WO2023160261A1 - 一种co 2捕集与电再生同步转化系统及方法 - Google Patents
一种co 2捕集与电再生同步转化系统及方法 Download PDFInfo
- Publication number
- WO2023160261A1 WO2023160261A1 PCT/CN2023/070328 CN2023070328W WO2023160261A1 WO 2023160261 A1 WO2023160261 A1 WO 2023160261A1 CN 2023070328 W CN2023070328 W CN 2023070328W WO 2023160261 A1 WO2023160261 A1 WO 2023160261A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capture
- chamber
- subsystem
- synchronous conversion
- anode
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 71
- 230000008929 regeneration Effects 0.000 title claims abstract description 59
- 238000011069 regeneration method Methods 0.000 title claims abstract description 59
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 80
- 238000010521 absorption reaction Methods 0.000 claims abstract description 34
- 230000003647 oxidation Effects 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 238000003860 storage Methods 0.000 claims description 32
- 239000007921 spray Substances 0.000 claims description 19
- 239000012528 membrane Substances 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000005341 cation exchange Methods 0.000 claims description 12
- 239000003054 catalyst Substances 0.000 claims description 11
- 239000003011 anion exchange membrane Substances 0.000 claims description 10
- 150000001768 cations Chemical class 0.000 claims description 9
- -1 hydroxide ions Chemical class 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 8
- 238000006056 electrooxidation reaction Methods 0.000 claims description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 4
- 235000019253 formic acid Nutrition 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 239000003595 mist Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 2
- 150000001450 anions Chemical class 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 claims 1
- 239000007809 chemical reaction catalyst Substances 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/21—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
- C25B3/26—Reduction of carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
- C25B15/087—Recycling of electrolyte to electrochemical cell
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/07—Oxygen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/14—Alkali metal compounds
- C25B1/16—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/18—Alkaline earth metal compounds or magnesium compounds
- C25B1/20—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
Definitions
- the invention relates to the field of CO2 capture and utilization, in particular to a CO2 capture and electrical regeneration synchronous conversion system and method.
- CO2 capture, utilization and storage is an important strategic choice to achieve the dual carbon goals, and the technology has made great progress under the promotion of relevant policies.
- CO2 capture can be divided into two types: amine adsorption and alkali absorption.
- Solid amine adsorbents MEA, DEA, TEA, PEI, etc.
- MEA, DEA, TEA, PEI, etc. are currently the most concerned adsorption material systems, which use porous base materials as high specific surface area carriers to strengthen the contact between the adsorbent and CO 2 , and exhibit good CO 2 Adsorption selectivity and large-scale application potential, but limited by the high cost of amine adsorption materials and the limitation of diffusion and mass transfer of porous materials, the total processing capacity of the system is small, and the cyclic adsorption-desorption will accelerate the degradation of the performance of solid amine materials .
- Alkaline absorption and capture has a significant cost advantage and strong CO 2 removal effect. The whole process can achieve long-term continuous operation, and
- CO 2 storage is one of the measures to achieve CO 2 reduction. It is mainly divided into two categories: oil flooding storage and geological storage. However, due to the limitation of geological structure, the captured CO 2 cannot be stored flexibly on site. Additional costs will be incurred in this link, so the on-site conversion and utilization of CO 2 can greatly reduce transportation costs, and can fundamentally eliminate CO 2 , simultaneously realizing its reduction and resource utilization.
- electrochemical conversion can realize CO2 activation with low energy input, and synchronous electron/proton transfer can quickly stabilize CO2 intermediates. Relying on active centers with precise structures and catalysts with adjustable structures, Realize the directional conversion of CO2 to generate high value-added end products.
- the CO2 electrochemical conversion reaction has mild conditions, low energy consumption, and no additional hydrogen source.
- the CO 2 absorbed by the lye can also be regenerated electrochemically, and its energy consumption is much lower than that of thermal regeneration of CO 2 , and the lye absorbent can be regenerated synchronously, which has obvious advantages.
- the research on the electrical regeneration and electrical conversion of CO 2 after the absorption of alkaline solution is carried out separately, that is, the research on the electrical regeneration and electrical conversion of CO 2 in different reactors is carried out separately.
- the electrical conversion characteristics of CO 2 lead to the double consumption of electric energy and the complexity of the reaction system.
- the present invention provides a CO2 capture and electric regeneration synchronous conversion system and method, the purpose is to realize CO2 capture, absorption liquid recycling, CO2 regeneration and conversion into high value-added products Coupling processing, thereby reducing system energy consumption.
- a CO 2 capture and electrical regeneration synchronous conversion system including a CO 2 capture subsystem and a CO 2 electrical regeneration synchronous conversion subsystem;
- the CO 2 capture subsystem utilizes an absorption liquid to capture CO 2 and generate a capture liquid
- the CO2 electrical regeneration synchronous conversion subsystem includes an electrolytic cell; a cation exchange membrane and an anion exchange membrane are arranged at intervals in the electrolytic cell, and the cation exchange membrane and the anion exchange membrane separate the electrolytic cell into an anode chamber and a cathode at the left and right ends room, and a balance room in the middle;
- the anode chamber is provided with an anode electrode, and the anode chamber is also provided with a sample inlet and a sample outlet;
- the cathode chamber is provided with a cathode electrode, and the cathode chamber is also provided with a sample inlet and a sample outlet;
- the balance chamber is provided with Sample outlet;
- the sample inlet of the anode chamber is connected with the outlet of the capture solution of the CO capture subsystem, and the sample outlet of the anode chamber is connected with the sample inlet of the cathode chamber for introducing the CO regenerated by anodic oxidation into the
- the cathode chamber performs electroreduction; the sample outlet of the balance chamber is connected with the inlet of the absorption liquid of the CO 2 capture subsystem.
- the anode electrode is an inert electrode, and the cathode electrode is provided with a catalyst that catalyzes the electroreduction reaction of CO2 .
- the CO 2 electric regeneration synchronous conversion subsystem also includes a power supply, and the anode electrode and the cathode electrode are respectively connected to two ends of the power supply.
- the structure of the CO capture subsystem includes a spray tower, a liquid storage tank and a spray device;
- the spray tower is provided with an air inlet, an air outlet, a tray and a mist eliminator;
- the liquid storage tank includes a liquid storage tank A and a liquid storage tank B; the liquid storage tank A holds the trapping liquid at the bottom of the spray tower and is connected with the sample inlet of the anode chamber; the liquid storage tank B stores fresh alkali Absorb liquid and connect with the sample outlet of the equilibrium chamber;
- the spraying device includes a pump, a spraying head and a pipeline; the spraying head is connected to the liquid storage tank B through the pipeline, and the pump is arranged on the pipeline.
- the captured liquid is introduced into the anode chamber of the CO 2 electrical regeneration synchronous conversion subsystem, and the captured liquid is used as the anolyte in the anode chamber, so that the carbonate ion CO 3 2- in the captured liquid is regenerated into CO 2 by electro-oxidation , and generate cations at the same time, and the cations enter the equilibrium chamber through the cation exchange membrane;
- the regenerated CO 2 is introduced into the cathode chamber for electroreduction reaction to generate high value-added products while consuming hydrogen protons H + in the solution to increase the concentration of hydroxide ions OH- , which enter through the anion exchange membrane balance room;
- the regenerated new absorption liquid is introduced into the CO 2 capture subsystem to capture CO 2 , forming a cycle of CO 2 capture and electrical regeneration synchronous conversion.
- the high value-added products are discharged through the cathode chamber sample outlet.
- the cathode electrode is equipped with a catalyst that catalyzes the electroreduction reaction of CO2 .
- a catalyst that catalyzes the electroreduction reaction of CO2 .
- the present invention organically connects the CO 2 capture subsystem and the CO 2 electric regeneration synchronous conversion subsystem in series through the absorption liquid and the capture liquid, and regulates the absorption liquid to capture CO 2 , capture liquid electric regeneration, and regenerate the absorption liquid backflow, It can simultaneously realize CO2 capture, regeneration and synchronous conversion into high value-added product utilization, and realize efficient and stable operation of the system. Compared with the existing processing scheme, the system structure is optimized and the system energy consumption is greatly reduced.
- the liquid storage tank of the CO2 capture subsystem of the present invention is divided into two parts, A and B, and the capture liquid after CO2 capture and the fresh absorption liquid after electrical regeneration are placed in different areas, so that it can be used for CO2 capture
- the water collected and sprayed is all fresh absorption liquid, which has a large concentration gradient, small mass transfer assistance, fast absorption rate, and high capture efficiency; so that all the water flowing into the CO 2 electrical regeneration synchronous conversion subsystem is captured after CO 2 is captured.
- the collection liquid has a high concentration of carbonate radical CO 3 2- and is not diluted, which can avoid the occurrence of ineffective electro-oxidation and improve the utilization efficiency of electric energy.
- the present invention couples the traditional lye CO2 capture liquid electricity regeneration system that only utilizes the anode half-reaction with the CO2 electroreduction system that only utilizes the cathode half-reaction, through reactor structure design and optimization, charge and material balance And control, build a new type of CO 2 electric regeneration synchronous conversion two-stage membrane electroreaction system, realize the synchronous utilization of cathode and anode, greatly improve the reaction efficiency, and at least reduce the power demand by 50%.
- FIG. 1 is a schematic diagram of the system structure of an embodiment of the present invention.
- CO2 capture subsystem 11, spray tower; 111, tray; 112, demister; 12, liquid storage tank; 121, liquid storage tank A; 122, liquid storage tank B; 13 , spray device; 131, pump; 132, spray head; 133, pipeline; 2, CO 2 electrical regeneration synchronous transformation subsystem; 21, power supply; 22, electrolytic cell; 23, cation exchange membrane; 24, anion exchange Membrane; 25, anode chamber; 251, anode electrode; 26, cathode chamber; 261, cathode electrode; 27, balance chamber.
- a CO 2 capture and electrical regeneration synchronous conversion system of the present application includes a CO 2 capture subsystem 1 and a CO 2 electrical regeneration synchronous conversion subsystem 2;
- the CO 2 capture subsystem 1 uses the absorption liquid to capture CO 2 and generate capture liquid;
- the CO2 electrical regeneration synchronous conversion subsystem 2 includes an electrolytic cell 22; a cation exchange membrane 23 and an anion exchange membrane 24 are arranged at intervals in the electrolytic cell 22, and the cation exchange membrane 23 and the anion exchange membrane 24 separate the electrolytic cell 22 into left and right sides.
- the anode chamber 25 is provided with an anode electrode 251 and an anolyte, and the anode chamber 25 is also provided with a sample inlet and a sample outlet;
- the cathode chamber 26 is provided with a cathode electrode 261 and a catholyte, and the catholyte is the required electrolyte for the CO electroreduction reaction; the cathode chamber 26 is also provided with a sample inlet and a sample outlet;
- the balance chamber 27 is provided with a sample outlet
- the sample inlet of the anode chamber 25 is connected with the capture solution outlet of the CO2 capture subsystem 1, and is used to use the capture solution as an anolyte;
- the sample outlet of the anode chamber 25 is connected with the sample inlet of the cathode chamber 26, and is used for introducing the CO regenerated by anodic oxidation into the cathode chamber 26 for reduction;
- the sample outlet of the balance chamber 27 is connected to the inlet of the absorption liquid of the CO 2 capture subsystem 1 to realize supplementation of the absorption liquid of the CO 2 capture subsystem 1 .
- the anode electrode 251 is an inert electrode
- the cathode electrode 261 is provided with a catalyst for catalyzing the electroreduction reaction of CO 2 .
- the catholyte is one of KHCO 3 solution or KCl solution, and the concentration is 0.1 ⁇ 1 mol/L.
- the anion exchange membrane 24 is a hydroxide ion exchange membrane
- the sample outlet of the anode chamber 25 and the sample inlet of the cathode chamber 26 are connected through an external channel, so that the electrolytically regenerated CO enters the cathode chamber 26 for reduction.
- the CO 2 electrical regeneration synchronous conversion subsystem 2 further includes a power source 21, and the anode electrode 251 and the cathode electrode 261 are respectively connected to both ends of the power source 21.
- the structure of the CO capture subsystem 1 includes a spray tower 11, a liquid storage tank 12 and a spray device 13;
- the spray tower 11 is provided with an air inlet, an air outlet, a tray 111 and a mist eliminator 112; the tray 111 is arranged in a misaligned position to increase the contact area between the spray liquid and CO 2 .
- the liquid storage tank 12 includes a liquid storage tank A 121 and a liquid storage tank B 122;
- Liquid storage tank A 121 holds the trapping liquid at the bottom of the spray tower 11 and is connected with the sample inlet of the anode chamber 25; the liquid storage tank B 122 is fresh alkali absorption liquid and is connected with the sample outlet of the balance chamber 27;
- the shower device 13 includes a pump 131, a shower head 132 and a pipeline 133;
- shower head 132 is connected with reservoir B 122 by pipeline 133, and pump 131 is arranged on pipeline 133.
- the CO2 capture and electrical regeneration synchronous conversion system mentioned above in this application the CO2 capture liquid produced by the CO2 capture subsystem 1 flows into the CO2 electrical regeneration synchronous conversion subsystem 2, and the CO2 electrical regeneration synchronous conversion subsystem 2 The regenerated absorption liquid flows back to the CO2 capture subsystem 1 to realize the organic series connection of the CO2 capture subsystem 1 and the CO2 electric regeneration and CO2 electric regeneration synchronous transformation subsystem 2 to realize the simultaneous conversion of CO2 capture and regeneration , making the overall system run stably.
- a CO capture and electrical regeneration synchronous conversion method of the CO capture and electrical regeneration synchronous conversion system described in the present application comprising:
- the captured solution is introduced into the anode chamber 25 of the CO 2 electrical regeneration synchronous conversion subsystem 2, and the captured solution is used as the anolyte in the anode chamber 25, so that the carbonate ion CO 3 2- in the captured solution is regenerated by electrooxidation to CO 2 , and generate cations at the same time, and the cations enter the balance chamber 27 through the cation exchange membrane 23;
- the regenerated new absorption liquid is introduced into the CO 2 capture subsystem 1 for capturing CO 2 , forming a cycle of CO 2 capture and electrical regeneration synchronous conversion.
- the high value-added products are discharged through the cathode chamber 26 sample outlet.
- the cathode electrode 261 is provided with a catalyst that catalyzes the electroreduction reaction of CO 2 , and by changing the catalyst type, the directional production of CO 2 into different high value-added products such as CO, methane, methanol, formic acid, ethanol, acetic acid or propanol is realized.
- the above CO capture and electrical regeneration synchronous conversion method includes:
- the gas containing CO2 is introduced from the gas inlet at the bottom of the spray tower 11 of the CO2 capture subsystem 1, and the spray device 13 pumps the fresh CO2 absorption liquid in the storage tank B 122 to the top of the spray tower 11 Spraying, the gas flows from bottom to top, and the absorption liquid flows from top to bottom; the captured liquid after capturing CO2 flows into the liquid storage tank A 121, and the gas is dewatered by the demister 112 and then discharged from the gas outlet;
- the CO 2 capture solution contained in the liquid storage tank A 121 is introduced from the inlet of the anode chamber 25 of the CO 2 electrical regeneration synchronous conversion subsystem 2, and the carbonate ion CO 3 2- in the CO 2 capture solution passes through Electrooxidation generates CO 2 , which then flows out from the sample outlet of the anode chamber 25 and flows to the sample inlet of the cathode chamber 26 through an external channel; the cations in the anode chamber 25 enter the balance chamber 27 through the cation exchange membrane 23 under the action of the concentration difference;
- the CO 2 that enters from the inlet of the cathode chamber 26 through the external channel undergoes an electroreduction reaction under the action of the catalyst of the cathode electrode 261 to generate high-value products; the CO 2 electroreduction process will simultaneously consume hydrogen ions H + in the solution, and the cathode chamber
- the concentration of hydroxide ion OH in 26 increases gradually, and it enters the balance chamber 27 through the hydroxide ion exchange membrane 24 under the action of the concentration difference;
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Inorganic Chemistry (AREA)
- Gas Separation By Absorption (AREA)
Abstract
本发明涉及一种C0 2捕集与电再生同步转化系统及方法,系统包括C0 2捕集子系统和C0 2电再生同步转化子系统;C0 2捕集子系统利用吸收液捕集C0 2并生成捕集液;C0 2电再生同步转化子系统包括阳极室、阴极室以及位于中间的平衡室;阳极室内设有阳极电极,阳极室还设有进样口和出样口;阴极室内设有阴极电极,阴极室还设有进样口和出样口;平衡室设有出样口;阳极室的进样口与C0 2捕集子系统的捕集液出口相连,阳极室的出样口与阴极室的进样口相连,用于将阳极氧化再生的CO 2引入到阴极室进行电还原;平衡室的出样口与CO 2捕集子系统的吸收液的进口连接。本发明系统能自循环且稳定运行,实现了CO 2捕集、再生与转化。
Description
本发明涉及CO
2捕集与利用领域,尤其是一种CO
2捕集与电再生同步转化系统及方法。
CO
2捕集、利用与封存(CCUS)是实现双碳目标的重要战略选择,在相关政策的推动下该技术已取得长足进步。CO
2捕集可分为胺类吸附和碱液吸收两类。固体胺吸附剂(MEA、DEA、TEA、PEI等)是目前最受关注的吸附材料体系,其利用多孔基材料作为高比表面积载体强化吸附剂与CO
2的接触,展现出较好的CO
2吸附选择性和规模化应用潜力,但受限于胺吸附材料较高的成本和多孔材料扩散传质的限制,系统的总处理量较小,且循环吸附-脱附会加速固体胺材料性能的退化。碱液吸收捕集有着显著的成本优势和较强的CO
2去除效果,整套工艺流程可以实现长时间的连续操作,并且可利用接触塔等成熟设备。
CO
2封存是实现CO
2减量化的举措之一,主要分为驱油封存和地质封存两大类,但受限于地质结构,捕获的CO
2无法灵活地就地封存,后续的输运环节会产生额外成本,因此实现CO
2就地转化利用能大幅降低运输成本,且能从根本上消除CO
2,同步实现其减量化与资源化。在CO
2众多的转化方式中,电化学转化能在较低能量输入下实现CO
2活化,同步电子/质子转移快速稳定CO
2中间体,依托具有精准结构的活性中心、结构可调的催化剂,实现CO
2定向转化生成高附加值终端产物。相比于需要高温高压等苛刻条件的CO
2热化学转化法,CO
2电化学转化反应条件温和、能耗低、无需额外氢源。
碱液吸收后的CO
2也可通过电化学再生,其能耗远低于CO
2热再生的能耗,且可同步再生碱液吸收剂,优势明显。然而,受限于反应器构造及系统运行,现有技术中针对碱液吸收后CO
2的电再生研究与电转化研究是分别进行的,即在不同的反应器中各自研究CO
2电再生与CO
2电转化特性,这导致了电能的成倍消耗及反应系统的复杂庞大。
发明内容
针对现有技术的不足,本发明提供一种CO
2捕集与电再生同步转化系统及方法,目的是实现CO
2捕集、吸收液循环回用、CO
2再生并转化为高附加值产品的耦合处理,从而降低系统能耗。
本发明采用的技术方案如下:
一种CO
2捕集与电再生同步转化系统,包括CO
2捕集子系统和CO
2电再生同步转化子系统;
所述CO
2捕集子系统利用吸收液捕集CO
2并生成捕集液;
所述CO
2电再生同步转化子系统包括电解池;所述电解池内间隔设置阳离子交换膜和阴离子交换膜,所述阳离子交换膜和阴离子交换膜将电解池分隔成位于左右两端的阳极室和阴极室、以及位于中间的平衡室;
所述阳极室内设有阳极电极,阳极室还设有进样口和出样口;所述阴极室内设有阴极电 极,阴极室还设有进样口和出样口;所述平衡室设有出样口;
阳极室的进样口与所述CO
2捕集子系统的所述捕集液出口相连,阳极室的出样口与阴极室的进样口相连,用于将阳极氧化再生的CO
2引入到阴极室进行电还原;平衡室的出样口与所述CO
2捕集子系统的所述吸收液的进口连接。
进一步技术方案为:
所述阳极电极为惰性电极,所述阴极电极上设有催化CO
2发生电还原反应的催化剂。
所述CO
2电再生同步转化子系统还包括电源,所述阳极电极和所述阴极电极分别连接于所述电源的两端。
所述CO
2捕集子系统的结构包括喷淋塔、储液槽和喷淋装置;
所述喷淋塔设有进气口、出气口、塔板和除雾器;
所述储液槽包括储液槽A和储液槽B;储液槽A盛接喷淋塔底部的捕集液并与所述阳极室的进样口相连;储液槽B储存新鲜的碱吸收液并与所述平衡室的出样口相连;
所述喷淋装置包括泵、喷淋头和管路;喷淋头通过管路与储液槽B连接,泵设置在所述管路上。
一种如所述的CO
2捕集与电再生同步转化系统的CO
2捕集与电再生同步转化方法,包括:
将含有CO
2的气体引入所述CO
2捕集子系统1,通过吸收液捕集CO
2生成捕集液;
捕集液引入所述CO
2电再生同步转化子系统的阳极室,将捕集液作为阳极室的阳极电解液,使捕集液中的碳酸根离子CO
3
2-经电氧化再生为CO
2,同时生成阳离子,阳离子通过阳离子交换膜进入平衡室;
将再生的CO
2引入到阴极室进行电还原反应,生成高附加值产物同时消耗溶液中的氢质子H
+使氢氧根离子OH
-浓度升高,氢氧根离子OH
-通过阴离子交换膜进入平衡室;
平衡室内氢氧根离子OH
-和阳离子再生为新的吸收液;
将再生的新的吸收液引入到CO
2捕集子系统用于捕集CO
2,形成CO
2捕集、电再生同步转化的循环。
进一步技术方案为:
还包括:
将所述高附加值产物通过阴极室出样口排出。
还包括:
阴极电极上设有催化CO
2发生电还原反应的催化剂,通过改变催化剂类型,实现CO
2向CO、甲烷、甲醇、甲酸、乙醇、乙酸或丙醇不同高附加值产物的定向制备。
本发明的有益效果如下:
(1)本发明通过吸收液及捕集液将CO
2捕集子系统和CO
2电再生同步转化子系统有机串联,调控吸收液捕集CO
2、捕集液电再生、再生吸收液回流,即可同步实现CO
2捕集、再生及同步转化为高附加值产物利用,实现系统的高效、稳定运行。和现有的处理方案相比,系统结构得到优化、系统能耗大大降低。
(2)本发明CO
2捕集子系统的储液槽分为A、B两部分,将捕集CO
2后的捕集液与电再生后新鲜的吸收液分区放置,使得用于CO
2捕集喷淋的均为新鲜的吸收液,其浓度梯度大、传质助力小、吸收速率快、捕集效率高;使得流入CO
2电再生同步转化子系统的均为捕集CO
2后的捕集液,碳酸根CO
3
2-浓度高、未被稀释,能避免无效电氧化的发生、提高电能利用效率。
(3)本发明将传统的只利用阳极半反应的碱液CO
2捕集液电再生系统与只利用阴极半反应的CO
2电还原系统耦合,通过反应器结构设计与优化、电荷与物料平衡及调控,构建新型的CO
2电再生同步转化两级膜电反应系统,实现阴、阳极同步利用,大幅提高反应效率,且至少能降低50%的电能需求。
(4)通过改变阴极催化剂,即可实现CO
2向CO、甲烷、甲醇、甲酸、乙醇、乙酸、丙醇等不同高附加值产物的定向制备。
图1为本发明实施例的系统结构示意图。
图中:1、CO
2捕集子系统;11、喷淋塔;111、塔板;112、除雾器;12、储液槽;121、储液槽A;122、储液槽B;13、喷淋装置;131、泵;132、喷淋头;133、管路;2、CO
2电再生同步转化子系统;21、电源;22、电解池;23、阳离子交换膜;24、阴离子交换膜;25、阳极室;251、阳极电极;26、阴极室;261、阴极电极;27、平衡室。
以下结合附图说明本发明的具体实施方式。
如图1所示,本申请的一种CO
2捕集与电再生同步转化系统,包括CO
2捕集子系统1和CO
2电再生同步转化子系统2;
CO
2捕集子系统1利用吸收液捕集CO
2并生成捕集液;
CO
2电再生同步转化子系统2包括电解池22;电解池22内间隔设置阳离子交换膜23和阴离子交换膜24,所述阳离子交换膜23和阴离子交换膜24将电解池22分隔成位于左右两端的阳极室25和阴极室26、以及位于中间的平衡室27;
阳极室25内设有阳极电极251和阳极电解液,阳极室25还设有进样口和出样口;
阴极室26内设有阴极电极261和阴极电解液,阴极电解液为CO
2电还原反应所需电解液;阴极室26还设有进样口和出样口;
平衡室27设有出样口;
阳极室25的进样口与所述CO
2捕集子系统1的所述捕集液出口相连,用于将所述捕集液作为阳极电解液;
阳极室25的出样口与阴极室26的进样口相连,用于将阳极氧化再生的CO
2引入到阴极室26进行还原;
平衡室27的出样口与CO
2捕集子系统1的吸收液的进口连接,实现对CO
2捕集子系统1的吸收液的补充。
具体的,阳极电极251为惰性电极,阴极电极261上设有催化CO
2发生电还原反应的催化剂。
具体的,阴极电解液为KHCO
3溶液或KCl溶液中的一种,浓度为0.1~1mol/L。
具体的,阴离子交换膜24为氢氧根离子交换膜;
具体的,阳极室25出样口和阴极室26进样口通过外部通道连接,使得电解再生的CO
2进入阴极室26还原。
具体的,CO
2电再生同步转化子系统2还包括电源21,所述阳极电极251和所述阴极电 极261分别连接于所述电源21的两端。
具体的,CO
2捕集子系统1的结构包括喷淋塔11、储液槽12和喷淋装置13;
具体的,喷淋塔11设有进气口、出气口、塔板111和除雾器112;塔板111错位布置,增加喷淋液与CO
2的接触面积。
具体的,储液槽12包括储液槽A 121和储液槽B 122;
储液槽A 121盛接喷淋塔11底部的捕集液并与阳极室25的进样口相连;储液槽B 122内为新鲜的碱吸收液并与平衡室27的出样口相连;
喷淋装置13包括泵131、喷淋头132和管路133;
喷淋头132通过管路133与储液槽B 122连接,泵131设置在管路133上。
本申请上述的CO
2捕集与电再生同步转化系统,将CO
2捕集子系统1产生的CO
2捕集液流入CO
2电再生同步转化子系统2,CO
2电再生同步转化子系统2再生的吸收液流回CO
2捕集子系统1,实现CO
2捕集子系统1与CO
2电再生与CO
2电再生同步转化子系统2的有机串联,实现CO
2捕集、再生同步转化,使得整体系统稳定运行。
本申请的一种所述的CO
2捕集与电再生同步转化系统的CO
2捕集与电再生同步转化方法,包括:
将含有CO
2的气体引入所述CO
2捕集子系统1,通过吸收液捕集CO
2生成捕集液;
捕集液引入所述CO
2电再生同步转化子系统2的阳极室25,将捕集液作为阳极室25的阳极电解液,使捕集液中的碳酸根离子CO
3
2-经电氧化再生为CO
2,同时生成阳离子,阳离子通过阳离子交换膜23进入平衡室27;
将再生的CO
2引入到阴极室26进行电还原反应,生成高附加值产物同时消耗溶液中的氢质子H
+使氢氧根离子OH
-浓度升高,氢氧根离子OH
-通过阴离子交换膜24进入平衡室27;
平衡室27内氢氧根离子OH
-和阳离子再生为新的吸收液;
将再生的新的吸收液引入到CO
2捕集子系统1用于捕集CO
2,形成CO
2捕集、电再生同步转化的循环。
还包括:
将所述高附加值产物通过阴极室26出样口排出。
还包括:
阴极电极261上设有催化CO
2发生电还原反应的催化剂,通过改变催化剂类型,实现CO
2向CO、甲烷、甲醇、甲酸、乙醇、乙酸或丙醇不同高附加值产物的定向制备。
作为具体实施方式,上述CO
2捕集与电再生同步转化方法,如图1所示,包括:
将含有CO
2的气体从CO
2捕集子系统1的喷淋塔11底部进气口引入,喷淋装置13将储液槽B 122中新鲜的CO
2吸收液泵送至喷淋塔11顶端喷淋,气体自下而上流动,吸收液自上而下流动;捕集CO
2后的捕集液流入储液槽A 121,气体经除雾器112除水后从出气口排出;
将盛接在储液槽A 121中的CO
2捕集液从CO
2电再生同步转化子系统2的阳极室25进样口引入,CO
2捕集液中的碳酸根离子CO
3
2-经电氧化生成CO
2,而后从阳极室25出样口流出,经外部通道流向阴极室26进样口;阳极室25中的阳离子在浓度差作用下,经阳离子交换膜23进入平衡室27;
由外部通道从阴极室26进样口进入的CO
2在阴极电极261催化剂的作用下发生电还原反应,生成高价值产物;CO
2电还原过程会同步消耗溶液中的氢离子H
+,阴极室26内的氢氧 根离子OH
-浓度逐渐升高,其在浓度差的作用下经氢氧根离子交换膜24进入平衡室27;
从阳极室25经阳离子交换膜23进入平衡室27的阳离子(如图1所示的M
+离子)和从阴极室26经氢氧根离子交换膜24进入平衡室27的氢氧根离子OH
-在CO
2电再生同步转化子系统2的平衡室27内再生为新鲜的CO
2吸收液(如图1所示的MOH),流回CO
2捕集子系统1的储液槽B 122,实现CO
2捕集、电再生同步转化系统的平衡与稳定运行。
本领域普通技术人员可以理解:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (7)
- 一种CO 2捕集与电再生同步转化系统,其特征在于,包括CO 2捕集子系统(1)和CO 2电再生同步转化子系统(2);所述CO 2捕集子系统(1)利用吸收液捕集CO 2并生成捕集液;所述CO 2电再生同步转化子系统(2)包括电解池(22);所述电解池(22)内间隔设置阳离子交换膜(23)和阴离子交换膜(24),所述阳离子交换膜(23)和阴离子交换膜(24)将电解池(22)分隔成位于左右两端的阳极室(25)和阴极室(26)、以及位于中间的平衡室(27);所述阳极室(25)内设有阳极电极(251),阳极室(25)还设有进样口和出样口;所述阴极室(26)内设有阴极电极(261),阴极室(26)还设有进样口和出样口;所述平衡室(27)设有出样口;阳极室(25)的进样口与所述CO 2捕集子系统(1)的所述捕集液出口相连,阳极室(25)的出样口与阴极室(26)的进样口相连,用于将阳极氧化再生的CO 2引入到阴极室(26)进行电还原;平衡室(27)的出样口与所述CO 2捕集子系统(1)的所述吸收液的进口连接。
- 根据权利要求1所述的CO 2捕集与电再生同步转化系统,其特征在于,所述阳极电极(251)为惰性电极,所述阴极电极(261)上设有催化CO 2发生电还原反应的催化剂。
- 根据权利要求1所述的CO 2捕集与电再生同步转化系统,所述CO 2电再生同步转化子系统(2)还包括电源(21),所述阳极电极(251)和所述阴极电极(261)分别连接于所述电源(21)的两端。
- 根据权利要求1所述的CO 2捕集与电再生同步转化系统,其特征在于,所述CO 2捕集子系统(1)的结构包括喷淋塔(11)、储液槽(12)和喷淋装置(13);所述喷淋塔(11)设有进气口、出气口、塔板(111)和除雾器(112);所述储液槽(12)包括储液槽A(121)和储液槽B(122);储液槽A(121)盛接喷淋塔(11)底部的捕集液并与所述阳极室(25)的进样口相连;储液槽B(122)储存新鲜的碱吸收液并与所述平衡室(27)的出样口相连;所述喷淋装置(13)包括泵(131)、喷淋头(132)和管路(133);喷淋头(132)通过管路(133)与储液槽B(122)连接,泵(131)设置在所述管路(133)上。
- 一种如权利要求1至4任一项所述的CO 2捕集与电再生同步转化系统的CO 2捕集与电再生同步转化方法,其特征在于,包括:将含有CO 2的气体引入所述CO 2捕集子系统(1),通过所述吸收液捕集CO 2生成捕集液;捕集液引入所述CO 2电再生同步转化子系统(2)的阳极室(25),将捕集液作为阳极室(25)的阳极电解液,使捕集液中的碳酸根离子CO 3 2-经电氧化再生为CO 2,同时生成阳离子,阳离子通过阳离子交换膜(23)进入平衡室(27);将再生的CO 2引入到阴极室(26)进行电还原反应,生成高附加值产物同时消耗溶液中的氢质子H +使氢氧根离子OH-浓度升高,氢氧根离子OH-通过阴离子交换膜(24)进入平衡室(27);平衡室(27)内氢氧根离子OH-和阳离子再生为新的吸收液;将再生的新的吸收液引入到CO 2捕集子系统(1)用于捕集CO 2,形成CO 2捕集、电再 生同步转化的循环。
- 根据权利要求5所述的CO 2捕集与电再生同步转化方法,其特征在于,还包括:将所述高附加值产物通过阴极室(26)出样口排出。
- 根据权利要求5所述的CO 2捕集与电再生同步转化方法,其特征在于,还包括:阴极电极(261)上设有催化CO 2发生电还原反应的催化剂,通过改变催化剂类型,实现CO 2向CO、甲烷、甲醇、甲酸、乙醇、乙酸或丙醇不同高附加值产物的定向制备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/550,629 US12031222B2 (en) | 2022-02-25 | 2023-01-04 | System and method for CO2 capture and electroregeneration and synchronous conversion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210184705.8A CN114645290B (zh) | 2022-02-25 | 2022-02-25 | 一种co2捕集与电再生同步转化系统及方法 |
CN202210184705.8 | 2022-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023160261A1 true WO2023160261A1 (zh) | 2023-08-31 |
Family
ID=81992889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/070328 WO2023160261A1 (zh) | 2022-02-25 | 2023-01-04 | 一种co 2捕集与电再生同步转化系统及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12031222B2 (zh) |
CN (1) | CN114645290B (zh) |
WO (1) | WO2023160261A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114645290B (zh) | 2022-02-25 | 2023-06-30 | 东南大学 | 一种co2捕集与电再生同步转化系统及方法 |
WO2024016114A1 (zh) * | 2022-07-18 | 2024-01-25 | 势加透博(北京)科技有限公司 | 碳捕集耦合制氢的方法及装置 |
CN115253627A (zh) * | 2022-08-04 | 2022-11-01 | 国网陕西省电力有限公司电力科学研究院 | 一种用于空气中二氧化碳捕集利用的系统及方法 |
CN115572991A (zh) * | 2022-10-08 | 2023-01-06 | 重庆大学 | 直接电还原醇胺co2捕集液制合成气的系统和方法 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3511712A (en) * | 1967-03-30 | 1970-05-12 | United Aircraft Corp | Process of removing carbon dioxide from gas streams using fuel cell |
GB1261287A (en) * | 1968-10-28 | 1972-01-26 | Inst Francais Du Petrole | Improved process for removing carbon dioxide from gases |
JPH04290526A (ja) * | 1991-03-20 | 1992-10-15 | Hitachi Ltd | 炭酸ガス分離再資源化方法 |
CN1658425A (zh) * | 2004-02-16 | 2005-08-24 | 丁宏宇 | 采用新膜型的直接燃料电池及其产生电能的方法 |
CN101392386A (zh) * | 2008-10-23 | 2009-03-25 | 上海交通大学 | 同时生产氯酸钠和碱性过氧化氢的电化学方法 |
US20120240764A1 (en) * | 2009-10-21 | 2012-09-27 | Korea Institute Of Energy Research | Carbon dioxide isolating device and method |
CN103191633A (zh) * | 2013-04-09 | 2013-07-10 | 浙江大学 | 一种电动采集提纯二氧化碳的装置与方法 |
CN204710062U (zh) * | 2015-02-04 | 2015-10-21 | 中国华能集团清洁能源技术研究院有限公司 | 一种浓缩变换和电解再生的二氧化碳捕集装置 |
CN105617842A (zh) * | 2016-01-15 | 2016-06-01 | 东南大学 | 用于二氧化碳分离和提纯的装置 |
WO2020016012A1 (de) * | 2018-07-19 | 2020-01-23 | Pro Aqua Diamantelektroden Produktion Gmbh & Co Kg | Verfahren und vorrichtung zur durchführung von gaswäsche mittels einer elektrolytlösung |
CN110914478A (zh) * | 2017-07-18 | 2020-03-24 | 西门子股份公司 | Co2电解槽 |
CN110983357A (zh) * | 2019-12-04 | 2020-04-10 | 昆明理工大学 | 一种电解二氧化碳制一氧化碳同时副产氯气、碳酸氢盐的三室隔膜电解方法 |
CN111924807A (zh) * | 2020-05-26 | 2020-11-13 | 萍乡市华星环保工程技术有限公司 | 一种硫酸氢钠捕集二氧化碳同时生产硫酸的方法和装置 |
CN113549929A (zh) * | 2021-08-10 | 2021-10-26 | 北京化工大学 | 一种实现制氢、有机物氧化、二氧化碳吸收-解吸和氢氧化物再生的方法和系统 |
CN113913851A (zh) * | 2021-11-15 | 2022-01-11 | 昆明理工大学 | 在有机电解液中电解二氧化碳制一氧化碳同时副产氯气和金属氢氧化物的双极膜电解方法 |
CN114000172A (zh) * | 2021-12-16 | 2022-02-01 | 东北大学 | 一种捕集、还原二氧化碳并联产氧气或氯气的方法 |
CN114645290A (zh) * | 2022-02-25 | 2022-06-21 | 东南大学 | 一种co2捕集与电再生同步转化系统及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007025280A2 (en) * | 2005-08-25 | 2007-03-01 | Ceramatec, Inc. | Electrochemical cell for the production of synthesis gas using atmospheric air and water |
CN102240497A (zh) * | 2011-06-28 | 2011-11-16 | 天津大学 | 一种从烟气中回收二氧化碳利用夜间电力制甲酸的方法和装置 |
CN105297067B (zh) * | 2015-11-16 | 2018-02-09 | 昆明理工大学 | 一种将二氧化碳电还原为一氧化碳的多室隔膜电解方法和装置 |
DE102017211930A1 (de) * | 2017-07-12 | 2019-01-17 | Siemens Aktiengesellschaft | Membran gekoppelte Kathode zur Reduktion von Kohlendioxid in säurebasierten Elektrolyten ohne mobile Kationen |
CN112499651A (zh) * | 2020-11-10 | 2021-03-16 | 萍乡市华星环保工程技术有限公司 | 一种电化学捕集二氧化碳制备碳酸氢钠的方法及装置 |
-
2022
- 2022-02-25 CN CN202210184705.8A patent/CN114645290B/zh active Active
-
2023
- 2023-01-04 US US18/550,629 patent/US12031222B2/en active Active
- 2023-01-04 WO PCT/CN2023/070328 patent/WO2023160261A1/zh active Application Filing
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3511712A (en) * | 1967-03-30 | 1970-05-12 | United Aircraft Corp | Process of removing carbon dioxide from gas streams using fuel cell |
GB1261287A (en) * | 1968-10-28 | 1972-01-26 | Inst Francais Du Petrole | Improved process for removing carbon dioxide from gases |
JPH04290526A (ja) * | 1991-03-20 | 1992-10-15 | Hitachi Ltd | 炭酸ガス分離再資源化方法 |
CN1658425A (zh) * | 2004-02-16 | 2005-08-24 | 丁宏宇 | 采用新膜型的直接燃料电池及其产生电能的方法 |
CN101392386A (zh) * | 2008-10-23 | 2009-03-25 | 上海交通大学 | 同时生产氯酸钠和碱性过氧化氢的电化学方法 |
US20120240764A1 (en) * | 2009-10-21 | 2012-09-27 | Korea Institute Of Energy Research | Carbon dioxide isolating device and method |
CN103191633A (zh) * | 2013-04-09 | 2013-07-10 | 浙江大学 | 一种电动采集提纯二氧化碳的装置与方法 |
CN204710062U (zh) * | 2015-02-04 | 2015-10-21 | 中国华能集团清洁能源技术研究院有限公司 | 一种浓缩变换和电解再生的二氧化碳捕集装置 |
CN105617842A (zh) * | 2016-01-15 | 2016-06-01 | 东南大学 | 用于二氧化碳分离和提纯的装置 |
CN110914478A (zh) * | 2017-07-18 | 2020-03-24 | 西门子股份公司 | Co2电解槽 |
WO2020016012A1 (de) * | 2018-07-19 | 2020-01-23 | Pro Aqua Diamantelektroden Produktion Gmbh & Co Kg | Verfahren und vorrichtung zur durchführung von gaswäsche mittels einer elektrolytlösung |
CN110983357A (zh) * | 2019-12-04 | 2020-04-10 | 昆明理工大学 | 一种电解二氧化碳制一氧化碳同时副产氯气、碳酸氢盐的三室隔膜电解方法 |
CN111924807A (zh) * | 2020-05-26 | 2020-11-13 | 萍乡市华星环保工程技术有限公司 | 一种硫酸氢钠捕集二氧化碳同时生产硫酸的方法和装置 |
CN113549929A (zh) * | 2021-08-10 | 2021-10-26 | 北京化工大学 | 一种实现制氢、有机物氧化、二氧化碳吸收-解吸和氢氧化物再生的方法和系统 |
CN113913851A (zh) * | 2021-11-15 | 2022-01-11 | 昆明理工大学 | 在有机电解液中电解二氧化碳制一氧化碳同时副产氯气和金属氢氧化物的双极膜电解方法 |
CN114000172A (zh) * | 2021-12-16 | 2022-02-01 | 东北大学 | 一种捕集、还原二氧化碳并联产氧气或氯气的方法 |
CN114645290A (zh) * | 2022-02-25 | 2022-06-21 | 东南大学 | 一种co2捕集与电再生同步转化系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
US12031222B2 (en) | 2024-07-09 |
US20240084463A1 (en) | 2024-03-14 |
CN114645290A (zh) | 2022-06-21 |
CN114645290B (zh) | 2023-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023160261A1 (zh) | 一种co 2捕集与电再生同步转化系统及方法 | |
CN108728860B (zh) | 一种核黄素促进低浓度co2电化学捕集的方法 | |
CN102335553A (zh) | 一种钠基烟气脱硫液的再生方法 | |
CN107326390B (zh) | 一种阳极氧化强化二氧化碳还原的装置及其方法 | |
CN204710062U (zh) | 一种浓缩变换和电解再生的二氧化碳捕集装置 | |
CN105169890B (zh) | 一种实现胺基二氧化碳富液再生的电化学方法 | |
WO2024017053A1 (zh) | 船舶二氧化碳尾气处理系统 | |
WO2023138272A1 (zh) | 具有精准离子控制的直接空气捕集二氧化碳节能系统和方法 | |
CN107099815A (zh) | 一种双极膜表面粉末态光催化剂在co2还原中的应用 | |
CN113549942A (zh) | 一种提高电解水制氢效率的方法及装置 | |
CN115970448A (zh) | 一种烟气co2捕集电解一体化负碳方法和系统 | |
CN108545799B (zh) | 一种反向电渗析耦合光催化反应器及其应用 | |
WO2024169042A1 (zh) | 一种锅炉烟气脱硫及二氧化碳资源化利用的系统和方法 | |
CN115837208A (zh) | 一种基于离子液体的二氧化碳捕集与电催化还原系统及方法 | |
WO2021110824A1 (en) | System and method for the electrochemical conversion of a gaseous compound | |
CN116216633B (zh) | 光催化-电催化耦合碘循环实现纯水分解的系统与方法 | |
US20220380234A1 (en) | Electrocatalytic degradation device for organic wastewater | |
CN117535694A (zh) | 一种用于碳酸氢盐转化制备甲酸的梯级反应器 | |
WO2024002310A1 (zh) | 一种二氧化碳捕集与制氢耦合的方法及其系统 | |
Zhao et al. | Low-energy electrochemical CO2-amine desorption driven by the proton-coupled electron transfer reaction (PCET) | |
CN117165968B (zh) | 一种二氧化碳捕集耦合电催化转化制甲醇系统 | |
CN219099334U (zh) | 一种可移动式双氧水制备装置 | |
CN219885968U (zh) | 基于co2资源化利用的绿色低碳盐化工生产系统 | |
CN217410318U (zh) | 二氧化碳回收系统 | |
JP4052166B2 (ja) | ガス処理方法とそのシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18550629 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23758887 Country of ref document: EP Kind code of ref document: A1 |