WO2023157910A1 - ポリカーボネート系樹脂組成物 - Google Patents

ポリカーボネート系樹脂組成物 Download PDF

Info

Publication number
WO2023157910A1
WO2023157910A1 PCT/JP2023/005416 JP2023005416W WO2023157910A1 WO 2023157910 A1 WO2023157910 A1 WO 2023157910A1 JP 2023005416 W JP2023005416 W JP 2023005416W WO 2023157910 A1 WO2023157910 A1 WO 2023157910A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
group
carbon atoms
polyorganosiloxane
less
Prior art date
Application number
PCT/JP2023/005416
Other languages
English (en)
French (fr)
Inventor
優希 小草
康弘 石川
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2024501425A priority Critical patent/JPWO2023157910A1/ja
Priority to KR1020247027264A priority patent/KR20240144213A/ko
Priority to CN202380021642.7A priority patent/CN118696094A/zh
Publication of WO2023157910A1 publication Critical patent/WO2023157910A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a polycarbonate-based resin composition and a molded article thereof.
  • PC-POS copolymers Polycarbonate-polyorganosiloxane copolymers
  • PC-POS copolymers have attracted attention due to their excellent properties such as high impact resistance, chemical resistance, and flame retardancy. ing. Therefore, it is expected to be widely used in various fields such as electric/electronic equipment field and automobile field. In particular, it has been widely used in housings for mobile phones, mobile personal computers, digital cameras, video cameras, power tools, and other daily necessities.
  • a homopolycarbonate using 2,2-bis(4-hydroxyphenyl)propane commonly known as bisphenol A
  • bisphenol A 2,2-bis(4-hydroxyphenyl)propane
  • Patent Document 1 a polycarbonate-polyorganosiloxane copolymer using polyorganosiloxane as a copolymerization monomer is known.
  • Patent Document 2 a method using a polyorganosiloxane having a long chain length is known, as disclosed in Patent Document 2.
  • this method has a problem that the transparency is lowered.
  • Patent Documents 3 and 4 a method using polyorganosiloxane having a relatively short chain length is known (see Patent Documents 3 and 4).
  • Patent Document 5 attempts to improve transparency while maintaining excellent impact resistance by blending two types of polycarbonate-polyorganosiloxane copolymers with different light transmittances. was not sufficient.
  • An object of the present invention is to provide a polycarbonate-based resin composition containing a PC-POS copolymer having a relatively high viscosity-average molecular weight and excellent transparency and impact resistance, and a molded article thereof.
  • the present inventor solved the above problems by using a polycarbonate-based resin composition in which a PC-POS copolymer having a specific viscosity-average molecular weight and an aromatic polycarbonate-based resin other than the PC-POS copolymer having a specific viscosity-average molecular weight are combined. found to be resolved. That is, the present invention relates to the following [1] to [12].
  • Polycarbonate-polyorganosiloxane copolymer (S-1) and a polycarbonate-based resin (S) containing an aromatic polycarbonate-based resin (S-2) other than the polycarbonate-polyorganosiloxane copolymer (S-1) A polycarbonate-based resin composition
  • the polycarbonate resin (S) has a viscosity average molecular weight Mv PC of 20,000 or more and 30,000 or less
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate-polyorganosiloxane copolymer (S-1) is 0.5% by mass or more and 9% by mass or less
  • the average chain length n of the polyorganosiloxane block (A-2) is
  • R 1 and R 2 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, carbon represents an arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, -S-, -SO-, -SO 2 -, -O- or -CO-.
  • R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • a and b each independently represents an integer of 0 to 4;
  • the difference Mv Si ⁇ Mv PC between the viscosity average molecular weight Mv PC of the polycarbonate resin (S) and the viscosity average molecular weight Mv Si of the polycarbonate-polyorganosiloxane copolymer (S-1) is ⁇ 1,500 or more .
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate-polyorganosiloxane copolymer (S-1) is 0.5% by mass or more and 8% by mass or less, ] to [4], the polycarbonate-based resin composition according to any one of items.
  • the polyorganosiloxane block (A-2) is a block unit represented by any of the following general formulas (II-I), (II-II) and (II-III), ] The polycarbonate resin composition according to any one of [5].
  • R 3 to R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and a plurality of R 3 to R 6 of may be the same or different.
  • Y is -R 7 O-, -R 7 COO-, -R 7 NH-, -R 7 NR 8 -, -COO-, -S-, -R 7 COO-R 9 -O-, or -R 7 represents OR 10 -O-, and a plurality of Y's may be the same or different.
  • R 7 above represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group.
  • R8 represents an alkyl group, alkenyl group, aryl group or aralkyl group.
  • R9 represents a diarylene group.
  • R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid.
  • n is as described above, and p is an integer of 1 or more and n-2 or less.
  • n is as described above, and p is an integer of 1 or more and n-2 or less.
  • n is as described above, and p is an integer of 1 or more and n-2 or less.
  • n is as described above, and p is an integer of 1 or more and n-2 or less.
  • n is as described above, and p is an integer of 1 or more and n-2 or less.
  • haze value measured in accordance with ISO 14782:1999 is 0.1 or more and 1.0 or less in the molded article having a thickness of 3 mm.
  • the polycarbonate-based resin composition according to any one of the above
  • R 21 to R 24 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 25 is an alkyl group having 1 to 6 carbon atoms, a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
  • Q 2 is a divalent aliphatic group having 1 to 10 carbon atoms.
  • m represents the average chain length and is an integer of 10 or more.
  • a polycarbonate-based resin composition containing a PC-POS copolymer having a relatively high viscosity-average molecular weight and excellent transparency and impact resistance a polycarbonate-based resin composition containing a PC-POS copolymer having a relatively high viscosity-average molecular weight and excellent transparency and impact resistance, and a molded article thereof.
  • FIG. 1 is a cross-sectional view of a test piece used for evaluating chemical resistance.
  • FIG. 2 is a transverse cross-sectional view of a jig used for chemical resistance evaluation.
  • FIG. 3 is a schematic diagram of a test piece fixed to a jig used for chemical resistance evaluation.
  • the polycarbonate-based resin composition of the present invention comprises a polycarbonate block (A-1) containing a specific repeating unit and a polyorganosiloxane block (A-2) containing a specific repeating unit - a polycarbonate-polyorganosiloxane copolymer ( S-1) and a polycarbonate resin composition containing a polycarbonate resin (S) containing an aromatic polycarbonate resin (S-2) other than the polycarbonate-polyorganosiloxane copolymer (S-1),
  • the polycarbonate-polyorganosiloxane copolymer (S-1) has a viscosity average molecular weight Mv Si of 20,000 or more and 30,000 or less,
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate-polyorganosiloxane copolymer (S-1) is 0.5% by mass or more and 9.0% by mass or less,
  • the polycarbonate-based resin composition of the present invention comprises a polycarbonate-polyorganosiloxane copolymer (S-1) and an aromatic polycarbonate-based resin (S-2) other than the polycarbonate-polyorganosiloxane copolymer (S-1). Contains a polycarbonate resin (S) containing.
  • the polycarbonate-based resin (S) constituting the polycarbonate-based resin composition of the present invention is represented by a polycarbonate block (A-1) containing a repeating unit represented by the following general formula (I) and the following general formula (II).
  • the polycarbonate-polyorganosiloxane copolymer (S-1) has a viscosity average molecular weight Mv Si of 20,000 or more and 30,000 or less
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate-polyorganosiloxane copolymer (S-1) is 0.5% by mass or more and 9.0% by mass or less
  • the average chain length n of the polyorganosiloxane block (A-2) is 20 or more and less than 60
  • R 1 and R 2 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, a fluorenediyl group, carbon represents an arylalkylene group having 7 to 15 carbon atoms, an arylalkylidene group having 7 to 15 carbon atoms, -S-, -SO-, -SO 2 -, -O- or -CO-.
  • R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • a and b each independently represents an integer of 0 to 4; ]
  • Polycarbonate-polyorganosiloxane copolymer (S-1) comprises a polycarbonate block (A-1) containing a repeating unit represented by the general formula (I) and a repeating unit represented by the general formula (II). including a polyorganosiloxane block (A-2) containing The content of the polyorganosiloxane block (A-2) in the polycarbonate-polyorganosiloxane copolymer (S-1) is 0.5% by mass or more and 9.0% by mass or less, The average chain length n of the polyorganosiloxane block (A-2) is 20 or more and less than 60.
  • the polycarbonate-polyorganosiloxane copolymer (S-1) may be abbreviated as "PC-POS copolymer (S-1)".
  • halogen atoms independently represented by R 1 and R 2 include fluorine, chlorine, bromine and iodine atoms.
  • the alkyl groups independently represented by R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, and various butyl groups ("various" means linear and branched groups). The same applies hereinafter in the specification.), various pentyl groups, and various hexyl groups.
  • alkoxy groups independently represented by R 1 and R 2 include those having the above alkyl group as the alkyl group moiety.
  • Examples of the alkylene group represented by X include methylene group, ethylene group, trimethylene group, tetramethylene group, hexamethylene group and the like, and an alkylene group having 1 to 5 carbon atoms is preferred.
  • Examples of the alkylidene group represented by X include an ethylidene group and an isopropylidene group.
  • the cycloalkylene group represented by X includes a cyclopentanediyl group, a cyclohexanediyl group, a cyclooctanediyl group and the like, and a cycloalkylene group having 5 to 10 carbon atoms is preferable.
  • the cycloalkylidene group represented by X includes, for example, a cyclohexylidene group, a 3,5,5-trimethylcyclohexylidene group, a 2-adamantylidene group and the like, and a cycloalkylidene group having 5 to 10 carbon atoms is preferred. , a cycloalkylidene group having 5 to 8 carbon atoms is more preferable.
  • the aryl moiety of the arylalkylene group represented by X includes aryl groups having 6 to 14 ring-forming carbon atoms such as a phenyl group, naphthyl group, biphenyl group and anthryl group, and the alkylene group includes the above-mentioned alkylene.
  • the aryl moiety of the arylalkylidene group represented by X includes aryl groups having 6 to 14 ring-forming carbon atoms such as a phenyl group, a naphthyl group, a biphenyl group and an anthryl group, and examples of the alkylidene group include the alkylidene groups described above. can be done.
  • a and b each independently represents an integer of 0 to 4, preferably 0 to 2, more preferably 0 or 1; Among them, a and b are 0 and X is a single bond or an alkylene group having 1 to 8 carbon atoms, or a and b are 0 and X is an alkylidene group having 3 carbon atoms, particularly an isopropylidene group. Some are preferred.
  • the polycarbonate block (A-1) preferably consists essentially of repeating units represented by general formula (I) above.
  • the polyorganosiloxane block (A-2) is a structural unit present between the two closest polycarbonate bonds on the main chain of the PC-POS copolymer (S-1), and has the general formula (II ) contains at least one repeating unit.
  • the halogen atom represented by R 3 or R 4 includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group represented by R 3 or R 4 includes methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups and various hexyl groups.
  • Examples of the alkoxy group represented by R 3 or R 4 include cases in which the alkyl group portion is the aforementioned alkyl group.
  • Examples of the aryl group represented by R 3 or R 4 include a phenyl group and a naphthyl group. Both R 3 and R 4 are preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and both are methyl groups. is more preferred.
  • the average chain length n of the polyorganosiloxane block (A-2) contained in the PC-POS copolymer (S-1) is 20 or more and less than 60, preferably 20 or more and 55 or less, more preferably 25 or more and 50. Below, more preferably more than 30 and 43 or less. If the average chain length is within the above range, it is possible to obtain a polycarbonate-based resin composition having more excellent transparency and impact resistance, especially impact resistance at low temperatures.
  • the PC-POS copolymer (S-1) substantially contains block units derived from polyorganosiloxane having an average chain length of 60 or more as the polyorganosiloxane block (A-2).
  • the average chain length of the polyorganosiloxane block (A-2) is the polyorganosiloxane present between the two closest polycarbonate bonds on the main chain of the PC-POS copolymer (S-1). It is the average number of —SiR 3 R 4 — groups contained in the block (A-2). Further, the average repeating number of repeating units represented by the general formula (II) contained in the polyorganosiloxane block (A-2) is n-1.
  • the average chain length n of the polyorganosiloxane block (A-2) contained in the PC-POS copolymer (S-1) is calculated by nuclear magnetic resonance (NMR) measurement.
  • the content of the polyorganosiloxane block (A-2) in the PC-POS copolymer (S-1) (also referred to as polyorganosiloxane content) is 0.5% by mass or more and 9% by mass or less. If the amount of polyorganosiloxane in the PC-POS copolymer (S-1) is within the above range, a polycarbonate resin composition having excellent transparency and impact resistance can be obtained.
  • the content of the polyorganosiloxane block (A-2) in the PC-POS copolymer (S-1) is preferably 0.5% by mass or more and 8% by mass or less, more preferably 0.5% by mass or more and 8 It is less than mass %, more preferably 2 mass % or more and 7.5 mass % or less, still more preferably 4 mass % or more and 7 mass % or less, and particularly preferably 5 mass % or more and 7 mass % or less.
  • the content of the polyorganosiloxane block (A-2) in the PC-POS copolymer (S-1) refers to the polycarbonate block (A-1), the general formula (II) and It is the mass percentage of the general formula (II) with respect to the total mass of the terminal structure derived from the terminal terminator described later, which is optionally included in the PC-POS copolymer (S-1).
  • content of polyorganosiloxane block (A-2) in polycarbonate resin (S) and “content of polyorganosiloxane block (A-2) in polycarbonate resin composition” described later. be.
  • the content of the polyorganosiloxane block (A-2) in the PC-POS copolymer (S-1) is calculated by nuclear magnetic resonance (NMR) measurement. Specifically, 1 H-NMR measurement is performed, and the peak derived from formula (I), the peak derived from formula (II), and the peak derived from the terminal group are calculated from the integrated value.
  • NMR nuclear magnetic resonance
  • a preferred embodiment of the polyorganosiloxane block (A-2) containing a repeating unit represented by the general formula (II) is a block represented by any one of the following general formulas (II-I) to (II-III) Units.
  • R 3 to R 6 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • a plurality of R 3 to R 6 may be the same or different.
  • Y is -R 7 O-, -R 7 COO-, -R 7 NH-, -R 7 NR 8 -, -COO-, -S-, -R 7 COO-R 9 -O-, or -R 7 represents OR 10 -O-, and plural Y's may be the same or different.
  • R7 represents a single bond, a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, a substituted or unsubstituted arylene group, or a diarylene group.
  • R 8 represents an alkyl group, alkenyl group, aryl group or aralkyl group.
  • R 9 represents a diarylene group.
  • R 10 represents a linear, branched or cyclic alkylene group, or a diarylene group.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid.
  • n is as described above.
  • p is an integer of 1 or more and n-2 or less. ]
  • Halogen atoms independently represented by R 3 to R 6 include fluorine, chlorine, bromine and iodine atoms.
  • Examples of the alkyl group independently represented by R 3 to R 6 include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups and various hexyl groups.
  • Examples of the alkoxy groups independently represented by R 3 to R 6 include cases where the alkyl group portion is the aforementioned alkyl group.
  • Examples of the aryl group independently represented by R 3 to R 6 include a phenyl group and a naphthyl group.
  • Each of R 3 to R 6 is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms. All of R 3 to R 6 in general formulas (II-I), (II-II) and/or (II-III) are preferably methyl groups.
  • R 7 is bonded to the Si atom.
  • -COO- represented by Y the C atom is bonded to the Si atom.
  • the linear or branched alkylene group represented by R 7 in above includes an alkylene group having 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms.
  • Cyclic alkylene groups represented by R 7 include cycloalkylene groups having 5 to 15 carbon atoms, preferably 5 to 10 carbon atoms.
  • the aryl-substituted alkylene group represented by R7 may have a substituent such as an alkoxy group or an alkyl group on the aromatic ring. Specific structures thereof include, for example, the following general formula (i) or ( ii) structure can be shown. Here, when R 7 represents an aryl-substituted alkylene group, the alkylene group is bonded to the Si atom.
  • the arylene group is attached to the oxygen, carbon or nitrogen atom adjacent to R 7 .
  • c represents a positive integer, usually an integer of 1 to 6.
  • the diarylene group represented by R 7 , R 9 and R 10 is a group in which two arylene groups are linked directly or via a divalent organic group, specifically -Ar 1 -W- It is a group having a structure represented by Ar 2 —.
  • Ar 1 and Ar 2 represent arylene groups
  • W represents a single bond or a divalent organic group.
  • the divalent organic group represented by W is, for example, an isopropylidene group, a methylene group, a dimethylene group and a trimethylene group.
  • Arylene groups represented by R 7 , Ar 1 and Ar 2 include arylene groups having 6 to 14 ring carbon atoms such as phenylene group, naphthylene group, biphenylene group and anthrylene group. These arylene groups may have arbitrary substituents such as alkoxy groups and alkyl groups.
  • the alkyl group represented by R 8 has 1 to 8 carbon atoms, preferably 1 to 5, straight or branched chain.
  • Alkenyl groups represented by R 8 include those having 2 to 8 carbon atoms, preferably 2 to 5, straight or branched chains.
  • Examples of the aryl group represented by R 8 include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group represented by R 8 include a phenylmethyl group and a phenylethyl group.
  • the linear, branched or cyclic alkylene group represented by R 10 is the same as R 7 .
  • Y is preferably -R 7 O-, where R 7 is an aryl-substituted alkylene group.
  • R 7 is more preferably a residue of a phenolic compound having an alkyl group, and more preferably an organic residue derived from allylphenol or an organic residue derived from eugenol.
  • represents a divalent group derived from a diisocyanate compound or a divalent group derived from a dicarboxylic acid or a halide of a dicarboxylic acid, for example, a divalent group represented by the following general formulas (iii) to (vii) is mentioned.
  • block units represented by the following general formula (II-I) include block units represented by the following general formulas (II-I-1) to (II-I-11).
  • R 3 to R 6 , n-1 and R 8 are the same as above and preferred ones are also the same.
  • c represents a positive integer, usually an integer of 1-6.
  • the block unit represented by the general formula (II-I-1) is preferable from the viewpoint of ease of polymerization of polyorganosiloxane. From the standpoint of easy availability, the block unit represented by the above general formula (II-I-2) and the block unit represented by the above general formula (II-I-3) are preferred.
  • polyorganosiloxane block (A-2) is a block unit represented by the following general formula (II-IV).
  • the PC-POS copolymer (S-1), in one of its preferred embodiments, has the following general formula (IV) as the polyorganosiloxane block (A-2) does not substantially contain the block unit (A-3) represented by
  • R 21 to R 24 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • R 25 is an alkyl group having 1 to 6 carbon atoms, a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 14 carbon atoms.
  • Q 2 is a divalent aliphatic group having 1 to 10 carbon atoms.
  • m represents the average chain length and is an integer of 10 or more.
  • Halogen atoms independently represented by R 21 to R 24 include fluorine, chlorine, bromine and iodine atoms.
  • alkyl groups independently represented by R 21 to R 24 include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups and various hexyl groups.
  • alkoxy groups independently represented by R 21 to R 24 include cases where the alkyl group portion is the above alkyl group.
  • Examples of the aryl group independently represented by R 21 to R 24 include a phenyl group and a naphthyl group.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 25 include methyl group, ethyl group, n-propyl group, isopropyl group, various butyl groups, various pentyl groups and various hexyl groups.
  • Halogen atoms represented by R 25 include fluorine, chlorine, bromine and iodine atoms.
  • Examples of the alkoxy group having 1 to 6 carbon atoms represented by R 25 include cases where the alkyl group portion is the aforementioned alkyl group.
  • Examples of the aryl group having 6 to 14 carbon atoms represented by R 25 include a phenyl group, a toluyl group, a dimethylphenyl group and a naphthyl group.
  • the divalent aliphatic group having 1 to 10 carbon atoms represented by Q 2 is preferably a linear or branched divalent saturated aliphatic group having 1 to 10 carbon atoms.
  • the number of carbon atoms in the saturated aliphatic group is preferably 1 or more and 8 or less, more preferably 2 or more and 6 or less, still more preferably 3 or more and 6 or less, and even more preferably 4 or more and 6 or less.
  • m is the average chain length and is an integer of 10 or more.
  • repeating unit (A-3) include structures represented by the following formula (IV-I).
  • the main chain of the PC-POS copolymer (S-1) comprises a polycarbonate block (A-1), a polyorganosiloxane block (A-2) and the necessary It consists only of the terminal structure derived from the terminal terminator described later according to.
  • the viscosity-average molecular weight of the PC-POS copolymer (S-1) is preferably 18,500 or more and 25,000 or less, more preferably 20,000. 25,000 or less, more preferably 20,000 or more and 24,000 or less, particularly preferably 21,000 or more and 23,500 or less. If the viscosity-average molecular weight Mv Si is within the above range, it is possible to obtain a polycarbonate-based resin composition having superior transparency and impact resistance, especially impact resistance at low temperatures.
  • the viscosity-average molecular weight (Mv) of the PC-POS copolymer (S-1) can be appropriately adjusted by using a molecular weight modifier (terminal terminator) or the like so as to achieve the desired molecular weight depending on the application or product used. be able to.
  • the viscosity-average molecular weight (Mv) is a value calculated from the following Schnell formula by measuring the intrinsic viscosity [ ⁇ ] of a methylene chloride solution at 20°C.
  • the PC-POS copolymer (S-1) can be produced by known methods such as an interfacial polymerization method (phosgene method), a pyridine method, and a transesterification method. It can be manufactured by a method.
  • an interfacial polymerization method phosgene method
  • a pyridine method a pyridine method
  • transesterification method a transesterification method. It can be manufactured by a method.
  • the interfacial polymerization method is adopted, the process of separating the organic phase containing the PC-POS copolymer from the aqueous phase containing unreacted substances, catalyst residues, etc. is easy, and alkali washing, acid washing, pure water It is easy to separate the organic phase containing the PC-POS copolymer and the aqueous phase in each washing step such as washing. Therefore, a PC-POS copolymer can be obtained efficiently.
  • a method for producing a PC-POS copolymer for example, the method described in
  • a polycarbonate oligomer is prepared in advance by polymerizing a dihydric phenol compound and a carbonate precursor such as phosgene, and then the polycarbonate oligomer, polyorganosiloxane and, if necessary, a divalent A PC-POS copolymer (S-1) is produced by polymerizing a phenolic compound.
  • a pre-produced polycarbonate oligomer and polyorganosiloxane which will be described later, are dissolved in a water-insoluble organic solvent (methylene chloride, etc.), and an alkaline compound aqueous solution (bisphenol A, etc.) of a dihydric phenol compound (bisphenol A, etc.) sodium hydroxide aqueous solution, etc.), using a tertiary amine (triethylamine, etc.) or a quaternary ammonium salt (trimethylbenzylammonium chloride, etc.) as a polymerization catalyst, and a terminal terminator (monohydric phenol such as p-tert-butylphenol ), it can be produced by an interfacial polycondensation reaction.
  • the PC-POS copolymer (S-1) can also be produced, for example, by copolymerizing polyorganosiloxane, a dihydric phenol-based compound, and phosgene, carbonate
  • raw material polyorganosiloxane those represented by the following general formulas (1), (2) and/or (3) can be used.
  • R 3 to R 6 , Y, ⁇ , n and p are as defined above.
  • Specific examples and preferred ones of R 3 to R 6 , Y, ⁇ , n and p are also as described above.
  • Z represents a hydrogen atom or a halogen atom, and multiple Z's may be the same or different.
  • polyorganosiloxane represented by general formula (1) includes compounds represented by general formulas (1-1) to (1-11) below.
  • R 3 to R 6 , n-1 and R 8 are the same as above, and preferred ones are also the same.
  • c represents a positive integer, usually an integer of 1-6.
  • the phenol-modified polyorganosiloxane represented by the general formula (1-1) is preferable from the viewpoint of ease of polymerization of the polyorganosiloxane.
  • one having the following general formula (4) may be used as the polyorganosiloxane raw material.
  • the method for producing the polyorganosiloxane is not particularly limited.
  • cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize ⁇ , ⁇ -dihydrogenorganopentasiloxane, followed by A phenolic compound (eg, 2-allylphenol, 4-allylphenol, eugenol, 2-propenylphenol, etc.) is added to the ⁇ , ⁇ -dihydrogenorganopentasiloxane in the presence of a hydrosilylation reaction catalyst.
  • a crude polyorganosiloxane can be obtained.
  • octamethylcyclotetrasiloxane and tetramethyldisiloxane are reacted in the presence of sulfuric acid (acidic catalyst) to obtain ⁇ , ⁇ -dihydrogenorgano
  • a crude polyorganosiloxane can be obtained by subjecting a polysiloxane to an addition reaction with a phenolic compound or the like in the presence of a hydrosilylation reaction catalyst in the same manner as described above.
  • the ⁇ , ⁇ -dihydrogenorganopolysiloxane may be used by appropriately adjusting its chain length n according to the polymerization conditions, or commercially available ⁇ , ⁇ -dihydrogenorganopolysiloxane may be used. .
  • the one described in JP-A-2016-098292 can be used.
  • a polycarbonate oligomer can be produced by reacting a dihydric phenolic compound with a carbonate precursor such as phosgene or triphosgene in an organic solvent such as methylene chloride, chlorobenzene or chloroform.
  • a polycarbonate oligomer is produced using the transesterification method, it can also be produced by reacting a dihydric phenolic compound with a carbonate precursor such as diphenyl carbonate.
  • a dihydric phenol compound it is preferable to use a dihydric phenol compound represented by the following general formula (viii).
  • R 1 , R 2 , a, b and X are as defined above.
  • Examples of the dihydric phenol compound represented by the general formula (viii) include 2,2-bis(4-hydroxyphenyl)propane [bisphenol A], bis(4-hydroxyphenyl)methane, 1,1- bis(4-hydroxyphenyl)ethane, bis(hydroxyphenyl)alkanes such as 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 4,4′-dihydroxydiphenyl, bis(4-hydroxy phenyl)cycloalkane, bis(4-hydroxyphenyl)oxide, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfoxide, bis(4-hydroxyphenyl)ketone, etc.
  • bisphenol A 2,2-bis(4-hydroxyphenyl)propane
  • 1,1- bis(4-hydroxyphenyl)ethane bis(hydroxyphenyl)alkanes such as 2,2-bis(4-hydroxy
  • dihydric phenol compounds may be used singly or in combination of two or more. Among these, bis(hydroxyphenyl)alkane-based dihydric phenols are preferred, and bisphenol A is more preferred.
  • dihydric phenol compounds other than bisphenol A include bis(hydroxyaryl)alkanes, bis(hydroxyaryl)cycloalkanes, dihydroxyaryl ethers, dihydroxydiarylsulfides, dihydroxydiarylsulfoxides, and dihydroxydiarylsulfones. , dihydroxydiphenyls, dihydroxydiarylfluorenes, dihydroxydiaryladamantanes, and the like. These dihydric phenol compounds may be used singly or in combination of two or more.
  • bis(hydroxyaryl)alkanes include bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)butane, 2,2- Bis(4-hydroxyphenyl)octane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, bis(4-hydroxy phenyl)naphthylmethane, 1,1-bis(4-hydroxy-3-tert-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxy -3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3-chlorophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane
  • Bis(hydroxyaryl)cycloalkanes include, for example, 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl) -3,5,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl)norbornane, 1,1-bis(4-hydroxyphenyl)cyclododecane and the like.
  • dihydroxyaryl ethers include 4,4'-dihydroxydiphenyl ether and 4,4'-dihydroxy-3,3'-dimethylphenyl ether.
  • dihydroxydiarylsulfides include 4,4'-dihydroxydiphenylsulfide and 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfide.
  • dihydroxydiarylsulfoxides include 4,4'-dihydroxydiphenylsulfoxide and 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfoxide.
  • dihydroxydiarylsulfones include 4,4'-dihydroxydiphenylsulfone and 4,4'-dihydroxy-3,3'-dimethyldiphenylsulfone.
  • dihydroxydiphenyls examples include 4,4'-dihydroxydiphenyl.
  • dihydroxydiarylfluorenes include 9,9-bis(4-hydroxyphenyl)fluorene and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene.
  • dihydroxydiaryladamantanes examples include 1,3-bis(4-hydroxyphenyl)adamantane, 2,2-bis(4-hydroxyphenyl)adamantane, 1,3-bis(4-hydroxyphenyl)-5,7- dimethyladamantane and the like.
  • dihydric phenolic compounds other than the above examples include 4,4′-[1,3-phenylenebis(1-methylethylidene)]bisphenol, 10,10-bis(4-hydroxyphenyl)-9-anthrone, 1 ,5-bis(4-hydroxyphenylthio)-2,3-dioxapentane and the like.
  • a terminal terminator (molecular weight modifier) can be used to adjust the molecular weight of the resulting PC-POS copolymer.
  • Examples of terminal terminator include phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, p-nonylphenol, m-pentadecylphenol and p-tert-amylphenol. Mention may be made of monohydric phenols. These monohydric phenols may be used singly or in combination of two or more.
  • the aqueous phase and the organic solvent phase are separated by standing appropriately [separation step], and the organic solvent phase is washed (preferably washed with a basic aqueous solution, an acidic aqueous solution, and water in this order) and [washed]. step], concentrating the obtained organic phase [concentrating step], and drying [drying step] to obtain a PC-POS copolymer (S-1).
  • the polycarbonate-based resin (S) further includes an aromatic polycarbonate-based resin (S-2) other than the PC-POS copolymer (S-1).
  • the aromatic polycarbonate resin (S-2) has a repeating unit whose main chain is represented by the following general formula (III).
  • As the polycarbonate-based resin various known polycarbonate-based resins can be used without any particular limitation.
  • the aromatic polycarbonate-based resin may be used alone or in combination of two or more.
  • the aromatic polycarbonate resin (S-2), unlike the PC-POS copolymer (S-1), does not have a polyorganosiloxane block as represented by formula (II).
  • the aromatic polycarbonate-based resin (S-2) is preferably a homopolycarbonate resin, more preferably a homopolycarbonate resin in which the main chain has substantially only repeating units represented by the following general formula (III).
  • R 9 and R 10 each independently represent a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • X' is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, -S-, -SO -, -SO 2 -, -O- or -CO-.
  • d and e each independently represent an integer of 0 to 4; ]
  • R 9 and R 10 are the same as those of R 1 and R 2 above, and the preferred ones are also the same.
  • R 9 and R 10 are more preferably an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • Specific examples of X' are the same as those of X above, and the preferred ones are also the same.
  • d and e are each independently preferably 0 to 2, more preferably 0 or 1;
  • the viscosity average molecular weight of the aromatic polycarbonate resin (S-2) is preferably 11,000 or more and 30,000 or less, more preferably 13,500 or more and 26,000. Below, more preferably 16,000 or more and 24,000 or less. If the viscosity-average molecular weight is within the above range, it is possible to obtain a polycarbonate-based resin composition having more excellent transparency and impact resistance, especially impact resistance at low temperatures.
  • the aromatic polycarbonate resin (S-2) is prepared, for example, in the presence of an organic solvent inert to the reaction and an alkaline aqueous solution, with a dihydric phenol compound and phosgene.
  • Interfacial polymerization method in which a polymerization catalyst such as a tertiary amine or a quaternary ammonium salt is added after the reaction; a basic catalyst is added to a dihydric alcohol and a diester carbonate in a molten state without using a solvent.
  • Melt polymerization method in which a dihydric phenolic compound is dissolved in pyridine or a mixed solution of pyridine and an inert solvent, and phosgene is introduced to directly produce a conventional polycarbonate production such as a pyridine method. Obtained by law.
  • a molecular weight modifier terminal terminator
  • branching agent a branching agent and the like are used.
  • the dihydric phenol compound is a compound having two phenolic hydroxyl groups in the molecule, and examples thereof include those represented by the following general formula (III').
  • R 9 , R 10 , X′, d and e are as defined above, and preferred ones are also the same.
  • dihydric phenol compound examples include those mentioned above in the method for producing PC-POS (S-1), and the preferred ones are also the same. Among them, bis(hydroxyphenyl)alkane-based dihydric phenols are preferred, and bisphenol A is more preferred.
  • the viscosity-average molecular weight MvPC of the polycarbonate-based resin (S) is 20,000 or more and 30,000 or less. If the viscosity-average molecular weight Mv PC is within the above range, a polycarbonate-based resin composition having excellent transparency, impact resistance, and chemical resistance can be obtained.
  • the viscosity average molecular weight Mv PC of the polycarbonate resin (S) is preferably 20,000 or more and 27,000 or less, more preferably 20,000 or more and 25,000 or less, still more preferably 20,000 or more and 22,000 or less. It is preferably 21,000 or more and 22,000 or less.
  • the polycarbonate-based resin (S) contains PC-POS (S-1) and an aromatic polycarbonate-based resin (S-2) other than the PC-POS copolymer (S-1), the polycarbonate-based resin (S) and the viscosity-average molecular weight Mv Si of the PC -POS copolymer (S-1) do not necessarily match, and there may be a difference.
  • the difference Mv Si -Mv PC between the viscosity average molecular weight Mv PC of the polycarbonate resin (S) and the viscosity average molecular weight Mv Si of the PC-POS copolymer (S-1) is -3,100 or more and 6,000 or less . be.
  • Mv Si -Mv PC is within the above range, a polycarbonate resin composition having excellent transparency and impact resistance can be obtained.
  • the difference Mv Si -Mv PC between the viscosity average molecular weight Mv PC of the polycarbonate resin (S) and the viscosity average molecular weight Mv Si of the PC -POS copolymer (S-1) is preferably -1,500 or more and 6,000. Below, it is more preferably -500 or more and 6,000 or less, still more preferably -500 or more and 4,000 or less, and particularly preferably -500 or more and 3,000 or less.
  • Mv Si -Mv PC is within the above range, it is possible to obtain a polycarbonate-based resin composition having superior transparency and impact resistance, especially low-temperature impact resistance and chemical resistance.
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate resin (S) is preferably 0.5% by mass or more and less than 8% by mass, more preferably 1% by mass or more and 6% by mass or less, and still more preferably 2.7% by mass or more and 5% by mass or less, particularly preferably 3.1% by mass or more and 5% by mass or less. If the content of the polyorganosiloxane block (A-2) in the polycarbonate-based resin (S) is within the above range, the polycarbonate-based resin having better transparency and impact resistance, especially impact resistance at low temperatures. A composition can be obtained.
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate resin (S) is the same as the content of the polyorganosiloxane block (A-2) in the PC-POS copolymer (S-1). , calculated by nuclear magnetic resonance (NMR) measurements.
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate-based resin (S) and the viscosity-average molecular weight Mv PC of the polycarbonate-based resin (S) are, for example, PC-POS copolymer (S-1) and aromatic It can be prepared according to the content ratio of the group polycarbonate resin (S-2).
  • the content of the PC-POS copolymer (S-1) in the polycarbonate resin (S) is preferably 5% by mass or more and 99% by mass or less, more preferably 15% by mass or more and 90% by mass or less, and still more preferably 30% by mass.
  • the content of the aromatic polycarbonate resin (S-2) in the polycarbonate resin (S) is preferably 1% by mass or more and 95% by mass or less, more preferably 10% by mass or more and 85% by mass or less, still more preferably 20% by mass. % or more and 70 mass % or less, more preferably 30 mass % or more and 60 mass % or less, particularly preferably 30 mass % or more and 50 mass % or less.
  • the polycarbonate-based resin composition of the present invention may further contain other additives as long as the effects of the present invention are not impaired.
  • other components include anti-hydrolysis agents, antioxidants, ultraviolet absorbers, flame retardants, flame retardant aids, reinforcing materials, fillers, elastomers for improving impact resistance, pigments, and dyes.
  • antioxidants include antioxidants.
  • an antioxidant By adding an antioxidant to the polycarbonate-based resin composition, oxidative deterioration of the polycarbonate-based resin composition during melting can be suppressed, and coloration or the like due to oxidative deterioration can be suppressed.
  • the antioxidant a phosphorus-based antioxidant and/or a phenol-based antioxidant or the like is preferably used.
  • Phenolic antioxidants include, for example, n-octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 2,6-di-tert-butyl-4-methylphenol, 2 , 2′-methylenebis(4-methyl-6-tert-butylphenol), pentaerythrityl-tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] and other hindered phenols mentioned.
  • antioxidants bis(2,6-di-tert-butyl 4-methylphenyl) pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite Those having a pentaerythritol diphosphite structure and triphenylphosphine are preferred.
  • Examples of commercially available phenolic antioxidants include Irganox 1010 (manufactured by BASF Japan Ltd., trade name), Irganox 1076 (manufactured by BASF Japan Ltd., trade name), Irganox 1330 (manufactured by BASF Japan Ltd., trade name), Irganox 3114 (manufactured by BASF Japan Ltd., trade name, BHT (manufactured by Takeda Pharmaceutical Co., Ltd., trade name), CYANOX1790 (manufactured by SOLVAY, trade name) and Sumilizer GA-80 (manufactured by Sumitomo Chemical Co., Ltd., trade name), etc. can be mentioned.
  • Irganox 1010 manufactured by BASF Japan Ltd., trade name
  • Irganox 1076 manufactured by BASF Japan Ltd., trade name
  • Irganox 1330 manufactured by BASF Japan Ltd., trade name
  • Irganox 3114 manufactured by BASF Japan Ltd.,
  • Phosphorus-based antioxidants include, for example, triphenylphosphite, diphenylnonylphosphite, diphenyl(2-ethylhexyl)phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(nonylphenyl) phosphites, diphenylisooctylphosphite, 2,2′-methylenebis(4,6-di-tert-butylphenyl)octylphosphite, diphenylisodecylphosphite, diphenylmono(tridecyl)phosphite, phenyldiisodecylphosphite, Phenyldi(tridecyl)phosphite, Tris(2-ethylhexyl)phosphite, Tris(isodecyl)pho
  • Examples of commercially available phosphorus-based antioxidants include Irgafos 168 (manufactured by BASF Japan Ltd., trade name), Irgafos 12 (manufactured by BASF Japan Ltd., trade name), and Irgafos 38 (manufactured by BASF Japan Ltd., trade name).
  • ADEKA STAB 2112 (manufactured by ADEKA Corporation, trade name), ADEKA STAB C (manufactured by ADEKA Corporation, trade name), ADEKA STAB 329K (manufactured by ADEKA Corporation, trade name), ADEKA STAB PEP36 (manufactured by ADEKA Corporation, trade name), JC -263 (manufactured by Johoku Chemical Co., Ltd., trade name), Sandstab P-EPQ (manufactured by Clariant, trade name), Doverphos S-9228PC (manufactured by Dover Chemical, trade name), and the like.
  • the above antioxidants can be used singly or in combination of two or more.
  • the content of the antioxidant in the polycarbonate-based resin composition of the present invention is preferably 0.001 parts by mass or more and 0.5 parts by mass or less, preferably 0, per 100 parts by mass of the polycarbonate-based resin (S). 0.01 parts by mass or more and 0.3 parts by mass or less, more preferably 0.05 parts by mass or more and 0.3 parts by mass or less. If the content of the antioxidant with respect to 100 parts by mass of the polycarbonate-based resin (S) is within the above range, a sufficient antioxidant action can be obtained and mold contamination during molding can be suppressed.
  • UV absorber Another specific example of other additives is an ultraviolet absorber.
  • Benzotriazole-based compounds, benzoxazine-based compounds, salicylate-based compounds, malonic acid ester-based compounds, oxalylalanide-based compounds, triazine-based compounds, benzophenone-based compounds, cyanoacrylate-based compounds, and the like are suitably used as UV absorbers.
  • benzotriazole compounds include 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-tert-amyl phenyl)benzotriazole, 2-(2'-hydroxy-5'-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole, 2- [2′-hydroxy-3′,5′-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2,2′-methylene-bis[4-methyl-6-(benzotriazole-2- yl)phenol], 2,2′-methylenebis(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) and the like.
  • triazine compounds include 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-(hexyloxy)phenol, 2-(4,6-bis- 2,4-dimethylphenyl-1,3,5-triazin-2-yl)-5-(hexyloxy)phenol and the like.
  • benzophenone compounds include 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-methoxy-benzophenone, and 2-hydroxy-4-ethoxy-benzophenone.
  • cyanoacrylate compounds include 2-ethyl-2-cyano-3,3-diphenyl acrylate, 2-ethylhexyl-2-cyano-3,3-diphenyl acrylate, 1,3-bis-[2 '-Cyano-3,3'-diphenylacryloyloxy]-2,2-bis-[(2-cyano-3',3'-diphenylacryloyl)oxy]methylpropane and the like.
  • At least one selected from the group consisting of benzotriazole-based compounds, malonic acid ester-based compounds, triazine-based compounds and benzoxazine-based compounds is preferred.
  • examples of commercially available ultraviolet absorbers include SEESORB 709 (manufactured by Shipro Kasei Co., Ltd., trade name), KEMISORB 79 (manufactured by Chemipro Kasei Co., Ltd., trade name), KEMISORB 279 (manufactured by Chemipro Kasei Co., Ltd., trade name), and HOSTAVIN.
  • B-CAP (manufactured by Clariant, trade name), Tinuvin 234 (manufactured by BASF Japan Ltd., trade name), Tinuvin 1577 (manufactured by BASF Japan Ltd., trade name), CYASORB UV-3638 F (manufactured by SOLVAY), etc. be able to.
  • the above ultraviolet absorbers can be used singly or in combination of two or more.
  • the content of the ultraviolet absorber in the polycarbonate-based resin composition of the present invention is preferably 0.01 parts by mass or more and 1 part by mass or less, more preferably 0.01 part by mass or more and 1 part by mass or less, relative to 100 parts by mass of the polycarbonate-based resin (S). 05 mass parts or more and 0.7 mass parts or less. If the content of the ultraviolet absorber is within the above range, sufficient lightfastness can be obtained, and if it is 1 part by mass or less, contamination of molds used during molding can be sufficiently suppressed.
  • the polycarbonate-based resin composition of the present invention can have both excellent transparency and impact resistance.
  • the polycarbonate-based resin composition of the present invention has excellent transparency. Transparency can be evaluated, for example, by haze value.
  • the polycarbonate resin composition of the present invention has a haze value measured in accordance with ISO 14782:1999 (JIS K 7136:2000) in a molded article having a thickness of 3 mm, preferably 0.1 or more and 1.0 or less. It is more preferably 0.2 or more and 0.9 or less, and still more preferably 0.3 or more and 0.6 or less.
  • the polycarbonate-based resin composition of the present invention has excellent impact resistance, especially at low temperatures. Impact resistance can be evaluated, for example, by Charpy impact strength, as shown in Examples described later.
  • the polycarbonate-based resin composition of the present invention has excellent chemical resistance. Chemical resistance can be evaluated, for example, by the method shown in Examples described later.
  • a domain (d) containing the polyorganosiloxane block (A-2) in a matrix mainly composed of the aromatic polycarbonate-based resin (S-2) component exists.
  • the normalized variance of the average domain size of domain (d) is preferably 40% or less, more preferably 20% or less, and even more preferably 18% or less.
  • the average domain size of domain (d) and its normalized dispersion can be evaluated by small angle X-ray scattering (SAXS) according to the description in JP-A-2011-102364.
  • SAXS small angle X-ray scattering
  • a three-stage plate width 50 mm, length 90 mm, thickness from the gate side of 3.0 mm (length 20 mm), 2.0 mm (length 45 mm), 1.0 mm (length 25 mm) and an arithmetic average surface roughness (Ra) of 0.03 ⁇ m
  • Ra arithmetic average surface roughness
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate-based resin composition is preferably 0.5% by mass or more and less than 8% by mass, more preferably 1% by mass or more and 6% by mass or less, and still more preferably 2% by mass. .7% by mass or more and 5% by mass or less, particularly preferably 3.1% by mass or more and 5% by mass or less. If the content of the polyorganosiloxane block (A-2) in the polycarbonate-based resin composition is within the above range, it is possible to obtain a polycarbonate-based resin composition having superior transparency and low-temperature impact resistance. can.
  • the content of the polyorganosiloxane block (A-2) in the polycarbonate resin (S) is the same as the content of the polyorganosiloxane block (A-2) in the PC-POS copolymer (S-1). , calculated by nuclear magnetic resonance (NMR) measurements.
  • melt-kneaded polycarbonate resin composition of the present invention or the obtained pellets as raw materials
  • Various moldings can be produced by a foam molding method or the like.
  • pellets obtained by melt-kneading can be suitably used for production of injection-molded articles by injection molding and injection compression molding.
  • Molded articles made of the polycarbonate resin composition of the present invention can be used, for example, in televisions, radios, cameras, video cameras, audio players, DVD players, air conditioners, mobile phones, smartphones, transceivers, displays, computers, tablet terminals, mobile phones, etc.
  • Game machines stationary game machines, wearable electronic devices, cash registers, calculators, copiers, printers, facsimiles, communication base stations, batteries, exterior and internal parts of parts for electric and electronic equipment such as robots, automobiles, railways, It can be suitably used as exterior and internal parts of ships, aircraft, space industry equipment, medical equipment, and parts of building materials.
  • Probe 50TH5AT/FG2 Measurement nucleus: 1H Observation range: -5 to 15 ppm Observation center: 5 ppm Pulse repetition time: 9 seconds Pulse width: 45° NMR sample tube: 5 ⁇ Sample amount: 30-40mg Solvent: deuterated chloroform Measurement temperature: room temperature Accumulation times: 256 For allylphenol-terminated polydimethylsiloxane A: Integrated value of methyl group in dimethylsiloxane moiety observed around ⁇ -0.02 to 0.5 B: ⁇ 2.
  • Viscosity average molecular weight The viscosity average molecular weight (Mv) is obtained by measuring the viscosity of a methylene chloride solution at 20 ° C. using an Ubbelohde viscometer, and obtaining the intrinsic viscosity [ ⁇ ] from this, using the following formula (Schnell formula) Calculated by
  • Step 1 Production of polycarbonate-polyorganosiloxane copolymer (S-1-1) (PC-PDMS (S-1-1))>
  • Step 1 Production of polycarbonate oligomer
  • Sodium dithionite was added to a 5.6% by weight aqueous sodium hydroxide solution so that the amount of sodium dithionite was 2000 ppm with respect to bisphenol A (BPA) to be dissolved later.
  • BPA bisphenol A
  • BPA bisphenol A
  • the reaction was carried out by adding 0.07 L/hr of a sodium hydroxide aqueous solution of 0.07 L/hr by mass, 17 L/hr of water, and 0.64 L/hr of a 1 mass % triethylamine aqueous solution.
  • the reaction liquid overflowing from the tank-type reactor was continuously withdrawn and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer thus obtained had a concentration of 341 g/L and a chloroformate group concentration of 0.71 mol/L.
  • Step 2 Production of PC-PDMS
  • PCO polycarbonate oligomer solution
  • MC methylene chloride
  • PDMS o-allylphenol-terminated polydimethylsiloxane having an average polydimethylsiloxane chain length n of 37 (iii) dissolved in 2 L (v) of methylene chloride
  • TAA triethylamine
  • PTBP p-tert-butylphenol
  • bisphenol A sodium hydroxide aqueous solution sodium hydroxide 562 g (xi) and 1.7 g (xii) of sodium dithionite (Na 2 S 2 O 4 ) dissolved in 8.2 L (xiii) of pure water, and 826 g (xiv) of bisphenol A dissolved therein.
  • PC-PDMS polycarbonate-polydimethylsiloxane copolymer
  • aqueous phase containing excess bisphenol A and sodium hydroxide.
  • the organic phase was isolated.
  • the methylene chloride solution of PC-PDMS thus obtained is washed with 15% by volume of 0.03 mol/L sodium hydroxide aqueous solution and 0.2 mol/L hydrochloric acid in sequence, and then the aqueous phase after washing Washing with pure water was repeated until the electric conductivity inside became 5 ⁇ S/cm or less.
  • PC-PDMS PC-PDMS (S-1-1).
  • the content of the polyorganosiloxane block (A-2) obtained by NMR of the obtained PC-PDMS (S-1-1) was 6.0% by mass, and the average chain length of the polyorganosiloxane block (A-2) was 37 and the viscosity average molecular weight Mv was 17,700.
  • PC-PDMS (S-1-2) to (S-1-9) Production of PC-PDMS (S-1-2) to (S-1-9))> PC-PDMS (S-1-2) to (S-1-9) were prepared in the same manner as in Production Example 1 except that the values (i) to (xv) shown in Table 1 were changed as shown in the table. ) was manufactured.
  • Table 1 shows the content of the polyorganosiloxane block (A-2), the average chain length of the polyorganosiloxane block (A-2), and the viscosity-average molecular weight Mv of each PC-PDMS.
  • Antioxidant IRGAFOS 168 (trade name) [tris (2,4-di-tert-butylphenyl) phosphite, manufactured by BASF Japan Ltd.]
  • UV absorber CYASORB UV-3638 F (trade name) [2,2′-(p-phenylene)di-3,1-benzoxazin-4-one, manufactured by SOLVAY]
  • UV absorber KEMISORB 79 (trade name) [2-benzotriazolyl-4-tert-octylphenol, manufactured by Chemipro Kasei Co., Ltd.]
  • FIG. prepared Three cylindrical shafts made of SUS304, each having a diameter of 10 mm and a length of 70 mm, were fixed in parallel with each other so that both ends in the longitudinal direction were aligned and the cross section in the short direction was shown in FIG. prepared. Specifically, one cylindrical shaft is used as the central shaft 22 and the other two shafts are both end shafts 23, and the plane including both the center axes 21 of the two end shafts 23 and the center axis 21 of the center shaft 22 The vertical distance was 11.3 mm, and the distance L between the central axes 21 of the shafts 23 at both ends was 60 mm. Each test piece was fixed to the jig as shown in FIG.
  • each test piece 31 is in contact with the central shaft 32
  • the top surface is in contact with both end shafts 33
  • the longitudinal direction of the test piece 31 is perpendicular to the longitudinal direction of each shaft. fixed to the tool.
  • the vertical distance G between the tangent plane 36 on the central shaft 32 containing the points of contact between the central shaft 32 and the specimen 31 and the tangent plane 35 on the double shaft 33 containing the points of contact between the shaft 33 and the specimen 31 is 1. 3 mm
  • the distance L between the shafts 33 on both ends was 60 mm.
  • a sunscreen agent "NIVEA (trademark) SUN Protect and Moisture Lotion SPF30” (manufactured by Beiersdorf) was applied in a width of 1 cm on each side in the longitudinal direction from the center of the upper surface of the test piece. After 72 hours at 23°C, the presence or absence of cracks was visually confirmed, and the change in appearance was evaluated. The thickness t m of the test piece was obtained. Table 3 shows the results.
  • Examples 13-14 A pellet sample for evaluation was obtained in the same manner as in Example 1, except that each component was mixed in the proportion shown in Table 4. Using this pellet sample for evaluation, in the same manner as in Example 1, the PDMS content and Mv of the polycarbonate-based resin composition were measured, and the transparency, impact resistance and chemical resistance were evaluated. Also in Examples 13 and 14, excellent transparency, impact resistance and chemical resistance were exhibited. In addition, in Examples 13 and 14 containing an ultraviolet absorber, it is expected that light fastness is exhibited.
  • central shaft 21 central axis of shaft 22 central shaft 23 double-ended shaft 31 test piece 32 central shaft 33 double-ended shaft 34 test piece center 35 tangential plane 36 on double-ended shaft containing contact points of both shafts and test piece contact points of central shaft and test piece tangent plane on the central shaft containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、特定構造の繰り返し単位を含むポリカーボネートブロック(A-1)及び特定構造及び特定量の繰り返し単位を含み特定の平均鎖長を有するポリオルガノシロキサンブロック(A-2)を含むポリカーボネート-ポリオルガノシロキサン共重合体(S-1)及び前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含むポリカーボネート系樹脂(S)を含み、特定粘度平均分子量MvPCを有するポリカーボネート系樹脂組成物であり、 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-3,100以上6,000以下であるポリカーボネート系樹脂組成物。

Description

ポリカーボネート系樹脂組成物
 本発明は、ポリカーボネート系樹脂組成物及びその成形体に関する。
 ポリカーボネート-ポリオルガノシロキサン共重合体(以下、「PC-POS共重合体」と略記することがある)は、その高い耐衝撃性、耐薬品性、及び難燃性等の優れた性質から注目されている。そのため、電気・電子機器分野、自動車分野等の様々な分野において幅広い利用が期待されている。特に、携帯電話、モバイルパソコン、デジタルカメラ、ビデオカメラ、電動工具などの筐体、及びその他の日用品への利用が広がっている。
 通常、代表的なポリカーボネートとしては、原料の二価フェノールとして、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕を用いたホモポリカーボネートが一般的に使用されている。このホモポリカーボネートの難燃性や耐衝撃性等の物性を改良するために、ポリオルガノシロキサンを共重合モノマーとして用いたポリカーボネート-ポリオルガノシロキサン共重合体が知られている(特許文献1)。
 ポリカーボネート系樹脂組成物の耐衝撃性、特に低温下での耐衝撃性を改善する場合には、特許文献2に開示されるように、鎖長の長いポリオルガノシロキサンを用いる方法が知られている。しかし、この方法では、透明性が低下するという問題があった。
 逆に、ポリカーボネート系樹脂組成物の透明性をより改善するためには、比較的鎖長の短いポリオルガノシロキサンを用いる方法が知られている(特許文献3,4参照)。しかし、この方法では、耐衝撃性が低下するという問題があった。
 特許文献5では、光線透過率の相違する2種類のポリカーボネート-ポリオルガノシロキサン共重合体の配合によって、優れた耐衝撃性を維持しつつ透明性を向上させる試みがなされているが、その透明性は十分とは言えないものであった。
特許第2662310号公報 特開2012-246430号公報 特開平8-81620号公報 特開2011-46911号公報 特表2006-523243号公報
 ポリカーボネート系樹脂組成物において、優れた透明性と優れた耐衝撃性、特に低温下での耐衝撃性を両立させることは困難である。特に、PC-POS共重合体の粘度平均分子量が比較的高い場合において、優れた透明性と優れた耐衝撃性の両立するためには更なる改善が必要であると本発明者は考えた。
 本発明は、透明性及び耐衝撃性に優れる、粘度平均分子量が比較的高いPC-POS共重合体を含むポリカーボネート系樹脂組成物及びその成形体を提供することを目的とする。
 本発明者は、特定の粘度平均分子量のPC-POS共重合体と特定の粘度平均分子量のPC-POS共重合体以外の芳香族ポリカーボネート系樹脂を組み合わせたポリカーボネート系樹脂組成物により、上記課題が解決されることを見出した。
 すなわち本発明は、下記[1]~[12]に関する。
[1] 下記一般式(I)で表される繰り返し単位を含むポリカーボネートブロック(A-1)及び下記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(A-2)を含むポリカーボネート-ポリオルガノシロキサン共重合体(S-1)及び前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含むポリカーボネート系樹脂(S)を含むポリカーボネート系樹脂組成物であり、
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCが、20,000以上30,000以下であり、
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量が、0.5質量%以上9質量%以下であり、
 ポリオルガノシロキサンブロック(A-2)の平均鎖長nが20以上60未満であり、
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-3,100以上6,000以下であるポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
[式中、R1及びR2はそれぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示す。R3及びR4はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。a及びbは、それぞれ独立に0~4の整数を示す。]
[2] 前記ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-1,500以上6,000以下である、上記[1]に記載のポリカーボネート系樹脂組成物。
[3] 前記ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-500以上6,000以下である、上記[2]に記載のポリカーボネート系樹脂組成物。
[4] ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiが、18,500以上25,000以下である、上記[1]~[3]のいずれか1項に記載のポリカーボネート系樹脂組成物。
[5] 前記ポリオルガノシロキサンブロック(A-2)の含有量が、前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中、0.5質量%以上8質量%以下である、上記[1]~[4]のいずれか1項に記載のポリカーボネート系樹脂組成物。
[6] 前記ポリオルガノシロキサンブロック(A-2)が、下記一般式(II-I)、(II-II)及び(II-III)のいずれかで表されるブロック単位である、上記[1]~[5]のいずれか1項に記載のポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
[式中、R3~R6はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数6~12のアリール基を示し、複数のR3~R6は互いに同一であっても異なっていてもよい。Yは-R7O-、-R7COO-、-R7NH-、-R7NR8-、-COO-、-S-、-R7COO-R9-O-、または-R7O-R10-O-を示し、複数のYは互いに同一であっても異なっていてもよい。前記R7は、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。R8は、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。R9はジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、またはジアリーレン基を示す。βは、ジイソシアネート化合物由来の2価の基、またはジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。nは上記した通りであり、pは1以上n-2以下の整数である。]
[7] 厚さ3mmの成形体において、ISO 14782:1999に準拠して測定したヘイズ値が0.1以上1.0以下である、上記[1]~[6]のいずれか1項に記載のポリカーボネート系樹脂組成物。
[8] 前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)が、下記一般式(IV)で表されるブロック単位(A-3)を実質的に含まない、上記[1]~[7]のいずれか1項に記載のポリカーボネート系樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
[式中、R21~R24はそれぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基である。R25は炭素数1~6のアルキル基、水素原子、ハロゲン原子、ヒドロキシ基、炭素数1~6のアルコキシ基、又は炭素数6~14のアリール基である。Qは炭素数1~10の2価の脂肪族基である。mは平均鎖長を示し、10以上の整数である。]
[9] 前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)が、ポリカーボネートブロック(A-1)及びポリオルガノシロキサンブロック(A-2)のみからなる、上記[1]~[8]のいずれか1項に記載のポリカーボネート系樹脂組成物。
[10] 前記ポリオルガノシロキサンブロック(A-2)の平均鎖長nが30より大きく60未満である、上記[1]~[9]のいずれか1項に記載のポリカーボネート系樹脂組成物。
[11] 前記芳香族ポリカーボネート系樹脂(S-2)の粘度平均分子量が、11,000以上30,000以下である、上記[1]~[10]のいずれか1項に記載のポリカーボネート系樹脂組成物。
[12] 上記[1]~[11]のいずれか1項記載のポリカーボネート系樹脂組成物を成形して得られる、成形体。
 本発明によれば、透明性及び耐衝撃性に優れる、粘度平均分子量が比較的高いPC-POS共重合体を含むポリカーボネート系樹脂組成物及びその成形体を提供することができる。
図1は、耐薬品性の評価に使用した試験片の断面図である。 図2は、耐薬品性の評価に使用した治具の短手方向の断面図である。 図3は、耐薬品性の評価に使用した、治具に固定した試験片の概略図である。
 本発明のポリカーボネート系樹脂組成物は、特定の繰り返し単位を含むポリカーボネートブロック(A-1)及び特定の繰り返し単位を含むポリオルガノシロキサンブロック(A-2)を含むポリカーボネート-ポリオルガノシロキサン共重合体(S-1)及び前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含むポリカーボネート系樹脂(S)を含むポリカーボネート系樹脂組成物であり、
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiが、20,000以上30,000以下であり、
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量が、0.5質量%以上9.0質量%以下であり、
 ポリオルガノシロキサンブロック(A-2)の平均鎖長nが20以上60未満であり、
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-3,100以上6,000以下である。
 以下、本発明のポリカーボネート系樹脂組成物及びその成形体について詳細に説明する。本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本明細書において、「XX~YY」の記載は、「XX以上YY以下」を意味する。
[ポリカーボネート系樹脂組成物]
 本発明のポリカーボネート系樹脂組成物は、ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)及び前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含むポリカーボネート系樹脂(S)を含む。
<ポリカーボネート系樹脂(S)>
 本発明のポリカーボネート系樹脂組成物を構成するポリカーボネート系樹脂(S)は、下記一般式(I)で表される繰り返し単位を含むポリカーボネートブロック(A-1)及び下記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(A-2)を含むポリカーボネート-ポリオルガノシロキサン共重合体(S-1)及び前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含み、
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiが、20,000以上30,000以下であり、
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量が、0.5質量%以上9.0質量%以下であり、
 ポリオルガノシロキサンブロック(A-2)の平均鎖長nが20以上60未満であり、
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-3,100以上6,000以下である。
Figure JPOXMLDOC01-appb-C000007

[式中、R1及びR2はそれぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示す。R3及びR4はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。a及びbは、それぞれ独立に0~4の整数を示す。]
(ポリカーボネート-ポリオルガノシロキサン共重合体(S-1))
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)は、上記一般式(I)で表される繰り返し単位を含むポリカーボネートブロック(A-1)及び上記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(A-2)を含み、
 ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量が、0.5質量%以上9.0質量%以下あり、
 ポリオルガノシロキサンブロック(A-2)の平均鎖長nが20以上60未満である。
 以下、ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)を「PC-POS共重合体(S-1)」と略記することがある。
・ポリカーボネートブロック(A-1)
 上記一般式(I)中、R1及びR2がそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 R1及びR2がそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基(「各種」とは、直鎖状及びあらゆる分岐鎖状のものを含むことを示す。以下、明細書中同様である。)、各種ペンチル基、及び各種ヘキシル基が挙げられる。R1及びR2がそれぞれ独立して示すアルコキシ基としては、アルキル基部位として前記アルキル基を有するものが挙げられる。
 Xが表すアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等が挙げられ、炭素数1~5のアルキレン基が好ましい。Xが表すアルキリデン基としては、エチリデン基、イソプロピリデン基等が挙げられる。Xが表すシクロアルキレン基としては、シクロペンタンジイル基やシクロヘキサンジイル基、シクロオクタンジイル基等が挙げられ、炭素数5~10のシクロアルキレン基が好ましい。Xが表すシクロアルキリデン基としては、例えば、シクロヘキシリデン基、3,5,5-トリメチルシクロヘキシリデン基、2-アダマンチリデン基等が挙げられ、炭素数5~10のシクロアルキリデン基が好ましく、炭素数5~8のシクロアルキリデン基がより好ましい。Xが表すアリールアルキレン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6~14のアリール基が挙げられ、アルキレン基としては上述したアルキレンが挙げられる。Xが表すアリールアルキリデン基のアリール部位としては、フェニル基、ナフチル基、ビフェニル基、アントリル基などの環形成炭素数6~14のアリール基が挙げられ、アルキリデン基としては上述したアルキリデン基を挙げることができる。
 a及びbは、それぞれ独立に0~4の整数を示し、好ましくは0~2、より好ましくは0又は1である。
 中でも、a及びbが0であり、Xが単結合又は炭素数1~8のアルキレン基であるもの、又はa及びbが0であり、Xが炭素数3のアルキリデン基、特にイソプロピリデン基であるものが好適である。
 ポリカーボネートブロック(A-1)は、好ましくは実質的に上記一般式(I)で表さる繰り返し単位のみからなる。
・ポリオルガノシロキサンブロック(A-2)
 ポリオルガノシロキサンブロック(A-2)は、PC-POS共重合体(S-1)の主鎖上において、最も近接する2つのポリカーボネート結合の間に存在する構造単位であり、上記一般式(II)で表される繰り返し単位を少なくとも1つ含む。
 上記一般式(II)中、R3又はR4で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。R3又はR4で示されるアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる。R3又はR4で示されるアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R3又はR4で示されるアリール基としては、フェニル基、ナフチル基等が挙げられる。
 R3及びR4はいずれも好ましくは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基であり、いずれもメチル基であることがより好ましい。
 PC-POS共重合体(S-1)に含まれるポリオルガノシロキサンブロック(A-2)の平均鎖長nは、20以上60未満であり、好ましくは20以上55以下、より好ましくは25以上50以下、より更に好ましくは30より大きく43以下である。平均鎖長が上記範囲内であれば、より優れた透明性及び耐衝撃性、中でも低温での耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
 また、好ましい態様の1つにおいて、PC-POS共重合体(S-1)は、ポリオルガノシロキサンブロック(A-2)として平均鎖長が60以上であるポリオルガノシロキサンに由来するブロック単位を実質的に含まない。
 なお、ポリオルガノシロキサンブロック(A-2)の平均鎖長とは、PC-POS共重合体(S-1)の主鎖上において、最も近接する2つのポリカーボネート結合の間に存在するポリオルガノシロキサンブロック(A-2)に含まれる-SiR-基の個数の平均である。また、ポリオルガノシロキサンブロック(A-2)に含まれる上記一般式(II)で表される繰り返し単位の平均繰り返し数はn-1である。
 PC-POS共重合体(S-1)に含まれるポリオルガノシロキサンブロック(A-2)の平均鎖長nは、核磁気共鳴(NMR)測定により算出される。
 PC-POS共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量(ポリオルガノシロキサン量ともいう。)は、0.5質量%以上9質量%以下である。PC-POS共重合体(S-1)中のポリオルガノシロキサン量が上記範囲内であれば、優れた透明性及び耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
 PC-POS共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量は、好ましくは0.5質量%以上8質量%以下、より好ましくは0.5質量%以上8質量%未満、更に好ましくは2質量%以上7.5質量%以下、更に好ましくは4質量%以上7質量%以下、特に好ましくは5質量%以上7質量%以下である。
 本明細書において、「PC-POS共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量」とは、ポリカーボネートブロック(A-1)、前記一般式(II)及び必要に応じてPC-POS共重合体(S-1)が含む後述の末端停止剤に由来する末端構造の合計質量に対する、前記一般式(II)の質量の百分率である。後述する「ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-2)の含有量」及び「ポリカーボネート系樹脂組成物中のポリオルガノシロキサンブロック(A-2)の含有量」についても同様である。
 PC-POS共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量は、核磁気共鳴(NMR)測定により算出される。具体的には、1H-NMR測定を行い、式(I)に由来するピーク、式(II)由来のピーク、及び末端基由来のピークの積分値から算出される。
 上記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(A-2)の好ましい態様は、下記一般式(II-I)~(II-III)のいずれかで表されるブロック単位である。
Figure JPOXMLDOC01-appb-C000008
[式中、R3~R6は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示し、複数のR3~R6は、互いに同一でも異なっていてもよい。Yは-R7O-、-R7COO-、-R7NH-、-R7NR8-、-COO-、-S-、-R7COO-R9-O-、又は-R7O-R10-O-を示し、複数のYは、互いに同一であっても異なっていてもよい。前記R7は、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換又は無置換のアリーレン基、又はジアリーレン基を示す。R8は、アルキル基、アルケニル基、アリール基、又はアラルキル基を示す。R9は、ジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、又はジアリーレン基を示す。βは、ジイソシアネート化合物由来の2価の基、又はジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。nは上記した通りである。pは、1以上n-2以下の整数である。]
 R3~R6がそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。R3~R6がそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる。R3~R6がそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R3~R6がそれぞれ独立して示すアリール基としては、フェニル基、ナフチル基等が挙げられる。
 R3~R6としては、いずれも、好ましくは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基である。
 一般式(II-I)、(II-II)及び/又は(II-III)中のR3~R6がいずれもメチル基であることが好ましい。
 Yが示す-R7O-、-R7COO-、-R7NH-、-R7NR8-、-R7COO-R9-O-、又は-R7O-R10-O-において、R7がSi原子に結合している。Yが示す-COO-において、C原子がSi原子に結合している。
 Yが示す-R7O-、-R7COO-、-R7NH-、-R7NR8-、-R7COO-R9-O-、又は-R7O-R10-O-におけるR7が表す直鎖又は分岐鎖アルキレン基としては、炭素数1~8、好ましくは炭素数1~5のアルキレン基が挙げられる。R7が表す環状アルキレン基としては、炭素数5~15、好ましくは炭素数5~10のシクロアルキレン基が挙げられる。
 R7が表すアリール置換アルキレン基としては、芳香環にアルコキシ基、アルキル基のような置換基を有していてもよく、その具体的構造としては、例えば、下記の一般式(i)又は(ii)の構造を示すことができる。ここで、R7がアリール置換アルキレン基を示す場合、アルキレン基がSi原子に結合している。アリール置換アルキレン基において、Yが示す-R7O-、-R7COO-、-R7NH-、-R7NR8-、-R7COO-R9-O-、又は-R7O-R10-O-において、アリーレン基がR7に隣接する酸素原子、炭素原子又は窒素原子に結合している。
Figure JPOXMLDOC01-appb-C000009
[式中cは正の整数を示し、通常1~6の整数である。]
 R7、R9及びR10が示すジアリーレン基とは、二つのアリーレン基が直接、又は二価の有機基を介して連結された基のことであり、具体的には-Ar1-W-Ar2-で表わされる構造を有する基である。ここで、Ar1及びAr2は、アリーレン基を示し、Wは単結合、又は2価の有機基を示す。Wの示す2価の有機基は、例えばイソプロピリデン基、メチレン基、ジメチレン基、トリメチレン基である。
 R7、Ar1及びAr2が表すアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントリレン基などの環形成炭素数6~14のアリーレン基が挙げられる。これらアリーレン基は、アルコキシ基、アルキル基等の任意の置換基を有していてもよい。
 R8が示すアルキル基としては炭素数1~8、好ましくは1~5の直鎖又は分岐鎖のものである。R8が示すアルケニル基としては、炭素数2~8、好ましくは2~5の直鎖又は分岐鎖のものが挙げられる。R8が示すアリール基としてはフェニル基、ナフチル基等が挙げられる。R8が示すアラルキル基としては、フェニルメチル基、フェニルエチル基等が挙げられる。
 R10が示す直鎖、分岐鎖もしくは環状アルキレン基は、R7と同様である。
 Yとしては、好ましくは-R7O-であって、R7が、アリール置換アルキレン基である。中でも、R7は、より好ましくは特にアルキル基を有するフェノール系化合物の残基であり、更に好ましくはアリルフェノール由来の有機残基又はオイゲノール由来の有機残基である。
 なお、式(II-II)中のpについては、p=n-p-2であることが好ましい。
 βは、ジイソシアネート化合物由来の2価の基又はジカルボン酸又はジカルボン酸のハロゲン化物由来の2価の基を示し、例えば、以下の一般式(iii)~(vii)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 例えば、下記一般式(II-I)で表されるブロック単位としては、以下の一般式(II-I-1)~(II-I-11)のブロック単位が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(II-I-1)~(II-I-11)中、R3~R6、n-1及びR8は前記と同じであり、好ましいものも同じである。cは正の整数を示し、通常1~6の整数である。
 これらの中でも、ポリオルガノシロキサンの重合の容易さの観点においては、上記一般式(II-I-1)で表されるブロック単位が好ましい。また、入手の容易さの観点においては、上記一般式(II-I-2)で表されるブロック単位、上記一般式(II-I-3)で表されるブロック単位が好ましい。
 その他、ポリオルガノシロキサンブロック(A-2)の別の好ましい態様として、下記一般式(II-IV)で表されるブロック単位であることが挙げられる。
Figure JPOXMLDOC01-appb-C000012
[式中のR3及びR4は上述したものと同様である。r×mは上記nと等しい。]
 一般式(II-IV)で示されるポリオルガノシロキサンブロックの平均鎖長は(r×m)となり、(r×m)の範囲は上記nと同一である。
 透明性及び低温での耐衝撃性の観点から、PC-POS共重合体(S-1)は、その好ましい態様の1つにおいて、ポリオルガノシロキサンブロック(A-2)として下記一般式(IV)で表されるブロック単位(A-3)を実質的に含まない。
Figure JPOXMLDOC01-appb-C000013
[式中、R21~R24はそれぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基である。R25は炭素数1~6のアルキル基、水素原子、ハロゲン原子、ヒドロキシ基、炭素数1~6のアルコキシ基、又は炭素数6~14のアリール基である。Qは炭素数1~10の2価の脂肪族基である。mは平均鎖長を示し、10以上の整数である。]
 R21~R24がそれぞれ独立して示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。R21~R24がそれぞれ独立して示すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、及び各種ヘキシル基が挙げられる。R21~R24がそれぞれ独立して示すアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R21~R24がそれぞれ独立して示すアリール基としては、フェニル基、ナフチル基等が挙げられる。
 R25が示す炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基が挙げられる。R25が示すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。R25が示す炭素数1~6のアルコキシ基としては、アルキル基部位が前記アルキル基である場合が挙げられる。R25が示す炭素数6~14のアリール基としては、フェニル基、トルイル基、ジメチルフェニル基、及びナフチル基などが挙げられる。
 Q2が示す炭素数1~10の2価の脂肪族基としては、炭素数1以上10以下の、直鎖又は分岐鎖の2価の飽和脂肪族基が好ましい。当該飽和脂肪族基の炭素数は、好ましくは1以上8以下、より好ましくは2以上6以下、さらに好ましくは3以上6以下、よりさらに好ましくは4以上6以下である。
 mは平均鎖長であり、10以上の整数である。
 繰り返し単位(A-3)の具体的態様としては、下記式(IV-I)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000014
[式中、mは上記の通りである。]
 PC-POS共重合体(S-1)の好ましい態様において、PC-POS共重合体(S-1)の主鎖はポリカーボネートブロック(A-1)、ポリオルガノシロキサンブロック(A-2)及び必要に応じて後述の末端停止剤に由来する末端構造のみからなる。
・ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の物性
 PC-POS共重合体(S-1)の粘度平均分子量は、好ましくは18,500以上25,000以下、より好ましくは20,000以上25,000以下、更に好ましくは20,000以上24,000以下、特に好ましくは21,000以上23,500以下である。粘度平均分子量MvSiが上記範囲内であれば、より優れた透明性及び耐衝撃性、中でも低温での耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
 PC-POS共重合体(S-1)の粘度平均分子量(Mv)は、使用される用途や製品により、目的の分子量となるように分子量調節剤(末端停止剤)等を用いることにより適宜調整ことができる。
 粘度平均分子量(Mv)は、20℃における塩化メチレン溶液の極限粘度〔η〕を測定し、下記Schnellの式から算出した値である。
Figure JPOXMLDOC01-appb-M000015
・ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の製造方法
 上記PC-POS共重合体(S-1)は、界面重合法(ホスゲン法)、ピリジン法、エステル交換法等の公知の製造方法により製造することができる。特に界面重合法を採用した場合には、PC-POS共重合体を含む有機相と未反応物や触媒残渣等を含む水相との分離工程が容易であり、アルカリ洗浄、酸洗浄、純水洗浄等の各洗浄工程におけるPC-POS共重合体を含む有機相と水相との分離が容易である。そのため、効率よくPC-POS共重合体が得られる。PC-POS共重合体を製造する方法として、例えば、特開2014-80462号公報等に記載の方法を参照することができる。
 界面重合法(ホスゲン法)においては、例えば、二価フェノール系化合物とホスゲン等のカーボネート前駆体とを重合させたポリカーボネートオリゴマーを予め製造し、次いでポリカーボネートオリゴマー、ポリオルガノシロキサン及び必要に応じて二価フェノール系化合物を重合させてPC-POS共重合体(S-1)を製造する。
 具体的には、後述する予め製造されたポリカーボネートオリゴマーと、ポリオルガノシロキサンとを、非水溶性有機溶媒(塩化メチレン等)に溶解させ、二価フェノール系化合物(ビスフェノールA等)のアルカリ性化合物水溶液(水酸化ナトリウム水溶液等)を加え、重合触媒として第三級アミン(トリエチルアミン等)や第四級アンモニウム塩(トリメチルベンジルアンモニウムクロライド等)を用い、末端停止剤(p-tert-ブチルフェノール等の1価フェノール)の存在下、界面重縮合反応させることにより製造できる。
 また、PC-POS共重合体(S-1)は、例えば、ポリオルガノシロキサンと、二価フェノール系化合物と、ホスゲン、炭酸エステル又はクロロホーメートとを共重合させることによっても製造できる。
 原料となるポリオルガノシロキサンとしては、以下の一般式(1)、(2)及び/又は(3)に示すものを用いることができる。
Figure JPOXMLDOC01-appb-C000016
[式中、R3~R6、Y、β、n及びpは上記した通りである。]
 R3~R6、Y、β、n及びpの具体例及び好ましいものも上記した通りである。
 Zは、水素原子又はハロゲン原子を示し、複数のZは、互いに同一であっても異なっていてもよい。
 例えば、一般式(1)で表されるポリオルガノシロキサンとしては、以下の一般式(1-1)~(1-11)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記一般式(1-1)~(1-11)中、R3~R6、n-1及びR8は前記と同じであり、好ましいものも同じである。cは正の整数を示し、通常1~6の整数である。
 これらの中でも、ポリオルガノシロキサンの重合の容易さの観点においては、上記一般式(1-1)で表されるフェノール変性ポリオルガノシロキサンが好ましい。また、入手の容易さの観点においては、上記一般式(1-2)で表される化合物中の一種であるα,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、上記一般式(1-3)で表される化合物中の一種であるα,ω-ビス[3-(4-ヒドロキシ-3-メトキシフェニル)プロピル]ポリジメチルシロキサンが好ましい。
 その他、ポリオルガノシロキサン原料として以下の一般式(4)を有するものを用いてもよい。
Figure JPOXMLDOC01-appb-C000018
[式中、R3、R4、r及びmは前記と同じである。]
 原料となるポリオルガノシロキサンとして、下記一般式(5)又は(6)で表されるポリオルガノシロキサンは、使用しないことが好ましい。
Figure JPOXMLDOC01-appb-C000019
[式中、R21~R25、Q、及びmは前記と同じである。]
Figure JPOXMLDOC01-appb-C000020
[式中、mは前記と同じである。]
 前記ポリオルガノシロキサンの製造方法は特に限定されない。例えば、特開平11-217390号公報に記載の方法によれば、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させて、α,ω-ジハイドロジェンオルガノペンタシロキサンを合成し、次いで、ヒドロシリル化反応用触媒の存在下に、該α,ω-ジハイドロジェンオルガノペンタシロキサンにフェノール性化合物(例えば2-アリルフェノール、4-アリルフェノール、オイゲノール、2-プロペニルフェノール等)等を付加反応させることで、粗ポリオルガノシロキサンを得ることができる。また、特許第2662310号公報に記載の方法によれば、オクタメチルシクロテトラシロキサンとテトラメチルジシロキサンとを硫酸(酸性触媒)の存在下で反応させ、得られたα,ω-ジハイドロジェンオルガノポリシロキサンを上記と同様に、ヒドロシリル化反応用触媒の存在下でフェノール性化合物等を付加反応させることで、粗ポリオルガノシロキサンを得ることができる。なお、α,ω-ジハイドロジェンオルガノポリシロキサンは、その重合条件によりその鎖長nを適宜調整して用いることもできるし、市販のα,ω-ジハイドロジェンオルガノポリシロキサンを用いてもよい。具体的には、特開2016-098292号公報に記載されるものを用いることができる。
 ポリカーボネートオリゴマーは、塩化メチレン、クロロベンゼン、クロロホルム等の有機溶剤中で、二価フェノール系化合物とホスゲンやトリホスゲンのようなカーボネート前駆体との反応によって製造することができる。エステル交換法を用いてポリカーボネートオリゴマーを製造する際には、二価フェノール系化合物とジフェニルカーボネートのようなカーボネート前駆体との反応によって製造することもできる。
 二価フェノール系化合物としては、下記一般式(viii)で表される二価フェノール系化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 式中、R1、R2、a、b及びXは上述した通りである。
 上記一般式(viii)で表される二価フェノール系化合物としては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン等のビス(ヒドロキシフェニル)アルカン系、4,4'-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン等が挙げられる。これらの二価フェノール系化合物は、1種を単独で使用してもよいし、2種以上を混合して用いてもよい。
 これらの中でも、ビス(ヒドロキシフェニル)アルカン系二価フェノールが好ましく、ビスフェノールAがより好ましい。二価フェノール系化合物としてビスフェノールAを用いた場合、上記一般式(i)において、Xがイソプロピリデン基であり、且つa=b=0のPC-POS共重合体となる。
 ビスフェノールA以外の二価フェノール系化合物としては、例えば、ビス(ヒドロキシアリール)アルカン類、ビス(ヒドロキシアリール)シクロアルカン類、ジヒドロキシアリールエーテル類、ジヒドロキシジアリールスルフィド類、ジヒドロキシジアリールスルホキシド類、ジヒドロキシジアリールスルホン類、ジヒドロキシジフェニル類、ジヒドロキシジアリールフルオレン類、ジヒドロキシジアリールアダマンタン類等が挙げられる。これらの二価フェノール系化合物は、1種を単独で使用してもよいし、2種以上を混合して用いてもよい。
 ビス(ヒドロキシアリール)アルカン類としては、例えばビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等が挙げられる。
 ビス(ヒドロキシアリール)シクロアルカン類としては、例えば1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等が挙げられる。ジヒドロキシアリールエーテル類としては、例えば4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等が挙げられる。
 ジヒドロキシジアリールスルフィド類としては、例えば4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等が挙げられる。ジヒドロキシジアリールスルホキシド類としては、例えば4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等が挙げられる。ジヒドロキシジアリールスルホン類としては、例えば4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等が挙げられる。
 ジヒドロキシジフェニル類としては、例えば4,4’-ジヒドロキシジフェニル等が挙げられる。ジヒドロキシジアリールフルオレン類としては、例えば9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。ジヒドロキシジアリールアダマンタン類としては、例えば1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。
 上記以外の二価フェノール系化合物としては、例えば4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタン等が挙げられる。
 得られるPC-POS共重合体の分子量を調整するために、末端停止剤(分子量調節剤)を使用することができる。末端停止剤としては、例えば、フェノール、p-クレゾール、p-tert-ブチルフェノール、p-tert-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、m-ペンタデシルフェノール及びp-tert-アミルフェノール等の一価フェノールを挙げることができる。これら一価フェノールは、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記界面重縮合反応後、適宜静置して水相と有機溶媒相とに分離し[分離工程]、有機溶媒相を洗浄(好ましくは塩基性水溶液、酸性水溶液、水の順に洗浄)し[洗浄工程]、得られた有機相を濃縮[濃縮工程]、及び乾燥[乾燥工程]することによって、PC-POS共重合体(S-1)を得ることができる。
(芳香族ポリカーボネート系樹脂(S-2))
 ポリカーボネート系樹脂(S)は、PC-POS共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を更に含む。
 芳香族ポリカーボネート系樹脂(S-2)は、主鎖が下記一般式(III)で表される繰り返し単位を有する。上記ポリカーボネート系樹脂としては、特に制限はなく種々の公知のポリカーボネート系樹脂を使用できる。
 芳香族ポリカーボネート系樹脂は1種を単独で用いてもよいし、2種以上を併用してもよい。なお、芳香族ポリカーボネート樹脂(S-2)は、PC-POS共重合体(S-1)と異なり、式(II)で表されるようなポリオルガノシロキサンブロックを有さない構造である。例えば、芳香族ポリカーボネート系樹脂(S-2)は、好ましくはホモポリカーボネート樹脂、より好ましくは主鎖が実質的に下記一般式(III)で表される繰り返し単位のみを有するホモポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000022
[式中、R9及びR10は、それぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。X’は単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示す。d及びeは、それぞれ独立に0~4の整数を示す。]
 R9及びR10の具体例としては、前記R及びRと同じものが挙げられ、好ましいものも同じである。R9及びR10としては、より好ましくは、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基である。
 X’の具体例としては、前記Xと同じものが挙げられ、好ましいものも同じである。d及びeは、それぞれ独立に、好ましくは0~2、より好ましくは0又は1である。
・芳香族ポリカーボネート系樹脂(S-2)の物性
 芳香族ポリカーボネート系樹脂(S-2)の粘度平均分子量は、好ましくは11,000以上30,000以下、より好ましくは13,500以上26,000以下、更に好ましくは16,000以上24,000以下である。粘度平均分子量が上記範囲内であれば、より優れた透明性及び耐衝撃性、中でも低温での耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
・芳香族ポリカーボネート系樹脂(S-2)の製造方法
 芳香族ポリカーボネート系樹脂(S-2)は、例えば、反応に不活性な有機溶媒、アルカリ水溶液の存在下、二価フェノール系化合物及びホスゲンと反応させた後、第三級アミンもしくは第四級アンモニウム塩等の重合触媒を添加して重合させる界面重合法;二価アルコールと炭酸ジエステルとを、溶媒を用いない溶融状態で塩基性触媒を添加してエステル交換反応させる溶融重合法(エステル交換法);二価フェノール系化合物をピリジン又はピリジンと不活性溶媒の混合溶液に溶解し、ホスゲンを導入し直接製造するピリジン法等従来のポリカーボネートの製造法により得られる。
 上記の反応に際し、必要に応じて、分子量調節剤(末端停止剤)、分岐化剤等が使用される。
 なお、上記二価フェノール系化合物は分子内に2つのフェノール性水酸基を有する化合物であり、例えば、下記一般式(III’)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000023

[式中、R9、R10、X’、d及びeは前記定義の通りであり、好ましいものも同じである。]
 該二価フェノール系化合物の具体例としては、PC-POS(S-1)の製造方法で上述したものを挙げることができ、好ましいものも同じである。中でも、ビス(ヒドロキシフェニル)アルカン系二価フェノールが好ましく、ビスフェノールAがより好ましい。
(ポリカーボネート系樹脂(S)の物性)
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCは、20,000以上30,000以下である。粘度平均分子量MvPCが上記範囲内であれば、優れた透明性及び耐衝撃性、更には耐薬品性を有するポリカーボネート系樹脂組成物を得ることができる。
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCは、好ましくは20,000以上27,000以下、より好ましくは20,000以上25,000以下、更に好ましくは20,000以上22,000以下、更に好ましくは21,000以上22,000以下である。
 ポリカーボネート系樹脂(S)はPC-POS(S-1)及び該PC-POS共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含むため、ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとPC-POS共重合体(S-1)の粘度平均分子量MvSiは必ずしも一致せず、差がある場合がある。
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとPC-POS共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCは、-3,100以上6,000以下である。MvSi-MvPCが上記範囲内であれば、優れた透明性及び耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとPC-POS共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCは、好ましくは-1,500以上6,000以下、より好ましくは-500以上6,000以下、更に好ましくは-500以上4,000以下、特に好ましくは-500以上3,000以下である。MvSi-MvPCが上記範囲内であれば、より優れた透明性及び耐衝撃性、中でも低温での耐衝撃性、更には耐薬品性を有するポリカーボネート系樹脂組成物を得ることができる。
 ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-2)の含有量は、好ましくは0.5質量%以上8質量%未満、より好ましくは1質量%以上6質量%以下、更に好ましくは2.7質量%以上5質量%以下、特に好ましくは3.1質量%以上5質量%以下である。ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-2)の含有量が上記範囲内であれば、より優れた透明性及び耐衝撃性、中でも低温での耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
 ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-2)の含有量は、上記PC-POS共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量と同様に、核磁気共鳴(NMR)測定により算出される。
 ポリカーボネート系樹脂(S)の粘度平均分子量MvPC及びポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-2)の含有量は、例えば、PC-POS共重合体(S-1)と芳香族ポリカーボネート系樹脂(S-2)の含有比率により調製することができる。
 ポリカーボネート系樹脂(S)におけるPC-POS共重合体(S-1)の含有量は、好ましくは5質量%以上99質量%以下、より好ましくは15質量%以上90質量%以下、更に好ましくは30質量%以上80質量%以下、より更に好ましくは40質量%以上70質量%以下、特に好ましくは50質量%以上70質量%以下である。
 ポリカーボネート系樹脂(S)における芳香族ポリカーボネート系樹脂(S-2)の含有量は、好ましくは1質量%以上95質量%以下、より好ましくは10質量%以上85質量%以下、更に好ましくは20質量%以上70質量%以下、より更に好ましくは30質量%以上60質量%以下、特に好ましくは30質量%以上50質量%以下である。
<その他の添加剤>
 本発明のポリカーボネート系樹脂組成物は、本発明の効果を損なわない範囲で、さらにその他の添加剤を含有することができる。その他成分として、例えば耐加水分解剤、酸化防止剤、紫外線吸収剤、難燃剤、難燃助剤、補強材、充填剤及び耐衝撃性改良用のエラストマー、顔料、染料等を挙げることができる。
<酸化防止剤>
 その他の添加剤の具体例として、酸化防止剤が挙げられる。
 ポリカーボネート系樹脂組成物に酸化防止剤を配合することにより、ポリカーボネート系樹脂組成物の溶融時における酸化劣化を抑制することができ、酸化劣化による着色等を抑制することができる。酸化防止剤としては、リン系酸化防止剤及び/又はフェノール系酸化防止剤等が好適に用いられる。
 フェノール系酸化防止剤としては、例えば、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-tert-ブチル-4-メチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕等のヒンダードフェノール類が挙げられる。
 これら酸化防止剤の中では、ビス(2,6-ジ-tert-ブチル4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト等のペンタエリスリトールジホスファイト構造を持つものやトリフェニルホスフィンが好ましい。
 市販のフェノール系酸化防止剤としては、例えば、Irganox 1010(BASFジャパン株式会社製、商品名)、Irganox 1076(BASFジャパン株式会社製、商標)、Irganox 1330(BASFジャパン株式会社製、商品名)、Irganox 3114(BASFジャパン株式会社製、商品名、BHT(武田薬品工業株式会社製、商品名)、CYANOX1790(SOLVAY社製、商品名)及びSumilizerGA-80(住友化学株式会社製、商品名)等を挙げることができる。
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルノニルホスファイト、ジフェニル(2-エチルヘキシル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、ジフェニルイソオクチルホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ジフェニルイソデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリス(イソデシル)ホスファイト、トリス(トリデシル)ホスファイト、ジブチルハイドロジェンホスファイト、トリラウリルトリチオホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、4,4’-イソプロピリデンジフェノールドデシルホスファイト、4,4’-イソプロピリデンジフェノールトリデシルホスファイト、4,4’-イソプロピリデンジフェノールテトラデシルホスファイト、4,4’-イソプロピリデンジフェノールペンタデシルホスファイト、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェニル)ジトリデシルホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジステアリル-ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、テトラフェニルジプロピレングリコールジホスファイト、1,1,3-トリス(2-メチル-4-ジ-トリデシルホスファイト-5-tert-ブチルフェニル)ブタン、3,4,5,6-ジベンゾ-1,2-オキサホスファン、トリフェニルホスフィン、ジフェニルブチルホスフィン、ジフェニルオクタデシルホスフィン、トリス(p-トリル)ホスフィン、トリス(p-ノニルフェニル)ホスフィン、トリス(ナフチル)ホスフィン、ジフェニル(ヒドロキシメチル)ホスフィン、ジフェニル(アセトキシメチル)ホスフィン、ジフェニル(β-エチルカルボキシエチル)ホスフィン、トリス(p-クロロフェニル)ホスフィン、トリス(p-フルオロフェニル)ホスフィン、ベンジルジフェニルホスフィン、ジフェニル(β-シアノエチル)ホスフィン、ジフェニル(p-ヒドロキシフェニル)ホスフィン、ジフェニル(1,4-ジヒドロキシフェニル)-2-ホスフィン、フェニルナフチルベンジルホスフィン等が挙げられる。
 市販のリン系酸化防止剤としては、例えば、Irgafos 168(BASFジャパン株式会社製、商品名)、Irgafos 12(BASFジャパン株式会社製、商品名)、Irgafos 38(BASFジャパン株式会社製、商品名)、アデカスタブ 2112(株式会社ADEKA製、商品名)、アデカスタブ C(株式会社ADEKA製、商品名)、アデカスタブ 329K(株式会社ADEKA製、商品名)、アデカスタブ PEP36(株式会社ADEKA製、商品名)、JC-263(城北化学工業株式会社製、商品名)、Sandstab P-EPQ(クラリアント社製、商品名)、Doverphos S-9228PC(Dover Chemical社製、商品名)等が挙げられる。
 上記酸化防止剤は、1種又は2種以上を組み合わせて用いることができる。本発明のポリカーボネート系樹脂組成物における酸化防止剤の含有量は、ポリカーボネート系樹脂(S)100質量部に対して、好ましくは0.001質量部以上0.5質量部以下であり、好ましくは0.01質量部以上0.3質量部以下、より好ましくは0.05質量部以上0.3質量部以下である。ポリカーボネート系樹脂(S)100質量部に対する酸化防止剤の含有量が上記範囲であれば、十分な酸化防止作用が得られ、かつ、成形時の金型汚染を抑制できる。
<紫外線吸収剤>
 その他の添加剤の別の具体例として、紫外線吸収剤が挙げられる。紫外線吸収剤としては、ベンゾトリアゾール系化合物、ベンゾオキサジン系化合物、サリチレート系化合物、マロン酸エステル系化合物、オキサリルアラニド系化合物、トリアジン系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物等が好適に用いられる
 ベンゾトリアゾール系化合物として、具体的には、例えば2-(2’-ヒドロキシ-5’-tert-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2,2’-メチレン-ビス〔4-メチル-6-(ベンゾトリアゾール-2-イル)フェノール〕、2,2’-メチレンビス(6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール)等が挙げられる。
 トリアジン系化合物として、具体的には、例えば2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール、2-(4,6-ビス-2,4-ジメチルフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール等が挙げられる。
 ベンゾフェノン系化合物として、具体的には、例えば2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-エトキシ-ベンゾフェノン等が挙げられる。
 シアノアクリレート系化合物として、具体的には、例えば2-エチル-2-シアノ-3,3-ジフェニルアクリレート、2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、1,3-ビス-〔2’-シアノ-3,3’-ジフェニルアクリロイルオキシ〕-2,2-ビス-〔(2-シアノ-3’,3’-ジフェニルアクリロイル)オキシ〕メチルプロパン等を挙げることができる。
 これらの中では、ベンゾトリアゾール系化合物、マロン酸エステル系化合物、トリアジン系化合物及びベンゾオキサジン系化合物からなる群から選ばれる少なくとも1種が好ましい。
 市販の紫外線吸収剤としては、例えば、SEESORB 709(シプロ化成株式会社製、商品名)、KEMISORB 79(ケミプロ化成株式会社製、商品名)、KEMISORB 279(ケミプロ化成株式会社製、商品名)、HOSTAVIN B-CAP(クラリアント社製、商品名)、Tinuvin 234(BASFジャパン株式会社製、商品名)、Tinuvin 1577(BASFジャパン株式会社製、商標)、CYASORB UV-3638 F(SOLVAY社製)等を挙げることができる。
 上記紫外線吸収剤は、1種又は2種以上を組み合わせて用いることができる。本発明のポリカーボネート系樹脂組成物における紫外線吸収剤の含有量は、ポリカーボネート系樹脂(S)100質量部に対して、好ましくは0.01質量部以上1質量部以下であり、より好ましくは0.05質量部以上0.7質量部以下である。前記紫外線吸収剤の含有量が前記範囲内であれば、十分な耐光特性が得られ、1質量部以下であれば、成形時に用いる金型汚れを十分に抑制できる。
<ポリカーボネート系樹脂組成物の物性>
 本発明のポリカーボネート系樹脂組成物は、上記組成を有することにより、優れた透明性及び耐衝撃性を兼ね備えることができる。
 本発明のポリカーボネート系樹脂組成物は、優れた透明性を有する。透明性は、例えばヘイズ値により評価することができる。
 本発明のポリカーボネート系樹脂組成物は、厚さ3mmの成形体において、ISO 14782:1999(JIS K 7136:2000)に準拠して測定したヘイズ値が、好ましくは0.1以上1.0以下、より好ましくは0.2以上0.9以下、更に好ましくは0.3以上0.6以下である。
 本発明のポリカーボネート系樹脂組成物は、優れた耐衝撃性を有し、特に低温における優れた耐衝撃性を有する。耐衝撃性は、例えば後述する実施例において示すように、シャルピー耐衝撃強度により評価することができる。
  本発明のポリカーボネート系樹脂組成物は、優れた耐薬品性を有する。耐薬品性は、例えば後述する実施例において示す方法により評価することができる。
 本発明のポリカーボネート系樹脂組成物の好ましい態様において、上記芳香族ポリカーボネート系樹脂(S-2)成分を主成分とするマトリックス中に、上記ポリオルガノシロキサンブロック(A-2)を含むドメイン(d)が存在する。
 ドメイン(d)の平均ドメインサイズの規格化分散は、好ましくは40%以下、より好ましくは20%以下、更に好ましくは18%以下である。
 ドメイン(d)の平均ドメインサイズ及びその規格化分散は、特開2011-102364号公報の記載に従い、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価することができる。
 平均ドメインサイズとは、個々のドメイン(d)のサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均ドメインサイズで規格化したパラメータを意味し、具体的には、ドメイン(d)のサイズの分散を平均ドメインサイズで規格化した値であり、下記式(X)で表される。
 規格化分散(%)=σ/DAV   (X)
[式中、σはドメイン(d)のドメインサイズの標準偏差を表し、DAVは平均ドメインサイズを表す。]
 「平均ドメインサイズ」及び「規格化分散」は、射出成形により形成される厚み1.0mmの成形品を用いて、小角エックス線散乱法により測定することにより得られる測定値を示す。具体的には、射出成形により成形した3段型プレート(幅50mm、長さ90mm、厚みがゲート側から3.0mm(長さ20mm)、2.0mm(長さ45mm)、1.0mm(長さ25mm)、表面の算術平均粗さ(Ra)が0.03μm)を用いて、厚み1.0mm部の端部より5mm、側部より5mmの交点におけるポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を小角エックス線散乱法により測定したものである。
 ポリカーボネート系樹脂組成物中のポリオルガノシロキサンブロック(A-2)の含有量は、好ましくは0.5質量%以上8質量%未満、より好ましくは1質量%以上6質量%以下、更に好ましくは2.7質量%以上5質量%以下、特に好ましくは3.1質量%以上5質量%以下である。ポリカーボネート系樹脂組成物中のポリオルガノシロキサンブロック(A-2)の含有量が上記範囲内であれば、より優れた透明性及び低温での耐衝撃性を有するポリカーボネート系樹脂組成物を得ることができる。
 ポリカーボネート系樹脂(S)中のポリオルガノシロキサンブロック(A-2)の含有量は、上記PC-POS共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量と同様に、核磁気共鳴(NMR)測定により算出される。
[成形体]
 上記の本発明のポリカーボネート系樹脂組成物を溶融混錬したもの又は得られたペレットを原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等により各種成形体を製造することができる。特に、溶融混練により得られたペレットを用いて、射出成形及び射出圧縮成形による射出成形体の製造に好適に用いることができる。
 本発明のポリカーボネート系樹脂組成物からなる成形体は、例えば、テレビ、ラジオ、カメラ、ビデオカメラ、オーディオプレーヤー、DVDプレーヤー、エアコンディショナ、携帯電話、スマートフォン、トランシーバー、ディスプレイ、コンピュータ、タブレット端末、携帯ゲーム機器、据置ゲーム機器、装着型電子機器、レジスター、電卓、複写機、プリンター、ファクシミリ、通信基地局、バッテリー、ロボット等の電気・電子機器用部品の外装及び内部部品等、並びに自動車、鉄道、船舶、航空機、宇宙産業用機器、医療機器の外装及び内部部品並びに建材の部品として好適に用いることができる。
 本発明を実施例によりさらに具体的に説明するが、本発明はこれらの例により何ら限定されるものではない。各例における特性値、評価結果は、以下の要領に従って求めた。
(1)ポリオルガノシロキサンブロック(A-2)の平均鎖長及び含有量
 1H-NMR測定によって、ポリオルガノシロキサンブロック(A-2)を構成するポリジメチルシロキサンのメチル基の積分値比により、ポリオルガノシロキサンブロック(A-2)の平均鎖長及び含有量を算出した。なお、本明細書においては、ポリジメチルシロキサンをPDMSと略記することがある。
<ポリオルガノシロキサンブロック(A-2)の平均鎖長の定量方法>
 1H-NMR測定条件
 NMR装置:株式会社JEOL RESONANCE製 ECA-500
 プローブ:50TH5AT/FG2
 測定核:1
 観測範囲:-5~15ppm
 観測中心:5ppm
 パルス繰り返し時間:9秒
 パルス幅:45°
 NMR試料管:5φ
 サンプル量:30~40mg
 溶媒:重クロロホルム
 測定温度:室温
 積算回数:256回
 アリルフェノール末端ポリジメチルシロキサンの場合
 A:δ-0.02~0.5付近に観測されるジメチルシロキサン部のメチル基の積分値
 B:δ2.50~2.75付近に観測されるアリルフェノールのメチレン基の積分値
 ポリジメチルシロキサンの鎖長=(A/6)/(B/4)
 オイゲノール末端ポリジメチルシロキサンの場合
 A:δ-0.02~0.5付近に観測されるジメチルシロキサン部のメチル基の積分値
 B:δ2.40~2.70付近に観測されるオイゲノールのメチレン基の積分値
 ポリジメチルシロキサンの鎖長=(A/6)/(B/4)
<ポリオルガノシロキサンブロック(A-2)の含有量の定量方法>
 アリルフェノール末端ポリジメチルシロキサンを共重合したPTBP末端ポリカーボネート中のポリジメチルシロキサン共重合量の定量方法
 1H-NMR測定条件
 NMR装置:株式会社JEOL RESONANCE製 ECA-500
 プローブ:50TH5AT/FG2
 測定核:1
 観測範囲:-5~15ppm
 観測中心:5ppm
 パルス繰り返し時間:9秒
 パルス幅:45°
 積算回数:256回
 NMR試料管:5φ
 サンプル量:30~40mg
 溶媒:重クロロホルム
 測定温度:室温
 A:δ1.5~1.9付近に観測されるBPA部のメチル基の積分値
 B:δ-0.02~0.3付近に観測される-Si(CH-部のメチル基の積分値
 C:δ1.2~1.4付近に観測されるp-tert-ブチルフェニル部のブチル基の積分値
 a=A/6
 b=B/6
 c=C/9
 T=a+b+c
 f=a/T×100
 g=b/T×100
 h=c/T×100
 TW=f×254+g×74.1+h×149
 PDMS(wt%)=g×74.1/TW×100
(2)粘度平均分子量
 粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式(Schnell式)にて算出した。
Figure JPOXMLDOC01-appb-M000024
<製造例1:ポリカーボネート-ポリオルガノシロキサン共重合体(S-1-1)(PC-PDMS(S-1-1))の製造>
(工程1:ポリカーボネートオリゴマーの製造)
 5.6質量%の水酸化ナトリウム水溶液に、亜二チオン酸ナトリウムを後から溶解するビスフェノールA(BPA)に対して2000ppmとなるように加えた。これにBPA濃度が13.5質量%となるようにBPAを溶解し、BPAの水酸化ナトリウム水溶液を調製した。
 このBPAの水酸化ナトリウム水溶液を40L/hr、塩化メチレンを15L/hr、及びホスゲンを4.0kg/hrの流量で内径6mm、管長30mの管型反応器に連続的に通した。管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。管型反応器を出た反応液を、後退翼を備えた内容積40Lのバッフル付き槽型反応器へ連続的に導入し、ここにさらにBPAの水酸化ナトリウム水溶液を2.8L/hr、25質量%の水酸化ナトリウム水溶液を0.07L/hr、水を17L/hr、1質量%のトリエチルアミン水溶液を0.64L/hrの流量で添加して反応を行なった。槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。
 このようにして得られたポリカーボネートオリゴマーは濃度341g/L、クロロホーメート基濃度0.71mol/Lであった。
(工程2:PC-PDMSの製造)
 邪魔板、パドル型撹拌翼及び冷却用ジャケットを備えた50L槽型反応器に、上記製造例で製造したポリカーボネートオリゴマー溶液(PCO)15L(i)、塩化メチレン(MC)8.6L(ii)、ポリジメチルシロキサンの平均鎖長nが37(iii)であるo-アリルフェノール末端変性ポリジメチルシロキサン(PDMS)380g(iv)を塩化メチレン2L(v)に溶解したもの、並びにトリエチルアミン(TEA)11.2mL(vi)を仕込み、撹拌下でここに水酸化ナトリウム水溶液(水酸化ナトリウム170g(vii)を純水2L(viii)に溶かしたもの)を加え、20分間ポリカーボネートオリゴマーとアリルフェノール末端変性PDMSとの反応を行った。
 この重合液に、p-tert-ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP146.8g(ix)を塩化メチレン0.5L(x)に溶解したもの)、ビスフェノールAの水酸化ナトリウム水溶液(水酸化ナトリウム562g(xi)と亜二チオン酸ナトリウム(Na)1.7g(xii)とを純水8.2L(xiii)に溶解した水溶液に、ビスフェノールA826g(xiv)を溶解させたもの)を添加し、40分間重合反応を行った。
 希釈のため塩化メチレン10L(xv)を加え20分間攪拌した後、ポリカーボネート-ポリジメチルシロキサン共重合体(PC-PDMS)を含む有機相と過剰のビスフェノールA及び水酸化ナトリウムを含む水相に分離し、有機相を単離した。
 こうして得られたPC-PDMSの塩化メチレン溶液を、その溶液に対して順次、15容積%の0.03mol/L水酸化ナトリウム水溶液、0.2mol/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が5μS/cm以下になるまで純水で洗浄を繰り返した。
 洗浄により得られたPC-POS共重合体の塩化メチレン溶液を濃縮及び粉砕し、得られたフレークを減圧下120℃で乾燥し、PC-PDMS(S-1-1)を製造した。
 得られたPC-PDMS(S-1-1)のNMRにより求めたポリオルガノシロキサンブロック(A-2)の含有量は6.0質量%、ポリオルガノシロキサンブロック(A-2)の平均鎖長は37、粘度平均分子量Mvは17,700であった。
<製造例2~9:PC-PDMS(S-1-2)~(S-1-9))の製造>
 表1に示す(i)~(xv)の値を、同表に示すとおりに変更した以外は製造例1と同様にして、PC-PDMS(S-1-2)~(S-1-9)を製造した。
 各PC-PDMSのポリオルガノシロキサンブロック(A-2)の含有量、ポリオルガノシロキサンブロック(A-2)の平均鎖長及び粘度平均分子量Mvを表1に示す。
Figure JPOXMLDOC01-appb-T000025

 
<芳香族ポリカーボネート系樹脂(S-2)>
(S-2-1):タフロンFN1300(商品名)[出光興産株式会社製,粘度平均分子量=11,500]
(S-2-2):タフロンFN1500(商品名)[出光興産株式会社製,粘度平均分子量=14,500]
(S-2-3):タフロンFN1700(商品名)[出光興産株式会社製,粘度平均分子量=17,700]
(S-2-4):タフロンFN1900(商品名)[出光興産株式会社製,粘度平均分子量=19,100]
(S-2-5):タフロンFN2200(商品名)[出光興産株式会社製,粘度平均分子量=21,200]
(S-2-6):タフロンFN2500(商品名)[出光興産株式会社製,粘度平均分子量=23,400]
(S-2-7):ユーピロンE-2000(商品名)[三菱エンジニアリングプラスチックス株式会社製,粘度平均分子量=25,500]
(S-2-8):ノバレックス7030PJ(商品名)[三菱エンジニアリングプラスチックス株式会社製,粘度平均分子量=29,500]
<その他成分>
 酸化防止剤:IRGAFOS 168(商品名)[トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、BASFジャパン株式会社製]
 紫外線吸収剤:CYASORB UV-3638 F(商品名)[2,2’-(p-フェニレン)ジ-3,1-ベンゾオキサジン-4-オン、SOLVAY社製]
 紫外線吸収剤:KEMISORB 79(商品名)[2-ベンゾトリアゾリル-4-tert-オクチルフェノール、ケミプロ化成株式会社製]
実施例1~12、比較例1~10
 製造例1~9で得られたPC-PDMS(S-1-1)~(S-1-9)及びその他の各成分を表3に示す配合割合で混合し、ベント式二軸押出機(東芝機械株式会社製、TEM35B)に供給し、スクリュー回転数150rpm、吐出量20kg/hr、樹脂温度295~300℃にて溶融混練し、評価用ペレットサンプルを得た。
 この評価用ペレットサンプルを用いて、ポリカーボネート系樹脂組成物におけるポリオルガノシロキサンブロック(A-2)の含有量及びMvの測定、並びに、下記の方法で透明性、耐衝撃性及び耐薬品性の評価を行った。
(1)透明性:ヘイズ値
 厚さ3mmの成形体において、ISO 14782:1999(JIS K 7136:2000)に準拠してヘイズ値を測定した。結果を表3に示す。
(2)耐衝撃性:アイゾット衝撃試験
 上記得られたペレットを120℃で8時間乾燥させた後、射出成形機(日精樹脂工業株式会社製、NEX110、スクリュー直径36mm)を用いて、シリンダ温度280℃、金型温度80℃にて、射出成形してIZOD試験片(63×13×3.2mm)を作製した。この試験片に後加工でノッチを付与した試験片を用いて、ASTM規格D-256に準拠して、-30℃及び-40℃におけるアイゾット衝撃強度を測定した。結果を表3に示す。
(3)耐薬品性:耐日焼け止め剤性
 上記得られたペレットを120℃で8時間乾燥させた後、射出成形機(日精樹脂工業株式会社製、NEX110、スクリュー直径36mm)を用いて、シリンダ温度280℃、金型温度80℃にて、射出成形して、長手方向の長さ95mm及び長手方向に垂直な断面が図1に示す形状である試験片を作製した。図1中の厚みt、図心から上面までの垂直距離e、上面の短手方向の長さB、及び底面に垂直な面と側面がなす鋭角θが、それぞれ下記表2に示す値である試験片を各ペレットサンプルから3片ずつ作製した。
Figure JPOXMLDOC01-appb-T000026
 直径10mm、長さ70mmである材質SUS304の円柱型シャフト3本が、長手方向の両端を揃え、短手方向の断面が図2に示す断面図となるようにそれぞれ平行に固定された治具を用意した。具体的には、円柱型シャフト1本を中央シャフト22及び他の2本を両端シャフト23として、2本の両端シャフト23の中心軸21をいずれも含む平面と中央シャフト22の中心軸21との垂直距離を11.3mmとし、両端シャフト23の中心軸21間の距離Lは60mmとした。
 各試験片を、図3に示すように上記治具に固定した。具体的には、各試験片31を底面の中心が中央シャフト32に接し、上面が両端シャフト33に接し、試験片31の長手方向が各シャフトの長手方向に対して垂直になるように上記治具に固定した。中央シャフト32と試験片31との接点を含む中央シャフト32上の接平面36と、両端シャフト33と試験片31との接点を含む両端シャフト33上の接平面35との垂直距離Gは1.3mmとし、両端シャフト33間の距離Lは60mmとした。
 試験片上面の中央から長手方向に左右各1cmの幅で日焼け止め剤「NIVEA(商標) SUN Protect and Moisture Lotion SPF30」(バイヤスドルフ社製)を塗布した。23℃、72時間経過後、クラック発生の有無を目視により確認し、外観変化を評価し、厚みt毎に3片ずつ用意した試験片のうち、2片以上の試験片でクラックが発生しない最大の試験片の厚みtを求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
実施例13~14
 各成分を表4に示す配合割合で混合した以外は実施例1と同様にして、評価用ペレットサンプルを得た。
 この評価用ペレットサンプルを用いて、実施例1と同様にして、ポリカーボネート系樹脂組成物のPDMS含有量及びMvの測定、並びに、透明性、耐衝撃性及び耐薬品性の評価を行った。
 実施例13及び実施例14においても、優れた透明性、耐衝撃性及び耐薬品性を奏した。また、紫外線吸収剤を含む実施例13及び実施例14においては、耐光特性を奏することも期待される。
Figure JPOXMLDOC01-appb-T000029


 
21 シャフトの中心軸
22 中央シャフト
23 両端シャフト
31 試験片
32 中央シャフト
33 両端シャフト
34 試験片中央
35 両端シャフトと試験片との接点を含む両端シャフト上の接平面
36 中央シャフトと試験片との接点を含む中央シャフト上の接平面

 

Claims (12)

  1.  下記一般式(I)で表される繰り返し単位を含むポリカーボネートブロック(A-1)及び下記一般式(II)で表される繰り返し単位を含むポリオルガノシロキサンブロック(A-2)を含むポリカーボネート-ポリオルガノシロキサン共重合体(S-1)及び前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)以外の芳香族ポリカーボネート系樹脂(S-2)を含むポリカーボネート系樹脂(S)を含むポリカーボネート系樹脂組成物であり、
     ポリカーボネート系樹脂(S)の粘度平均分子量MvPCが、20,000以上30,000以下であり、
     ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中のポリオルガノシロキサンブロック(A-2)の含有量が、0.5質量%以上9質量%以下であり、
     ポリオルガノシロキサンブロック(A-2)の平均鎖長nが20以上60未満であり、
     ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-3,100以上6,000以下であるポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式中、R1及びR2はそれぞれ独立に、ハロゲン原子、炭素数1~6のアルキル基又は炭素数1~6のアルコキシ基を示す。Xは、単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、フルオレンジイル基、炭素数7~15のアリールアルキレン基、炭素数7~15のアリールアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-を示す。R3及びR4はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を示す。a及びbは、それぞれ独立に0~4の整数を示す。]
  2.  前記ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-1,500以上6,000以下である、請求項1に記載のポリカーボネート系樹脂組成物。
  3.  前記ポリカーボネート系樹脂(S)の粘度平均分子量MvPCとポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiとの差MvSi-MvPCが-500以上6,000以下である、請求項2に記載のポリカーボネート系樹脂組成物。
  4.  ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)の粘度平均分子量MvSiが、18,500以上25,000以下である、請求項1~3のいずれか1項に記載のポリカーボネート系樹脂組成物。
  5.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)中の前記ポリオルガノシロキサンブロック(A-2)の含有量が、0.5質量%以上8質量%以下である、請求項1~4のいずれか1項に記載のポリカーボネート系樹脂組成物。
  6.  前記ポリオルガノシロキサンブロック(A-2)が、下記一般式(II-I)、(II-II)及び(II-III)のいずれかで表されるブロック単位である、請求項1~5のいずれか1項に記載のポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式中、R3~R6はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基または炭素数6~12のアリール基を示し、複数のR3~R6は互いに同一であっても異なっていてもよい。Yは-R7O-、-R7COO-、-R7NH-、-R7NR8-、-COO-、-S-、-R7COO-R9-O-、または-R7O-R10-O-を示し、複数のYは互いに同一であっても異なっていてもよい。前記R7は、単結合、直鎖、分岐鎖若しくは環状アルキレン基、アリール置換アルキレン基、置換または無置換のアリーレン基、またはジアリーレン基を示す。R8は、アルキル基、アルケニル基、アリール基、またはアラルキル基を示す。R9はジアリーレン基を示す。R10は、直鎖、分岐鎖もしくは環状アルキレン基、またはジアリーレン基を示す。βは、ジイソシアネート化合物由来の2価の基、またはジカルボン酸若しくはジカルボン酸のハロゲン化物由来の2価の基を示す。nは上記した通りであり、pは1以上n-2以下の整数である。]
  7.  厚さ3mmの成形体において、ISO 14782:1999に準拠して測定したヘイズ値が0.1以上1.0以下である、請求項1~6のいずれか1項に記載のポリカーボネート系樹脂組成物。
  8.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)が、下記一般式(IV)で表されるブロック単位(A-3)を実質的に含まない、請求項1~7のいずれか1項に記載のポリカーボネート系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    [式中、R21~R24はそれぞれ独立に水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基である。R25は炭素数1~6のアルキル基、水素原子、ハロゲン原子、ヒドロキシ基、炭素数1~6のアルコキシ基、又は炭素数6~14のアリール基である。Qは炭素数1~10の2価の脂肪族基である。mは平均鎖長を示し、10以上の整数である。]
  9.  前記ポリカーボネート-ポリオルガノシロキサン共重合体(S-1)が、ポリカーボネートブロック(A-1)及びポリオルガノシロキサンブロック(A-2)のみからなる、請求項1~8のいずれか1項に記載のポリカーボネート系樹脂組成物。
  10.  前記ポリオルガノシロキサンブロック(A-2)の平均鎖長nが30より大きく60未満である、請求項1~9のいずれか1項に記載のポリカーボネート系樹脂組成物。
  11.  前記芳香族ポリカーボネート系樹脂(S-2)の粘度平均分子量が、11,000以上30,000以下である、請求項1~10のいずれか1項に記載のポリカーボネート系樹脂組成物。
  12.  請求項1~11のいずれか1項に記載のポリカーボネート系樹脂組成物を成形して得られる、成形体。

     
PCT/JP2023/005416 2022-02-17 2023-02-16 ポリカーボネート系樹脂組成物 WO2023157910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024501425A JPWO2023157910A1 (ja) 2022-02-17 2023-02-16
KR1020247027264A KR20240144213A (ko) 2022-02-17 2023-02-16 폴리카보네이트계 수지 조성물
CN202380021642.7A CN118696094A (zh) 2022-02-17 2023-02-16 聚碳酸酯系树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-023082 2022-02-17
JP2022023082 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023157910A1 true WO2023157910A1 (ja) 2023-08-24

Family

ID=87578389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005416 WO2023157910A1 (ja) 2022-02-17 2023-02-16 ポリカーボネート系樹脂組成物

Country Status (5)

Country Link
JP (1) JPWO2023157910A1 (ja)
KR (1) KR20240144213A (ja)
CN (1) CN118696094A (ja)
TW (1) TW202344615A (ja)
WO (1) WO2023157910A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159025A1 (ja) * 2015-03-30 2016-10-06 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形体
WO2017110598A1 (ja) * 2015-12-22 2017-06-29 出光興産株式会社 ポリカーボネート系樹脂組成物
WO2018066561A1 (ja) * 2016-10-07 2018-04-12 出光興産株式会社 ポリカーボネート系樹脂組成物及び成形体
WO2018159790A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体、それを含むポリカーボネート系樹脂組成物及びその成形品
WO2019004200A1 (ja) * 2017-06-28 2019-01-03 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
WO2019049916A1 (ja) * 2017-09-06 2019-03-14 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
WO2020009100A1 (ja) * 2018-07-03 2020-01-09 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3037588B2 (ja) 1994-07-15 2000-04-24 出光石油化学株式会社 ポリカーボネート樹脂組成物
WO2004076541A2 (en) 2003-02-21 2004-09-10 General Electric Company Translucent thermoplastic composition, method for making the composition and articles molded there from.
JP5805927B2 (ja) 2009-07-29 2015-11-10 帝人株式会社 ポリカーボネート−ポリジオルガノシロキサン共重合体、成形品およびその製造方法
JP5852797B2 (ja) 2011-05-30 2016-02-03 出光興産株式会社 電池パック用ポリカーボネート樹脂組成物及び電池パック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159025A1 (ja) * 2015-03-30 2016-10-06 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形体
WO2017110598A1 (ja) * 2015-12-22 2017-06-29 出光興産株式会社 ポリカーボネート系樹脂組成物
WO2018066561A1 (ja) * 2016-10-07 2018-04-12 出光興産株式会社 ポリカーボネート系樹脂組成物及び成形体
WO2018159790A1 (ja) * 2017-03-01 2018-09-07 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体、それを含むポリカーボネート系樹脂組成物及びその成形品
WO2019004200A1 (ja) * 2017-06-28 2019-01-03 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
WO2019049916A1 (ja) * 2017-09-06 2019-03-14 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形品
WO2020009100A1 (ja) * 2018-07-03 2020-01-09 出光興産株式会社 ポリカーボネート系樹脂組成物及びその成形体

Also Published As

Publication number Publication date
CN118696094A (zh) 2024-09-24
TW202344615A (zh) 2023-11-16
KR20240144213A (ko) 2024-10-02
JPWO2023157910A1 (ja) 2023-08-24

Similar Documents

Publication Publication Date Title
JP7386297B2 (ja) ポリカーボネート系樹脂組成物及びその成形品
WO2016159025A1 (ja) ポリカーボネート系樹脂組成物及びその成形体
US10975224B2 (en) Polycarbonate resin composition and molded body of same
WO2017110598A1 (ja) ポリカーボネート系樹脂組成物
WO2018159790A1 (ja) ポリカーボネート-ポリオルガノシロキサン共重合体、それを含むポリカーボネート系樹脂組成物及びその成形品
US11203664B2 (en) Polycarbonate resin composition and molded article thereof
CN110366574B (zh) 聚碳酸酯-聚有机硅氧烷共聚物、包含该共聚物的阻燃性聚碳酸酯系树脂组合物及其成形品
CN107429049B (zh) 聚碳酸酯系树脂组合物及其成形品
JP7253334B2 (ja) ポリカーボネート系樹脂組成物及びその成形体
WO2023157910A1 (ja) ポリカーボネート系樹脂組成物
WO2022025243A1 (ja) ポリカーボネート系樹脂組成物及びその成形体
WO2018159779A1 (ja) ポリカーボネート系樹脂組成物及びその成形品
JP2020084005A (ja) ポリカーボネート系樹脂組成物及びその成形体
JP7109420B2 (ja) 難燃性ポリカーボネート系樹脂組成物及びその成形品
WO2022004275A1 (ja) 樹脂組成物、成形体及び樹脂組成物の特性を改善する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501425

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247027264

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202447061716

Country of ref document: IN