WO2023159998A1 - 一种高压隔膜压缩机 - Google Patents
一种高压隔膜压缩机 Download PDFInfo
- Publication number
- WO2023159998A1 WO2023159998A1 PCT/CN2022/128918 CN2022128918W WO2023159998A1 WO 2023159998 A1 WO2023159998 A1 WO 2023159998A1 CN 2022128918 W CN2022128918 W CN 2022128918W WO 2023159998 A1 WO2023159998 A1 WO 2023159998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- diaphragm
- head
- pressure
- piston
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/053—Pumps having fluid drive
- F04B45/0536—Pumps having fluid drive the actuating fluid being controlled by one or more valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/0005—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/0005—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
- F04B39/0022—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons piston rods
Definitions
- the present application relates to the technical field of diaphragm compressors, in particular to a high-pressure diaphragm compressor.
- Diaphragm compressor is a positive displacement compressor. Due to its good sealing performance, wide pressure range and large compression ratio, it is widely used in petrochemical fields such as hydrogenation stations to compress and transport various high-purity gases, precious and rare gases, Toxic and harmful gases and corrosive gases.
- Diaphragm compressor membrane head body is generally composed of gas side membrane head, oil side membrane head and diaphragm.
- the gas side membrane head and the oil side membrane head clamp the diaphragm in the middle, the peripheral part of the diaphragm is fixed by the oil and gas side membrane head, and the middle part of the diaphragm forms the oil side membrane cavity and the gas side membrane cavity respectively with the oil and gas side membrane heads .
- the membrane cavity on the oil side is filled with hydraulic oil, and the membrane cavity on the gas side is compressed working fluid.
- the piston pushes the hydraulic oil in the membrane cavity on the oil side to drive the diaphragm to deform and compress the membrane cavity on the gas side to achieve the compression of the working fluid.
- the piston is generally driven by the crank connecting rod to push the hydraulic oil to drive the diaphragm to reciprocate and deflect and deform, and the normal operation of the main body of the diaphragm head is ensured by being equipped with a first-stage low-pressure oil pump, a second-stage charge plunger pump and an oil overflow valve.
- This structure is very mature for medium and low pressure environments, but it also has the following disadvantages for high pressure environments:
- the high-pressure working environment has stricter requirements on the sealing of the piston.
- high-pressure combined piston rings or plunger seals are used, but the two sealing methods have higher requirements on the alignment of the piston and the oil-side membrane head. , which leads to the actual processing and assembly of the diaphragm compressor is not easy to achieve.
- the piston seal fails or the plunger and the cylinder liner are worn and seized.
- this problem is more difficult to solve.
- the embodiment of the present application provides a high-pressure diaphragm compressor, which not only solves the problem of piston sealing of the high-pressure diaphragm compressor and the problem that air is easily mixed into the oil-side membrane cavity, but also solves the problem of excessive oil supply pressure. elusive problem.
- the embodiment of the present application provides a high-pressure diaphragm compressor, including an air-side membrane head and an oil-side membrane head arranged in sequence along the axial direction; A diaphragm and an oil distribution plate are arranged between the diaphragm and the oil distribution plate, and the diaphragm and the oil distribution plate are clamped between the gas side diaphragm head and the oil side diaphragm head, and the diaphragm and the gas side diaphragm An air-side membrane cavity and an oil-side membrane cavity are respectively formed between the head and the oil distribution plate; an oil cylinder hole is arranged in the oil-side membrane head, a piston is arranged in the oil cylinder hole, and a piston is arranged below the piston. rod; the upper end of the piston rod abuts against the lower end of the piston, and the lower end of the piston rod is connected to the compressor crank linkage mechanism.
- the oil-side membrane cavity is connected to a low-pressure oil pump through an oil-replenishment pipeline; the low-pressure oil pump can adjust the oil supply amount according to the pressure in the oil-side membrane cavity; a check valve is provided on the oil-supplement pipeline, and the The opening of the one-way valve faces the low-pressure oil pump.
- the low-pressure oil pump is a gear pump or a gerotor pump.
- an accumulator is also provided on the oil supply line; the accumulator is located between the one-way valve and the low-pressure oil pump.
- the piston is a plunger, a piston ring sealing structure or a Vanser ring sealing structure.
- the oil-side membrane head is provided with an oil cylinder liner installation cavity, and an oil cylinder liner is arranged in the oil cylinder liner installation cavity, and the inner hole of the oil cylinder liner forms the oil cylinder hole.
- the air side membrane head includes an air side cylinder head and a gas distribution plate
- the gas distribution plate is located below the air side cylinder head
- the diaphragm and the gas distribution plate are clamped on the
- An air-side membrane cavity and an oil-side membrane cavity are respectively formed between the air-side cylinder head and the oil distribution plate, and between the diaphragm, the air distribution plate head, and the oil distribution plate.
- oil-side film cavity is connected to the overflow valve through the oil overflow pipeline 11 .
- the piston and the piston rod in the embodiment of this application adopt a split structure, and the two are in contact with each other, and the piston rod is connected with the crank linkage mechanism of the compressor. Since the piston is in a floating state in the oil-side membrane head, the piston The neutrality of the membrane head on the oil side is better guaranteed, which can avoid the phenomenon of piston eccentric wear and sticking, and the sealing of the piston is also more reliable; in addition, when the diaphragm hits the oil distribution plate, the oil pressure will drop rapidly. When the pressure is not enough to push the piston, the crank-link mechanism of the compressor only drives the piston rod to continue to move downward, and the piston and the piston rod are separated. At this time, no negative pressure will be generated in the oil-side membrane cavity, which can avoid A mixture of air occurs.
- the embodiment of the present application only needs one low-pressure oil pump to realize oil replenishment. Compared with the existing technology, the secondary oil replenishment plunger pump is saved, making oil replenishment easier to realize, and the amount of oil replenishment can be automatically adjusted according to the amount of oil leakage .
- an accumulator is installed on the oil supply pipeline to make the oil supply pressure more stable, which can avoid the problem of reduced service life of the one-way valve caused by vibration of the one-way valve and seal failure.
- the embodiment of this application adopts the combined structure of the gas side cylinder head and the gas distribution plate to replace the integrated gas side membrane head in the prior art.
- the gas side cylinder head can be made of higher strength material, and the gas distribution plate can The material is selected according to the requirements of the compressed medium, so that the high strength and high corrosion resistance requirements of the gas side membrane head can be met at the same time.
- Fig. 1 is the structural representation of embodiment 1 of the present application.
- Fig. 2 is the dynamic oil pressure curve of embodiment 1 of the present application
- Fig. 3 is a state diagram when the piston and the piston rod are separated in Embodiment 1 of the present application;
- Fig. 4 is the structural schematic diagram of embodiment 2 of the present application.
- FIG. 5 is a schematic structural diagram of Embodiment 3 of the present application.
- connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood in specific situations.
- first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality" means two or more.
- High-pressure working scenarios such as hydrogen refueling stations require compression equipment for hydrogen or other dangerous and rare gases above 90MPa or even 200MPa. Therefore, there are high requirements for the sealing of the compression equipment and the cleanliness of the compressed working fluid. Only the diaphragm compressor can best meet the working requirements, but the high-pressure working environment has higher requirements on the structural strength of the compressor, the seal of the oil piston, the life of the diaphragm, and the way of replenishing oil are also the face of the high-pressure diaphragm compressor. Right big challenge.
- the embodiment of the present application provides a high-pressure diaphragm compressor, the seal of the oil piston is more reliable in the high-pressure working environment, the gas will not enter the oil cavity, and the oil replenishment is easier to realize, and the oil replenishment amount can be adjusted according to the leakage amount. adjust.
- the embodiment of the present application provides a high-pressure diaphragm compressor, including an air-side membrane head 1, a diaphragm 2, an oil distribution plate 3, an oil-side membrane head 4, a piston 7, a piston rod 8, a low-pressure oil pump 9, Check valve 11, accumulator 12 and relief valve 13.
- the gas side membrane head 1, the diaphragm 2, the oil distribution plate 3 and the oil side membrane head 4 are arranged in sequence along the axial direction.
- the air-side membrane head 1 is a separate piece, including the air-side cylinder head 101 and the gas distribution plate 102, the air-side cylinder head 102 is located below the air-side cylinder head 101, and the diaphragm 2 is clamped on the air-side cylinder head 102 and the oil distribution plate 3, and between the diaphragm 2 and the head of the gas distribution plate 102 and the oil distribution plate 3 respectively form the gas side membrane cavity 5 and the oil side membrane cavity 6.
- the air-side cylinder head 101 can be made of a material with higher strength, and the material of the gas distribution plate 102 can be selected according to the requirements of the compressed medium to be conveyed, thereby meeting the high strength and high resistance of the air-side membrane head at the same time. Corrosive requirements.
- Oil side membrane head 4 is provided with oil cylinder hole 41, and oil cylinder hole 41 is a circular through hole, and oil cylinder hole 41 is provided with piston 7, and piston 7 is used for sealing the high-pressure oil in oil cylinder hole 41, and can be in oil cylinder hole 41 Do reciprocating motion, push the hydraulic oil and then drive the diaphragm 2 to do reciprocating deflection and deformation.
- the piston 7 may be a plunger, a piston ring sealing structure or a Vanser ring sealing structure, which is not limited here.
- a piston rod 8 is provided below the piston 7 .
- the upper end of the piston rod 8 abuts against the lower end of the piston 7, and the lower end of the piston rod 8 is connected to the compressor crank linkage mechanism (not shown in the figure). Since the piston rod 8 is separated from the piston 7, the two are not fixedly connected.
- the split structure is adopted, and the alignment between the piston 7 and the cylinder hole 41 is better guaranteed. That is, it is not affected by the assembly accuracy between the piston rod 8 and the compressor crank-link mechanism, and the phenomenon of eccentric wear and seizure of the piston 7 can be avoided, so that the sealing of the piston 7 is more reliable.
- the low-pressure oil pump 9 communicates with the oil-side membrane cavity 6 through the oil-replenishment pipeline 10, and the low-pressure oil pump 9 can adjust the oil-replenishment amount according to the leakage amount.
- the low-pressure oil pump 9 may be a gear pump or a gerotor pump.
- a one-way valve 11 and an accumulator 12 are also arranged on the fuel supply line 10 , and the accumulator 12 is arranged between the one-way valve 11 and the low-pressure oil pump 9 .
- the one-way valve 11 is used to separate the low-pressure oil circuit and the high-pressure oil circuit.
- the opening of the check valve 11 faces the low-pressure oil pump 9 and the accumulator 12 .
- the accumulator 12 can reduce pressure fluctuations during oil replenishment and make the oil replenishment pressure more stable, thereby avoiding problems of reduced service life and seal failure of the check valve 11 caused by vibration.
- the overflow valve 13 is connected with the oil side membrane cavity 6 through the oil overflow pipeline 14 , and excess hydraulic oil overflows through the overflow valve 13 .
- Embodiment 1 of the present application is as follows:
- the middle and low pressure oil pump 9 plus the two-stage replenishment plunger pump is passive replenishment of oil, and the cycle of the plunger pump is the same as that of the compressor. Adding a certain amount of hydraulic oil into the membrane chamber 6 on the oil side cannot realize the adjustment of the amount of oil supplemented with the amount of leakage.
- only the low-pressure oil pump 9 is used to replenish oil here, which is active oil replenishment.
- the diaphragm 2 hits the oil distribution plate 3, and then the oil pressure drops rapidly, and the hydraulic oil will automatically replenish into the oil side membrane cavity 6 , and the amount of oil replenishment is self-adjusting with the amount of leakage.
- the larger the leakage the sooner the diaphragm will hit the oil distribution plate, the longer the oil pressure will be near the zero line, and the more oil will be added, and vice versa.
- the difference between Embodiment 2 and Embodiment 1 is that: the oil side membrane head 4 is provided with an oil cylinder liner installation cavity 42, and the oil cylinder liner installation cavity 42 is provided with an oil cylinder liner 43, and the inner hole of the oil cylinder liner 43 forms an oil cylinder Hole 41. Therefore, the oil cylinder liner 43 is easy to replace after wear, and the cost of processing the oil cylinder hole 41 in the oil cylinder liner 43 is smaller, and it is easier to ensure the cylinder hole 41's cylindricity, surface roughness and hardness requirements.
- Embodiment 3 differs from Embodiment 2 in that the air-side membrane head 1 is an integral part, which will not be described in detail here.
- the gas side membrane head 1 is more convenient to process and lower in cost
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Abstract
一种高压隔膜压缩机,涉及隔膜压缩机技术领域。该高压隔膜压缩机包括沿轴向依次设置的气侧膜头(1)和油侧膜头(4);气侧膜头(1)和油侧膜头(4)之间设置膜片(2)和配油盘(3),膜片(2)和配油盘(3)被夹紧在气侧膜头(1)和油侧膜头(4)之间,且膜片(2)与气侧膜头(1)和配油盘(3)之间分别形成气侧膜腔(5)和油侧膜腔(6);油侧膜头(4)内设有油缸孔(41),油缸孔(41)内设有活塞(7),活塞(7)的下方设有活塞杆(8);活塞杆(8)的上端与活塞(7)的下端抵接,活塞(7)与活塞杆(8)可以分离,活塞杆(8)的下端连接压缩机曲柄连杆机构。由此解决了高压隔膜压缩机的活塞密封,以及油侧膜腔中容易混入空气的问题,提升高压隔膜压缩机的性能。
Description
本申请涉及隔膜压缩机技术领域,尤其涉及一种高压隔膜压缩机。
隔膜压缩机是一种容积式压缩机,由于其密封性好、压力范围广、压缩比较大,因此被广泛应用于加氢站等石油化工领域中压缩输送各种高纯气体、贵重稀有气体、有毒有害气体和腐蚀性气体。
隔膜压缩机膜头主体一般由气侧膜头、油侧膜头和膜片组成。气侧膜头与油侧膜头将膜片夹在中间,膜片周边部分被油气侧膜头固支,膜片的中间部分分别与油、气侧膜头构成油侧膜腔和气侧膜腔。油侧膜腔内充满液压油,气侧膜腔内为被压缩工质。活塞推动油侧膜腔内液压油进而驱动膜片变形压缩气侧膜腔实现工质的压缩。现有技术一般通过曲柄连杆驱动活塞推动液压油进而驱动膜片往复挠曲变形,并通过配备一级低压油泵、二级补油柱塞泵和溢油阀确保膜头主体正常工作。该结构用于中低压环境已非常成熟,但用于高压环境还具有以下缺点:
1、高压工作环境对活塞的密封有更严苛的要求,一般会选用高压组合活塞环或柱塞密封,但是两种密封方式对活塞与油侧膜头的对中性都有较高的要求,这就导致隔膜压缩机的实际加工装配中是不易实现的。具体的,现有45MPa隔膜压缩机中已经多有存在活塞密封失效或柱塞与缸套磨损咬死的情况,而对于90MPa甚至高于200MPa隔膜压缩机,这一问题更难解决。
2、由于高压隔膜压缩机的密封较难保证,在活塞偏磨等原因造成密封效果变差后,液压油的泄漏量会增大,但是由于每一行程会通过补油柱塞泵向油侧膜腔内泵入一定量的液压油,液压油的补油量由柱塞泵的结构参数确定,即无论泄漏量的大小,补油量是一定的。因此,当泄漏量大于补油量时,油侧膜腔中油量减小,膜片会拍击油侧膜腔表面,在膜片上形成大的冲击应力造成膜片寿命降低过早破损。另外, 膜片拍击油侧膜腔的同时,曲柄连杆会带动活塞继续运动,在油侧膜腔内形成空腔产生负压,外部气体会进入油侧膜腔,油中混入大量气体会造成隔膜压缩机无法正常工作,导致机器故障。
发明内容
为了解决上述技术问题,本申请的实施例提供一种高压隔膜压缩机,不仅解决了高压隔膜压缩机的活塞密封问题以及油侧膜腔中容易混入空气的问题,还解决了补油压力过高难以实现的问题。
为了达到上述目的,本申请的实施例提供了一种高压隔膜压缩机,包括沿轴向依次设置的气侧膜头和油侧膜头;所述气侧膜头和所述油侧膜头之间设置膜片和配油盘,所述膜片和所述配油盘被夹紧在所述气侧膜头和所述油侧膜头之间,且所述膜片与所述气侧膜头和所述配油盘之间分别形成气侧膜腔和油侧膜腔;所述油侧膜头内设有油缸孔,所述油缸孔内设有活塞,所述活塞的下方设有活塞杆;所述活塞杆的上端与所述活塞的下端抵接,所述活塞杆的下端连接压缩机曲柄连杆机构。
进一步地,所述油侧膜腔通过补油管路连接低压油泵;所述低压油泵能够根据所述油侧膜腔内的压力调节补油量;所述补油管路上设有单向阀,所述单向阀的开口朝向所述低压油泵。
进一步地,所述低压油泵为齿轮泵或摆线泵。
进一步地,所述补油管路上还设有蓄能器;所述蓄能器位于所述单向阀与所述低压油泵之间。
进一步地,所述活塞为柱塞、活塞环密封结构或范塞圈密封结构。
进一步地,所述油侧膜头内设有油缸套安装腔,所述油缸套安装腔内设有油缸套,所述油缸套的内孔形成所述油缸孔。
进一步地,所述气侧膜头包括气侧缸盖和配气盘,所述配气盘位于所述气侧缸盖的下方,所述膜片和所述配气盘被夹紧在所述气侧缸盖和所述配油盘之间,且所述膜片与所述配气盘头和所述配油盘之间分别形成气侧膜腔和油侧膜腔。
进一步地,所述油侧膜腔通过溢油管路11连接溢流阀。
本申请相比现有技术具有以下有益效果:
1、本申请实施例中的活塞和活塞杆采用分体结构,且两个相互抵接,活塞杆与压缩机曲柄连杆机构连接,由于活塞在油侧膜头内为浮动状态,因此,活塞与油侧膜头的对中性更好保证,可以避免活塞偏磨卡死的现象出现,活塞的密封也更加可靠;另外,当膜片撞击配油盘后,油压会迅速下降,当油压不足以推动活塞运动时,压缩机曲柄连杆机构仅仅带动活塞杆继续向下运动,活塞与活塞杆脱离,此时,油侧膜腔内不会产生负压,可以避免油侧膜腔内混入空气的情况发生。
2、本申请实施例仅需一个低压油泵就可以实现补油,相比现有技术节省了二级补油柱塞泵,使补油更易实现,且补油量可以随漏油量而自动调节。
3、本申请实施例通过在补油管路上设置蓄能器,使得补油压力更稳定,可以避免由于单向阀振动而导致的单向阀寿命降低密封失效问题出现。
4、本申请实施例采用气侧缸盖和配气盘的组合结构代替现有技术中一体式的气侧膜头,气侧缸盖可以选用强度更高的材质,而配气盘可以根据输送的压缩介质所需的要求来选择材质,由此,能够同时满足气侧膜头的高强度和高抗腐蚀性要求。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1的结构示意图;
图2为本申请实施例1的动态油压曲线;
图3为本申请实施例1中活塞与活塞杆分离时的状态图;
图4为本申请实施例2的结构示意图;
图5为本申请实施例3的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
加氢站等高压工作场景,需要对90MPa甚至200MPa以上氢气或其他危险、稀有气体压缩设备,因此,对压缩设备的密封性、被压缩工质的洁净度有较高要求。只有隔膜压缩机能最好地满足工作要求,但高压的工作环境除对压缩机的结构强度有更高的要求外,油活塞的密封、膜片的寿命、补油的方式也是高压隔膜压缩机面对的巨大挑战。因此,本申请实施例提供了一种高压隔膜压缩机,在高压工作环境下油活塞的密封更加可靠,气体不会进入油腔,同时补油更容易实现,且补油量可以随泄漏量自我调节。
实施例1:
参照图1,本申请实施例提供了一种高压隔膜压缩机,包括气侧膜头1、膜片2、配油盘3、油侧膜头4、活塞7、活塞杆8、低压油泵9、 单向阀11、蓄能器12和溢流阀13。
气侧膜头1、膜片2、配油盘3和油侧膜头4沿轴向依次设置。气侧膜头1为分体件,包括气侧缸盖101和配气盘102,配气盘102位于气侧缸盖101的下方,膜片2被夹紧在配气盘102和配油盘3之间,且膜片2与配气盘102头和配油盘3之间分别形成气侧膜腔5和油侧膜腔6。这样,气侧缸盖101可以选用强度更高的材质,而配气盘102可以根据输送的压缩介质所需的要求来选择材质,由此,能够同时满足气侧膜头的高强度和高抗腐蚀性要求。
油侧膜头4内设有油缸孔41,油缸孔41为圆形通孔,油缸孔41内设有活塞7,活塞7用于密封油缸孔41内的高压油,并可在油缸孔41内做往复运动,推动液压油进而驱动膜片2做往复挠曲变形。具体的,活塞7可以为柱塞、活塞环密封结构或范塞圈密封结构,此处不做限定。
活塞7的下方设有活塞杆8。活塞杆8的上端与活塞7的下端抵接,活塞杆8的下端连接压缩机曲柄连杆机构(图中未示)。由于活塞杆8与活塞7分离,两者不固定连接,相比整体式活塞(即活塞杆和活塞为一体件),采用分体式结构,活塞7与油缸孔41的对中性更好保证,即不受活塞杆8与压缩机曲柄连杆机构之间的装配精度的影响,可以避免活塞7出现偏磨卡死的现象,使活塞7的密封更加可靠。
低压油泵9通过补油管路10与油侧膜腔6连通,低压油泵9能够根据泄漏量调节补油量。具体的,低压油泵9可以为齿轮泵或摆线泵。单向阀11和蓄能器12也设置在补油管路10上,蓄能器12设置在单向阀11和低压油泵9之间。单向阀11用于分隔低压油路和高压油路。单向阀11的开口朝向低压油泵9和蓄能器12。蓄能器12可以减小补油时的压力波动,使补油压力更稳定,进而可以避免由于振动而导致的单向阀11寿命降低、密封失效问题出现。溢流阀13通过溢油管路14与油侧膜腔6连接,多余的液压油通过溢流阀13溢出。
参照图1至图3,本申请实施例1的工作原理如下:
在下行程过程中,油压几乎等于吸气压力,由于活塞7和活塞杆8不连接,因此,活塞杆8不会对活塞7施加拉力,活塞7在油侧膜腔6内的液压油的推动下随活塞杆8一同向下运动,直至膜片2撞击到配 油盘3后,油侧膜腔6内的油压迅速下降,当油压降到零左右时,油压不足以推动活塞7运动,此时只有活塞杆8被压缩机曲柄连杆机构带动继续下行,活塞7静止并与活塞杆8脱离,油侧膜腔6内没有产生负压,可以避免油侧膜腔内混入空气的情况发生。
参照图2,当油压降低至零附近时,低压油泵9泵出的油压会高于油侧膜腔6内的油压,低压油泵9泵出的油可以直接为油侧膜腔6进行补油,不再需要二级补油柱塞泵。补油压力得以大大降低,使补油更容易实现。
此外,现有技术中低压油泵9加二级补油柱塞泵补油是被动补油,柱塞泵周期与压缩机周期相同,每一行程内补油量是固定的,无论泄漏量大小都会向油侧膜腔6内补入定量的液压油,无法实现补油量随泄漏量的调节。而本申请实施例在此处仅使用低压油泵9补油是主动补油,油量缺少时膜片2撞击配油盘3,随后油压迅速降低,液压油会自动补入油侧膜腔6,且补油量是随泄漏量自我调节的。泄漏量越大,膜片会越早撞击配油盘,油压处于零线附近的时间就越长,补的油越多,反之则越小。
实施例2:
参照图4,实施例2与实施例1的区别仅在于:油侧膜头4内设有油缸套安装腔42,油缸套安装腔42内设有油缸套43,油缸套43的内孔形成油缸孔41。由此,油缸套43磨损后便于更换,且在油缸套43内加工油缸孔41的成本更小,更容易保证油缸孔41的圆柱度、表面粗糙度和硬度等要求。
实施例3:
参照图5,实施例3与实施例2的区别仅在于:气侧膜头1为整体件,此处不再详述。由此,气侧膜头1加工更方便,成本更低,
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。
Claims (8)
- 一种高压隔膜压缩机,其特征在于,包括沿轴向依次设置的气侧膜头和油侧膜头;所述气侧膜头和所述油侧膜头之间设置膜片和配油盘,所述膜片和所述配油盘被夹紧在所述气侧膜头和所述油侧膜头之间,且所述膜片与所述气侧膜头和所述配油盘之间分别形成气侧膜腔和油侧膜腔;所述油侧膜头内设有油缸孔,所述油缸孔内设有活塞,所述活塞的下方设有活塞杆;所述活塞杆的上端与所述活塞的下端抵接,活塞与活塞杆可分离;所述活塞杆的下端连接压缩机曲柄连杆机构。
- 根据权利要求1所述的高压隔膜压缩机,其特征在于,所述油侧膜腔通过补油管路连接低压油泵;所述低压油泵能够根据所述油侧膜腔内的压力调节补油量;所述补油管路上设有单向阀,所述单向阀的开口朝向所述低压油泵。
- 根据权利要求2所述的高压隔膜压缩机,其特征在于,所述低压油泵为齿轮泵或摆线泵。
- 根据权利要求2所述的高压隔膜压缩机,其特征在于,所述补油管路上还设有蓄能器;所述蓄能器位于所述单向阀与所述低压油泵之间。
- 根据权利要求1所述的高压隔膜压缩机,其特征在于,所述活塞为柱塞、活塞环密封结构或范塞圈密封结构。
- 根据权利要求1所述的高压隔膜压缩机,其特征在于,所述油侧膜头内设有油缸套安装腔,所述油缸套安装腔内设有油缸套,所述油缸套的内孔形成所述油缸孔。
- 根据权利要求1所述的高压隔膜压缩机,其特征在于,所述气侧膜头包括气侧缸盖和配气盘,所述配气盘位于所述气侧缸盖的下方,所述膜片和所述配气盘被夹紧在所述气侧缸盖和所述配油盘之间,且所述膜片与所述配气盘头和所述配油盘之间分别形成气侧膜腔和油侧膜腔。
- 根据权利要求1所述的高压隔膜压缩机,其特征在于,所述油侧膜腔通过溢油管路连接溢流阀。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210172957.9A CN114688003B (zh) | 2022-02-22 | 2022-02-22 | 一种高压隔膜压缩机 |
CN202210172957.9 | 2022-02-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/765,350 Continuation US20240360823A1 (en) | 2022-02-22 | 2024-07-08 | High-pressure diaphragm compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023159998A1 true WO2023159998A1 (zh) | 2023-08-31 |
Family
ID=82136623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/128918 WO2023159998A1 (zh) | 2022-02-22 | 2022-11-01 | 一种高压隔膜压缩机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114688003B (zh) |
WO (1) | WO2023159998A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117489574A (zh) * | 2024-01-02 | 2024-02-02 | 上海羿弓氢能科技有限公司 | 机头组件及液驱隔膜式压缩机 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114688003B (zh) * | 2022-02-22 | 2023-01-24 | 西安交通大学 | 一种高压隔膜压缩机 |
CN115355162B (zh) * | 2022-08-08 | 2023-12-19 | 西安交通大学 | 基于油压的隔膜压缩机膜片故障诊断方法 |
CN115217747B (zh) * | 2022-08-19 | 2024-04-30 | 隋斌 | 隔膜压缩机及其缸体结构 |
CN115750298B (zh) * | 2022-11-08 | 2024-10-11 | 烟台东德氢能技术有限公司 | 一种高压/超高压隔膜压缩机配气盘 |
CN118049364B (zh) * | 2024-04-11 | 2024-06-28 | 江苏恒久机械股份有限公司 | 膜头组件及具有其的隔膜压缩机 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002070747A (ja) * | 2000-08-25 | 2002-03-08 | Kokusan Denki Co Ltd | ダイヤフラムポンプ |
JP2006052709A (ja) * | 2004-08-16 | 2006-02-23 | Sakushiyon Gas Kikan Seisakusho:Kk | 往復動コンプレッサ |
CN201013571Y (zh) * | 2007-01-31 | 2008-01-30 | 北京天高隔膜压缩机有限公司 | 新型隔膜压缩机补油系统 |
CN211777940U (zh) * | 2020-03-18 | 2020-10-27 | 北京京城压缩机有限公司 | 一种缸盖组件及隔膜压缩机缸体部件 |
CN111911397A (zh) * | 2020-07-17 | 2020-11-10 | 西安交通大学 | 一种活塞组件及其应用 |
CN215566444U (zh) * | 2021-06-24 | 2022-01-18 | 成都安迪生测量有限公司 | 一种杆塞分离结构及其氢气压缩机 |
CN114688003A (zh) * | 2022-02-22 | 2022-07-01 | 西安交通大学 | 一种高压隔膜压缩机 |
CN115143088A (zh) * | 2022-05-27 | 2022-10-04 | 西安交通大学 | 一种用于隔膜压缩机的双段式活塞结构 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5978044B2 (ja) * | 2012-07-25 | 2016-08-24 | 株式会社マキタ | エンジン |
CN112502948A (zh) * | 2020-11-18 | 2021-03-16 | 安徽科海压缩机制造有限公司 | 一种新型隔膜压缩机 |
CN113757090A (zh) * | 2021-09-29 | 2021-12-07 | 上海羿弓氢能科技有限公司 | 一种新型高压隔膜式压缩机 |
-
2022
- 2022-02-22 CN CN202210172957.9A patent/CN114688003B/zh active Active
- 2022-11-01 WO PCT/CN2022/128918 patent/WO2023159998A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002070747A (ja) * | 2000-08-25 | 2002-03-08 | Kokusan Denki Co Ltd | ダイヤフラムポンプ |
JP2006052709A (ja) * | 2004-08-16 | 2006-02-23 | Sakushiyon Gas Kikan Seisakusho:Kk | 往復動コンプレッサ |
CN201013571Y (zh) * | 2007-01-31 | 2008-01-30 | 北京天高隔膜压缩机有限公司 | 新型隔膜压缩机补油系统 |
CN211777940U (zh) * | 2020-03-18 | 2020-10-27 | 北京京城压缩机有限公司 | 一种缸盖组件及隔膜压缩机缸体部件 |
CN111911397A (zh) * | 2020-07-17 | 2020-11-10 | 西安交通大学 | 一种活塞组件及其应用 |
CN215566444U (zh) * | 2021-06-24 | 2022-01-18 | 成都安迪生测量有限公司 | 一种杆塞分离结构及其氢气压缩机 |
CN114688003A (zh) * | 2022-02-22 | 2022-07-01 | 西安交通大学 | 一种高压隔膜压缩机 |
CN115143088A (zh) * | 2022-05-27 | 2022-10-04 | 西安交通大学 | 一种用于隔膜压缩机的双段式活塞结构 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117489574A (zh) * | 2024-01-02 | 2024-02-02 | 上海羿弓氢能科技有限公司 | 机头组件及液驱隔膜式压缩机 |
Also Published As
Publication number | Publication date |
---|---|
CN114688003B (zh) | 2023-01-24 |
CN114688003A (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023159998A1 (zh) | 一种高压隔膜压缩机 | |
US20240035462A1 (en) | Hydraulic end assembly structure of a plunger pump | |
US4430048A (en) | Diaphragm pump with a diaphragm clamped in pressure-balancing arrangement | |
US3216334A (en) | Gas compressors | |
CN109882390B (zh) | 一种无余隙桶形隔膜压缩机 | |
CN113606121A (zh) | 一种隔膜式压缩机 | |
CN211039005U (zh) | 一种高压柱塞泵用耐磨分体式柱塞 | |
CN111271263A (zh) | 一种模块化大排量具有多级压缩结构的隔膜压缩机 | |
CN116892496A (zh) | 一种具有泄压储液功能的循环液封压缩气缸 | |
CN115654144A (zh) | 一种自控旁通隔膜压缩机溢油阀 | |
US20240360823A1 (en) | High-pressure diaphragm compressor | |
KR101309464B1 (ko) | 압축기 | |
CN115726946A (zh) | 一种卧式双缸级差活塞离子液曲轴压缩机 | |
US6752603B2 (en) | Compressor with sealing coat | |
CN219159168U (zh) | 一种柱塞计量泵密封结构 | |
CN114607589B (zh) | 一种隔膜压缩机及控制方法 | |
KR102607296B1 (ko) | 다이어프램 압축기 | |
JPH1182236A (ja) | 点火式内燃機関用の燃料供給装置 | |
CN214577648U (zh) | 一种防止空气进入的常压密封腔系统 | |
CN217152267U (zh) | 一种用于高压柱塞泵的密封结构 | |
CN219299492U (zh) | 膜头机构及隔膜式压缩机 | |
CN216044748U (zh) | 一种浮动活塞缓冲油缸 | |
CN213392466U (zh) | 一种高压泵 | |
CN110107485B (zh) | 一种换向阀式膜片泵系统 | |
RU190440U1 (ru) | Цилиндр ступени компрессора |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928260 Country of ref document: EP Kind code of ref document: A1 |