WO2023159789A1 - Gc-aed关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法 - Google Patents

Gc-aed关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法 Download PDF

Info

Publication number
WO2023159789A1
WO2023159789A1 PCT/CN2022/095720 CN2022095720W WO2023159789A1 WO 2023159789 A1 WO2023159789 A1 WO 2023159789A1 CN 2022095720 W CN2022095720 W CN 2022095720W WO 2023159789 A1 WO2023159789 A1 WO 2023159789A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
germane
data
purity phosphine
phosphine
Prior art date
Application number
PCT/CN2022/095720
Other languages
English (en)
French (fr)
Inventor
朱颜
乔洋
陈化冰
王仕华
孙建
王陆平
Original Assignee
江苏南大光电材料股份有限公司
全椒南大光电材料有限公司
苏州南大光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏南大光电材料股份有限公司, 全椒南大光电材料有限公司, 苏州南大光电材料有限公司 filed Critical 江苏南大光电材料股份有限公司
Publication of WO2023159789A1 publication Critical patent/WO2023159789A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the invention relates to the technical field of high-purity phosphine impurity detection, in particular to a GC-AED analysis and detection technology and method for high-purity phosphine ppb content germane impurities.
  • GC-AED Gas Chromatography Atomic Emission Spectroscopy
  • Atomic emission spectrum is related to microstructures such as specific atomic structure, electron energy level distribution outside the nucleus, and specific energy level transition frequency, so it is characteristic.
  • P has characteristic spectral lines at 178nm, while Si is at 252nm, germanium is at 265nm, and carbon is at 193nm. Sn 271nm, As 189nm, and S 181nm are all the strongest corresponding peaks.
  • the purpose of the present invention is to solve the shortcomings of single detection mode and possible errors in the prior art, and the proposed GC-AED analysis and detection technology and method for high-purity phosphine ppb content germane impurities.
  • the GC-AED technology and method for the analysis and detection of germane impurities in high-purity phosphine ppb content includes the following steps:
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the data A is regarded as the final detection amount of the germane impurity, and the analysis and detection of the germane impurity is completed.
  • the difference value when the difference value is no longer within the preset range, the difference value is recorded, then re-sampled, and detected again by a gas chromatography atomic emission spectrometer detection instrument, and the detection result is recorded as C, and the Data C is compared with data A again. If the two data are consistent, data C is regarded as the final detection amount of germane impurity. If the detection data is inconsistent, the detection value is recorded and the third detection is carried out. The third detection result is the same as Which set of data from A and C is the closest, use this set of data.
  • the high-purity phosphine is sampled through two sampling bottles, and the sampling bottles are sealed after sampling, and the sampling volume of the high-purity phosphine in each sampling bottle is 1-2L.
  • a sampling bottle is communicated with a gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is introduced into the gas chromatographic atomic emission spectrometry detection instrument, and after 1-5 seconds, stop the introduction, and perform For pre-testing, the test data will not be recorded. After waiting for 20-30s, pass high-purity phosphine again for testing.
  • a sampling bottle is connected to a gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is introduced into the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine is stirred during the introduction.
  • the stirring shaft is used to drive the stirring blade to rotate, so that the high-purity phosphine is stirred, and the rotating speed of the stirring shaft is 100-200r/min.
  • the air in the detection environment is monitored, the monitored data is compared with the initial data, and an early warning is given when the data differs.
  • data B is subtracted from data A to obtain a difference value.
  • the germane impurity in the high-purity phosphine is quantified according to the wavelength and intensity of the spectrum, and the detection data is recorded as A, and at the same time, the detection time is recorded.
  • another sampling bottle is communicated with the germane gas detector to stir the gas, and then the high-purity phosphine is passed into the germane gas detector for detection.
  • This scheme uses plasma as the excitation light source to atomize the high-purity phosphine entering the gas chromatography atomic emission spectrometer detection instrument, then the atoms are excited to the excited state, then transition to the ground state, and emit an atomic spectrum. According to the wavelength and intensity of the spectrum, the high-purity phosphorus The germane impurity in alkane is quantified, and the detection data is recorded as A;
  • germane gas detector to detect the germane impurities in high-purity phosphine, record the detection data as B, compare data A with data B, calculate the difference value, compare the difference value with the predetermined difference value, and get the difference value When it is within the preset range, data A is regarded as the final detected amount of germane impurity;
  • the invention can improve the detection accuracy by combining the gas chromatography atomic emission spectrum detection with the germane gas detector, and avoid inaccurate data caused by misoperation.
  • Fig. 1 is a flow chart of the GC-AED proposed by the present invention regarding the analysis and detection technology and method of high-purity phosphine ppb content germane impurity.
  • the GC-AED technology and method for the analysis and detection of germane impurities in the ppb content of high-purity phosphine include the following steps:
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine that needs to be detected is passed to the gas chromatograph atomic emission spectrometry detection instrument;
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the difference value is within the preset range
  • the data A is regarded as the final detection amount of the germane impurity, and the analysis and detection of the germane impurity is completed.
  • the difference value is recorded. Then re-sample and detect again by gas chromatography atomic emission spectrometry detection instrument, record the detection result as C, compare data C with data A again, if the two data are consistent, then regard data C as the final detection of germane impurity If the test data is inconsistent, record the test value and perform the third test.
  • the third test result is the closest to the data of A and C, and the data of this group is used.
  • a sampling bottle is connected to the gas chromatograph atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatograph atomic emission spectrometry detection instrument. , this detection data is not recorded, after waiting for 20s, pass high-purity phosphine again for detection.
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine is stirred when passing through.
  • the stirring blade is driven to rotate by the stirring shaft, so that the high-purity phosphine is stirred, and the rotating speed of the stirring shaft is 100r/min.
  • the germane impurity in the high-purity phosphine is quantified according to the wavelength and intensity of the spectrum, the detection data is recorded as A, and the detection time is recorded at the same time.
  • the GC-AED technology and method for the analysis and detection of germane impurities in high-purity phosphine ppb content includes the following steps:
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the difference value is within the preset range
  • the data A is regarded as the final detection amount of the germane impurity, and the analysis and detection of the germane impurity is completed.
  • the difference value is recorded. Then re-sample and detect again by gas chromatography atomic emission spectrometry detection instrument, record the detection result as C, compare data C with data A again, if the two data are consistent, then regard data C as the final detection of germane impurity If the test data is inconsistent, record the test value and perform the third test.
  • the third test result is the closest to the data of A and C, and the data of this group is used.
  • a sampling bottle is connected to the gas chromatography atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatography atomic emission spectrometry detection instrument. , this detection data is not recorded, after waiting for 22s, pass high-purity phosphine again for detection.
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine is stirred when passing through.
  • the stirring blade is driven to rotate by the stirring shaft, so that the high-purity phosphine is stirred, and the rotating speed of the stirring shaft is 120r/min.
  • the germane impurity in the high-purity phosphine is quantified according to the wavelength and intensity of the spectrum, the detection data is recorded as A, and the detection time is recorded at the same time.
  • the GC-AED technology and method for the analysis and detection of germane impurities in high-purity phosphine ppb content includes the following steps:
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the difference value is within the preset range
  • the data A is regarded as the final detection amount of the germane impurity, and the analysis and detection of the germane impurity is completed.
  • the difference value is recorded. Then re-sample and detect again by gas chromatography atomic emission spectrometry detection instrument, record the detection result as C, compare data C with data A again, if the two data are consistent, then regard data C as the final detection of germane impurity If the test data is inconsistent, record the test value and perform the third test.
  • the third test result is the closest to the data of A and C, and the data of this group is used.
  • a sampling bottle is connected to the gas chromatography atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatography atomic emission spectrometry detection instrument, and after 3 seconds, the feeding is stopped and the pre-detection is performed. , this detection data is not recorded, after waiting for 24s, pass high-purity phosphine again for detection.
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine is stirred when passing through.
  • the stirring blade is driven to rotate by the stirring shaft, so that the high-purity phosphine is stirred, and the rotating speed of the stirring shaft is 140r/min.
  • the germane impurity in the high-purity phosphine is quantified according to the wavelength and intensity of the spectrum, the detection data is recorded as A, and the detection time is recorded at the same time.
  • the GC-AED technology and method for analyzing and detecting germane impurities in high-purity phosphine ppb content includes the following steps:
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the difference value is within the preset range
  • the data A is regarded as the final detection amount of the germane impurity, and the analysis and detection of the germane impurity is completed.
  • the difference value is recorded. Then re-sample and detect again by gas chromatography atomic emission spectrometry detection instrument, record the detection result as C, compare data C with data A again, if the two data are consistent, then regard data C as the final detection of germane impurity If the test data is inconsistent, record the test value and perform the third test.
  • the third test result is the closest to the data of A and C, and the data of this group is used.
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is introduced into the gas chromatograph atomic emission spectrometry detection instrument, and after 4 seconds, the introduction is stopped and pre-detection is performed. , this detection data is not recorded, after waiting for 26s, pass high-purity phosphine again for detection.
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine is stirred when passing through.
  • the stirring blade is driven to rotate by the stirring shaft, so that the high-purity phosphine is stirred, and the rotating speed of the stirring shaft is 180r/min.
  • the germane impurity in the high-purity phosphine is quantified according to the wavelength and intensity of the spectrum, the detection data is recorded as A, and the detection time is recorded at the same time.
  • the GC-AED technology and method for the analysis and detection of germane impurities in high-purity phosphine ppb content includes the following steps:
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the difference value is within the preset range
  • the data A is regarded as the final detection amount of the germane impurity, and the analysis and detection of the germane impurity is completed.
  • the difference value is recorded. Then re-sample and detect again by gas chromatography atomic emission spectrometry detection instrument, record the detection result as C, compare data C with data A again, if the two data are consistent, then regard data C as the final detection of germane impurity If the test data is inconsistent, record the test value and perform the third test.
  • the third test result is the closest to the data of A and C, and the data of this group is used.
  • a sampling bottle is connected to the gas chromatography atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatography atomic emission spectrometry detection instrument, and after 5 seconds, the feeding is stopped and the pre-detection is performed. , this detection data is not recorded, after waiting for 30s, pass high-purity phosphine again for detection.
  • a sampling bottle is communicated with the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine to be detected is passed into the gas chromatographic atomic emission spectrometry detection instrument, and the high-purity phosphine is stirred when passing through.
  • the stirring blade is driven to rotate by the stirring shaft, so that the high-purity phosphine is stirred, and the rotating speed of the stirring shaft is 200r/min.
  • the germane impurity in the high-purity phosphine is quantified according to the wavelength and intensity of the spectrum, the detection data is recorded as A, and the detection time is recorded at the same time.
  • Another sampling bottle is connected with the germane gas detector, and the germane impurity in the high-purity phosphine is detected by the germane gas detector, and the detection data is recorded as B;
  • the germane impurity content in the high-purity phosphine is detected by the detection method proposed in Examples one, two, three, four, five and comparative examples one, two, three, and the accuracy rate of detection is as follows:

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测方法,针对现有的单一的检测方式,可能存在误差的问题,包括以下步骤:S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封;S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,通过将气相色谱原子发射光谱检测与锗烷气体检测仪结合,可以提高检测的准确度,避免误操作造成数据的不准确。

Description

GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法 技术领域
本发明涉及高纯磷烷杂质检测技术领域,尤其涉及一种GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法。
背景技术
GC-AED(气相色谱原子发射光谱)原理为:利用气相色谱柱分离复杂的混合物,在微波感应条件下产生高温等离子体将分离的化合物原子化,激发到高能量状态的原子处于亚稳态,其由激发态回到稳定态产生原子特征发射光谱,利用光谱的波长和强度定性元素和定量浓度。原子发射光谱和特定原子结构、原子核外电子能级分布、特定能级跃迁频率等微观结构有关,因此具有特征性,如P在178nm存在特征谱线,而Si在252nm,锗265nm,碳193nm,Sn 271nm,As 189nm,S 181nm均是最强相应峰。
现有技术中,通过气相色谱原子发射光谱方法对高纯磷烷中锗烷杂质含量进行检测时,单一的检测方式,可能存在误差,因此我们提出了GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,用来解决上述问题。
发明内容
本发明的目的是为了解决现有技术中存在单一的检测方式,可能存在误差的缺点,而提出的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法。
为了实现上述目的,本发明采用了如下技术方案:
GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,包括以下步骤:
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、将数据A与数据B进行对比,计算差异值,将差异值与预定的差异值进行比对;
S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测。
优选的,所述S7中,当差异值不再预设范围内时,则对差异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C 哪组数据最接近,就采用该组数据。
优选的,所述S1中,通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为1-2L。
优选的,所述S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入1-5s后,停止通入,进行预检测,此检测数据不做记录,等待20-30s后,再次通入高纯磷烷,进行检测。
优选的,所述S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动。
优选的,搅动时,通过搅拌轴带动搅拌叶转动,使得高纯磷烷被搅动,搅拌轴转速为100-200r/min。
优选的,所述S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数据进行对比,数据差异时进行预警。
优选的,所述S6中,用数据A减去数据B,得出差异值。
优选的,所述S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
优选的,所述S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
与现有技术相比,本发明的有益效果在于:
本方案利用等离子体作激发光源,使进入气相色谱原子发射光谱 检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B,将数据A与数据B进行对比,计算差异值,将差异值与预定的差异值进行比对,差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量;
本发明通过将气相色谱原子发射光谱检测与锗烷气体检测仪结合,可以提高检测的准确度,避免误操作造成数据的不准确。
附图说明
图1为本发明提出的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
实施例一
参照图1,GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,包括以下步骤:
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为1L;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气 相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、将数据A与数据B进行对比,用数据A减去数据B,计算差异值,将差异值与预定的差异值进行比对;
S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测,当差异值不再预设范围内时,则对差异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C哪组数据最接近,就采用该组数据。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入1s后,停止通入,进行预检测,此检测数据不做记录,等待20s后,再次通入高纯磷烷,进行检测。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检 测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动,搅动时,通过搅拌轴带动搅拌叶转动,使得高纯磷烷被搅动,搅拌轴转速为100r/min。
本实施例中,S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数据进行对比,数据差异时进行预警。
本实施例中,S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
本实施例中,S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
实施例二
GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,包括以下步骤:
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为1.2L;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、将数据A与数据B进行对比,用数据A减去数据B,计算差异值,将差异值与预定的差异值进行比对;
S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测,当差异值不再预设范围内时,则对差异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C哪组数据最接近,就采用该组数据。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入2s后,停止通入,进行预检测,此检测数据不做记录,等待22s后,再次通入高纯磷烷,进行检测。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动,搅动时,通过搅拌轴带动搅拌叶转动,使得高纯磷烷被搅动,搅拌轴转速为120r/min。
本实施例中,S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数据进行对比,数据差异时进行预警。
本实施例中,S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
本实施例中,S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
实施例三
GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,包括以下步骤:
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为1.4L;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、将数据A与数据B进行对比,用数据A减去数据B,计算差异值,将差异值与预定的差异值进行比对;
S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测,当差异值不再预设范围内时,则对差 异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C哪组数据最接近,就采用该组数据。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入3s后,停止通入,进行预检测,此检测数据不做记录,等待24s后,再次通入高纯磷烷,进行检测。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动,搅动时,通过搅拌轴带动搅拌叶转动,使得高纯磷烷被搅动,搅拌轴转速为140r/min。
本实施例中,S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数据进行对比,数据差异时进行预警。
本实施例中,S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
本实施例中,S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
实施例四
GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法, 包括以下步骤:
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为1.6L;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、将数据A与数据B进行对比,用数据A减去数据B,计算差异值,将差异值与预定的差异值进行比对;
S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测,当差异值不再预设范围内时,则对差异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C哪组数据最接近,就采用该组数据。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检 测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入4s后,停止通入,进行预检测,此检测数据不做记录,等待26s后,再次通入高纯磷烷,进行检测。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动,搅动时,通过搅拌轴带动搅拌叶转动,使得高纯磷烷被搅动,搅拌轴转速为180r/min。
本实施例中,S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数据进行对比,数据差异时进行预警。
本实施例中,S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
本实施例中,S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
实施例五
GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,包括以下步骤:
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为2L;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检 测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、将数据A与数据B进行对比,用数据A减去数据B,计算差异值,将差异值与预定的差异值进行比对;
S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测,当差异值不再预设范围内时,则对差异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C哪组数据最接近,就采用该组数据。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入5s后,停止通入,进行预检测,此检测数据不做记录,等待30s后,再次通入高纯磷烷,进行检测。
本实施例中,S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动,搅动时,通过搅拌轴带动搅拌叶 转动,使得高纯磷烷被搅动,搅拌轴转速为200r/min。
本实施例中,S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数据进行对比,数据差异时进行预警。
本实施例中,S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
本实施例中,S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
对比例一
GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法:包括以下步骤:
S1、通过取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封;
S2、将取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,完成锗烷杂质分析检测。
对比例二
高纯磷烷ppb含量锗烷杂质分析检测技术及方法;
包括以下步骤:
S1、通过取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封;
S5、将取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,完成锗烷杂质分析检测。
对比例三
S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封;
S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
S6、计算数据A和数据B的平均值,即为锗烷杂质含量,完成锗烷杂质分析检测。
试验例
通过实施例一、二、三、四、五以及对比例一、二、三提出的检测方法对高纯磷烷中锗烷杂质含量进行检测,检测的准确率如下:
Figure PCTCN2022095720-appb-000001
Figure PCTCN2022095720-appb-000002
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,包括以下步骤:
    S1、通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封;
    S2、将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷;
    S3、利用等离子体作激发光源,使进入气相色谱原子发射光谱检测仪器的高纯磷烷原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱;
    S4、根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A;
    S5、将另一个取样瓶与锗烷气体检测仪连通,通过锗烷气体检测仪对高纯磷烷内的锗烷杂质进行检测,记录检测数据为B;
    S6、将数据A与数据B进行对比,计算差异值,将差异值与预定的差异值进行比对;
    S7、差异值在预设的范围内时,则将数据A视为锗烷杂质最终检测量,完成锗烷杂质分析检测。
  2. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S7中,当差异值不再预设范围内时,则对差异值进行记录,然后重新取样,再次通过气相色谱原子发射光谱检测仪器进行检测,将检测结果记录为C,将数据C与数据A再次进行对比,若两者数据一致,则将数据C视为锗烷杂质 最终检测量,若检测数据不一致,则记录检测值,进行第三次检测,第三次检测结果与A和C哪组数据最接近,就采用该组数据。
  3. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S1中,通过两个取样瓶对高纯磷烷进行取样,取样后对取样瓶进行密封,每个取样瓶内的高纯磷烷的取样量为1-2L。
  4. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入1-5s后,停止通入,进行预检测,此检测数据不做记录,等待20-30s后,再次通入高纯磷烷,进行检测。
  5. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S2中,将一个取样瓶与气相色谱原子发射光谱检测仪器连通,向气相色谱原子发射光谱检测仪器通入需要检测的高纯磷烷,通入时对高纯磷烷进行搅动。
  6. 根据权利要求5所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,搅动时,通过搅拌轴带动搅拌叶转动,使得高纯磷烷被搅动,搅拌轴转速为100-200r/min。
  7. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S2中,通入需要检测的高纯磷烷后,对检测环境内的空气进行监测,将监测的数据与初始数 据进行对比,数据差异时进行预警。
  8. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S6中,用数据A减去数据B,得出差异值。
  9. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S4中,根据光谱的波长和强度对高纯磷烷中锗烷杂质进行定量,记录检测数据为A,同时,对检测时长进行记录。
  10. 根据权利要求1所述的GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法,其特征在于,所述S5中,将另一个取样瓶与锗烷气体检测仪连通,对气体进行搅动,然后将高纯磷烷通入锗烷气体检测仪进行检测。
PCT/CN2022/095720 2022-02-28 2022-05-27 Gc-aed关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法 WO2023159789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210187167.8 2022-02-28
CN202210187167.8A CN114705798A (zh) 2022-02-28 2022-02-28 GC-AED关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法

Publications (1)

Publication Number Publication Date
WO2023159789A1 true WO2023159789A1 (zh) 2023-08-31

Family

ID=82166553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095720 WO2023159789A1 (zh) 2022-02-28 2022-05-27 Gc-aed关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法

Country Status (2)

Country Link
CN (1) CN114705798A (zh)
WO (1) WO2023159789A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100366A1 (en) * 2000-12-04 2002-08-01 Tadaharu Watanabe Method and materials for purifying hydride gases, inert gases, and non-reactive gases
JP2010066048A (ja) * 2008-09-09 2010-03-25 Taiyo Nippon Sanso Corp 臭素を含む高分子化合物の分析方法
CN204286998U (zh) * 2014-12-24 2015-04-22 周志斌 颗粒物浓度传感器
CN109682731A (zh) * 2019-01-24 2019-04-26 珠海横琴博信能源建设有限公司 一种火力发电厂粉尘浓度在线监测系统及方法
CN111239317A (zh) * 2020-03-11 2020-06-05 全椒南大光电材料有限公司 特种气体中杂质的质谱检测分析装置及其方法
CN112213403A (zh) * 2019-07-11 2021-01-12 东泰高科装备科技有限公司 一种砷烷在线检测装置和检测方法
CN212693760U (zh) * 2020-06-08 2021-03-12 深圳市特安电子有限公司 可燃气体探测器及设备
CN113218905A (zh) * 2021-04-27 2021-08-06 深圳市利拓光电有限公司 基于2327nm激光器的一氧化碳检测系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609291B2 (ja) * 1987-06-18 1997-05-14 ヒューレット−パッカード・カンパニー 原子発光分光測定法により酸素含有成分を分析するための改良された方法
JPH07270390A (ja) * 1994-03-31 1995-10-20 Cosmo Sogo Kenkyusho:Kk 炭化水素油の分析方法
JP3318473B2 (ja) * 1995-08-31 2002-08-26 株式会社東レリサーチセンター Sf6 ガス中の分解生成物分析方法
CN1198142C (zh) * 2003-01-08 2005-04-20 中国石油化工股份有限公司 溴加成和气相色谱-原子发射光谱测定汽油烯烃含量的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100366A1 (en) * 2000-12-04 2002-08-01 Tadaharu Watanabe Method and materials for purifying hydride gases, inert gases, and non-reactive gases
JP2010066048A (ja) * 2008-09-09 2010-03-25 Taiyo Nippon Sanso Corp 臭素を含む高分子化合物の分析方法
CN204286998U (zh) * 2014-12-24 2015-04-22 周志斌 颗粒物浓度传感器
CN109682731A (zh) * 2019-01-24 2019-04-26 珠海横琴博信能源建设有限公司 一种火力发电厂粉尘浓度在线监测系统及方法
CN112213403A (zh) * 2019-07-11 2021-01-12 东泰高科装备科技有限公司 一种砷烷在线检测装置和检测方法
CN111239317A (zh) * 2020-03-11 2020-06-05 全椒南大光电材料有限公司 特种气体中杂质的质谱检测分析装置及其方法
CN212693760U (zh) * 2020-06-08 2021-03-12 深圳市特安电子有限公司 可燃气体探测器及设备
CN113218905A (zh) * 2021-04-27 2021-08-06 深圳市利拓光电有限公司 基于2327nm激光器的一氧化碳检测系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GEIGER, WILLIAM M.; RAYNOR, M.W. ET AL.: "ICP-MS: A Universally Sensitive a GC Detection Method for Specialty and Electronic Gas Analysis", SPECTROSCOPY, ADVANSTAR COMMUNICATIONS,, US, vol. 23, no. 11, 1 November 2008 (2008-11-01), US , pages 34 - 42, XP009548692, ISSN: 0887-6703 *

Also Published As

Publication number Publication date
CN114705798A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
EP2921844A1 (en) Method and instrument for simultaneously measuring mercury and cadmium by direct sample injection
US7847242B2 (en) Pulse heating-time of flight mass spectrometric gas elements analyzer
CN112816436B (zh) 一种光谱-质谱联用装置及检测方法
AU2009354555A1 (en) Method for analyzing and detecting calcium element in ore
CN105842725B (zh) 一种空气中氚化水蒸汽的比活度的测定方法
CN109298065A (zh) 一种铝合金粉末中杂质元素含量的检测方法
US6589795B2 (en) Method and device for detecting mercury
Duan et al. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry
CN116148243A (zh) 一种有机脱碳溶液中无机碳总量的检测方法
WO2023159789A1 (zh) Gc-aed关于高纯磷烷ppb含量锗烷杂质分析检测技术及方法
Matusiewicz et al. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge
CN110687239B (zh) 一种测定试样中杂质衍生物色谱响应相对质量校正因子的方法
WO2023231385A1 (zh) 液体中痕量重金属元素的富集检测方法和装置
Peng et al. In-atomizer atom trapping on gold nanoparticles for sensitive determination of mercury by flow injection cold vapor generation atomic absorption spectrometry
Pepelnik et al. Comparative study of multi-element determination using inductively coupled plasma mass spectrometry, total reflection X-ray fluorescence spectrometry and neutron activation analysis
Bye et al. Determination of alkylmercury compounds in fish tissue with an atomic absorption spectrometer used as a specific gas chromatographic detector
Martin-Esteban et al. Correcting sensitivity drift during long-term multi-element signal measurements by solid sampling-ETV-ICP-MS
EP0281037A2 (en) Method of measuring oxygen in silicon
CN109060774B (zh) 一种锌钙合金中钙、铁、铝、镁、锰的含量的检测方法
Sun et al. Direct determination of silver at parts-per-billion level in waters by derivative atomic absorption spectrometry using the atom trapping technique
CN109991210A (zh) 煤灰中硫含量测定方法
CN110018259B (zh) 一种有机锡类化合物的测定方法
JP3439974B2 (ja) 分析試料中の酸化物の種類別酸素又は酸化物の分析方法及び分析装置
RU2779425C1 (ru) Способ измерений массовых концентраций алюминия, мышьяка, стронция, кадмия, свинца, ртути в мукомольно-крупяных и хлебобулочных изделиях методом масс-спектрометрии с индуктивно связанной плазмой
JP2010014513A (ja) はんだフラックス中の金属成分分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928060

Country of ref document: EP

Kind code of ref document: A1