WO2023160622A1 - 基于分子诊断设备的控制方法及分子诊断设备 - Google Patents

基于分子诊断设备的控制方法及分子诊断设备 Download PDF

Info

Publication number
WO2023160622A1
WO2023160622A1 PCT/CN2023/077940 CN2023077940W WO2023160622A1 WO 2023160622 A1 WO2023160622 A1 WO 2023160622A1 CN 2023077940 W CN2023077940 W CN 2023077940W WO 2023160622 A1 WO2023160622 A1 WO 2023160622A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
detection
temperature
card
heating
Prior art date
Application number
PCT/CN2023/077940
Other languages
English (en)
French (fr)
Inventor
皮世威
陈嘉琪
章星
Original Assignee
深圳市理邦精密仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市理邦精密仪器股份有限公司 filed Critical 深圳市理邦精密仪器股份有限公司
Publication of WO2023160622A1 publication Critical patent/WO2023160622A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00376Conductive heating, e.g. heated plates

Definitions

  • the present application relates to the technical field of molecular detection, in particular to a control method based on molecular diagnostic equipment and molecular diagnostic equipment.
  • Molecular diagnostic technology refers to the diagnostic technology that uses nucleic acid or protein as a biomarker for clinical detection, which provides information and decision-making basis for the prediction, diagnosis, prevention, treatment and outcome of diseases.
  • the detection card When the molecular diagnostic equipment detects the detection card, the detection card needs to be heated. However, when the existing heating equipment is used in multiple channels, it is easy to cause waste of resources.
  • One aspect of the present application provides a control method based on molecular diagnostic equipment, including:
  • the second heating element is controlled to heat the detection cavity.
  • the present application also provides a molecular diagnostic device, comprising:
  • the first heating element is set corresponding to the sample loading chamber on the detection card
  • the second heating element is set corresponding to the detection cavity on the detection card.
  • control unit is respectively connected to the first heating element and the second heating element, and is used to control the first heating element to preheat, heat the sample chamber after preheating, and then control the The second heating element is preheated, and the detection chamber is heated after preheating.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a molecular diagnostic device in an embodiment of the present application
  • Fig. 2 is an exploded exploded view of the molecular diagnostic device in Fig. 1;
  • Fig. 3 is a schematic diagram of the explosion of the pressure plate in Fig. 2;
  • Fig. 4 is a schematic structural view of the first housing in Fig. 3;
  • Fig. 5 is a structural schematic diagram of the resisting plate in Fig. 3;
  • Fig. 6 is a schematic structural view of the consignment assembly in Fig. 2;
  • Figure 7 is a schematic structural view of the consignment in Figure 6;
  • Fig. 8 and Fig. 9 are respectively structural schematic diagrams of different viewing angles under the cooperation of the pressure plate and the consignment assembly in Fig. 2;
  • Fig. 10 is an exploded view of the detection seat of the detection card in Fig. 2;
  • Figure 11 is an exploded view of the support seat in Figure 10;
  • Fig. 12 is a schematic structural view of the main body of the support seat in Fig. 11;
  • Fig. 13 is a schematic structural view of the photodetector in Fig. 11;
  • Fig. 14 is a schematic structural view of the sample chamber assembly in Fig. 11;
  • Fig. 15 is a schematic structural view of the light generator in Fig. 10;
  • Fig. 16 is a schematic structural diagram of a detection card in an embodiment of the present application.
  • Fig. 17 is a sectional view of the detection card along line L-L in Fig. 16;
  • Fig. 18 is a schematic diagram of the three-dimensional structure of the detection card in Fig. 16;
  • Fig. 19 is a schematic diagram of the process of using the detection card in Fig. 18;
  • Fig. 20 is a flowchart of a control method based on molecular diagnostic equipment in an embodiment of the present application
  • Fig. 21 is a structural diagram of a molecular diagnostic device in an embodiment of the present application.
  • Molecular diagnostic technology refers to the diagnostic technology that uses nucleic acid or protein as a biomarker for clinical detection, which provides information and decision-making basis for the prediction, diagnosis, prevention, treatment and outcome of diseases. Especially in the face of various sudden infectious diseases, the most cost-effective measure is rapid and accurate molecular diagnosis.
  • FIG. 1 is a three-dimensional schematic diagram of a molecular diagnostic device 100 in an embodiment of the present application
  • FIG. 2 is an exploded exploded view of the molecular diagnostic device 100 in FIG. 1
  • the molecular diagnostic equipment 100 may include a frame 10 , a detection card delivery base 20 mounted on the frame 10 , a detection card detection base 30 mounted on the frame 10 , and a control circuit board 40 mounted on the frame 10 .
  • the test card delivery seat 20 can be used to place the test card.
  • the test card transport seat 20 can slide relative to the frame 10 , so that the test card transport seat 20 consigns the test card and consigns it to the test card detection seat 30 .
  • the detection card detection seat 30 is used to generate excitation light to detect the detection card and form a detection signal.
  • the control circuit board 40 can be used to control the sliding of the test card delivery seat 20 on the frame 10, and control the test card detection seat 30 to detect the test card, receive the detection signal and process the detection signal to form diagnostic data.
  • the molecular diagnostic device 100 may also include input devices such as a display, a keyboard, and a code scanning device 13 (shown in FIG.
  • the control circuit board 40 inputs control commands to realize the control of the detection card transport seat 20 and/or the test card detection seat 30 by the molecular diagnostic equipment 100 through the control circuit board 40 .
  • orientations such as “upper”, “lower”, “front”, “rear”, “left”, “right”, “top”, “bottom”, “upper” and “lower” may be used for description. It should be understood that the terms “central”, “longitudinal”, “transverse”, “length”, “width”, “thickness”, “upper”, “lower”, “front”, “rear”, “left”, “right”, “vertical” in this document.
  • the orientation or positional relationship indicated by “horizontal”, “top”, “bottom”, “inner”, “outer”, “clockwise”, “counterclockwise”, “axial”, “radial” and “circumferential” are based on the orientation shown in the drawings Or positional relationship is only for the convenience of describing the present application and simplifying the description, but does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present application.
  • first and second herein are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of said features.
  • the test card delivery base 20 may include a pressing plate 50 and a shipping component 60 installed on the frame 10 such as the first guide rail 11 .
  • the shipping component 60 is used for placing the detection card.
  • the pressure plate 50 is threadedly connected with the frame 10 such as the lead screw 12, and can slide on the frame 10 such as the first guide rail 11, and then drives the consignment assembly 60 to slide on the frame 10 such as the first guide rail 11, and the consignment assembly 60 can be Consign the detection card and consign it to the detection card detection seat 30.
  • FIG. 3 is an exploded view of the pressure plate 50 in FIG. 2 .
  • the pressure plate 50 may include a first housing 51 installed on the frame 10 such as the lead screw 12, an electromagnet 52 arranged on the side of the first housing 51 facing the detection card detection seat 30, and used for checking the shipping assembly 60.
  • the pressing part 53 for fixing the detection card, the first heating part 54 and the second heating part 55 arranged on the first casing 51 are installed on the first casing 51 and are connected with the electromagnetic part 52 and the first heating part respectively.
  • the first circuit board 56 electrically connected to the element 54 and the second heating element 55, the second casing 57 covered on the side of the first casing 51 away from the electromagnetic element 52, and the first casing 51 and installed on the machine
  • the frame 10 is, for example, the first slide rail 58 on the first guide rail 11 .
  • the first shell 51 and the second shell 57 are fastened together to form the main body of the pressing plate.
  • the first circuit board 56 may be electrically connected to the control circuit board 40 .
  • the electromagnetic component 52 can generate a magnetic force under the control of the control circuit board 40 to attract the pressing component 53 to the first casing 51 .
  • the electromagnetic part 52 can eliminate the magnetic force under the control of the control circuit board 40 , so as to avoid adsorption to the pressing part 53 .
  • the first heating element 54 and the second heating element 55 can heat the detection card under the control of the control circuit board 40 .
  • the first slide rail 58 can slide on the rack 10 such as the first guide rail 11 .
  • the first housing 51 is connected to the frame 10 such as the lead screw 12 so as to slide in the extending direction of the lead screw 12 and the first guide rail 11 at the same time.
  • FIG. 4 is a schematic structural diagram of the first casing 51 in FIG. 3 .
  • a receiving slot 511 is provided in the middle of the first housing 51 facing the second housing 57 for receiving the first circuit board 56 .
  • the cross section of the receiving groove 511 can be circular or other shapes.
  • the first housing 51 may have a locking hole 512 around the receiving groove 511 for installing the first heating element 54 .
  • the locking holes 512 may be evenly distributed around the receiving groove 511 .
  • the number of the locking holes 512 may also be one of 2, 3, 4, 5, 6....
  • the number of locking holes 512 can be specifically six.
  • the locking hole 512 is shaped as a segment of a ring structure.
  • the first housing 51 is provided with a notch 513 to make way for the shipping assembly 60 .
  • the notch 513 extends from the edge of the first housing 51 near the code scanning device 13 to the inside. In one embodiment, the notch 513 is located between two adjacent locking holes 512 .
  • the electromagnetic component 52 can be energized to generate a magnetic force, and then the pressing component 53 can be adsorbed and fixed.
  • the electromagnet 52 is electrically connected with the first circuit board 56 , the number can be two, and can be installed on the side of the first housing 51 away from the second housing 57 .
  • the pressing member 53 can be made of hard material such as metal, specifically, it can be made of metal such as iron that is attracted by the electromagnet under the magnetic force.
  • the pressing member 53 is disposed on a side of the first housing 51 away from the second housing 57 .
  • the electromagnetic element 52 can absorb the pressing element 53 .
  • the first heating element 54 is installed on the side of the first shell 51 close to the second shell 57 .
  • Heating elements such as heating resistors can be arranged inside the first heating element 54 .
  • the number of the first heating elements 54 may be multiple, and the specific number may be one of 2, 3, 4, 5, 6 and so on. In an embodiment, the number of the first heating elements 54 may be the same as the number of the locking holes 512 , which may be six.
  • the first heating element 54 can be placed in the first housing 51 such as the locking hole 512 , and be engaged with the first housing 51 to realize the installation of the first heating element 54 on the first housing 51 .
  • the first heating element 54 is electrically connected to the first circuit board 56 to realize the control of the heat-generating components inside the first heating element 54 .
  • the second heating element 55 is installed on the side of the first casing 51 away from the second casing 57 .
  • the second heating element 55 may be in an annular structure as a whole.
  • the second heating element 55 can be made of a heat-conductive hard material such as metal, and a heating element such as a heating resistor can be arranged inside.
  • the heating element inside the second heating element 55 is electrically connected to the first circuit board 56 to realize the control of the heating element inside the second heating element 55 .
  • the first circuit board 56 is provided with electronic components such as resistors, capacitors, and inductors.
  • the first circuit board 56 is installed in the receiving groove 511 of the first housing 51 .
  • the first circuit board 56 can be electrically connected with the heating element in the first heating element 54, the heating element in the second heating element 55, and the electromagnetic element 52, so that the heating element in the first heating element 54, the second heating element The heating device in the 55 and the electromagnetic part 52 are controlled respectively.
  • FIG. 5 is a schematic structural diagram of the resisting plate 50 in FIG. 3 .
  • the second housing 57 can be connected and fixed with the first housing 51 by screwing, inserting, buckling, welding, bonding, etc., which will not be repeated here.
  • the second shell 57 completely covers the first shell 51 .
  • a notch 572 is disposed on the second housing 57 .
  • the notch 572 is arranged on the second shell 57 at a position opposite to the notch 513, so that when the second shell 57 is snapped together with the first shell 51, the notch 572 communicates with the notch 513 to give way to the shipping assembly 60, so that The shipping component 60 can slide in the notch 572 and the notch 513 .
  • FIG. 6 is a schematic structural diagram of the shipping assembly 60 in FIG. 2 .
  • the shipping assembly 60 may include a sliding frame 61 disposed above the pressing plate 50 and mounted on the frame 10 such as the first guide rail 11 , and a shipping piece 62 mounted on the sliding frame 61 .
  • the sliding frame 61 can slide on the frame 10 such as the first guide rail 11 .
  • the sliding frame 61 is connected with the pressing plate 50 to slide on the frame 10 together with the pressing plate 50 in some situations.
  • a consignment piece 62 may be used to place a test card.
  • the carrier 62 is slidable relative to the carriage 61 .
  • the sliding direction of the carrier 62 relative to the sliding frame 61 is different from the sliding direction of the sliding frame 61 relative to the frame 10 .
  • the shipping assembly 60 when the shipping assembly 60 is stretched, the shipping piece 62 slides on the sliding frame 61 to slide to the first position outside the frame 10 to complete the stretching, and the detection card is placed when the shipping assembly 60 is in the extended state. Then, when the shipping assembly 60 is shrinking, the shipping piece 62 slides on the sliding frame 61 to slide to the second position in the frame 10 to complete the contraction. Swipe between third and fourth positions. In some embodiments, the shipping assembly 60 can be extended in the third position. In some embodiments, the shipping assembly 60 is extendable at a position between the third position and the fourth position.
  • the sliding frame 61 is provided with a second sliding rail 611 slidably connected to the frame 10 such as the first rail 11 .
  • the sliding frame 61 is provided with a second guide rail 612 for installing the shipping item 62 , so that the shipping item 62 slides on the second guiding rail 612 .
  • the extension direction of the second guide rail 612 can be consistent with the extension direction of the notch 513 , so that the consignment piece 62 slides on the second guide rail 612 and also slides in the notch 513 at the same time.
  • a traction member 613 may be provided on the sliding frame 61 .
  • the traction member 613 may include a tension spring, for example, one end of the tension spring is connected to the sliding frame 61 and the other end is connected to the second housing 57 .
  • FIG. 7 is a schematic structural diagram of the consignment piece 62 in FIG. 6 .
  • the carrier 62 may include a third driving assembly 64 installed on the second guide rail 612 and a card tray 65 installed on the third driving assembly 64 and driven to rotate by the third driving assembly 64 .
  • the third drive assembly 64 slides on the second guide rail 612 to drive the card tray 65 to move together, and can move to a position outside the frame 10 to place the detection card on the card tray 65, and the third drive assembly 64 also It can drive the card tray 65 to move to a position inside the frame 10 , and the third drive assembly 64 can drive the detection card on the card tray 65 to perform centrifugal motion to complete the centrifugal processing of the detection card.
  • the card tray 65 is placed under the third drive assembly 64 and is connected and fixed with the third drive assembly 64 .
  • the card holder 65 is a revolving body, and the axis of the revolving body is arranged coaxially with the output shaft of the third driving assembly 64 .
  • the card holder 65 is a circular disk-shaped structure.
  • the card tray 65 is centered on the part connected to the third driving assembly 64 and spreads out to place the detection cards around.
  • the number of detection cards may be consistent with the number of the first heating elements 54 . Of course, the number of detection cards can also be less than the number of the first heating element 54 . In an embodiment, the number of detection cards may be 6, and of course the specific number of detection cards may also be adjusted according to actual conditions.
  • the card holder 65 can engage with the pressing member 53 when in contact with the pressing member 53 , so as to sandwich the detection card between the card holder 65 and the pressing member 53 .
  • the clamping fit relationship between the clamping tray 65 and the pressing member 53 can be a clamping structure such as a groove and a protruding column, a plug-in structure, a buckle structure, or the like.
  • the consignor 62 can be located at the fourth position.
  • FIG. 8 and FIG. 9 are structural schematic diagrams of different angles of cooperation of the resisting plate 50 and the shipping assembly 60 in FIG. 2 .
  • the resisting plate 50 is connected with the shipping assembly 60
  • the components of the shipping assembly 60 except the card tray 65 are first assembled together, and then the sliding frame 61 in the shipping assembly 60 is placed on the pressing plate 50 .
  • the second sliding rail 611 in the sliding frame 61 is opposite to the first sliding rail 58 of the pressing plate 50 so as to be installed on the frame 10 such as the first guide rail 11 together.
  • the test card detection base 30 may include a support frame 70 connected and fixed to the frame 10 , a support base 80 mounted on the support frame 70 , and a detection assembly 90 mounted on the support frame 70 and the support base 80 .
  • the supporting base 80 is located under the pressing plate 50 so as to carry the testing card transported by the testing card transporting base 20 such as the consignment assembly 60 .
  • the detection component 90 is electrically connected with the control circuit board 40 . When the detection component 90 places the detection card on the support base 80 , it uses the excitation light to perform a series of detection processes on the detection card to generate a detection signal, and sends the detection signal to the control circuit board 40 .
  • the support base 80 may include a support base main body 81 installed on the support frame 70, a detection cavity assembly 82 installed on the support base main body 81, a sample loading unit that is installed on the support base main body 81 and cooperates with the detection cavity assembly 82 to support the detection card.
  • the cavity assembly 83 and the second circuit board 84 disposed on the support base body 81 .
  • the detection chamber assembly 82 can be installed on the support base 80 at a position opposite to the first heating element 54 to cooperate with the first heating element 54 .
  • the sample loading chamber assembly 83 can be installed on the support base 80 at a position opposite to the second heating element 55 to cooperate with the second heating element 55 .
  • the detection chamber assembly 82 cooperates with the sample loading chamber assembly 83 to support and heat the detection card.
  • the detection chamber assembly 82 can also be used to perform excitation light detection on the detection card.
  • the detection chamber assembly 82 and the sample application chamber assembly 83 are electrically connected to the second circuit board 84 to realize the heating control of the detection chamber assembly 82 and the sample application chamber assembly 83 .
  • FIG. 12 is a schematic structural diagram of the main body 81 of the support seat in FIG. 11 .
  • the main body 81 of the supporting base can be in the shape of a plate as a whole.
  • the top of the main body 81 of the support seat can define a placement slot 811 to make way for the card tray 65 .
  • the main body 81 of the support base defines a fastening hole 812 in the slot 811 for matching with the sample chamber assembly 83 .
  • the main body 81 of the support seat is also provided with a positioning member 813 in the placement groove 811 to cooperate with the card holder 65 to realize the positioning of the position of the detection card.
  • the positioning piece 813 can be a positioning groove provided by the main body of the support seat 81 in the placement groove 811, so as to realize the detection of the position of the card when the card holder 65, such as a positioning block, is placed in the positioning piece 813, such as the positioning groove. position.
  • the shape of the positioning member 813 such as a positioning block may match the shape of the card holder 65 such as a positioning slot.
  • the positioning and matching relationship between the main body of the support seat 81 and the card holder 65 is not limited to the matching relationship between the positioning member 813 and the card holder 65, and it can also be the magnetic force between the magnet and the magnet, or the relationship between the electromagnet and the electromagnet.
  • Coordination relationships such as intermagnetic force, of course, can also be other coordination relationships, and will not be described in detail.
  • a plurality of extending slots 814 are evenly distributed around the placement slot 811 of the supporting seat main body 81 .
  • the extension groove 814 communicates with the placement groove 811, so that the support base body 81 forms an assembly platform 815 between two adjacent extension grooves 814, and the detection card can be placed on the assembly platform 815, and the extension groove 814 makes way for the detection card so that the assembly platform 815 supports and fastens the detection card.
  • the main body 81 of the support seat is provided with a receiving hole 816 at the position of the assembly platform 815 , so as to install the detection chamber assembly 82 in the receiving hole 816 .
  • the detection chamber assembly 82 is installed in the main body 81 of the support base 81 such as the receiving hole 816 .
  • the detection chamber assembly 82 may include at least one light detection member 821 , and the specific number of the light detection members 821 may be one of 1, 2, 3, 4, 5, 6 .
  • the photodetection element 821 can be arranged corresponding to one first heating element 54, so that the two cooperate to heat a detection card.
  • FIG. 13 is a schematic structural diagram of the light detection element 821 in FIG. 11 .
  • the light detection element 821 may include a detection seat 8211 disposed in the support seat main body 81 such as the receiving hole 816 .
  • the detection seat 8211 can be made of hard materials such as plastic, metal and the like.
  • the detection seat 8211 extends toward one side of the receiving hole 816 to extend into the receiving hole 816 .
  • the detection seat 8211 is flush with the surface of the assembly platform 815 on the side of the support seat main body 81 where the assembly platform 815 is provided, so as to improve the appearance of the support seat 80 for supporting the detection card.
  • the detection base 8211 is provided with an excitation fiber 8212 in the extending direction, so that the excitation fiber 8212 emits light such as excitation light to the detection card.
  • the detection seat 8211 is provided with a receiving optical fiber 8213 at a position forming an angle with the extending direction.
  • the receiving optical fiber 8213 is used to receive the excitation light emitted by the excitation optical fiber 8212 and the fluorescence formed by the excitation light irradiating the detection card.
  • the detection base 8211 is provided with a heating element accommodating groove 8211a on the side where the exciting optical fiber 8212 is disposed, for accommodating heating elements such as heating resistors.
  • the detection seat 8211 can realize the heating of the detection card through the heating device.
  • the heating element in the heating element accommodating groove 8211a can be electrically connected with the second circuit board 84 to realize heating under the control of the second circuit board 84 .
  • the detection seat 8211 is provided with a heating element accommodating groove 8211b on a side close to the sample loading chamber assembly 83 for accommodating heating elements such as heating resistors.
  • the detection seat 8211 can realize the heating of the detection card through the heating device.
  • the heating element in the heating element accommodating groove 8211b can be electrically connected with the second circuit board 84 to realize heating under the control of the second circuit board 84 .
  • the detection seat 8211 can be called "the third heating element".
  • the detection seat 8211 can be integrated with the main body 81 of the support seat.
  • FIG. 14 is a schematic structural diagram of the sample loading chamber assembly 83 in FIG. 11 .
  • the sample chamber assembly 83 may include a support plate 831 fixed on the support frame 70 and a sample chamber mount 832 mounted on the support plate 831 .
  • the mounting seat 832 of the sample loading chamber is used for fixing the detection card, and is also used for heating the detection card.
  • the mounting seat 832 of the sample loading chamber cooperates with the second heating element 55 to heat the detection card.
  • the supporting plate 831 can be made of hard materials such as plastic, metal and the like. The whole can be in a plate-like structure, and of course it can also be in other structures, which will not be described in detail.
  • the supporting plate 831 can be fixed on the support frame 70 by means of screwing, inserting, bonding, welding and the like. In one embodiment, the supporting plate 831 can be fixed on the supporting frame 70 by means of screwing, inserting, bonding, welding and the like. In an embodiment, the supporting plate 831 can be omitted, and the mounting base 832 of the sample loading chamber can be fixedly connected with the supporting frame 70 directly. In one embodiment, when the support frame 70 is omitted, the supporting plate 831 can be fixed on the support frame 70 .
  • the mounting seat 832 of the sample loading chamber is used for placing the detection card.
  • the sample chamber mount 832 may include a mount body 8321 .
  • the mounting base body 8321 can be made of hard heat-conducting materials such as plastic or metal as a whole.
  • the mount body 8321 is used to be placed in the support body 81 such as the fastening hole 812 .
  • the side of the mounting base body 8321 away from the support plate 831 is provided with a sample loading chamber placement groove 8322 for installing a detection card.
  • the mounting base body 8321 is provided with a heating element accommodating groove 8323 for accommodating heating elements such as heating resistors, so that the mounting base body 8321 can heat the detection card.
  • the heating device can be electrically connected with the second circuit board 84 to be heated under the control of the second circuit board 84 .
  • the heating device is arranged in the mounting base body 8321, it has the effect of heating the detection card. Therefore, the mounting seat 832 of the sample loading chamber can be called a "fourth heating element”.
  • first heating element For names such as “first heating element”, “second heating element”, “third heating element”, “fourth heating element”, “fifth heating element”, “sixth heating element” and “heating element”, in some embodiments can be converted to each other.
  • first heating element in other embodiments is referred to as “second heating element”
  • second heating element in other embodiments is referred to as “first heating element”.
  • the mounting seat body 8321 is provided with an abutting portion 8324 on one side edge of the sample loading chamber seating groove 8322 for abutting against the detection card.
  • the abutting portion 8324 can also be used to position the detection card.
  • the second circuit board 84 can be electrically connected to the heating element in the detection chamber assembly 82 and the heating element in the sample adding chamber assembly 83 respectively, so as to control the heating element for heating.
  • the second circuit board 84 can be a ring structure, and can be sleeved around the sample chamber assembly 83 .
  • the second circuit board 84 can be directly fixed on a side of the support base body 81 close to the support frame 70 .
  • the second circuit board 84 may also be directly fixed on the supporting frame 70 .
  • the second circuit board 84 may also be directly fixed on the supporting frame 70 .
  • the second circuit board 84 may also be directly fixed on the sample loading chamber assembly 83 such as the support plate 831 .
  • the second circuit board 84 can be omitted without sharing the working pressure for the control circuit board 40, and the heating device in the detection chamber assembly 82 and the heating device in the sample chamber assembly 83 can be directly connected with The control circuit board 40 is electrically connected.
  • the detection assembly 90 may include a light generator 91 mounted on the support frame 70, a light receiver 92 mounted on the support frame 70, and a detection cavity assembly 82 mounted on the support base 80 such as the support base main body 81 (that is, the previously described).
  • the detection cavity assembly 82 of the support base 80, the detection cavity assembly 82 may be a common component of the support base 80 and the detection assembly 90).
  • both the light generator 91 and the light receiver 92 are electrically connected to the control circuit board 40 .
  • the light generator 91 is used to generate excitation light, and can generate excitation light under the control of the control circuit board 40 .
  • the excitation light can be transmitted to the detection cavity assembly 82 to excite the detection card and generate fluorescence, the fluorescence can be received by the light receiver 92 , and the light receiver 92 can generate a detection signal under the control of the control circuit board 40 .
  • the detection signal is transmitted to the control circuit board 40 and the control circuit board 40 processes and generates diagnostic data.
  • FIG. 15 is a schematic structural diagram of the light generator 91 in FIG. 10 .
  • the number of light generators 91 may be two, specifically a first light generator 911 and a second light generator 912 . Both the first light generator 911 and the second light generator 912 can be fixed on the supporting frame 70 .
  • the excitation light output ends of the first light generator 911 and the second light generator 912 communicate with the excitation fiber 8212 .
  • the optical receiver 92 is used to connect with the receiving optical fiber 8213 to receive the fluorescence, and then transmit the detection signal triggered by the fluorescence to the control circuit board 40 .
  • the light receiver 92 has a ring shape and is arranged around the light generator 91 .
  • Light receiver 92 may include a light sensor such as a photodiode. Light sensors such as photodiodes can be illuminated by fluorescent light to generate electrical signals.
  • control circuit board 40 may be provided with electronic components such as a processor and a memory.
  • the control circuit board 40 can control the rotation of the lead screw 12 , and then control the sliding position of the test card delivery seat 20 relative to the frame 10 .
  • the control circuit board 40 can be electrically connected with the pressure plate 50, such as the first circuit board 56, so as to control the electromagnetic element 52, and perform magnetic force adsorption on the pressing element 53, so as to control the first heating element 54 and the second heating element 55, Heat the Test Card.
  • the control circuit board 40 can control the third driving assembly 64 to drive the card tray 65 to slide relative to the sliding frame 61 .
  • the control circuit board 40 can be electrically connected with the shipping component 60 such as the third driving component 64, so as to control the third driving component 64 to drive the card holder 65 to centrifuge the detection card.
  • the control circuit board 40 can be electrically connected to the second circuit board 84 to be indirectly electrically connected to the detection chamber assembly 82 such as a heating device, so as to control the detection seat 8211 and heat the detection card.
  • the control circuit board 40 can be electrically connected to the second circuit board 84 to be indirectly electrically connected to the sample chamber assembly 83 such as a heating device, so as to control the sample chamber installation seat 832 to heat the detection card.
  • the control circuit board 40 can be electrically connected with the detection component 90 such as the light generator 91 so as to control the light generator 91 to emit excitation light.
  • control circuit board 40 can be electrically connected with a detection component 90, such as a light receiver 92, so as to control the light receiver 92 to receive fluorescence.
  • the control circuit board 40 can be electrically connected to input devices such as a display, a keyboard, and a code scanning device 13, so as to input control instructions to the molecular diagnostic device 100 such as the control circuit board 40 through the input device, so as to realize the molecular diagnostic device 100 through the control circuit board 40. Control of the card delivery seat 20 and/or detection card detection seat 30.
  • FIG. 16 is a schematic structural diagram of a detection card in an embodiment of the present application.
  • the test card 93 is also called a molecular diagnostic centrifuge test card or a test card.
  • the detection card 93 may include a body 94 provided with a sample loading chamber, a flow channel, a waste liquid chamber, an isolation chamber and a detection chamber, an isolation layer 95 covering one side of the body 94, and a cover covering the sample loading chamber of the body 94 96.
  • FIG. 17 is a cross-sectional view along the line L-L of the detection card 93 in FIG. 16
  • FIG. 18 is a three-dimensional schematic diagram of the detection card 93 in FIG.
  • the body 94 is made of hard material such as plastic.
  • the body 94 as a whole can be a plate-like structure. It is generally fan-shaped, and specifically can be fan-shaped, fan-bladed or pie-shaped. For example, the body 94 is fan-shaped formed by sequentially connecting two straight sides and one arc-shaped side end to end.
  • the body 94 is a sector ring formed by sequentially connecting a straight line side, an outer arc-shaped side, a straight line side, and an inner arc-shaped side end to end.
  • the body 94 can also be in other shapes, which will not be repeated here.
  • the angle between the two straight sides of the fan-shaped structure of the body 94 may be 40°-60°, the diameter of the inner arc side may be 10mm-100mm, and the diameter of the outer arc side may be 100mm-200mm.
  • detection cards 93 at least 6 detection cards can be arranged in the detection plane of the molecular diagnostic device 100 to form a circular surface, so that at least 6 detection cards 93 can be detected simultaneously, improving the overall detection efficiency , which can meet the needs of large-scale detection.
  • the body 94 is close to the center of the outer arc edge or the inner arc edge and protrudes toward a side away from the isolation layer 95 to provide a mounting portion 941 .
  • a sample adding chamber 9411 is recessed on a side of the body 94 close to the isolation layer 95 and at a position opposite to the mounting portion 941 , for sample addition in the sample adding chamber 9411 .
  • the sample loading chamber 9411 is mainly used for pretreatment of samples (liquid samples), and the pretreatment methods may include one or more methods, such as chemical treatment, heat treatment, enzyme treatment and physical separation.
  • the volume of the sample loading chamber 9411 is approximately 200-2000 ⁇ l. Dried reagents can be preloaded in the sample loading chamber 9411, and can be air-dried/dried in situ, or can be added into the sample loading chamber 9411 as freeze-dried reagents.
  • the body 94 is provided with a second fastening portion 942 on a side away from the isolation layer 95 and near the outer arc edge, so as to cooperate with the shipping component 60 such as the card tray 65 .
  • the second fastening portion 942 may be a protrusion.
  • the main body 94 is bent toward the side away from the isolation layer 95 at the edge of one straight line close to the outer arc edge, and the first stopper 943 is bent toward the side away from the isolation layer 95 at the edge of the other straight line close to the outer arc edge.
  • a second limiting portion 944 protrudes from one side. The first limiting part 943 of the body 94 cooperates with the second limiting part 944 to fix the detection card 93, so that the centrifugation process of the detection card 93 can be carried out smoothly.
  • a waste liquid chamber 9441 is recessed at a position opposite to the limiting portion 944 .
  • Each socket set may include a first socket 945 and a second socket 946 .
  • the connecting line between the first socket part 945 and the second socket part 946 may pass through the center of the outer arc edge.
  • the first insertion portion 945 is disposed between the installation portion 941 and the second insertion portion 946 .
  • the arrangement of the first insertion part 945 and the second insertion part 946 can cooperate with the detection card detection seat 30 such as the isolation groove 8213 and the detection groove 8212 .
  • An isolation chamber 9451 is recessed on a side of the body 94 close to the isolation layer 95 and opposite to the first insertion portion 945 .
  • the isolation cavity 9451 is provided with a meltable isolation body.
  • the separator is switchable between a molten state and an unfused state (usually solid).
  • the isolator can be controlled to be in an unmelted state. At this time, the isolator can prevent the sample from entering the detection cavity 9461 (as shown in FIG. 18 ) through the flow channel.
  • the separator can be paraffin, microcrystalline, synthetic, or natural wax.
  • a detection cavity 9461 is recessed on a side of the body 94 close to the isolation layer 95 and opposite to the second insertion portion 946 .
  • the detection chamber 9461 is provided with reagents.
  • the isolation cavity 9451 communicates with the detection cavity 9461 on a side close to the isolation layer 95 .
  • the isolation body in the isolation cavity 9451 can also be used to seal the isolation reagents, so as to prevent the reagents from entering the isolation cavity 9451 in reverse. Reagents are maintained within detection chamber 9461.
  • the isolator When performing the test, the isolator can be controlled to be in a molten state, and at this time, the sample can enter the detection chamber 9461 through the sample loading chamber 9411 to react with the reagent in the detection chamber 9461 to complete the detection.
  • Reagents and meltable spacers can be stacked in the detection chamber 9461 .
  • the separator can be paraffin, microcrystalline, synthetic, or natural wax.
  • the isolator is characterized in that it is solid at room temperature and low temperature, and becomes liquid when heated to a specific temperature, and has no inhibitory effect on nucleic acid amplification reactions.
  • the reagents can be dry reagents, and the dry reagents include primers and DNA (deoxyribonucleic acid, deoxyribonucleic acid) binding dyes, enzymes, magnesium sulfate, potassium chloride, dNTPs (Nucleoside triphosphate, deoxyribonucleic acid) used in the amplification reaction.
  • the dry reagent is loaded into the detection chamber 9461 in a liquid state, and the dry reagent is formed through a drying process.
  • the temperature of the drying process is lower than the melting temperature of the isolator.
  • the drying process includes air drying, oven drying, and freeze drying. During the detection and heating process, both the reagent and the spacer are in a liquid state. Since the specific gravity of the spacer is smaller than that of the reagent, the spacer is displaced out of the detection chamber 9461 under the action of the centrifugal field, so that the reaction and detection are not affected.
  • the isolator is loaded into the detection cavity 9461 in a molten state and is formed by natural solidification or cooling and solidification.
  • the isolator can be controlled to be in an unmelted state, and at this time, the sealed and isolated storage of the reagent can be realized through the isolator.
  • the isolator can be controlled to be in a melting state, for example, by heating the detection card 93, so that the isolator is heated and melted, at this time, the isolator Under the action of centrifugal force, the body can move out of the detection cavity 9461 and flow to the isolation cavity 9451, and the sample can enter the detection cavity 9461, and then the isolation body solidifies again to block the mouth of the detection cavity 9461, and then multiple detection cavities 9461 A mutual isolation seal is formed so that the detection chambers 9461 can independently conduct reactions or tests.
  • the main body 94 is provided with a flow channel 947 on a side close to the isolation layer 95 to communicate with the sample injection chamber 9411 and the isolation chamber 9451 .
  • the body 94 is provided with an abutting groove 948 on a side away from the isolation layer 95 and opposite to the flow channel 947 , so as to cooperate with the abutting portion 8324 .
  • the abutting part 8324 can be placed in the abutting groove 948 to heat the part of the flow channel 947 to prevent water vapor from condensing in the flow channel 947, thereby reducing the impact on the subsequent detection process and improving detection accuracy.
  • the abutment groove 948 may be omitted.
  • the isolation layer 95 can be a film structure, and of course can also be other structures.
  • the isolation layer 95 can be made of compacted adhesive, ultraviolet curing adhesive or optical grade double-sided adhesive, or can be made of a material similar to that of the body 94 .
  • the isolation layer 95 can be attached to the body 94, and can be sealed and fixed by, for example, ultrasonic welding, laser welding, adhesive sealing, etc., so as to isolate the flow channel 947, the waste liquid chamber 9441, the isolation chamber 9451 and the detection chamber 9461.
  • the isolation layer 95 can be integrated with the body 94 .
  • the cover body 96 covers the mouth of the sample adding chamber 9411 . To seal and isolate the sample loading chamber 9411. When it is necessary to add a sample, the cover 96 can be opened, the sample can be added to the sample adding chamber 9411, and then the cover 96 can be closed.
  • the cover body 96 can block water and ventilate, which can discharge the water vapor generated during the heating process and reduce the air pressure in the molecular diagnostic centrifugal test card, so as to ensure a good ventilating effect, and can block the aerosol and biological
  • the escape of pollutants such as molecules avoids the detection of pollution to personnel and the environment.
  • the detection card 93 When the detection card 93 is centrifugally rotated, the sample liquid passes through the sample adding chamber 9411 and the flow channel 947 . At this time, the spacer is solid, thereby sealing the detection chamber 9461 , and the sample liquid cannot flow into the detection chamber 9461 . After the sample liquid is heated, the spacer is heated and melted and flows to the detection chamber 9461 , so that the flow channel 947 can communicate with the detection chamber 9461 , and the sample liquid can flow into the detection chamber 9461 through it.
  • the spacer Since the specific gravity of the spacer is smaller than that of the reagent, the spacer is displaced onto the reagent under the action of the centrifugal field, which does not affect the reaction and detection, and at the same time, the detection chamber 9461 can be sealed.
  • Some embodiments of the present application also provide a detection method based on the detection card 93 described above. This method can be used in the molecular diagnostic device 100 in the above embodiments. Please refer to FIG. 19 , which is a schematic diagram of the process of using the detection card in FIG. 18 . The specific steps can be as follows:
  • Step S2101 The sample loading chamber receives the sample.
  • the heating method can be a metal heating block, heating air flow, electromagnetic waves (infrared radiation, laser, microwave) and other methods.
  • the heating area of the detection card can be the area near the sample loading chamber.
  • the heating process needs to be heated to a specified temperature, such as 90°C. After reaching the specified temperature, keep warm for 3-10 minutes according to the specified requirements to achieve pretreatment. After the pretreatment is completed, the temperature of the sample liquid is lowered to a specified temperature, such as 60°C.
  • Step S2102 The detection card is rotated by the centrifugal force so that the sample flows to the detection cavity through the flow channel.
  • Centrifuge the test card spin control For example, the rotation direction can be controlled to be clockwise, the rotation speed is greater than 1000rpm, and the rotation time is about 10-15s.
  • the sample liquid can flow from the sample loading chamber to the detection chamber through the flow channel, so as to facilitate subsequent filling of the sample in the detection chamber. Excess sample fluid goes to the waste chamber.
  • Step S2103 heating and melting the spacer, so that the sample flows into the detection chamber and mixes with the reagent in the detection chamber.
  • heat treatment needs to be performed on the area near the detection chamber, so that the temperature is higher than the melting point of the spacer, and then the spacer is melted, so that the sample is mixed with the reagent in the detection chamber.
  • Step S2104 Centrifugal rotation, so that the spacer is replaced with the sample in the detection chamber, and the inlet end of the detection chamber is sealed.
  • the motor can rotate clockwise, the rotation speed is greater than 1000rpm, and the rotation time is 10-15s.
  • the sample enters the detection chamber, and the spacer and the aqueous solution in the detection chamber are replaced, and the spacer is transferred to the inlet port of the detection chamber, thereby completing the sealing of each detection chamber.
  • change the motor control parameters to make the detection card rotate clockwise and counterclockwise alternately.
  • the detection card can be controlled to rotate clockwise at a rotation speed of 3000rpm for 1s, and then rotate counterclockwise at a rotation speed of 3000rpm for 1s and alternately rotate 10-15 times.
  • the sample and the reagent in the detection chamber can be completely dissolved and mixed by this way of alternating clockwise and counterclockwise rotation.
  • the isolator flows to the inlet end of the detection chamber under the action of centrifugal force, so as to seal the inlet end of the detection chamber.
  • Step S2105 Detect the mixed mixture.
  • an amplification reaction and detection are required. If real-time detection is used, the detection and amplification reaction are performed simultaneously, and if end-point detection is used, detection is performed after the amplification is completed.
  • the amplification reaction can be realized in the following way: heating the vicinity of the detection chamber, and controlling the temperature in the range of 60°C-75°C. After reaching the specified temperature, according to the specified requirements, keep warm for 30-60 minutes to complete the amplification reaction.
  • FIG. 20 is a flowchart of a control method based on molecular diagnostic equipment in an embodiment of the present application.
  • the method can include:
  • Step S2201 Control the first heating element corresponding to the sample loading chamber on the detection card to preheat.
  • the detection card 93 may include a sample loading chamber 9411 and a detection chamber 9461 .
  • the heating pretreatment of the sample loading cavity 9411 of the test card 93 is helpful for the pretreatment of the sample in the sample loading cavity 9411, and the pretreatment is helpful for the subsequent detection of the sample.
  • pretreatment methods may include one or more, such as chemical treatment, heat treatment, enzyme treatment and physical Separation etc.
  • the heating element for heating the sample loading cavity 9411 of the detection card 93 may include a second heating element 55 for heating the top of the detection card 93 such as the sample loading cavity 9411 and a fourth heating element 55 for heating the bottom of the detection card 93 such as the sample loading cavity 9411.
  • Heating element 832 When the heating element is heating, at least one of the second heating element 55 and the fourth heating element 832 can be used to heat the sample loading chamber of the test card 93 . Therefore, heating elements such as the second heating element 55 and the fourth heating element 832 can be used to heat the detection card 93 such as the sample adding chamber 9411 .
  • the heating elements such as the second heating element 55 and the fourth heating element 832 can also be arranged in other ways instead of the arrangement shown in FIG. 3 and FIG. 10 .
  • the heating elements such as the second heating element 55 and the fourth heating element 832 heat the detection card 93 such as the sample loading chamber 9411 without heating the detection card 93 such as the detection chamber 9461 at the same time, and then the heating elements such as the second heating element 55,
  • the setting of the fourth heating element 832 is relatively compact, so that heating elements such as the second heating element 55 and the fourth heating element 832 are prevented from heating the detection card 93 such as the sample loading chamber 9411 and the detection chamber 9461 at the same time, and the power is relatively large to affect molecular diagnosis.
  • the overall power of the device 100 In this application, however, the setting of heating elements such as the second heating element 55 and the fourth heating element 832 enables the safe operation of the molecular diagnostic device 100 .
  • the heating elements such as the second heating element 55 and the fourth heating element 832 will heat the detection card 93 from the initial If the temperature is increased, the detection time of the detection card 93 is prolonged, and the detection efficiency of the molecular diagnostic device 100 is low. Therefore, using heating elements such as the second heating element 55 and the fourth heating element 832 to preheat first, and then using heating elements such as the second heating element 55 and the fourth heating element 832 to heat the detection card such as the sample loading chamber 9411 can save a lot of money. time. That is, at least one of the second heating element 55 and the fourth heating element 832 can be preheated.
  • the heating elements such as the second heating element 55 and the fourth heating element 832 heat the detection card 93 such as the sample chamber 9411, they can be performed in parallel with other operating steps of the molecular diagnostic device 100, so as to further reduce heating.
  • the detection time of components such as the second heating component 55 and the fourth heating component 832 on the detection card is improved to improve the detection efficiency.
  • the heating elements in the heating station such as the second heating element 55 and the fourth heating element 832 , are controlled to preheat.
  • the heating station may be a position where the detection card 93 is placed on the detection card detection base 30 such as the support base 80 .
  • the conveying process may be a process in which the test card conveying seat 20 transports the test card 93 to the test card detecting seat 30 .
  • the heating elements such as the second heating element 55 and the fourth heating element 832 can be controlled to preheat to the first temperature.
  • the conveying process may at least include a consignment process in which the detection card conveying seat 20 consigns the detection card 93 , and in some embodiments, the conveying process may also include a process in which the user sets detection data.
  • the delivery process may also include a test card placement process in which the user places the test card 93 on the card tray 65 .
  • the conveying process may include the process before heating the detection card, and details are not repeated here.
  • the specific process involved in the delivery process is different, resulting in a different time spent in the delivery process. Therefore, the conveying process can be carried out simultaneously with the preheating process of the heating elements such as the second heating element 55 and the fourth heating element 832 .
  • the conveying process and the preheating process of the heating elements such as the second heating element 55 and the fourth heating element 832 may start successively or simultaneously.
  • the conveying process and the preheating process of the heating elements such as the second heating element 55 and the fourth heating element 832 can be completed successively or simultaneously.
  • the preheating process of the heating elements such as the second heating element 55 and the fourth heating element 832 can be completed before the delivery process is completed, and the preheating process of the heating elements such as the second heating element 55 and the fourth heating element 832 Can be insulated after completion.
  • the first temperature may be 20-50°C. In some embodiments, the first temperature may be one of 25°C, 30°C, 35°C, 40°C, 45°C. Understandably, the first temperature can be adjusted as required.
  • the first temperature can be determined corresponding to the reagents and/or samples in the detection card 93 such as the sample loading chamber 9411 . That is, the reagents in the sample loading chamber 9411 in each test card 93 are different, and the requirements for the first temperature are different. Therefore, the first temperature can be determined corresponding to the type of detection card.
  • the first temperature and the type of detection card can be preset in the molecular diagnostic device 100 in advance.
  • the molecular diagnostic device 100 can scan the image of the information mark on the card tray 65 through the code scanning device 13 to determine the type of the detection card 93 , and then the molecular diagnostic device 100 selects the first temperature corresponding to the type of the detection card.
  • the user inputs the detection card type to the molecular diagnostic device 100, and the molecular diagnostic device 100 selects the first temperature corresponding to the detection card type. The user may also directly input the first temperature to the molecular diagnostic device 100 .
  • heating element such as the second heating element 55 can be one, thus whether to place a detection card 93 or a plurality of detection cards 93 on the card holder 65, all need heating element such as the second heating element.
  • the whole member 55 is preheated and subsequently heated.
  • the number and position of the fourth heating element 832 can be set corresponding to the number of detection cards 93 on the card tray 65, therefore, when the sample volume is small, it can be individually corresponding to the card tray
  • the number and position of the detection cards placed on the 65, and the fourth heating element 832 corresponding to the number and position of the detection cards is controlled to perform preheating and subsequent heating, thereby further reducing the overall power of the molecular diagnostic device 100.
  • Step S2202 Control the first heating element to heat the sample loading chamber.
  • the test card 93 is transported to the test card detection seat 30 through the test card delivery seat 20 .
  • the second heating element 55 and the fourth heating element 832 can clamp the detection card 93 such as the sample adding chamber 9411 .
  • the preheated heating elements of the second heating element 55 and the fourth heating element 832 can further heat the detection card 93 such as the sample loading chamber 9411 to complete the heating pretreatment of the sample.
  • heating elements such as the second heating element 55 and the fourth heating element 832 can be controlled to heat the sample loading chamber to a second temperature, wherein the first temperature can be lower than the second temperature.
  • the reagent in the sample chamber processes the sample, it must be carried out at a specific temperature such as the second temperature.
  • the heating temperature is not reached, the reagent may not process the sample, or may process the sample but the process is slow . Therefore, it is necessary to control the sample and the reagent in the sample loading chamber to be carried out at the second temperature until the reagent finishes processing the sample.
  • the second temperature may be 40-100°C.
  • the first temperature may be one of 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, 80°C, 90°C, 95°C. Understandably, the second temperature can be adjusted as needed.
  • the second temperature can be determined corresponding to the reagents and/or samples in the detection card 93 , for example, the sample application chamber 9411 . That is, the reagents in the sample adding chamber 9411 in each test card 93 are different, and the requirements for the second temperature are different. Therefore, the second temperature can be determined corresponding to the type of detection card.
  • the second temperature and the detection card type can be preset in the molecular diagnostic device 100 in advance.
  • the molecular diagnostic device 100 can scan the image of the information mark on the card tray 65 through the code scanning device 13 to determine the type of the test card 93 , and then the molecular diagnostic device 100 selects the second temperature corresponding to the type of the test card.
  • the user inputs the detection card type to the molecular diagnostic device 100, and the molecular diagnostic device 100 selects the second temperature corresponding to the detection card type. The user may also directly input the second temperature to the molecular diagnostic device 100 .
  • the heating elements such as the second heating element 55 and the fourth heating element 832 are controlled to heat the sample loading chamber to the second temperature
  • the heating elements such as the second heating element 55 and the fourth heating element 832 are controlled to add the sample.
  • the reagent can complete the processing of the sample.
  • the reagent within the first time period of incubation, the reagent can complete the sample processing, or the sample processing can not be completed but subsequent detection can be performed.
  • the first duration may be a constant value, for example, 3-10 minutes. In some embodiments, the first duration may be one of 4 min, 5 min, 6 min, 7 min, 8 min, and 9 min. Understandably, the first duration can also be adjusted.
  • the first duration can be determined corresponding to the reagent and/or sample in the detection card 93 such as the sample adding chamber 9411 and the second temperature. That is, the reagents in the sample loading chamber 9411 in each test card 93 are different, and the requirements for the first duration are different. Therefore, the first duration can be determined corresponding to the detection card type and the second temperature.
  • the first duration and the type of the test card can be preset in the molecular diagnostic device 100 in advance.
  • the molecular diagnostic device 100 can scan the image of the information mark on the card tray 65 through the code scanning device 13 to determine the type of the test card 93 , and then the molecular diagnostic device 100 selects the first duration corresponding to the type of the test card.
  • the user inputs the test card type to the molecular diagnostic device 100, and the molecular diagnostic device 100 selects the first duration corresponding to the test card type. It is also possible for the user to directly input the first duration into the molecular diagnostic device 100 .
  • Step S2203 Control the second heating element corresponding to the detection chamber on the detection card to preheat.
  • the heating element such as the second heating element 55 and the fourth heating element 832 only heat the detection card 93 such as the sample loading chamber 9411
  • the card 93 such as the sample loading chamber 9411 and the detection chamber 9461 is heated with high power to affect the overall power of the molecular diagnostic device 100 .
  • the setting of heating elements such as the second heating element 55 and the fourth heating element 832 enables the safe operation of the molecular diagnostic device 100 .
  • the detection chamber 9461 of the detection card 93 is subjected to heat treatment, which helps the isolation chamber 9451 and the meltable isolator in the detection chamber 9461 to be melted, so that the centrifuge
  • the processed and pretreated samples enter the detection chamber 9461 and are further processed by the reagents in the detection chamber 9461 .
  • the isolation chamber 9451 of the test card 93 can be omitted.
  • the meltable insulators in isolation chamber 9451 and/or detection chamber 9461 may be omitted.
  • the centrifuged but pretreated sample will enter the detection chamber 9461 and be further processed with the reagents in the detection chamber 9461 .
  • the heating element for heating the detection cavity 9461 of the detection card 93 may include the first heating element 54 for heating the detection card 93 such as the top of the detection cavity 9461 and the third heating element 8211 for heating the detection card 93 such as the bottom of the detection cavity 9461 .
  • the heating element is heating, at least one of the first heating element 54 and the third heating element 8211 can be used to heat the detection cavity 9461 of the detection card 93 . Therefore, heating elements such as the first heating element 54 and the third heating element 8211 can be used to heat the detection card 93 such as the sample adding chamber 9411 .
  • the heating elements such as the first heating element 54 and the third heating element 8211 can also be arranged in other ways instead of the arrangement shown in FIG. 3 , FIG. 10 , and FIG. 13 .
  • the heating elements such as the first heating element 54 and the third heating element 8211 heat the detection card 93 such as the detection chamber 9461, but do not simultaneously heat the detection card 93 such as the sample loading chamber 9411, and then the heating elements such as the first heating element 54,
  • the arrangement of the third heating element 8211 is relatively small, and therefore it is avoided that the heating elements such as the first heating element 54 and the third heating element 8211 simultaneously heat the detection card 93 such as the sample loading chamber 9411 and the detection chamber 9461 and have a large power to affect the molecular diagnosis The overall power of the device 100.
  • the arrangement of the heating elements such as the first heating element 54 and the third heating element 8211 enables the safe operation of the molecular diagnostic device 100 .
  • the number and position of the first heating element 54 can be set corresponding to the number and position of the detection cards 93 on the card tray 65, therefore, when the sample volume is small, it can be individually corresponding
  • the number and position of the test cards placed on the card tray 65 control the first heating element 54 corresponding to the number and position of the test cards to perform preheating and subsequent heating, thereby further reducing the overall power of the molecular diagnostic device 100 .
  • the number and position of the third heating element 8211 can be set corresponding to the number and position of the detection cards 93 on the card tray 65. Therefore, when the sample volume is small, The third heating element 8211 corresponding to the number and position of the test cards can be individually controlled for preheating and subsequent heating to further reduce the overall power of the molecular diagnostic device 100 .
  • the temperature of the detection card 93 will change from the initial temperature to Heating causes the detection time of the detection card 93 to be extended, and the detection efficiency of the molecular diagnostic device 100 is low. Therefore, using heating elements such as the first heating element 54 and the third heating element 8211 to preheat first, and then using heating elements such as the first heating element 54 and the third heating element 8211 to heat the detection card such as the detection chamber 9461 can save a lot of energy. time. That is, at least one of the first heating element 54 and the third heating element 8211 can be preheated.
  • the heating elements such as the first heating element 54 and the third heating element 8211 when the heating elements such as the first heating element 54 and the third heating element 8211 heat the detection card 93 such as the detection cavity 9461, it can be performed in parallel with other operating steps of the molecular diagnostic device 100, so as to further reduce the heating elements. For example, the time for the first heating element 54 and the third heating element 8211 to detect the detection card improves the detection efficiency.
  • the heating elements such as the first heating element 54 and the third heating element 8211 are controlled to complete preheating before the centrifugation process is completed. In some embodiments, the heating elements such as the first heating element 54 and the third heating element 8211 are controlled to complete preheating when the centrifugation process is completed.
  • the detection card needs to be centrifuged so that the processed sample It is transported to the position where the isolation cavity 9451 is located, so that the processed sample can be processed and detected in the detection cavity 9461.
  • the heating elements such as the first heating element 54 and the third heating element 8211 can be controlled to preheat to a third temperature.
  • the centrifugation process and the preheating process of the heating elements such as the first heating element 54 and the third heating element 8211 can be started sequentially or simultaneously.
  • the conveying process and the preheating process of the heating elements such as the first heating element 54 and the third heating element 8211 can be completed successively or simultaneously.
  • the preheating process of the heating elements such as the first heating element 54 and the third heating element 8211 can be completed before the delivery process is completed, and the preheating process of the heating elements such as the first heating element 54 and the third heating element 8211 Can be insulated after completion.
  • the third temperature may be 40-70°C.
  • the first temperature may be one of 45°C, 50°C, 55°C, 60°C, 65°C. Understandably, the third temperature can be adjusted as required.
  • the third temperature can be determined corresponding to the detection card 93 such as the isolation body in the isolation chamber 9451 or the detection chamber 9461 . That is to say, each type of test card 93 has different separators and different requirements for the third temperature, so the third temperature can be determined corresponding to the type of test card.
  • the third temperature can be determined corresponding to the reagent in the detection card 93 such as the detection chamber 9461 . That is, the reagents in each test card 93 are different, and have different requirements for the third temperature, so the third temperature can be determined corresponding to the type of test card.
  • the third temperature and the detection card type can be preset in the molecular diagnostic device 100 in advance.
  • the molecular diagnostic device 100 can scan the image of the information mark on the card tray 65 through the code scanning device 13 to determine the type of the test card 93 , and then the molecular diagnostic device 100 selects the third temperature corresponding to the type of the test card.
  • the user inputs the detection card type to the molecular diagnostic device 100, and the molecular diagnostic device 100 selects the third temperature corresponding to the detection card type. It is also possible for the user to directly input the third temperature to the molecular diagnostic device 100 .
  • Step S2202 Control the second heating element to heat the detection chamber.
  • the test card 93 is also centrifuged and transported to the test card detection seat 30 through the test card transport seat 20 .
  • the first heating element 54 and the third heating element 8211 can tighten the detection card 93 such as the detection cavity 9461 .
  • the preheated heating elements among the first heating element 54 and the third heating element 8211 can further heat the detection card 93 such as the detection cavity 9461 to complete the heating pretreatment of the sample.
  • heating elements such as the first heating element 54 and the third heating element 8211 can be controlled to heat the detection cavity to a fourth temperature, wherein the third temperature can be lower than the fourth temperature.
  • the isolation body in the detection card 93 such as the isolation chamber 9451 and the detection chamber 9461 must be melted at a specific temperature such as the fourth temperature, and will not melt when the heating temperature does not reach the specific temperature such as the fourth temperature. Therefore, it is necessary to control the isolation body in the sample loading chamber to be carried out at the fourth temperature until the isolation body melts.
  • the isolator after the isolator is melted, it is further centrifuged and heated so that the processed sample in the detection chamber 9461 is further processed by the reagent in the detection chamber 9461, for example, it can be kept at a fourth temperature, and of course it can be Continue to raise the temperature until the reagents have finished processing the sample.
  • the processed sample when there is no separator in the detection card 93, the processed sample will be located in the detection chamber 9461 after centrifugation, and heating the detection chamber 9461 to the fourth temperature can further make the processed sample
  • the reagents in the detection chamber 9461 are processed until the reagents are processed to the samples.
  • the fourth temperature may be 60-100°C. In some embodiments, the fourth temperature may be one of 65°C, 70°C, 75°C, 80°C, 90°C, 95°C. Understandably, the fourth temperature can be adjusted as required.
  • the fourth temperature can be determined corresponding to the isolation body in the detection card 93 such as the isolation chamber 9451 and the detection chamber 9461 .
  • the fourth temperature can be determined corresponding to the type of test card.
  • the fourth temperature can be determined corresponding to the reagent in the detection card 93 such as the detection chamber 9461 . That is, the reagents in each test card 93 are different, and have different requirements for the fourth temperature, so the fourth temperature can be determined corresponding to the type of test card.
  • the fourth temperature and the detection card type can be preset in the molecular diagnostic device 100 in advance.
  • the molecular diagnostic device 100 can scan the image of the information mark on the card tray 65 through the code scanning device 13 to determine the type of the detection card 93 , and then the molecular diagnostic device 100 selects the fourth temperature corresponding to the type of the detection card.
  • the user inputs the detection card type to the molecular diagnostic device 100, and the molecular diagnostic device 100 selects the fourth temperature corresponding to the detection card type. It is also possible for the user to directly input the fourth temperature to the molecular diagnostic device 100 .
  • the detection card 93 such as the isolation body in the isolation cavity 9451 and the detection cavity 9461 may be melted.
  • the insulators in the detection card 93 such as the isolation chamber 9451 and the detection chamber 9461 can be melted while the processed samples can be further passed by the detection card 93 such as the detection chamber. Reagent handling within 9461.
  • the processed sample can be further processed by the reagents in the detection card 93 such as the detection cavity 9461 .
  • isolation bodies in the detection card 93 such as the isolation cavity 9451 and the detection cavity 9461 are melted during the second time period of keeping warm.
  • only the processed samples are further processed by the reagents in the detection card 93 such as the detection chamber 9461 during the second incubation period.
  • the test card 93 such as the isolation chamber 9451 and the isolator in the detection chamber 9461 are melted, and the processed sample is further processed by the reagent in the test card 93 such as the detection chamber 9461 .
  • the second time period is only the time period during which the processed sample is further processed by the reagent in the detection card 93 , such as the detection cavity 9461 .
  • the second duration may be a constant value, for example, 30-60 minutes. In some embodiments, the second duration may be one of 35 min, 40 min, 45 min, 50 min, and 55 min. Understandably, the second duration can also be adjusted.
  • the second duration can be determined corresponding to the detection card 93 such as the isolation cavity 9451 , the isolation body in the detection cavity 9461 , and the fourth temperature. That is to say, the isolators in each test card 93 are different, and the requirements for the second duration are different, so the second duration can be determined corresponding to the type of the test card.
  • the second duration can be determined corresponding to the reagent and the fourth temperature in the detection card 93 such as the detection cavity 9461 . That is, the reagents in each test card 93 are different, and the requirements for the second duration are different, so the second duration can be determined corresponding to the type of the test card and the fourth temperature.
  • the second duration and the type of the test card can be preset in the molecular diagnostic device 100 in advance.
  • the molecular diagnostic device 100 can scan the image of the information mark on the card tray 65 through the code scanning device 13 to determine the type of the test card 93 , and then the molecular diagnostic device 100 selects the second duration corresponding to the type of the test card.
  • the user inputs the test card type to the molecular diagnostic device 100, and the molecular diagnostic device 100 selects the second duration corresponding to the test card type. It is also possible for the user to directly input the second duration into the molecular diagnostic device 100 .
  • first temperature in other embodiments is called “second temperature”
  • second temperature in other embodiments is called “first temperature”.
  • Names such as “first duration”, “second duration” and “duration” can be converted to each other in some embodiments.
  • the “first duration” in other embodiments is called “second duration”
  • the “second duration” in other embodiments is called “first duration”.
  • FIG. 21 is a structural diagram of a molecular diagnostic device in an embodiment of the present application.
  • the molecular diagnostic equipment 97 may include:
  • the first heating element 973 is set corresponding to the sample loading chamber on the detection card
  • the second heating element 974 is set corresponding to the detection cavity on the detection card.
  • the control unit 972 is connected to the first heating element 973 and the second heating element 974 respectively, and is used to control the first heating element 973 to preheat, heat the sample chamber after preheating, and then control the second heating element 974 to perform Preheat to heat the detection chamber after preheating.
  • the first heating element 973 can be one of the second heating element 55 and the fourth heating element 832 in the molecular diagnostic apparatus 100 in the above embodiments.
  • the second heating element 974 can be one of the first heating element 54 and the third heating element 8211 in the molecular diagnostic apparatus 100 in the above embodiments.
  • control unit 972 may be the processor in the control circuit board 40 of the molecular diagnostic device 100 in the above embodiments.
  • control unit 972 is used to control the first heating element 973 in the heating station to preheat during the delivery process of the detection card to the heating station.
  • control unit 972 controls the first heating element 973 to complete preheating before the delivery process is completed, and keep warm after the preheating is completed; or, controls the first heating element 973 to complete the preheating when the delivery process is completed.
  • the main control unit is used to control the first heating element 973 to preheat to the first temperature, and control the first heating element 973 to heat the sample adding chamber to the second temperature, and the first temperature is lower than the second temperature.
  • the main control unit 972 is used to acquire the first temperature corresponding to the type of detection card.
  • the molecular diagnostic device 97 further includes a control signal input unit 971 .
  • the control signal input unit 971 is used to input the first temperature, or the control signal input unit is used to input the detection card type.
  • control signal input unit 971 can be an input device such as a code scanning device 13 , a mouse, a keyboard, a display screen, and the like.
  • the main control unit 972 is used to control the first heating element 973 to keep the sample chamber warm for a first duration.
  • the main control unit 972 is configured to obtain the second temperature and the first duration corresponding to the detection card type. In some embodiments, the control signal input unit 971 is used to input the first duration and the second temperature.
  • the main control unit 972 is configured to control the second heating element 974 to preheat during the centrifugation process of the detection card. In some embodiments, the main control unit 972 is used to control the second heating element 974 to complete the preheating before the centrifugation process is completed, and keep warm after the preheating is completed; or, control the second heating element 974 to complete the preheating when the centrifugation process is completed. hot.
  • the main control unit 972 is used to control the second heating element 974 to preheat to a third temperature, and control the second heating element 974 to heat the detection cavity to a fourth temperature, and the third temperature is lower than the fourth temperature.
  • the main control unit 972 is configured to acquire the third temperature corresponding to the type of detection card. In some embodiments, the control signal input unit 971 is used to input the third temperature.
  • the main control unit 972 is configured to acquire the fourth temperature and the second duration corresponding to the detection card type. In some embodiments, the control signal input unit 971 is used to input the fourth temperature and the second duration.
  • the main control unit 972 is used to control the first heating element 973 and the third heating element 975 to heat the sample injection chamber.
  • the first heating element 973 can be one of the second heating element 55 and the fourth heating element 832 in the molecular diagnostic equipment 100 in the above embodiment
  • the third heating element 975 can be the molecular diagnostic element in the above embodiment. The other of the second heating element 55 and the fourth heating element 832 in the device 100 .
  • the main control unit 972 is used to control the second heating element 974 and the fourth heating element 976 to heat the detection cavity.
  • the second heating element 974 can be one of the first heating element 54 and the third heating element 8211 in the molecular diagnostic device 100 in the above embodiments.
  • the fourth heating element 976 may be the other one of the first heating element 54 and the third heating element 8211 in the molecular diagnostic apparatus 100 in the above-mentioned embodiments.
  • the molecular diagnostic device 97 may include a first temperature detection unit 977 for detecting the temperature of the sample loading chamber between the first heating element 973 and/or the third heating element 975 .
  • the main control unit 972 receives the temperature data detected by the first temperature detection unit 977, and controls the first heating element 973 and/or the third heating element 975 to heat the detection card according to the temperature data.
  • the first temperature detection unit 977 can be installed on the fourth heating element 832 and/or the second heating element 55 in the molecular diagnostic device 100 .
  • the molecular diagnostic device 97 may include a second temperature detection unit 978 for detecting the temperature of the detection cavity between the second heating element 974 and/or the fourth heating element 976 .
  • the main control unit 972 receives the temperature data detected by the second temperature detection unit 978, and controls the second heating element 974 and/or the fourth heating element 976 to heat the detection card according to the temperature data.
  • the second temperature detection unit 978 can be installed on the third heating element 8211 and/or the first heating element 54 in the molecular diagnostic device 100 .
  • the molecular diagnostic device 97 may include a power supply 971 , and the power supply 971 may provide electrical energy for the normal operation of the molecular diagnostic device 97 .
  • the molecular diagnostic device 97 may include a third temperature detection unit 980 , the third temperature detection unit 980 may detect the temperature inside the molecular diagnostic device 97 , and may be used to detect the temperature inside and outside the molecular diagnostic device 97 .
  • the main control unit 972 receives the temperature data detected by the third temperature detection unit 980, and controls at least one of the first heating element 973, the third heating element 975, the second heating element 974 and the fourth heating element 976 to detect the card according to the temperature data. for heating.
  • the main control unit 972 can also stop heating the detection card or stop running the molecular diagnostic equipment 97 according to the temperature data.
  • the third temperature detection unit 980 can be installed on the frame 10 of the molecular diagnostic equipment 100 .
  • the disclosed methods and devices may be implemented in other ways.
  • the device implementations described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种基于分子诊断设备(100)的控制方法及分子诊断设备(100),涉及分子检测技术领域。控制方法包括控制与检测卡(93)上的加样腔(9411)对应的第一加热件(55,832)进行预热;控制第一加热件(55,832)加热加样腔(9411);控制与检测卡(93)上的检测腔(9461)对应的第二加热件(54,8211)进行预热;控制第二加热(54,8211)加热检测腔(9461)。加热流程通过将检测卡(93)的加样腔(9411)及检测腔(9461)分开进行加热,起到资源节约的效果,另外,在加热流程中分别对加热加样腔(9411)的第一加热件(55,832)、加热检测腔(9461)的第二加热件(54,8211)进行预热,可以在分子诊断设备(100)的检测过程中起到加热流程和检测流程例如检测卡(93)放置流程、离心处理流程等并行的效果,可缩减加热时长,提升检测卡(93)的检测效率。

Description

基于分子诊断设备的控制方法及分子诊断设备
本申请请求2022年02月25日申请的,申请号为2022101780166,发明名称为“基于分子诊断设备的控制方法及分子诊断设备”的中国发明专利申请的优先权。
【技术领域】
本申请涉及分子检测技术领域,具体涉及一种基于分子诊断设备的控制方法及分子诊断设备。
【背景技术】
对于分子诊断设备,其利用了分子诊断技术。对于分子诊断技术是指利用核酸或蛋白质作为生物标记进行临床检测的诊断技术,为疾病的预测、诊断、预防、治疗和转归提供了信息和决策依据。
在分子诊断设备对检测卡进行检测时,需要对检测卡进行加热处理,而现有的加热设备在应用于多通道中时,易造成资源浪费。
【发明内容】
本申请一个方面提供一种基于分子诊断设备的控制方法,包括:
控制与检测卡上的加样腔对应的第一加热件进行预热;
控制所述第一加热件加热所述加样腔;
控制与所述检测卡上的检测腔对应的第二加热件进行预热;
控制所述第二加热件加热所述检测腔。
在另一方面,本申请还提供一种分子诊断设备,包括:
第一加热件,与检测卡上的加样腔对应设置;
第二加热件,与所述检测卡上的检测腔对应设置;以及
控制单元,所述控制单元分别连接所述第一加热件和所述第二加热件,用于控制所述第一加热件进行预热,在预热后加热所述加样腔,而后控制所述第二加热件进行预热,在预热后加热所述检测腔。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中分子诊断设备的立体结构示意图;
图2为图1中分子诊断设备的爆炸分解图;
图3为图2中抵压盘的爆炸示意图;
图4为图3中第一壳体的结构示意图;
图5为图3中抵压盘的结构示意图;
图6为图2中托运组件的结构示意图;
图7为图6中托运件的结构示意图;
图8和图9分别为图2中抵压盘和托运组件配合下不同视角的结构示意图;
图10为图2中检测卡检测座的爆炸图;
图11为图10中支撑座的爆炸图;
图12为图11中支撑座主体的结构示意图;
图13为图11中光检测件的结构示意图;
图14为图11中加样腔组件的结构示意图;
图15为图10中光发生器的结构示意图;
图16为本申请一实施例中检测卡的结构示意图;
图17为图16中检测卡沿线L-L的剖面图;
图18为图16中检测卡的立体结构示意图;
图19为图18中检测卡使用过程示意图;
图20为本申请一实施例中基于分子诊断设备的控制方法的流程图;
图21为本申请一实施例中一种分子诊断设备的结构图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其他实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其他实施例相结合。
接下来阐述一种分子诊断设备,其利用了分子诊断技术。对于分子诊断技术是指利用核酸或蛋白质作为生物标记进行临床检测的诊断技术,为疾病的预测、诊断、预防、治疗和转归提供了信息和决策依据。特别是面对各种突发性传染性疾病,其最经济有效的措施就是快速、准确的分子诊断。
请参阅图1和图2,图1为本申请一实施例中分子诊断设备100的立体结构示意图,图2为图1中分子诊断设备100的爆炸分解图。分子诊断设备100可包括机架10、安装在机架10上的检测卡输送座20、安装在机架10上的检测卡检测座30以及安装在机架10上的控制电路板40。
其中,检测卡输送座20可用于放置检测卡。检测卡输送座20可相对于机架10滑动,以使检测卡输送座20托运检测卡并托运至检测卡检测座30上。检测卡检测座30用于产生激发光,以对检测卡进行检测并形成检测信号。控制电路板40可用于控制检测卡输送座20在机架10上的滑动,并控制检测卡检测座30对检测卡进行检测,以及接收检测信号并对检测信号进行处理形成诊断数据。
在一些实施例中,分子诊断设备100还可包括可与控制电路板40电连接的显示器、键盘、扫码设备13(图2所示)等输入设备,以通过输入设备向分子诊断设备100例如控制电路板40输入控制指令,实现分子诊断设备100通过控制电路板40对检测卡输送座20和/或检测卡检测座30的控制。
在本文中,可能采用“上”“下”“前”“后”“左”“右”“顶部”“底部”“上部”“下部”这些方位来进行描述。需要理解的是,在本文中的术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
需要指出的是,在本文中的术语“第一”“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”“第二”的特征可以明示或者隐含地可包括一个或者更多个所述特征。
请参阅图2,检测卡输送座20可包括安装在机架10例如第一导轨11上的抵压盘50及托运组件60。其中,托运组件60用于放置检测卡。抵压盘50与机架10例如丝杠12螺纹连接,并可在机架10例如第一导轨11上滑动,进而带动托运组件60在机架10例如第一导轨11上滑动,托运组件60可托运检测卡并托运至检测卡检测座30上。
请参阅图3,图3为图2中抵压盘50的爆炸示意图。抵压盘50可包括安装在机架10例如丝杠12上的第一壳体51、设置在第一壳体51朝向检测卡检测座30一侧的电磁件52、用于对托运组件60上的检测卡进行固定的压紧件53、设置在第一壳体51上的第一加热件54及第二加热件55、安装在第一壳体51上且分别与电磁件52和第一加热件54及第二加热件55电连接的第一电路板56、盖设在第一壳体51远离电磁件52一侧的第二壳体57以及设置在第一壳体51上且安装在机架10例如第一导轨11上的第一滑轨58。
其中,第一壳体51和第二壳体57扣合形成抵压盘主体。第一电路板56可与控制电路板40电连接。电磁件52可在控制电路板40的控制下产生磁作用力,以将压紧件53吸附在第一壳体51上。电磁件52可在控制电路板40的控制下消除磁作用力,以避免对压紧件53进行吸附。第一加热件54及第二加热件55可在控制电路板40的控制下对检测卡进行加热。第一滑轨58可在机架10例如第一导轨11上滑动。第一壳体51与机架10例如丝杠12连接,以同时在丝杠12、第一导轨11的延伸方向上滑动。
请参阅图4,图4为图3中第一壳体51的结构示意图。第一壳体51朝向第二壳体57一侧的中部设置有容纳槽511,以用于容纳第一电路板56。容纳槽511的截面可呈圆形,也可以为其他形状。
第一壳体51在容纳槽511的周围可设置卡接孔512,以用于安装第一加热件54。卡接孔512可圆周均布在容纳槽511的周围。卡接孔512的数量可为1个或多个。在一些实施例中,卡接孔512的数量也可为2、3、4、5、6……中的一个。在一实施例中,卡接孔512的数量可具体为6个。在一实施例中。卡接孔512的形状为环状结构的一段。
第一壳体51设置有豁口513,以对托运组件60让位。豁口513自第一壳体51靠近扫码设备13一侧的边缘向内部延伸设置。在一实施例中,豁口513位于相邻两个卡接孔512之间。
请再次参阅图3,电磁件52可通电产生磁作用力,进而对压紧件53进行吸附固定。电磁件52与第一电路板56电连接,数量可为两个,并可安装在第一壳体51远离第二壳体57的一侧。
请再次参阅图3,压紧件53可采用硬性材料例如金属等制成,具体可为被电磁铁在磁作用力下吸附的金属例如铁等制成。压紧件53设置在第一壳体51远离第二壳体57的一侧。在电磁件52对压紧件53吸附时,电磁件52可以吸附压紧件53。
请再次参阅图3,第一加热件54安装在第一壳体51靠近第二壳体57一侧。第一加热件54内部可设置加热电阻等发热器件。第一加热件54的数量可为多个,具体数量可为2、3、4、5、6等中的一个。在一实施例中,第一加热件54的数量可与卡接孔512的数量一致,可为6个。
第一加热件54可置于第一壳体51例如卡接孔512内,与第一壳体51卡接,以实现第一加热件54在第一壳体51上的安装。
在一些实施例中,第一加热件54与第一电路板56电连接,以实现对第一加热件54内部发热器件的控制。
请再次参阅图3,第二加热件55安装在第一壳体51远离第二壳体57一侧。第二加热件55整体可为环形结构。第二加热件55可采用可导热的硬性材料例如金属制成,内部可设置加热电阻等发热器件。在一些实施例中,第二加热件55内部发热器件与第一电路板56电连接,以实现对第二加热件55内部发热器件的控制。
请再次参阅图3,第一电路板56上设置有电阻、电容、电感等电子元器件。第一电路板56安装在第一壳体51的容纳槽511内。第一电路板56可分别与第一加热件54内的发热器件、第二加热件55内的发热器件、电磁件52电连接,以便对第一加热件54内的发热器件、第二加热件55内的发热器件和电磁件52分别进行控制。
请参阅图5,图5为图3中抵压盘50的结构示意图。第二壳体57可与第一壳体51采用螺接、插接、卡扣、焊接、粘接等连接方式连接固定,不做赘述。第二壳体57完全覆盖在第一壳体51上。
第二壳体57上设置有豁口572。豁口572设置在第二壳体57上与豁口513相对的位置,以在第二壳体57与第一壳体51扣合时,豁口572与豁口513连通,以对托运组件60让位,使得托运组件60可在豁口572与豁口513内滑动。
请参阅图6,图6为图2中托运组件60的结构示意图。托运组件60可包括设置在抵压盘50上方且安装在机架10例如第一导轨11上的滑动架61以及安装在滑动架61上的托运件62。其中,滑动架61可在机架10例如第一导轨11上滑动。滑动架61与抵压盘50连接,以在某些情景中与抵压盘50一同在机架10上滑动。托运件62可用于放置检测卡。托运件62可相对于滑动架61滑动。托运件62相对于滑动架61的滑动方向与滑动架61相对于机架10的滑动方向不同。
可以理解地,托运组件60在伸展时,托运件62在滑动架61上滑动,以滑动至机架10外的第一位置,完成伸展,在托运组件60处于伸展状态时放置检测卡。然后,托运组件60在收缩时,托运件62在滑动架61上滑动,以滑动至机架10内的第二位置,完成收缩,在托运组件60处于收缩状态时可在第一导轨11上的第三位置和第四位置之间滑动。在一些实施例中,托运组件60可在第三位置时进行伸展。在一些实施例中,托运组件60可在第三位置与第四位置之间的位置进行伸展。
滑动架61设置有与机架10例如第一导轨11滑动连接的第二滑轨611。
滑动架61设置有用于安装托运件62的第二导轨612,以使得托运件62在第二导轨612上滑动。第二导轨612的延伸方向可与豁口513的延伸方向一致,以便托运件62在第二导轨612上滑动的同时也在豁口513内滑动。在一些实施例中,为了实现抵压盘50与滑动架61一同滑动,可在滑动架61上设置牵引件613。牵引件613可包括拉簧,例如,拉簧的一端与滑动架61连接,另一端与第二壳体57连接。
请参阅图7,图7为图6中托运件62的结构示意图。托运件62可包括安装在第二导轨612的第三驱动组件64以及安装在第三驱动组件64上且可被第三驱动组件64驱动做旋转运动的卡托65。其中,第三驱动组件64在第二导轨612上滑动,以带动卡托65一起移动,可移动至在机架10外的位置,以在卡托65上放置检测卡,第三驱动组件64也可带动卡托65移动至位于机架10内的位置,第三驱动组件64可带动卡托65上的检测卡做离心运动以完成检测卡的离心处理。
卡托65置于第三驱动组件64的下方,与第三驱动组件64连接固定。卡托65呈回转体,回转体的轴心与第三驱动组件64的输出轴同轴设置。在一实施例中,卡托65为圆形盘状结构。卡托65在与第三驱动组件64连接的部位为中心朝四周发散放置检测卡。检测卡的数量可与第一加热件54的数量一致。当然检测卡的数量也可以比第一加热件54的数量少。在一实施例中,检测卡的数量可为6个,当然检测卡的具体数量也可以根据实际情况进行调整。
卡托65可在与压紧件53接触时与压紧件53卡接,以将检测卡夹设在卡托65与压紧件53之间。卡托65与压紧件53的卡接配合关系可为凹槽与凸柱、插接结构、卡扣结构等来卡接结构。
可以理解地,卡托65将检测卡托运至检测卡检测座30时,托运件62可位于第四位置。
请参阅图8和图9,图8和图9分别为图2中抵压盘50和托运组件60配合下不同视角的结构示意图。在抵压盘50与托运组件60连接时,先将托运组件60中除去卡托65的元件组装在一起,然后将托运组件60中的滑动架61置于抵压盘50的上方。滑动架61中的第二滑轨611与抵压盘50的第一滑轨58相对设置以便一同安装在机架10例如第一导轨11上。
接着,将托运组件60中托运件62的卡托65置于抵压盘50远离滑动架61的一侧,以使压紧件53位于第一壳体51与卡托65之间。托运组件60中托运件62的第三驱动组件64的输出轴穿过抵压盘50的豁口与卡托65连接固定。第二壳体57与托运组件60中的牵引件613相对设置并相互连接。
请参阅图10,其为图2中检测卡检测座30的爆炸图。检测卡检测座30可包括与机架10连接固定的支撑架70、安装在支撑架70上的支撑座80、安装在支撑架70和支撑座80上的检测组件90。其中,支撑座80位于抵压盘50的下方,以便于承载检测卡输送座20例如托运组件60输送来的检测卡。检测组件90与控制电路板40电连接。检测组件90在支撑座80上放置检测卡时,利用激发光对检测卡进行一系列的检测处理以生成检测信号,并将检测信号输送至控制电路板40。
请参阅图11,图11为图10中支撑座80的爆炸图。支撑座80可包括安装在支撑架70上的支撑座主体81、安装在支撑座主体81上的检测腔组件82、安装在支撑座主体81上且与检测腔组件82配合支撑检测卡的加样腔组件83以及设置在支撑座主体81上的第二电路板84。其中,检测腔组件82可安装在支撑座80上与第一加热件54相对的位置,以与第一加热件54配合。加样腔组件83可安装在支撑座80上与第二加热件55相对的位置,以与第二加热件55配合。检测腔组件82与加样腔组件83一同配合对检测卡进行支撑及加热处理。检测腔组件82还可用于对检测卡进行激发光检测。检测腔组件82和加样腔组件83一同与第二电路板84电连接,以实现对检测腔组件82、加样腔组件83的加热控制。
请参阅图12,图12为图11中支撑座主体81的结构示意图。支撑座主体81整体可呈板状结构。支撑座主体81的顶部可开设放置槽811,以对卡托65进行让位。
支撑座主体81在放置槽811内开设卡固孔812,以用于与加样腔组件83配合。支撑座主体81在放置槽811内还设置有定位件813,以与卡托65配合实现对检测卡位置的定位。在一实施例中,定位件813可为支撑座主体81在放置槽811内开设的定位槽,以用于在卡托65例如定位块置于定位件813例如定位槽内实现对检测卡位置的定位。在一实施例中,定位件813例如定位块的形状可与卡托65例如定位槽的形状相匹配。可以理解地,支撑座主体81与卡托65之间定位配合关系并不仅限于定位件813与卡托65的配合关系,其还可以为磁铁与磁铁之间磁作用力、电磁铁与电磁铁之间磁作用力等配合关系,当然还可以是其他配合关系,不做赘述。
支撑座主体81在放置槽811的周围圆周均布多个延伸槽814。延伸槽814与放置槽811相通,以使支撑座主体81在相邻两个延伸槽814之间形成装配台815,可将检测卡放置在装配台815上,延伸槽814对检测卡进行让位,以使装配台815对检测卡进行支撑、卡固。
支撑座主体81在装配台815的位置处设置容纳孔816,以便在容纳孔816内安装检测腔组件82。
请参阅图11,检测腔组件82安装在支撑座主体81例如容纳孔816内。检测腔组件82可包括至少一个光检测件821,光检测件821具体数量可为1、2、3、4、5、6……中的一个,以便在容纳孔816内安装检测腔组件82。
光检测件821可与一个第一加热件54相对应设置,以便两者配合对一个检测卡加热。请参阅图13,图13为图11中光检测件821的结构示意图。光检测件821可包括置于支撑座主体81例如容纳孔816内的检测座8211。检测座8211可采用硬性材料例如塑料、金属等制成。检测座8211朝向容纳孔816的一侧延伸设置以伸入容纳孔816内。检测座8211在支撑座主体81设置装配台815的一侧与装配台815的表面平齐,以提高支撑座80的外观表现力,以用于支撑检测卡。
检测座8211在延伸方向上设置激发光纤8212,以便激发光纤8212向检测卡发出光线例如激发光。检测座8211在与延伸方向呈夹角的位置设置接收光纤8213。接收光纤8213用于接收激发光纤8212发出的激发光以及由激发光照射检测卡形成的荧光。
检测座8211在设置激发光纤8212的一侧设置有加热件容置槽8211a,以用于安置加热电阻等发热器件。检测座8211可通过发热器件实现对检测卡的加热。加热件容置槽8211a内的发热器件可与第二电路板84电连接,以在第二电路板84的控制下实现加热。
检测座8211在靠近加样腔组件83的一侧设置有加热件容置槽8211b,以用于安置加热电阻等发热器件。检测座8211可通过发热器件实现对检测卡的加热。加热件容置槽8211b内的发热器件可与第二电路板84电连接,以在第二电路板84的控制下实现加热。
可以理解地,在检测座8211内设置有发热器件后,具有对检测卡进行加热的效果。所以检测座8211可被称为“第三加热件”。在一实施例中,检测座8211可与支撑座主体81为一体结构。
请参阅图14,图14为图11中加样腔组件83的结构示意图。加样腔组件83可包括固定在支撑架70上的托板831以及安装在托板831上的加样腔安装座832。其中,加样腔安装座832用于固定检测卡,也用于对检测卡进行加热。加样腔安装座832与第二加热件55配合以对检测卡进行加热。
托板831可采用硬性材料例如塑料、金属等制成。整体可呈板状结构,当然也可以为其他结构,不做赘述。托板831可通过螺接、插接、粘接、焊接等方式固定在支撑架70上。在一实施例中,托板831可通过螺接、插接、粘接、焊接等方式固定在支撑架70上。在一实施例中托板831可以省略,加样腔安装座832可以直接与支撑架70固定连接。在一实施例中,在支撑架70省略时,可以将托板831固定在支撑架70上。
加样腔安装座832用于放置检测卡。加样腔安装座832可包括安装座本体8321。安装座本体8321整体可采用塑料或金属等硬性可导热材料制成。安装座本体8321用于置于支撑座主体81例如卡固孔812内。安装座本体8321远离托板831的一侧设置加样腔安置槽8322,以用于安装检测卡。
安装座本体8321开设有加热件容置槽8323,以便于容置加热电阻等发热器件,使得安装座本体8321可以为检测卡进行加热。发热器件可与第二电路板84电连接,以在第二电路板84的控制下进行加热。
可以理解地,在安装座本体8321内设置有发热器件后,具有对检测卡进行加热的效果。所以加样腔安装座832可被称为“第四加热件”。
对于“第一加热件”“第二加热件”“第三加热件”“第四加热件”“第五加热件”“第六加热件”以及“加热件”等名称,在一些实施例中可以相互转换。例如在一实施例中,将其他实施例中的“第一加热件”称为“第二加热件”,相应地,将其他实施例中的“第二加热件”称为“第一加热件”。
为了更好地对检测卡加热,避免加热后的水汽冷凝影响检测流程,提高检测精度。安装座本体8321在加样腔安置槽8322的一侧边缘设置有抵接部8324,以与检测卡抵接。在一实施例中,抵接部8324也可用于对检测卡进行定位。
请参阅图11,第二电路板84可分别与检测腔组件82中的发热器件、加样腔组件83中的发热器件电连接,以便控制发热器件进行加热。
第二电路板84可为环状结构,可套设在加样腔组件83的周围。第二电路板84可直接固定在支撑座主体81靠近支撑架70的一侧。在一实施例中,第二电路板84也可以直接固定在支撑架70上。在一实施例中,第二电路板84也可以直接固定在支撑架70上。在一实施例中,第二电路板84也可以直接固定在加样腔组件83例如托板831上。
在一实施例中,第二电路板84可以在不为控制电路板40分担工作压力的情况下,可以省略,检测腔组件82中的发热器件、加样腔组件83中的发热器件可直接与控制电路板40电连接。
请参阅图10。检测组件90可包括安装在支撑架70上的光发生器91、安装在支撑架70上的光接收器92以及安装在支撑座80例如支撑座主体81上的检测腔组件82(即前面介绍过的支撑座80的检测腔组件82,该检测腔组件82可为支撑座80以及检测组件90共用的元件)。其中,光发生器91以及光接收器92均与控制电路板40电连接。光发生器91用于产生激发光,并可在控制电路板40的控制下产生激发光。激发光可传输至检测腔组件82对检测卡进行激发并生成荧光,荧光可被光接收器92接收,光接收器92可在控制电路板40的控制下生成检测信号。检测信号传输至控制电路板40并控制电路板40处理生成诊断数据。
请一同参阅图10和图15,图15为图10中光发生器91的结构示意图。光发生器91的数量可为2个,具体为第一光发生器911和第二光发生器912。第一光发生器911和第二光发生器912均可固定在支撑架70上。第一光发生器911及第二光发生器912的激发光输出端与激发光纤8212连通。
请参阅图10,光接收器92用于与接收光纤8213连接,以接收荧光,进而将受荧光触发生成的检测信号传输至控制电路板40。光接收器92呈圈状且布置在光发生器91的周围。光接收器92可包括光传感器例如光电二极管。光传感器例如光电二极管可受荧光照射生成电信号。
请再次参阅图1和图2,控制电路板40上可设置有处理器、存储器等电子元件。控制电路板40可控制丝杠12转动,进而控制检测卡输送座20相对于机架10的滑动位置。控制电路板40可与抵压盘50例如第一电路板56电连接,以便控制电磁件52,对压紧件53进行磁作用力吸附,以便控制第一加热件54、第二加热件55,对检测卡进行加热。控制电路板40可控制第三驱动组件64,以带动卡托65相对于滑动架61滑动。控制电路板40可与托运组件60例如第三驱动组件64电连接,以便控制第三驱动组件64带动卡托65对检测卡进行离心处理。控制电路板40可与第二电路板84电连接,以间接地与检测腔组件82例如发热器件电连接,以便控制检测座8211,对检测卡进行加热。控制电路板40可与第二电路板84电连接,以间接地与加样腔组件83例如发热器件电连接,以便控制加样腔安装座832,对检测卡进行加热。控制电路板40可与检测组件90例如光发生器91电连接,以便控制光发生器91发出激发光。控制电路板 40可与检测组件90例如光接收器92电连接,以便控制光接收器92接收荧光。控制电路板40可与显示器、键盘、扫码设备13等输入设备电连接,以通过输入设备向分子诊断设备100例如控制电路板40输入控制指令,实现分子诊断设备100通过控制电路板40对检测卡输送座20和/或检测卡检测座30的控制。
接下来阐述一种检测卡,可以用于上述实施例中的分子诊断设备100中,以完成对检测卡上装载的样本进行检测,并进一步处理形成诊断数据。请参阅图16,其为本申请一实施例中检测卡的结构示意图。检测卡93又被称为分子诊断离心检测卡或测试卡。检测卡93可包括设置有加样腔、流道、废液腔、隔离腔和检测腔的本体94、覆盖在本体94一侧的隔离层95以及盖设在本体94加样腔处的盖体96。
请一同参阅图16、图17和图18,图17为图16中检测卡93沿线L-L的剖面图,图18为图16中检测卡93的立体结构示意图。本体94采用硬性材料例如塑料等制成。本体94整体可为板状结构。大体呈扇形,具体可为扇环形、扇叶形或饼形。例如本体94由两条直线边和一条弧形边首尾依次连接形成的扇形。例如本体94由一条直线边和一条外侧圆弧形边、一条直线边、一条内侧圆弧形边首尾依次连接形成的扇环形。当然本体94也可以为其他形状,不作赘述。
在一实施例中,本体94的扇形结构的两条直线边夹角可为40°-60°,内侧圆弧边直径可以为10mm-100mm,外侧圆弧边直径可以为100mm-200mm。采用这种尺寸结构的检测卡93,在分子诊断设备100的检测平面内可以排布至少6个,组成一个圆形面,从而使得至少6个检测卡93可同时检测,提高了整体的检测效率,能应对较大规模的检测需求。
本体94靠近外侧圆弧边的圆心或内侧圆弧边且向远离隔离层95的一侧凸伸设置安装部941。本体94在靠近隔离层95的一侧且在与安装部941相对的位置凹陷设置加样腔9411,以用于在加样腔9411处进行样本添加。加样腔9411主要用于样本(液体样本)的预处理,其预处理方式可能包括一个或者多个,如化学处理、热处理、酶处理和物理分离等。在一些实施例中,加样腔9411的容积大体为200-2000μl。在加样腔9411内可以预装干燥的试剂,可以在原位风干/烘干,也可以作为冻干试剂添加到加样腔9411中。
本体94在远离隔离层95的一侧且在靠近外侧圆弧边的部位设置第二卡固部942,以与托运组件60例如卡托65配合。在一实施例中,第二卡固部942可为凸起。
本体94在一条直线边靠近外侧圆弧边的边缘部位向远离隔离层95的一侧弯折设置第一限位部943,在另一条直线边靠近外侧圆弧边的部位向远离隔离层95的一侧凸伸设置第二限位部944。本体94的第一限位部943与第二限位部944配合以对检测卡93进行固定,以便顺利进行检测卡93的离心处理,本体94在靠近隔离层95的一侧且在与第二限位部944相对的位置凹陷设置废液腔9441。本体94在远离隔离层95的一侧且在第一限位部943和第二限位部944之间沿外侧圆弧边的延伸方向均布多个插接部组。每一个插接部组可包括第一插接部945和第二插接部946。第一插接部945和第二插接部946之间的连线可过外侧圆弧边的圆心。第一插接部945置于安装部941与第二插接部946之间。第一插接部945和第二插接部946的设置可与检测卡检测座30例如隔离槽8213、检测槽8212配合。
本体94在靠近隔离层95的一侧且在与第一插接部945相对的位置凹陷设置隔离腔9451。隔离腔9451设置有可熔化的隔离体。隔离体可在熔化状态和未熔化状态(通常为固态)之间切换。在未用检测卡93进行检测时,可以控制隔离体处于未熔化状态,此时,该隔离体可以防止样本通过流道进入检测腔9461(如图18所示)内。在一些实施例中,隔离体可为石蜡、微晶蜡、合成蜡或者天然蜡。
本体94在靠近隔离层95的一侧且在与第二插接部946相对的位置凹陷设置检测腔9461。检测腔9461内设有试剂。隔离腔9451与检测腔9461在靠近隔离层95的一侧连通。隔离腔9451内的隔离体还可用于密封隔离试剂,以防止试剂反向进入隔离腔9451。将试剂维持在检测腔9461内。而在执行测试时,可以控制隔离体处于熔化状态,此时样本可通过加样腔9411进入检测腔9461,以与检测腔9461内的试剂发生反应从而完成检测。
检测腔9461内可层叠式设置有试剂和可熔化的隔离体。在一些实施例中,隔离体可为石蜡、微晶蜡、合成蜡或者天然蜡。隔离体的特点为在常温及低温状态下为固态,在加热至特定温度后变为液态,且对核酸扩增反应无抑制作用。一些实施例中,试剂可为干式试剂,干式试剂包括扩增反应所用的引物和DNA(deoxyribonucleic acid,脱氧核糖核酸)结合染料、酶、硫酸镁、氯化钾、dNTPs(Nucleoside triphosphate,去氧核苷三磷酸)中的一种或多种。干式试剂以液态装入检测腔9461,并通过干燥工艺形成干式试剂,干燥工艺的温度小于隔离体的熔化温度,干燥工艺包括风干、烘干、冻干。在检测加热过程中,试剂和隔离体均呈液态,由于隔离体的比重比试剂小,在离心场作用下,隔离体会被置换出检测腔9461,从而不影响反应和检测。
在一些实施例中,隔离体以熔融状态装入检测腔9461内并通过自然凝固或降温凝固成型。在未测试时,可以控制隔离体处于未熔化状态,此时可通过隔离体实现试剂的密封隔离存放。而在需要执行测试时,可以控制隔离体处于熔化状态,例如通过对检测卡93进行加热,以使隔离体受热熔化,此时,隔离 体在离心力的作用下,可移出检测腔9461并流向隔离腔9451,且样本可进入检测腔9461内,而后隔离体再次固化,以封堵检测腔9461的口部,进而对多个检测腔9461形成相互隔离密封,以便于检测腔9461之间独自进行反应或测试。
本体94在靠近隔离层95的一侧设置有流道947,以连通加样腔9411与隔离腔9451。
本体94在远离隔离层95的一侧且与流道947相对的位置设置有抵接槽948,以便与抵接部8324配合。例如可将抵接部8324置于抵接槽948内,以对流道947的部位进行加热,避免水汽在流道947内冷凝,进而减少对后续检测过程中的影响,提高检测精度。在一些实施例中,抵接槽948可以省略。
隔离层95可为膜状结构,当然也可以为其他结构。隔离层95可采用压密胶、紫外光固化胶或光学级双面胶等材质,也可以是和本体94类似的材质。隔离层95可贴附在本体94上,具体可通过例如超声焊接、激光焊接、胶黏密封等方式进行密封固定,以对流道947、废液腔9441、隔离腔9451和检测腔9461进行隔离。隔离层95可与本体94为一体结构。
盖体96盖设在加样腔9411的口部。以对加样腔9411进行密封隔离。在需要添加样本时,就可将盖体96打开,添加样本至加样腔9411,然后就可以盖合盖体96。盖体96可阻水透气,即可排出加热过程中产生的水蒸气,降低分子诊断离心测试卡内的气压,从而能够保证良好的透气效果,而且可阻隔扩增反应中产生的气溶胶和生物分子等污染物的逸出,避免检测对人员和环境的污染。
检测卡93离心旋转时,样本液体经加样腔9411和流道947。此时隔离体为固态,由此可将检测腔9461密封,样本液体不能流向检测腔9461。在样本液体加热后,隔离体受热熔化流向检测腔9461,使得流道947与检测腔9461之间可连通,样本液体可通过流入检测腔9461内。由于隔离体的比重比试剂小,在离心场作用下,隔离体会被置换到试剂之上,不影响反应和检测,同时可以对检测腔9461进行密封。
本申请的一些实施例中还提供一种基于上述的检测卡93进行检测的方法。该方法可用于上述实施例中分子诊断设备100中。请参阅图19,其为图18中检测卡使用过程示意图。具体步骤可如下:
步骤S2101:加样腔接收样本。
在加样腔9411添加样本后,需要对样本进行加热预处理,加热方式可为金属加热块、加热气流、电磁波(红外辐射、激光、微波)等方式。检测卡的加热区域可为加样腔附近区域。加热过程需升温至指定温度,如90℃。到达指定温度后,按照指定需求保温3-10min实现预处理。待预处理完成后,将样本液体的温度降至指定温度,如60℃。
步骤S2102:检测卡受离心力旋转以使得样本经流道流向检测腔。
对检测卡旋转控制进行离心处理。例如可控制旋转方向为顺时针方向,旋转速度大于1000rpm,旋转时间约为10-15s。通过旋转,样本液体可由加样腔经流道流向检测腔,以便于后续实现检测腔内样本的填充。而多余的样本液体则将进入废液腔。
步骤S2103:加热熔化隔离体,以使得样本流进检测腔中并与检测腔中的试剂混合。
在此需要针对检测腔附近的区域进行加热处理,使得温度高于隔离体的熔点,进而使隔离体熔化,从而使样本与检测腔中的试剂混合。
步骤S2104:离心旋转,以使得隔离体与检测腔中的样本置换,并密封检测腔的入口端。
再次对检测卡进行旋转控制。其中,电机可以沿顺时针方向旋转,旋转速度大于1000rpm,旋转时间为10-15s。此时,由于检测卡的旋转,使得样本进入检测腔内,且隔离体和检测腔内的水溶液发生置换,隔离体转移至检测腔的入口端,从而完成各个检测腔的密封。然后改变电机控制参数,使检测卡进行顺时针和逆时针交替旋转。例如,可以控制检测卡先顺时针旋转,旋转速度为3000rpm,旋转时间1s,然后逆时针旋转,旋转速度3000rpm,旋转时间1s,交替旋转10-15次。通过这种顺时针、逆时针交替旋转的方式可使检测腔内的样本与试剂混合完全溶解混合。
同时,隔离体加热熔化后在离心力的作用下流至检测腔的入口端,以对检测腔的入口端进行密封。
步骤S2105:对混合后的混合体进行检测。
在此步骤中,需要进行扩增反应和检测。若使用实时检测,则检测和扩增反应同步进行,若使用终点检测,则扩增完成后进行检测。其中,扩增反应可通过以下方式实现:对检测腔附近进行加热,温度控制在60℃-75℃范围。在到达指定温度后,按照指定需求,保温30-60min来完成扩增反应。
接下来阐述一种基于分子诊断设备的控制方法,该控制方法可应用于上述分子诊断设备100中,以对上述检测卡93进行检测。该方法具体可用于对检测卡进行加热处理的控制。请参阅图20,图20为本申请一实施例中基于分子诊断设备的控制方法的流程图。该方法可包括:
步骤S2201:控制与检测卡上的加样腔对应的第一加热件进行预热。
请参阅图16、图17和图18,检测卡93可包括加样腔9411以及检测腔9461。在此对检测卡93的加样腔9411进行加热预处理,有助于样本在加样腔9411内进行预处理,而预处理的进行有助于样本后续检测的进行。在一些实施例中,预处理方式可包括一个或者多个,如化学处理、热处理、酶处理和物理 分离等。
在一些实施例中,请参阅图3和图10。对检测卡93的加样腔9411进行加热的加热件可包括对检测卡93例如加样腔9411顶部进行加热的第二加热件55以及对检测卡93例如加样腔9411底部进行加热的第四加热件832。而在加热件进行加热时,第二加热件55和第四加热件832中的至少一个可用于对检测卡93的加样腔进行加热。因此,加热件例如第二加热件55、第四加热件832可用于对检测卡93例如加样腔9411进行加热。在一些实施例中,加热件例如第二加热件55、第四加热件832也可采用其他方式设置,而不采用图3和图10中的设置方式。
在一些实施例中,请参阅图3和图10。加热件例如第二加热件55、第四加热件832对检测卡93例如加样腔9411进行加热,而不同时对检测卡93例如检测腔9461进行加热,进而加热件例如第二加热件55、第四加热件832的设置较为小巧,也因此避免加热件例如第二加热件55、第四加热件832同时对检测卡93例如加样腔9411、检测腔9461加热而功率较大以影响分子诊断设备100的整体功率。而本申请中加热件例如第二加热件55、第四加热件832的设置使得分子诊断设备100安全运行。
在一些实施例中,上述实施例中的分子诊断设备100对检测卡93例如加样腔9411进行加热时,会因为加热件例如第二加热件55、第四加热件832对检测卡93从初始温度进行加热,而导致对检测卡93进行检测的时间延长,进而分子诊断设备100的检测效率低。因此采用加热件例如第二加热件55、第四加热件832先预热,再利用加热件例如第二加热件55、第四加热件832对检测卡例如加样腔9411进行加热,可节省大量的时间。即,第二加热件55、第四加热件832中的至少一个可进行预热。
在一些实施例中,加热件例如第二加热件55、第四加热件832对检测卡93例如加样腔9411进行加热时,可与分子诊断设备100的其他操作步骤并行进行,以便进一步减少加热件例如第二加热件55、第四加热件832对检测卡进行检测的时间,提高检测效率。在一些实施例中,在将检测卡输送至加热工位的输送过程中,控制加热工位中加热件例如第二加热件55、第四加热件832进行预热。在一些实施例中,加热工位可为检测卡检测座30例如支撑座80上放置检测卡93的位置。具体地可为放置检测卡93例如加样腔9411的加样腔组件83以及放置检测卡93例如检测腔9461的检测腔组件82。在一些实施例中,输送过程可为检测卡输送座20将检测卡93输送到检测卡检测座30上的过程。在一实施例中,可控制加热件例如第二加热件55、第四加热件832预热至第一温度。在一些实施例中,输送过程可至少包括检测卡输送座20托运检测卡93的托运过程,在一些实施例中,输送过程还可包括用户设置检测数据的过程。在一些实施例中,输送过程还可包括用户放置检测卡93在卡托65上的检测卡放置过程。可以理解地,输送过程可包括对检测卡加热前进行的过程,不做赘述。在一些实施例中,输送过程涉及的具体过程不同,而导致输送过程的用时不同。所以输送过程可与加热件例如第二加热件55、第四加热件832的预热过程同时进行。在一些实施例中,输送过程可与加热件例如第二加热件55、第四加热件832的预热过程可以先后开始或同时开始。在一些实施例中,输送过程可与加热件例如第二加热件55、第四加热件832的预热过程可以先后完成或同时完成。在一些实施例中,加热件例如第二加热件55、第四加热件832的预热过程可在输送过程完成前完成,加热件例如第二加热件55、第四加热件832的预热过程可在完成后进行保温。
在一些实施例中,第一温度可为20-50℃。在一些实施例中,第一温度可为25℃、30℃、35℃、40℃、45℃中的一个。可以理解地,第一温度可以根据需要进行调整。
在一些实施例中,第一温度可对应检测卡93例如加样腔9411中的试剂和/或样本来确定。即,每种检测卡93中加样腔9411内的试剂不同,而对第一温度的需求不同。所以第一温度可以对应检测卡类型进行确定。
在一些实施例中,第一温度及检测卡类型可以事先预设置在分子诊断设备100中。分子诊断设备100可通过扫码设备13对卡托65上的信息标识进行图像扫描,判断出检测卡93的类型,进而由分子诊断设备100选择对应检测卡类型的第一温度。在一些实施例中,用户对分子诊断设备100进行检测卡类型输入,由分子诊断设备100选择对应检测卡类型的第一温度。也可以由用户直接对分子诊断设备100进行第一温度的输入。
在一些实施例中,请参阅图3,加热件例如第二加热件55可为一个,因而在卡托65上放置一个检测卡93还是放置多个检测卡93,均需要加热件例如第二加热件55整体进行预热及后续的加热。
在一些实施例中,请参阅图14,第四加热件832的个数及位置可对应卡托65上的检测卡93的个数设置,因此,在样本量较少时,可以单独对应卡托65上放置的检测卡数量、位置,控制对应检测卡数量、位置的第四加热件832进行预热及后续的加热,而进一步减少分子诊断设备100的整体功率。
步骤S2202:控制第一加热件加热加样腔。
在加热件例如第二加热件55、第四加热件832预热完成后,检测卡93经检测卡输送座20输送至检测卡检测座30上。此时,第二加热件55、第四加热件832即可对检测卡93例如加样腔9411进行夹紧。 此时第二加热件55、第四加热件832中已被预热完成的加热件可进一步对检测卡93例如加样腔9411进行加热,以完成对样本的加热预处理。
在一些实施例中,可控制加热件例如第二加热件55、第四加热件832加热加样腔至第二温度,其中,第一温度可小于第二温度。加样腔中的试剂对样本进行处理时,必须在特定温度例如第二温度下进行,在加热温度未达到时,试剂可能不会对样本进行处理,也可能会对样本进行处理但处理过程缓慢。所以要控制加样腔中样本及试剂在第二温度下进行,直至试剂对样本处理完成。
在一些实施例中,第二温度可为40-100℃。在一些实施例中,第一温度可为45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、90℃、95℃中的一个。可以理解地,第二温度可以根据需要进行调整。
在一些实施例中,第二温度可对应检测卡93例如加样腔9411中的试剂和/或样本来确定。即,每种检测卡93中加样腔9411内的试剂不同,而对第二温度的需求不同。所以第二温度可以对应检测卡类型进行确定。
在一些实施例中,第二温度及检测卡类型可以事先预设置在分子诊断设备100中。分子诊断设备100可通过扫码设备13对卡托65上的信息标识进行图像扫描,判断出检测卡93的类型,进而由分子诊断设备100选择对应检测卡类型的第二温度。在一些实施例中,用户对分子诊断设备100进行检测卡类型输入,由分子诊断设备100选择对应检测卡类型的第二温度。也可以由用户直接对分子诊断设备100进行第二温度的输入。
在一些实施例中,在控制加热件例如第二加热件55、第四加热件832加热加样腔至第二温度之后,控制加热件例如第二加热件55、第四加热件832对加样腔保温第一时长。在加热后的保温过程中可促使试剂对样本处理完成。在一些实施例中,在保温第一时长内,试剂可对样本处理完成,或对样本处理不完成但可以进行后续检测。
在一些实施例中,第一时长可为定值,例如可为3-10min。在一些实施例中,第一时长可为4min、5min、6min、7min、8min、9min中的一个。可以理解地,第一时长也可以进行调整。
在一些实施例中,第一时长可对应检测卡93例如加样腔9411中的试剂和/或样本、第二温度来确定。即,每种检测卡93中加样腔9411内的试剂不同,而对第一时长的需求不同。所以第一时长可以对应检测卡类型、第二温度进行确定。
在一些实施例中,第一时长及检测卡类型可以事先预设置在分子诊断设备100中。分子诊断设备100可通过扫码设备13对卡托65上的信息标识进行图像扫描,判断出检测卡93的类型,进而由分子诊断设备100选择对应检测卡类型的第一时长。在一些实施例中,用户对分子诊断设备100进行检测卡类型输入,由分子诊断设备100选择对应检测卡类型的第一时长。也可以由用户直接对分子诊断设备100进行第一时长的输入。
步骤S2203:控制与检测卡上的检测腔对应的第二加热件进行预热。
在加热件例如第二加热件55、第四加热件832仅对检测卡93例如加样腔9411进行加热时,所以需要设置另外的加热件对检测卡93例如检测腔9461进行加热,进而使得对检测卡93例如检测腔9461进行加热的加热件可仅对检测卡93例如检测腔9461进行加热,而设置较为小巧,也因此避免加热件例如第二加热件55、第四加热件832同时对检测卡93例如加样腔9411、检测腔9461加热而功率较大以影响分子诊断设备100的整体功率。而本申请中加热件例如第二加热件55、第四加热件832的设置使得分子诊断设备100安全运行。
在一实施例中,请参阅图16、图17和图18,对检测卡93的检测腔9461进行加热处理,有助于隔离腔9451及检测腔9461内可熔化的隔离体被熔化,使得离心处理且被预处理的样本进入检测腔9461内,被检测腔9461内的试剂进一步处理。在一些实施例中,检测卡93的隔离腔9451可以省略。在一些实施例中,隔离腔9451和/或检测腔9461内可熔化的隔离体可以省略。离心处理却被预处理的样本将进入检测腔9461内,并与检测腔9461内的试剂进一步处理。
在一些实施例中,请参阅图3和图10、图13。对检测卡93的检测腔9461进行加热的加热件可包括对检测卡93例如检测腔9461顶部进行加热的第一加热件54以及对检测卡93例如检测腔9461底部进行加热的第三加热件8211。而在加热件进行加热时,第一加热件54和第三加热件8211中的至少一个可用于对检测卡93的检测腔9461进行加热。因此,加热件例如第一加热件54、第三加热件8211可用于对检测卡93例如加样腔9411进行加热。在一些实施例中,加热件例如第一加热件54、第三加热件8211也可采用其他方式设置,而不采用图3和图10、图13中的设置方式。
在一些实施例中,请参阅图3和图10、图13。加热件例如第一加热件54、第三加热件8211对检测卡93例如检测腔9461进行加热,而不同时对检测卡93例如加样腔9411进行加热,进而加热件例如第一加热件54、第三加热件8211的设置较为小巧,也因此避免加热件例如第一加热件54、第三加热件8211同时对检测卡93例如加样腔9411、检测腔9461加热而功率较大以影响分子诊断设备100的整体功率。 而本申请中加热件例如第一加热件54、第三加热件8211的设置使得分子诊断设备100安全运行。
在一些实施例中,请参阅图3,第一加热件54的个数、位置可对应卡托65上的检测卡93的个数、位置设置,因此,在样本量较少时,可以单独对应卡托65上放置的检测卡数量、位置,控制对应检测卡数量、位置的第一加热件54进行预热及后续的加热,而进一步减少分子诊断设备100的整体功率。
在一些实施例中,请参阅图10和图13,第三加热件8211的个数、位置可对应卡托65上的检测卡93的个数、位置设置,因此,在样本量较少时,可以单独对应卡托65上放置的检测卡数量、位置,控制对应检测卡数量、位置的第三加热件8211进行预热及后续的加热,而进一步减少分子诊断设备100的整体功率。
在一些实施例中,上述实施例中的分子诊断设备100对检测卡93例如检测腔9461进行加热时,会因为加热件例如第一加热件54、第三加热件8211对检测卡93从初始温度进行加热,而导致对检测卡93进行检测的时间延长,进而分子诊断设备100的检测效率低。因此采用加热件例如第一加热件54、第三加热件8211先预热,再利用加热件例如第一加热件54、第三加热件8211对检测卡例如检测腔9461进行加热,可节省大量的时间。即,第一加热件54、第三加热件8211中的至少一个可进行预热。
在一些实施例中,加热件例如第一加热件54、第三加热件8211对检测卡93例如检测腔9461进行加热时,可与分子诊断设备100的其他操作步骤并行进行,以便进一步减少加热件例如第一加热件54、第三加热件8211对检测卡进行检测的时间,提高检测效率。在一些实施例中,控制加热件例如第一加热件54、第三加热件8211在离心过程完成前完成预热。在一些实施例中,控制加热件例如第一加热件54、第三加热件8211在离心过程完成时完成预热。在一些实施例中,在加热件例如第二加热件55、第四加热件832仅对检测卡93例如加样腔9411进行加热完成后,需要对检测卡进行离心处理,使得被处理后的样本输送到隔离腔9451所在的部位,以便被处理后的样本能在检测腔9461中被处理、检测。在一实施例中,可控制加热件例如第一加热件54、第三加热件8211预热至第三温度。在一些实施例中,离心过程可与加热件例如第一加热件54、第三加热件8211的预热过程可以先后开始或同时开始。在一些实施例中,输送过程可与加热件例如第一加热件54、第三加热件8211的预热过程可以先后完成或同时完成。在一些实施例中,加热件例如第一加热件54、第三加热件8211的预热过程可在输送过程完成前完成,加热件例如第一加热件54、第三加热件8211的预热过程可在完成后进行保温。
在一些实施例中,第三温度可为40-70℃。在一些实施例中,第一温度可为45℃、50℃、55℃、60℃、65℃中的一个。可以理解地,第三温度可以根据需要进行调整。
在一些实施例中,第三温度可对应检测卡93例如隔离腔9451、检测腔9461中的隔离体来确定。即,每种检测卡93中隔离体不同,而对第三温度的需求不同,所以第三温度可以对应检测卡类型而进行确定。
在一些实施例中,第三温度可对应检测卡93例如检测腔9461中的试剂来确定。即每种检测卡93中试剂不同,而对第三温度的需求不同,所以第三温度可以对应检测卡类型而进行确定。
在一些实施例中,第三温度及检测卡类型可以事先预设置在分子诊断设备100中。分子诊断设备100可通过扫码设备13对卡托65上的信息标识进行图像扫描,判断出检测卡93的类型,进而由分子诊断设备100选择对应检测卡类型的第三温度。在一些实施例中,用户对分子诊断设备100进行检测卡类型输入,由分子诊断设备100选择对应检测卡类型的第三温度。也可以由用户直接对分子诊断设备100进行第三温度的输入。
步骤S2202:控制第二加热件加热检测腔。
在加热件例如第一加热件54、第三加热件8211预热完成后,检测卡93也完成离心处理且被经检测卡输送座20输送至检测卡检测座30上。此时,第一加热件54、第三加热件8211即可对检测卡93例如检测腔9461进行加紧。此时第一加热件54、第三加热件8211中已被预热完成的加热件可进一步对检测卡93例如检测腔9461进行加热,以完成对样本的加热预处理。
在一些实施例中,可控制加热件例如第一加热件54、第三加热件8211加热检测腔至第四温度,其中,第三温度可小于第四温度。在一些实施例中,检测卡93例如隔离腔9451、检测腔9461中的隔离体必须在特定温度例如第四温度下进行融化,在加热温度未达到特定温度例如第四温度时,不会融化,所以要控制加样腔中的隔离体在第四温度下进行,直至隔离体融化。在一些实施例中,在隔离体熔化后,再进一步离心处理、加热以使检测腔9461中被处理后的样本再进一步被检测腔9461内的试剂处理,例如可以保温第四温度,当然也可以继续升温,直至试剂对样本处理完成。在一些实施例中,在检测卡93不存在隔离体时,离心处理后,被处理后的样本将位于检测腔9461内,加热检测腔9461至第四温度,可进一步使被处理后的样本被处检测腔9461内的试剂处理,直至试剂对样本处理完成。
在一些实施例中,第四温度可为60-100℃。在一些实施例中,第四温度可为65℃、70℃、75℃、80℃、90℃、95℃中的一个。可以理解地,第四温度可以根据需要进行调整。
在一些实施例中,第四温度可对应检测卡93例如隔离腔9451、检测腔9461中的隔离体来确定。即, 每种检测卡93中隔离体不同,而对第四温度的需求不同,所以第四温度可以对应检测卡类型而进行确定。
在一些实施例中,第四温度可对应检测卡93例如检测腔9461中的试剂来确定。即每种检测卡93中试剂不同,而对第四温度的需求不同,所以第四温度可以对应检测卡类型而进行确定。
在一些实施例中,第四温度及检测卡类型可以事先预设置在分子诊断设备100中。分子诊断设备100可通过扫码设备13对卡托65上的信息标识进行图像扫描,判断出检测卡93的类型,进而由分子诊断设备100选择对应检测卡类型的第四温度。在一些实施例中,用户对分子诊断设备100进行检测卡类型输入,由分子诊断设备100选择对应检测卡类型的第四温度。也可以由用户直接对分子诊断设备100进行第四温度的输入。
在一些实施例中,在控制加热件例如第一加热件54、第三加热件8211加热检测腔至第四温度之后,控制加热件例如第一加热件54、第三加热件8211对检测腔保温第二时长。在一些实施例中,在加热后的保温过程中,可促使检测卡93例如隔离腔9451、检测腔9461中的隔离体熔化。在一些实施例中,在加热后的保温过程中,可促使检测卡93例如隔离腔9451、检测腔9461中的隔离体熔化的同时也可促使被处理后的样本进一步被检测卡93例如检测腔9461内的试剂处理。在一些实施例中,在加热后的保温过程中,可促使被处理后的样本进一步被检测卡93例如检测腔9461内的试剂处理。
在一些实施例中,在保温第二时长内,仅检测卡93例如隔离腔9451、检测腔9461中的隔离体被熔化。
在一些实施例中,在保温第二时长内,仅被处理后的样本进一步被检测卡93例如检测腔9461内的试剂处理。
在一些实施例中,在保温第二时长内,检测卡93例如隔离腔9451、检测腔9461中的隔离体被熔化,且被处理后的样本进一步被检测卡93例如检测腔9461内的试剂处理。在一些实施例中,第二时长仅为被处理后的样本进一步被检测卡93例如检测腔9461内的试剂处理的时长。
在一些实施例中,第二时长可为定值,例如可为30-60min。在一些实施例中,第二时长可为35min、40min、45min、50min、55min中的一个。可以理解地,第二时长也可以进行调整。
在一些实施例中,第二时长可对应检测卡93例如隔离腔9451、检测腔9461中的隔离体、第四温度来确定。即,每种检测卡93中隔离体不同,而对第二时长的需求不同,所以第二时长可以对应检测卡类型而进行确定。
在一些实施例中,第二时长可对应检测卡93例如检测腔9461中的试剂、第四温度来确定。即每种检测卡93中试剂不同,而对第二时长的需求不同,所以第二时长可以对应检测卡类型、第四温度而进行确定。
在一些实施例中,第二时长及检测卡类型可以事先预设置在分子诊断设备100中。分子诊断设备100可通过扫码设备13对卡托65上的信息标识进行图像扫描,判断出检测卡93的类型,进而由分子诊断设备100选择对应检测卡类型的第二时长。在一些实施例中,用户对分子诊断设备100进行检测卡类型输入,由分子诊断设备100选择对应检测卡类型的第二时长。也可以由用户直接对分子诊断设备100进行第二时长的输入。
可以理解地,对于“第一温度”“第二温度”“第三温度”“第四温度”以及“温度”等名称,在一些实施例中可以相互转换。例如在一实施例中,将其他实施例中的“第一温度”称为“第二温度”,相应地,将其他实施例中的“第二温度”称为“第一温度”。
对于“第一时长”“第二时长”以及“时长”等名称,在一些实施例中可以相互转换。例如在一实施例中,将其他实施例中的“第一时长”称为“第二时长”,相应地,将其他实施例中的“第二时长”称为“第一时长”。
接下来阐述一种分子诊断设备,该分子诊断设备可用于上述方法中,请参阅图21,图21为本申请一实施例中一种分子诊断设备的结构图。该分子诊断设备97可包括:
第一加热件973,与检测卡上的加样腔对应设置;
第二加热件974,与检测卡上的检测腔对应设置;以及
控制单元972,控制单元972分别连接第一加热件973和第二加热件974,用于控制第一加热件973进行预热,在预热后加热加样腔,而后控制第二加热件974进行预热,在预热后加热检测腔。
在一实施例中,第一加热件973可为上述实施例中分子诊断设备100中第二加热件55、第四加热件832中的一个。
在一实施例中,第二加热件974可为上述实施例中分子诊断设备100中第一加热件54、第三加热件8211中的一个。
在一实施例中,控制单元972,可为上述实施例中分子诊断设备100中控制电路板40中的处理器。
在一些实施例中,控制单元972用于在将检测卡输送至加热工位的输送过程中,控制加热工位中第一加热件973进行预热。
在一些实施例中,控制单元972控制第一加热件973在输送过程完成前完成预热,并在预热完成后保温;或,控制第一加热件973在输送过程完成时完成预热。
在一些实施例中,主控单元用于控制第一加热件973预热至第一温度,并控制第一加热件973加热加样腔至第二温度,第一温度小于第二温度。
在一些实施例中,主控单元972用于获取对应检测卡类型的第一温度。在一些实施例中,分子诊断设备97还包括控制信号输入单元971。控制信号输入单元971用于输入第一温度,或控制信号输入单元用于输入检测卡类型。
在一实施例中,控制信号输入单元971可为输入设备例如扫码设备13、鼠标、键盘、显示屏等。
在一些实施例中,主控单元972用于控制第一加热件973对加样腔保温第一时长。
在一些实施例中,主控单元972用于获取对应检测卡类型的第二温度与第一时长。在一些实施例中,控制信号输入单元971用于输入第一时长及第二温度。
在一些实施例中,主控单元972用于在对检测卡进行离心处理的离心过程中,控制第二加热件974进行预热。在一些实施例中,主控单元972用于控制第二加热件974在离心过程完成前完成预热,并在预热完成后保温;或,控制第二加热件974在离心过程完成时完成预热。
在一些实施例中,主控单元972用于控制第二加热件974预热至第三温度,并控制第二加热件974加热检测腔至第四温度,第三温度小于第四温度。
在一些实施例中,主控单元972用于获取对应检测卡类型的第三温度。在一些实施例中,控制信号输入单元971用于输入第三温度。
在一些实施例中,主控单元972用于获取对应检测卡类型的第四温度与第二时长。在一些实施例中,控制信号输入单元971用于输入第四温度及第二时长。
在一些实施例中,主控单元972用于控制第一加热件973及第三加热件975加热加样腔。在一实施例中,第一加热件973可为上述实施例中分子诊断设备100中第二加热件55、第四加热件832中的一个,第三加热件975可为上述实施例中分子诊断设备100中第二加热件55、第四加热件832中的另一个。
在一些实施例中,主控单元972用于控制第二加热件974及第四加热件976加热检测腔。
在一些实施例中,第二加热件974可为上述实施例中分子诊断设备100中第一加热件54、第三加热件8211中的一个。第四加热件976可为上述实施例中分子诊断设备100中第一加热件54、第三加热件8211中的另一个。
在一实施例中,分子诊断设备97可包括第一温度检测单元977,第一温度检测单元977用于检测第一加热件973和/或第三加热件975之间加样腔的温度。
在一实施例中,主控单元972接收第一温度检测单元977检测的温度数据,并根据温度数据控制第一加热件973和/或第三加热件975对检测卡进行加热。
在一实施例中,第一温度检测单元977可安装在分子诊断设备100中第四加热件832和/或第二加热件55上。
在一实施例中,分子诊断设备97可包括第二温度检测单元978,第二温度检测单元978用于检测第二加热件974和/或第四加热件976之间检测腔的温度。
在一实施例中,主控单元972接收第二温度检测单元978检测的温度数据,并根据温度数据控制第二加热件974和/或第四加热件976对检测卡进行加热。
在一实施例中,第二温度检测单元978可安装在分子诊断设备100中第三加热件8211和/或第一加热件54上。
在一实施例中,分子诊断设备97可包括电源971,电源971可为分子诊断设备97正常工作提供电能。
在一实施例中,分子诊断设备97可包括第三温度检测单元980,第三温度检测单元980可检测分子诊断设备97内部的温度,可用于检测分子诊断设备97内外的温度。主控单元972接收第三温度检测单元980检测的温度数据,并根据温度数据控制第一加热件973、第三加热件975、第二加热件974和第四加热件976中至少一个对检测卡进行加热。当然主控单元972也可以根据温度数据停止对检测卡进行加热或停止对分子诊断设备97的运行。
在一实施例中,第三温度检测单元980可安装在分子诊断设备100中机架10上。在本申请所提供的几个实施方式中,应该理解到,所揭露的方法以及设备,可以通过其他的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种基于分子诊断设备的控制方法,其中,包括:
    控制与检测卡上的加样腔对应的第一加热件进行预热;
    控制所述第一加热件加热所述加样腔;
    控制与所述检测卡上的检测腔对应的第二加热件进行预热;
    控制所述第二加热件加热所述检测腔。
  2. 根据权利要求1所述的方法,其中,所述控制与检测卡上的加样腔对应的第一加热件进行预热,包括:
    在将所述检测卡输送至加热工位的输送过程中,控制所述加热工位中所述第一加热件进行预热。
  3. 根据权利要求2所述的方法,其中,所述在将所述检测卡输送至加热工位的输送过程中,控制所述加热工位中的所述第一加热件进行预热,包括:
    控制所述第一加热件在所述输送过程完成前完成预热,并在预热完成后保温;或,控制所述第一加热件在所述输送过程完成时完成预热。
  4. 根据权利要求1所述的方法,其中,所述控制与检测卡上的加样腔对应的第一加热件进行预热,包括:
    控制所述第一加热件预热至第一温度;
    所述控制所述第一加热件加热所述加样腔,包括:
    控制所述第一加热件加热所述加样腔至第二温度,所述第一温度小于所述第二温度。
  5. 根据权利要求4所述的方法,其中,在所述控制所述第一加热件预热至第一温度之前,所述方法还包括:
    获取对应所述检测卡类型的所述第一温度。
  6. 根据权利要求4所述的方法,其中,在所述控制所述第一加热件加热所述加样腔至第二温度之后,所述方法还包括:
    控制所述第一加热件对所述加样腔保温第一时长。
  7. 根据权利要求6所述的方法,其中,在所述控制所述第一加热件加热所述加样腔至第二温度之前,所述方法还包括:
    获取对应所述检测卡类型的所述第二温度与所述第一时长。
  8. 根据权利要求1所述的方法,其中,所述控制与所述检测卡上的检测腔对应的第二加热件进行预热,包括:
    在对所述检测卡进行离心处理的离心过程中,控制所述第二加热件进行预热。
  9. 根据权利要求8所述的方法,其中,所述在对所述检测卡进行离心处理的离心过程中,控制所述第二加热件进行预热,包括:
    控制所述第二加热件在所述离心过程完成前完成预热,并在预热完成后保温;或,控制所述第二加热件在所述离心过程完成时完成预热。
  10. 根据权利要求1所述的方法,其中,所述控制与所述检测卡上的检测腔对应的第二加热件进行预热,包括:
    控制所述第二加热件预热至第三温度;
    所述控制所述第二加热件加热所述检测腔,包括:
    控制所述第二加热件加热所述检测腔至第四温度,所述第三温度小于所述第四温度。
  11. 根据权利要求10所述的方法,其中,在所述控制所述第二加热件预热至第三温度之前,所述方法还包括:
    获取对应所述检测卡类型的所述第三温度。
  12. 根据权利要求10所述的方法,其中,在所述控制所述第二加热件加热所述检测腔至第四温度之后,所述方法还包括:
    控制所述第二加热件对所述检测腔保温第二时长。
  13. 根据权利要求12所述的方法,其中,在所述控制所述第二加热件加热所述检测腔至第四温度之前,所述方法还包括:
    获取对应所述检测卡类型的所述第四温度与所述第二时长。
  14. 根据权利要求1所述的方法,其中,所述控制与检测卡上的加样腔对应的第一加热件进行预热,包括:
    控制对应所述加样腔的所述第一加热件及第三加热件进行预热,所述第一加热件及所述第三加热件 用于夹持所述加样腔;
    所述控制所述第一加热件加热所述加样腔,包括:
    控制所述第一加热件及所述第三加热件加热所述加样腔。
  15. 根据权利要求1所述的方法,其中,所述控制与所述检测卡上的检测腔对应的第二加热件进行预热,包括:
    控制对应所述检测腔的所述第二加热件及第四加热件进行预热,所述第二加热件及所述第四加热件用于夹持所述检测腔;
    所述控制所述第二加热件加热所述检测腔,包括:
    控制所述第二加热件及所述第四加热件加热所述检测腔。
  16. 一种分子诊断设备,其中,包括:
    第一加热件,与检测卡上的加样腔对应设置;
    第二加热件,与所述检测卡上的检测腔对应设置;以及
    控制单元,所述控制单元分别连接所述第一加热件和所述第二加热件,用于控制所述第一加热件进行预热,在预热后加热所述加样腔,而后控制所述第二加热件进行预热,在预热后加热所述检测腔。
  17. 根据权利要求16所述的分子诊断设备,其中,所述控制单元用于在将所述检测卡输送至加热工位的输送过程中,控制所述加热工位中所述第一加热件进行预热。
  18. 根据权利要求17所述的分子诊断设备,其中,所述控制单元用于控制所述第一加热件在所述输送过程完成前完成预热,并在预热完成后保温;或,控制所述第一加热件在所述输送过程完成时完成预热。
  19. 根据权利要求16所述的分子诊断设备,其中,所述控制单元用于控制所述第一加热件预热至第一温度;
    所述控制单元用于控制所述第一加热件加热所述加样腔至第二温度,所述第一温度小于所述第二温度。
  20. 根据权利要求19所述的分子诊断设备,其中,在所述控制单元控制所述第一加热件预热至第一温度之前,所述控制单元用于获取对应所述检测卡类型的所述第一温度。
PCT/CN2023/077940 2022-02-25 2023-02-23 基于分子诊断设备的控制方法及分子诊断设备 WO2023160622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210178016.6 2022-02-25
CN202210178016.6A CN116699157A (zh) 2022-02-25 2022-02-25 基于分子诊断设备的控制方法及分子诊断设备

Publications (1)

Publication Number Publication Date
WO2023160622A1 true WO2023160622A1 (zh) 2023-08-31

Family

ID=87764849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077940 WO2023160622A1 (zh) 2022-02-25 2023-02-23 基于分子诊断设备的控制方法及分子诊断设备

Country Status (2)

Country Link
CN (1) CN116699157A (zh)
WO (1) WO2023160622A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053336A1 (en) * 1999-02-11 2001-12-20 Roger L. Hammer Cartridge-based analytical instrument with rotor balance and cartridge lock/eject system
CN1542454A (zh) * 2003-04-02 2004-11-03 ��ʽ�����������¼��� 化学分析装置和化学分析用的结构体
CN110308294A (zh) * 2019-07-31 2019-10-08 深圳麦科田生物医疗技术有限公司 一种样本分析装置及方法
CN110804540A (zh) * 2019-10-22 2020-02-18 深圳市刚竹医疗科技有限公司 微流控的温控系统及核酸分析系统
CN214654906U (zh) * 2020-11-26 2021-11-09 深圳市理邦精密仪器股份有限公司 分子诊断离心测试卡
CN214735762U (zh) * 2020-10-28 2021-11-16 北京贝泰科技有限公司 一种离心式核提扩增一体化系统
CN215250839U (zh) * 2020-11-26 2021-12-21 深圳市理邦精密仪器股份有限公司 分子诊断离心测试卡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053336A1 (en) * 1999-02-11 2001-12-20 Roger L. Hammer Cartridge-based analytical instrument with rotor balance and cartridge lock/eject system
CN1542454A (zh) * 2003-04-02 2004-11-03 ��ʽ�����������¼��� 化学分析装置和化学分析用的结构体
CN110308294A (zh) * 2019-07-31 2019-10-08 深圳麦科田生物医疗技术有限公司 一种样本分析装置及方法
CN110804540A (zh) * 2019-10-22 2020-02-18 深圳市刚竹医疗科技有限公司 微流控的温控系统及核酸分析系统
CN214735762U (zh) * 2020-10-28 2021-11-16 北京贝泰科技有限公司 一种离心式核提扩增一体化系统
CN214654906U (zh) * 2020-11-26 2021-11-09 深圳市理邦精密仪器股份有限公司 分子诊断离心测试卡
CN215250839U (zh) * 2020-11-26 2021-12-21 深圳市理邦精密仪器股份有限公司 分子诊断离心测试卡

Also Published As

Publication number Publication date
CN116699157A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
JP6830443B2 (ja) 流体検査用カセット
JP5872856B2 (ja) 液体試料を自動熱処理するための機器および方法
CN107815408B (zh) 采用等温扩增方式的核酸分析装置
CN1755371A (zh) 化学分析装置
TWI715997B (zh) 一種可即時偵測一種以上螢光訊號之聚合酶鏈式反應裝置
JP6754420B2 (ja) 対流pcr装置
US20200376494A1 (en) Portable devices and methods for analyzing samples
CA3141275A1 (en) Systems for sample analysis
WO2012036341A1 (ko) 비접촉 가열식 유전자 증폭시스템
CN115074241B (zh) 用于pcr仪的扩增装置及其控制方法和pcr仪
JP2018126125A (ja) 熱対流型ポリメラーゼ連鎖反応の装置
CA3192080A1 (en) Portable devices and methods for analyzing samples
CN113874708A (zh) 多功能分析装置
WO2023160622A1 (zh) 基于分子诊断设备的控制方法及分子诊断设备
CN115058314A (zh) 基于旋转阀的pcr装置及检测方法
CN217278418U (zh) 分子诊断设备及用于分子诊断设备的离心组件
CN203159589U (zh) 在rt-pcr过程中执行热循环操作的装置
CN218766953U (zh) 分子诊断设备及用于分子诊断设备的卡托
WO2023160623A1 (zh) 控制方法、多通量离心平台及计算机可读存储介质
CA2897919C (en) Biological sample analytical instrument
TWI656211B (zh) 一種熱對流式聚合酶鏈式反應裝置
CN112080414A (zh) 一种可即时侦测一种以上萤光讯号的聚合酶链式反应装置
CN218842182U (zh) 一种多重荧光定量检测pcr装置的热盖模块及pcr装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759244

Country of ref document: EP

Kind code of ref document: A1