WO2023286293A1 - Electric blower, and electric vacuum cleaner provided with same - Google Patents

Electric blower, and electric vacuum cleaner provided with same Download PDF

Info

Publication number
WO2023286293A1
WO2023286293A1 PCT/JP2022/000839 JP2022000839W WO2023286293A1 WO 2023286293 A1 WO2023286293 A1 WO 2023286293A1 JP 2022000839 W JP2022000839 W JP 2022000839W WO 2023286293 A1 WO2023286293 A1 WO 2023286293A1
Authority
WO
WIPO (PCT)
Prior art keywords
downstream
housing
upstream
motor
electric blower
Prior art date
Application number
PCT/JP2022/000839
Other languages
French (fr)
Japanese (ja)
Inventor
武史 本多
誠二 坂上
啓祐 竹内
賢宏 伊藤
将太 山上
孔陽 川本
聡 菊地
真一 湧井
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Priority to CN202280047234.4A priority Critical patent/CN117597522A/en
Publication of WO2023286293A1 publication Critical patent/WO2023286293A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer

Definitions

  • the present invention relates to an electric blower and a vacuum cleaner equipped with it.
  • Patent Document 1 describes "an impeller having an impeller 10 rotating around a vertically extending central axis C and a stator 24 disposed below the impeller. , a motor housing 21 that houses the stator, and a fan casing 2 that houses the impeller and the motor housing and forms the first flow path 5 in the gap between the motor housing and the upper part of the fan casing. covers the top of the impeller and has an intake port 3 that opens vertically, and an exhaust port 4 that communicates with the intake port via a first flow path is provided in the lower part of the fan casing.
  • an inlet 21a penetrating in the radial direction and communicating with the first flow path is provided, and the motor housing extends upward from the inlet and is above the stator.
  • a blower device having a second flow path 6 communicating with the space of .
  • vacuum cleaners driven by batteries such as cordless stick vacuum cleaners and autonomous driving vacuum cleaners (robot vacuum cleaners) consume less power due to the battery capacity, and the maximum air flow is also low. small. Therefore, when the filter is clogged, there is a problem that the dust carrying capacity is lowered and the suction power of the vacuum cleaner is lowered.
  • battery-powered vacuum cleaners are required to be compact and lightweight, and electric blowers mounted on vacuum cleaners are required to have both a strong suction force over a wide air volume range and a small size.
  • part of the airflow S flowing through the outer first flow path 5 flows into the inlet 21a provided in the peripheral wall of the motor housing 21. , flows into the inner second flow path 6, cools the upper bearing 26, further cools the lower bearing 26, and flows into the second flow path 6 without joining the first flow path 5.
  • the air is exhausted to the outside of the blower 1 from the outlet (outflow port 29a).
  • part of the airflow S flowing through the first flow path 5 is In the first flow path 5, the air volume downstream of the inflow port 21a (branch point) is smaller than the air volume upstream of the inflow port 21a (branch point) due to the pressure loss (resistance) at the time of branching. rice field.
  • the present invention is intended to solve the above problems, and is an electric blower that is compact and lightweight, has high efficiency in a wide air volume range, and has high motor cooling efficiency, and a vacuum cleaner equipped with the same. for the purpose of providing
  • an electric blower in which a first flow path circulates inside a blower section and a second flow path circulates inside a motor section, wherein the motor section rotates a shaft, a bearing that rotatably supports the rotating shaft, a rotor core fixed to the rotating shaft, a stator core that surrounds the outer periphery of the rotor core, a stator core that holds the stator core, and an upstream radial direction on the side surface.
  • An opening and a motor housing having a downstream radial opening are provided, and the blower section includes an impeller fixed to the tip of the rotating shaft, a fan casing covering the outer circumference of the impeller, and the motor section. and a downstream housing surrounding the downstream outer periphery of the motor section, wherein the first flow path extends between the inner wall and the outer wall of the upstream housing and the downstream Circulating between the inner wall and the outer wall of the side housing, the second flow path extends from the downstream side radial opening to the rotation axis direction opening of the downstream side motor housing, the inside of the motor section, the upstream side radial opening, Circulates between the inner wall of the motor housing and the upstream housing and between the inner wall of the motor housing and the downstream housing, and faces the downstream radial opening on the downstream side of the downstream housing.
  • An electric blower with an annular diffuser was used.
  • an electric blower that is compact and lightweight, has high efficiency in a wide air volume range, and has a high motor cooling efficiency, and a vacuum cleaner equipped with the electric blower. .
  • FIG. 1 is a longitudinal sectional view of an electric blower of one embodiment;
  • FIG. 4 is a plan view of the upstream housing of one embodiment;
  • FIG. 4 is a vertical cross-sectional view of the upstream housing of one embodiment;
  • FIG. 4 is a partial cross-sectional view of the upstream housing of one embodiment;
  • FIG. 4 is a plan view of the downstream housing of one embodiment;
  • FIG. 4 is a vertical cross-sectional view of the downstream side housing of one embodiment;
  • FIG. 4 is a partial cross-sectional perspective view of an example downstream housing.
  • FIG. 2 is an external view of a motor section of one embodiment;
  • FIG. 2 is a vertical cross-sectional view of the motor portion of one embodiment;
  • FIG. 4 is a longitudinal sectional view showing an example of the structure of the second channel;
  • FIG. 4 is a longitudinal sectional view showing an example of the structure of the second channel;
  • FIG. 4 is a longitudinal sectional view showing an example of the structure of the second channel;
  • 1 is a perspective view of an electric vacuum cleaner of one embodiment;
  • FIG. 1 is a longitudinal sectional view of an electric vacuum cleaner of one embodiment;
  • FIG. 4 is a graph comparing blower efficiencies of electric blowers of an example and a comparative example. 4 is a graph comparing temperature rises of electric blowers of an example and a comparative example.
  • FIG. 7 is a perspective view of vacuum cleaner 100
  • FIG. 8 is a longitudinal sectional view of vacuum cleaner 100.
  • the illustrated electric vacuum cleaner 100 is a rechargeable cordless stick vacuum cleaner in which a cleaner main body 110 is attached to a holding portion 120, and can be charged while placed on a charging base 130.
  • FIG. Although a rechargeable cordless stick cleaner is exemplified here, the electric blower 200 of the present invention may be incorporated in a non-rechargeable stick cleaner equipped with a power cord.
  • the cleaner main body 110 is a unit that can be used independently as a handy cleaner, and has a main body grip part 111 on the upper part to be gripped by the user when using it as a handy cleaner, and a lower part that can be used as a handy cleaner.
  • a suction opening 112 is provided for sucking dust when cleaning.
  • Inside the cleaner body 110 are a dust collection chamber 113 for collecting dust, an electric blower 200 for generating a suction airflow necessary for dust collection, a drive circuit 114 for driving the electric blower 200, and a drive circuit. It has a battery unit 115 that supplies power to 114 .
  • the holding part 120 is a unit to which the cleaner main body 110 can be attached and detached.
  • a suction body 122 for sucking dust and a connecting portion 122a for connecting the suction body 122 and the suction opening 112 are provided.
  • the body grip portion 111 of the cleaner body 110 is provided with a body switch portion 111a for turning on/off the drive of the electric blower 200 when used as a handy cleaner.
  • 121 is provided with a switch portion 121a for turning on/off the driving of the electric blower 200 when used as a stick cleaner.
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A to 6 ⁇ Electric blower 200>
  • FIG. 1A is an external view of the electric blower 200
  • FIG. 1B is a longitudinal sectional view of the electric blower 200.
  • FIG. Since the electric blower 200 of the present embodiment is a blower that sucks in air from the upper air intake port 200a and discharges air from the lower air exhaust port 200b when the impeller 1 is rotated, Define downstream. Focusing on the installation direction of the rotating shaft 2, the axial direction and the radial direction are defined as shown in the figure. In this state, the air intake port 200a of the electric blower 200 is directed downward and the exhaust port 200b is directed upward so that dust can be sucked up from the suction port body 122 in the lower part of the electric vacuum cleaner 100 into the upper dust collection chamber 113. It is assumed that the electric blower 200 is installed inside the electric vacuum cleaner 100 (see FIG. 8).
  • the outer circumference of the electric blower 200 is covered with an outer shell that integrates the fan casing 3, the upstream housing 4, and the downstream housing 5. As shown in FIG. A specific method for integrating these will be described later.
  • a rotating shaft 2 is rotatably arranged inside the electric blower 200, and an impeller 1 that rotates integrally with the rotating shaft 2 is fixed to its upper end.
  • the impeller 1 is fixed by a nut screwed to the upper end of the rotating shaft 2, but the impeller 1 may be fixed by being press-fitted to the tip of the rotating shaft 2.
  • the electric blower 200 of the present embodiment can sufficiently cool the inside of the motor unit 202 while maintaining the suction force in a wide air volume range by circulating a desired air flow through the first flow path F1 and the second flow path F2.
  • the structure of is divided into the blower section 201 and the motor section 202 and will be described in order.
  • the blower unit 201 is a unit for the electric vacuum cleaner 100 to generate an air flow for sucking dust, and as shown in FIG.
  • An upstream diffuser blade 8 provided on the inner circumference, a downstream diffuser blade 9 provided on the inner circumference of the downstream housing 5, and the like are arranged.
  • the upper and lower diffuser blades are provided to control the flow velocity of the air flow on the downstream side of the impeller 1 and to control the static pressure. As long as it can be maintained, it is also possible to omit part or all of the diffuser blades. Each part will be described in order below.
  • FIGS. 2A and 2B are perspective views of the impeller 1
  • FIG. 2B is a longitudinal sectional view of the impeller 1.
  • FIG. The impeller 1 shown in both figures is an open-type mixed-flow impeller without a shroud plate. has a boss 13 of The impeller 1 of this embodiment may be a diagonal flow impeller having a shroud plate, a centrifugal impeller, or an axial flow impeller.
  • a metal sleeve 14 is integrally formed on the back side of the hub 11 coaxially with the boss 13 of the impeller 1 .
  • a sleeve 14 By using such a sleeve 14, it is possible to reduce the variation in the fitting gap between the impeller 1 and the rotating shaft 2, which is likely to occur when the sleeve is not used, and to reduce the imbalance of the impeller 1. Vibration and noise when the impeller 1 is rotationally driven can be reduced.
  • a convex portion 14 a is provided on the downstream side of the sleeve 14 . The function of this convex portion 14a will be described later.
  • the fan casing 3 is a cover that covers the outer circumference of the impeller 1 and is integrally molded of engineering plastic or thermoplastic resin. As shown in FIG. 1 shroud plate function.
  • FIGS. 3A to 3C are plan views of the upstream housing 4 viewed from the upstream side
  • FIG. 3B is a vertical cross-sectional view of the upstream housing 4
  • FIG. 3C is a partial cross-sectional view of the upstream housing 4 viewed from the outer circumference.
  • the shroud of the upstream housing 4 is partially omitted to show the shape of the upstream diffuser blade 8 (in particular, the positions of the leading edge 8a and the trailing edge 8b).
  • the upstream housing 4 and the upstream diffuser blades 8 are integrally molded from engineering plastic or thermoplastic resin. As shown in FIGS. Between the shrouds, a plurality of upstream diffuser blades 8 integrally formed therewith are arranged at regular intervals in the circumferential direction.
  • the length (chord length) from the leading edge 8a to the trailing edge 8b of the upstream diffuser blade 8 is longer on the outer wall 4b side than on the inner wall 4a side. This is because, downstream of the impeller 1, the wind speed on the outer peripheral side is faster than that on the inner peripheral side. It is for the purpose of planning. Although a configuration in which 15 upstream diffuser blades 8 are provided is exemplified here, the number of upstream diffuser blades 8 can be changed according to the specifications of the electric blower 200 .
  • projections 4c are provided at three equal intervals on the outer periphery of the outer wall 4b of the upstream housing 4, into which the claw portions 5c of the downstream housing 5, which will be described later, are fitted.
  • the upstream housing 4 and the downstream housing 5 can be integrated while being centered (see FIG. 1B).
  • fastening portions 4d are provided at two locations on the top surface of the upstream housing 4, and the motor portion 202 can be fastened there while being centered (FIG. 1B). reference).
  • a fitting portion 4e is provided on the outer periphery of the outer wall 4b of the upstream side housing 4 except for the protrusion 4c, and the lower end of the fan casing 3 is fitted into the fitting portion 4e and fixed by adhesion. By doing so, the fan casing 3 and the upstream housing 4 can be integrated while being centered (see FIG. 1B).
  • FIGS. 4A to 4C are views of the downstream housing 5 viewed from the upstream side
  • FIG. 4B is a vertical sectional view of the downstream housing 5
  • FIG. 4C is a partial cross-sectional perspective view of the downstream housing 5 viewed from the outer periphery.
  • the shroud of the downstream housing 5 is partially omitted to show the shape of the downstream diffuser blade 9 (in particular, the positions of the leading edge 9a and the trailing edge 9b).
  • the downstream housing 5 and the downstream diffuser blades 9 are integrally molded from engineering plastic or thermoplastic resin. As shown in FIGS. Between the shrouds, a plurality of downstream diffuser blades 9 integrally formed therewith are arranged at regular intervals in the circumferential direction. Here, a configuration in which 15 downstream diffuser blades 9 are provided is exemplified. This is because the number of blades 8 and the number of downstream diffuser blades 9 are matched.
  • claw portions 5c are provided at three locations on the outer circumference of the upper end of the downstream housing 5 at equal intervals, and a portion of the outer circumference of the upper end excluding the claw portions 5c has a fitting portion. 5d is provided.
  • annular diffuser 5 e without downstream diffuser blades 9 is provided on the downstream side of the downstream housing 5 . Details of the ring diffuser 5e will be described later.
  • either the inner wall 4a of the upstream housing 4 or the inner wall 5a of the downstream housing 5, or the outer wall 4b of the upstream housing 4 or the outer wall 5b of the downstream housing 5 is also integrated while their radial positions are substantially matched.
  • the inner surface of each flow path is made smooth and the loss in each flow path is reduced.
  • the trailing edge 8b of the upstream diffuser blade 8 and the leading edge 9a of the downstream diffuser blade 9 are arranged such that the pair of upstream diffuser blade 8 and downstream diffuser blade 9 function as one diffuser blade. , and the curved surfaces of the upstream diffuser blade 8 and the downstream diffuser blade 9 are smoothly continued.
  • the thickness of each diffuser blade increases from the upstream side to the downstream side, thereby increasing the static pressure and realizing high efficiency of the blower section 201.
  • FIG. 5A is a side external view of the motor section 202
  • FIG. 5B is a longitudinal sectional view of the motor section 202.
  • the illustrated motor unit 202 is a unit for rotating the impeller 1 of the blower unit 201, for example, within a range of 50,000 to 200,000 [rpm], and includes a rotating shaft 2, an upstream bearing 21, a downstream bearing 22, and a rotor core. 23, a stator core 24, a collar 25, an upstream motor housing 6, a downstream motor housing 7, and the like. Each part will be described in order below.
  • the motor section 202 has an upstream motor housing 6 and a downstream motor housing 7 as housings for holding the stator core 24 and the like. By fixing the upper surface of 6 with a screw or the like, the motor section 202 can be incorporated in the electric blower 200 (see FIG. 1B).
  • the upstream motor housing 6 is a housing made of metal (aluminum alloy material, steel material, etc.) that covers the upstream side of the motor section 202, and as shown in FIG. It has an opening 6a. As shown in FIG. 5B, the center of the upper surface of the upstream motor housing 6 protrudes upward, and an upstream bearing 21 that rotatably supports the upstream side of the rotating shaft 2 is provided inside the protrusion. There is Axial positioning of the upstream bearing 21 is performed by an upstream spacer 21 a below the upstream bearing 21 . An axial opening may be provided in the upstream side motor housing 6, and when provided, cooling air can flow to the bearing 21 for cooling.
  • the downstream motor housing 7 is a housing made of metal (aluminum alloy material, steel material, etc.) that covers the downstream side of the motor section 202, and as shown in FIG. It has a radial opening 7a and a plurality of axial openings 7b on its lower surface. As shown in FIG. 5B, the center of the lower surface of the downstream motor housing 7 protrudes downward, and a downstream bearing 22 that rotatably supports the downstream side of the rotating shaft 2 is provided inside the protrusion. There is A downstream spacer 22a above the downstream bearing 22 positions the downstream bearing 22 in the axial direction.
  • the radial opening 6a on the upstream side and the radial opening 7a on the downstream side are installed so as not to overlap in the axial direction.
  • the radial openings 6a and 7a of each motor housing are arranged so as to axially overlap the axial ends of the coils 24b, which will be described later.
  • the radial openings of each motor housing are arranged uniformly in the circumferential direction. there is As a result, the same flow field is formed at three locations in the circumferential direction inside the motor section 202, so that the temperature distribution in the circumferential direction can be reduced.
  • the number of radial openings and the number of diffuser blades may be set using a predetermined value other than 3 as the greatest common divisor.
  • each motor housing is made of metal to improve heat radiation performance, and a region (exposed portion 24a) where the stator core 24 is exposed is provided between the upper and lower motor housings.
  • each motor housing may be made of heat-resistant resin, or the upper and lower motor housings may be connected to cool the stator core 24. You may make it the structure which is not exposed.
  • the radial opening 7a and the axial opening 7b of the downstream motor housing 7 can cool the motor only with the radial opening 7a, the presence of the axial opening 7b causes pressure loss when the motor is cooled. can be reduced, the motor cooling air volume increases, and the motor can be cooled.
  • a rotor core 23 is fixed to the rotating shaft 2 in a region sandwiched between upper and lower spacers.
  • the rotor core 23 is the rotor of the motor section 202 and contains a rare earth bond magnet such as a samarium iron nitrogen magnet or a neodymium magnet.
  • a collar 25 is fixed to the rotary shaft 2 protruding from the upper portion of the upstream motor housing 6, and the upper portion of the collar 25 is provided with a concave portion 25a.
  • a stator core 24 that is a stator of motor section 202 is arranged on the outer periphery of motor section 202 so as to surround rotor core 23 that is a rotor of motor section 202 .
  • a coil 24b made of aluminum wire or copper wire covered with a covering material is wound around the winding frame of the stator core 24.
  • the stator core 24 can be an electromagnet, and the rotor core 23, rotating shaft 2, and impeller 1 can be rotated together at high speed.
  • the upstream motor housing 6 is driven into the upstream side of the stator core 24 and fixed with an adhesive
  • the downstream side motor housing 7 is driven into the downstream side and fixed with an adhesive.
  • the motor housing 7 can be integrated so that at the level of the upstream end of the coil 24b there is a radial opening 6a in the upstream motor housing 6 and at the level of the downstream end of the coil 24b. , a radial opening 7a in the downstream motor housing 7 may be provided.
  • the dimensions that define the shapes of the first flow path F1 and the second flow path F2 are the radial height H1 of the downstream diffuser blade 9, the inner surface of the annular diffuser 5e and the downstream motor housing 7.
  • the electric blower 200 of this embodiment In order to improve both the efficiency of the blower unit 201 and the improvement of the cooling efficiency of the motor unit 202, each dimension is set according to the following equations. The action of each formula will be described below with reference to FIG. 6A, which is an enlarged cross-sectional view of the right channel of FIG. 1B.
  • H1 ⁇ 0.5 ⁇ H2 More preferably, H1 ⁇ 0.66 ⁇ H2 (formula 1′) 0.5 ⁇ L2 ⁇ L1 ⁇ L2 (Equation 2) More preferably, L1 ⁇ 0.5 ⁇ L2 (Formula 2′) L3 ⁇ 2.5 ⁇ H1 (Equation 3) More preferably, L3 ⁇ 3 ⁇ H1 (Formula 3′)
  • H1 ⁇ 0.5 ⁇ H2 More preferably, H1 ⁇ 0.66 ⁇ H2 (formula 1′) 0.5 ⁇ L2 ⁇ L1 ⁇ L2 (Equation 2) More preferably, L1 ⁇ 0.5 ⁇ L2 (Formula 2′) L3 ⁇ 2.5 ⁇ H1 (Equation 3) More preferably, L3 ⁇ 3 ⁇ H1 (Formula 3′)
  • the air flow branched from the first flow path F1 inside the annular diffuser 5e flows into the motor section 202 through the radial opening 7a and the axial opening 7b on the downstream side.
  • the annular diffuser 5e by arranging the annular diffuser 5e on the outer peripheral side of the radial direction opening 7a on the downstream side, the diffusion of the air flow discharged from the downstream diffuser blade 9 in the outer peripheral direction is suppressed.
  • the airflow branched from the path F1 can be efficiently guided inside the motor section 202 .
  • the airflow that has cooled the exposed portion 24a merges with the first flow path F1 near the lower end of the inner wall 5a of the downstream housing 5 .
  • the radial height H1 of the downstream diffuser blade 9 is set large as in (Formula 1) or (Formula 1'), so that the downstream diffuser blade 9 is attached to the downstream motor housing 7. It can be brought closer, and the flow velocity in the outer peripheral region of the downstream side motor housing 7 can be increased.
  • the second flow path F2 allows the second flow path F2 to merge with the first flow path F1 in the presence region of the high-speed flow flowing through the downstream diffuser blade 9 . Therefore, due to the venturi effect of the high-speed first flow path F1, the air inside the motor section 202 can be efficiently sucked from the radial opening 6a on the upstream side. The cooling air can be efficiently taken in from the radial opening 7a and the axial opening 7b on the downstream side. That is, the venturi effect of the first flow path F1 can improve the cooling efficiency of the motor section 202 regardless of the operating range of the electric blower 200 .
  • FIG. 9 and 10 corresponds to an electric blower obtained by removing the annular diffuser 5e from the electric blower 200 of FIG. 6A.
  • the blowing capacity of the blower section 201 is greater than that of the electric blower of the comparative example which does not have the annular diffuser. It can be seen that not only the efficiency is improved, but also the cooling efficiency of the motor section 202 is improved.
  • the radial opening 7a on the downstream side is arranged on the downstream side from FIG. 6A.
  • the second flow path F2 branches from the first flow path F1 in the vicinity of the position where the innermost air flow of the first flow path F1 shown by the solid line adheres to the downstream motor housing 7.
  • the amount of air sucked into the motor section 202 from the radial opening 7a on the downstream side increases, and the cooling efficiency of the motor section 202 can be further improved as compared with FIG. 6A.
  • the radial opening 7a on the downstream side is arranged on the upstream side from FIG. 6A.
  • the innermost air flow adheres to the outer peripheral surface of the downstream motor housing 7 on the upstream side, so that the flow path expands in the annular diffuser 5e. It is possible to suppress the separation of the air flow in the area of , and the blowing efficiency of the blower section 201 can be further increased as compared with that in FIG. 6A.
  • FIG. 6D instead of the radial opening 7a and the axial opening 7b, a corner opening 7c having both functions is provided. In this case, the same effect as in FIG. 6B can be obtained with a simplified configuration.
  • the annular diffuser 5e is provided on the downstream side of the downstream housing 5, but the annular diffuser 5e may be omitted.
  • the downstream diffuser blade is extended to at least the axial position facing the radial opening 7a on the downstream side. 9 should be longer.
  • cooling by the venturi effect of this configuration can cool the motor without the diffuser blades of the upstream housing and the downstream housing.
  • an electric blower that is compact and lightweight, has high efficiency in a wide air volume range, and has a high motor cooling efficiency, and a vacuum cleaner equipped with the electric blower are provided. be able to.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments have been described in detail to facilitate understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 100 Vacuum cleaner, 110... Vacuum cleaner main body, 111... Main body grip part, 111a... Main body switch part, 112... Air intake opening, 113... Dust collection chamber, 114... Drive circuit, 115... Battery unit, 120... Holding part, DESCRIPTION OF SYMBOLS 121... Grip part 121a... Switch part 122... Inlet body 122a... Connection part 130... Charging stand 200... Electric blower 200a... Intake port 200b... Exhaust port 201... Air blower part 202... Motor part, DESCRIPTION OF SYMBOLS 1... Impeller 11... Hub 11a... Hub convex part 12... Blade 13... Boss 13a... Boss curved surface 14...

Abstract

In the present invention, a motor unit has a rotational shaft, a bearing, a rotor core, a stator core, and a motor housing having an upstream-side radial opening and a downstream-side radial opening formed in the lateral surface thereof. A blower unit has an impeller fixed to the distal end of the rotational shaft, a fan casing covering the periphery of the impeller, an upstream-side housing surrounding the upstream-side periphery of the motor unit, and a downstream-side housing surrounding the downstream-side periphery of the motor unit. A first flow path passes between an inner wall and an outer wall of the upstream-side housing and between an inner wall and an outer wall of the downstream side housing. A second flow path passes through the downstream-side radial opening or a rotational axis-direction opening in the downstream-side motor housing, through the interior of the motor unit, through the upstream-side radial opening, between the motor housing and the inner wall of the upstream-side housing, and between the motor housing and the inner wall of the downstream-side housing. On the downstream side of the downstream-side housing, an annular diffuser facing the downstream-side radial opening is provided.

Description

電動送風機、及び、それを備えた電気掃除機Electric blower and vacuum cleaner equipped with the same
 本発明は、電動送風機、及び、それを搭載した電気掃除機に関する。 The present invention relates to an electric blower and a vacuum cleaner equipped with it.
 電気掃除機が内蔵する電動送風機(送風装置)の一例として、特許文献1には、「上下に延びる中心軸C周りに回転するインペラ10と、インペラの下方に配置されステータ24を有してインペラを回転させるモータ20と、ステータを収納するモータハウジング21と、インペラとモータハウジングとを収納してモータハウジングとの隙間に第1流路5を構成するファンケーシング2とを備え、ファンケーシングの上部はインペラの上方を覆い、かつ上下方向に開口する吸気口3を有し、ファンケーシングの下部には第1流路を介して吸気口に連通する排気口4が設けられ、モータハウジングにはモータハウジングの内面に固定されるステータの上面よりも下方において、径方向に貫通して第1流路に連通する流入口21aが設けられ、モータハウジングは流入口から上方に延びて前記ステータよりも上方の空間に連通される第2流路6を有する」送風装置が記載されている。 As an example of an electric blower (blower device) built into a vacuum cleaner, Patent Document 1 describes "an impeller having an impeller 10 rotating around a vertically extending central axis C and a stator 24 disposed below the impeller. , a motor housing 21 that houses the stator, and a fan casing 2 that houses the impeller and the motor housing and forms the first flow path 5 in the gap between the motor housing and the upper part of the fan casing. covers the top of the impeller and has an intake port 3 that opens vertically, and an exhaust port 4 that communicates with the intake port via a first flow path is provided in the lower part of the fan casing. Below the upper surface of the stator fixed to the inner surface of the housing, an inlet 21a penetrating in the radial direction and communicating with the first flow path is provided, and the motor housing extends upward from the inlet and is above the stator. A blower device having a second flow path 6 communicating with the space of .
特開2018-105269号公報JP 2018-105269 A
 電気掃除機は、粉塵によるフィルタの目詰まりや、掃除対象の床の材質等の運転条件によって動作風量が大きく変化することが知られている。そのため、電気掃除機用の電動送風機としては、広い風量範囲で吸引力の強い電動送風機が求められている。 It is known that the operating air volume of electric vacuum cleaners varies greatly depending on operating conditions such as filter clogging due to dust and the material of the floor to be cleaned. Therefore, as an electric blower for vacuum cleaners, an electric blower with a strong suction force over a wide air volume range is desired.
 また、電気掃除機の使い勝手から、電動送風機の小型化や軽量化も求められているが、それに伴い、電動送風機の放熱領域が減少し、電動送風機内部の発熱密度は増加するため、モータや軸受の冷却性能の向上が必要となっている。 In addition, due to the ease of use of electric vacuum cleaners, electric blowers are also required to be smaller and lighter. It is necessary to improve the cooling performance of
 特に、コードレススティック型掃除機や自律走行型掃除機(ロボット掃除機)のような電池(2次電池)で駆動する掃除機は、電池容量の関係から電動送風機の消費電力が小さく、最大風量も小さい。そのため、フィルタの目詰り時にごみ搬送能力が低下し、掃除機の吸引力が低下する課題がある。さらに、電池駆動の掃除機は、小型で軽量であることが求められ、掃除機に搭載される電動送風機は広い風量範囲で吸引力が強いこと、および小型であることの両立が求められる。 In particular, vacuum cleaners driven by batteries (secondary batteries) such as cordless stick vacuum cleaners and autonomous driving vacuum cleaners (robot vacuum cleaners) consume less power due to the battery capacity, and the maximum air flow is also low. small. Therefore, when the filter is clogged, there is a problem that the dust carrying capacity is lowered and the suction power of the vacuum cleaner is lowered. Furthermore, battery-powered vacuum cleaners are required to be compact and lightweight, and electric blowers mounted on vacuum cleaners are required to have both a strong suction force over a wide air volume range and a small size.
 ここで、ディフューザ翼(特許文献1では「静翼40」)を用いれば、設計点風量において優れた圧力回復を行うことが出来るが、フィルタの目詰まり等の影響で設計点風量より風量が低下した場合は、ディフューザ翼の入口角と空気流れのディフューザへの流入角の不一致によりディフューザ性能が低下し、電気掃除機の吸引力が低下する可能性がある。 Here, if a diffuser blade ("stationary blade 40" in Patent Document 1) is used, excellent pressure recovery can be performed at the design point air volume, but the air volume is lower than the design point air volume due to filter clogging and the like. If so, the mismatch between the entrance angle of the diffuser blades and the angle of entry of the airflow into the diffuser can degrade diffuser performance and reduce the suction power of the vacuum cleaner.
 また、特許文献1の送風装置では、同文献の図4等に示されるように、外側の第1流路5を流通する気流Sの一部が、モータハウジング21の周壁に設けた流入口21aを介して、内側の第2流路6に流れ込み、上方の軸受26を冷却した後、更に、下方の軸受26を冷却し、第1流路5と合流することなく、第2流路6の出口(流出口29a)から送風装置1の外部に排気される。このように、第1流路5から分岐した第2流路6が第1流路5に合流しない構成を採る場合、第1流路5を流通する気流Sの一部が第2流路6に分岐する際の圧力損失(抵抗)によって、第1流路5では、流入口21a(分岐点)の上流側の風量に比べ、流入口21a(分岐点)の下流側の風量が減少していた。 Further, in the air blower of Patent Document 1, as shown in FIG. 4 and the like of the same document, part of the airflow S flowing through the outer first flow path 5 flows into the inlet 21a provided in the peripheral wall of the motor housing 21. , flows into the inner second flow path 6, cools the upper bearing 26, further cools the lower bearing 26, and flows into the second flow path 6 without joining the first flow path 5. The air is exhausted to the outside of the blower 1 from the outlet (outflow port 29a). Thus, when adopting a configuration in which the second flow path 6 branched from the first flow path 5 does not join the first flow path 5 , part of the airflow S flowing through the first flow path 5 is In the first flow path 5, the air volume downstream of the inflow port 21a (branch point) is smaller than the air volume upstream of the inflow port 21a (branch point) due to the pressure loss (resistance) at the time of branching. rice field.
 加えて、特許文献1の第2流路6は、小型であることから流路面積が小さく、さらに、モータ20内部で曲がりながら流れるため、流路の圧力損失が大きく、冷却風量が低下し、モータ20内部の温度が高くなり、モータ効率が低下する懸念がある。 In addition, since the second flow passage 6 of Patent Document 1 is small, the flow passage area is small. There is concern that the temperature inside the motor 20 will rise and the motor efficiency will decrease.
 本発明は、上記課題を解決するものであり、小型軽量でありながら、送風機の効率が広い風量域で高く、かつ、モータの冷却効率も高い、電動送風機、及び、それを備えた電気掃除機の提供を目的とする。 The present invention is intended to solve the above problems, and is an electric blower that is compact and lightweight, has high efficiency in a wide air volume range, and has high motor cooling efficiency, and a vacuum cleaner equipped with the same. for the purpose of providing
 前記課題を解決するため、本発明の電動送風機は、送風機部の内部に第一流路が流通し、モータ部の内部に第二流路が流通する電動送風機であって、前記モータ部は、回転軸と、該回転軸を回転自在に支持する軸受と、前記回転軸に固定したロータコアと、該ロータコアの外周を囲むように配置したステータコアと、該ステータコアを保持するとともに、側面に上流側径方向開口と下流側径方向開口を開口させたモータハウジングと、を有し、前記送風機部は、前記回転軸の先端に固定した羽根車と、該羽根車の外周を覆うファンケーシングと、前記モータ部の上流側外周を囲む上流側ハウジングと、前記モータ部の下流側外周を囲む下流側ハウジングと、を有し、前記第一流路は、前記上流側ハウジングの内壁と外壁の間、および、前記下流側ハウジングの内壁と外壁の間を流通し、前記第二流路は、前記下流側径方向開口乃至下流側モータハウジングの回転軸方向の開口、前記モータ部の内部、前記上流側径方向開口、前記モータハウジングと前記上流側ハウジングの内壁の間、および、前記モータハウジングと前記下流側ハウジングの内壁の間を流通し、前記下流側ハウジングの下流側には、前記下流側径方向開口と対向する円環ディフューザを設けた電動送風機とした。 In order to solve the above-mentioned problems, an electric blower according to the present invention is an electric blower in which a first flow path circulates inside a blower section and a second flow path circulates inside a motor section, wherein the motor section rotates a shaft, a bearing that rotatably supports the rotating shaft, a rotor core fixed to the rotating shaft, a stator core that surrounds the outer periphery of the rotor core, a stator core that holds the stator core, and an upstream radial direction on the side surface. An opening and a motor housing having a downstream radial opening are provided, and the blower section includes an impeller fixed to the tip of the rotating shaft, a fan casing covering the outer circumference of the impeller, and the motor section. and a downstream housing surrounding the downstream outer periphery of the motor section, wherein the first flow path extends between the inner wall and the outer wall of the upstream housing and the downstream Circulating between the inner wall and the outer wall of the side housing, the second flow path extends from the downstream side radial opening to the rotation axis direction opening of the downstream side motor housing, the inside of the motor section, the upstream side radial opening, Circulates between the inner wall of the motor housing and the upstream housing and between the inner wall of the motor housing and the downstream housing, and faces the downstream radial opening on the downstream side of the downstream housing. An electric blower with an annular diffuser was used.
 本発明によれば、小型かつ軽量でありながら、送風機の効率が広い風量域で高く、かつ、モータの冷却効率も高い、電動送風機、及び、それを備えた電気掃除機を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide an electric blower that is compact and lightweight, has high efficiency in a wide air volume range, and has a high motor cooling efficiency, and a vacuum cleaner equipped with the electric blower. .
一実施例の電動送風機の外観図。The external view of the electric blower of one Example. 一実施例の電動送風機の縦断面図。1 is a longitudinal sectional view of an electric blower of one embodiment; FIG. 一実施例の羽根車の斜視図。The perspective view of the impeller of one Example. 一実施例の羽根車の縦断面図。FIG. 1 is a longitudinal sectional view of an impeller of one embodiment; 一実施例の上流側ハウジングの平面図。FIG. 4 is a plan view of the upstream housing of one embodiment; 一実施例の上流側ハウジングの縦断面図。FIG. 4 is a vertical cross-sectional view of the upstream housing of one embodiment; 一実施例の上流側ハウジングの部分断面図。FIG. 4 is a partial cross-sectional view of the upstream housing of one embodiment; 一実施例の下流側ハウジングの平面図。FIG. 4 is a plan view of the downstream housing of one embodiment; 一実施例の下流側ハウジングの縦断面図。FIG. 4 is a vertical cross-sectional view of the downstream side housing of one embodiment; 一実施例の下流側ハウジングの部分断面斜視図。FIG. 4 is a partial cross-sectional perspective view of an example downstream housing. 一実施例のモータ部の外観図。FIG. 2 is an external view of a motor section of one embodiment; 一実施例のモータ部の縦断面図。FIG. 2 is a vertical cross-sectional view of the motor portion of one embodiment; 第二流路の構造の一例を示す縦断面図。FIG. 4 is a longitudinal sectional view showing an example of the structure of the second channel; 第二流路の構造の一例を示す縦断面図。FIG. 4 is a longitudinal sectional view showing an example of the structure of the second channel; 第二流路の構造の一例を示す縦断面図。FIG. 4 is a longitudinal sectional view showing an example of the structure of the second channel; 一実施例の電気掃除機の斜視図。1 is a perspective view of an electric vacuum cleaner of one embodiment; FIG. 一実施例の電気掃除機の縦断面図。1 is a longitudinal sectional view of an electric vacuum cleaner of one embodiment; FIG. 一実施例と比較例の電動送風機の送風機効率を比較するグラフ。4 is a graph comparing blower efficiencies of electric blowers of an example and a comparative example. 一実施例と比較例の電動送風機の温度上昇を比較するグラフ。4 is a graph comparing temperature rises of electric blowers of an example and a comparative example.
 以下、本発明の電動送風機、および、それを備えた電気掃除機の一実施例について、図面を参照しながら詳細に説明する。  Hereinafter, an electric blower of the present invention and an electric vacuum cleaner equipped with the same will be described in detail with reference to the drawings.
 <電気掃除機100の概略構成>
 まず、図7と図8を用いて、本発明の一実施例に係る電気掃除機100を説明する。図7は、電気掃除機100の斜視図であり、図8は、電気掃除機100の縦断面図である。図示する電気掃除機100は、掃除機本体110を保持部120に装着した、充電式のコードレススティック掃除機であり、充電台130に載置した状態で充電することができるものである。なお、ここでは充電式のコードレススティック掃除機を例示しているが、電源コードを備えた非充電式のスティック掃除機に、本発明の電動送風機200を内蔵しても良い。
<Schematic configuration of electric vacuum cleaner 100>
First, a vacuum cleaner 100 according to an embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a perspective view of vacuum cleaner 100, and FIG. 8 is a longitudinal sectional view of vacuum cleaner 100. As shown in FIG. The illustrated electric vacuum cleaner 100 is a rechargeable cordless stick vacuum cleaner in which a cleaner main body 110 is attached to a holding portion 120, and can be charged while placed on a charging base 130. FIG. Although a rechargeable cordless stick cleaner is exemplified here, the electric blower 200 of the present invention may be incorporated in a non-rechargeable stick cleaner equipped with a power cord.
 掃除機本体110は、単独でハンディ掃除機として使用可能なユニットであり、上部に、ハンディ掃除機として使用する際に利用者が把持する本体グリップ部111を備え、下部に、ハンディ掃除機として使用する際に塵埃を吸引する吸口開口112を備えている。また、掃除機本体110の内部には、塵埃を集塵する集塵室113と、集塵に必要な吸込気流を発生させる電動送風機200と、電動送風機200を駆動する駆動回路114と、駆動回路114に電力を供給する電池ユニット115を備えている。 The cleaner main body 110 is a unit that can be used independently as a handy cleaner, and has a main body grip part 111 on the upper part to be gripped by the user when using it as a handy cleaner, and a lower part that can be used as a handy cleaner. A suction opening 112 is provided for sucking dust when cleaning. Inside the cleaner body 110 are a dust collection chamber 113 for collecting dust, an electric blower 200 for generating a suction airflow necessary for dust collection, a drive circuit 114 for driving the electric blower 200, and a drive circuit. It has a battery unit 115 that supplies power to 114 .
 一方、保持部120は、掃除機本体110を着脱可能なユニットであり、上部に、スティック掃除機として使用する際に利用者が把持するグリップ部121を備え、下部に、スティック掃除機として使用する際に塵埃を吸引する吸口体122と、吸口体122と吸気開口112を接続する接続部122aを備えている。 On the other hand, the holding part 120 is a unit to which the cleaner main body 110 can be attached and detached. A suction body 122 for sucking dust and a connecting portion 122a for connecting the suction body 122 and the suction opening 112 are provided.
 また、掃除機本体110の本体グリップ部111には、ハンディ掃除機として使用する際に電動送風機200の駆動を入/切するための本体スイッチ部111aが設けられており、保持部120のグリップ部121には、スティック掃除機として使用する際に電動送風機200の駆動を入/切するためのスイッチ部121aが設けられている。 In addition, the body grip portion 111 of the cleaner body 110 is provided with a body switch portion 111a for turning on/off the drive of the electric blower 200 when used as a handy cleaner. 121 is provided with a switch portion 121a for turning on/off the driving of the electric blower 200 when used as a stick cleaner.
 <電動送風機200>
 次に、図1Aから図6、および、図9、図10を用いて、本実施例の電動送風機200の詳細を説明する。本実施例の電動送風機200は、主に、羽根車1、回転軸2、ファンケーシング3、上流側ハウジング4、下流側ハウジング5、上流側モータハウジング6、下流側モータハウジング7、上流側ディフューザ翼8、下流側ディフューザ翼9などを有しており、これらによって送風機部201とモータ部202が構成されている。
<Electric blower 200>
Next, details of the electric blower 200 of this embodiment will be described with reference to FIGS. 1A to 6, 9, and 10. FIG. The electric blower 200 of this embodiment mainly includes an impeller 1, a rotating shaft 2, a fan casing 3, an upstream housing 4, a downstream housing 5, an upstream motor housing 6, a downstream motor housing 7, and an upstream diffuser blade. 8, a downstream diffuser blade 9, etc., which constitute a blower section 201 and a motor section 202. As shown in FIG.
 図1Aは、電動送風機200の外観図であり、図1Bは、電動送風機200の縦断面図である。本実施例の電動送風機200は、羽根車1を回転させたときに、上方の吸気口200aから空気を吸い込み、下方の排気口200bから空気を吐き出す送風機であるため、図示のように上流側と下流側を定義する。また、回転軸2の設置方向に着目し、図示のように軸方向と径方向を定義する。なお、電気掃除機100の下部の吸口体122から上方の集塵室113に塵埃を吸い上げることができるように、電動送風機200の吸気口200aを下方に向け、排気口200bを上方に向けた状態で、電気掃除機100の内部に電動送風機200を設置しているものとする(図8参照)。 1A is an external view of the electric blower 200, and FIG. 1B is a longitudinal sectional view of the electric blower 200. FIG. Since the electric blower 200 of the present embodiment is a blower that sucks in air from the upper air intake port 200a and discharges air from the lower air exhaust port 200b when the impeller 1 is rotated, Define downstream. Focusing on the installation direction of the rotating shaft 2, the axial direction and the radial direction are defined as shown in the figure. In this state, the air intake port 200a of the electric blower 200 is directed downward and the exhaust port 200b is directed upward so that dust can be sucked up from the suction port body 122 in the lower part of the electric vacuum cleaner 100 into the upper dust collection chamber 113. It is assumed that the electric blower 200 is installed inside the electric vacuum cleaner 100 (see FIG. 8).
 図1Aに示すように、電動送風機200の外周は、ファンケーシング3、上流側ハウジング4、下流側ハウジング5の三者を一体化した外殻で覆われている。これらを一体化する具体的方法は後述する。 As shown in FIG. 1A, the outer circumference of the electric blower 200 is covered with an outer shell that integrates the fan casing 3, the upstream housing 4, and the downstream housing 5. As shown in FIG. A specific method for integrating these will be described later.
 また、図1Bに示すように、電動送風機200の内部には、回転軸2が回転自在に配置されており、その上端には、回転軸2と一体回転する羽根車1が固定されている。なお、図1Bでは、回転軸2の上端に螺着したナットで羽根車1を固定しているが、回転軸2の先端に圧入することで羽根車1を固定しても良い。 In addition, as shown in FIG. 1B, a rotating shaft 2 is rotatably arranged inside the electric blower 200, and an impeller 1 that rotates integrally with the rotating shaft 2 is fixed to its upper end. In addition, in FIG. 1B, the impeller 1 is fixed by a nut screwed to the upper end of the rotating shaft 2, but the impeller 1 may be fixed by being press-fitted to the tip of the rotating shaft 2. FIG.
 この羽根車1が回転すると、電動送風機200の内部には、図1Bの左側に例示するように、吸込口200aから排気口200bに向けて送風機部201内を流通する実線矢印の空気流路(以下、「第一流路F1」と称する)と、第一流路F1の下流側で分岐し、モータ部202内を下流側から上流側に流通する点線矢印の空気流路(以下、「第二流路F2」と称する)が形成される。以下、第一流路F1と第二流路F2に所望の空気流を流通させ、広い風量範囲で吸引力を維持しながら、モータ部202の内部を十分に冷却できる、本実施例の電動送風機200の構造を、送風機部201とモータ部202に分けて順次説明する。 When the impeller 1 rotates, inside the electric blower 200, as illustrated on the left side of FIG. hereinafter referred to as the "first flow path F1") and an air flow path indicated by a dotted arrow that branches downstream of the first flow path F1 and circulates from the downstream side to the upstream side in the motor unit 202 (hereinafter referred to as the "second flow A path F2") is formed. Hereinafter, the electric blower 200 of the present embodiment can sufficiently cool the inside of the motor unit 202 while maintaining the suction force in a wide air volume range by circulating a desired air flow through the first flow path F1 and the second flow path F2. The structure of is divided into the blower section 201 and the motor section 202 and will be described in order.
 <送風機部201>
 送風機部201は、電気掃除機100が塵埃を吸引する空気流を生成するためのユニットであり、図1Bに示すように、上流側から順に、回転翼である羽根車1、上流側ハウジング4の内周に設けた上流側ディフューザ翼8、下流側ハウジング5の内周に設けた下流側ディフューザ翼9などが配置されている。なお、本実施例では、羽根車1の下流側での空気流の流速を制御したり、静圧を制御したりするために上下のディフューザ翼を設けているが、後述するベンチュリ効果を十分に維持できる限りにおいて、ディフューザ翼の一部または全部を省略した構成としても良い。以下、各部を順次説明する。
<Blower unit 201>
The blower unit 201 is a unit for the electric vacuum cleaner 100 to generate an air flow for sucking dust, and as shown in FIG. An upstream diffuser blade 8 provided on the inner circumference, a downstream diffuser blade 9 provided on the inner circumference of the downstream housing 5, and the like are arranged. In this embodiment, the upper and lower diffuser blades are provided to control the flow velocity of the air flow on the downstream side of the impeller 1 and to control the static pressure. As long as it can be maintained, it is also possible to omit part or all of the diffuser blades. Each part will be described in order below.
 <羽根車1とファンケーシング3>
 先ず、図2A、図2Bを用いて、羽根車1について説明する。図2Aは羽根車1の斜視図であり、図2Bは羽根車1の縦断面図である。両図の羽根車1は、シュラウド板のないオープン型斜流羽根車であり、エンジニアリングプラスチックや熱可塑性樹脂で一体成型した、ハブ11と、複数枚の羽根12と、回転軸2を挿入するためのボス13を有している。なお、本実施例の羽根車1は、シュラウド板のある斜流羽根車であっても良いし、遠心羽根車や軸流羽根車であってもよい。
<Impeller 1 and Fan Casing 3>
First, the impeller 1 will be described with reference to FIGS. 2A and 2B. 2A is a perspective view of the impeller 1, and FIG. 2B is a longitudinal sectional view of the impeller 1. FIG. The impeller 1 shown in both figures is an open-type mixed-flow impeller without a shroud plate. has a boss 13 of The impeller 1 of this embodiment may be a diagonal flow impeller having a shroud plate, a centrifugal impeller, or an axial flow impeller.
 ハブ11の裏面側には、羽根車1のボス13と同軸に、金属製のスリーブ14が一体成型品で設けられている。このようなスリーブ14を用いることで、スリーブを用いない場合に生じる可能性の高い、羽根車1と回転軸2の嵌め合い隙間のばらつきを小さくでき、羽根車1のアンバランスを低減できるため、羽根車1の回転駆動時の振動や騒音を低減することができる。また、スリーブ14の下流側には、凸部14aが設けられている。この凸部14aの機能は後述する。 A metal sleeve 14 is integrally formed on the back side of the hub 11 coaxially with the boss 13 of the impeller 1 . By using such a sleeve 14, it is possible to reduce the variation in the fitting gap between the impeller 1 and the rotating shaft 2, which is likely to occur when the sleeve is not used, and to reduce the imbalance of the impeller 1. Vibration and noise when the impeller 1 is rotationally driven can be reduced. A convex portion 14 a is provided on the downstream side of the sleeve 14 . The function of this convex portion 14a will be described later.
 ファンケーシング3は、エンジニアリングプラスチックや熱可塑性樹脂で一体成型した、羽根車1の外周を覆うカバーであり、図1Bに示すように、上流側に吸気口200aが開口しており、また、羽根車1のシュラウド板の機能を担っている。 The fan casing 3 is a cover that covers the outer circumference of the impeller 1 and is integrally molded of engineering plastic or thermoplastic resin. As shown in FIG. 1 shroud plate function.
 <上流側ハウジング4と上流側ディフューザ翼8>
 次に、図3Aから図3Cを用いて、上流側ハウジング4と上流側ディフューザ翼8について説明する。図3Aは上流側ハウジング4を上流側から見た平面図、図3Bは上流側ハウジング4の縦断面図、図3Cは上流側ハウジング4を外周から見た部分断面図である。なお、図3Cでは、上流側ハウジング4のシュラウドを一部省略することで、上流側ディフューザ翼8の形状(特に、前縁8aと後縁8bの位置)を表示している。
<Upstream Housing 4 and Upstream Diffuser Blade 8>
Next, the upstream housing 4 and the upstream diffuser blades 8 will be described with reference to FIGS. 3A to 3C. 3A is a plan view of the upstream housing 4 viewed from the upstream side, FIG. 3B is a vertical cross-sectional view of the upstream housing 4, and FIG. 3C is a partial cross-sectional view of the upstream housing 4 viewed from the outer circumference. In FIG. 3C, the shroud of the upstream housing 4 is partially omitted to show the shape of the upstream diffuser blade 8 (in particular, the positions of the leading edge 8a and the trailing edge 8b).
 上流側ハウジング4と上流側ディフューザ翼8は、エンジニアリングプラスチックや熱可塑性樹脂で一体成型したものであり、図3A~図3Cに示すように、上流側ハウジング4の内壁4a(ハブ)と外壁4b(シュラウド)の間には、それらと一体成型した複数枚の上流側ディフューザ翼8が周方向に等間隔に配置されている。 The upstream housing 4 and the upstream diffuser blades 8 are integrally molded from engineering plastic or thermoplastic resin. As shown in FIGS. Between the shrouds, a plurality of upstream diffuser blades 8 integrally formed therewith are arranged at regular intervals in the circumferential direction.
 上流側ディフューザ翼8の前縁8aから後縁8bまでの長さ(翼弦長)は、内壁4a側に比べ外壁4b側が長くなっている。これは、羽根車1の下流では、外周側の風速が内周側より速くなるため、上流側ディフューザ翼8の内側より外側を長くすることで、損失を抑制しつつ、送風機の高効率化を図るためである。なお、ここでは、上流側ディフューザ翼8を15枚設けた構成を例示しているが、上流側ディフューザ翼8の枚数は電動送風機200の仕様に応じて変更することができる。 The length (chord length) from the leading edge 8a to the trailing edge 8b of the upstream diffuser blade 8 is longer on the outer wall 4b side than on the inner wall 4a side. This is because, downstream of the impeller 1, the wind speed on the outer peripheral side is faster than that on the inner peripheral side. It is for the purpose of planning. Although a configuration in which 15 upstream diffuser blades 8 are provided is exemplified here, the number of upstream diffuser blades 8 can be changed according to the specifications of the electric blower 200 .
 また、図3A、図3Cに示すように、上流側ハウジング4の外壁4bの外周3箇所には等間隔に突起4cが設けられており、ここに後述する下流側ハウジング5の爪部5cが嵌め込まれることで、上流側ハウジング4と下流側ハウジング5を芯出ししながら一体化することができる(図1B参照)。 Further, as shown in FIGS. 3A and 3C, projections 4c are provided at three equal intervals on the outer periphery of the outer wall 4b of the upstream housing 4, into which the claw portions 5c of the downstream housing 5, which will be described later, are fitted. As a result, the upstream housing 4 and the downstream housing 5 can be integrated while being centered (see FIG. 1B).
 また、図3A、図3Bに示すように、上流側ハウジング4の上面の2箇所には締結部4dが設けられており、ここにモータ部202を芯出ししながら締結することができる(図1B参照)。 In addition, as shown in FIGS. 3A and 3B, fastening portions 4d are provided at two locations on the top surface of the upstream housing 4, and the motor portion 202 can be fastened there while being centered (FIG. 1B). reference).
 さらに、図3A~図3Cに示すように、上流側ハウジング4の外壁4bの外周の突起4c以外の部分には嵌合部4eが設けられており、ここにファンケーシング3の下端を嵌め込み接着固定することで、ファンケーシング3と上流側ハウジング4を芯出ししながら一体化することができる(図1B参照)。 Further, as shown in FIGS. 3A to 3C, a fitting portion 4e is provided on the outer periphery of the outer wall 4b of the upstream side housing 4 except for the protrusion 4c, and the lower end of the fan casing 3 is fitted into the fitting portion 4e and fixed by adhesion. By doing so, the fan casing 3 and the upstream housing 4 can be integrated while being centered (see FIG. 1B).
 <下流側ハウジング5と下流側ディフューザ翼9>
 次に、図4Aから図4Cを用いて、下流側ハウジング5と下流側ディフューザ翼9について説明する。図4Aは下流側ハウジング5を上流側から見た平面図、図4Bは下流側ハウジング5の縦断面図、図4Cは下流側ハウジング5を外周から見た部分断面斜視図である。なお、図4Cでは、下流側ハウジング5のシュラウドを一部省略することで、下流側ディフューザ翼9の形状(特に、前縁9aと後縁9bの位置)を表示している。
<Downstream Housing 5 and Downstream Diffuser Blade 9>
Next, the downstream housing 5 and the downstream diffuser blades 9 will be described with reference to FIGS. 4A to 4C. 4A is a plan view of the downstream housing 5 viewed from the upstream side, FIG. 4B is a vertical sectional view of the downstream housing 5, and FIG. 4C is a partial cross-sectional perspective view of the downstream housing 5 viewed from the outer periphery. In FIG. 4C, the shroud of the downstream housing 5 is partially omitted to show the shape of the downstream diffuser blade 9 (in particular, the positions of the leading edge 9a and the trailing edge 9b).
 下流側ハウジング5と下流側ディフューザ翼9は、エンジニアリングプラスチックや熱可塑性樹脂で一体成型したものであり、図4A~図4Cに示すように、下流側ハウジング5の内壁5a(ハブ)と外壁5b(シュラウド)の間には、それらと一体成型した複数枚の下流側ディフューザ翼9が周方向に等間隔に配置されている。なお、ここでは、下流側ディフューザ翼9を15枚設けた構成を例示しているが、これは、各々の上流側ディフューザ翼8の下流に下流側ディフューザ翼9を配置するため、上流側ディフューザ翼8の枚数と下流側ディフューザ翼9の枚数を一致させたためである。 The downstream housing 5 and the downstream diffuser blades 9 are integrally molded from engineering plastic or thermoplastic resin. As shown in FIGS. Between the shrouds, a plurality of downstream diffuser blades 9 integrally formed therewith are arranged at regular intervals in the circumferential direction. Here, a configuration in which 15 downstream diffuser blades 9 are provided is exemplified. This is because the number of blades 8 and the number of downstream diffuser blades 9 are matched.
 また、図4A~図4Cに示すように、下流側ハウジング5の上端外周の3箇所には等間隔に爪部5cが設けられており、上端外周の爪部5cを除く部分には嵌合部5dが設けられている。上流側ハウジング4の下端を下流側ハウジング5の嵌合部5dに押し当て、かつ、3箇所の爪部5cを3箇所の突起4cに嵌め込むことで、上流側ハウジング4と下流側ハウジング5を芯出ししながら一体化することができる(図1B参照)。 In addition, as shown in FIGS. 4A to 4C, claw portions 5c are provided at three locations on the outer circumference of the upper end of the downstream housing 5 at equal intervals, and a portion of the outer circumference of the upper end excluding the claw portions 5c has a fitting portion. 5d is provided. By pressing the lower end of the upstream housing 4 against the fitting portion 5d of the downstream housing 5 and fitting the three claw portions 5c into the three projections 4c, the upstream housing 4 and the downstream housing 5 are separated. It can be integrated while being centered (see FIG. 1B).
 さらに、図4B、図4Cに示すように、下流側ハウジング5の下流側には、下流側ディフューザ翼9を設けない円環ディフューザ5eを設けた。この円環ディフューザ5eの詳細は後述する。 Furthermore, as shown in FIGS. 4B and 4C, an annular diffuser 5 e without downstream diffuser blades 9 is provided on the downstream side of the downstream housing 5 . Details of the ring diffuser 5e will be described later.
 ここで、図1Bに示すように、本実施例では、上流側ハウジング4の内壁4aと下流側ハウジング5の内壁5a、および、上流側ハウジング4の外壁4bと下流側ハウジング5の外壁5bの何れの組合せについても、径方向位置を略一致させつつ一体化している。これにより、各流路の内面を滑らかにし、各流路中での損失を低減している。また、本実施例では、一対の上流側ディフューザ翼8と下流側ディフューザ翼9が一つのディフューザ翼として機能するように、上流側ディフューザ翼8の後縁8bと下流側ディフューザ翼9の前縁9aの周方向位置を一致させ、かつ、上流側ディフューザ翼8と下流側ディフューザ翼9の曲面を滑らかに連続させている。さらに、本実施例では、各ディフューザ翼の厚さが上流側から下流側に向かうにつれて厚くなるようにすることで、静圧を高め、送風機部201の高効率化を実現できるようにしている。 Here, as shown in FIG. 1B, in this embodiment, either the inner wall 4a of the upstream housing 4 or the inner wall 5a of the downstream housing 5, or the outer wall 4b of the upstream housing 4 or the outer wall 5b of the downstream housing 5 is are also integrated while their radial positions are substantially matched. As a result, the inner surface of each flow path is made smooth and the loss in each flow path is reduced. Further, in this embodiment, the trailing edge 8b of the upstream diffuser blade 8 and the leading edge 9a of the downstream diffuser blade 9 are arranged such that the pair of upstream diffuser blade 8 and downstream diffuser blade 9 function as one diffuser blade. , and the curved surfaces of the upstream diffuser blade 8 and the downstream diffuser blade 9 are smoothly continued. Furthermore, in this embodiment, the thickness of each diffuser blade increases from the upstream side to the downstream side, thereby increasing the static pressure and realizing high efficiency of the blower section 201.
 <モータ部202>
 次に、図5Aと図5Bを用いて、モータ部202について説明する。図5Aはモータ部202の側面外観図であり、図5Bはモータ部202の縦断面図である。図示するモータ部202は、送風機部201の羽根車1を、例えば50,000~200,000[rpm]の範囲内で回転させるためのユニットであり、回転軸2、上流側軸受21、下流側軸受22、ロータコア23、ステータコア24、カラー25、上流側モータハウジング6、下流側モータハウジング7などから構成されている。以下、各部を順次説明する。
<Motor unit 202>
Next, the motor section 202 will be described with reference to FIGS. 5A and 5B. 5A is a side external view of the motor section 202, and FIG. 5B is a longitudinal sectional view of the motor section 202. FIG. The illustrated motor unit 202 is a unit for rotating the impeller 1 of the blower unit 201, for example, within a range of 50,000 to 200,000 [rpm], and includes a rotating shaft 2, an upstream bearing 21, a downstream bearing 22, and a rotor core. 23, a stator core 24, a collar 25, an upstream motor housing 6, a downstream motor housing 7, and the like. Each part will be described in order below.
 <モータ部202の筐体>
 両図に示すように、モータ部202は、ステータコア24等を保持する筐体として、上流側モータハウジング6と下流側モータハウジング7を有しており、上流側ハウジング4の下面に上流側モータハウジング6の上面をネジ等で固定することで、モータ部202を電動送風機200に内蔵できるようになっている(図1B参照)。
<Housing of Motor Unit 202>
As shown in both figures, the motor section 202 has an upstream motor housing 6 and a downstream motor housing 7 as housings for holding the stator core 24 and the like. By fixing the upper surface of 6 with a screw or the like, the motor section 202 can be incorporated in the electric blower 200 (see FIG. 1B).
 上流側モータハウジング6は、モータ部202の上流側を覆う金属製(アルミ合金材、鋼材など)の筐体であり、図5Aに示すように、側面に複数(例えば、6個)の径方向開口6aを有している。また、図5Bに示すように、上流側モータハウジング6の上面中央は上方に突出しており、その突出内部には、回転軸2の上流側を回転自在に支持する上流側軸受21が設けられている。そして、上流側軸受21の下方の上流側スペーサー21aによって、上流側軸受21の軸方向の位置決めが行なわれている。なお、上流側モータハウジング6には軸方向開口を設けてもよく、設けた場合は軸受21へ冷却風が流れ冷却が行うことができる。 The upstream motor housing 6 is a housing made of metal (aluminum alloy material, steel material, etc.) that covers the upstream side of the motor section 202, and as shown in FIG. It has an opening 6a. As shown in FIG. 5B, the center of the upper surface of the upstream motor housing 6 protrudes upward, and an upstream bearing 21 that rotatably supports the upstream side of the rotating shaft 2 is provided inside the protrusion. there is Axial positioning of the upstream bearing 21 is performed by an upstream spacer 21 a below the upstream bearing 21 . An axial opening may be provided in the upstream side motor housing 6, and when provided, cooling air can flow to the bearing 21 for cooling.
 一方、下流側モータハウジング7は、モータ部202の下流側を覆う金属製(アルミ合金材、鋼材など)の筐体であり、図5Aに示すように、側面に複数(例えば、6個)の径方向開口7aを有し、下面に複数の軸方向開口7bを有している。また、図5Bに示すように、下流側モータハウジング7の下面中央は下方に突出しており、その突出内部には、回転軸2の下流側を回転自在に支持する下流側軸受22が設けられている。そして、下流側軸受22の上方の下流側スペーサー22aによって、下流側軸受22の軸方向の位置決めが行なわれている。 On the other hand, the downstream motor housing 7 is a housing made of metal (aluminum alloy material, steel material, etc.) that covers the downstream side of the motor section 202, and as shown in FIG. It has a radial opening 7a and a plurality of axial openings 7b on its lower surface. As shown in FIG. 5B, the center of the lower surface of the downstream motor housing 7 protrudes downward, and a downstream bearing 22 that rotatably supports the downstream side of the rotating shaft 2 is provided inside the protrusion. there is A downstream spacer 22a above the downstream bearing 22 positions the downstream bearing 22 in the axial direction.
 また、図5Aに示すように、本実施例では、上流側の径方向開口6aと下流側の径方向開口7aは、軸方向に重ならないように設置されている。また、各モータハウジングの径方向開口6a、7aは、後述するコイル24bの軸方向端部と軸方向に重なるように配置されている。なお、各モータハウジングの径方向開口は周方向に均一に配置されており、径方向開口の個数とディフューザ翼の枚数の最大公約数が3となるように、開口個数と翼枚数が設定されている。これにより、モータ部202の内部では、周方向の3箇所で同一の流れ場が形成されるため、周方向の温度分布を低減することができる。なお、3以外の所定値を最大公約数として、径方向開口の個数やディフューザ翼の枚数を設定しても良い。 Further, as shown in FIG. 5A, in this embodiment, the radial opening 6a on the upstream side and the radial opening 7a on the downstream side are installed so as not to overlap in the axial direction. Also, the radial openings 6a and 7a of each motor housing are arranged so as to axially overlap the axial ends of the coils 24b, which will be described later. The radial openings of each motor housing are arranged uniformly in the circumferential direction. there is As a result, the same flow field is formed at three locations in the circumferential direction inside the motor section 202, so that the temperature distribution in the circumferential direction can be reduced. Note that the number of radial openings and the number of diffuser blades may be set using a predetermined value other than 3 as the greatest common divisor.
 なお、本実施例では、モータ部202の冷却性能を高めるため、各モータハウジングを金属製にして放熱性能を高めるとともに、上下のモータハウジング間にステータコア24が露出する領域(露出部24a)を設けることでステータコア24を外側から冷却できるようにしたが、モータ部202の発熱量が比較的少ない場合等には、各モータハウジングを耐熱樹脂製にしたり、上下のモータハウジングを連結してステータコア24が露出しない構造にしたりしても良い。 In this embodiment, in order to improve the cooling performance of the motor section 202, each motor housing is made of metal to improve heat radiation performance, and a region (exposed portion 24a) where the stator core 24 is exposed is provided between the upper and lower motor housings. However, when the amount of heat generated by the motor section 202 is relatively small, each motor housing may be made of heat-resistant resin, or the upper and lower motor housings may be connected to cool the stator core 24. You may make it the structure which is not exposed.
 また、下流側モータハウジング7の径方向開口7aと軸方向開口7bは、径方向開口7aだけでもモータ冷却が可能であるが、軸方向開口7bがあることでモータ冷却を取り込む際の圧力損失が低減でき、モータ冷却風量が増加しモータ冷却が可能となる。 Although the radial opening 7a and the axial opening 7b of the downstream motor housing 7 can cool the motor only with the radial opening 7a, the presence of the axial opening 7b causes pressure loss when the motor is cooled. can be reduced, the motor cooling air volume increases, and the motor can be cooled.
 <モータ部202の回転子>
 図5Bに示すように、回転軸2には、上下のスペーサーで挟まれる領域に、ロータコア23が固定されている。このロータコア23は、サマリウム鉄窒素磁石やネオジム磁石等の希土類系のボンド磁石を内蔵した、モータ部202の回転子である。
<Rotor of Motor Unit 202>
As shown in FIG. 5B, a rotor core 23 is fixed to the rotating shaft 2 in a region sandwiched between upper and lower spacers. The rotor core 23 is the rotor of the motor section 202 and contains a rare earth bond magnet such as a samarium iron nitrogen magnet or a neodymium magnet.
 また、図5Aに示すように、上流側モータハウジング6の上部から突出した回転軸2には、カラー25が固定されており、カラー25の上部には凹部25aが設けられている。この凹部25aを、上記した、羽根車1のスリーブ14の凸部14aに嵌合させることで、回転軸2のトルクを確実に羽根車1に伝達することができ、羽根車1の空転を防止することができる。 Further, as shown in FIG. 5A, a collar 25 is fixed to the rotary shaft 2 protruding from the upper portion of the upstream motor housing 6, and the upper portion of the collar 25 is provided with a concave portion 25a. By fitting the concave portion 25a to the convex portion 14a of the sleeve 14 of the impeller 1, the torque of the rotating shaft 2 can be reliably transmitted to the impeller 1, and the impeller 1 is prevented from spinning. can do.
 <モータ部202の固定子>
 図5Bに示すように、モータ部202の外周には、モータ部202の回転子であるロータコア23を囲むように、モータ部202の固定子であるステータコア24が配置されている。このステータコア24の巻き枠部には、アルミ線や銅線を被覆材で覆ったコイル24bが巻かれており、このコイル24bに、図8の駆動回路114から所望の交流電力を供給することでステータコア24を電磁石にすることができ、ロータコア23と回転軸2と羽根車1を一体に高速回転させることができる。
<Stator of Motor Unit 202>
As shown in FIG. 5B , a stator core 24 that is a stator of motor section 202 is arranged on the outer periphery of motor section 202 so as to surround rotor core 23 that is a rotor of motor section 202 . A coil 24b made of aluminum wire or copper wire covered with a covering material is wound around the winding frame of the stator core 24. When a desired AC power is supplied to the coil 24b from the drive circuit 114 shown in FIG. The stator core 24 can be an electromagnet, and the rotor core 23, rotating shaft 2, and impeller 1 can be rotated together at high speed.
 なお、ステータコア24の上流側に上流側モータハウジング6を打ち込み接着剤により固定し、下流側に下流側モータハウジング7を打ち込む接着材により固定することで、ステータコア24と上流側モータハウジング6と下流側モータハウジング7を一体化することができ、これにより、コイル24bの上流側端部の高さに、上流側モータハウジング6の径方向開口6aを設け、コイル24bの下流側端部の高さに、下流側モータハウジング7の径方向開口7aを設けることができる。 The upstream motor housing 6 is driven into the upstream side of the stator core 24 and fixed with an adhesive, and the downstream side motor housing 7 is driven into the downstream side and fixed with an adhesive. The motor housing 7 can be integrated so that at the level of the upstream end of the coil 24b there is a radial opening 6a in the upstream motor housing 6 and at the level of the downstream end of the coil 24b. , a radial opening 7a in the downstream motor housing 7 may be provided.
 <第一流路F1、第二流路F2の構造>
 次に、図1Bと図6Aを用いて、本実施例の第一流路F1と第二流路F2の構造について詳細に説明する。
<Structures of first flow path F1 and second flow path F2>
Next, the structures of the first flow path F1 and the second flow path F2 of this embodiment will be described in detail with reference to FIGS. 1B and 6A.
 図1Bに示すように、第一流路F1と第二流路F2の形状を規定する寸法を、下流側ディフューザ翼9の径方向高さH1、円環ディフューザ5eの内面と下流側モータハウジング7の外面の径方向距離H2、内壁5aの軸方向長さL1、下流側ディフューザ翼9の軸方向長さL2、円環ディフューザ5eの軸方向長さL3、とした場合、本実施例の電動送風機200では、送風機部201の送風機効率の向上と、モータ部202の冷却効率の向上を両立させるため、各寸法を次の各式により設定している。以下、図1Bの右側流路を拡大した断面図である図6Aを用いて、各式の作用を説明する。 As shown in FIG. 1B, the dimensions that define the shapes of the first flow path F1 and the second flow path F2 are the radial height H1 of the downstream diffuser blade 9, the inner surface of the annular diffuser 5e and the downstream motor housing 7. Assuming that the radial distance H2 of the outer surface, the axial length L1 of the inner wall 5a, the axial length L2 of the downstream diffuser blade 9, and the axial length L3 of the annular diffuser 5e, the electric blower 200 of this embodiment In order to improve both the efficiency of the blower unit 201 and the improvement of the cooling efficiency of the motor unit 202, each dimension is set according to the following equations. The action of each formula will be described below with reference to FIG. 6A, which is an enlarged cross-sectional view of the right channel of FIG. 1B.
 H1 ≧ 0.5×H2 ・・・ (式1)
  より好ましくは、H1 ≧ 0.66×H2 ・・・ (式1’)
 0.5×L2 ≦ L1 ≦ L2 ・・・ (式2)
  より好ましくは、L1≒0.5×L2 ・・・ (式2’)
 L3 ≧ 2.5×H1 ・・・ (式3)
  より好ましくは、L3 ≧ 3×H1 ・・・ (式3’)
 モータ部202に電力を供給して羽根車1を回転させると、図6Aに示すように、電動送風機200の内部には、送風機部201を流れる第一流路F1と、主にモータ部202内を流れる第二流路F2が形成される。そして、第一流路F1から分岐する第二流路F2は、次の(1)~(5)の流路を経て、電動送風機200の排気口200bから排気される。
H1≧0.5×H2 (Equation 1)
More preferably, H1≧0.66×H2 (formula 1′)
0.5×L2≦L1≦L2 (Equation 2)
More preferably, L1≈0.5×L2 (Formula 2′)
L3≧2.5×H1 (Equation 3)
More preferably, L3≧3×H1 (Formula 3′)
When electric power is supplied to the motor section 202 to rotate the impeller 1, as shown in FIG. A flowing second flow path F2 is formed. Then, the second flow path F2 branched from the first flow path F1 is exhausted from the exhaust port 200b of the electric blower 200 through the following flow paths (1) to (5).
 (1)まず、円環ディフューザ5eの内側で第一流路F1から分岐した空気流が、下流側の径方向開口7aと軸方向開口7bからモータ部202の内部に流入する。本実施例では、下流側の径方向開口7aの外周側に円環ディフューザ5eを配置することで、下流側ディフューザ翼9から流出した空気流の外周方向への拡散を抑制しており、第一流路F1から分岐した空気流を効率良くモータ部202の内部に導くことができる。 (1) First, the air flow branched from the first flow path F1 inside the annular diffuser 5e flows into the motor section 202 through the radial opening 7a and the axial opening 7b on the downstream side. In this embodiment, by arranging the annular diffuser 5e on the outer peripheral side of the radial direction opening 7a on the downstream side, the diffusion of the air flow discharged from the downstream diffuser blade 9 in the outer peripheral direction is suppressed. The airflow branched from the path F1 can be efficiently guided inside the motor section 202 .
 (2)下流側の径方向開口7aからモータ部202の内部に流入した空気流は、下流側から上流側に流れながら、高温状態の、下流側軸受22、ロータコア23、ステータコア24、上流側軸受21等を効率良く冷却する。 (2) The airflow that has flowed into the motor section 202 from the radial opening 7a on the downstream side flows from the downstream side to the upstream side, causing the downstream side bearing 22, the rotor core 23, the stator core 24, and the upstream side bearing in a high temperature state. 21 etc. are efficiently cooled.
 (3)モータ部202の内部を上流側に流れた空気流は、上流側の径方向開口6aからモータ部202の外部に流出した後、上流側ハウジング4の内壁4aの内面と上流側モータハウジング6の外面の隙間を下流側に流れ、ステータコア24の露出部24aを更に冷却する。 (3) The airflow that has flowed upstream inside the motor portion 202 flows out of the motor portion 202 through the radial opening 6a on the upstream side, and then flows into the inner surface of the inner wall 4a of the upstream housing 4 and the upstream motor housing. 6 flows downstream to further cool the exposed portion 24 a of the stator core 24 .
 (4)露出部24aを冷却した空気流は、下流側ハウジング5の内壁5aの下端付近で第一流路F1と合流する。本実施例では、(式1)または(式1’)のように、下流側ディフューザ翼9の径方向高さH1を大きく設定しているので、下流側ディフューザ翼9を下流側モータハウジング7に近づけることができ、下流側モータハウジング7の外周領域での流速を高めることができる。また、(式2’)のように、下流側ハウジング5の内壁5aの下端を、下流側ディフューザ翼9の軸方向長さの略半分の位置(例えば、L1/L2=0.5~0.6)に配置すれば、下流側ディフューザ翼9を流通する高速流の存在領域で、第二流路F2を第一流路F1に合流させることができる。従って、高速な第一流路F1のベンチュリ効果により、上流側の径方向開口6aからモータ部202の内部の空気を効率良く吸引することができ、その結果、負圧となったモータ部202の内部に下流側の径方向開口7aと軸方向開口7bから冷却風を効率良く取り込むことができる。つまり、第一流路F1のベンチュリ効果により、電動送風機200の運転範囲によらず、モータ部202の冷却効率を向上させることができる。 (4) The airflow that has cooled the exposed portion 24a merges with the first flow path F1 near the lower end of the inner wall 5a of the downstream housing 5 . In this embodiment, the radial height H1 of the downstream diffuser blade 9 is set large as in (Formula 1) or (Formula 1'), so that the downstream diffuser blade 9 is attached to the downstream motor housing 7. It can be brought closer, and the flow velocity in the outer peripheral region of the downstream side motor housing 7 can be increased. Further, as shown in (Equation 2'), the lower end of the inner wall 5a of the downstream housing 5 is positioned at a position approximately half the axial length of the downstream diffuser blade 9 (for example, L1/L2=0.5 to 0.5. 6) allows the second flow path F2 to merge with the first flow path F1 in the presence region of the high-speed flow flowing through the downstream diffuser blade 9 . Therefore, due to the venturi effect of the high-speed first flow path F1, the air inside the motor section 202 can be efficiently sucked from the radial opening 6a on the upstream side. The cooling air can be efficiently taken in from the radial opening 7a and the axial opening 7b on the downstream side. That is, the venturi effect of the first flow path F1 can improve the cooling efficiency of the motor section 202 regardless of the operating range of the electric blower 200 .
 (5)第一流路F1に合流した空気流は、排気口200bから排気される。本実施例では、(式3)または(式3’)に示したように、下流側ディフューザ翼9の径方向高さH1に応じた軸方向長さL3の円環ディフューザ5eを設けている。円環ディフューザ5eの軸方向長さL3は、下流側ディフューザ翼9の径方向高さH1に比べ十分に長いため、下流側ディフューザ翼9の下流側での流路急拡大は抑制され、その結果として、送風機部201の送風効率が向上する。 (5) The airflow that joins the first flow path F1 is exhausted from the exhaust port 200b. In this embodiment, as shown in (Equation 3) or (Equation 3'), an annular diffuser 5e having an axial length L3 corresponding to the radial height H1 of the downstream diffuser blade 9 is provided. Since the axial length L3 of the ring diffuser 5e is sufficiently longer than the radial height H1 of the downstream diffuser blade 9, rapid expansion of the flow path on the downstream side of the downstream diffuser blade 9 is suppressed. As a result, the blowing efficiency of the blower unit 201 is improved.
 <円環ディフューザ5eの効果>
 次に、図9と図10の実験結果を参照して、本実施例の円環ディフューザ5eの効果を説明する。なお、図9と図10に示す比較例は、図6Aの電動送風機200から円環ディフューザ5eの部分を削除した電動送風機に相当する。
<Effect of annular diffuser 5e>
Next, the effect of the annular diffuser 5e of this embodiment will be described with reference to the experimental results of FIGS. 9 and 10. FIG. The comparative example shown in FIGS. 9 and 10 corresponds to an electric blower obtained by removing the annular diffuser 5e from the electric blower 200 of FIG. 6A.
 比較例の電動送風機では、下流側の径方向開口7aと対向する位置に円環ディフューザ5eが存在しないため、高速の空気流が流れる下流側ディフューザ翼9の後縁9bの下流側で流路が急拡大することになる。その場合、図9の実験結果に示すように、円環ディフューザ5eを備えた本実施例の電動送風機200に比べ、電動送風機効率が大きく劣化する。これに伴い、比較例の電動送風機では、モータ部202の内部に流入する空気量が減少するため、図10に示すように、本実施例の電動送風機200に比べ、モータ部202の内部の軸受(上流側軸受21、下流側軸受22)、ステータコア24、コイル24b等の温度が25~40K程度高くなる。 In the electric blower of the comparative example, since the ring-shaped diffuser 5e does not exist at the position facing the radial opening 7a on the downstream side, the flow path is formed on the downstream side of the trailing edge 9b of the downstream diffuser blade 9 through which the high-speed air flows. will expand rapidly. In that case, as shown in the experimental results of FIG. 9, the efficiency of the electric blower is greatly deteriorated compared to the electric blower 200 of this embodiment having the annular diffuser 5e. Accordingly, in the electric blower of the comparative example, since the amount of air flowing into the motor portion 202 is reduced, as shown in FIG. (Upstream side bearing 21, downstream side bearing 22), stator core 24, coil 24b, etc. are increased by about 25 to 40K.
 従って、図9と図10から明らかなように、円環ディフューザ5eを備えた本実施例の電動送風機200によれば、円環ディフューザを持たない比較例の電動送風機に比べ、送風機部201の送風効率が向上するだけでなく、モータ部202の冷却効率も向上することが分かる。 Therefore, as is clear from FIGS. 9 and 10, according to the electric blower 200 of the present embodiment provided with the annular diffuser 5e, the blowing capacity of the blower section 201 is greater than that of the electric blower of the comparative example which does not have the annular diffuser. It can be seen that not only the efficiency is improved, but also the cooling efficiency of the motor section 202 is improved.
 <変形例>
 次に、図6Bから図6Dを用いて、図6Aの構造の変形例を説明する。
<Modification>
Next, a modification of the structure of FIG. 6A will be described with reference to FIGS. 6B to 6D.
 図6Bは、下流側の径方向開口7aを、図6Aより下流側に配置したものである。この場合、実線で示す第一流路F1の空気流のうち、最内周側の空気流が下流側モータハウジング7に付着する位置の近傍で、第二流路F2が第一流路F1から分岐することになるので、下流側の径方向開口7aからモータ部202内部に吸引する空気量が増え、モータ部202の冷却効率を図6Aより更に高めることができる。 In FIG. 6B, the radial opening 7a on the downstream side is arranged on the downstream side from FIG. 6A. In this case, the second flow path F2 branches from the first flow path F1 in the vicinity of the position where the innermost air flow of the first flow path F1 shown by the solid line adheres to the downstream motor housing 7. As a result, the amount of air sucked into the motor section 202 from the radial opening 7a on the downstream side increases, and the cooling efficiency of the motor section 202 can be further improved as compared with FIG. 6A.
 図6Cは、下流側の径方向開口7aを、図6Aより上流側に配置したものである。この場合、実線で示す第一流路F1の空気流のうち、最内周側の空気流がより上流側で下流側モータハウジング7の外周面に付着するため、流路が拡大する円環ディフューザ5eの領域での空気流の剥離を抑制することができ、送風機部201の送風効率を図6Aより更に高めることができる。 In FIG. 6C, the radial opening 7a on the downstream side is arranged on the upstream side from FIG. 6A. In this case, of the air flow in the first flow path F1 indicated by the solid line, the innermost air flow adheres to the outer peripheral surface of the downstream motor housing 7 on the upstream side, so that the flow path expands in the annular diffuser 5e. It is possible to suppress the separation of the air flow in the area of , and the blowing efficiency of the blower section 201 can be further increased as compared with that in FIG. 6A.
 図6Dは、上記した径方向開口7aと軸方向開口7bに代え、両者の機能を併せ持った、角部開口7cを設けたものである。この場合、簡略化した構成で、図6Bと同様の効果を得ることができる。 In FIG. 6D, instead of the radial opening 7a and the axial opening 7b, a corner opening 7c having both functions is provided. In this case, the same effect as in FIG. 6B can be obtained with a simplified configuration.
 なお、図6Aから図6Dでは、下流側ハウジング5の下流側に円環ディフューザ5eを設けたが、円環ディフューザ5eを省略した構成としても良い。その場合は、下流側の径方向開口7aの近傍で第一流路F1の流路が急拡大するのを抑制するため、少なくとも下流側の径方向開口7aと対向する軸方向位置まで下流側ディフューザ翼9を長くすれば良い。 In addition, in FIGS. 6A to 6D, the annular diffuser 5e is provided on the downstream side of the downstream housing 5, but the annular diffuser 5e may be omitted. In that case, in order to suppress the rapid expansion of the flow path of the first flow path F1 in the vicinity of the radial opening 7a on the downstream side, the downstream diffuser blade is extended to at least the axial position facing the radial opening 7a on the downstream side. 9 should be longer.
 なお、本構成のベンチュリ効果による冷却は、上流側ハウジングや下流側ハウジングのディフューザ翼がなくてもモータ冷却が可能である。 It should be noted that the cooling by the venturi effect of this configuration can cool the motor without the diffuser blades of the upstream housing and the downstream housing.
 <本実施例の効果>
 以上で説明した本実施例によれば、小型かつ軽量でありながら、送風機の効率が広い風量域で高く、モータの冷却効率も高い、電動送風機、及び、それを備えた電気掃除機を提供することができる。
<Effect of this embodiment>
According to the present embodiment described above, an electric blower that is compact and lightweight, has high efficiency in a wide air volume range, and has a high motor cooling efficiency, and a vacuum cleaner equipped with the electric blower are provided. be able to.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分りやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部については、他の構成の追加・削除・置換をすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments have been described in detail to facilitate understanding of the present invention, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
100…電気掃除機、110…掃除機本体、111…本体グリップ部、111a…本体スイッチ部、112…吸気開口、113…集塵室、114…駆動回路、115…電池ユニット、120…保持部、121…グリップ部、121a…スイッチ部、122…吸口体、122a…接続部、130…充電台、200…電動送風機、200a…吸気口、200b…排気口、201…送風機部、202…モータ部、1…羽根車、11…ハブ、11a…ハブ凸部、12…羽根、13…ボス、13a…ボス曲面、14…スリーブ、14a…凸部、2…回転軸、21…上流側軸受、21a…上流側スペーサー、22…下流側軸受、22a…下流側スペーサー、23…ロータコア、24…ステータコア、24a…露出部、24b…コイル、25…カラー、25a…凹部、3…ファンケーシング、4…上流側ハウジング、4a…内壁、4b…外壁、4c…突起、4d…締結部、4e…嵌合部、5…下流側ハウジング、5a…内壁、5b…外壁、5c…爪部、5d…嵌合部、5e…円環ディフューザ、6…上流側モータハウジング、6a…径方向開口、7…下流側モータハウジング、7a…径方向開口、7b…軸方向開口、7c…角部開口、8…上流側ディフューザ翼、8a…前縁、8b…後縁、9…下流側ディフューザ翼、9a…前縁、9b…後縁、F1…第一流路
F2…第二流路
DESCRIPTION OF SYMBOLS 100... Vacuum cleaner, 110... Vacuum cleaner main body, 111... Main body grip part, 111a... Main body switch part, 112... Air intake opening, 113... Dust collection chamber, 114... Drive circuit, 115... Battery unit, 120... Holding part, DESCRIPTION OF SYMBOLS 121... Grip part 121a... Switch part 122... Inlet body 122a... Connection part 130... Charging stand 200... Electric blower 200a... Intake port 200b... Exhaust port 201... Air blower part 202... Motor part, DESCRIPTION OF SYMBOLS 1... Impeller 11... Hub 11a... Hub convex part 12... Blade 13... Boss 13a... Boss curved surface 14... Sleeve 14a... Convex part 2... Rotating shaft 21... Upstream side bearing 21a... Upstream spacer 22 Downstream bearing 22a Downstream spacer 23 Rotor core 24 Stator core 24a Exposed portion 24b Coil 25 Collar 25a Recess 3 Fan casing 4 Upstream Housing 4a... Inner wall 4b... Outer wall 4c... Protrusion 4d... Fastening part 4e... Fitting part 5... Downstream side housing 5a... Inner wall 5b... Outer wall 5c... Claw part 5d... Fitting part 5e Annular diffuser 6 Upstream motor housing 6a Radial opening 7 Downstream motor housing 7a Radial opening 7b Axial opening 7c Corner opening 8 Upstream diffuser blade , 8a... Leading edge 8b... Trailing edge 9... Downstream diffuser blade 9a... Leading edge 9b... Trailing edge F1... First flow path F2... Second flow path

Claims (9)

  1.  送風機部の内部に第一流路が流通し、モータ部の内部に第二流路が流通する電動送風機であって、
     前記モータ部は、回転軸と、該回転軸を回転自在に支持する軸受と、前記回転軸に固定したロータコアと、該ロータコアの外周を囲むように配置したステータコアと、該ステータコアを保持するとともに、側面に上流側径方向開口と下流側径方向開口を開口させたモータハウジングと、を有し、
     前記送風機部は、前記回転軸の先端に固定した羽根車と、該羽根車の外周を覆うファンケーシングと、前記モータ部の上流側外周を囲む上流側ハウジングと、前記モータ部の下流側外周を囲む下流側ハウジングと、を有し、
     前記第一流路は、前記上流側ハウジングの内壁と外壁の間、および、前記下流側ハウジングの内壁と外壁の間を流通し、
     前記第二流路は、前記下流側径方向開口乃至下流側モータハウジングの回転軸方向の開口、前記モータ部の内部、前記上流側径方向開口、前記モータハウジングと前記上流側ハウジングの内壁の間、および、前記モータハウジングと前記下流側ハウジングの内壁の間を流通し、
     前記下流側ハウジングの下流側には、前記下流側径方向開口と対向する円環ディフューザを設けたことを特徴とする電動送風機。
    An electric blower in which a first flow path circulates inside the blower part and a second flow path circulates inside the motor part,
    The motor unit includes a rotating shaft, a bearing that rotatably supports the rotating shaft, a rotor core fixed to the rotating shaft, a stator core that surrounds the outer circumference of the rotor core, and the stator core, a motor housing having an upstream radial opening and a downstream radial opening formed in a side surface thereof;
    The blower section includes an impeller fixed to the tip of the rotating shaft, a fan casing covering the outer circumference of the impeller, an upstream housing surrounding the upstream outer circumference of the motor section, and a downstream outer circumference of the motor section. a downstream housing enclosing
    the first flow path circulates between the inner wall and the outer wall of the upstream housing and between the inner wall and the outer wall of the downstream housing;
    The second flow path extends from the downstream radial opening to the rotational axis direction opening of the downstream motor housing, the inside of the motor section, the upstream radial opening, and between the motor housing and the inner wall of the upstream housing. , and between inner walls of the motor housing and the downstream housing,
    An electric blower, wherein an annular diffuser facing the downstream radial opening is provided on the downstream side of the downstream housing.
  2.  請求項1に記載の電動送風機において、
     前記上流側ハウジングの内壁と外壁の間に上流側ディフューザ翼を設け、
     前記下流側ハウジングの内壁と外壁の間に下流側ディフューザ翼を設けたことを特徴とする電動送風機。
    In the electric blower according to claim 1,
    An upstream diffuser blade is provided between an inner wall and an outer wall of the upstream housing,
    An electric blower comprising a downstream diffuser blade provided between an inner wall and an outer wall of the downstream housing.
  3.  請求項2に記載の電動送風機において、
     前記下流側ディフューザ翼の径方向高さをH1、前記円環ディフューザの内面と前記モータハウジングの外面の径方向距離をH2としたとき、次の何れかの式を満たすことを特徴とする電動送風機。
     H1 ≧ 0.5×H2、
     H1 ≧ 0.66×H2
    In the electric blower according to claim 2,
    An electric blower that satisfies any one of the following expressions, where H1 is the radial height of the downstream diffuser blade, and H2 is the radial distance between the inner surface of the annular diffuser and the outer surface of the motor housing. .
    H1≧0.5×H2,
    H1≧0.66×H2
  4.  請求項2に記載の電動送風機において、
     前記下流側ハウジングの内壁の軸方向長さをL1、前記下流側ディフューザ翼の軸方向長さをL2としたとき、次の何れかの式を満たすことを特徴とする電動送風機。
     0.5×L2 ≦ L1 ≦ L2、
     L1≒0.5×L2
    In the electric blower according to claim 2,
    An electric blower that satisfies any one of the following expressions, where L1 is the axial length of the inner wall of the downstream housing and L2 is the axial length of the downstream diffuser blade.
    0.5×L2≦L1≦L2,
    L1≈0.5×L2
  5.  請求項2に記載の電動送風機において、
     前記下流側ディフューザ翼の径方向高さをH1、前記円環ディフューザの軸方向長さをL3としたとき、次の何れかの式を満たすことを特徴とする電動送風機。
     L3 ≧ 2.5×H1、
     L3 ≧ 3×H1
    In the electric blower according to claim 2,
    An electric blower that satisfies any one of the following expressions, where H1 is the radial height of the downstream diffuser blade and L3 is the axial length of the annular diffuser.
    L3≧2.5×H1,
    L3 ≧ 3×H1
  6.  請求項1に記載の電動送風機において、
     前記モータハウジングは、前記ステータコアの上流側を覆う上流側モータハウジングと、前記ステータコアの下流側を覆う下流側モータハウジングからなり、前記第二流路は、前記上流側モータハウジングと前記下流側モータハウジングで覆われていない、前記ステータコアの露出部に沿って流通することを特徴とする電動送風機。
    In the electric blower according to claim 1,
    The motor housing includes an upstream motor housing that covers the upstream side of the stator core and a downstream motor housing that covers the downstream side of the stator core, and the second flow path is formed between the upstream motor housing and the downstream motor housing. An electric blower characterized by circulating along the exposed portion of the stator core that is not covered with.
  7.  送風機部の内部に第一流路が流通し、モータ部の内部に第二流路が流通する電動送風機であって、
     前記モータ部は、回転軸と、該回転軸を回転自在に支持する軸受と、前記回転軸に固定したロータコアと、該ロータコアの外周を囲むように配置したステータコアと、該ステータコアを保持するとともに、側面に上流側径方向開口と下流側径方向開口を開口させたモータハウジングと、を有し、
     前記送風機部は、前記回転軸の先端に固定した羽根車と、該羽根車の外周を覆うファンケーシングと、前記モータ部の上流側外周を囲む上流側ハウジングと、前記モータ部の下流側外周を囲む下流側ハウジングと、を有し、
     前記第一流路は、前記上流側ハウジングの内壁と外壁の間、および、前記上流側ハウジングの内壁と外壁の間を流通し、
     前記第二流路は、前記下流側径方向開口、前記モータ部の内部、前記上流側径方向開口、前記モータハウジングと前記上流側ハウジングの内壁の間、および、前記モータハウジングと前記下流側ハウジングの内壁の間を流通し、
     前記下流側ハウジングの下流側には、前記下流側径方向開口と対向する下流側ディフューザ翼を設けたことを特徴とする電動送風機。
    An electric blower in which a first flow path circulates inside the blower part and a second flow path circulates inside the motor part,
    The motor unit includes a rotating shaft, a bearing that rotatably supports the rotating shaft, a rotor core fixed to the rotating shaft, a stator core that surrounds the outer circumference of the rotor core, and the stator core, a motor housing having an upstream radial opening and a downstream radial opening formed in a side surface thereof;
    The blower section includes an impeller fixed to the tip of the rotating shaft, a fan casing covering the outer circumference of the impeller, an upstream housing surrounding the upstream outer circumference of the motor section, and a downstream outer circumference of the motor section. a downstream housing enclosing
    the first flow path flows between the inner wall and the outer wall of the upstream housing and between the inner wall and the outer wall of the upstream housing;
    The second flow path extends through the downstream radial opening, the interior of the motor section, the upstream radial opening, between the motor housing and the inner wall of the upstream housing, and between the motor housing and the downstream housing. circulating between the inner walls of
    An electric blower, wherein a downstream diffuser blade facing the downstream radial opening is provided downstream of the downstream housing.
  8.  請求項1から請求項7の何れか1項に記載の電動送風機において、
     上流側乃至下流側モータハウジング乃至両方に軸方向開口を持つことを特徴とする電動送風機。
    In the electric blower according to any one of claims 1 to 7,
    An electric blower characterized by having an axial opening in an upstream or downstream motor housing or both.
  9.  請求項1から請求項8の何れか1項に記載の電動送風機を備えたことを特徴とする電気掃除機。 A vacuum cleaner comprising the electric blower according to any one of claims 1 to 8.
PCT/JP2022/000839 2021-07-14 2022-01-13 Electric blower, and electric vacuum cleaner provided with same WO2023286293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280047234.4A CN117597522A (en) 2021-07-14 2022-01-13 Electric blower and electric dust collector with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116208 2021-07-14
JP2021116208A JP2023012650A (en) 2021-07-14 2021-07-14 Electric blower and vacuum cleaner including the same

Publications (1)

Publication Number Publication Date
WO2023286293A1 true WO2023286293A1 (en) 2023-01-19

Family

ID=84918957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000839 WO2023286293A1 (en) 2021-07-14 2022-01-13 Electric blower, and electric vacuum cleaner provided with same

Country Status (4)

Country Link
JP (1) JP2023012650A (en)
CN (1) CN117597522A (en)
TW (1) TW202302025A (en)
WO (1) WO2023286293A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071082A (en) * 2019-10-30 2021-05-06 日立グローバルライフソリューションズ株式会社 Electric blower and vacuum cleaner provided with the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071082A (en) * 2019-10-30 2021-05-06 日立グローバルライフソリューションズ株式会社 Electric blower and vacuum cleaner provided with the same

Also Published As

Publication number Publication date
JP2023012650A (en) 2023-01-26
CN117597522A (en) 2024-02-23
TW202302025A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
WO2006049115A1 (en) Electric blower
CN209743188U (en) Air supply device and dust collector
CN107524616B (en) Electric fan and electric dust collector with same
JP7145588B2 (en) Electric blower and vacuum cleaner equipped with the same
WO2021084875A1 (en) Electric blower and vacuum cleaner provided with same
JPWO2017047046A1 (en) Temperature conditioning unit, temperature conditioning system, vehicle
JP2018017197A (en) Electric blower and vacuum cleaner mounting the same
CN211692882U (en) Electric fan and dust collector with same
JP6765278B2 (en) Electric blower and vacuum cleaner equipped with it
WO2023286293A1 (en) Electric blower, and electric vacuum cleaner provided with same
JP6581361B2 (en) Electric blower and vacuum cleaner equipped with the same
JP2021085399A (en) Blower and cleaner
TWI677629B (en) Electric blower and electric vacuum cleaner with electric blower
US8317496B2 (en) Motor-fan assembly having a tapered fan with a concave underside
CN110680229B (en) Electric fan and electric dust collector equipped with same
CN110680241B (en) Electric fan and electric dust collector with same
JP6951209B2 (en) Electric blower and vacuum cleaner equipped with it
CN112018909A (en) Air supply device and dust collector
WO2022107390A1 (en) Electric blower, and electric vacuum cleaner provided with same
JP7428630B2 (en) Electric blower and vacuum cleaner equipped with it
JP2022012979A (en) Electric blower, and vacuum cleaner mounting the same
WO2022038816A1 (en) Electric blower, and electric vacuum cleaner provided with same
CN111749911A (en) Air supply device and dust collector
JP2024014328A (en) Electric blower and vacuum cleaner equipped with it
WO2023162284A1 (en) Electric blower and electric vacuum cleaner using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401000149

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE