
  • the bearing housing portion 142 has a cylindrical convex shape and is formed so as to extend in a direction away from the disk portion 133 of the motor case 130 .
  • the fitting convex portion 144 is formed in a thick cylindrical shape extending from the outer peripheral portion of the disk portion 143 toward the disk portion 133 of the motor case 130 .
  • Rotary electric machine 200 has a configuration in which rotor 120 is arranged inside stator 110 , and bearing 122 of rotor 120 is fitted in bearing housing portion 132 of motor case 130 and bearing housing portion 142 of end bracket 140 . It's becoming The radially inner peripheral surface of the side wall 135 of the motor case 130 and the radially outer peripheral surface of the fitting convex portion 144 of the end bracket 140 have a fitting structure. The motor case 130 and the end bracket 140 are fixed and integrated by fitting the radially inner peripheral surface of the side wall 135 and the radially outer peripheral surface of the fitting projection 144 with an intermediate fit or an interference fit. function as frame 150 .
  • FIG. 7 shows a state in which the motor case 130 and the end bracket 140 are fixed.
  • the frame 150 is configured to be fully closed in the axial direction by the rotor 120 or by the rotor 120 and the housing 29 on the surface perpendicular to the rotating shaft 121 and on the impeller 20 (see FIG. 5) side. .
  • the impeller 20 is attached to the axially upper end of the rotating shaft 121 of the rotor 120 .
  • the impeller 20 has an umbrella portion 22 , a plurality of blade portions 21 and a fitting member 24 .
  • the umbrella portion 22 has a hollow conical shape.
  • the plurality of wing portions 21 are formed so as to protrude radially outward from the outer peripheral surface of the umbrella portion 22 .
  • a fitting through-hole 23 is formed in the center of the head portion 22 so as to extend through the umbrella portion 22 in a cylindrical shape in the axial direction.
  • a substantially thick cylindrical fitting member 24 is fixed to the axially lower side of the fitting through hole 23 .
  • the impeller 20 is fixed to the rotating shaft 121 by fitting the fitting through hole 23 and the fitting member 24 to the rotating shaft 121 and screwing the nut 25 onto the rotating shaft 121 .
  • adhesion, press-fitting, or the like can be considered.
  • the impeller 20 and the rotating shaft 121 in the axial direction in addition to screwing the nut 25, the nut 25 and the rotating shaft 121 may additionally be adhered.
  • the material of the impeller 20 include resin, aluminum alloy, and the like.
  • Examples of the material of the fitting member 24 include carbon steel.
  • the electric blower 100 rotates the impeller 20 with the rotary electric machine 200 to take fluid into the housing 29 through the air inlet 53 . Then, the electric blower 100 causes the fluid to flow inside the housing 29 and discharges the fluid to the outside of the housing 29 from the exhaust port 55 (see the main stream F1 shown in FIG. 9). Further, electric blower 100 rotates impeller 20 with rotating electrical machine 200 , and utilizes the pressure difference generated between intake hole 141 and exhaust port 55 to blow air into motor case 130 from intake hole 141 . Take in fluid. The electric blower 100 causes the fluid to flow toward the exhaust hole 131 inside the motor case 130, causes the fluid to flow to the outside of the motor case 130 through the exhaust hole 131, and then causes the fluid to flow back. , the fluid is discharged to the outside of the housing 29 from the exhaust port 55 (see the main stream F2 shown in FIG. 9).
  • FIG. 8 shows a cross-sectional configuration of rotating electrical machine 200 when rotating electrical machine 200 is cut along line X1-X1 shown in FIGS.
  • the cross-sectional configuration of rotating electric machine 200 shown in FIG. 8 is a cross-sectional configuration cut perpendicular to rotating shaft 121, that is, a cross-sectional configuration obtained by cutting stator core 111 perpendicular to the axial direction.
  • the rotating electric machine 200 is driven by a three-phase alternating current.
  • a power module (not shown) performs a switching operation based on a drive signal to convert DC power supplied from a battery (not shown) into three-phase AC power.
  • This three-phase AC power is supplied to the armature winding 113 and a rotating magnetic field is generated in the stator 110 .
  • the frequency and phase of the three-phase alternating current are controlled by a control circuit and drive circuit (not shown).
  • the stator core 111 has an outer peripheral surface of an annular yoke 161 and a contact portion 135a with the side wall 135 of the motor case 130, and is fixed inside the motor case .
  • the fixing method intermediate fitting, interference fitting, welding, adhesion, etc. can be considered, and a method combining a plurality of these methods may be used.
  • a facing portion 166 of the motor case 130 facing the recessed portion 165 is configured to fully close the radially outer side. That is, the concave portion 165 and the facing portion 166 facing the concave portion 165 form a closed cross section.
  • a plurality of slots 164 and teeth 163 are arranged on the inner diameter side of the stator core 111 at equal intervals over the entire circumference of the stator core 111 .
  • slots 164 and teeth 163 are labeled, but only some of the slots and teeth are labeled as representatives.
  • reference numerals not all of the plurality of identical configurations are denoted by reference numerals, but only some of the configurations are denoted by representative reference numerals.
  • a bobbin 112 and an armature winding 113 are arranged in the slot 164 .
  • the bobbin 112 secures an insulation distance between the armature winding 113 and the stator core 111, and when the armature winding 113 is wound, the bobbin 112 comes into contact with the corners of the stator core 111 to form an insulation coating. prevent damage.
  • Armature winding 113 is composed of a plurality of windings corresponding to a plurality of phases of U-phase, V-phase, and W-phase.
  • each tooth 163 is arranged in the order of U phase, V phase, W phase, . . . in the circumferential direction. is wound with
  • the stator core 111 has a concave portion 165 that is recessed from the cylindrical side surface so as to separate from the side wall 135 of the motor case 130 .
  • a side wall 135 of the motor case 130 axially covers the stator core 111 and is configured so as to be fully closed (to form a closed cross section) at a portion facing the recess 165 in the radial direction. there is Thereby, rotating electric machine 200 forms recessed flow path 58 .
  • the recessed flow path 58 is a space portion (so as to form a closed cross section) surrounded by the recessed portion 165 and the side wall 135 of the motor case 130 .
  • the recessed flow path 58 is arranged so that it is not completely blocked by parts such as the bobbin 112 and the motor case 130 at the axial end 56a farther from the impeller 20 and the axial end 56b closer to the impeller 20. Configured. That is, the recessed flow path 58 is configured so that the fluid can pass through in the axial direction.
  • the mounting portion 34 of the first housing 30, the disc portion 133 of the motor case 130, and the rotor 120 are configured to close the fitting hole 35 when viewed from the axial direction. That is, the fitting hole 35 is closed by any one of the mounting portion 34 , the disk portion 133 and the rotor 120 . Therefore, electric blower 100 is configured such that a flow path extending axially from the inside of disk portion 133 to the outside of mounting portion 34 is not formed.
  • the end bracket 140 is arranged farther from the impeller 20 than the stator core 111 and has an air intake hole 141 extending axially therethrough.
  • the motor case 130 is provided with an exhaust hole 131 penetrating in the radial direction on the side closer to the impeller 20 than the stator core 111 is. As the material of the motor case 130 and the end bracket 140, a metal material such as carbon steel or aluminum alloy is applied.
  • FIG. 9 is a conceptual diagram showing the flow of fluid in electric blower 100.
  • FIG. 9 is a conceptual diagram in which fluid flow is added to the cross-sectional configuration of rotating electrical machine 200 when rotating electrical machine 200 is cut along line Y1-Y1 shown in FIG.
  • the explanation is given assuming that the fluid is air, but the fluid may be something other than air, such as oil.
  • the operating principle of the electric blower 100 will be described.
  • the impeller 20 fixed to the rotating shaft 121 rotates, and the main flow F1 is generated from the axially upper side to the axially lower side in FIG. 9 by the blade portion 21 of the impeller 20 .
  • the upper side in the axial direction may be referred to as the upstream side
  • the lower side in the axial direction may be referred to as the downstream side.
  • the main stream F1 is taken in from the intake port 53, accelerated by the rotating impeller 20, and has a flow velocity that has a swirling component that circulates in the circumferential direction and a straight component that travels straight in the axial direction. Subsequently, the main flow F1 passes through the first diffuser 32 and the second diffuser 42, where the swirling component is converted into a straight component, decelerated and boosted, and exhausted from the exhaust port 55. At this time, a cooling flow F ⁇ b>2 is generated from the intake hole 141 toward the inside of the motor case 130 due to the air pressure difference generated between the intake hole 141 and the exhaust port 55 .
  • the cooling flow F2 is a flow of fluid (cooling air) that cools the rotary electric machine 200, is drawn from the intake holes 141 of the end bracket 140, and flows through the recessed flow paths 58 (see FIGS. 8 and 9) and the slots 164 (see FIG. 8). ), and flows toward the exhaust hole 131 of the motor case 130 via the gap Gp (see FIG. 8).
  • the cooling flow F2 is then discharged through the exhaust hole 131 between the motor case 130 and the first inner wall 31 of the first housing 30 .
  • the fluid discharged between the motor case 130 and the first inner wall 31 of the first housing 30 flows toward the exhaust port 55 and joins the main flow F1 near the end surface 54 of the inner wall 51 .
  • the cooling flow F2 sucked from the air intake hole 141 of the end bracket 140 rises inside the motor case 130, turns around near the disk portion 133 of the motor case 130, and passes through the air exhaust hole 131 of the motor case 130, It descends between the motor case 130 and the first inner wall 31 of the first housing 30 and reaches the end surface 54 of the inner wall 51 .
  • the cooling flow F2 cools the rotating electrical machine 200 . Further, the cooling flow F2 generates a swirling flow F3 above the stator core 111 near the disk portion 133 of the motor case 130 . The swirl flow F3 also cools the rotary electric machine 200 .
  • the cooling flow F2 guides the coolant (fluid) using the pressure difference in the flow field created by the main flow F1.
  • the flow path of the main flow F1 at the end surface 54 is the area between the side wall 135 of the motor case 130 and the outer wall 52 .
  • the flow path in the air intake hole 141 of the end bracket 140 is the area between the bearing housing portion 142 of the end bracket 140 and the outer wall 52 .
  • the end face 54 of the inner wall 51 in the rotary electric machine 200 is smaller than the flow area directly below the end bracket 140 . Due to the venturi effect, if the flow area is small, the flow velocity increases and the pressure decreases. Conversely, if the flow area is large, the flow velocity decreases and the pressure increases.
  • the second diffuser 42 is provided between the flow path near the end face 54 of the inner wall 51 and the intake hole 141 provided in the end bracket 140, the flow near the end face 54 of the inner wall 51
  • the flow of gas (cooling flow F2) flowing through rotary electric machine 200 from the passage to intake hole 141 is decelerated and boosted.
  • the pressure in the air intake hole 141 of the end bracket 140 becomes higher than the pressure in the flow path near the end surface 54 of the inner wall 51 . Therefore, the cooling flow F2 flows in the direction shown in FIG.
  • Electric blower 100 has slot 164 (see FIG. 8) and gap Gp (see FIG. 8), as well as recessed flow path 58 (see FIGS. 8 and 9). Since the recessed flow path 58 is provided with an opening in the axial direction, the flow path area of the cooling flow F2 can be increased, so that the flow resistance can be reduced and the cooling flow rate can be increased. Thereby, the cooling of rotating electric machine 200 can be promoted.
  • a side wall 135 of the motor case 130 is configured to cover the stator core 111 in the axial direction, and is configured to be fully closed at a portion facing the recess 165 in the radial direction. Further, the motor case 130 is provided with an exhaust hole 131 penetrating in the radial direction on the side closer to the impeller 20 than the stator core 111 is. Such an electric blower 100 guides the cooling flow F2 toward the side of the stator core 111 closer to the impeller 20 without the cooling flow leaking radially outward in the middle of the recessed passage 58 .
  • stator core 111, bearing 122, and electric machine 200 are closer to each other than air intake hole 141 of end bracket 140 through which cooling flow F2 is drawn.
  • the heat transfer from the child winding 113 raises the temperature of the coolant (fluid), and there is concern about the temperature rise.
  • the electric blower 100 efficiently guides the cooling flow F2 to the side closer to the impeller 20, it is possible to secure the required cooling flow rate, and the temperature of the rotating electric machine 200 closer to the impeller 20 can be efficiently reduced to can be reduced.
  • the inner wall 51 is desirably arranged closer to the impeller 20 than the end bracket 140 in the axial direction.
  • electric blower 100 can make distance L1 between side wall 135 of motor case 130 and outer wall 52 smaller than distance L2 between bearing housing portion 142 and outer wall 52 .
  • Such an electric blower 100 can make the pressure in the air intake hole (first through hole) 141 of the end bracket 140 higher than the pressure in the end surface 54 of the inner wall 51 by the venturi effect. Thereby, the intake of the cooling flow F2 can be promoted.
  • the motor case 130 is configured as a separate part of the first housing 30 and the second housing 40.
  • motor case 130 can be provided with exhaust hole 131 at a free position and area within a range that does not excessively impair the rigidity of rotating electric machine 200 and the holding force with respect to stator core 111 and mounting portion 34 . can.
  • electric blower 100 can reduce flow resistance, increase the amount of cooling air, and improve cooling of rotating electric machine 200 .
  • the inner wall 51 is configured to cover at least a portion of the exhaust hole 131 of the motor case 130 in the axial direction. Therefore, the direction of flow velocity of the cooling flow F2 discharged from the exhaust hole 131 changes to the far side from the impeller 20 . As a result, the cooling flow F2 flows along the radially outer side of the side wall 135 of the motor case 130 to promote heat dissipation, and joins the main flow F1 with the flow velocity vectors aligned, so that the cooling flow F2 flows perpendicularly to the main flow F1. As compared with 1, it is possible to prevent obstruction of the flow of the main flow F1 due to the blocking effect of the vortex, etc., and improve the air blowing performance.
  • the fitting hole 35 is configured to be closed when viewed from the axial direction.
  • the fitting hole 35 is closed by one of the mounting portion 34, the disk portion 133, and the rotor 120, and is configured so that a flow path penetrating from the disk portion 133 to the mounting portion 34 in the axial direction is not formed. be done.
  • the cooling flow F2 that has passed through the concave passages 58 (see FIGS. 8 and 9), the slots 164 (see FIG. 8), and the gap Gp (see FIG. 8) does not leak to the side near the impeller 20.
  • the electric blower 100 can promote heat transfer from the impeller 20 of the rotary electric machine 200 by promoting heat transfer due to the collision of the fluid.
  • the recess 165 of the stator core 111 is bent in two stages, a first inclined portion 162a having a small inclination angle and a second inclined portion 162b having a large inclination angle when viewed from the yoke 161.
  • the first inclined portion 162 a and the second inclined portion 162 b are separated portions formed to separate from the side wall 135 of the motor case 130 .
  • the electric blower 100 can increase the flow area of the recessed flow path 58 , increase the heat radiation area of the stator core 111 , and improve the cooling of the rotating electric machine 200 .
  • the passage area of the recessed portion passage 58 is similarly enlarged and the fixed portion is fixed.
  • the heat dissipation area of child core 111 can be increased, and the cooling of rotating electric machine 200 can be improved.
  • a protrusion 136 is provided on the inner peripheral surface of the side wall 135 of the motor case 130 so as to fit into the recess 165 of the stator core 111 .
  • FIG. 10 is a structural diagram of rotating electrical machine 1200 of electric blower 1000 of a comparative example.
  • FIG. 11 shows the actual measurement results of the temperature rise of the stator core 1111 of the electric blower 1000 of the comparative example and the stator core 111 of the electric blower 100 according to the first embodiment.
  • the rotating electric machine 1200 of the electric blower 1000 of the comparative example is compared with the rotating electric machine 200 (see FIG. 8) of the electric blower 100 according to the first embodiment.
  • the difference is that it does not have That is, the rotating electric machine 1200 of the electric blower 1000 of the comparative example is formed so as to separate from the side wall 135 of the motor case 130 as compared with the rotating electric machine 200 (see FIG. 8) of the electric blower 100 according to the first embodiment.
  • the difference is that they do not have separated portions (first inclined portion 162a and second inclined portion 162b (see FIG. 8)).
  • the electric blower 1000 of the comparative example compared with the rotary electric machine 200 (see FIG. 8) of the electric blower 100 according to Embodiment 1, the outer peripheral surface of the stator core 1111 is entirely covered with the motor case 130. differ in
  • the electric blower 100 according to the first embodiment has the recessed passages 58, thereby increasing the passage area of the cooling flow F2 (see FIG. 9) and increasing the cooling air volume. can be improved.
  • the electric blower 100 according to the first embodiment can directly cool the stator core 111 in the concave passage 58 and increase the heat radiation area of the stator core 111 .
  • the electric blower 100 according to the first embodiment can reduce the temperature rise of the stator core 111 by 0.8 times as compared with the electric blower 1000 of the comparative example.
  • the cooling performance of the rotating electric machine 200 can be improved. Further, by including the electric blower 100 according to the first embodiment, the electric vacuum cleaner 300 can suppress the temperature rise of the rotating electric machine 200 and improve the air blowing performance, so that the suction force can be improved. .
  • FIG. 12 is a perspective view of a rotary electric machine 200A used in the electric blower 100A according to the second embodiment.
  • the rotating electric machine 200A used for the electric blower 100A according to the second embodiment is different from the rotating electric machine 200 (see FIG. 7) using the electric blower 100A according to the first embodiment.
  • the difference is that a through hole 137 is formed in the .
  • the motor case 130 is provided with at least one third through-hole as the through-hole 137 at the contact portion 135a (see FIG. 8) with the stator core 111, penetrating in the radial direction.
  • the electric blower 100A according to the second embodiment in the motor case 130 of the rotary electric machine 200A, the portion overlapping the stator core 111 in the axial direction and the portion where the yoke 161 (see FIG. 8) and the side wall 135 abut.
  • a through hole 137 is additionally provided in part.
  • the electric blower 100A according to the second embodiment can improve the cooling performance of the stator core 111 more than the electric blower 100 according to the first embodiment. Further, in the electric blower 100A according to the second embodiment, the stator core 111 is adhered or welded to the outer edge of the through hole 137, thereby increasing the holding force of the stator core 111 to prevent breakage and prevent rotation. Vibration and noise can be suppressed by improving the rigidity of the electric machine 200A.
  • FIG. 13 is a perspective view of a rotating electrical machine 200B used in an electric blower 100B according to the third embodiment.
  • the electric blower 100B according to the third embodiment has a second air intake at the side wall 135 of the motor case 130 in comparison with the rotary electric machine 200A (see FIG. 12) used for the electric blower 100A according to the second embodiment.
  • the difference is that holes 138 are formed.
  • the motor case 130 is formed radially through the stator core 111 on the far side from the impeller 20 (see FIG. 9) as a second air intake hole 138. and at least one fourth through hole.
  • the motor case 130 of the rotary electric machine 200B has a second air intake hole 138 added to the side of the stator core 111 farther from the impeller 20 (see FIG. 9) in the axial direction. is provided.
  • the motor case 130 of the rotary electric machine 200B is made lighter than the electric blower 100A according to the second embodiment (see FIG. 12). Therefore, the second air intake hole 138 can also function as an air intake for the cooling flow F2.
  • the electric blower 100B according to the third embodiment can reduce the flow resistance more than the electric blower 100A according to the second embodiment (see FIG. 12). Such an electric blower 100B according to the third embodiment can further improve the cooling performance of the rotary electric machine 200 as compared with the electric blower 100A (see FIG. 12) according to the second embodiment.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of the embodiment can be replaced with another configuration, and it is also possible to add another configuration to the configuration of the embodiment.
  • the number of poles of the permanent magnets 124 is four, but the number of poles is not limited to this, and may be other numbers such as two or six.
  • the magnetization distribution of the permanent magnet 124 various magnetization distributions such as polar anisotropy, Halbach array, parallel magnetization, and radial magnetization can be applied.
  • the number of phases is not limited to 3, and other integers such as 1 and 6 may be selected.
  • the rotating electric machine may be of a surface magnet type or of an embedded magnet type.
  • the electric vacuum cleaner 300 is provided with the electric blowers 100, 100A, and 100B according to any one of the first to third embodiments described above, thereby suppressing the temperature rise of the rotary electric machine 200 and improving the blowing performance. Therefore, the suction power can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

An electric blower (100) comprises: a rotor (120) having a rotating shaft (121) and a bearing (122) for supporting the rotating shaft; a stator (110) having a stator core (111) and an armature winding (113); and a cylindrical frame (150) containing the rotor and the stator. The stator core has a recessed portion (165) that is formed by being recessed from the cylindrical side surface. The frame has: a first through-hole (intake hole (141)) that is located on the further side from an impeller (20) than the stator core in the axial direction; and a second through-hole (discharge hole (131)) that is located closer to the impeller side than the stator core in the axial direction and passes through the side surface in the radial direction. A facing region (166) facing the recessed portion is formed so as to totally close the outside in the radial direction. A recessed portion flow path (58) enclosed by the recessed portion and the frame is formed so as to open in the axial direction at the end surface of the stator core in the axial direction.

Description

電動送風機、および、それを用いた電気掃除機Electric blower and vacuum cleaner using the same
 本発明は、電動送風機、および、それを用いた電気掃除機に関する。 The present invention relates to an electric blower and a vacuum cleaner using the same.
 従来、例えば特許文献1に記載された電動送風機が知られている。特許文献1に記載された電動送風機は、回転電機の格納部の羽根車から遠い側および側面に開口を設けることで、流れ場の気圧差により羽根車から遠い側から吸気して回転電機を冷却し、側面から排気されて主流に合流する冷却風流路を構成する。これにより、特許文献1に記載された電動送風機は、主流の一部を誘導し、直接回転電機に当てることで冷却する方式に対して、主流の風量を増加させて送風効率を向上することができる。 Conventionally, for example, an electric blower described in Patent Document 1 is known. The electric blower described in Patent Document 1 cools the rotating electrical machine by providing openings on the side and side of the storage portion of the rotating electrical machine farther from the impeller, so that the air pressure difference in the flow field draws air from the side farther from the impeller. and form a cooling air flow path that is exhausted from the side and joins the main stream. As a result, the electric blower described in Patent Document 1 can increase the flow rate of the main flow and improve the blowing efficiency, as opposed to the method in which a part of the main flow is guided and applied directly to the rotating electrical machine for cooling. can.
特開2021-71082号公報Japanese Unexamined Patent Application Publication No. 2021-71082
 しかしながら、特許文献1に記載された従来の電動送風機は、回転電機の格納部の各開口における気圧差で冷却風を吸気するため、主流の一部を誘導して回転電機に直接当てる方式に対して、冷却流量を低下させてしまう。加えて、従来の電動送風機は、冷却流路が固定子コアとハウジングのわずかな隙間などで構成されており、流路抵抗が大きくなるため、これによっても、冷却流量を低下させてしまう。更に、従来の電動送風機は、冷媒が排気される側面の開口が軸方向に連設されるディフューザやハウジングの分割位置に依存するため、開口の面積や位置に制約があり、冷却風量の設計自由度が限られていた。そのため、従来の電動送風機は、冷却風量が不足することで、回転電機が高温となり、回転電機の性能劣化を招く可能性がある。したがって、従来の電動送風機は、回転電機の冷却性能に関して改善の余地を残している。 However, in the conventional electric blower described in Patent Document 1, since the cooling air is taken in by the air pressure difference at each opening of the housing portion of the rotating electric machine, it is different from the method in which a part of the main stream is guided and directly hits the rotating electric machine. As a result, the cooling flow rate is lowered. In addition, in the conventional electric blower, the cooling flow path is formed by a small gap between the stator core and the housing, etc., and the flow path resistance increases, which also reduces the cooling flow rate. Furthermore, in conventional electric fans, since the opening on the side through which the refrigerant is discharged depends on the split position of the diffuser and the housing that are connected in the axial direction, there are restrictions on the area and position of the opening, and the cooling air volume can be designed freely. was limited. Therefore, in the conventional electric blower, there is a possibility that the rotary electric machine becomes hot due to insufficient cooling air volume, resulting in performance deterioration of the rotary electric machine. Therefore, the conventional electric blower leaves room for improvement regarding the cooling performance of the rotating electric machine.
 本発明は、前記した課題を解決するためになされたものであり、回転電機の冷却性能を向上する電動送風機、および、それを用いた電気掃除機を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and the main object thereof is to provide an electric blower that improves the cooling performance of a rotating electric machine, and a vacuum cleaner using the same.
 前記目的を達成するため、本発明は、電動送風機であって、回転軸と前記回転軸を支持する軸受とを有する回転子と、固定子コアと電機子巻線とを有する固定子と、前記回転子と前記固定子とを内包する円筒状のフレームと、前記フレームを固定するハウジングと、前記回転軸の一端側に固定された羽根車と、を備え、前記フレームは、前記固定子コアと当接するモータケースと、前記モータケースに軸方向において固定されるエンドブラケットと、を有するとともに、軸方向において前記固定子コアに対して前記羽根車から遠い側に形成された第1の貫通孔と、軸方向において前記固定子コアに対して前記羽根車側に、側面を半径方向に貫通するように形成された第2の貫通孔と、を有し、前記固定子コアは、円筒側面から凹んで構成される凹部と、前記モータケースの側壁から離反する離反部分と、を有し、前記フレームの前記モータケースは、回転軸方向において前記固定子コアを覆うように構成され、前記モータケースの、前記凹部に対向する対向部位は半径方向外側を全閉するように構成され、前記凹部と前記モータケースとで囲まれた空間部は、前記固定子コアの軸方向端面において軸方向に開口する構成とする。
 その他の手段は、後記する。
To achieve the above object, the present invention provides an electric blower comprising: a rotor having a rotating shaft and bearings supporting the rotating shaft; a stator having a stator core and an armature winding; A cylindrical frame enclosing a rotor and the stator, a housing fixing the frame, and an impeller fixed to one end side of the rotating shaft, wherein the frame includes the stator core and a first through hole having a motor case abutting thereon and an end bracket fixed to the motor case in the axial direction, and formed in the stator core on the far side from the impeller in the axial direction; and a second through hole formed radially through a side surface of the stator core on the impeller side of the stator core in the axial direction, the stator core being recessed from the cylindrical side surface. and a separated portion separated from the side wall of the motor case, and the motor case of the frame is configured to cover the stator core in the rotation axis direction, , the portion facing the recess is configured to be fully closed radially outward, and the space surrounded by the recess and the motor case is axially open at the axial end face of the stator core. Configuration.
Other means will be described later.
 本発明によれば、回転電機の冷却性能を向上することができる。 According to the present invention, it is possible to improve the cooling performance of the rotating electric machine.
実施形態1に係る電動送風機を搭載する電気掃除機のスティック状態の外観を示す斜視図である。1 is a perspective view showing the appearance of a stick state electric vacuum cleaner equipped with an electric blower according to Embodiment 1. FIG. 実施形態1に係る電動送風機を搭載する電気掃除機のハンディ状態の外観を示す斜視図である。1 is a perspective view showing the appearance of a handy state electric vacuum cleaner equipped with an electric blower according to Embodiment 1. FIG. 実施形態1に係る電動送風機を搭載する掃除機本体の縦断面図である。Fig. 2 is a vertical cross-sectional view of a vacuum cleaner main body on which the electric blower according to Embodiment 1 is mounted; 実施形態1に係る電動送風機の外観図である。1 is an external view of an electric blower according to Embodiment 1. FIG. 図4に示すY1-Y1線に沿って電動送風機を切断した場合の電動送風機の断面図である。5 is a sectional view of the electric blower when the electric blower is cut along the line Y1-Y1 shown in FIG. 4; FIG. 実施形態1に係る電動送風機に用いる回転電機の分解斜視図である。2 is an exploded perspective view of a rotating electric machine used in the electric blower according to Embodiment 1. FIG. 回転電機の斜視図である。1 is a perspective view of a rotating electrical machine; FIG. 図5と図7に示すX1-X1線に沿って回転電機を切断した場合の電動送風機の断面図である。FIG. 8 is a cross-sectional view of the electric blower when the rotating electric machine is cut along the line X1-X1 shown in FIGS. 5 and 7; 電動送風機内の流体の流れを示す概念図である。FIG. 4 is a conceptual diagram showing the flow of fluid in the electric blower; 比較例の電動送風機の回転電機の構造図である。It is a structural diagram of a rotating electric machine of an electric blower of a comparative example. 比較例の回転電機の固定子コアと実施形態1の回転電機の固定子コアの温度上昇の実測結果である。FIG. 10 is a result of actual measurement of the temperature rise of the stator core of the rotating electric machine of the comparative example and the stator core of the rotating electric machine of the first embodiment; FIG. 実施形態2に係る電動送風機に用いる回転電機の斜視図である。FIG. 11 is a perspective view of a rotating electrical machine used in the electric blower according to Embodiment 2; 実施形態3に係る電動送風機に用いる回転電機の斜視図である。FIG. 11 is a perspective view of a rotating electric machine used in an electric blower according to Embodiment 3;
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示しているに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, embodiments of the present invention (hereinafter referred to as "present embodiments") will be described in detail with reference to the drawings. In addition, each figure is only shown roughly to such an extent that the present invention can be fully understood. Accordingly, the present invention is not limited to the illustrated examples only. Moreover, in each figure, the same code|symbol is attached|subjected about a common component and a similar component, and those overlapping description is abbreviate|omitted.
 [実施形態1]
 <電動送風機を搭載する電気掃除機の構成>
 本実施形態1に係る電動送風機100は、例えば、電気掃除機のファンモータとして用いるのに好適である。以下、図1から図3を参照して、本実施形態1に係る電動送風機100を搭載する電気掃除機300の構成について説明する。図1は、本実施形態1に係る電動送風機100を搭載する電気掃除機300の外観を示す斜視図である。図2は、電気掃除機300の外観を示す側面図である。図3は、掃除機本体の縦断面図である。
[Embodiment 1]
<Configuration of Vacuum Cleaner Equipped with Electric Blower>
The electric blower 100 according to Embodiment 1 is suitable for use as, for example, a fan motor of a vacuum cleaner. The configuration of an electric vacuum cleaner 300 equipped with the electric blower 100 according to the first embodiment will be described below with reference to FIGS. 1 to 3. FIG. FIG. 1 is a perspective view showing the appearance of a vacuum cleaner 300 equipped with an electric blower 100 according to the first embodiment. FIG. 2 is a side view showing the appearance of vacuum cleaner 300. As shown in FIG. FIG. 3 is a vertical cross-sectional view of the main body of the cleaner.
 図1は、使用形態をスティック型にした時の電気掃除機300の構成を示している。一方、図2は、使用形態をハンディ型にした時の電気掃除機300の構成を示している。図1及び図2に示すように、電気掃除機300は、スティック型とハンディ型とに使用形態を適宜切り替えて使用できる充電式の電気掃除機である。ただし、電気掃除機300は、スティック型のみしか使用形態がない構成にしたり、ハンディ型のみしか使用形態がない構成にしたり、その他様々なタイプの構成にしたりすることができる。 FIG. 1 shows the configuration of a vacuum cleaner 300 when used in a stick type. On the other hand, FIG. 2 shows the configuration of the electric vacuum cleaner 300 when the form of use is a handy type. As shown in FIGS. 1 and 2, the vacuum cleaner 300 is a rechargeable vacuum cleaner that can be used by appropriately switching between a stick type and a handy type. However, the electric vacuum cleaner 300 can be configured to have only a stick type usage pattern, only a handy type configuration, or various other types of configurations.
 図1に示すように、電気掃除機300は、塵埃を集塵する集塵室301と、集塵に必要な吸込気流を発生させる電動送風機100と、電動送風機100を収納する掃除機本体310と、を備えている。掃除機本体310の内部には、吸込気流を通す流路340が形成されている。また、電気掃除機300は、掃除機本体310に対して伸縮自在に設けられた伸縮パイプ302と、伸縮パイプ302の一端に設けられたグリップ部303と、グリップ部303に設けられた電動送風機100の入切を行うスイッチ部304と、を備えている。 As shown in FIG. 1, the electric vacuum cleaner 300 includes a dust collection chamber 301 for collecting dust, an electric blower 100 for generating a suction airflow necessary for dust collection, and a cleaner body 310 for housing the electric blower 100. , is equipped with A flow path 340 is formed inside the cleaner main body 310 to pass the intake airflow. The electric vacuum cleaner 300 also includes a telescopic pipe 302 that is telescopically provided with respect to the cleaner main body 310 , a grip portion 303 that is provided at one end of the telescopic pipe 302 , and an electric blower 100 that is provided at the grip portion 303 . and a switch unit 304 for turning on and off the power.
 図1に示す例では、電気掃除機300は、スティック状態で、かつ、伸縮パイプ302が伸ばされた状態になっている。また、掃除機本体310の他端には吸口体305が取り付けられ、掃除機本体310と吸口体305とが接続部306で繋がれている。 In the example shown in FIG. 1, the vacuum cleaner 300 is in a stick state with the telescopic pipe 302 extended. A suction body 305 is attached to the other end of the cleaner body 310 , and the cleaner body 310 and the suction body 305 are connected by a connecting portion 306 .
 図2に示す例では、電気掃除機300は、ハンディ状態で、かつ、伸縮パイプ302が掃除機本体310内に収納され、グリップ部303が伸縮パイプ302側に近接した状態になっている。ハンディ状態での持ち手となるハンディグリップ部307は、掃除機本体310の上面側に、近接されたグリップ部303と集塵室301との間に設けられている。掃除機本体310の他端部には吸口体(隙間ノズル)308が取り付けられ、掃除機本体310と吸口体308とが接続部306で繋がれている。 In the example shown in FIG. 2, the electric vacuum cleaner 300 is in a handy state, the telescopic pipe 302 is housed in the cleaner main body 310, and the grip part 303 is close to the telescopic pipe 302 side. A handy grip portion 307 that serves as a handle in the handy state is provided on the upper surface side of the cleaner main body 310 between the grip portion 303 and the dust collection chamber 301 that are close to each other. A suction body (gap nozzle) 308 is attached to the other end of the cleaner body 310 , and the cleaner body 310 and the suction body 308 are connected by a connecting portion 306 .
 図3は、図2に示すハンディ状態の電気掃除機300において、掃除機本体310から吸口体308を取り外した状態を示している。 FIG. 3 shows a state in which the suction body 308 is removed from the vacuum cleaner main body 310 in the electric vacuum cleaner 300 in the handy state shown in FIG.
 図3に示すように、掃除機本体310の内部には、吸引力を発生させる電動送風機100と、電動送風機100に電力を供給する電池ユニット320と、電動送風機100を駆動する駆動用回路330とが設けられている。 As shown in FIG. 3, inside the vacuum cleaner body 310 are an electric blower 100 that generates a suction force, a battery unit 320 that supplies electric power to the electric blower 100, and a drive circuit 330 that drives the electric blower 100. is provided.
 電気掃除機300は、グリップ部303のスイッチ部304を操作することで、掃除機本体310に収納された電動送風機100(図1参照)が作動し、吸込気流を発生させる。そして、吸口体305(図1参照)又は吸口体308(図2参照)から塵埃を吸い込む。吸口体305(図1参照)又は吸口体308(図2参照)から吸い込まれた空気は、接続部306を通り、さらに掃除機本体310に設けられた流路を通って電動送風機100の前方に配置された集塵室301に送られ、集塵室301内に集塵される。集塵室301で塵挨が分離された後の空気は、電動送風機100を通り、掃除機本体310に形成された排気口(図示せず)から外部に排出される。 By operating the switch portion 304 of the grip portion 303 of the electric vacuum cleaner 300, the electric blower 100 (see FIG. 1) housed in the vacuum cleaner main body 310 is operated to generate an intake airflow. Dust is sucked from the suction body 305 (see FIG. 1) or the suction body 308 (see FIG. 2). The air sucked from the suction body 305 (see FIG. 1) or the suction body 308 (see FIG. 2) passes through the connecting part 306 and further passes through the flow path provided in the main body 310 of the cleaner to the front of the electric blower 100. It is sent to the arranged dust collection chamber 301 and collected in the dust collection chamber 301 . The air from which the dust is separated in the dust collection chamber 301 passes through the electric blower 100 and is discharged to the outside through an exhaust port (not shown) formed in the cleaner body 310 .
 <電動送風機の構成>
 以下、図4から図8を参照して、電動送風機100の構成について説明する。図4は、電動送風機100の外観図である。図5は、図4に示すY1-Y1線に沿って電動送風機100を切断した場合の回転電機200の断面図である。図6は、電動送風機100に用いる回転電機200の分解図である。図7は、回転電機200の斜視図である。図8は、図5と図7に示すX1-X1線に沿って回転電機200を切断した場合の回転電機200の断面図である。
<Configuration of electric blower>
The configuration of the electric blower 100 will be described below with reference to FIGS. 4 to 8. FIG. FIG. 4 is an external view of the electric blower 100. As shown in FIG. FIG. 5 is a cross-sectional view of rotating electric machine 200 when electric blower 100 is cut along line Y1-Y1 shown in FIG. FIG. 6 is an exploded view of rotating electric machine 200 used in electric blower 100 . FIG. 7 is a perspective view of rotating electric machine 200 . FIG. 8 is a cross-sectional view of rotating electrical machine 200 when rotating electrical machine 200 is cut along line X1-X1 shown in FIGS.
 ここでは、回転子120の径方向を「r(図6参照)」とし、回転子120の回転軸121の軸方向(回転軸方向)を「z(図6参照)」とし、回転子120の回転方向を「θ(図6参照)」として説明する。ただし、回転子120の回転軸方向zを単に「軸方向」と呼称し、回転方向θを「周方向」と呼称して説明する場合がある。 Here, the radial direction of the rotor 120 is defined as "r (see FIG. 6)", the axial direction (rotating axis direction) of the rotating shaft 121 of the rotor 120 is defined as "z (see FIG. 6)", and the rotor 120 The direction of rotation will be described as “θ (see FIG. 6)”. However, in some cases, the rotation axis direction z of the rotor 120 is simply referred to as the "axial direction" and the rotation direction θ is referred to as the "circumferential direction".
 図4に示すように、電動送風機100は、羽根車20(図5参照)を覆うファンカバー10と、第1ハウジング30と第2ハウジング40とを有するハウジング29と、を備える。第1ハウジング30の爪突起37と第2ハウジング40の突出部44a及び嵌合孔44bについては、後記する。 As shown in FIG. 4, the electric blower 100 includes a fan cover 10 covering the impeller 20 (see FIG. 5), and a housing 29 having a first housing 30 and a second housing 40. The claw projections 37 of the first housing 30 and the protrusions 44a and fitting holes 44b of the second housing 40 will be described later.
 ファンカバー10は、中空の円錐形状を呈している。ファンカバー10は、軸方向上下端面が開口した構造をしており、羽根車20(図5参照)の一部または全体を収容する。ファンカバー10は、羽根車20(図5参照)の軸方向上側から被せるように、第1ハウジング30に取り付けられる。電動送風機100は、ファンカバー10の突出部11を第1ハウジング30のポケット部38に差し込み、接着剤等をポケット部38に注入することにより、ファンカバー10と第1ハウジング30とを固定すると共に、流体の漏れを防ぐ。ファンカバー10の材質としては、樹脂等を挙げることができる。 The fan cover 10 has a hollow conical shape. The fan cover 10 has a structure in which upper and lower axial end faces are opened, and accommodates a part or the whole of the impeller 20 (see FIG. 5). The fan cover 10 is attached to the first housing 30 so as to cover the impeller 20 (see FIG. 5) from above in the axial direction. The electric blower 100 fixes the fan cover 10 and the first housing 30 together by inserting the projecting portion 11 of the fan cover 10 into the pocket portion 38 of the first housing 30 and injecting an adhesive or the like into the pocket portion 38 . , prevent fluid leakage. Examples of the material of the fan cover 10 include resin.
 図5に示すように、第1ハウジング30は、軸方向に垂直な平面を含む円板状の取付部34と、取付部34の外周から軸方向下向きに延伸して設けられる第1内側壁31と、第1内側壁31の径方向外側に空隙を介して設けられる第1外側壁33と、第1内側壁31と第1外側壁33とを連結しつつ、流体を減速させ、圧力を上昇させる第1ディフューザ32と、を備える。第2ハウジング40は、第2内側壁41と、第2外側壁43と、第2内側壁41と第2外側壁43とを連結しつつ、流体を減速させ、圧力を上昇させる第2ディフューザ42と、を備える。 As shown in FIG. 5, the first housing 30 includes a disc-shaped mounting portion 34 including a plane perpendicular to the axial direction, and a first inner wall 31 extending downward in the axial direction from the outer periphery of the mounting portion 34. , the fluid is decelerated and the pressure is increased while connecting the first outer wall 33 provided on the radially outer side of the first inner wall 31 with a gap to the first inner wall 31 and the first outer wall 33 . a first diffuser 32 that allows the The second housing 40 includes a second inner wall 41, a second outer wall 43, and a second diffuser 42 that connects the second inner wall 41 and the second outer wall 43 while decelerating the fluid and increasing the pressure. And prepare.
 第1ハウジング30と第2ハウジング40とは、第1ハウジング30の爪突起37を、第2ハウジング40の突出部44aに設けられた嵌合孔44bに嵌合させることにより、固定される。ただし、第1ハウジング30と第2ハウジング40とは、爪突起37と嵌合孔44bとの嵌合に加え、追加で接着等を用いて固定されるようにしてもよい。これにより、第1内側壁31と第2内側壁41とは、一体となって、軸方向に延伸する略肉厚円筒状の内側壁51を形成する。また、第1外側壁33と第2外側壁43とは、一体となって、軸方向に延伸する略肉厚円筒状の外側壁52を形成する。このような第1ハウジング30と第2ハウジング40とは、図6に示す排気孔131(第2の貫通孔)の径方向外側に空隙を介して対向する内側壁51(第1の側壁)と、内側壁51(第1の側壁)の半径方向外側に空隙を介して対向する外側壁52(第2の側壁)とを備える。本実施形態では、ハウジング29は、第1ハウジング30と第2ハウジング40とに分割されているが、一体として構成されていてもよい。第1ハウジング30および第2ハウジング40の材質としては、樹脂やアルミニウム合金等を挙げることができる。 The first housing 30 and the second housing 40 are fixed by fitting the claw projections 37 of the first housing 30 into the fitting holes 44b provided in the projecting portion 44a of the second housing 40 . However, the first housing 30 and the second housing 40 may be fixed by additionally using an adhesive or the like in addition to the fitting between the claw projections 37 and the fitting holes 44b. As a result, the first inner wall 31 and the second inner wall 41 integrally form a substantially thick cylindrical inner wall 51 extending in the axial direction. The first outer wall 33 and the second outer wall 43 are integrated to form a substantially thick cylindrical outer wall 52 extending in the axial direction. The first housing 30 and the second housing 40 have an inner wall 51 (first side wall) facing radially outwardly of the exhaust hole 131 (second through hole) shown in FIG. , and an outer wall 52 (second side wall) facing radially outward of the inner wall 51 (first side wall) with a gap therebetween. Although the housing 29 is divided into the first housing 30 and the second housing 40 in the present embodiment, it may be constructed as one body. Examples of materials for the first housing 30 and the second housing 40 include resins and aluminum alloys.
 電動送風機100は、内部に、羽根車20と、回転電機200と、を備える。回転電機200は、軸方向下側からモータケース130の軸受格納部132を第1ハウジング30の嵌合孔35に挿入し、第1ハウジング30の取付部34とモータケース130の円板部133が突き当たるようにして固定する。この時、第1ハウジング30の位置決め突起36を、モータケース130の位置決め孔134に挿入し、周方向の位置決めをする。本実施形態では、電動送風機100は、第1ハウジング30と回転電機200とをねじにより固定しているが、他の固定方法として接着、圧入、溶接等を用いてもよい。 The electric blower 100 includes an impeller 20 and a rotating electric machine 200 inside. The rotary electric machine 200 inserts the bearing housing portion 132 of the motor case 130 into the fitting hole 35 of the first housing 30 from the axially lower side, and the mounting portion 34 of the first housing 30 and the disk portion 133 of the motor case 130 are engaged with each other. Anchor and fix. At this time, the positioning projections 36 of the first housing 30 are inserted into the positioning holes 134 of the motor case 130 for positioning in the circumferential direction. In this embodiment, the electric blower 100 fixes the first housing 30 and the rotary electric machine 200 with screws, but other fixing methods such as adhesion, press-fitting, and welding may be used.
 ここで、図6を参照して回転電機200の構成について説明する。なお、図5に示す未説明の構成要素については、後記する。図6は、図5に示す回転電機200の上側部分が手前側(図面の左下側)になり、下側部分が奥側(図面の右上側)になるように、回転電機200を配置して示している。 Here, the configuration of the rotating electrical machine 200 will be described with reference to FIG. Note that the unexplained constituent elements shown in FIG. 5 will be described later. 6, rotating electrical machine 200 is arranged so that the upper part of rotating electrical machine 200 shown in FIG. showing.
 図6に示すように、回転電機200は、固定子110と、固定子110の内部に配置される回転自在な回転子120と、固定子110と回転子120とを内包する円筒状のフレーム150と、を備える。フレーム150は、一方の端部が開口された円筒状のモータケース130と、モータケース130の開口部分を塞ぐ板状のエンドブラケット140と、を有する。 As shown in FIG. 6 , rotating electric machine 200 includes stator 110 , rotor 120 that is rotatable inside stator 110 , and cylindrical frame 150 that includes stator 110 and rotor 120 . And prepare. The frame 150 has a cylindrical motor case 130 with one end open, and a plate-like end bracket 140 that closes the opening of the motor case 130 .
 固定子110は、モータケース130により保持される。固定子110は、固定子コア111と、固定子コア111の内部に配置されたボビン112と、ボビン112に巻回された電機子巻線113と、を有する。固定子コア111の内周側には、ギャップGp(図8参照)を介して回転子120の外周面が固定子コア111の内周面に対向するように配置されている。固定子コア111の材質としては、鉄を主成分とした電磁鋼板を挙げることができる。また、ボビン112の材質としては、PBT(polybutylene terephthalate)等の樹脂を挙げることができる。また、電機子巻線113の材質としては、銅やアルミニウム合金等を挙げることができる。 The stator 110 is held by the motor case 130. The stator 110 has a stator core 111 , a bobbin 112 arranged inside the stator core 111 , and an armature winding 113 wound around the bobbin 112 . On the inner peripheral side of the stator core 111, the outer peripheral surface of the rotor 120 is arranged so as to face the inner peripheral surface of the stator core 111 with a gap Gp (see FIG. 8) interposed therebetween. As a material of the stator core 111, an electromagnetic steel sheet containing iron as a main component can be mentioned. As the material of the bobbin 112, resin such as PBT (polybutylene terephthalate) can be used. Further, examples of materials for the armature winding 113 include copper and aluminum alloys.
 回転子120は、回転の中心となる回転軸121と、回転軸121を支持する軸受122と、回転時の回転子120の振れを抑制するバランスリング123と、回転軸121に固定された複数極の永久磁石124と、高速回転時に永久磁石124の破損を防止するカバー125と、を有する。 The rotor 120 includes a rotating shaft 121 serving as the center of rotation, a bearing 122 supporting the rotating shaft 121, a balance ring 123 suppressing vibration of the rotor 120 during rotation, and a plurality of poles fixed to the rotating shaft 121. and a cover 125 for preventing breakage of the permanent magnet 124 during high-speed rotation.
 回転子120は、回転軸121を中心として回転可能である。回転軸121は、シャフトと呼ばれる場合がある。回転軸121は、軸方向両側において、軸受122により回転自在に保持されている。軸受122は、モータケース130の軸受格納部132とエンドブラケット140の軸受格納部142とに嵌合され、保持される。バランスリング123は、切削加工等により形成され、回転子120のアンバランスを修正する機能がある。 The rotor 120 is rotatable around the rotating shaft 121 . The rotating shaft 121 may be called a shaft. The rotary shaft 121 is rotatably held by bearings 122 on both sides in the axial direction. The bearing 122 is fitted and held in the bearing storage portion 132 of the motor case 130 and the bearing storage portion 142 of the end bracket 140 . The balance ring 123 is formed by cutting or the like, and has a function of correcting imbalance of the rotor 120 .
 バランスリング123の材質としては、樹脂、銅、アルミニウム合金等を挙げることができる。永久磁石124の材質としては、サマリウム鉄窒素磁石、ネオジム磁石、フェライト磁石等を挙げることができる。カバー125の材質としては、SUS(Steel Use Stainless)やCFRP(carbon fiber reinforced plastics)等を挙げることができる。 Materials for the balance ring 123 include resin, copper, and aluminum alloy. Examples of materials for the permanent magnet 124 include samarium iron nitrogen magnets, neodymium magnets, and ferrite magnets. Examples of materials for the cover 125 include SUS (Steel Use Stainless) and CFRP (carbon fiber reinforced plastics).
 モータケース130は、円板部133と、側壁135と、を有している。円板部133は、回転電機200において、エンドブラケット140から離間する側の端部に配置される。円板部133の中心部には、軸受格納部132が形成されている。軸受格納部132は、円筒凸状を呈しており、エンドブラケット140から離間する方向に向けて延伸して形成されている。また、円板部133の軸受格納部132の周囲には、複数の位置決め孔134が形成されている。位置決め孔134は、円形状を呈しており、第1ハウジング30の位置決め突起36(図5参照)が挿入されることで、第1ハウジング30に対して所定の位置にモータケース130を配置させる。側壁135は、円板部133の外周部からエンドブラケット140の方向に向けて肉厚円筒状に延伸して形成されている。側壁135は、エンドブラケット140に近い側の端部が開口している。側壁135の円板部133付近の周面には、複数の排気孔131が形成されている。各排気孔131は、側壁135の周面において、周方向に延在するように形成されている。排気孔131は、モータケース130の軸方向において、固定子コア111に対して羽根車20(図5参照)側に、側面を半径方向に貫通するように形成された貫通孔である。 The motor case 130 has a disc portion 133 and side walls 135 . Disc portion 133 is arranged at an end portion of rotary electric machine 200 on the side away from end bracket 140 . A bearing housing portion 132 is formed in the central portion of the disc portion 133 . The bearing housing portion 132 has a cylindrical convex shape and is formed so as to extend in a direction away from the end bracket 140 . A plurality of positioning holes 134 are formed around the bearing housing portion 132 of the disk portion 133 . The positioning hole 134 has a circular shape, and the motor case 130 is arranged at a predetermined position with respect to the first housing 30 by inserting the positioning projection 36 (see FIG. 5) of the first housing 30 . The side wall 135 is formed in a thick cylindrical shape extending from the outer peripheral portion of the disk portion 133 toward the end bracket 140 . Side wall 135 is open at the end near end bracket 140 . A plurality of exhaust holes 131 are formed on the peripheral surface of the side wall 135 near the disk portion 133 . Each exhaust hole 131 is formed on the peripheral surface of the side wall 135 so as to extend in the circumferential direction. The exhaust hole 131 is a through hole formed so as to radially penetrate the side surface of the stator core 111 toward the impeller 20 (see FIG. 5 ) in the axial direction of the motor case 130 .
 エンドブラケット140は、円板部143と、モータケース130の側壁135の内部に挿入される嵌合用凸部144と、を有している。円板部143の中心部には、軸受格納部142が形成されている。円板部143の軸受格納部142の周囲には、複数の吸気孔141が形成されている。吸気孔141は、モータケース130の軸方向において、固定子コア111に対して羽根車20(図5参照)から遠い側に形成された貫通孔である。図6に示す例では、各吸気孔141は円弧状を呈している。以下、吸気孔141と前記した排気孔131とを区別する場合に、「吸気孔141」を「第1の貫通孔」と呼称し、「排気孔131」を「第2の貫通孔」と呼称して説明する場合がある。 The end bracket 140 has a disk portion 143 and a fitting convex portion 144 that is inserted into the side wall 135 of the motor case 130 . A bearing housing portion 142 is formed at the center of the disc portion 143 . A plurality of intake holes 141 are formed around the bearing housing portion 142 of the disk portion 143 . The intake hole 141 is a through hole formed on the far side of the stator core 111 from the impeller 20 (see FIG. 5) in the axial direction of the motor case 130 . In the example shown in FIG. 6, each intake hole 141 has an arc shape. Hereinafter, when distinguishing between the intake hole 141 and the exhaust hole 131, the "intake hole 141" is referred to as the "first through hole", and the "exhaust hole 131" is referred to as the "second through hole". may be explained as
 軸受格納部142は、円筒凸状を呈しており、モータケース130の円板部133から離間する方向に向けて延伸して形成されている。嵌合用凸部144は、円板部143の外周部からモータケース130の円板部133の方向に向けて肉厚円筒状に延伸して形成されている。 The bearing housing portion 142 has a cylindrical convex shape and is formed so as to extend in a direction away from the disk portion 133 of the motor case 130 . The fitting convex portion 144 is formed in a thick cylindrical shape extending from the outer peripheral portion of the disk portion 143 toward the disk portion 133 of the motor case 130 .
 回転電機200は、固定子110の内部に回転子120を配置し、モータケース130の軸受格納部132とエンドブラケット140の軸受格納部142とに回転子120の軸受122を嵌合させた構成になっている。モータケース130の側壁135の径方向内周面とエンドブラケット140の嵌合用凸部144の径方向外周面は、嵌め合い構造になっている。側壁135の径方向内周面と嵌合用凸部144の径方向外周面とを中間ばめもしくは締りばめで嵌合させることにより、モータケース130とエンドブラケット140とが、固定され、一体となってフレーム150として機能する。なお、モータケース130とエンドブラケット140との他の固定方法としては、ねじ、加締め、接着等の方法が考えられる。図7は、モータケース130とエンドブラケット140とを固定した状態を示している。フレーム150は、回転軸121に垂直かつ羽根車20(図5参照)側の面において、回転子120によって、もしくは回転子120とハウジング29とによって、軸方向に全閉されるように構成される。 Rotary electric machine 200 has a configuration in which rotor 120 is arranged inside stator 110 , and bearing 122 of rotor 120 is fitted in bearing housing portion 132 of motor case 130 and bearing housing portion 142 of end bracket 140 . It's becoming The radially inner peripheral surface of the side wall 135 of the motor case 130 and the radially outer peripheral surface of the fitting convex portion 144 of the end bracket 140 have a fitting structure. The motor case 130 and the end bracket 140 are fixed and integrated by fitting the radially inner peripheral surface of the side wall 135 and the radially outer peripheral surface of the fitting projection 144 with an intermediate fit or an interference fit. function as frame 150 . Other methods for fixing the motor case 130 and the end bracket 140 include screwing, crimping, adhesion, and the like. FIG. 7 shows a state in which the motor case 130 and the end bracket 140 are fixed. The frame 150 is configured to be fully closed in the axial direction by the rotor 120 or by the rotor 120 and the housing 29 on the surface perpendicular to the rotating shaft 121 and on the impeller 20 (see FIG. 5) side. .
 図5に戻り、回転子120の回転軸121の軸方向上側の端部には、羽根車20が取り付けられる。羽根車20は、傘部22と、複数の翼部21と、嵌合部材24と、を有している。傘部22は、中空の円錐状を呈している。複数の翼部21は、傘部22の外周面から径方向外側に突出するように形成されている。傘部22の中心部には、軸方向に円柱状に貫通する嵌合用貫通孔23が形成されている。嵌合用貫通孔23の軸方向下側には、略肉厚円筒状の嵌合部材24が固定されている。羽根車20は、嵌合用貫通孔23と嵌合部材24を回転軸121に嵌合させ、ナット25で回転軸121に螺着されることにより、回転軸121に固定される。なお、嵌合部材24と回転軸121との固定方法としては、接着、圧入等が考えられる。また、羽根車20と回転軸121の軸方向の固定方法としては、ナット25による螺着に加え、追加でナット25と回転軸121とを接着してもよい。羽根車20の材質としては、樹脂やアルミニウム合金等を挙げることができる。嵌合部材24の材質としては、炭素鋼等を挙げることができる。 Returning to FIG. 5, the impeller 20 is attached to the axially upper end of the rotating shaft 121 of the rotor 120 . The impeller 20 has an umbrella portion 22 , a plurality of blade portions 21 and a fitting member 24 . The umbrella portion 22 has a hollow conical shape. The plurality of wing portions 21 are formed so as to protrude radially outward from the outer peripheral surface of the umbrella portion 22 . A fitting through-hole 23 is formed in the center of the head portion 22 so as to extend through the umbrella portion 22 in a cylindrical shape in the axial direction. A substantially thick cylindrical fitting member 24 is fixed to the axially lower side of the fitting through hole 23 . The impeller 20 is fixed to the rotating shaft 121 by fitting the fitting through hole 23 and the fitting member 24 to the rotating shaft 121 and screwing the nut 25 onto the rotating shaft 121 . As a method for fixing the fitting member 24 and the rotary shaft 121, adhesion, press-fitting, or the like can be considered. Further, as a method of fixing the impeller 20 and the rotating shaft 121 in the axial direction, in addition to screwing the nut 25, the nut 25 and the rotating shaft 121 may additionally be adhered. Examples of the material of the impeller 20 include resin, aluminum alloy, and the like. Examples of the material of the fitting member 24 include carbon steel.
 電動送風機100は、回転電機200で羽根車20を回転させることにより、吸気口53からハウジング29の内部に流体を取り込む。そして、電動送風機100は、ハウジング29の内部で流体を流動させて、排気口55からハウジング29の外部に流体を排出する(図9に示す主流F1参照)。また、電動送風機100は、回転電機200で羽根車20を回転させることにより、吸気孔141と排気口55との間で発生する気圧差を利用して、吸気孔141からモータケース130の内部に流体を取り込む。そして、電動送風機100は、モータケース130の内部で排気孔131に向けて流体を流動させ、排気孔131を介してモータケース130の外部に流体を流動させた後、流体を折り返させて流動させ、排気口55からハウジング29の外部に流体を排出する(図9に示す主流F2参照)。 The electric blower 100 rotates the impeller 20 with the rotary electric machine 200 to take fluid into the housing 29 through the air inlet 53 . Then, the electric blower 100 causes the fluid to flow inside the housing 29 and discharges the fluid to the outside of the housing 29 from the exhaust port 55 (see the main stream F1 shown in FIG. 9). Further, electric blower 100 rotates impeller 20 with rotating electrical machine 200 , and utilizes the pressure difference generated between intake hole 141 and exhaust port 55 to blow air into motor case 130 from intake hole 141 . Take in fluid. The electric blower 100 causes the fluid to flow toward the exhaust hole 131 inside the motor case 130, causes the fluid to flow to the outside of the motor case 130 through the exhaust hole 131, and then causes the fluid to flow back. , the fluid is discharged to the outside of the housing 29 from the exhaust port 55 (see the main stream F2 shown in FIG. 9).
 図8は、図5と図7に示すX1-X1線に沿って回転電機200を切断した場合の回転電機200の断面構成を示している。図8に示す回転電機200の断面構成は、回転軸121に対して垂直方向に切断した断面構成、つまり、固定子コア111を軸方向に対して垂直方向に切断した断面構成である。 FIG. 8 shows a cross-sectional configuration of rotating electrical machine 200 when rotating electrical machine 200 is cut along line X1-X1 shown in FIGS. The cross-sectional configuration of rotating electric machine 200 shown in FIG. 8 is a cross-sectional configuration cut perpendicular to rotating shaft 121, that is, a cross-sectional configuration obtained by cutting stator core 111 perpendicular to the axial direction.
 本実施形態では、回転電機200は、3相交流電流により駆動されるものとする。図示しないパワーモジュールは、駆動信号に基づきスイッチング動作を行い、図示しないバッテリから供給される直流電力を3相交流電力に変換する。この3相交流電力は、電機子巻線113に供給され、回転磁界が固定子110に発生する。3相交流電流の周波数および位相は、図示しない制御回路および駆動回路により制御される。 In this embodiment, the rotating electric machine 200 is driven by a three-phase alternating current. A power module (not shown) performs a switching operation based on a drive signal to convert DC power supplied from a battery (not shown) into three-phase AC power. This three-phase AC power is supplied to the armature winding 113 and a rotating magnetic field is generated in the stator 110 . The frequency and phase of the three-phase alternating current are controlled by a control circuit and drive circuit (not shown).
 図8に示すように、固定子コア111は、円環状のヨーク161の外周面と、モータケース130の側壁135との接触部位135aと、を有し、モータケース130の内部に固定される。固定方法は、中間ばめ、締りばめ、溶接、接着等が考えられ、これらのうち複数を組み合わせた方法であってもよい。モータケース130の、凹部165に対向する対向部位166は半径方向外側を全閉するように構成されている。即ち、凹部165とそれに対向する対向部位166とで閉断面を形成するように構成されている。 As shown in FIG. 8, the stator core 111 has an outer peripheral surface of an annular yoke 161 and a contact portion 135a with the side wall 135 of the motor case 130, and is fixed inside the motor case . As the fixing method, intermediate fitting, interference fitting, welding, adhesion, etc. can be considered, and a method combining a plurality of these methods may be used. A facing portion 166 of the motor case 130 facing the recessed portion 165 is configured to fully close the radially outer side. That is, the concave portion 165 and the facing portion 166 facing the concave portion 165 form a closed cross section.
 固定子コア111の内径側には、複数のスロット164とティース163とが、固定子コア111の全周に亘って均等な間隔で配置されている。図8では、スロット164とティース163のすべてに符号を付すことはせず、代表として一部のスロットとティースのみに符号を付している。その他の図も、図8と同様に、複数の同じ構成の全てに符号を付すことはせず、代表として一部の構成のみに符号を付している。 A plurality of slots 164 and teeth 163 are arranged on the inner diameter side of the stator core 111 at equal intervals over the entire circumference of the stator core 111 . In FIG. 8, not all slots 164 and teeth 163 are labeled, but only some of the slots and teeth are labeled as representatives. In the other drawings, as in FIG. 8, not all of the plurality of identical configurations are denoted by reference numerals, but only some of the configurations are denoted by representative reference numerals.
 スロット164内には、ボビン112と電機子巻線113とが配置されている。ボビン112は、電機子巻線113と固定子コア111との絶縁距離を確保するとともに、電機子巻線113を巻回する際等において、固定子コア111の角部と接触して絶縁被膜が損傷することを防ぐ。電機子巻線113は、U相、V相、およびW相の複数の相に対応する複数の巻線で構成される。本実施形態では、三相4極の集中巻であるため、スロット164とティース163は、等間隔に6個設けられ、各ティース163に周方向においてU相、V相、W相、…の順番で巻回される。 A bobbin 112 and an armature winding 113 are arranged in the slot 164 . The bobbin 112 secures an insulation distance between the armature winding 113 and the stator core 111, and when the armature winding 113 is wound, the bobbin 112 comes into contact with the corners of the stator core 111 to form an insulation coating. prevent damage. Armature winding 113 is composed of a plurality of windings corresponding to a plurality of phases of U-phase, V-phase, and W-phase. In this embodiment, since the three-phase, four-pole concentrated winding is employed, six slots 164 and six teeth 163 are provided at equal intervals, and each tooth 163 is arranged in the order of U phase, V phase, W phase, . . . in the circumferential direction. is wound with
 固定子コア111は、モータケース130の側壁135から離反するように、円筒側面から凹んで形成された凹部165を備える。モータケース130の側壁135は、軸方向において固定子コア111を軸方向において覆い、凹部165に径方向に対向する部分において、全閉となるように(閉断面を形成するように)構成されている。これにより、回転電機200は、凹部流路58を形成する。凹部流路58は、凹部165とモータケース130の側壁135とで囲まれる空間部(閉断面を形成するように)である。凹部流路58は、羽根車20から遠い側の軸方向端部56aと羽根車20に近い側の軸方向端部56bとにおいて、ボビン112やモータケース130等の部品によって完全に閉塞されないように構成される。つまり、凹部流路58は、軸方向に流体が通過することができるように構成される。 The stator core 111 has a concave portion 165 that is recessed from the cylindrical side surface so as to separate from the side wall 135 of the motor case 130 . A side wall 135 of the motor case 130 axially covers the stator core 111 and is configured so as to be fully closed (to form a closed cross section) at a portion facing the recess 165 in the radial direction. there is Thereby, rotating electric machine 200 forms recessed flow path 58 . The recessed flow path 58 is a space portion (so as to form a closed cross section) surrounded by the recessed portion 165 and the side wall 135 of the motor case 130 . The recessed flow path 58 is arranged so that it is not completely blocked by parts such as the bobbin 112 and the motor case 130 at the axial end 56a farther from the impeller 20 and the axial end 56b closer to the impeller 20. Configured. That is, the recessed flow path 58 is configured so that the fluid can pass through in the axial direction.
 第1ハウジング30の取付部34とモータケース130の円板部133と回転子120とは、軸方向から見て嵌合孔35を閉塞するように構成される。つまり、嵌合孔35は、取付部34と円板部133と回転子120のいずれかによって塞がれている。したがって、電動送風機100は、円板部133の内部から取付部34の外部へ向かう軸方向に貫通する流路が形成されないように、構成される。エンドブラケット140は、固定子コア111よりも羽根車20から遠い側に配置され、軸方向に貫通する吸気孔141を有している。モータケース130は、固定子コア111よりも羽根車20に近い側に、径方向に貫通する排気孔131を備える。モータケース130とエンドブラケット140の材質としては、炭素鋼やアルミニウム合金等の金属材料を適用する。 The mounting portion 34 of the first housing 30, the disc portion 133 of the motor case 130, and the rotor 120 are configured to close the fitting hole 35 when viewed from the axial direction. That is, the fitting hole 35 is closed by any one of the mounting portion 34 , the disk portion 133 and the rotor 120 . Therefore, electric blower 100 is configured such that a flow path extending axially from the inside of disk portion 133 to the outside of mounting portion 34 is not formed. The end bracket 140 is arranged farther from the impeller 20 than the stator core 111 and has an air intake hole 141 extending axially therethrough. The motor case 130 is provided with an exhaust hole 131 penetrating in the radial direction on the side closer to the impeller 20 than the stator core 111 is. As the material of the motor case 130 and the end bracket 140, a metal material such as carbon steel or aluminum alloy is applied.
 <電動送風機の動作>
 以下、図9を参照して、電動送風機100の動作について説明する。図9は、電動送風機100内の流体の流れを示す概念図である。図9は、図4に示すY1-Y1線に沿って回転電機200を切断した場合の回転電機200の断面構成に対して、流体の流れを付加した概念図である。本実施形態では、流体が空気である場合を想定して説明するが、流体は油等の空気以外のものであってもよい。
<Operation of electric blower>
The operation of electric blower 100 will be described below with reference to FIG. FIG. 9 is a conceptual diagram showing the flow of fluid in electric blower 100. As shown in FIG. FIG. 9 is a conceptual diagram in which fluid flow is added to the cross-sectional configuration of rotating electrical machine 200 when rotating electrical machine 200 is cut along line Y1-Y1 shown in FIG. In this embodiment, the explanation is given assuming that the fluid is air, but the fluid may be something other than air, such as oil.
 まず、電動送風機100の動作原理を説明する。回転電機200が駆動することにより、回転軸121に固定された羽根車20が回転し、羽根車20の翼部21によって図9の軸方向上側から軸方向下側に向かって主流F1が生じる。以後、軸方向上側を上流側、軸方向下側を下流側と呼称して説明する場合がある。 First, the operating principle of the electric blower 100 will be described. When the rotating electric machine 200 is driven, the impeller 20 fixed to the rotating shaft 121 rotates, and the main flow F1 is generated from the axially upper side to the axially lower side in FIG. 9 by the blade portion 21 of the impeller 20 . Hereinafter, the upper side in the axial direction may be referred to as the upstream side, and the lower side in the axial direction may be referred to as the downstream side.
 主流F1は、吸気口53から吸気され、回転する羽根車20により増速されて、周方向に旋回する旋回成分と、軸方向に直進する直進成分とを持つ流速となる。続いて、主流F1は、第1ディフューザ32と第2ディフューザ42とを通過して、旋回成分が直進成分へ変換され、減速と昇圧がなされ、排気口55から排気される。このとき、吸気孔141と排気口55との間で発生する気圧差により、吸気孔141からモータケース130の内部に向かって冷却流F2が生じる。 The main stream F1 is taken in from the intake port 53, accelerated by the rotating impeller 20, and has a flow velocity that has a swirling component that circulates in the circumferential direction and a straight component that travels straight in the axial direction. Subsequently, the main flow F1 passes through the first diffuser 32 and the second diffuser 42, where the swirling component is converted into a straight component, decelerated and boosted, and exhausted from the exhaust port 55. At this time, a cooling flow F<b>2 is generated from the intake hole 141 toward the inside of the motor case 130 due to the air pressure difference generated between the intake hole 141 and the exhaust port 55 .
 続いて、冷却流F2について説明する。冷却流F2は、回転電機200を冷却する流体(冷却風)の流れであり、エンドブラケット140の吸気孔141から吸気され、凹部流路58(図8及び図9参照)やスロット164(図8参照)、ギャップGp(図8参照)を経由してモータケース130の排気孔131に向けて流れる。そして、冷却流F2は、排気孔131からモータケース130と第1ハウジング30の第1内側壁31との間に排気される。モータケース130と第1ハウジング30の第1内側壁31との間に排気された流体は、排気口55に向けて流れ、内側壁51の端面54付近で主流F1に合流する。 Next, the cooling flow F2 will be explained. The cooling flow F2 is a flow of fluid (cooling air) that cools the rotary electric machine 200, is drawn from the intake holes 141 of the end bracket 140, and flows through the recessed flow paths 58 (see FIGS. 8 and 9) and the slots 164 (see FIG. 8). ), and flows toward the exhaust hole 131 of the motor case 130 via the gap Gp (see FIG. 8). The cooling flow F2 is then discharged through the exhaust hole 131 between the motor case 130 and the first inner wall 31 of the first housing 30 . The fluid discharged between the motor case 130 and the first inner wall 31 of the first housing 30 flows toward the exhaust port 55 and joins the main flow F1 near the end surface 54 of the inner wall 51 .
 つまり、エンドブラケット140の吸気孔141から吸気された冷却流F2は、モータケース130の内部を上昇し、モータケース130の円板部133付近で折り返してモータケース130の排気孔131を通過し、モータケース130と第1ハウジング30の第1内側壁31との間を下降して、内側壁51の端面54に至る。 That is, the cooling flow F2 sucked from the air intake hole 141 of the end bracket 140 rises inside the motor case 130, turns around near the disk portion 133 of the motor case 130, and passes through the air exhaust hole 131 of the motor case 130, It descends between the motor case 130 and the first inner wall 31 of the first housing 30 and reaches the end surface 54 of the inner wall 51 .
 この間に、冷却流F2は、回転電機200を冷却する。また、冷却流F2は、モータケース130の円板部133付近で固定子コア111の上方に旋回流F3を発生させる。旋回流F3も、回転電機200を冷却する。 During this time, the cooling flow F2 cools the rotating electrical machine 200 . Further, the cooling flow F2 generates a swirling flow F3 above the stator core 111 near the disk portion 133 of the motor case 130 . The swirl flow F3 also cools the rotary electric machine 200 .
 冷却流F2は、主流F1により作られる流れ場の圧力差を利用して冷媒(流体)を誘導する。主流F1の端面54における流路は、モータケース130の側壁135と、外側壁52との間の領域である。また、エンドブラケット140の吸気孔141における流路は、エンドブラケット140の軸受格納部142と、外側壁52との間の領域である。 The cooling flow F2 guides the coolant (fluid) using the pressure difference in the flow field created by the main flow F1. The flow path of the main flow F1 at the end surface 54 is the area between the side wall 135 of the motor case 130 and the outer wall 52 . Further, the flow path in the air intake hole 141 of the end bracket 140 is the area between the bearing housing portion 142 of the end bracket 140 and the outer wall 52 .
 ここで、モータケース130の側壁135と外側壁52との間の距離L1は、軸受格納部142と外側壁52との間の距離L2よりも小さいため、回転電機200における内側壁51の端面54付近の流路面積がエンドブラケット140の直下の流路面積よりも小さくなる。ベンチュリ効果により、流路面積が小さいと、流速が速くなるとともに、圧力が低くなり、逆に、流路面積が大きいと、流速が遅くなるとともに、圧力が高くなる。加えて、内側壁51の端面54付近の流路とエンドブラケット140に設けられている吸気孔141との間には第2ディフューザ42が設けられているため、内側壁51の端面54付近の流路から吸気孔141にかけて回転電機200内を流れる気体の流れ(冷却流F2)が減速、昇圧される。これにより、エンドブラケット140の吸気孔141の圧力の方が、内側壁51の端面54付近の流路における圧力よりも高くなる。そのため、図9に示す向きに冷却流F2が流れる。 Here, since the distance L1 between the side wall 135 of the motor case 130 and the outer wall 52 is smaller than the distance L2 between the bearing housing portion 142 and the outer wall 52, the end face 54 of the inner wall 51 in the rotary electric machine 200 The flow area in the vicinity is smaller than the flow area directly below the end bracket 140 . Due to the venturi effect, if the flow area is small, the flow velocity increases and the pressure decreases. Conversely, if the flow area is large, the flow velocity decreases and the pressure increases. In addition, since the second diffuser 42 is provided between the flow path near the end face 54 of the inner wall 51 and the intake hole 141 provided in the end bracket 140, the flow near the end face 54 of the inner wall 51 The flow of gas (cooling flow F2) flowing through rotary electric machine 200 from the passage to intake hole 141 is decelerated and boosted. As a result, the pressure in the air intake hole 141 of the end bracket 140 becomes higher than the pressure in the flow path near the end surface 54 of the inner wall 51 . Therefore, the cooling flow F2 flows in the direction shown in FIG.
 次に、電動送風機100の作用効果について説明する。電動送風機100は、スロット164(図8参照)とギャップGp(図8参照)に加えて凹部流路58(図8及び図9参照)を有している。凹部流路58は、軸方向に開口して設けられることにより、冷却流F2の流路面積を大きくすることができるため、流路抵抗を低減して冷却流量を増大することができる。これにより、回転電機200の冷却を促進することができる。 Next, the effects of the electric blower 100 will be described. Electric blower 100 has slot 164 (see FIG. 8) and gap Gp (see FIG. 8), as well as recessed flow path 58 (see FIGS. 8 and 9). Since the recessed flow path 58 is provided with an opening in the axial direction, the flow path area of the cooling flow F2 can be increased, so that the flow resistance can be reduced and the cooling flow rate can be increased. Thereby, the cooling of rotating electric machine 200 can be promoted.
 モータケース130の側壁135は、固定子コア111を軸方向において覆うように構成され、凹部165に径方向に対向する部分において全閉となるように構成されている。また、モータケース130は、固定子コア111よりも羽根車20に近い側に、径方向に貫通する排気孔131を備えている。このような電動送風機100は、凹部流路58の途中で冷却流が径方向外側に漏れることなく、固定子コア111の羽根車20に近い側へ冷却流F2を誘導する。回転電機200の羽根車20に近い側は、冷却流F2の下流に位置するため、冷却流F2が吸気されるエンドブラケット140の吸気孔141と比較して、固定子コア111、軸受122および電機子巻線113からの熱伝達により冷媒(流体)の温度が高くなり、温度の上昇が懸念される。しかしながら、電動送風機100は、冷却流F2を羽根車20に近い側へ効率よく誘導するため、必要な冷却流量を確保することができ、回転電機200の羽根車20に近い側の温度を効率よく低減することができる。 A side wall 135 of the motor case 130 is configured to cover the stator core 111 in the axial direction, and is configured to be fully closed at a portion facing the recess 165 in the radial direction. Further, the motor case 130 is provided with an exhaust hole 131 penetrating in the radial direction on the side closer to the impeller 20 than the stator core 111 is. Such an electric blower 100 guides the cooling flow F2 toward the side of the stator core 111 closer to the impeller 20 without the cooling flow leaking radially outward in the middle of the recessed passage 58 . Since the side of rotating electric machine 200 near impeller 20 is located downstream of cooling flow F2, stator core 111, bearing 122, and electric machine 200 are closer to each other than air intake hole 141 of end bracket 140 through which cooling flow F2 is drawn. The heat transfer from the child winding 113 raises the temperature of the coolant (fluid), and there is concern about the temperature rise. However, since the electric blower 100 efficiently guides the cooling flow F2 to the side closer to the impeller 20, it is possible to secure the required cooling flow rate, and the temperature of the rotating electric machine 200 closer to the impeller 20 can be efficiently reduced to can be reduced.
 なお、内側壁51は、エンドブラケット140よりも軸方向において羽根車20に近い側に配置されることが望ましい。これにより、電動送風機100は、モータケース130の側壁135と外側壁52との間の距離L1を、軸受格納部142と外側壁52との間の距離L2よりも小さくすることができる。このような電動送風機100は、ベンチュリ効果により、エンドブラケット140の吸気孔(第1の貫通孔)141の圧力の方を、内側壁51の端面54における圧力よりも高くできる。これにより、冷却流F2の吸気を促進することができる。 It should be noted that the inner wall 51 is desirably arranged closer to the impeller 20 than the end bracket 140 in the axial direction. Thereby, electric blower 100 can make distance L1 between side wall 135 of motor case 130 and outer wall 52 smaller than distance L2 between bearing housing portion 142 and outer wall 52 . Such an electric blower 100 can make the pressure in the air intake hole (first through hole) 141 of the end bracket 140 higher than the pressure in the end surface 54 of the inner wall 51 by the venturi effect. Thereby, the intake of the cooling flow F2 can be promoted.
 モータケース130は、第1ハウジング30および第2ハウジング40の別部品として構成される。これにより、モータケース130は、回転電機200の剛性および固定子コア111と取付部34に対する保持力を過度に損なわない範囲で、自由な位置および面積でモータケース130の排気孔131を設けることができる。これにより電動送風機100は、流路抵抗を低減して、冷却風量を増大させ、回転電機200の冷却を向上させることができる。 The motor case 130 is configured as a separate part of the first housing 30 and the second housing 40. As a result, motor case 130 can be provided with exhaust hole 131 at a free position and area within a range that does not excessively impair the rigidity of rotating electric machine 200 and the holding force with respect to stator core 111 and mounting portion 34 . can. As a result, electric blower 100 can reduce flow resistance, increase the amount of cooling air, and improve cooling of rotating electric machine 200 .
 フレーム150(モータケース130およびエンドブラケット140)の材質は、高熱伝導かつ高剛性な金属を選択するとよい。これにより、電動送風機100は、冷却流F2への軸受122および固定子コア111からの熱伝達を促進して、回転電機200の温度を低減するとともに、回転電機200の剛性を高めて駆動時の振動・騒音を抑制することができる。 For the material of the frame 150 (motor case 130 and end bracket 140), metal with high heat conductivity and high rigidity should be selected. As a result, electric blower 100 promotes heat transfer from bearing 122 and stator core 111 to cooling flow F2, reduces the temperature of rotating electrical machine 200, and increases the rigidity of rotating electrical machine 200 to Vibration and noise can be suppressed.
 内側壁51は、モータケース130の排気孔131を、軸方向において少なくとも一部を覆うように構成される。そのため、排気孔131から排気された冷却流F2は、羽根車20から遠い側に流速の向きが変化する。これにより、冷却流F2は、モータケース130の側壁135の径方向外側を流れて放熱を促進しつつ、主流F1と流速ベクトルが揃った状態で合流するため、主流F1に対して垂直に流入するのと比較して、渦による閉塞効果等によって主流F1の流れを妨げることを防ぎ、送風性能を向上させることができる。 The inner wall 51 is configured to cover at least a portion of the exhaust hole 131 of the motor case 130 in the axial direction. Therefore, the direction of flow velocity of the cooling flow F2 discharged from the exhaust hole 131 changes to the far side from the impeller 20 . As a result, the cooling flow F2 flows along the radially outer side of the side wall 135 of the motor case 130 to promote heat dissipation, and joins the main flow F1 with the flow velocity vectors aligned, so that the cooling flow F2 flows perpendicularly to the main flow F1. As compared with 1, it is possible to prevent obstruction of the flow of the main flow F1 due to the blocking effect of the vortex, etc., and improve the air blowing performance.
 嵌合孔35は、軸方向から見て閉塞されるように構成される。つまり、嵌合孔35は、取付部34と円板部133と回転子120のいずれかによって塞がれ、円板部133から取付部34へ軸方向に貫通する流路が形成されないように構成される。これにより、凹部流路58(図8及び図9参照)やスロット164(図8参照)、ギャップGp(図8参照)を通った冷却流F2は、羽根車20に近い側へ漏れず、取付部34、円板部133、回転子120のいずれかに衝突して、排気孔131からモータケース130と第1ハウジング30の第1内側壁31との間に排気される。そのため、電動送風機100は、流体の衝突による熱伝達の促進で回転電機200の羽根車20に近い側の放熱を促進することができる。 The fitting hole 35 is configured to be closed when viewed from the axial direction. In other words, the fitting hole 35 is closed by one of the mounting portion 34, the disk portion 133, and the rotor 120, and is configured so that a flow path penetrating from the disk portion 133 to the mounting portion 34 in the axial direction is not formed. be done. As a result, the cooling flow F2 that has passed through the concave passages 58 (see FIGS. 8 and 9), the slots 164 (see FIG. 8), and the gap Gp (see FIG. 8) does not leak to the side near the impeller 20. The air collides with any one of the portion 34 , the disk portion 133 and the rotor 120 and is exhausted from the exhaust hole 131 between the motor case 130 and the first inner wall 31 of the first housing 30 . Therefore, the electric blower 100 can promote heat transfer from the impeller 20 of the rotary electric machine 200 by promoting heat transfer due to the collision of the fluid.
 図8に示すように、固定子コア111の凹部165は、ヨーク161から見て傾斜角度の小さい第1傾斜部162aと傾斜角度の大きい第2傾斜部162bとの2段階に屈曲して設けられてもよい。第1傾斜部162aと第2傾斜部162bは、モータケース130の側壁135から離反するように形成された離反部分である。これにより、電動送風機100は、凹部流路58の流路面積を拡大すると共に、固定子コア111の放熱面積を増加させ、回転電機200の冷却を向上させることができる。また、電動送風機100は、第1傾斜部162aと第2傾斜部162bのように屈曲する部位を3つ以上設けた場合も、同様に、凹部流路58の流路面積を拡大すると共に、固定子コア111の放熱面積を増加させ、回転電機200の冷却を向上させることができる。 As shown in FIG. 8, the recess 165 of the stator core 111 is bent in two stages, a first inclined portion 162a having a small inclination angle and a second inclined portion 162b having a large inclination angle when viewed from the yoke 161. may The first inclined portion 162 a and the second inclined portion 162 b are separated portions formed to separate from the side wall 135 of the motor case 130 . As a result, the electric blower 100 can increase the flow area of the recessed flow path 58 , increase the heat radiation area of the stator core 111 , and improve the cooling of the rotating electric machine 200 . Further, even when the electric blower 100 is provided with three or more bending portions such as the first inclined portion 162a and the second inclined portion 162b, the passage area of the recessed portion passage 58 is similarly enlarged and the fixed portion is fixed. The heat dissipation area of child core 111 can be increased, and the cooling of rotating electric machine 200 can be improved.
 モータケース130の側壁135の内周面には、固定子コア111の凹部165に嵌合するように、突起部136が設けられている。これにより、電動送風機100は、固定子コア111の周方向に対する保持力を向上でき、回転電機200の剛性を高めることができる。そのため、電動送風機100は、駆動時の振動や騒音を抑制することができる。 A protrusion 136 is provided on the inner peripheral surface of the side wall 135 of the motor case 130 so as to fit into the recess 165 of the stator core 111 . As a result, electric blower 100 can improve the holding force of stator core 111 in the circumferential direction, and the rigidity of rotating electric machine 200 can be increased. Therefore, electric blower 100 can suppress vibration and noise during driving.
 以下、図10と図11を参照して、比較例の電動送風機1000の固定子コア1111と本実施形態1に係る電動送風機100の固定子コア111の温度上昇の違いについて説明する。図10は、比較例の電動送風機1000の回転電機1200の構造図である。図11は、比較例の電動送風機1000の固定子コア1111と本実施形態1に係る電動送風機100の固定子コア111の温度上昇の実測結果である。 A difference in temperature rise between the stator core 1111 of the electric blower 1000 of the comparative example and the stator core 111 of the electric blower 100 according to the first embodiment will be described below with reference to FIGS. FIG. 10 is a structural diagram of rotating electrical machine 1200 of electric blower 1000 of a comparative example. FIG. 11 shows the actual measurement results of the temperature rise of the stator core 1111 of the electric blower 1000 of the comparative example and the stator core 111 of the electric blower 100 according to the first embodiment.
 図10に示すように、比較例の電動送風機1000の回転電機1200は、本実施形態1に係る電動送風機100の回転電機200(図8参照)と比較すると、凹部流路58(図8参照)を有していない点で相違する。つまり、比較例の電動送風機1000の回転電機1200は、本実施形態1に係る電動送風機100の回転電機200(図8参照)と比較すると、モータケース130の側壁135から離反するように形成された離反部分(第1傾斜部162aと第2傾斜部162b(図8参照))を有していない点で相違する。また、比較例の電動送風機1000は、本実施形態1に係る電動送風機100の回転電機200(図8参照)と比較すると、固定子コア1111の外周面が全てモータケース130に覆われている点で相違する。 As shown in FIG. 10, the rotating electric machine 1200 of the electric blower 1000 of the comparative example is compared with the rotating electric machine 200 (see FIG. 8) of the electric blower 100 according to the first embodiment. The difference is that it does not have That is, the rotating electric machine 1200 of the electric blower 1000 of the comparative example is formed so as to separate from the side wall 135 of the motor case 130 as compared with the rotating electric machine 200 (see FIG. 8) of the electric blower 100 according to the first embodiment. The difference is that they do not have separated portions (first inclined portion 162a and second inclined portion 162b (see FIG. 8)). Further, in the electric blower 1000 of the comparative example, compared with the rotary electric machine 200 (see FIG. 8) of the electric blower 100 according to Embodiment 1, the outer peripheral surface of the stator core 1111 is entirely covered with the motor case 130. differ in
 比較例の電動送風機1000に対して、本実施形態1に係る電動送風機100は、凹部流路58を有することで、冷却流F2(図9参照)の流路面積を増加して、冷却風量を向上させることができる。また、本実施形態1に係る電動送風機100は、凹部流路58において固定子コア111を直接冷却するとともに、固定子コア111の放熱面積を増加させることができる。このような本実施形態1に係る電動送風機100は、図11に示すように、比較例の電動送風機1000と比較すると、固定子コア111の温度上昇を0.8倍に低減することができる。 Compared to the electric blower 1000 of the comparative example, the electric blower 100 according to the first embodiment has the recessed passages 58, thereby increasing the passage area of the cooling flow F2 (see FIG. 9) and increasing the cooling air volume. can be improved. In addition, the electric blower 100 according to the first embodiment can directly cool the stator core 111 in the concave passage 58 and increase the heat radiation area of the stator core 111 . As shown in FIG. 11, the electric blower 100 according to the first embodiment can reduce the temperature rise of the stator core 111 by 0.8 times as compared with the electric blower 1000 of the comparative example.
 以上の通り、本実施形態1に係る電動送風機100によれば、回転電機200の冷却性能を向上することができる。また、電気掃除機300は、本実施形態1に係る電動送風機100を備えることにより、回転電機200の温度上昇を抑えて、送風性能を向上させることができるため、吸引力を向上させることができる。 As described above, according to the electric blower 100 according to the first embodiment, the cooling performance of the rotating electric machine 200 can be improved. Further, by including the electric blower 100 according to the first embodiment, the electric vacuum cleaner 300 can suppress the temperature rise of the rotating electric machine 200 and improve the air blowing performance, so that the suction force can be improved. .
 [実施形態2]
 以下、図12を参照して、本実施形態2に係る電動送風機100Aに用いる回転電機200Aの構成について説明する。図12は、本実施形態2に係る電動送風機100Aに用いる回転電機200Aの斜視図である。
[Embodiment 2]
Hereinafter, with reference to FIG. 12, the configuration of a rotating electric machine 200A used in the electric blower 100A according to the second embodiment will be described. FIG. 12 is a perspective view of a rotary electric machine 200A used in the electric blower 100A according to the second embodiment.
 図12に示すように、本実施形態2に係る電動送風機100Aに用いる回転電機200Aは、実施形態1に係る電動送風機100A用いる回転電機200(図7参照)と比較すると、モータケース130の側壁135に貫通孔137が形成されている点で相違している。本実施形態2では、モータケース130は、固定子コア111との接触部位135a(図8参照)において、貫通孔137として、径方向に貫通する少なくとも1つの第3の貫通孔を備えている。 As shown in FIG. 12, the rotating electric machine 200A used for the electric blower 100A according to the second embodiment is different from the rotating electric machine 200 (see FIG. 7) using the electric blower 100A according to the first embodiment. The difference is that a through hole 137 is formed in the . In the second embodiment, the motor case 130 is provided with at least one third through-hole as the through-hole 137 at the contact portion 135a (see FIG. 8) with the stator core 111, penetrating in the radial direction.
 本実施形態2に係る電動送風機100Aは、回転電機200Aのモータケース130において、軸方向の固定子コア111と重なる部分であって、ヨーク161(図8参照)と側壁135とが当接する部分の一部に、貫通孔137を追加して設けている。これにより、本実施形態2に係る電動送風機100Aは、回転電機200Aのモータケース130を軽量化すると同時に、冷却流F2が側壁135の径方向外側を流れる際に、貫通孔137により表出した固定子コア111を直接冷却することができる。 In the electric blower 100A according to the second embodiment, in the motor case 130 of the rotary electric machine 200A, the portion overlapping the stator core 111 in the axial direction and the portion where the yoke 161 (see FIG. 8) and the side wall 135 abut. A through hole 137 is additionally provided in part. As a result, the electric blower 100A according to the second embodiment can reduce the weight of the motor case 130 of the rotating electric machine 200A, and at the same time, when the cooling flow F2 flows on the radially outer side of the side wall 135, the fixed portion exposed by the through-hole 137 can be fixed. Child core 111 can be directly cooled.
 このような本実施形態2に係る電動送風機100Aは、実施形態1に係る電動送風機100よりも、さらに固定子コア111の冷却性能を向上させることができる。また、本実施形態2に係る電動送風機100Aは、貫通孔137の外縁部において、固定子コア111を接着、もしくは溶接することにより、固定子コア111の保持力を増加して破損を防ぎ、回転電機200Aの剛性を向上して振動、騒音を抑制することができる。 The electric blower 100A according to the second embodiment can improve the cooling performance of the stator core 111 more than the electric blower 100 according to the first embodiment. Further, in the electric blower 100A according to the second embodiment, the stator core 111 is adhered or welded to the outer edge of the through hole 137, thereby increasing the holding force of the stator core 111 to prevent breakage and prevent rotation. Vibration and noise can be suppressed by improving the rigidity of the electric machine 200A.
 [実施形態3]
 以下、図13を参照して、本実施形態3に係る電動送風機100Bに用いる回転電機200Bの構成について説明する。図13は、本実施形態3に係る電動送風機100Bに用いる回転電機200Bの斜視図である。
[Embodiment 3]
Hereinafter, with reference to FIG. 13, the configuration of the rotary electric machine 200B used for the electric blower 100B according to the third embodiment will be described. FIG. 13 is a perspective view of a rotating electrical machine 200B used in an electric blower 100B according to the third embodiment.
 図13に示すように、本実施形態3に係る電動送風機100Bは、実施形態2に係る電動送風機100Aに用いる回転電機200A(図12参照)と比較すると、モータケース130の側壁135に第2吸気孔138が形成されている点で相違している。本実施形態3では、モータケース130は、軸方向において固定子コア111に対して羽根車20(図9参照)から遠い側に、第2吸気孔138として、径方向に貫通するように形成された少なくとも1つの第4の貫通孔を備える。 As shown in FIG. 13, the electric blower 100B according to the third embodiment has a second air intake at the side wall 135 of the motor case 130 in comparison with the rotary electric machine 200A (see FIG. 12) used for the electric blower 100A according to the second embodiment. The difference is that holes 138 are formed. In the third embodiment, the motor case 130 is formed radially through the stator core 111 on the far side from the impeller 20 (see FIG. 9) as a second air intake hole 138. and at least one fourth through hole.
 本実施形態3に係る電動送風機100Bでは、回転電機200Bのモータケース130は、軸方向において固定子コア111に対して羽根車20(図9参照)から遠い側に、第2吸気孔138を追加して設けている。これにより、本実施形態3に係る電動送風機100Bは、前記した実施形態2に係る電動送風機100A(図12参照)よりも、回転電機200Bのモータケース130を軽量化すると同時に、吸気孔141に加えて第2吸気孔138も冷却流F2の吸気口として機能させることができる。 In the electric blower 100B according to Embodiment 3, the motor case 130 of the rotary electric machine 200B has a second air intake hole 138 added to the side of the stator core 111 farther from the impeller 20 (see FIG. 9) in the axial direction. is provided. As a result, in the electric blower 100B according to the third embodiment, the motor case 130 of the rotary electric machine 200B is made lighter than the electric blower 100A according to the second embodiment (see FIG. 12). Therefore, the second air intake hole 138 can also function as an air intake for the cooling flow F2.
 このような本実施形態3に係る電動送風機100Bは、前記した実施形態2に係る電動送風機100A(図12参照)よりも、流路抵抗を減少させることができる。このような本実施形態3に係る電動送風機100Bは、前記した実施形態2に係る電動送風機100A(図12参照)よりも、さらに回転電機200の冷却性能を向上させることができる。 The electric blower 100B according to the third embodiment can reduce the flow resistance more than the electric blower 100A according to the second embodiment (see FIG. 12). Such an electric blower 100B according to the third embodiment can further improve the cooling performance of the rotary electric machine 200 as compared with the electric blower 100A (see FIG. 12) according to the second embodiment.
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、実施形態の構成に他の構成を加えることも可能である。また、各構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of the embodiment can be replaced with another configuration, and it is also possible to add another configuration to the configuration of the embodiment. Moreover, it is possible to add, delete, or replace a part of each configuration with another configuration.
 例えば、前記した実施形態の回転電機200では、永久磁石124の極数を4極としているが、これに限らず、2極や6極など他の極数でもよい。なお、永久磁石124の着磁分布としては、極異方性、ハルバッハ配列、並行着磁、径方向着磁など各種の着磁分布が適用できる。 For example, in the rotary electric machine 200 of the above-described embodiment, the number of poles of the permanent magnets 124 is four, but the number of poles is not limited to this, and may be other numbers such as two or six. As the magnetization distribution of the permanent magnet 124, various magnetization distributions such as polar anisotropy, Halbach array, parallel magnetization, and radial magnetization can be applied.
 また、相数は3に限らず、1や6など他の整数を選択してもよい。
 また、回転電機は、表面磁石型でもよいし、埋込磁石型でもよい。
Also, the number of phases is not limited to 3, and other integers such as 1 and 6 may be selected.
Also, the rotating electric machine may be of a surface magnet type or of an embedded magnet type.
 また、電気掃除機300は、前記した実施形態1から実施形態3のいずれかに係る電動送風機100,100A,100Bを備えることにより、回転電機200の温度上昇を抑えて、送風性能を向上させることができるため、吸引力を向上させることができる。 Further, the electric vacuum cleaner 300 is provided with the electric blowers 100, 100A, and 100B according to any one of the first to third embodiments described above, thereby suppressing the temperature rise of the rotary electric machine 200 and improving the blowing performance. Therefore, the suction power can be improved.
 10  ファンカバー
 11  突出部
 20  羽根車
 21  翼部
 22  傘部
 3  嵌合用貫通孔
 24  嵌合部材
 25  ナット
 29  ハウジング
 30  第1ハウジング
 31  第1内側壁
 32  第1ディフューザ
 33  第1外側壁
 34  取付部
 35  嵌合孔
 36  位置決め突起
 37  爪突起
 38  ポケット部
 40  第2ハウジング
 41  第2内側壁
 42  第2ディフューザ
 43  第2外側壁
 44a  突出部
 44b  嵌合孔
 51  内側壁(第1の側壁)
 52  外側壁(第2の側壁)
 53…吸気口
 54  端面
 55  排気口
 56a,56b  軸方向端部
 58  凹部流路(空間部)
 100,100A,100B,1000  電動送風機
 110,1110  固定子
 111,1111  固定子コア
 112  ボビン
 113  電機子巻線
 120  回転子
 121  回転軸
 122  軸受
 123  バランスリング
 124  永久磁石
 125  カバー
 130  モータケース
 131  排気孔(第2の貫通孔)
 132,142  軸受格納部
 133  円板部
 134  位置決め孔
 135  側壁
 135a  接触部位
 136  突起部
 137  貫通孔(第3の貫通孔)
 138  第2吸気孔(第4の貫通孔)
 140  エンドブラケット
 141  吸気孔(第1の貫通孔)
 143  円板部
 144  嵌合用凸部
 150  フレーム
 161  ヨーク
 162a  第1傾斜部(離反部分)
 162b  第2傾斜部(離反部分)
 163  ティース
 164  スロット
 165  凹部
 166  対向部位
 200,200A,200B,1200  回転電機
 300  電気掃除機
 301  集塵室
 302  伸縮パイプ
 303  グリップ部
 304  スイッチ部
 305  吸口体
 306  接続部
 307  ハンディグリップ部
 308  吸口体
 310  掃除機本体
 320  電池ユニット
 330  駆動用回路
 340  流路
 F1  主流
 F2  冷却流
 F3  旋回流
 Gp  ギャップ
 L1,L2  距離
REFERENCE SIGNS LIST 10 fan cover 11 projecting portion 20 impeller 21 blade portion 22 umbrella portion 3 fitting through hole 24 fitting member 25 nut 29 housing 30 first housing 31 first inner wall 32 first diffuser 33 first outer wall 34 mounting portion 35 Fitting hole 36 Positioning projection 37 Claw projection 38 Pocket portion 40 Second housing 41 Second inner wall 42 Second diffuser 43 Second outer wall 44a Protruding portion 44b Fitting hole 51 Inner wall (first side wall)
52 outer wall (second side wall)
53 Intake port 54 End face 55 Exhaust port 56a, 56b Axial end 58 Concave passage (space)
100, 100A, 100B, 1000 electric blower 110, 1110 stator 111, 1111 stator core 112 bobbin 113 armature winding 120 rotor 121 rotating shaft 122 bearing 123 balance ring 124 permanent magnet 125 cover 130 motor case 131 exhaust hole ( second through hole)
132, 142 bearing storage portion 133 disk portion 134 positioning hole 135 side wall 135a contact portion 136 protrusion 137 through hole (third through hole)
138 second intake hole (fourth through hole)
140 end bracket 141 intake hole (first through hole)
143 Disc portion 144 Fitting convex portion 150 Frame 161 Yoke 162a First inclined portion (separated portion)
162b Second inclined portion (retracted portion)
163 Teeth 164 Slot 165 Recessed portion 166 Opposing portion 200, 200A, 200B, 1200 Rotating electrical machine 300 Vacuum cleaner 301 Dust collection chamber 302 Expansion pipe 303 Grip part 304 Switch part 305 Mouthpiece 306 Connection part 307 Handy grip part 308 Mouthpiece 310 Cleaning Main body 320 Battery unit 330 Drive circuit 340 Flow path F1 Main flow F2 Cooling flow F3 Swirling flow Gp Gap L1, L2 Distance

Claims (9)

  1.  回転軸と前記回転軸を支持する軸受とを有する回転子と、
     固定子コアと電機子巻線とを有する固定子と、
     前記回転子と前記固定子とを内包する円筒状のフレームと、
     前記フレームを固定するハウジングと、
     前記回転軸の一端側に固定された羽根車と、を備え、
     前記フレームは、前記固定子コアと当接するモータケースと、前記モータケースに軸方向において固定されるエンドブラケットと、を有するとともに、軸方向において前記固定子コアに対して前記羽根車から遠い側に形成された第1の貫通孔と、軸方向において前記固定子コアに対して前記羽根車側に、側面を半径方向に貫通するように形成された第2の貫通孔と、を有し、
     前記固定子コアは、円筒側面から凹んで構成される凹部と、前記モータケースの側壁から離反する離反部分と、を有し、
     前記フレームの前記モータケースは、回転軸方向において前記固定子コアを覆うように構成され、
     前記モータケースの、前記凹部に対向する対向部位は半径方向外側を全閉するように構成され、
     前記凹部と前記モータケースとで囲まれた空間部は、前記固定子コアの軸方向端面において軸方向に開口するように構成される
    ことを特徴とする電動送風機。
    a rotor having a rotating shaft and bearings supporting the rotating shaft;
    a stator having a stator core and an armature winding;
    a cylindrical frame containing the rotor and the stator;
    a housing for fixing the frame;
    and an impeller fixed to one end of the rotating shaft,
    The frame has a motor case that contacts the stator core, and an end bracket that is axially fixed to the motor case. a first through-hole formed, and a second through-hole formed so as to radially penetrate a side surface on the impeller side of the stator core in the axial direction,
    The stator core has a concave portion that is recessed from the cylindrical side surface and a separated portion that separates from the side wall of the motor case,
    The motor case of the frame is configured to cover the stator core in the rotation axis direction,
    A portion of the motor case facing the recess is configured to fully close radially outward,
    An electric blower according to claim 1, wherein a space surrounded by the recess and the motor case is configured to open axially at an axial end surface of the stator core.
  2.  請求項1に記載の電動送風機において、
     前記ハウジングは、前記第2の貫通孔の径方向外側に空隙を介して対向する第1の側壁と、前記第1の側壁の半径方向外側に空隙を介して対向する第2の側壁とを備え、
     前記第1の側壁は、前記第2の貫通孔よりも軸方向において羽根車側に設けられる
    ことを特徴とする電動送風機。
    In the electric blower according to claim 1,
    The housing includes a first side wall facing radially outwardly of the second through hole with a gap therebetween, and a second side wall facing radially outwardly of the first side wall with a gap therebetween. ,
    The electric blower, wherein the first side wall is provided closer to the impeller than the second through hole in the axial direction.
  3.  請求項1に記載の電動送風機において、
     前記フレームの材質が金属である
    ことを特徴とする電動送風機。
    In the electric blower according to claim 1,
    An electric blower, wherein the frame is made of metal.
  4.  請求項2に記載の電動送風機において、
     前記ハウジングの前記第1の側壁は、軸方向において前記第2の貫通孔の少なくとも一部を覆うように構成される
    ことを特徴とする電動送風機。
    In the electric blower according to claim 2,
    The electric blower, wherein the first side wall of the housing is configured to cover at least part of the second through hole in the axial direction.
  5.  請求項1に記載の電動送風機において、
     前記フレームは、前記回転軸に垂直かつ前記羽根車側の面において、前記回転子によって、もしくは前記回転子と前記ハウジングとによって、軸方向に全閉されるように構成される
    ことを特徴とする電動送風機。
    In the electric blower according to claim 1,
    The frame is configured to be fully closed in the axial direction by the rotor or by the rotor and the housing on a surface perpendicular to the rotating shaft and on the impeller side. electric blower.
  6.  請求項1乃至請求項5のいずれか一項に記載の電動送風機において、
     前記モータケースは、前記固定子コアとの接触部位において、径方向に貫通する少なくとも1つの第3の貫通孔を備える
    ことを特徴とする電動送風機。
    In the electric blower according to any one of claims 1 to 5,
    An electric blower, wherein the motor case has at least one third through hole penetrating in a radial direction at a contact portion with the stator core.
  7.  請求項1に記載の電動送風機において、
     前記モータケースは、軸方向において前記固定子コアに対して羽根車から遠い側に、径方向に貫通するように形成された少なくとも1つの第4の貫通孔を備える
    ことを特徴とする電動送風機。
    In the electric blower according to claim 1,
    An electric blower, wherein the motor case is provided with at least one fourth through-hole formed so as to penetrate in the radial direction on a side farther from the impeller with respect to the stator core in the axial direction.
  8.  請求項1に記載の電動送風機において、
     前記固定子コアの前記凹部は、傾斜角度が大きくなるように少なくとも2段階に屈曲して構成される
    ことを特徴とする電動送風機。
    In the electric blower according to claim 1,
    An electric blower, wherein the concave portion of the stator core is bent in at least two steps so as to increase the inclination angle.
  9.  請求項1乃至請求項8のいずれか一項に記載の電動送風機を備える
    ことを特徴とする電気掃除機。
    A vacuum cleaner comprising the electric blower according to any one of claims 1 to 8.
PCT/JP2022/024771 2022-02-24 2022-06-21 Electric blower and electric vacuum cleaner using same WO2023162284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022026790A JP2023122994A (en) 2022-02-24 2022-02-24 Electric blower and electric vacuum cleaner using the same
JP2022-026790 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023162284A1 true WO2023162284A1 (en) 2023-08-31

Family

ID=87765299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024771 WO2023162284A1 (en) 2022-02-24 2022-06-21 Electric blower and electric vacuum cleaner using same

Country Status (2)

Country Link
JP (1) JP2023122994A (en)
WO (1) WO2023162284A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135747A (en) * 1993-11-10 1995-05-23 Toshiba Corp Rotary electric machine
JPH07241059A (en) * 1994-02-25 1995-09-12 Hitachi Ltd Electric rotating machine
JP2010068575A (en) * 2008-09-09 2010-03-25 Sanyo Electric Co Ltd Electric blower
JP2016044559A (en) * 2014-08-20 2016-04-04 パナソニックIpマネジメント株式会社 Electric blower and vacuum cleaner using the same
WO2021100292A1 (en) * 2019-11-21 2021-05-27 日立グローバルライフソリューションズ株式会社 Slotless electric motor, electric blower, and electric vacuum cleaner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135747A (en) * 1993-11-10 1995-05-23 Toshiba Corp Rotary electric machine
JPH07241059A (en) * 1994-02-25 1995-09-12 Hitachi Ltd Electric rotating machine
JP2010068575A (en) * 2008-09-09 2010-03-25 Sanyo Electric Co Ltd Electric blower
JP2016044559A (en) * 2014-08-20 2016-04-04 パナソニックIpマネジメント株式会社 Electric blower and vacuum cleaner using the same
WO2021100292A1 (en) * 2019-11-21 2021-05-27 日立グローバルライフソリューションズ株式会社 Slotless electric motor, electric blower, and electric vacuum cleaner

Also Published As

Publication number Publication date
JP2023122994A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP6401075B2 (en) Electric blower and vacuum cleaner
US11588386B2 (en) Motor, fan, electric vacuum cleaner, and hand drier
JP2000333409A (en) Induction motor
WO2016121448A1 (en) Electric blower and electric vacuum cleaner equipped with same
US11268532B2 (en) Electric blower, electric vacuum cleaner, and hand dryer
JP2021170931A (en) Motor blower, vacuum cleaner and hand drier
WO2021100292A1 (en) Slotless electric motor, electric blower, and electric vacuum cleaner
EP4148961A1 (en) Motor assembly
WO2023162284A1 (en) Electric blower and electric vacuum cleaner using same
JP6653363B2 (en) Electric blower
JP2021085399A (en) Blower and cleaner
JP2018191509A (en) Electric blower and vacuum cleaner
AU2020445869B2 (en) Motor assembly
JP2016158402A (en) Electric blower and vacuum cleaner
JP7478609B2 (en) Electric blower and vacuum cleaner equipped with the same
EP4148956A1 (en) Motor assembly
CN110680229B (en) Electric fan and electric dust collector equipped with same
JP2022062289A (en) Electric motor and electric blower
JPH10290551A (en) Motor
WO2023286293A1 (en) Electric blower, and electric vacuum cleaner provided with same
WO2022202273A1 (en) Electric blower
WO2023021597A1 (en) Rotary electrical machine
WO2022209344A1 (en) Electric air blower and cooling fan
JP2020096530A (en) Electric blower and vacuum cleaner
JPWO2022202273A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928806

Country of ref document: EP

Kind code of ref document: A1