WO2023157395A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2023157395A1
WO2023157395A1 PCT/JP2022/041528 JP2022041528W WO2023157395A1 WO 2023157395 A1 WO2023157395 A1 WO 2023157395A1 JP 2022041528 W JP2022041528 W JP 2022041528W WO 2023157395 A1 WO2023157395 A1 WO 2023157395A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
electrode
film
electrode film
main surface
Prior art date
Application number
PCT/JP2022/041528
Other languages
English (en)
French (fr)
Inventor
英 本堂
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2024500953A priority Critical patent/JPWO2023157395A1/ja
Priority to CN202280085854.7A priority patent/CN118556294A/zh
Publication of WO2023157395A1 publication Critical patent/WO2023157395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • Patent Document 1 discloses a semiconductor device including a semiconductor substrate, an IGBT (Insulated Gate Bipolar Transistor) portion, a FWD (Free Wheeling Diode) portion, an interlayer insulating film, a contact plug, and an emitter electrode.
  • the IGBT section is formed on the surface of the semiconductor substrate.
  • the FWD section is formed in a region different from the IGBT section on the surface of the semiconductor substrate.
  • the interlayer insulating film covers the surface of the semiconductor substrate.
  • the interlayer insulating film has a first contact hole exposing the IGBT portion and a second contact hole exposing the FWD portion.
  • a contact plug is embedded in the first contact hole and electrically connected to the IGBT portion.
  • the emitter electrode covers the contact plug on the interlayer insulating film and covers the FWD portion inside the second contact hole.
  • One embodiment provides a semiconductor device capable of improving electrical characteristics and a method of manufacturing the same.
  • One embodiment includes a chip having a main surface, an IGBT region formed on the main surface, a diode region formed on the main surface, and the diode region exposed and covering the IGBT region.
  • an insulating film formed on a main surface; a plug electrode embedded in a portion of the insulating film covering the IGBT region so as to be partially exposed from the insulating film; and a main surface electrode including a first electrode film covering the plug electrode, and a second electrode film covering the first electrode film and the diode region.
  • One embodiment includes steps of preparing a wafer having a main surface, forming an insulating film covering the main surface, and embedding a plug electrode in the insulating film so as to be partially exposed from the insulating film. forming a barrier electrode film covering at least the plug electrode; and exposing the first electrode film to an oxygen atmosphere after forming the barrier electrode film.
  • One embodiment comprises the steps of: preparing a wafer having a main surface; forming an IGBT region and a diode region on the main surface; forming an insulating film covering the IGBT region and the diode region; embedding a plug electrode in a portion of the insulating film covering the IGBT region so as to be partially exposed from the insulating film; and forming a first electrode film covering the insulating film so as to hide the plug electrode.
  • One embodiment includes a chip having a main surface, an IGBT region formed on the main surface, a diode region formed on the main surface, and a chip formed on the main surface so as to cover the IGBT region. and a lifetime killer region formed inside the chip in the diode region so as to overlap the opening in a plan view.
  • One embodiment comprises the steps of: preparing a wafer having a main surface; forming an IGBT region and a diode region on the main surface; forming an insulating film covering the IGBT region and the diode region; forming on the insulating film a mask having a layout exposing a portion of the insulating film covering the diode region; and forming a lifetime killer region inside the wafer using the mask. and removing a portion of the insulating film covering the diode region by an etching method using the mask.
  • FIG. 1 is a plan view showing a semiconductor device according to one embodiment.
  • FIG. 2 is a plan view showing a layout example of the first main surface shown in FIG.
  • FIG. 3 is an enlarged plan view of region III shown in FIG. 4 is an enlarged plan view of region IV shown in FIG. 3.
  • FIG. 5 is an enlarged plan view of region V shown in FIG.
  • FIG. 6 is an enlarged plan view of area VI shown in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII shown in FIG.
  • FIG. 5 is an enlarged plan view of region V shown in FIG.
  • FIG. 6 is an enlarged plan view of area VI shown in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII shown in FIG.
  • FIG. 8 is a cross-sectional
  • FIG. 10 is a cross-sectional view taken along line X-X shown in FIG. 6.
  • FIG. FIG. 11 is an enlarged plan view of region XI shown in FIG. 12 is a cross-sectional view taken along line XII-XII shown in FIG. 11.
  • FIG. 13A is a cross-sectional view showing an example of a method for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 13B is a cross-sectional view showing a step after FIG. 13A.
  • FIG. 13C is a cross-sectional view showing a step after FIG. 13B.
  • FIG. 13D is a cross-sectional view showing a step after FIG. 13C.
  • FIG. 13E is a cross-sectional view showing a step after FIG. 13D.
  • FIG. 13A is a cross-sectional view showing an example of a method for manufacturing the semiconductor device shown in FIG. 1.
  • FIG. 13B is a cross-sectional view showing a step after FIG. 13A.
  • FIG. 13F is a cross-sectional view showing a step after FIG. 13E.
  • FIG. 13G is a cross-sectional view showing a step after FIG. 13F.
  • FIG. 13H is a cross-sectional view showing a step after FIG. 13G.
  • FIG. 13I is a cross-sectional view showing a step after FIG. 13H.
  • FIG. 13J is a cross-sectional view showing a step after FIG. 13I.
  • FIG. 13K is a cross-sectional view showing a step after FIG. 13J.
  • FIG. 13L is a cross-sectional view showing a step after FIG. 13K.
  • FIG. 13M is a cross-sectional view showing a step after FIG. 13L.
  • FIG. 13N is a cross-sectional view showing a step after FIG. 13M.
  • FIG. 13O is a cross-sectional view showing a step after FIG. 13N.
  • FIG. 13P is a cross-sectional view showing a step after FIG. 13O.
  • FIG. 13Q is a cross-sectional view showing a step after FIG. 13P.
  • FIG. 13R is a cross-sectional view showing a step after FIG. 13Q.
  • FIG. 13S is a cross-sectional view showing a step after FIG. 13R.
  • FIG. 13T is a cross-sectional view showing a step after FIG. 13S.
  • FIG. 13U is a cross-sectional view showing a step after FIG. 13T.
  • FIG. 14 is a cross-sectional view showing a semiconductor device according to a first modified example.
  • FIG. 15 is a cross-sectional view showing a semiconductor device according to a second modification.
  • FIG. 1 is a plan view showing a semiconductor device 1 according to one embodiment.
  • FIG. 2 is a plan view showing a layout example of the first main surface 3 shown in FIG.
  • FIG. 3 is an enlarged plan view of region III shown in FIG. 4 is an enlarged plan view of region IV shown in FIG. 3.
  • FIG. 5 is an enlarged plan view of region V shown in FIG.
  • FIG. 6 is an enlarged plan view of area VI shown in FIG.
  • FIG. 7 is a cross-sectional view along line VII-VII shown in FIG.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII shown in FIG. 9 is a cross-sectional view taken along line IX-IX shown in FIG. 5.
  • FIG. 10 is a cross-sectional view taken along line X-X shown in FIG. 6.
  • FIG. 11 is an enlarged plan view of region XI shown in FIG. 12 is a cross-sectional view taken along line XII-XII shown in FIG. 11.
  • a semiconductor device 1 is an RC-IGBT semiconductor device (semiconductor switching device) having an RC-IGBT (Reverse Conducting-IGBT) integrally provided with an IGBT (Insulated Gate Bipolar Transistor) and a diode. ).
  • the diode is the freewheeling diode for the IGBT.
  • a semiconductor device 1 includes a hexahedral (specifically rectangular parallelepiped) chip 2 .
  • the chip 2 in this embodiment, has a single-layer structure made of a silicon single crystal substrate (semiconductor substrate).
  • the chip 2 may have a thickness of 50 ⁇ m or more and 400 ⁇ m or less.
  • the chip 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and first to fourth side surfaces 5A to 5D connecting the first main surface 3 and the second main surface 4. ing.
  • the first main surface 3 and the second main surface 4 are formed in a quadrangular shape when viewed from the normal direction Z (hereinafter simply referred to as "plan view").
  • the normal direction Z is also the thickness direction of the chip 2 .
  • the first side surface 5A and the second side surface 5B extend in the first direction X along the first main surface 3 and face the second direction Y intersecting (specifically, perpendicular to) the first direction X.
  • the third side surface 5C and the fourth side surface 5D extend in the second direction Y and face the first direction X. As shown in FIG.
  • the semiconductor device 1 includes an active region 6 formed on the first main surface 3 .
  • the active region 6 includes at least one (in this embodiment, multiple) RC-IGBT regions 7 .
  • the plurality of RC-IGBT regions 7 are formed in the inner portion of the first main surface 3 with a gap from the periphery (first to fourth side surfaces 5A to 5D) of the first main surface 3 in plan view.
  • the plurality of RC-IGBT regions 7 are formed in strips extending in the first direction X and arranged in the second direction Y at intervals. That is, the plurality of RC-IGBT regions 7 are arranged in stripes extending in the first direction X in plan view. Each of the plurality of RC-IGBT regions 7 has a first end on one side (third side surface 5C side) and a second end on the other side (fourth side surface 5D side).
  • the multiple RC-IGBT regions 7 each include at least one (plurality in this embodiment) IGBT region 8 and at least one (plurality in this embodiment) diode region 9 .
  • the plurality of IGBT regions 8 are each formed in a square shape in plan view.
  • the plurality of diode regions 9 are each formed in a square shape in plan view.
  • a plurality of IGBT regions 8 are arranged at intervals in the first direction X in each RC-IGBT region 7 .
  • the plurality of diode regions 9 are arranged in regions different from the plurality of IGBT regions 8 in each RC-IGBT region 7 .
  • the plurality of diode regions 9 are each arranged so as to be adjacent to at least one IGBT region 8 .
  • the plurality of diode regions 9 are arranged alternately with the plurality of IGBT regions 8 along the first direction X in this embodiment.
  • a first end and a second end of each RC-IGBT region 7 are formed by an IGBT region 8 or a diode region 9 respectively.
  • the plurality of IGBT regions 8 associated with one RC-IGBT region 7 may face the plurality of IGBT regions 8 associated with the other RC-IGBT region 7 in the second direction Y.
  • the plurality of diode regions 9 associated with one RC-IGBT region 7 may be opposed in the second direction Y to the plurality of diode regions 9 associated with the other RC-IGBT region 7 . That is, the plurality of IGBT regions 8 may be arranged in a matrix at intervals in the first direction X and the second direction Y in plan view. Also, the plurality of diode regions 9 may be arranged in a matrix with intervals in the first direction X and the second direction Y in plan view.
  • a plurality of IGBT regions 8 associated with one RC-IGBT region 7 may face a plurality of diode regions 9 associated with the other RC-IGBT region 7 in the second direction Y.
  • the plurality of diode regions 9 associated with one RC-IGBT region 7 may be opposed in the second direction Y to the plurality of IGBT regions 8 associated with the other RC-IGBT region 7 . That is, the plurality of IGBT regions 8 may be arranged in a zigzag pattern with intervals in the first direction X and the second direction Y in plan view.
  • the plurality of diode regions 9 may be arranged in a zigzag pattern with intervals in the first direction X and the second direction Y in plan view.
  • Each IGBT region 8 has a first plane area.
  • Each diode region 9 has a second planar area.
  • the second planar area may be approximately equal to the first planar area or may be different than the first planar area.
  • the second planar area may exceed the first planar area or may be less than the first planar area.
  • the second planar area is preferably less than or equal to the first planar area. That is, it is preferable that the total planar area of the plurality of diode regions 9 is equal to or less than the total planar area of the plurality of IGBT regions 8 . It is particularly preferred that the second planar area is less than the first planar area. That is, it is particularly preferable that the total planar area of the plurality of diode regions 9 is less than the total planar area of the plurality of IGBT regions 8 .
  • the active region 6 in this embodiment includes at least one (a plurality in this embodiment) street regions 10 partitioned between the multiple RC-IGBT regions 7 on the first main surface 3 .
  • the plurality of street regions 10 are each formed in a strip shape extending in the first direction X in a plan view, and are spaced apart in the second direction Y. As shown in FIG. That is, the plurality of street regions 10 are arranged in stripes extending in the second direction Y in plan view.
  • the semiconductor device 1 includes an outer region 11 formed outside the active region 6 on the first main surface 3 .
  • Outer region 11 is a region that does not include RC-IGBT region 7 .
  • Outer region 11 includes first region 11a and second region 11b.
  • the first region 11a is provided on the third side surface 5C side with respect to the active region 6 in plan view, and is formed in a strip shape extending in the second direction Y.
  • the second region 11b is formed in an annular shape surrounding the active region 6 together with the first region 11a in plan view.
  • the second region 11b is formed narrower than the first region 11a.
  • Semiconductor device 1 includes an n-type drift region 12 formed inside chip 2 .
  • the drift region 12 is formed throughout the interior of the chip 2 .
  • the chip 2 is made of an n-type semiconductor substrate, and the drift region 12 is formed using part of the chip 2 .
  • the n-type impurity concentration of the drift region 12 may be 1 ⁇ 10 13 cm ⁇ 3 or more and 1 ⁇ 10 15 cm ⁇ 3 or less.
  • Semiconductor device 1 includes an n-type buffer region 13 formed in a surface layer portion of second main surface 4 .
  • the buffer region 13 extends in layers along the second main surface 4 and is partially exposed from the first to fourth side surfaces 5A to 5D.
  • Buffer region 13 has a higher n-type impurity concentration than drift region 12 .
  • the n-type impurity concentration of the buffer region 13 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less.
  • Semiconductor device 1 includes p-type collector region 14 formed in the surface layer portion of second main surface 4 in each IGBT region 8 .
  • the collector region 14 is formed in a layered shape extending along the second main surface 4 over the entire second main surface 4 .
  • Collector region 14 is partially exposed from second main surface 4 and first to fourth side surfaces 5A to 5D.
  • the p-type impurity concentration of the collector region 14 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • Semiconductor device 1 includes a p-type base region 15 formed in a surface layer portion of first main surface 3 in each IGBT region 8 .
  • Base region 15 may also be referred to as a "body region” or a "channel region.”
  • Base region 15 is formed in a layered shape extending along first main surface 3 in each IGBT region 8 .
  • the p-type impurity concentration of the base region 15 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the semiconductor device 1 includes a plurality of first trench electrode structures 20 formed on the first main surface 3 in each IGBT region 8 .
  • the first trench electrode structure 20 may be referred to as a "gate trench structure". A gate potential is applied to the first trench electrode structure 20 .
  • a plurality of first trench electrode structures 20 penetrate the base region 15 to reach the drift region 12 in a cross-sectional view.
  • the plurality of first trench electrode structures 20 are arranged in the first direction X at intervals in a plan view, and are each formed in a strip shape extending in the second direction Y. As shown in FIG. That is, the plurality of first trench electrode structures 20 are arranged in stripes extending in the second direction Y.
  • the plurality of first trench electrode structures 20 has a first end on one side (first side surface 5A side) and a second end on the other side (second side surface 5B side) in the longitudinal direction (second direction Y). Each has.
  • the plurality of first trench electrode structures 20 may be arranged in the first direction X at intervals of 1 ⁇ m or more and 10 ⁇ m or less. Each first trench electrode structure 20 may have a width of 0.5 ⁇ m to 3 ⁇ m. Each first trench electrode structure 20 may have a depth greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m.
  • a first trench electrode structure 20 includes a first trench 21 , a first insulating film 22 and a first buried electrode 23 .
  • the first trench 21 is dug down from the first main surface 3 toward the second main surface 4 to define the wall surface of the first trench electrode structure 20 .
  • the first trench 21 may be formed in a tapered shape in which the width of the opening narrows from the opening toward the bottom wall.
  • a bottom wall of the first trench 21 is preferably curved toward the second main surface 4 .
  • the bottom wall of first trench 21 may be formed parallel to first main surface 3 .
  • the corners of the bottom wall of the first trench 21 are preferably curved.
  • the first trench 21 includes an inclined portion obliquely inclined with respect to the first main surface 3 and side walls at the opening end.
  • the inclined portion is formed so as to be spaced from the intermediate portion of the depth range of the first trench 21 toward the first main surface 3 .
  • the inclined portion is formed so as to be spaced from the bottom of base region 15 toward first main surface 3 .
  • the inclined portion in this embodiment, consists of a recess that is recessed toward the second main surface 4 at the open end.
  • the first trench 21 has a wide portion having an opening width on the opening side that exceeds the opening width on the bottom wall side.
  • the first insulating film 22 coats the wall surface of the first trench 21 in a film-like manner and partitions the recess space within the first trench 21 .
  • the first insulating film 22 may include at least one of a silicon oxide film, a silicon nitride film, a silicon oxynitride film and an aluminum oxide film.
  • the first insulating film 22 preferably includes a silicon oxide film made of oxide of the chip 2 .
  • the first insulating film 22 has a thick film portion that is thicker than the other portion in the portion covering the sloped portion of the first trench 21 .
  • the first embedded electrode 23 is embedded in the first trench 21 with the first insulating film 22 interposed therebetween.
  • a gate potential is applied to the first buried electrode 23 .
  • the first buried electrode 23 may contain conductive polysilicon.
  • the first buried electrode 23 faces the drift region 12 and the base region 15 with the first insulating film 22 interposed therebetween.
  • the first buried electrode 23 may have an upper end located on the bottom wall side of the first trench 21 with respect to the first main surface 3 .
  • the upper end portion of the first embedded electrode 23 is constricted toward the inside of the first trench 21 due to the thick film portion of the first insulating film 22 .
  • the upper end of the first buried electrode 23 may have a recessed portion that is recessed toward the bottom wall of the first trench 21 .
  • the recess portion may be tapered toward the bottom wall of the first trench 21 .
  • the semiconductor device 1 has at least one (in this embodiment, a plurality) first trenches formed in the first main surface 3 so as to be electrically connected to the plurality of first trench electrode structures 20.
  • a connecting structure 24 is included.
  • the plurality of first trench connection structures 24 each include a first trench 21 , a first insulating film 22 and a first buried electrode 23 , similar to the first trench electrode structure 20 .
  • the plurality of first trench connection structures 24 includes one first trench connection structure 24 and the other first trench connection structure 24 .
  • One first trench connection structure 24 is formed in a strip shape extending in the first direction X so as to connect the first ends of the plurality of first trench electrode structures 20 .
  • the other first trench connection structure 24 is formed in a strip shape extending in the first direction X so as to connect the second ends of the plurality of first trench electrode structures 20 .
  • the semiconductor device 1 includes a plurality of second trench electrode structures 30 formed on the first main surface 3 in each IGBT region 8.
  • the second trench electrode structure 30 may be referred to as an "emitter trench structure.”
  • the second trench electrode structure 30 is given a potential different from the gate potential (emitter potential in this embodiment).
  • At least two second trench electrode structures 30 are arranged in regions between adjacent pairs of first trench electrode structures 20 respectively. Specifically, a plurality of second trench electrode structures 30 are formed in mesa regions defined by a pair of first trench electrode structures 20 and a pair of first trench connection structures 24, respectively.
  • a plurality of second trench electrode structures 30 penetrate the base region 15 to reach the drift region 12 in a cross-sectional view.
  • the plurality of second trench electrode structures 30 are arranged in the first direction X at intervals in a plan view, and are each formed in a strip shape extending in the second direction Y. As shown in FIG. That is, the plurality of second trench electrode structures 30 are arranged in stripes extending in the second direction Y. As shown in FIG.
  • the plurality of second trench electrode structures 30 are shorter than the plurality of first trench electrode structures 20 with respect to the longitudinal direction (second direction Y).
  • the plurality of second trench electrode structures 30 has a first end on one side (first side surface 5A side) and a second end on the other side (second side surface 5B side) in the longitudinal direction (second direction Y). Each has.
  • the plurality of second trench electrode structures 30 may be arranged in the first direction X at intervals of 1.5 ⁇ m or more and 15 ⁇ m or less.
  • the spacing between the plurality of second trench electrode structures 30 is preferably greater than the spacing between adjacent first trench electrode structures 20 and second trench electrode structures 30 .
  • Each second trench electrode structure 30 may have a width of 0.5 ⁇ m or more and 3 ⁇ m or less. The width of each second trench electrode structure 30 is preferably approximately equal to the width of each first trench electrode structure 20 . Each second trench electrode structure 30 may have a depth greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m. The depth of each second trench electrode structure 30 is preferably approximately equal to the depth of each first trench electrode structure 20 .
  • a second trench electrode structure 30 includes a second trench 31 , a second insulating film 32 and a second buried electrode 33 .
  • the second trench 31 is dug down from the first main surface 3 toward the second main surface 4 to define the wall surface of the second trench electrode structure 30 .
  • the second trench 31 may be formed in a tapered shape in which the width of the opening narrows from the opening toward the bottom wall.
  • the bottom wall of the second trench 31 is preferably curved toward the second main surface 4 .
  • the bottom wall of second trench 31 may be formed parallel to first main surface 3 .
  • the corners of the bottom wall of the second trench 31 are preferably curved.
  • the second trench 31 includes an inclined portion that is inclined with respect to the first main surface 3 and side walls at the open end.
  • the inclined portion is formed so as to be spaced from the intermediate portion of the depth range of the second trench 31 toward the first main surface 3 side.
  • the inclined portion is formed so as to be spaced from the bottom of the base region 15 toward the second main surface 4 .
  • the inclined portion in this embodiment, consists of a recess that is recessed toward the second main surface 4 at the open end.
  • the second trench 31 has a wide portion having an opening width on the opening side that exceeds the opening width on the bottom wall side.
  • the second insulating film 32 covers the wall surface of the second trench 31 in a film-like manner and partitions the recess space within the second trench 31 .
  • the second insulating film 32 may include at least one of a silicon oxide film, a silicon nitride film, a silicon oxynitride film and an aluminum oxide film.
  • the second insulating film 32 preferably includes a silicon oxide film made of oxide of the chip 2 . It is particularly preferable that the second insulating film 32 contains the same insulating material as the first insulating film 22 .
  • the second insulating film 32 has a thick film portion that is thicker than the other portion in the portion covering the inclined portion of the second trench 31 .
  • the second embedded electrode 33 is embedded in the second trench 31 with the second insulating film 32 interposed therebetween. An emitter potential is applied to the second embedded electrode 33 .
  • the second buried electrode 33 may contain conductive polysilicon.
  • the second buried electrode 33 faces the drift region 12 and the base region 15 with the second insulating film 32 interposed therebetween.
  • the second buried electrode 33 may have an upper end located on the bottom wall side of the second trench 31 with respect to the first main surface 3 .
  • the upper end portion of the second embedded electrode 33 is constricted toward the inside of the second trench 31 due to the thick film portion of the second insulating film 32 .
  • the upper end portion of the second buried electrode 33 may have a recessed portion that is recessed toward the bottom wall of the second trench 31 .
  • the recess portion may be tapered toward the bottom wall of the second trench 31 .
  • the semiconductor device 1 has at least one (in this embodiment, a plurality) second trenches formed in the first main surface 3 so as to be electrically connected to the plurality of second trench electrode structures 30.
  • a connection structure 34 is included.
  • a plurality of second trench connection structures 34 each include a second trench 31 , a second insulating film 32 and a second buried electrode 33 , similar to the second trench electrode structure 30 .
  • the plurality of second trench connection structures 34 includes one second trench connection structure 34 and the other second trench connection structure 34 .
  • One second trench connection structure 34 is formed in a strip shape extending in the first direction X so as to connect the first ends of the plurality of second trench electrode structures 30 .
  • the other second trench connection structure 34 is formed in a strip shape extending in the first direction X so as to connect the second ends of the plurality of second trench electrode structures 30 .
  • the semiconductor device 1 includes a plurality of n-type emitter regions 40 formed in the surface layer portion of the base region 15 in each IGBT region 8 .
  • the plurality of emitter regions 40 are arranged on both sides of the plurality of first trench electrode structures 20, respectively, and are each formed in a strip shape extending along the plurality of first trench electrode structures 20 in plan view.
  • a plurality of emitter regions 40 each have a higher n-type impurity concentration than drift region 12 .
  • the n-type impurity concentration of the plurality of emitter regions 40 may be 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the semiconductor device 1 includes a plurality of n-type CS regions 41 (carrier storage regions) formed in regions immediately below the base regions 15 in each IGBT region 8 .
  • the plurality of CS regions 41 suppress the discharge of carriers (holes) to the base region 15 and promote the accumulation of carriers (holes) in the regions immediately below the plurality of first trench electrode structures 20 .
  • the plurality of CS regions 41 promote low on-resistance and low on-voltage from inside the chip 2 .
  • the plurality of CS regions 41 are arranged on both sides of the plurality of first trench electrode structures 20, respectively, and are each formed in a strip shape extending along the plurality of first trench electrode structures 20 in plan view.
  • a plurality of CS regions 41 are formed in regions between the bottom of the base region 15 and the bottom wall of the first trench electrode structure 20 with respect to the thickness direction of the chip 2 .
  • the plurality of CS regions 41 are preferably separated from the bottom wall of the first trench electrode structure 20 toward the base region 15 .
  • the bottoms of the plurality of CS regions 41 are preferably located closer to the bottom wall of the first trench electrode structure 20 than the intermediate portion of the first trench electrode structure 20 .
  • the multiple CS regions 41 have a higher n-type impurity concentration than the drift region 12 .
  • the n-type impurity concentration of the plurality of CS regions 41 is preferably lower than that of the emitter regions 40 .
  • the n-type impurity concentration of the plurality of CS regions 41 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the semiconductor device 1 includes a plurality of contact holes 42 formed in the first main surface 3 in each IGBT region 8 .
  • a plurality of contact holes 42 are formed on both sides of the plurality of first trench electrode structures 20 at intervals in the first direction X from the plurality of first trench electrode structures 20 .
  • Each of the plurality of contact holes 42 may be formed in a tapered shape in which the width of the opening narrows from the opening toward the bottom wall.
  • a plurality of contact holes 42 are dug down from the first main surface 3 to the second main surface 4 so as to expose at least the emitter region 40 .
  • the plurality of contact holes 42 may be separated from the bottom of the emitter region 40 toward the first main surface 3 so as not to reach the base region 15 . Of course, a plurality of contact holes 42 may pass through emitter region 40 to reach base region 15 .
  • the plurality of contact holes 42 are each formed in a strip shape extending along the plurality of first trench electrode structures 20 in plan view. The multiple contact holes 42 are shorter than the multiple first trench electrode structures 20 in the longitudinal direction (second direction Y).
  • the semiconductor device 1 includes a plurality of p-type contact regions 43 formed in a region different from the plurality of emitter regions 40 in the surface layer of the base region 15 in each IGBT region 8 .
  • the plurality of contact regions 43 are formed in regions along the corresponding contact holes 42 .
  • the plurality of contact regions 43 are each formed in a strip shape extending along the corresponding contact hole 42 in plan view.
  • the bottoms of the plurality of contact regions 43 are formed in the regions between the bottom walls of the contact holes 42 and the bottoms of the base regions 15 .
  • the multiple contact regions 43 have a p-type impurity concentration higher than that of the base region 15 .
  • the p-type impurity concentration of the plurality of contact regions 43 may be 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the semiconductor device 1 includes a plurality of p-type well regions 44 formed in the surface layer portion of the first main surface 3 in each IGBT region 8 .
  • a plurality of well regions 44 are respectively formed in regions between adjacent pairs of second trench electrode structures 30 .
  • the plurality of well regions 44 are formed in mesa regions partitioned by the plurality of second trench electrode structures 30 and the plurality of second trench connection structures 34, respectively.
  • a plurality of well regions 44 are formed deeper than the base region 15 in the thickness direction of the chip 2 . Specifically, the plurality of well regions 44 are formed deeper than the intermediate portions of the plurality of second trench electrode structures 30 in the thickness direction of the chip 2 . More specifically, the multiple well regions 44 are formed deeper than the multiple second trench electrode structures 30 in the thickness direction of the chip 2 .
  • the plurality of well regions 44 may have portions (bottom portions) covering bottom walls of the plurality of second trench electrode structures 30 .
  • the plurality of well regions 44 are formed in strips extending along the second trench electrode structure 30 in plan view.
  • the multiple well regions 44 may have a p-type impurity concentration higher than the p-type impurity concentration of the base region 15 .
  • the p-type impurity concentration of the plurality of well regions 44 may be 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the well region 44 is formed in an electrically floating state in this form.
  • a plurality of well regions 44 constitute an IE structure (Injection Enhanced structure) in the IGBT region 8 .
  • the plurality of well regions 44 form an IE structure with the plurality of second trench electrode structures 30 and separate the plurality of first trench electrode structures 20 .
  • the IE structure restricts the path of movement of holes flowing into the base region 15 and causes the holes to accumulate in the region immediately below the base region 15 .
  • the IE structure promotes low on-resistance and low on-voltage from inside the chip 2 .
  • the semiconductor device 1 includes an n-type cathode region 45 formed in the surface layer portion of the second main surface 4 in each diode region 9 .
  • Cathode region 45 may be referred to as the "first polar region.”
  • Cathode region 45 is formed in a layer extending along second main surface 4 in a portion of second main surface 4 (the portion located in diode region 9) in this embodiment. Cathode region 45 penetrates collector region 14 to be connected to buffer region 13 .
  • Cathode region 45 has an n-type impurity concentration exceeding the p-type impurity concentration of collector region 14, and is a region in which the conductivity type of a portion of collector region 14 is changed from p-type to n-type. Cathode region 45 preferably has a higher n-type impurity concentration than drift region 12 (buffer region 13). The n-type impurity concentration of the cathode region 45 may be 1 ⁇ 10 19 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the semiconductor device 1 includes a p-type anode region 46 formed in the surface layer portion of the first main surface 3 in each diode region 9 .
  • Anode region 46 may be referred to as a "second polarity region.”
  • the anode region 46 is formed in a layer shape extending along the first main surface 3 in each diode region 9 and faces the cathode region 45 in the thickness direction of the chip 2 . In this form, the entire anode region 46 faces at least a portion of the cathode region 45 .
  • the anode region 46 may face part of the collector region 14 and part of the cathode region 45 in the thickness direction of the chip 2 .
  • the anode region 46 is formed shallower than the plurality of first trenches 21 in the thickness direction of the chip 2 .
  • the anode region 46 is formed shallower than the intermediate portions of the plurality of first trenches 21 in the thickness direction of the chip 2 .
  • Anode region 46 may have a depth approximately equal to base region 15 .
  • the anode region 46 may be formed deeper than the base region 15 in the thickness direction of the chip 2 .
  • the anode region 46 may be formed deeper than the intermediate portions of the plurality of first trench electrode structures 20 (second trench electrode structures 30) in the thickness direction of the chip 2 .
  • Anode region 46 forms a pn junction with drift region 12 .
  • a pn junction diode having the anode region 46 as an anode and the cathode region 45 (drift region 12) as a cathode is formed.
  • Anode region 46 may have approximately the same p-type impurity concentration as base region 15 .
  • the p-type impurity concentration of the anode region 46 may be higher than the p-type impurity concentration of the base region 15 or lower than the p-type impurity concentration of the base region 15 .
  • the p-type impurity concentration of the anode region 46 may be 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the semiconductor device 1 includes a plurality of third trench electrode structures 50 formed on the first main surface 3 in each diode region 9 .
  • the third trench electrode structure 50 may be referred to as an "anode trench structure.”
  • a potential different from the gate potential is applied to the third trench electrode structure 50 .
  • the anode potential is in this form the emitter potential.
  • a plurality of third trench electrode structures 50 penetrate the anode region 46 to reach the drift region 12 in a cross-sectional view.
  • the plurality of third trench electrode structures 50 are arranged in the first direction X at intervals in a plan view, and are each formed in a band shape extending in the second direction Y. As shown in FIG. That is, the plurality of third trench electrode structures 50 are arranged in stripes extending in the second direction Y. As shown in FIG.
  • the plurality of third trench electrode structures 50 are shorter than the plurality of first trench electrode structures 20 with respect to the longitudinal direction (second direction Y). With respect to the longitudinal direction (second direction Y), the plurality of third trench electrode structures 50 have substantially the same length as the plurality of second trench electrode structures 30 .
  • the plurality of third trench electrode structures 50 has a first end on one side (first side surface 5A side) and a second end on the other side (second side surface 5B side) in the longitudinal direction (second direction Y). Each has.
  • the plurality of third trench electrode structures 50 may be arranged in the first direction X at intervals of 1 ⁇ m or more and 10 ⁇ m or less.
  • the spacing between the plurality of third trench electrode structures 50 is smaller than the spacing between the plurality of first trench electrode structures 20 .
  • the spacing between the plurality of third trench electrode structures 50 is smaller than the spacing between the plurality of second trench electrode structures 30 .
  • the spacing between the plurality of third trench electrode structures 50 is preferably substantially equal to the spacing between adjacent first trench electrode structures 20 and second trench electrode structures 30 .
  • Each third trench electrode structure 50 may have a width of 0.5 ⁇ m or more and 3 ⁇ m or less. The width of each third trench electrode structure 50 is preferably approximately equal to the width of each first trench electrode structure 20 . Each third trench electrode structure 50 may have a depth greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m. The depth of each third trench electrode structure 50 is preferably approximately equal to the depth of each first trench electrode structure 20 .
  • a third trench electrode structure 50 includes a third trench 51 , a third insulating film 52 and a third buried electrode 53 .
  • the third trench 51 is dug down from the first main surface 3 toward the second main surface 4 to partition the wall surface of the third trench electrode structure 50 .
  • the third trench 51 may be formed in a tapered shape in which the width of the opening narrows from the opening toward the bottom wall.
  • a bottom wall of the third trench 51 is preferably curved toward the second main surface 4 .
  • the bottom wall of third trench 51 may be formed parallel to first main surface 3 .
  • the corners of the bottom wall of the third trench 51 are preferably curved.
  • the third trench 51 includes an inclined portion obliquely inclined with respect to the first main surface 3 and side walls at the open end.
  • the inclined portion is formed so as to be spaced from the intermediate portion of the depth range of the third trench 51 toward the first main surface 3 side.
  • the inclined portion is formed so as to be spaced from the bottom of the anode region 46 toward the first main surface 3 .
  • the inclined portion in this embodiment, consists of a recess that is recessed toward the second main surface 4 at the open end.
  • the third trench 51 has a wide portion having an opening width on the opening side that exceeds the opening width on the bottom wall side.
  • the third insulating film 52 covers the wall surface of the third trench 51 in a film form and partitions the recess space within the third trench 51 .
  • the third insulating film 52 may include at least one of a silicon oxide film, a silicon nitride film, a silicon oxynitride film and an aluminum oxide film.
  • the third insulating film 52 preferably includes a silicon oxide film made of oxide of the chip 2 .
  • the third insulating film 52 preferably contains the same insulating material as the first insulating film 22 .
  • the third insulating film 52 exposes the inclined portion of the third trench 51 in this embodiment.
  • the third buried electrode 53 is buried in the third trench 51 with the third insulating film 52 interposed therebetween.
  • An anode potential (emitter potential in this form) is applied to the third embedded electrode 53 .
  • the third buried electrode 53 may contain conductive polysilicon.
  • the third embedded electrode 53 faces the anode region 46 and the drift region 12 with the third insulating film 52 interposed therebetween.
  • the third embedded electrode 53 may have an upper end located on the bottom wall side of the third trench 51 with respect to the first main surface 3 .
  • the upper end portion of the third buried electrode 53 is constricted toward the inside of the second trench 31 due to the thick film portion of the third insulating film 52 .
  • the upper end of the third buried electrode 53 may have a recessed portion that is recessed toward the bottom wall of the third trench 51 .
  • the recess portion may be tapered toward the bottom wall of the third trench 51 .
  • the semiconductor device 1 has at least one (in this embodiment, a plurality) third trenches formed in the first main surface 3 so as to be electrically connected to the plurality of third trench electrode structures 50 in each diode region 9 .
  • a connection structure 54 is included.
  • the plurality of third trench connection structures 54 each include a third trench 51 , a third insulating film 52 and a third buried electrode 53 , similar to the third trench electrode structure 50 .
  • the plurality of third trench connection structures 54 include one third trench connection structure 54 and the other third trench connection structure 54 .
  • One third trench connection structure 54 is formed in a strip shape extending in the first direction X so as to connect the first ends of the plurality of third trench electrode structures 50 .
  • the other third trench connection structure 54 is formed in a strip shape extending in the first direction X so as to connect the second ends of the plurality of third trench electrode structures 50 .
  • the semiconductor device 1 includes a plurality of fourth trench electrode structures 60 formed in the first main surface 3 in boundary regions 55 between each IGBT region 8 and each diode region 9 .
  • at least two fourth trench electrode structures 60 are arranged in the region between the outermost first trench electrode structure 20 and the outermost third trench electrode structure 50 .
  • the plurality of fourth trench electrode structures 60 penetrate the anode region 46 (base region 15) so as to reach the drift region 12 when viewed in cross section.
  • the plurality of fourth trench electrode structures 60 are arranged in the first direction X at intervals in a plan view, and are each formed in a strip shape extending in the second direction Y. As shown in FIG. That is, the plurality of fourth trench electrode structures 60 are arranged in stripes extending in the second direction Y. As shown in FIG.
  • the plurality of fourth trench electrode structures 60 are shorter than the plurality of first trench electrode structures 20 in the longitudinal direction (second direction Y).
  • the plurality of fourth trench electrode structures 60 has a first end on one side (first side surface 5A side) and a second end on the other side (second side surface 5B side) in the longitudinal direction (second direction Y). Each has. First ends of the plurality of fourth trench electrode structures 60 are connected to one third trench connection structure 54 . Second ends of the plurality of fourth trench electrode structures 60 are connected to the other third trench connection structure 54 .
  • the plurality of fourth trench electrode structures 60 may be arranged in the first direction X at intervals of 1.5 ⁇ m or more and 15 ⁇ m or less.
  • the spacing between the plurality of fourth trench electrode structures 60 is preferably greater than the spacing between the plurality of third trench electrode structures 50 .
  • the spacing between the plurality of fourth trench electrode structures 60 is preferably smaller than the spacing between the plurality of first trench electrode structures 20 .
  • the spacing between the plurality of fourth trench electrode structures 60 is preferably approximately equal to the spacing between the plurality of second trench electrode structures 30 .
  • Each fourth trench electrode structure 60 may have a width of 0.5 ⁇ m or more and 3 ⁇ m or less. The width of each fourth trench electrode structure 60 is preferably approximately equal to the width of each third trench electrode structure 50 . Each fourth trench electrode structure 60 may have a depth greater than or equal to 1 ⁇ m and less than or equal to 10 ⁇ m. The depth of each fourth trench electrode structure 60 is preferably approximately equal to the depth of each third trench electrode structure 50 .
  • the plurality of fourth trench electrode structures 60 includes fourth trenches 61 , fourth insulating films 62 and fourth embedded electrodes 63 .
  • the fourth trench 61, the fourth insulating film 62 and the fourth buried electrode 63 have substantially the same shapes as the second trench 31, the second insulating film 32 and the second buried electrode 33, respectively. Descriptions of the fourth trench 61, the fourth insulating film 62, and the fourth embedded electrode 63 are omitted since the descriptions of the second trench 31, the second insulating film 32, and the second embedded electrode 33 are applied.
  • the semiconductor device 1 includes a p-type boundary well region 64 formed in the surface layer portion of the first main surface 3 in the boundary region 55 .
  • Boundary well regions 64 are formed in regions between the plurality of fourth trench electrode structures 60 .
  • the boundary well region 64 is specifically formed in a mesa region partitioned by the pair of fourth trench electrode structures 60 and the pair of third trench connection structures 54 .
  • the boundary well region 64 is formed deeper than the base region 15 and the anode region 46 in the thickness direction of the chip 2 . Specifically, the boundary well region 64 is formed deeper than the intermediate portions of the plurality of fourth trench electrode structures 60 in the thickness direction of the chip 2 . More specifically, the boundary well region 64 is formed deeper than the plurality of fourth trench electrode structures 60 in the thickness direction of the chip 2 .
  • the boundary well region 64 may have a portion (bottom portion) covering the bottom walls of the plurality of fourth trench electrode structures 60 .
  • the boundary well region 64 is formed in a strip shape extending along the fourth trench electrode structure 60 in plan view.
  • Boundary well region 64 may have a p-type impurity concentration that is higher than the p-type impurity concentration of anode region 46 .
  • the boundary well region 64 may have a p-type impurity concentration of 1 ⁇ 10 16 cm ⁇ 3 or more and 1 ⁇ 10 20 cm ⁇ 3 or less.
  • the p-type impurity concentration of boundary well region 64 may be substantially equal to the p-type impurity concentration of well region 44 .
  • the boundary well region 64 faces the collector region 14 in the thickness direction of the chip 2 .
  • the entire boundary well region 64 faces the collector region 14 in the thickness direction of the chip 2 .
  • the boundary well region 64 may face part of the collector region 14 and part of the cathode region 45 in the thickness direction of the chip 2 .
  • the boundary well region 64 is formed in an electrically floating state in this form.
  • the boundary well region 64 constitutes a boundary IE structure in the boundary region 55. Specifically, the boundary well region 64 forms a boundary IE structure with the plurality of fourth trench electrode structures 60 , spacing the outermost first trench electrode structure 20 from the outermost third trench electrode structure 50 . there is The boundary IE structure restricts the path of movement of holes flowing into the base region 15 at the boundary region 55 and encourages accumulation of holes in the region immediately below the base region 15 .
  • the semiconductor device 1 includes a principal surface insulating film 70 selectively covering the first principal surface 3 .
  • Main surface insulating film 70 may include at least one of a silicon oxide film, a silicon nitride film, a silicon oxynitride film and an aluminum oxide film.
  • Main surface insulating film 70 preferably includes a silicon oxide film made of oxide of chip 2 . It is particularly preferable that the main surface insulating film 70 has a single-layer structure consisting of a single insulating film.
  • the main surface insulating film 70 may extend in a film shape along the first main surface 3 and continue to the periphery of the chip 2 (first to fourth side surfaces 5A to 5D).
  • the main surface insulating film 70 exposes the plurality of first trench electrode structures 20, the plurality of first trench connection structures 24, the plurality of second trench electrode structures 30 and the plurality of second trench connection structures 34 in each IGBT region 8. It covers the first main surface 3 as shown in FIG. Specifically, main surface insulating film 70 covers multiple emitter regions 40 and multiple well regions 44 in each IGBT region 8 and continues to first insulating film 22 and second insulating film 32 .
  • the main surface insulating film 70 covers the first main surface 3 so as to expose the anode region 46 , the plurality of third trench electrode structures 50 and the plurality of third trench connection structures 54 in each diode region 9 . Specifically, the main surface insulating film 70 covers the peripheral portion of the anode region 46 in each diode region 9 and continues to the third insulating film 52 . A main surface insulating film 70 covers the first main surface 3 so as to expose the plurality of fourth trench electrode structures 60 in each boundary region 55 . Specifically, the main surface insulating film 70 covers the boundary well region 64 in each boundary region 55 and continues to the third insulating film 52 and the fourth insulating film 62 .
  • the semiconductor device 1 includes a plurality of first wiring films 71 arranged on the main surface insulating film 70 so as to be electrically connected to the second embedded electrodes 33 .
  • the first wiring film 71 may be called a "first emitter wiring film".
  • Each of the plurality of first wiring films 71 is made up of a strip-like lead portion drawn out from the second buried electrode 33 of the corresponding second trench connection structure 34 toward the adjacent first trench connection structure 24 . That is, each of the plurality of first wiring films 71 is made of conductive polysilicon.
  • the semiconductor device 1 includes a plurality of second wiring films 72 arranged on the main surface insulating film 70 so as to be electrically connected to the third buried electrodes 53 .
  • the second wiring film 72 may be called a "second emitter wiring film".
  • Each of the plurality of second wiring films 72 is made up of a strip-shaped extraction portion that is extracted from the third buried electrode 53 of the corresponding third trench connection structure 54 toward the adjacent street region 10 . That is, each of the plurality of second wiring films 72 is made of conductive polysilicon.
  • the semiconductor device 1 includes an interlayer insulating film 73 covering the main surface insulating film 70 .
  • Interlayer insulating film 73 may include at least one of a silicon oxide film, a silicon nitride film, a silicon oxynitride film and an aluminum oxide film.
  • Interlayer insulating film 73 may include at least one of an NSG (Non-doped Silicate Glass) film, a PSG (Phosphor Silicate Glass) film, and a BPSG (Boron Phosphor Silicate Glass) film as an example of a silicon oxide film. good.
  • the interlayer insulating film 73 may have a single-layer structure consisting of a single insulating film, or a laminated structure including a plurality of insulating films.
  • Interlayer insulating film 73 has a thickness exceeding the thickness of main surface insulating film 70 .
  • the thickness of interlayer insulating film 73 may be 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of interlayer insulating film 73 is preferably 1 ⁇ m or more.
  • the interlayer insulating film 73 may extend in layers along the first main surface 3 and continue to the peripheral edges of the chip 2 (first to fourth side surfaces 5A to 5D).
  • the interlayer insulating film 73 selectively covers the plurality of IGBT regions 8 , the plurality of diode regions 9 and the plurality of boundary regions 55 .
  • the interlayer insulating film 73 includes the main surface insulating film 70, the plurality of first trench electrode structures 20, the plurality of first trench connection structures 24, the plurality of second trench electrode structures 30, and the plurality of second trench connections. It covers the structure 34 and the plurality of first wiring films 71 .
  • the interlayer insulating film 73 covers the main surface insulating film 70 , the plurality of third trench electrode structures 50 , the plurality of third trench connection structures 54 and the plurality of second wiring films 72 in each diode region 9 .
  • the interlayer insulating film 73 covers the main surface insulating film 70 , the plurality of third trench connection structures 54 and the plurality of fourth trench electrode structures 60 in each boundary region 55 .
  • the interlayer insulating film 73 has a plurality of first openings 74 exposing the emitter regions 40 in each IGBT region 8 .
  • the plurality of first openings 74 are formed in a one-to-one correspondence with the plurality of contact holes 42 and communicate with the corresponding contact holes 42 respectively.
  • the plurality of first openings 74 are each formed in a strip shape extending along the corresponding contact hole 42 in plan view.
  • Each of the plurality of first openings 74 may be formed in a tapered shape in which the width of the opening narrows toward the corresponding contact hole 42 .
  • the interlayer insulating film 73 has a plurality of second openings 75 exposing the plurality of first wiring films 71 in each IGBT region 8 .
  • the planar shape of each second opening 75 and the number of second openings 75 for each first wiring film 71 are arbitrary.
  • Each second opening 75 is formed in a square shape in a plan view in this form.
  • Each second opening 75 may be formed in a polygonal shape other than a square shape, a circular shape, or an elliptical shape in plan view.
  • the interlayer insulating film 73 has a plurality of third openings 76 exposing the plurality of second wiring films 72 in each diode region 9 .
  • the planar shape of each third opening 76 and the number of third openings 76 for each second wiring film 72 are arbitrary.
  • Each third opening 76 is formed in a square shape in plan view in this form.
  • Each third opening 76 may be formed in a polygonal shape other than a square shape, a circular shape, or an elliptical shape in plan view.
  • the interlayer insulating film 73 includes diode openings 77 that penetrate the main surface insulating film 70 in each diode region 9 to expose the anode region 46 and the plurality of third trench electrode structures 50 .
  • one diode opening 77 is formed for one diode region 9 . That is, in this form, a plurality of diode openings 77 are not formed in one diode region 9 .
  • Diode opening 77 exposes the interior of anode region 46 and the interior of plurality of third trench electrode structures 50 in this configuration.
  • Diode openings 77 expose all third trench electrode structures 50 in each diode region 9 .
  • the interlayer insulating film 73 has an insulating main surface 78 extending along the first main surface 3 and an opening wall surface 79 defining a diode opening 77 .
  • the opening wall surface 79 has an inclined surface forming an acute angle with the first main surface 3 .
  • the inclined surface may be formed in a linear shape, a concave curved shape toward the first main surface 3 , or a convex curved shape away from the first main surface 3 in a cross-sectional view.
  • the inclination angle of the opening wall surface 79 may be 30° or more and less than 90°. Preferably, the angle of inclination exceeds 45°. It is particularly preferable that the inclination angle is 60° or more.
  • the tilt angle is the angle between the first main surface 3 and the tilted surface inside the interlayer insulating film 73 .
  • the inclination angle is the angle formed between the first main surface 3 and a straight line connecting the start point and the end point of the inclined surface.
  • the semiconductor device 1 includes a plurality of first plug electrodes 80 embedded in the plurality of first openings 74 so as to be partially exposed from the interlayer insulating film 73 .
  • Each first plug electrode 80 enters the contact hole 42 through the first opening 74 and is electrically connected to the emitter region 40 and the contact region 43 . That is, first plug electrode 80 includes a portion in contact with interlayer insulating film 73 (main surface insulating film 70 ) and a portion in contact with chip 2 .
  • the first plug electrode 80 has a laminated structure including a first electrode portion 81 and a second electrode portion 82 in this form.
  • the first electrode portion 81 is formed in a film shape along the wall surface of the contact hole 42 and the wall surface of the first opening 74 to define the recess space.
  • the first electrode portion 81 may contain a titanium-based metal film.
  • the first electrode portion 81 may have a single layer structure made of a titanium film or a titanium nitride film.
  • the first electrode portion 81 may have a laminated structure including a titanium film and a titanium nitride film laminated in any order.
  • the second electrode portion 82 is embedded in the contact hole 42 and the first opening 74 with the first electrode portion 81 interposed therebetween.
  • the second electrode portion 82 contains at least one of tungsten, molybdenum, nickel, pure aluminum (aluminum with a purity of 99% or higher), pure copper (copper with a purity of 99% or higher), an aluminum alloy, and a copper alloy. You can
  • the second electrode part 82 may contain at least one of an AlCu alloy, an AlSi alloy and an AlSiCu alloy as an example of an aluminum alloy (copper alloy).
  • the second electrode portion 82 preferably contains a conductive material different from that of the first electrode portion 81 .
  • the second electrode portion 82 preferably contains tungsten.
  • the second electrode portion 82 is made of tungsten in this embodiment.
  • the semiconductor device 1 includes a plurality of second plug electrodes 83 embedded in the plurality of second openings 75 so as to be partially exposed from the interlayer insulating film 73 .
  • Each second plug electrode 83 is electrically connected to the first wiring film 71 within the corresponding second opening 75 .
  • Each second plug electrode 83 has a laminated structure including a first electrode portion 81 and a second electrode portion 82, like the first plug electrodes 80. As shown in FIG.
  • the semiconductor device 1 includes a plurality of third plug electrodes 84 embedded in the plurality of third openings 76 so as to be partially exposed from the interlayer insulating film 73 .
  • Each third plug electrode 84 is electrically connected to the second wiring film 72 within the corresponding third opening 76 .
  • Each third plug electrode 84 has a laminated structure including a first electrode portion 81 and a second electrode portion 82, like the first plug electrodes 80. As shown in FIG.
  • the semiconductor device 1 includes a plurality of lifetime killer regions 85 respectively formed inside the chip 2 in the plurality of diode regions 9 .
  • a plurality of lifetime killer regions 85 are formed for each of the plurality of diode regions 9 .
  • only a single lifetime killer region 85 is formed for one diode region 9 and a plurality of lifetime killer regions 85 are not formed for one diode region 9 .
  • the configuration of a single lifetime killer region 85 is described below.
  • the lifetime killer region 85 is a region containing crystal defects introduced inside the chip 2 .
  • the lifetime killer region 85 may be referred to as a "crystal defect region".
  • the lifetime of carriers (electrons or holes) in lifetime killer region 85 is shorter than the lifetime of carriers outside lifetime killer region 85 .
  • the lifetime killer region 85 is a recombination center of carriers.
  • Crystal defects may include vacancies, dangling bonds, dislocations, rare gas elements, metal elements, or composite defects of these and the constituent elements of the tip 2 .
  • the lifetime killer region 85 preferably has crystal defects formed by elements (elements) other than trivalent elements (p-type impurities) and pentavalent elements (n-type impurities).
  • the lifetime killer region 85 may have, for example, crystal defects formed by irradiating the inside of the chip 2 with one or both of hydrogen ions and helium ions.
  • the lifetime killer region 85 has crystal defects containing helium ions in this form.
  • the lifetime killer region 85 reduces the loss of the diode region 9 during reverse recovery operation by adjusting the carrier lifetime.
  • the lifetime killer region 85 is not formed inside the chip 2 in the IGBT region 8 in this form. That is, the lifetime killer region 85 does not face the first trench electrode structure 20, the first trench connection structure 24, the second trench electrode structure 30 and the second trench connection structure 34 in the thickness direction of the chip 2.
  • FIG. This structure eliminates the need to irradiate the IGBT region 8 with helium ions. Therefore, damage to the first trench electrode structure 20 due to helium ions is suppressed. This suppresses variations in the gate threshold voltage and the like.
  • the lifetime killer region 85 is preferably formed in a region on the first main surface 3 side with respect to the middle portion of the thickness range of the chip 2 . According to this structure, the depth position of the lifetime killer region 85 with respect to the first principal surface 3 is greater than the depth position of the lifetime killer region 85 with respect to the second principal surface 4 . Shallow. Therefore, when helium ions or the like are irradiated from the first main surface 3 side, the irradiation position of the helium ions or the like with respect to the chip 2 becomes shallow.
  • the lifetime killer region 85 is formed with high accuracy.
  • the acceleration energy of helium ions or the like is reduced compared to the case of irradiating helium ions or the like from the second main surface 4 side.
  • the thickness of the resist mask is reduced, thereby reducing the cost due to the resist mask.
  • the lifetime killer region 85 is arranged in a region between the cathode region 45 and the anode region 46 with respect to the thickness direction of the chip 2 and is formed in a layered shape extending along the first main surface 3 .
  • the entire lifetime killer region 85 faces at least a portion of the cathode region 45 in the thickness direction of the chip 2 .
  • lifetime killer region 85 may face part of collector region 14 and part of cathode region 45 in the thickness direction of chip 2 .
  • the lifetime killer region 85 is formed within a thickness range between the cathode region 45 and the plurality of third trench electrode structures 50 in the thickness direction of the chip 2 .
  • the depth position of the lifetime killer region 85 with respect to the bottom wall of the third trench electrode structure 50 is smaller than the depth position of the lifetime killer region 85 with respect to the cathode region 45 .
  • the lifetime killer region 85 faces the plurality of third trench electrode structures 50 in the thickness direction of the chip 2 .
  • a lifetime killer region 85 in this embodiment faces all third trench electrode structures 50 arranged within one diode region 9 .
  • the lifetime killer region 85 does not face the third trench connection structure 54 in the thickness direction of the chip 2 in this form.
  • the lifetime killer region 85 may face the third trench connection structure 54 in the thickness direction of the chip 2 .
  • the lifetime killer region 85 is separated from the boundary well region 64 toward the diode region 9 so as not to face the boundary well region 64 in the thickness direction of the chip 2 .
  • the lifetime killer region 85 may be spaced from the fourth trench electrode structure 60 toward the diode region 9 so as not to face the fourth trench electrode structure 60 in the thickness direction of the chip 2 .
  • the lifetime killer region 85 may have a portion facing the fourth trench electrode structure 60 in the thickness direction of the chip 2 . Also, the lifetime killer region 85 may have a portion facing the boundary well region 64 in the thickness direction of the chip 2 . That is, the lifetime killer region 85 may have a portion drawn from the diode region 9 to the boundary region 55 . In this case, the lifetime of holes flowing from the IGBT region 8 to the diode region 9 can be adjusted.
  • the lifetime killer region 85 has a portion facing the interlayer insulating film 73 in the thickness direction of the chip 2 .
  • the lifetime killer region 85 has a peripheral portion positioned outside the diode opening 77 in plan view. In this form, the peripheral portion of the lifetime killer region 85 extends along the diode opening 77 (opening wall surface 79) in plan view.
  • the peripheral edge of the lifetime killer region 85 extends parallel to the diode opening 77 (opening wall surface 79) in plan view.
  • the peripheral portion of the lifetime killer region 85 surrounds the diode opening 77 (opening wall surface 79) in plan view. That is, the lifetime killer region 85 is formed in a self-aligned manner with respect to the opening wall surface 79 .
  • the peripheral portion of the lifetime killer region 85 faces the interlayer insulating film 73 (opening wall surface 79) in the thickness direction of the chip 2.
  • the lifetime killer region 85 is opposed to two locations of the interlayer insulating film 73 (opening wall surface 79) in the thickness direction of the chip 2 in this embodiment. and does not face three or more portions of the interlayer insulating film 73 .
  • the lifetime killer region 85 is opposed to two locations of the interlayer insulating film 73 (opening wall surface 79) in the thickness direction of the chip 2 in this embodiment. and does not face three or more portions of the interlayer insulating film 73 .
  • the lifetime killer region 85 has a facing region 86 facing the interlayer insulating film 73 and a non-facing region 87 not facing the interlayer insulating film 73 in the thickness direction of the chip 2 .
  • the lifetime killer region 85 has a facing region 86 on the periphery and a non-facing region 87 on the inner side.
  • the lifetime killer region 85 does not have a facing region 86 on its inner side in this form.
  • the proportion of the non-facing region 87 in the lifetime killer region 85 exceeds the proportion of the facing region 86 in the lifetime killer region 85 .
  • the ratio of the non-opposed regions 87 may be less than the ratio of the opposed regions 86 .
  • the ratio of the facing region 86 may be 25% or less, and the ratio of the non-facing region 87 may be 75% or more.
  • the ratio of the facing region 86 is preferably 10% or less, and the ratio of the non-facing region 87 is preferably 90% or more. It is particularly preferable that the proportion of the facing area 86 is 5% or less, and it is particularly preferable that the proportion of the non-opposing area 87 is 95% or more.
  • the thickness of the lifetime killer region 85 is preferably less than the thickness of the well region 44 (boundary well region 64).
  • the thickness of lifetime killer region 85 may be less than the thickness of base region 15 (thickness of anode region 46) or greater than the thickness of base region 15 (thickness of anode region 46). good too.
  • the thickness of lifetime killer region 85 may be less than the thickness of interlayer insulating film 73 .
  • the thickness of lifetime killer region 85 may exceed the thickness of main surface insulating film 70 or may be less than the thickness of main surface insulating film 70 .
  • the lifetime killer region 85 may have a thickness of 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the lifetime killer region 85 has a portion facing the interlayer insulating film 73 (opening wall surface 79).
  • a lifetime killer region 85 that does not face the interlayer insulating film 73 (opening wall surface 79) may be formed. That is, the lifetime killer region 85 may be formed only within a region surrounded by the diode aperture 77 (aperture wall surface 79) in plan view.
  • This form shows an example in which a single lifetime killer region 85 is formed in each diode region 9 .
  • a plurality of lifetime killer regions 85 may be formed at intervals in the thickness direction of the chip 2 .
  • the lifetime killer regions 85 have substantially the same shape, except that the locations inside the chip 2 where they are formed (positions where ions or the like are irradiated) are different.
  • the above description applies to the description of each lifetime killer area 85 .
  • the semiconductor device 1 includes an emitter main surface electrode 90 (first main surface electrode) arranged on the interlayer insulating film 73 in the active region 6 .
  • Emitter main surface electrode 90 has a laminated structure including a first emitter electrode film 91 and a second emitter electrode film 92 laminated in this order from the interlayer insulating film 73 side.
  • the first emitter electrode film 91 is preferably made of a metal film (first emitter metal film).
  • the first emitter electrode film 91 includes a tungsten film, a molybdenum film, a nickel film, a pure aluminum film (aluminum film with a purity of 99% or higher), a pure copper film (a copper film with a purity of 99% or higher), an aluminum alloy film, and a copper alloy. It may comprise at least one of the membranes.
  • the first emitter electrode film 91 may include at least one of an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film as an example of an aluminum alloy film (copper alloy film).
  • the first emitter electrode film 91 may have a single layer structure consisting of a single electrode film, or may have a laminated structure including a plurality of electrode films.
  • the first emitter electrode film 91 preferably has a single layer structure.
  • the first emitter electrode film 91 may contain the same conductive material as the first electrode portion 81 of the first plug electrode 80 , or may contain a different conductive material from the first electrode portion 81 of the first plug electrode 80 . You can stay.
  • the first emitter electrode film 91 may contain the same conductive material as the second electrode portion 82 of the first plug electrode 80 , or may contain a different conductive material from the second electrode portion 82 of the first plug electrode 80 . You can stay.
  • the first emitter electrode film 91 preferably has a resistance value less than that of the first wiring film 71 (second wiring film 72).
  • the first emitter electrode film 91 is preferably thinner than the interlayer insulating film 73 .
  • First emitter electrode film 91 may be thicker than main surface insulating film 70 or thinner than main surface insulating film 70 .
  • the thickness of the first emitter electrode film 91 may be 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the thickness of the first emitter electrode film 91 is preferably 0.3 ⁇ m or more and 0.6 ⁇ m or less.
  • the first emitter electrode film 91 has portions that directly cover the plurality of first plug electrodes 80 . That is, the first emitter electrode film 91 has portions that directly cover the first electrode portions 81 and the second electrode portions 82 of the plurality of first plug electrodes 80 .
  • the first emitter electrode film 91 is electrically connected to the multiple emitter regions 40 via the multiple first plug electrodes 80 .
  • the first emitter electrode film 91 covers the entire area of the plurality of first plug electrodes 80 .
  • the first emitter electrode film 91 has portions that directly cover the plurality of second plug electrodes 83 .
  • the first emitter electrode film 91 is electrically connected to the plurality of first wiring films 71 via the plurality of second plug electrodes 83 .
  • the first emitter electrode film 91 covers the entire area of the plurality of second plug electrodes 83 .
  • the first emitter electrode film 91 has portions that directly cover the plurality of third plug electrodes 84 .
  • the first emitter electrode film 91 is electrically connected to the plurality of second wiring films 72 via the plurality of third plug electrodes 84 .
  • the first emitter electrode film 91 covers the entire area of the plurality of third plug electrodes 84 .
  • the first emitter electrode film 91 is arranged on the interlayer insulating film 73 so as to cover the plurality of RC-IGBT regions 7 in plan view.
  • the first emitter electrode film 91 has a peripheral edge that collectively surrounds the plurality of RC-IGBT regions 7 in plan view.
  • the first emitter electrode film 91 is formed in a polygonal shape (specifically, a rectangular shape) having four sides parallel to the first to fourth side surfaces 5A to 5D in plan view.
  • the first emitter electrode film 91 may be formed in a polygonal shape other than a square shape, a circular shape, or an elliptical shape in plan view.
  • the first emitter electrode film 91 may cover 30% or more of the first main surface 3 in plan view.
  • the first emitter electrode film 91 preferably covers 50% or more of the first main surface 3 in plan view. It is particularly preferable that the first emitter electrode film 91 covers 75% or more of the first main surface 3 in plan view.
  • the first emitter electrode film 91 preferably covers 90% or less of the first main surface 3 in plan view.
  • the first emitter electrode film 91 is arranged only on the interlayer insulating film 73 so as not to cover the diode regions 9 .
  • the first emitter electrode film 91 has a plurality of electrode openings 93 exposing the diode regions 9 .
  • Each electrode opening 93 preferably exposes at least a portion of each opening wall surface 79 . It is particularly preferable that each electrode opening 93 exposes the entire opening wall surface 79 .
  • the first emitter electrode film 91 is arranged only on the insulating main surface 78 and is not arranged on the opening wall surface 79 . Further, the opening wall surface 79 exposed from the first emitter electrode film 91 overlaps the lifetime killer region 85 in plan view.
  • the electrode opening 93 surrounds the diode opening 77 in plan view. The electrode opening 93 may be formed spaced outward from the peripheral edge of the lifetime killer region 85 in plan view. In this case, the electrode opening 93 may surround the lifetime killer region 85 in plan view.
  • the electrode opening 93 may be located inside the peripheral edge of the lifetime killer region 85 in plan view. That is, the first emitter electrode film 91 may have a portion that overlaps the peripheral portion of the lifetime killer region 85 in plan view. In this case, the electrode opening 93 may be surrounded by the peripheral portion of the lifetime killer region 85 in plan view.
  • the electrode opening 93 may be formed on the insulating main surface 78 with a gap from the opening wall surface 79 . That is, the electrode opening 93 may expose a portion of the insulating main surface 78 from between the opening wall surface 79 and the opening wall surface 79 .
  • the distance between diode opening 77 and electrode opening 93 is preferably 0.1 ⁇ m or more and 5 ⁇ m or less. It is particularly preferred that the distance between diode opening 77 and electrode opening 93 is 1 ⁇ m or less.
  • the first emitter electrode film 91 is composed of a plurality of first trench electrode structures 20, a plurality of first trench connection structures 24, a plurality of second trench electrode structures 30, and a plurality of second trench connection structures with an interlayer insulating film 73 interposed therebetween. 34 , opposite the plurality of third trench connection structures 54 and the plurality of fourth trench electrode structures 60 .
  • the first emitter electrode film 91 faces the plurality of emitter regions 40, the plurality of well regions 44 and the plurality of boundary well regions 64 with the interlayer insulating film 73 interposed therebetween.
  • the first emitter electrode film 91 may have a portion facing a portion of the plurality of third trench electrode structures 50 with the interlayer insulating film 73 interposed therebetween.
  • one first emitter electrode film 91 collectively covers a plurality of first plug electrodes 80, a plurality of second plug electrodes 83, and a plurality of third plug electrodes 84.
  • a plurality of first emitter electrode films 91 are arranged on the interlayer insulating film 73 so as to individually cover the plurality of first plug electrodes 80 , the plurality of second plug electrodes 83 and the plurality of third plug electrodes 84 . may have been
  • the second emitter electrode film 92 forms the main body of the emitter main surface electrode 90 .
  • the second emitter electrode film 92 is preferably made of a metal film (second emitter metal film).
  • Second emitter electrode film 92 includes at least one of a pure aluminum film (aluminum film with a purity of 99% or more), a pure copper film (a copper film with a purity of 99% or more), an aluminum alloy film, or a copper alloy film. You can stay.
  • the second emitter electrode film 92 may include at least one of an AlCu alloy film, an AlSi alloy film and an AlSiCu alloy film as an example of an aluminum alloy film (copper alloy film).
  • the second emitter electrode film 92 may have a single layer structure consisting of a single metal film, or may have a laminated structure including a plurality of metal films.
  • the second emitter electrode film 92 preferably has a single layer structure.
  • the second emitter electrode film 92 preferably contains a conductive material different from that of the first emitter electrode film 91 . It is particularly preferable that the second emitter electrode film 92 is made of a conductive material different from that of the first emitter electrode film 91 .
  • the second emitter electrode film 92 preferably has a resistance value less than that of the first wiring film 71 (second wiring film 72).
  • the second emitter electrode film 92 is preferably thicker than the first emitter electrode film 91 .
  • Second emitter electrode film 92 is preferably thicker than main surface insulating film 70 .
  • Second emitter electrode film 92 is particularly preferably thicker than interlayer insulating film 73 .
  • the thickness of the second emitter electrode film 92 may be 3 ⁇ m or more and 6 ⁇ m or less.
  • the thickness of the second emitter electrode film 92 is preferably 4 ⁇ m or more and 5 ⁇ m or less.
  • the second emitter electrode film 92 is arranged on the interlayer insulating film 73 so as to cover the plurality of RC-IGBT regions 7 in plan view.
  • the second emitter electrode film 92 has a peripheral edge that collectively surrounds the plurality of RC-IGBT regions 7 in plan view.
  • the second emitter electrode film 92 is formed in a polygonal shape (specifically, a rectangular shape) having four sides parallel to the first to fourth side surfaces 5A to 5D in plan view.
  • the second emitter electrode film 92 may be formed in a polygonal shape other than a square shape, a circular shape, or an elliptical shape in plan view.
  • the second emitter electrode film 92 may cover 30% or more of the first main surface 3 in plan view.
  • the second emitter electrode film 92 preferably covers 50% or more of the first main surface 3 in plan view. It is particularly preferable that the second emitter electrode film 92 covers 75% or more of the first main surface 3 in plan view.
  • the second emitter electrode film 92 preferably covers 90% or less of the first main surface 3 in plan view.
  • the second emitter electrode film 92 covers the multiple diode regions 9 and the first emitter electrode film 91 . Specifically, the second emitter electrode film 92 directly covers the first emitter electrode film 91 . As a result, the second emitter electrode film 92 forms a plurality (all) of the first plug electrodes 80, a plurality (all) of the second plug electrodes 83 and a plurality (all) of the third plugs through the first emitter electrode film 91. It is electrically connected to electrode 84 .
  • the second emitter electrode film 92 faces the plurality (all) of the first plug electrodes 80 with the first emitter electrode film 91 interposed therebetween.
  • the second emitter electrode film 92 faces the plurality (all) of the second plug electrodes 83 with the first emitter electrode film 91 interposed therebetween.
  • the second emitter electrode film 92 faces the plurality (all) of the third plug electrodes 84 with the first emitter electrode film 91 interposed therebetween.
  • Second emitter electrode film 92 does not have a portion directly covering first plug electrode 80 , a portion directly covering second plug electrode 83 , or a portion directly covering third plug electrode 84 .
  • the second emitter electrode film 92 has a portion directly covering the interlayer insulating film 73 . Specifically, the second emitter electrode film 92 extends from above the first emitter electrode film 91 into the plurality of diode openings 77 through the plurality of opening wall surfaces 79 . That is, the second emitter electrode film 92 has portions that directly cover the plurality of opening wall surfaces 79 . Second emitter electrode film 92 may have a portion directly covering main surface insulating film 70 at a plurality of opening wall surfaces 79 .
  • the second emitter electrode film 92 preferably covers the entire opening wall surface 79 .
  • second emitter electrode film 92 has a portion covering main insulating surface 78 (interlayer insulating film 73 ) in a region between diode opening 77 and electrode opening 93 . may be
  • the second emitter electrode film 92 directly covers the anode region 46 in each diode opening 77 and is electrically connected to the anode region 46 .
  • the second emitter electrode film 92 is preferably directly connected to the plurality of third trench electrode structures 50 within each diode opening 77 .
  • the second emitter electrode film 92 is preferably directly connected to all the third trench electrode structures 50 within each diode opening 77 .
  • the second emitter electrode film 92 preferably has a portion in contact with the third buried electrode 53 and a portion in contact with the third insulating film 52 .
  • the second emitter electrode film 92 is preferably electrically connected to the anode region 46 at the opening (wide portion) of the third trench 51 .
  • the second emitter electrode film 92 has a plurality of first trench electrode structures 20, a plurality of first trench connection structures 24, a plurality of second trench electrode structures 30, and a plurality of second trench connection structures with the interlayer insulating film 73 interposed therebetween. 34 , opposite the plurality of third trench connection structures 54 and the plurality of fourth trench electrode structures 60 .
  • the second emitter electrode film 92 faces the plurality of emitter regions 40, the plurality of well regions 44 and the plurality of boundary well regions 64 with the interlayer insulating film 73 interposed therebetween.
  • the second emitter electrode film 92 may have portions that directly cover the plurality of third trench connection structures 54 .
  • the semiconductor device 1 includes at least one (plurality in this embodiment) third wiring film 94 arranged on the main surface insulating film 70 in at least one (plurality in this embodiment) street region 10 .
  • the third wiring film 94 may be called a "gate wiring film".
  • Each of the plurality of third wiring films 94 is made of conductive polysilicon.
  • the plurality of third wiring films 94 are each formed in a strip shape extending along the plurality of street regions 10 .
  • the plurality of third wiring films 94 have portions drawn from the corresponding street regions 10 onto the adjacent first trench connection structures 24 and are connected to the first embedded electrodes 23 .
  • the plurality of third wiring films 94 are also portions drawn out from the first embedded electrodes 23 to the adjacent street regions 10 .
  • the plurality of third wiring films 94 have portions drawn out from the plurality of street regions 10 to the outer region 11 .
  • the interlayer insulating film 73 described above covers the plurality of third wiring films 94 in the active region 6 and the outer region 11 .
  • the interlayer insulating film 73 has a plurality of fourth openings 95 exposing the plurality of third wiring films 94 in the outer region 11 .
  • the plurality of fourth openings 95 expose arbitrary portions of the plurality of third wiring films 94, respectively.
  • the planar shape and number of the fourth openings 95 for each third wiring film 94 are arbitrary.
  • the semiconductor device 1 includes a plurality of fourth plug electrodes 96 embedded in the plurality of fourth openings 95 so as to be partially exposed from the interlayer insulating film 73 .
  • the plurality of fourth plug electrodes 96 are electrically connected to the corresponding third wiring films 94 in the corresponding fourth openings 95, respectively.
  • Each fourth plug electrode 96 has a laminated structure including a first electrode portion 81 and a second electrode portion 82, like the first plug electrodes 80. As shown in FIG.
  • the semiconductor device 1 includes a gate main surface electrode 100 (second main surface electrode) arranged on the interlayer insulating film 73 with a gap from the emitter main surface electrode 90 in the outer region 11 .
  • the gate main surface electrode 100 has a laminated structure including a first gate electrode film 101 and a second gate electrode film 102 laminated in this order from the interlayer insulating film 73 side.
  • the first gate electrode film 101 is preferably made of a metal film (first gate metal film).
  • the first gate electrode film 101 includes a tungsten film, a molybdenum film, a nickel film, a pure aluminum film (aluminum film with a purity of 99% or higher), a pure copper film (a copper film with a purity of 99% or higher), an aluminum alloy film, and a copper alloy. It may comprise at least one of the membranes.
  • the first gate electrode film 101 may include at least one of an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film as an example of an aluminum alloy film (copper alloy film).
  • the first gate electrode film 101 is preferably thinner than the interlayer insulating film 73 .
  • the first gate electrode film 101 may be thicker than the main surface insulating film 70 or thinner than the main surface insulating film 70 .
  • First gate electrode film 101 preferably contains the same conductive material as first emitter electrode film 91 and has a thickness substantially equal to that of first emitter electrode film 91 .
  • the first gate electrode film 101 preferably has a resistance value less than that of the third wiring film 94 .
  • the first gate electrode film 101 is preferably arranged on the interlayer insulating film 73 so as not to cover either one or both of the IGBT region 8 and the diode region 9 . It is particularly preferable that the first gate electrode film 101 does not face the RC-IGBT region 7 with the interlayer insulating film 73 interposed therebetween.
  • the first gate electrode film 101 has portions directly covering the plurality of fourth plug electrodes 96 and is electrically connected to the plurality of third wiring films 94 via the plurality of fourth plug electrodes 96 .
  • the first gate electrode film 101 preferably covers the entire area of the plurality of fourth plug electrodes 96 .
  • the first gate electrode film 101 has a first pad portion 103 and at least one (in this embodiment, a plurality of) first finger portions 104 .
  • the arrangement of the first pad section 103 is arbitrary.
  • the first pad portion 103 is arranged in a region that does not overlap the RC-IGBT region 7 in plan view.
  • the first pad portion 103 has a planar area less than the planar area of the emitter main surface electrode 90 .
  • the plane area of the first pad portion 103 may be 20% or less of the first main surface 3 .
  • the plane area of the first pad portion 103 is preferably 10% or less of the first main surface 3 .
  • the first pad portion 103 is formed in a polygonal shape (quadrangular shape in this embodiment) having four sides parallel to the first to fourth side surfaces 5A to 5D in plan view.
  • the second gate electrode film 102 may be formed in a polygonal shape other than a square shape, a circular shape, or an elliptical shape in plan view.
  • the plurality of first finger portions 104 are strip-shaped portions drawn out from the first pad portion 103 toward the plurality of fourth plug electrodes 96 .
  • the plurality of first finger portions 104 cover the plurality of fourth plug electrodes 96 and electrically connect the first pad portion 103 to the plurality of fourth plug electrodes 96 .
  • At least one of the plurality of first finger portions 104 forms a main line portion drawn out from the first pad portion 103, and the other first finger portions 104 form a branch line portion drawn out from the main line portion. may be Of course, all first finger portions 104 may be pulled out from first pad portion 103 .
  • the emitter main surface electrode 90 is formed with an opening that exposes part or all of the street region 10 , at least one first finger portion 104 is drawn out from the outer region 11 into the opening of the emitter main surface electrode 90 . It may be In this case, the first finger portion 104 inside the open portion may extend along the third wiring film 94 .
  • one first gate electrode film 101 includes a first pad portion 103 and a plurality of first finger portions 104 and covers a plurality of fourth plug electrodes 96 collectively.
  • a plurality of first gate electrode films 101 may be arranged on interlayer insulating film 73 at intervals so as to individually cover a plurality of fourth plug electrodes 96 .
  • the first gate electrode film 101 may cover the plurality of fourth plug electrodes 96 individually or collectively, and the layout of the first gate electrode film 101 is arbitrary.
  • the presence or absence of the first pad portion 103 and the presence or absence of the first finger portion 104 are optional.
  • the second gate electrode film 102 forms the main body of the gate main surface electrode 100 .
  • the second gate electrode film 102 is preferably made of a metal film (second gate metal film).
  • the second gate electrode film 102 includes at least one of a pure aluminum film (aluminum film with a purity of 99% or higher), a pure copper film (a copper film with a purity of 99% or higher), an aluminum alloy film, or a copper alloy film. You can stay.
  • the second gate electrode film 102 may include at least one of an AlCu alloy film, an AlSi alloy film, and an AlSiCu alloy film as an example of an aluminum alloy film (copper alloy film).
  • the second gate electrode film 102 may have a single layer structure consisting of a single metal film, or may have a laminated structure including a plurality of metal films.
  • the second gate electrode film 102 preferably has a single layer structure.
  • the second gate electrode film 102 preferably contains a conductive material different from that of the first gate electrode film 101 . It is particularly preferable that the second gate electrode film 102 is made of a conductive material different from that of the first gate electrode film 101 .
  • the second gate electrode film 102 is preferably thicker than the first gate electrode film 101 .
  • Second gate electrode film 102 is preferably thicker than main surface insulating film 70 . It is particularly preferable that the second gate electrode film 102 is thicker than the interlayer insulating film 73 .
  • Second gate electrode film 102 preferably contains the same conductive material as second emitter electrode film 92 and has substantially the same thickness as second emitter electrode film 92 .
  • the second gate electrode film 102 preferably has a resistance value less than that of the third wiring film 94 .
  • the second gate electrode film 102 directly covers the first gate electrode film 101 and is electrically connected to the plurality of fourth plug electrodes 96 via the first gate electrode film 101 .
  • the second gate electrode film 102 specifically has a second pad portion 105 and at least one (in this embodiment, a plurality of) second finger portions 106 .
  • the second pad section 105 is arranged on the first pad section 103 so as to directly cover the first pad section 103 .
  • the plane area of the second pad portion 105 may be 20% or less of the first main surface 3 .
  • the planar area of the second pad portion 105 is preferably 10% or less of the second main surface 4 .
  • the second pad portion 105 is formed in a polygonal shape (quadrangular shape in this embodiment) having four sides parallel to the first to fourth side surfaces 5A to 5D in plan view.
  • the second gate electrode film 102 may be formed in a polygonal shape other than a square shape, a circular shape, or an elliptical shape in plan view.
  • the plurality of second finger portions 106 are pulled out from the second pad portion 105 above the plurality of first finger portions 104 in a strip shape so as to directly cover the plurality of first finger portions 104 .
  • the plurality of second finger portions 106 face the plurality (all) of the fourth plug electrodes 96 with the plurality of first finger portions 104 interposed therebetween. Thereby, the plurality of second finger portions 106 are electrically connected to the plurality of fourth plug electrodes 96 via the plurality of first finger portions 104 .
  • the emitter main-surface electrode 90 is formed with an opening exposing a part or all of the street region 10 , at least one second finger portion 106 is drawn out from the outer region 11 into the opening of the emitter main-surface electrode 90 . It may be In this case, the second finger portion 106 inside the open portion may extend along the third wiring film 94 .
  • the semiconductor device 1 includes a collector main surface electrode 110 (third main surface electrode) covering the second main surface 4 .
  • Collector main surface electrode 110 is electrically connected to collector region 14 exposed from second main surface 4 and electrically connected to cathode region 45 exposed from second main surface 4 .
  • Collector main surface electrode 110 forms ohmic contact with collector region 14 and forms ohmic contact with cathode region 45 .
  • the collector main surface electrode 110 may cover the entire second main surface 4 so as to be continuous with the periphery of the chip 2 (first to fourth side surfaces 5A to 5D).
  • the collector main surface electrode 110 may include at least one of Ti film, Ni film, Pd film, Au film, Ag film and Al film.
  • Collector main surface electrode 110 may have a single film structure including a Ti film, Ni film, Au film, Ag film, or Al film.
  • Collector main surface electrode 110 may have a laminated structure in which at least two of Ti film, Ni film, Pd film, Au film, Ag film and Al film are laminated in an arbitrary manner.
  • collector principal surface electrode 110 preferably includes a Ti film that directly covers at least second principal surface 4 .
  • the semiconductor device 1 includes the chip 2 , the IGBT region 8 , the diode region 9 , the interlayer insulating film 73 , the first plug electrode 80 and the emitter main surface electrode 90 .
  • Chip 2 has a first main surface 3 .
  • IGBT region 8 is formed on first main surface 3 .
  • Diode region 9 is formed on first main surface 3 .
  • Interlayer insulating film 73 is formed on first main surface 3 so as to expose diode region 9 and cover IGBT region 8 .
  • the first plug electrode 80 is embedded in a portion of the interlayer insulating film 73 covering the IGBT region 8 and partially exposed from the interlayer insulating film 73 .
  • Emitter main surface electrode 90 includes a first emitter electrode film 91 and a second emitter electrode film 92 .
  • the first emitter electrode film 91 covers the first plug electrode 80 so as to expose the diode region 9 .
  • Second emitter electrode film 92 covers first emitter electrode film 91 and diode region 9 .
  • the resistance component caused by the oxide is added to the resistance component of the first plug electrode 80 .
  • the resistance component caused by the oxide increases.
  • the first emitter electrode film 91 covering the first plug electrode 80 can prevent the first plug electrode 80 from contacting the outside air. Thereby, oxidation of the first plug electrode 80 can be suppressed by the first emitter electrode film 91 .
  • the first emitter electrode film 91 that exposes the diode region 9 it is possible to suppress an unexpected decrease in ohmic properties caused by the first emitter electrode film 91 between the diode region 9 and the second emitter electrode film 92. . Thereby, the characteristics of the forward voltage VF of the diode region 9 can be improved. Therefore, it is possible to provide the semiconductor device 1 capable of improving electrical characteristics.
  • the first emitter electrode film 91 preferably does not cover the diode region 9 .
  • Diode region 9 preferably includes an anode region 46 formed in the surface layer of first main surface 3 .
  • the first emitter electrode film 91 preferably exposes the anode region 46 .
  • the second emitter electrode film 92 preferably covers the anode region 46 .
  • Diode region 9 preferably includes a third trench electrode structure 50 formed on first main surface 3 .
  • the first emitter electrode film 91 preferably exposes the third trench electrode structure 50 .
  • the second emitter electrode film 92 preferably covers the third trench electrode structure 50 .
  • An emitter potential is preferably applied to the third trench electrode structure 50 .
  • the first emitter electrode film 91 preferably directly covers the first plug electrode 80 .
  • Second emitter electrode film 92 preferably directly covers first emitter electrode film 91 and diode region 9 . In other words, it is preferable that the second emitter electrode film 92 directly covers the diode region 9 without a barrier metal film (for example, a Ti film) interposed therebetween.
  • the second emitter electrode film 92 preferably has a portion facing the first plug electrode 80 with the first emitter electrode film 91 interposed therebetween.
  • the interlayer insulating film 73 preferably has an opening wall surface 79 defining a diode opening 77 exposing the diode region 9 .
  • the first emitter electrode film 91 preferably exposes the opening wall surface 79 .
  • the second emitter electrode film 92 preferably has a portion covering the opening wall surface 79 .
  • the opening wall surface 79 is preferably inclined so as to form an acute angle with the first main surface 3 .
  • the inclination angle of the opening wall surface 79 is preferably more than 45° and less than 90°. According to this structure, the second emitter electrode film 92 can face the first main surface 3 via the inclined portion (opening wall surface 79 ) of the relatively thick interlayer insulating film 73 . Thereby, electric field concentration in the vicinity of the inclined portion of the interlayer insulating film 73 can be suppressed.
  • the first plug electrode 80 preferably contains tungsten.
  • First emitter electrode film 91 preferably contains at least one of aluminum, aluminum alloy, copper, copper alloy, tungsten, molybdenum, titanium, titanium nitride and nickel.
  • Second emitter electrode film 92 preferably contains at least one of aluminum, an aluminum alloy, copper, and a copper alloy.
  • the second emitter electrode film 92 preferably contains a conductive material different from that of the first emitter electrode film 91 .
  • the first emitter electrode film 91 is preferably thinner than the interlayer insulating film 73 .
  • the second emitter electrode film 92 is preferably thicker than the first emitter electrode film 91 .
  • Second emitter electrode film 92 is particularly preferably thicker than interlayer insulating film 73 .
  • the first emitter electrode film 91 preferably has a single layer structure.
  • the second emitter electrode film 92 preferably has a single layer structure.
  • the IGBT region 8 includes a p-type base region 15 formed in the surface layer portion of the first main surface 3 and a first trench electrode structure 20 (gate trench electrode structure) formed in the first main surface 3 so as to penetrate the base region 15 . structure), and an n-type emitter region 40 formed in a region along the first trench electrode structure 20 in the surface layer portion of the base region 15 .
  • the first plug electrode 80 may be electrically connected to the emitter region 40 .
  • the IGBT region 8 has a contact hole 42 formed in the first main surface 3 to expose the emitter region 40 and a p-type contact region 43 formed in a region along the contact hole 42 within the base region 15 . may contain. In this case, first plug electrode 80 may be electrically connected to emitter region 40 and contact region 43 within contact hole 42 .
  • the IGBT region 8 may include an n-type CS region 41 formed immediately below the base region 15 within the chip 2 .
  • a plurality of IGBT regions 8 may be formed on the first main surface 3 .
  • a plurality of diode regions 9 may be formed on the first main surface 3 .
  • a plurality of first plug electrodes 80 may be electrically connected to a plurality of IGBT regions 8 .
  • a first emitter electrode film 91 may cover the plurality of first plug electrodes 80 so as to expose the plurality of diode regions 9 .
  • a second emitter electrode film 92 may cover the plurality of diode regions 9 and the first emitter electrode film 91 .
  • the semiconductor device 1 includes a chip 2 , an IGBT region 8 , a diode region 9 , an interlayer insulating film 73 , a lifetime killer region 85 and an emitter main surface electrode 90 .
  • Chip 2 has a first main surface 3 .
  • IGBT region 8 is formed on first main surface 3 .
  • Diode region 9 is formed on first main surface 3 .
  • Interlayer insulating film 73 is formed on first main surface 3 to cover IGBT region 8 .
  • the interlayer insulating film 73 has a diode opening 77 that exposes the diode region 9 .
  • the lifetime killer region 85 is formed inside the chip 2 in the diode region 9 so as to overlap the diode opening 77 in plan view.
  • Emitter main surface electrode 90 is arranged on first main surface 3 so as to be electrically connected to IGBT region 8 and diode region 9 . According to this structure, the loss of the diode region 9 during the reverse recovery operation can be reduced due to the effect of adjusting the carrier lifetime. Therefore, it is possible to provide the semiconductor device 1 capable of improving electrical characteristics.
  • the semiconductor device 1 preferably includes a third trench electrode structure 50 (trench structure) formed on the first main surface 3 in the diode region 9 .
  • diode opening 77 preferably exposes third trench electrode structure 50 .
  • a plurality of third trench electrode structures 50 are formed on the first main surface 3 .
  • Diode openings 77 preferably expose a plurality of third trench electrode structures 50 .
  • the diode opening 77 preferably exposes all the third trench electrode structures 50 included in the diode region 9 collectively.
  • the lifetime killer region 85 preferably faces the third trench electrode structure 50 in the thickness direction of the chip 2 .
  • a plurality of diode openings 77 are preferably not formed for one diode region 9 . It is preferable that lifetime killer region 85 is not formed in IGBT region 8 .
  • the lifetime killer region 85 preferably has a facing region 86 facing the interlayer insulating film 73 and a non-facing region 87 not facing the interlayer insulating film 73 in the thickness direction of the chip 2 .
  • the lifetime killer region 85 preferably has a non-facing region 87 at its peripheral edge. It is preferable that the lifetime killer region 85 does not have a non-facing region 87 in the inner portion. It is preferable that the proportion of the non-facing region 87 in the lifetime killer region 85 exceeds the proportion of the facing region 86 in the lifetime killer region 85 .
  • the interlayer insulating film 73 preferably has an opening wall surface 79 that defines the diode opening 77 .
  • the lifetime killer region 85 preferably has a portion facing the opening wall surface 79 in the thickness direction of the chip 2 .
  • the opening wall surface 79 preferably forms an acute angle with the first main surface 3 .
  • the inclination angle of the opening wall surface 79 is preferably more than 45° and less than 90°.
  • the emitter main surface electrode 90 can face the first main surface 3 via the inclined portion (opening wall surface 79 ) of the relatively thick interlayer insulating film 73 . Thereby, electric field concentration in the vicinity of the inclined portion of the interlayer insulating film 73 can be suppressed.
  • a plurality of IGBT regions 8 are preferably formed on the first main surface 3 .
  • a plurality of diode regions 9 are preferably formed on the first main surface 3 .
  • a plurality of diode openings 77 are preferably formed one for each of the plurality of diode regions 9 .
  • a plurality of lifetime killer regions 85 are preferably formed for each of the plurality of diode regions 9 .
  • the semiconductor device 1 preferably includes a first plug electrode 80.
  • the first plug electrode 80 is buried in a portion of the interlayer insulating film 73 covering the IGBT region 8 and partially exposed from the interlayer insulating film 73 .
  • emitter main surface electrode 90 preferably includes first emitter electrode film 91 and second emitter electrode film 92 .
  • the first emitter electrode film 91 covers the first plug electrode 80 so as to expose the diode region 9 .
  • Second emitter electrode film 92 covers first emitter electrode film 91 and diode region 9 .
  • the resistance component caused by the oxide is added to the resistance component of the first plug electrode 80 .
  • the resistance component caused by the oxide increases.
  • the first emitter electrode film 91 covering the first plug electrode 80 can prevent the first plug electrode 80 from contacting the outside air. Thereby, oxidation of the first plug electrode 80 can be suppressed by the first emitter electrode film 91 .
  • the first emitter electrode film 91 that exposes the diode region 9 it is possible to suppress an unexpected decrease in ohmic properties caused by the first emitter electrode film 91 between the diode region 9 and the second emitter electrode film 92. . Thereby, the characteristics of the forward voltage VF of the diode region 9 can be improved. Therefore, it is possible to provide the semiconductor device 1 capable of improving electrical characteristics.
  • the first emitter electrode film 91 preferably does not cover the diode region 9 .
  • Diode region 9 preferably includes an anode region 46 formed in the surface layer of first main surface 3 .
  • the first emitter electrode film 91 preferably exposes the anode region 46 .
  • the second emitter electrode film 92 preferably covers the anode region 46 .
  • Diode region 9 preferably includes a third trench electrode structure 50 formed on first main surface 3 .
  • the first emitter electrode film 91 preferably exposes the third trench electrode structure 50 .
  • the second emitter electrode film 92 preferably covers the third trench electrode structure 50 .
  • An emitter potential is preferably applied to the third trench electrode structure 50 .
  • the first emitter electrode film 91 preferably directly covers the first plug electrode 80 .
  • Second emitter electrode film 92 preferably directly covers first emitter electrode film 91 and diode region 9 . In other words, it is preferable that the second emitter electrode film 92 directly covers the diode region 9 without a barrier metal film (for example, a Ti film) interposed therebetween.
  • the second emitter electrode film 92 preferably has a portion facing the first plug electrode 80 with the first emitter electrode film 91 interposed therebetween.
  • the interlayer insulating film 73 preferably has an opening wall surface 79 defining a diode opening 77 exposing the diode region 9 .
  • the first emitter electrode film 91 preferably exposes the opening wall surface 79 .
  • the second emitter electrode film 92 preferably has a portion covering the opening wall surface 79 .
  • the opening wall surface 79 is preferably inclined so as to form an acute angle with the first main surface 3 .
  • the inclination angle of the opening wall surface 79 is preferably more than 45° and less than 90°. According to this structure, the second emitter electrode film 92 can face the first main surface 3 via the inclined portion (opening wall surface 79 ) of the relatively thick interlayer insulating film 73 . Thereby, electric field concentration in the vicinity of the inclined portion of the interlayer insulating film 73 can be suppressed.
  • the first plug electrode 80 preferably contains tungsten.
  • First emitter electrode film 91 preferably contains at least one of aluminum, aluminum alloy, copper, copper alloy, tungsten, molybdenum, titanium, titanium nitride and nickel.
  • Second emitter electrode film 92 preferably contains at least one of aluminum, an aluminum alloy, copper, and a copper alloy.
  • the second emitter electrode film 92 preferably contains a conductive material different from that of the first emitter electrode film 91 .
  • the first emitter electrode film 91 is preferably thinner than the interlayer insulating film 73 .
  • the second emitter electrode film 92 is preferably thicker than the first emitter electrode film 91 .
  • Second emitter electrode film 92 is particularly preferably thicker than interlayer insulating film 73 .
  • the first emitter electrode film 91 preferably has a single layer structure.
  • the second emitter electrode film 92 preferably has a single layer structure.
  • the IGBT region 8 includes a p-type base region 15 formed in the surface layer portion of the first main surface 3 and a first trench electrode structure 20 (gate trench electrode structure) formed in the first main surface 3 so as to penetrate the base region 15 . structure), and an n-type emitter region 40 formed in a region along the first trench electrode structure 20 in the surface layer portion of the base region 15 .
  • the first plug electrode 80 may be electrically connected to the emitter region 40 .
  • the IGBT region 8 has a contact hole 42 formed in the first main surface 3 to expose the emitter region 40 and a p-type contact region 43 formed in a region along the contact hole 42 within the base region 15 . may contain. In this case, first plug electrode 80 may be electrically connected to emitter region 40 and contact region 43 within contact hole 42 .
  • the IGBT region 8 may include an n-type CS region 41 formed immediately below the base region 15 within the chip 2 .
  • a plurality of IGBT regions 8 may be formed on the first main surface 3 .
  • a plurality of diode regions 9 may be formed on the first main surface 3 .
  • a plurality of first plug electrodes 80 may be electrically connected to a plurality of IGBT regions 8 .
  • a first emitter electrode film 91 may cover the plurality of first plug electrodes 80 so as to expose the plurality of diode regions 9 .
  • a second emitter electrode film 92 may cover the plurality of diode regions 9 and the first emitter electrode film 91 .
  • FIGS. 13A-13U are cross-sectional views showing an example of a method for manufacturing the semiconductor device 1 shown in FIG.
  • FIGS. 13A-13U respectively show regions corresponding to FIG. 8 (ie, IGBT region 8 and diode region 9).
  • an n-type wafer 120 that is the base of chip 2 is prepared.
  • the wafer 120 may be an FZ substrate formed through a FZ (Floating Zone) method.
  • Wafer 120 has a first wafer main surface 121 and a second wafer main surface 122 .
  • the first wafer main surface 121 and the second wafer main surface 122 correspond to the first main surface 3 and the second main surface 4 of the chip 2, respectively.
  • RC-IGBT regions 7 (a plurality of IGBT regions 8 and a plurality of diode regions 9) are set on wafer 120 .
  • a plurality of p-type well regions 44 and a plurality of p-type boundary well regions 64 are formed in the RC-IGBT region 7 .
  • a resist mask 123 having a predetermined pattern is formed on the main surface 121 of the first wafer.
  • the resist mask 123 exposes regions where the plurality of well regions 44 and the plurality of boundary well regions 64 are to be formed, and covers the other regions.
  • p-type impurities are introduced into the surface layer portion of the first wafer main surface 121 by ion implantation through a resist mask 123 .
  • a plurality of well regions 44 and a plurality of boundary well regions 64 are thereby formed in the RC-IGBT region 7 . Resist mask 123 is then removed.
  • a plurality of trenches 124 are formed in the RC-IGBT regions 7 .
  • the multiple trenches 124 include multiple first trenches 21 , multiple second trenches 31 , multiple third trenches 51 and multiple fourth trenches 61 .
  • a hard mask 125 having a predetermined pattern is formed on the first wafer principal surface 121 .
  • the hard mask 125 exposes the regions where the plurality of trenches 124 are to be formed and covers the other regions.
  • the hard mask 125 may be made of an inorganic insulating film.
  • the etching method may be a dry etching method and/or a wet etching method.
  • a plurality of trenches 124 are thereby formed in the RC-IGBT region 7 .
  • Hard mask 125 is then removed.
  • the p-type impurities in the plurality of well regions 44 and the p-type impurities in the plurality of boundary well regions 64 are diffused into the wafer 120 .
  • the p-type impurities in the plurality of well regions 44 are diffused to a depth where the p-type impurities cover the bottom walls of the second trenches 31 .
  • the p-type impurities in the plurality of boundary well regions 64 are diffused to such a depth that the p-type impurities cover the bottom walls of the fourth trenches 61 .
  • Base insulating film 126 is formed on the main surface 121 of the first wafer.
  • Base insulating film 126 includes first insulating film 22 , second insulating film 32 , third insulating film 52 , fourth insulating film 62 and main surface insulating film 70 .
  • the base insulating film 126 may be formed by a CVD (Chemical Vapor Deposition) method and/or an oxidation treatment method (for example, a thermal oxidation treatment method).
  • base electrode film 127 is formed on base insulating film 126 .
  • the base electrode film 127 serves as the base of the first buried electrode 23 , the second buried electrode 33 , the third buried electrode 53 , the fourth buried electrode 63 , the first wiring film 71 , the second wiring film 72 and the third wiring film 94 .
  • the base electrode film 127 is embedded in the plurality of trenches 124 with the base insulating film 126 interposed therebetween, and covers the first wafer main surface 121 with the base insulating film 126 interposed therebetween.
  • the base electrode film 127 contains conductive polysilicon.
  • the base electrode film 127 may be formed by CVD.
  • a resist mask (not shown) having a predetermined pattern is formed on base electrode film 127 .
  • a resist mask (not shown) covers the regions where the first wiring film 71, the second wiring film 72 and the third wiring film 94 are to be formed, and exposes the other regions.
  • the etching method may be a dry etching method and/or a wet etching method.
  • An unnecessary portion of base electrode film 127 is removed until main surface insulating film 70 is exposed. Thereby, the first buried electrode 23, the second buried electrode 33, the third buried electrode 53, the fourth buried electrode 63, the first wiring film 71, the second wiring film 72 and the third wiring film 94 are formed.
  • the resist mask (not shown) is then removed.
  • p-type base region 15, n-type emitter region 40, n-type CS region 41 and p-type anode region 46 are formed in RC-IGBT region 7 on first wafer main surface 121.
  • formed on the surface of the Base region 15 , emitter region 40 and CS region 41 are formed in the surface layer portion of first wafer main surface 121 of IGBT region 8 .
  • the anode region 46 is formed in the surface layer portion of the first wafer main surface 121 of the diode region 9 .
  • the order of steps for forming these impurity regions is arbitrary. These impurity regions are respectively formed by implanting n-type impurities or p-type impurities through a resist mask (not shown) having a predetermined pattern.
  • an interlayer insulating film 73 covering main surface insulating film 70, first wiring film 71, second wiring film 72 and third wiring film 94 is formed.
  • the interlayer insulating film 73 may be formed by the CVD method.
  • a resist mask 128 having a predetermined pattern is formed on interlayer insulating film 73 .
  • the resist mask 128 exposes the regions where the first opening 74, the second opening 75, the third opening 76 and the fourth opening 95 are to be formed, and covers the other regions.
  • the etching method may be a dry etching method and/or a wet etching method. Unnecessary portions of interlayer insulating film 73 are removed until main surface insulating film 70 is exposed. Thereby, a first opening 74, a second opening 75, a third opening 76 and a fourth opening 95 are formed. Resist mask 128 is then removed.
  • a resist mask (not shown) having a predetermined pattern is formed on the interlayer insulating film 73 .
  • a resist mask (not shown) exposes the regions where the plurality of contact holes 42 are to be formed (that is, the plurality of first openings 74) and covers the other regions.
  • the portion of the first wafer main surface 121 exposed through the first opening 74 is further removed by an etching method through a resist mask (not shown).
  • the etching method may be a dry etching method and/or a wet etching method. Thereby, the contact hole 42 communicating with the first opening 74 is formed.
  • p-type impurities are implanted into portions of the first wafer main surface 121 exposed through the plurality of contact holes 42 . Thereby, a p-type contact region 43 is formed.
  • the resist mask (not shown) is then removed.
  • first plug electrode film 129 is formed on interlayer insulating film 73 .
  • the first plug electrode film 129 becomes the base of the first electrode portion 81 related to the first plug electrode 80 , the second plug electrode 83 , the third plug electrode 84 and the fourth plug electrode 96 .
  • the first plug electrode film 129 includes the interlayer insulating film 73 (insulating main surface 78 ), the wall surface of the contact hole 42 , the wall surface of the first opening 74 , the wall surface of the second opening 75 , the wall surface of the third opening 76 and the fourth opening 95 . It is formed like a film along the wall surface of the
  • the first plug electrode film 129 may be formed by sputtering and/or vapor deposition.
  • a second plug electrode film 130 is then formed on the first plug electrode film 129 .
  • the second plug electrode film 130 becomes the base of the second electrode portion 82 related to the first plug electrode 80 , the second plug electrode 83 , the third plug electrode 84 and the fourth plug electrode 96 .
  • the second plug electrode film 130 fills the contact hole 42 , the first opening 74 , the second opening 75 , the third opening 76 and the fourth opening 95 and covers the first plug electrode film 129 .
  • the second plug electrode film 130 may be formed by sputtering and/or vapor deposition.
  • unnecessary portions of the second plug electrode film 130 are removed.
  • An unnecessary portion of the second plug electrode film 130 may be removed by an etching method.
  • the etching method may be a dry etching method and/or a wet etching method. In this step, portions of the second plug electrode film 130 located outside the contact hole 42, the first opening 74, the second opening 75, the third opening 76 and the fourth opening 95 are removed.
  • An unnecessary portion of the first plug electrode film 129 may be removed by an etching method.
  • the etching method may be a dry etching method and/or a wet etching method.
  • portions of the first plug electrode film 129 located outside the contact hole 42, the first opening 74, the second opening 75, the third opening 76 and the fourth opening 95 are removed. Thereby, a first plug electrode 80, a second plug electrode 83, a third plug electrode 84 and a fourth plug electrode 96 are formed.
  • a first base electrode film 131 (first mask) is formed on interlayer insulating film 73 .
  • the first base electrode film 131 serves as the base of the first emitter electrode film 91 and the first gate electrode film 101 .
  • the first base electrode film 131 is made of a metal film (first base metal film) in this embodiment.
  • the first base electrode film 131 is formed in a film shape extending along the interlayer insulating film 73 and covers the first plug electrode 80 , the second plug electrode 83 , the third plug electrode 84 and the fourth plug electrode 96 .
  • the first base electrode film 131 is a barrier film that prevents the first plug electrode 80, the second plug electrode 83, the third plug electrode 84, and the fourth plug electrode 96 from contacting the outside air.
  • the first base electrode film 131 may be formed by sputtering and/or vapor deposition.
  • a resist mask 132 (second mask) having a predetermined pattern is formed on the first base electrode film 131. Then, referring to FIG. The resist mask 132 exposes the regions where the plurality of electrode openings 93 are to be formed in the first base electrode film 131 and covers the other regions. Unwanted portions of the base metal film are then removed by an etching method through resist mask 132 .
  • the etching method may be a dry etching method and/or a wet etching method. Thereby, a plurality of electrode openings 93 are formed in the first base electrode film 131 .
  • lifetime killer regions 85 are formed in the plurality of diode regions 9 inside the wafer 120 respectively. In this process, only a single lifetime killer region 85 is formed for one diode region, and multiple lifetime killer regions 85 are not formed for one diode region.
  • the lifetime killer region 85 is formed by irradiating the region where the lifetime killer region 85 is to be formed with any impurity (element).
  • the lifetime killer regions 85 are preferably formed by implanting elements (elements/impurities) other than trivalent elements (p-type impurities) and pentavalent elements (n-type impurities) into the inside of the wafer 120 .
  • the lifetime killer region 85 may be formed by irradiating the interior of the wafer 120 with one or both of hydrogen ions and helium ions.
  • the lifetime killer region 85 is formed in this step by irradiating the interior of the wafer 120 with helium ions.
  • the resist mask 132 described above is used as a shielding film, and the interior of the wafer 120 is irradiated with helium ions or the like through the resist mask 132 . That is, helium ions or the like are introduced into the wafer 120 through the plurality of electrode openings 93 . Thereby, the lifetime killer region 85 is formed in self-alignment with the resist mask 132 (electrode opening 93).
  • the lifetime killer region 85 is formed using the resist mask 132 used in the step of forming the electrode opening 93, so the alignment accuracy of the lifetime killer region 85 with respect to the electrode opening 93 is improved. That is, the alignment accuracy of the lifetime killer region 85 with respect to the diode region 9 is improved, and the lifetime killer region 85 can be properly formed only in the diode region 9 .
  • wafer 120 is exposed to an oxygen atmosphere and resist mask 132 is removed.
  • the resist mask 132 is removed by an oxygen ashing method using oxygen (oxygen atmosphere such as ozone gas or oxygen gas).
  • oxygen ashing method may be a photoexcited ashing method and/or a plasma ashing method.
  • oxygen is excited by ultraviolet light or the like in the ashing chamber and reacts with the resist mask 132 .
  • oxygen is turned into plasma by non-ionizing radiation (eg, visible light, high frequency, microwave, etc.) in the ashing chamber and reacts with the resist mask 132 .
  • non-ionizing radiation eg, visible light, high frequency, microwave, etc.
  • an unnecessary portion of the interlayer insulating film 73 and an unnecessary portion of the main surface insulating film 70 are removed by an etching method using the first base electrode film 131 as a mask.
  • the etching method may be a dry etching method and/or a wet etching method.
  • the etching method is preferably an anisotropic etching method.
  • the anisotropic etching method is particularly preferably a dry etching method (specifically, an RIE (Reactive Ion Etching) method).
  • the opening wall surface 79 of the diode opening 77 is formed into an inclined surface forming an acute angle with the first wafer main surface 121 .
  • the inclination angle of the opening wall surface 79 is preferably more than 45° and less than 90°.
  • unnecessary portions of interlayer insulating film 73 and unnecessary portions of main surface insulating film 70 may be removed by isotropic etching (for example, wet etching).
  • the inclination angle of the opening wall surface 79 may be less than 45°.
  • the step of removing resist mask 132 may be performed after the step of removing interlayer insulating film 73 .
  • an unnecessary portion of the interlayer insulating film 73 and an unnecessary portion of the main surface insulating film 70 are removed by an etching method using a laminated structure including the first base electrode film 131 and the resist mask 132 as a mask. may be removed.
  • the ⁇ etching method using the first base electrode film 131 as a mask'' includes the ⁇ etching method using a single-layer structure composed of the first base electrode film 131 as a mask'', as well as the ⁇ etching method using the first base electrode film 131 and the resist as a mask''.
  • An etching method using a layered structure including the mask 132 as a mask is also included.
  • the step of removing the interlayer insulating film 73 unnecessary portions of the interlayer insulating film 73 are removed using the same mask as the mask used when forming the lifetime killer region 85.
  • the diode opening 77 exposing the diode region 9 can be properly formed in the interlayer insulating film 73 .
  • a second base electrode film 133 is formed on interlayer insulating film 73 and first wafer main surface 121 so as to cover first base electrode film 131 .
  • the second base electrode film 133 serves as the base of the second emitter electrode film 92 and the second gate electrode film 102 .
  • the second base electrode film 133 may be formed by sputtering and/or vapor deposition.
  • a resist mask (not shown) having a predetermined pattern is formed on the second base electrode film 133 .
  • a resist mask (not shown) covers the regions where the second emitter electrode film 92 and the second gate electrode film 102 are to be formed, and exposes the other regions.
  • unnecessary portions of the second base electrode film 133 are removed by an etching method through a resist mask (not shown).
  • the etching method may be a dry etching method and/or a wet etching method. Thereby, a second emitter electrode film 92 and a second gate electrode film 102 are formed.
  • the resist mask (not shown) is then removed.
  • the etching method may be a dry etching method and/or a wet etching method. Thereby, a first emitter electrode film 91 and a first gate electrode film 101 are formed. That is, emitter main surface electrode 90 and gate main surface electrode 100 are formed.
  • wafer 120 is thinned to a predetermined thickness.
  • This process includes a grinding method and/or an etching method for the second wafer main surface 122 .
  • the grinding method may be a mechanical polishing method and/or a chemical-mechanical polishing method.
  • the etching method may be a dry etching method and/or a wet etching method.
  • the thinning process of the wafer 120 does not necessarily have to be performed and may be omitted.
  • n-type buffer region 13, p-type collector region 14 and n-type cathode region 45 are formed in the surface layer portion of second wafer main surface 122.
  • the order of steps for forming these impurity regions is arbitrary.
  • the buffer region 13 may be formed by implanting n-type impurities into the entire surface layer portion of the second wafer main surface 122 .
  • the collector region 14 may be formed by implanting p-type impurities into the entire surface layer of the second wafer main surface 122 .
  • the cathode region 45 may be formed by implanting an n-type impurity into the surface layer portion of the second wafer main surface 122 through a resist mask (not shown) having a predetermined pattern.
  • collector main surface electrode 110 is formed on second wafer main surface 122 .
  • Collector main surface electrode 110 may be formed by a sputtering method and/or a vapor deposition method. After that, the wafer 120 is cut in the thickness direction to cut out a plurality of semiconductor devices 1 . The semiconductor device 1 is manufactured through the steps including the above.
  • the method of manufacturing the semiconductor device 1 includes the steps of preparing the wafer 120, forming the interlayer insulating film 73, embedding the first plug electrodes 80, forming the first base electrode film 131, and forming the first base electrode film. It includes 131 exposure steps.
  • the wafer 120 preparation step the wafer 120 having the first wafer main surface 121 is prepared.
  • the interlayer insulating film 73 the interlayer insulating film 73 covering the main surface 121 of the first wafer is formed.
  • the first plug electrodes 80 are embedded in the interlayer insulating film 73 so as to be partially exposed from the interlayer insulating film 73 .
  • the first base electrode film 131 covering at least the first plug electrodes 80 is formed.
  • the step of exposing the first base electrode film 131 is performed after the step of forming the first base electrode film 131 . In this step, the first base electrode film 131 is exposed to an oxygen atmosphere.
  • the resistance component caused by the oxide is added to the resistance component of the first plug electrode 80 .
  • the resistance component caused by the oxide increases.
  • the first base electrode film 131 covering the first plug electrode 80 can prevent the first plug electrode 80 from contacting the outside air. Therefore, oxidation of the first plug electrode 80 in the step of exposing the first base electrode film 131 can be suppressed. Therefore, the semiconductor device 1 with improved electrical characteristics can be manufactured.
  • the manufacturing method of the semiconductor device 1 includes a wafer 120 preparation step, an IGBT region 8 forming step, a diode region 9 forming step, an interlayer insulating film 73 forming step, a first plug electrode 80 embedding step, A step of forming the first base electrode film 131, a step of forming the resist mask 132, a step of removing the first base electrode film 131, a step of removing the interlayer insulating film 73, a step of removing the resist mask 132, and a formation of the second base electrode film 133. Including process.
  • the wafer 120 preparation process the wafer 120 having the first wafer main surface 121 is prepared.
  • the IGBT regions 8 are formed on the first wafer main surface 121 .
  • the diode regions 9 are formed on the first wafer main surface 121 .
  • interlayer insulating film 73 interlayer insulating film 73 covering IGBT region 8 and diode region 9 is formed.
  • the first plug electrode 80 is embedded in the portion of the interlayer insulating film 73 covering the IGBT region 8 so as to be partially exposed from the interlayer insulating film 73 .
  • the first base electrode film 131 covering the interlayer insulating film 73 is formed so as to hide the first plug electrodes 80 .
  • a resist mask 132 having a layout that exposes a portion of the first base electrode film 131 overlapping the diode region 9 is formed on the first base electrode film 131 .
  • an unnecessary portion of the first base electrode film 131 overlapping the diode region 9 is removed by an etching method using a resist mask 132 .
  • the step of removing the interlayer insulating film 73 after the step of removing the first base electrode film 131, the portion of the interlayer insulating film 73 exposed from the first base electrode film 131 is removed by an etching method.
  • the resist mask 132 after the step of removing the first base electrode film 131 or the step of removing the interlayer insulating film 73, the resist mask 132 is removed by oxygen ashing.
  • the step of forming the second base electrode film 133 the second base electrode film 133 covering the first base electrode film 131 and the diode region 9 is formed.
  • the resistance component caused by the oxide is added to the resistance component of the first plug electrode 80 .
  • the resistance component caused by the oxide increases.
  • the first emitter electrode film 91 covering the first plug electrode 80 can prevent the first plug electrode 80 from contacting the outside air. Oxidation of the first plug electrodes 80 resulting from the oxygen ashing method associated with the step of removing the resist mask 132 can thereby be suppressed.
  • the first emitter electrode film 91 that exposes the diode region 9 it is possible to suppress an unexpected decrease in ohmic properties caused by the first emitter electrode film 91 between the diode region 9 and the second emitter electrode film 92. . Thereby, the characteristics of the forward voltage VF of the diode region 9 can be improved. Therefore, the semiconductor device 1 with improved electrical characteristics can be manufactured.
  • the step of removing the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 that does not cover the diode region 9 .
  • the step of forming the diode region 9 preferably includes a step of forming the anode region 46 in the surface layer portion of the first wafer main surface 121 .
  • the step of forming resist mask 132 preferably includes a step of forming resist mask 132 having a layout that exposes a portion of first base electrode film 131 overlapping anode region 46 .
  • the step of removing the first base electrode film 131 preferably includes a step of removing a portion of the first base electrode film 131 overlapping the anode region 46 .
  • the step of removing interlayer insulating film 73 preferably includes a step of removing unnecessary portions of interlayer insulating film 73 until anode region 46 is exposed.
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 covering the anode region 46 .
  • the step of forming the diode region 9 preferably includes the step of forming the third trench electrode structure 50 on the first wafer principal surface 121 .
  • the step of removing the first base electrode film 131 preferably includes a step of removing a portion of the first base electrode film 131 overlapping the third trench electrode structure 50 .
  • the step of removing the interlayer insulating film 73 preferably includes removing unnecessary portions of the interlayer insulating film 73 until the third trench electrode structure 50 is exposed.
  • the step of forming the second base electrode film 133 preferably includes the step of forming the second base electrode film 133 covering the third trench electrode structure 50 .
  • the step of forming the diode region 9 preferably includes a step of forming a plurality of third trench electrode structures 50.
  • the step of removing the first base electrode film 131 preferably includes a step of removing portions of the first base electrode film 131 overlapping the plurality of third trench electrode structures 50 .
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 covering the plurality of third trench electrode structures 50 .
  • the step of forming the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 directly covering the first plug electrode 80 .
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 directly covering the first base electrode film 131 and the diode region 9 . That is, second emitter electrode film 92 is preferably directly connected to diode region 9 without a barrier metal film (for example, Ti film) interposed therebetween.
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 covering the first plug electrode 80 with the first base electrode film 131 interposed therebetween.
  • the step of removing the interlayer insulating film 73 preferably includes a step of forming the interlayer insulating film 73 having an opening wall surface 79 defining an opening exposing the diode region 9 .
  • the step of removing the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 exposing the opening wall surface 79 .
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 covering the opening wall surface 79 .
  • the opening wall surface 79 preferably forms an acute angle with the first wafer main surface 121 .
  • the inclination angle of the opening wall surface 79 is preferably more than 45° and less than 90°.
  • the second base electrode film 133 can face the first wafer main surface 121 with the inclined portion (opening wall surface 79) of the relatively thick interlayer insulating film 73 interposed therebetween. Thereby, electric field concentration in the vicinity of the inclined portion of the interlayer insulating film 73 can be suppressed.
  • the step of forming the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 thinner than the interlayer insulating film 73 .
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 thicker than the first base electrode film 131 .
  • the first base electrode film 131 preferably has a single layer structure.
  • the second base electrode film 133 preferably has a single layer structure.
  • the first plug electrode 80 preferably contains tungsten.
  • First base electrode film 131 preferably contains at least one of aluminum, aluminum alloy, copper, copper alloy, tungsten, molybdenum, titanium, titanium nitride and nickel.
  • Second base electrode film 133 preferably contains at least one of aluminum, an aluminum alloy, copper, and a copper alloy.
  • the second base electrode film 133 preferably contains a conductive material different from that of the first base electrode film 131 .
  • the step of forming the IGBT region 8 includes a step of forming a first trench electrode structure 20 (gate trench structure) on the first wafer main surface 121, and a step of forming the first trench electrode structure 20 along the first trench electrode structure 20 on the surface layer portion of the first wafer main surface 121. Forming a p-type base region 15 in the region and forming an n-type emitter region 40 in a region along the first trench electrode structure 20 in the surface layer of the base region 15 are preferably included.
  • the step of forming the first plug electrode 80 preferably includes a step of forming the first plug electrode 80 electrically connected to the emitter region 40 .
  • the steps of forming the IGBT region 8 include forming a contact hole 42 exposing the emitter region 40 in the first wafer main surface 121 and forming a p-type contact region 43 in a region along the contact hole 42 in the base region 15 . and a step of performing.
  • the step of forming first plug electrode 80 preferably includes a step of forming first plug electrode 80 electrically connected to emitter region 40 and contact region 43 within contact hole 42 .
  • the step of forming the IGBT region 8 preferably includes the step of forming the n-type CS region 41 in the region immediately below the base region 15 .
  • a plurality of IGBT regions 8 are preferably formed.
  • a plurality of diode regions 9 are preferably formed.
  • the step of forming the first plug electrodes 80 preferably includes a step of forming a plurality of first plug electrodes 80 electrically connected to the plurality of IGBT regions 8 .
  • the step of removing the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 covering the plurality of first plug electrodes 80 so as to expose the plurality of diode regions 9 .
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 covering the plurality of diode regions 9 and the first base electrode film 131 .
  • the method of manufacturing the semiconductor device 1 includes a wafer 120 preparation step, an IGBT region 8 formation step, a diode region 9 formation step, an interlayer insulating film 73 formation step, a mask formation step, and a lifetime killer region 85 . and a step of removing the interlayer insulating film 73 .
  • the wafer 120 preparation step the wafer 120 having the first wafer main surface 121 is prepared.
  • the IGBT regions 8 the IGBT regions 8 are formed on the first wafer main surface 121 .
  • the diode regions 9 are formed on the first wafer main surface 121 .
  • the interlayer insulating film 73 covering the IGBT region 8 and the diode region 9 is formed.
  • a mask having a layout exposing a portion of interlayer insulating film 73 covering diode region 9 is formed on interlayer insulating film 73 .
  • the lifetime killer region 85 is formed inside the wafer 120 using the mask.
  • the portion of the interlayer insulating film 73 covering the diode region 9 is removed by etching using the mask.
  • the lifetime killer region 85 is formed in a self-aligned manner with respect to the mask, so the alignment accuracy of the lifetime killer region 85 with respect to the diode region 9 is improved.
  • the lifetime killer region 85 can be appropriately formed in the diode region 9, so that the loss in the diode region 9 during the reverse recovery operation can be reduced due to the effect of adjusting the carrier lifetime.
  • the removed portion of the interlayer insulating film 73 is formed in a self-aligned manner with respect to the mask, the alignment of the removed portion of the interlayer insulating film 73 with respect to the diode region 9 (lifetime killer region 85) is minimized. Accuracy is also improved. Therefore, it is possible to suppress variations in electrical characteristics due to positional displacement of the removed portion. Therefore, the semiconductor device 1 with improved electrical characteristics can be manufactured.
  • the step of forming the lifetime killer region 85 preferably includes a step of irradiating the inside of the wafer 120 with an element other than the trivalent element and the pentavalent element.
  • the step of forming the lifetime killer region 85 preferably includes a step of irradiating the inside of the wafer 120 with one or both of hydrogen ions and helium ions.
  • the mask formation process preferably includes a formation process of the first base electrode film 131 as the first mask, a formation process of the resist mask 132 as the second mask, and a removal process of the first base electrode film 131 .
  • the first base electrode film 131 is formed on the interlayer insulating film 73 .
  • a resist mask 132 having a layout that exposes a portion of the first base electrode film 131 overlapping the diode region 9 is formed on the first base electrode film 131 .
  • the step of forming lifetime killer region 85 preferably includes a step of forming lifetime killer region 85 inside wafer 120 using resist mask 132 .
  • the lifetime killer region 85 is formed in a self-aligned manner with respect to the resist mask 132 (removed portion of the first base electrode film 131). Therefore, the alignment accuracy of the lifetime killer region 85 with respect to the diode region 9 can be improved by the resist mask 132 (removed portion of the first base electrode film 131). Moreover, since the first base electrode film 131 exists, the film thickness of the resist mask 132 can be reduced, and the cost of the resist mask 132 can be reduced.
  • the method of manufacturing the semiconductor device 1 preferably includes a step of removing the resist mask 132 so as to leave the first base electrode film 131 after the step of forming the lifetime killer region 85 .
  • the step of removing the interlayer insulating film 73 is a step of removing the portion of the interlayer insulating film 73 covering the diode region 9 by an etching method using the first base electrode film 131 after the step of removing the resist mask 132 . is preferably included.
  • the step of removing the resist mask 132 preferably includes a step of removing the resist mask 132 by an oxygen ashing method.
  • the method of manufacturing the semiconductor device 1 preferably includes the step of forming the second base electrode film 133 covering the first base electrode film 131 after the step of removing the interlayer insulating film 73 .
  • the second base electrode film 133 does not trap elements (impurities) and the like that are introduced during the step of forming the lifetime killer region 85 . That is, second base electrode film 133 (emitter main surface electrode 90 and gate main surface electrode 100) that does not contain the elements (impurities) contained in lifetime killer region 85 can be formed.
  • the lifetime killer region 85 can be properly formed, and at the same time, the second base electrode film 133 can be properly formed. Further, part of the second base electrode film 133 can be arranged in the removed portion of the interlayer insulating film 73 with high alignment accuracy. Thereby, the second base electrode film 133 can be appropriately electrically connected to the diode region 9 .
  • the step of removing the interlayer insulating film 73 preferably includes a step of forming the interlayer insulating film 73 having an opening wall surface 79 defining a diode opening 77 exposing the diode region 9 .
  • the step of removing the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 exposing the opening wall surface 79 .
  • the step of forming the second base electrode film 133 preferably includes a step of forming the second base electrode film 133 covering the opening wall surface 79 .
  • the opening wall surface 79 preferably forms an acute angle with the first wafer main surface 121 .
  • the inclination angle of the opening wall surface 79 is preferably more than 45° and less than 90°.
  • the second base electrode film 133 can face the first wafer main surface 121 with the inclined portion (opening wall surface 79) of the relatively thick interlayer insulating film 73 interposed therebetween. Thereby, electric field concentration in the vicinity of the inclined portion of the interlayer insulating film 73 can be suppressed.
  • the step of forming the first base electrode film 131 includes the step of forming the first base electrode film 131 thinner than the interlayer insulating film 73
  • the step of forming the second base electrode film 133 includes the step of forming the first base electrode film 131 thinner than the first base electrode film 131 .
  • a step of forming a thick second base electrode film 133 is preferably included.
  • the second base electrode film 133 preferably contains a conductive material different from that of the first base electrode film 131 .
  • the first base electrode film 131 preferably has a single layer structure.
  • the second base electrode film 133 preferably has a single layer structure.
  • the step of removing the first base electrode film 131 preferably includes a step of forming the first base electrode film 131 that does not cover the diode region 9 .
  • the step of forming the diode region 9 preferably includes a step of forming the anode region 46 in the surface layer portion of the first wafer main surface 121 .
  • the step of forming resist mask 132 preferably includes a step of forming resist mask 132 having a layout that exposes a portion of first base electrode film 131 overlapping anode region 46 .
  • the step of removing the first base electrode film 131 preferably includes a step of removing a portion of the first base electrode film 131 overlapping the anode region 46 .
  • the step of forming the diode region 9 preferably includes the step of forming the third trench electrode structure 50 on the first wafer principal surface 121 .
  • the step of removing the first base electrode film 131 preferably includes a step of removing a portion of the first base electrode film 131 overlapping the third trench electrode structure 50 .
  • a plurality of third trench electrode structures 50 are formed, and portions of the first base electrode film 131 overlapping the plurality of third trench electrode structures 50 are removed.
  • a first plug is formed in a portion of the interlayer insulating film 73 covering the IGBT region 8 so as to be partially exposed from the interlayer insulating film 73.
  • a step of embedding the electrode 80 is preferably included.
  • the step of forming the first base electrode film 131 preferably includes the step of forming the first base electrode film 131 covering the first plug electrode 80 .
  • the resistance component caused by the oxide is added to the resistance component of the first plug electrode 80 .
  • the resistance component caused by the oxide increases.
  • the first base electrode film 131 covering the first plug electrode 80 can prevent the first plug electrode 80 from coming into contact with the outside air after the step of forming the first base electrode film 131 . Thereby, oxidation of the first plug electrode 80 can be suppressed. Therefore, the semiconductor device 1 with improved electrical characteristics can be manufactured.
  • the first plug electrode 80 preferably contains tungsten.
  • the step of forming the IGBT region 8 includes a step of forming a first trench electrode structure 20 (gate trench structure) on the first wafer main surface 121, and a step of forming the first trench electrode structure 20 along the first trench electrode structure 20 on the surface layer portion of the first wafer main surface 121. Forming a p-type base region 15 in the region and forming an n-type emitter region 40 in a region along the first trench electrode structure 20 in the surface layer of the base region 15 are preferably included.
  • the step of forming the first plug electrode 80 preferably includes a step of forming the first plug electrode 80 electrically connected to the emitter region 40 .
  • FIG. 14 is a cross-sectional view showing a semiconductor device 1 according to a first modified example.
  • the semiconductor device 1 described above includes an emitter main surface electrode 90 having a first emitter electrode film 91 and a second emitter electrode film 92 .
  • the emitter main surface electrode 90 of the semiconductor device 1 according to the first modification does not have the first emitter electrode film 91 and has a single layer structure composed of the second emitter electrode film 92 .
  • the gate main surface electrode 100 of the semiconductor device 1 according to the first modification does not have the first gate electrode film 101 and has a single layer structure consisting of the second gate electrode film 102 .
  • the step of forming the first base electrode film 131 (the first emitter electrode film 91 and the first gate electrode film 101) is omitted, and the lifetime killer is eliminated. Region 85 and diode opening 77 are formed using resist mask 132 .
  • the semiconductor device 1 according to the first modified example except for the effects related to the first base electrode film 131 (the first emitter electrode film 91 and the first gate electrode film 101), the semiconductor device 1 according to the embodiment The same effect as the effect described for is exhibited.
  • FIG. 15 is a cross-sectional view showing a semiconductor device 1 according to a second modified example.
  • the semiconductor device 1 described above had the lifetime killer region 85 .
  • the semiconductor device 1 according to the second modified example does not have the lifetime killer region 85 .
  • the step of forming the lifetime killer region 85 (see FIG. 13O) is omitted, and the step of removing the resist mask 132 is performed after the step of forming the resist mask 132 (see FIG. 13N). (See FIG. 13P) is performed.
  • the IE structure that is, the second trench electrode structure 30, the second trench connection structure 34 and the well region 44
  • the IE structure is formed in the region between the pair of first trench electrode structures 20.
  • the presence or absence of the IE structure is arbitrary, and a form without the IE structure may be employed.
  • the plurality of first trench electrode structures 20 are spaced apart in the first direction X so as to be adjacent to each other.
  • the boundary IE structures ie, the third trench connection structure 54, the fourth trench electrode structure 60 and the boundary well region 64
  • the boundary IE structures were formed in the boundary region 55 between the IGBT region 8 and the diode region 9.
  • An example was given.
  • the presence or absence of the boundary IE structure is optional, and a form without the boundary IE structure may be employed.
  • the third trench electrode structure 50 may be adjacent in the first direction X to the first trench electrode structure 20 .
  • the third trench electrode structure 50 may be adjacent to the second trench electrode structure 30 in the first direction X.
  • one diode opening 77 is formed for one diode region 9 .
  • a plurality of diode openings 77 may be formed for one diode region 9 .
  • the plurality of diode openings 77 may respectively expose portions of the plurality of third trench electrode structures 50 in each diode region 9 .
  • a plurality of diode openings 77 preferably exposes generally all of the third trench electrode structures 50 in each diode region 9 .
  • the anode region 46 was formed shallower than the plurality of third trench electrode structures 50 .
  • the anode region 46 may be formed deeper than the plurality of third trench electrode structures 50 .
  • the anode region 46 may have a portion (bottom portion) covering the bottom walls of the plurality of third trench electrode structures 50 .
  • the chip 2 is made of a silicon single crystal substrate.
  • the chip 2 may be made of a SiC (silicon carbide) single crystal substrate.
  • the n-type semiconductor regions may be replaced with p-type semiconductor regions, and the p-type semiconductor regions may be replaced with n-type semiconductor regions.
  • a specific configuration in this case can be obtained by replacing "n-type” with "p-type” and "p-type” with "n-type” in the above description and accompanying drawings.
  • the first direction X and the second direction Y are defined by the extending directions of the first to fourth side surfaces 5A to 5D.
  • the first direction X and the second direction Y may be arbitrary directions as long as they maintain a relationship of crossing each other (specifically, orthogonally).
  • the first direction X may be a direction intersecting the first to fourth side surfaces 5A-5D
  • the second direction Y may be a direction intersecting the first to fourth side surfaces 5A-5D.
  • a chip (2) having a main surface (3), an IGBT region (8) formed on the main surface (3), a diode region (9) formed on the main surface (3), an insulating film (73) formed on the main surface (3) so as to expose the diode region (9) and cover the IGBT region (8); Plug electrodes (80, 83, 84) embedded in a portion of the insulating film (73) covering the IGBT region (8) so as to be exposed, and the plug electrodes (80, 83, 84) so as to expose the diode region (9).
  • a main surface including a first electrode film (91) covering electrodes (80, 83, 84) and a second electrode film (92) covering said first electrode film (91) and said diode region (9)
  • a semiconductor device (1) comprising an electrode (90).
  • the diode region (9) includes an anode region (46) formed on the surface layer of the main surface (3), and the first electrode film (91) exposes the anode region (46).
  • the semiconductor device (1) according to A1 or A2, wherein the second electrode film (92) covers the anode region (46).
  • the diode region (9) includes a trench electrode structure (50) formed on the main surface (3), and the first electrode film (91) exposes the trench electrode structure (50).
  • the semiconductor device (1) according to any one of A1 to A3, wherein the second electrode film (92) covers the trench electrode structure (50).
  • a plurality of trench electrode structures (50) are formed on the main surface (3), the first electrode film (91) exposes the plurality of trench electrode structures (50), and the second The semiconductor device (1) according to A4, wherein an electrode film (92) covers a plurality of said trench electrode structures (50).
  • the first electrode film (91) directly covers the plug electrodes (80, 83, 84), and the second electrode film (92) covers the first electrode film (91) and the diode region.
  • the semiconductor device (1) according to any one of A1 to A5, which directly coats (9).
  • A7 Any one of A1 to A6, wherein the second electrode film (92) has a portion facing the plug electrodes (80, 83, 84) with the first electrode film (91) interposed therebetween.
  • a semiconductor device (1) according to one.
  • the insulating film (73) has an opening wall surface (79) defining an opening (77) that exposes the diode region (9), and the first electrode film (91) has an opening wall surface ( 79) is exposed, and the second electrode film (92) covers the opening wall surface (79).
  • the first electrode film (91) is thinner than the insulating film (73), and the second electrode film (92) is thicker than the first electrode film (91). 1.
  • any one of A1 to A11, wherein the first electrode film (91) contains at least one of aluminum, aluminum alloy, copper, copper alloy, tungsten, molybdenum, titanium, titanium nitride and nickel The semiconductor device (1) according to 1.
  • the IGBT region (8) is formed in a surface layer portion of the main surface (3) and has a base region (15) of a first conductivity type (p-type) formed so as to pass through the base region (15).
  • the IGBT region (8) includes a contact hole (42) formed in the main surface (3) to expose the emitter region (40), and the contact hole (42) in the base region (15). a contact region (43) of a first conductivity type (p-type) formed in a region along the hole (42), the plug electrode (80) being within the contact hole (42) and the emitter region (40); and electrically connected to said contact region (43).
  • a contact hole (42) formed in the main surface (3) to expose the emitter region (40), and the contact hole (42) in the base region (15).
  • a contact region (43) of a first conductivity type (p-type) formed in a region along the hole (42), the plug electrode (80) being within the contact hole (42) and the emitter region (40); and electrically connected to said contact region (43).
  • the IGBT region (8) further includes a second conductivity type (n-type) carrier storage region (41) formed in a region immediately below the base region (15) in the chip (2). , A17 or A18.
  • n-type carrier storage region (41) formed in a region immediately below the base region (15) in the chip (2). , A17 or A18.
  • a plurality of the IGBT regions (8) are formed on the main surface (3), a plurality of the diode regions (9) are formed on the main surface (3), and a plurality of the plug electrodes (80 , 83, 84) are electrically connected to a plurality of the IGBT regions (8), and the first electrode film (91) is a plurality of the plug electrodes to expose a plurality of the diode regions (9). (80, 83, 84), and the second electrode film (92) covers the first electrode film (91) and the plurality of diode regions (9), any one of A1 to A19 A semiconductor device (1) according to one.
  • [B1] preparing a wafer (120) having a main surface (121); forming an IGBT region (8) and a diode region (9) on the main surface (121); and forming an insulating film (73) covering the diode region (9); a step of embedding plug electrodes (80, 83, 84) in the portions to be covered; and a first electrode film (91, forming a resist mask (132) having a layout exposing a portion of the first electrode film (91, 131) overlapping with the diode region (9); ), removing a portion of the first electrode film (91, 131) overlapping the diode region (9) by an etching method through the resist mask (132); After the step of removing the electrode films (91, 131), a step of removing a portion of the insulating film (73) exposed from the first electrode films (91, 131) by an etching method; 91, 131) or removing the insulating film (73), removing the resist mask (132) by oxygen a
  • the step of forming the diode region (9) includes the step of forming an anode region (46) in the surface layer portion of the main surface (121), and the step of forming the resist mask (132) includes the step of forming the first A step of removing the first electrode film (91, 131), including a step of forming the resist mask (132) having a layout exposing a portion of the electrode film (91, 131) overlapping the anode region (46). includes a step of removing a portion of the first electrode film (91, 131) overlapping with the anode region (46), and the step of removing the insulating film (73) includes removing the portion of the insulating film (73).
  • the step of forming the second electrode film (92, 133) includes removing a portion covering the anode region (46), and the step of forming the second electrode film (92, 133) covering the anode region (46).
  • the step of forming the diode region (9) includes the step of forming a trench electrode structure (50) on the main surface (121), and the step of removing the first electrode films (91, 131) includes the step of removing a portion of the first electrode film (91, 131) overlapping the trench electrode structure (50);
  • the step of forming the second electrode film (92, 133) includes removing a portion covering the structure (50), wherein the step of forming the second electrode film (92, 133) covers the trench electrode structure (50).
  • the step of forming the diode regions (9) includes the step of forming a plurality of the trench electrode structures (50), and the step of removing the first electrode films (91, 131) includes: removing portions of (91, 131) overlapping the plurality of trench electrode structures (50), wherein the step of removing the insulating film (73) comprises removing the plurality of trench electrodes of the insulating film (73).
  • the step of forming the second electrode film (92, 133) includes removing a portion covering the structure (50), wherein the step of forming the second electrode film (92, 133) covers a plurality of the trench electrode structures (50). 133), the method of manufacturing a semiconductor device (1) according to B4.
  • the step of forming the first electrode films (91, 131) includes the step of forming the first electrode films (91, 131) directly covering the plug electrodes (80, 83, 84),
  • the step of forming the second electrode films (92, 133) includes forming the second electrode films (92, 133) directly covering the first electrode films (91, 131) and the diode region (9).
  • the second electrode films (91, 131) have portions facing the plug electrodes (80, 83, 84) with the first electrode films (91, 131) interposed therebetween.
  • the step of removing the insulating film (73) includes forming the insulating film (73) having an opening wall surface (79) defining an opening (77) exposing the diode region (9),
  • the step of removing the first electrode films (91, 131) includes the step of forming the first electrode films (91, 131) exposing the wall surface (79) of the opening, and removing the second electrode films (92, 133). ) includes the step of forming the second electrode film (92, 133) covering the opening wall surface (79).
  • the step of forming the first electrode film (91, 131) includes forming the first electrode film (91, 131) thinner than the insulating film (73), and 92, 133) includes forming the second electrode film (92, 133) thicker than the first electrode film (91, 131).
  • a method for manufacturing a semiconductor device (1) includes forming the first electrode film (91, 131) thinner than the insulating film (73), and 92, 133) includes forming the second electrode film (92, 133) thicker than the first electrode film (91, 131).
  • the step of forming the IGBT region (8) comprises: forming a gate trench structure (20) on the main surface (121); forming a first conductivity type (p-type) base region (15) in a region along the gate trench structure (20); and forming an emitter region (40) of n-type), wherein the step of forming the plug electrodes (80, 83, 84) includes forming the plug electrodes (80, 83, 84) electrically connected to the emitter region (40). 80).
  • the step of forming the IGBT region (8) comprises: forming a contact hole (42) exposing the emitter region (40) in the main surface (121); and forming a contact region (43) of a first conductivity type (p-type) in a region along the contact hole (42), wherein the step of forming the plug electrodes (80, 83, 84) includes forming the contact hole (42).
  • the method for manufacturing a semiconductor device (1) according to B17 including forming the plug electrode (80) electrically connected to the emitter region (40) and the contact region (43) in (42). .
  • the step of forming the IGBT region (8) includes the step of forming a carrier storage region (41) of the second conductivity type (n-type) in a region immediately below the base region (15) B17 or B18 A method for manufacturing the semiconductor device (1) according to 1.
  • a plurality of the IGBT regions (8) are formed, a plurality of the diode regions (9) are formed, and the step of forming the plug electrodes (80, 83, 84) includes: and forming a plurality of said plug electrodes (80, 83, 84) electrically connected to a plurality of said diode regions (9).
  • the step of forming the second electrode films (92, 133) includes forming the first electrode films (91, 131) covering the plurality of plug electrodes (80, 83, 84) so as to be exposed, wherein the step of forming the second electrode films (92, 133) includes , forming the second electrode films (92, 133) covering the first electrode films (91, 131) and the plurality of diode regions (9), according to any one of B1 to B19.
  • a method for manufacturing a semiconductor device (1) comprising:
  • a resist mask (132) having a layout that partially exposes the first electrode films (91, 101, 131) is placed on the first electrode films (91, 101, 131). and removing unnecessary portions of the first electrode films (91, 101, 131) by an etching method through the resist mask (132) before the exposure step, wherein the The semiconductor device ( 1 ) manufacturing method.
  • a chip (2) having a main surface (3), an IGBT region (8) formed on the main surface (3), a diode region (9) formed on the main surface (3), an insulating film (73) formed on the main surface (3) so as to cover the IGBT region (8) and having an opening (77) exposing the diode region (9); a lifetime killer region (85) formed inside said chip (2) in said diode region (9) so as to overlap with (77).
  • the lifetime killer region (85) has a facing region (86) facing the insulating film (73) and does not face the insulating film (73) in the thickness direction of the chip (2).
  • the insulating film (73) has an opening wall surface (79) that defines the opening (77), and the lifetime killer region (85) extends in the thickness direction of the chip (2).
  • a plurality of the diode regions (9) are formed in the main surface (3), a plurality of the openings (77) are formed one each for the plurality of the diode regions (9), and a plurality of The semiconductor device (1) according to any one of D1 to D14, wherein one lifetime killer region (85) of is formed for each of the plurality of diode regions (9).
  • the first electrode film (91) has a single-layer structure
  • the second electrode film (92) has a single-layer structure.
  • [E1] A step of preparing a wafer (120) having a main surface (121), forming an IGBT region (8) and a diode region (9) on the main surface (121), and forming the IGBT region (8) forming an insulating film (73) covering the diode region (9); and masks (131, 132) having a layout exposing a portion of the insulating film (73) covering the diode region (9). ) on the insulating film (73); forming a lifetime killer region (85) inside the wafer (120) using the masks (131, 132); and removing a portion of the insulating film (73) covering the diode region (9) by an etching method using (131, 132).
  • the semiconductor device (1) according to E1, wherein the step of forming the lifetime killer region (85) includes a step of irradiating the inside of the wafer (120) with an element other than a trivalent element and a pentavalent element. manufacturing method.
  • the step of forming the masks (131, 132) includes a step of forming a first metal mask (131) covering the insulating film (73); forming a second mask (132) made of resin on the first mask (131) and having a layout exposing a portion overlapping the region (9); and an etching method using the second mask (132). and removing a portion of the first mask (131) overlapping the diode region (9) by using the second mask (132) in the step of forming the lifetime killer region (85).
  • [E5] further comprising, after the step of forming the lifetime killer region (85), removing the second mask (132) so as to leave the first mask (131);
  • the removing step after the step of removing the second mask (132), a portion of the insulating film (73) covering the diode region (9) is removed by an etching method using the first mask (131).
  • the step of removing the insulating film (73) includes forming the insulating film (73) having an opening wall surface (79) defining an opening (77) exposing the diode region (9),
  • the step of removing the first mask (131) includes the step of forming the first mask (131) that exposes the opening wall surface (79), and the step of forming the electrode films (92, 102, 133) includes: A method for manufacturing a semiconductor device (1) according to E7, including the step of forming the electrode films (92, 102, 133) covering the opening wall surfaces (79).
  • the step of forming the first mask (131) includes forming the first mask (131) thinner than the insulating film (73), and forming the electrode films (92, 102, 133).
  • the step of forming the diode region (9) includes the step of forming an anode region (46) in the surface layer portion of the main surface (121), and the step of forming the second mask (132) includes the step of forming the second mask (132).
  • forming the second mask (132) having a layout exposing a portion of the first mask (131) overlapping the anode region (46); 14.
  • the step of forming the diode region (9) includes forming a trench electrode structure (50) on the main surface (121), and the step of removing the first mask (131) comprises: The method of manufacturing a semiconductor device (1) according to any one of E4 to E15, including removing a portion of (131) overlapping with the trench electrode structure (50).
  • a portion of the insulating film (73) covering the IGBT region (8) is partially exposed from the insulating film (73). further comprising embedding the plug electrodes (80, 83, 84), wherein the step of forming the first mask (131) includes removing the first mask (131) covering the plug electrodes (80, 83, 84); A method for manufacturing a semiconductor device (1) according to any one of E4 to E17, including the step of forming.
  • the step of forming the IGBT region (8) comprises: forming a gate trench structure (20) on the main surface (121); forming a first conductivity type (p-type) base region (15) in a region along the gate trench structure (20); and forming an emitter region (40) of n-type), wherein the step of forming the plug electrodes (80, 83, 84) includes forming the plug electrodes (80, 83, 84) electrically connected to the emitter region (40). 80), the method of manufacturing a semiconductor device (1) according to E18 or E19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置は、主面を有するチップと、前記主面に形成されたIGBT領域と、前記主面に形成されたダイオード領域と、前記ダイオード領域を露出させ、前記IGBT領域を被覆するように前記主面の上に形成された絶縁膜と、前記絶縁膜から部分的に露出するように前記絶縁膜のうち前記IGBT領域を被覆する部分に埋設されたプラグ電極と、前記ダイオード領域を露出させるように前記プラグ電極を被覆する第1電極膜、ならびに、前記第1電極膜および前記ダイオード領域を被覆する第2電極膜を含む主面電極と、を含む。

Description

半導体装置およびその製造方法
 この出願は、2022年2月18日に日本国特許庁に提出された特願2022-023925号および2022年2月18日に日本国特許庁に提出された特願2022-023926号に基づく優先権を主張しており、これらの出願の全開示はここに引用により組み込まれる。本開示は、半導体装置およびその製造方法に関する。
 特許文献1は、半導体基板、IGBT(Insulated Gate Bipolar Transistor)部、FWD(Free Wheeling Diode)部、層間絶縁膜、コンタクトプラグおよびエミッタ電極を含む半導体装置を開示している。IGBT部は、半導体基板の表面に形成されている。FWD部は、半導体基板の表面においてIGBT部とは異なる領域に形成されている。層間絶縁膜は、半導体基板の表面を被覆している。
 層間絶縁膜は、IGBT部を露出させる第1コンタクトホールおよびFWD部を露出させる第2コンタクトホールを有している。コンタクトプラグは、第1コンタクトホールに埋設され、IGBT部に電気的に接続されている。エミッタ電極は、層間絶縁膜の上でコンタクトプラグを被覆し、第2コンタクトホール内においてFWD部を被覆している。
米国特許出願公開第2017-0047322号明細書
 一実施形態は、電気的特性を向上できる半導体装置およびその製造方法を提供する。
 一実施形態は、主面を有するチップと、前記主面に形成されたIGBT領域と、前記主面に形成されたダイオード領域と、前記ダイオード領域を露出させ、前記IGBT領域を被覆するように前記主面の上に形成された絶縁膜と、前記絶縁膜から部分的に露出するように前記絶縁膜のうち前記IGBT領域を被覆する部分に埋設されたプラグ電極と、前記ダイオード領域を露出させるように前記プラグ電極を被覆する第1電極膜、ならびに、前記第1電極膜および前記ダイオード領域を被覆する第2電極膜を含む主面電極と、を含む、半導体装置を提供する。
 一実施形態は、主面を有するウエハを用意する工程と、前記主面を被覆する絶縁膜を形成する工程と、前記絶縁膜から部分的に露出するように前記絶縁膜にプラグ電極を埋設する工程と、少なくとも前記プラグ電極を被覆するバリア電極膜を形成する工程と、前記バリア電極膜の形成工程の後、前記第1電極膜を酸素雰囲気に曝す工程と、を含む、半導体装置の製造方法を提供する。
 一実施形態は、主面を有するウエハを用意する工程と、前記主面にIGBT領域およびダイオード領域を形成する工程と、前記IGBT領域および前記ダイオード領域を被覆する絶縁膜を形成する工程と、前記絶縁膜から部分的に露出するように前記絶縁膜のうち前記IGBT領域を被覆する部分にプラグ電極を埋設する工程と、前記プラグ電極を隠蔽するように前記絶縁膜を被覆する第1電極膜を形成する工程と、前記第1電極膜のうち前記ダイオード領域に重なる部分を露出させるレイアウトを有するレジストマスクを前記第1電極膜の上に形成する工程と、前記レジストマスクを介するエッチング法によって前記第1電極膜のうち前記ダイオード領域に重なる部分を除去する工程と、前記第1電極膜の除去工程の後、エッチング法によって前記絶縁膜のうち前記第1電極膜から露出した部分を除去する工程と、前記第1電極膜の除去工程または前記絶縁膜の除去工程の後、酸素灰化法によって前記レジストマスクを除去する工程と、前記第1電極膜および前記ダイオード領域を被覆する第2電極膜を形成する工程と、を含む、半導体装置の製造方法を提供する。
 一実施形態は、主面を有するチップと、前記主面に形成されたIGBT領域と、前記主面に形成されたダイオード領域と、前記IGBT領域を被覆するように前記主面の上に形成され、前記ダイオード領域を露出させる開口を有する絶縁膜と、平面視において前記開口に重なるように前記ダイオード領域において前記チップの内部に形成されたライフタイムキラー領域と、を含む、半導体装置を提供する。
 一実施形態は、主面を有するウエハを用意する工程と、前記主面にIGBT領域およびダイオード領域を形成する工程と、前記IGBT領域および前記ダイオード領域を被覆する絶縁膜を形成する工程と、前記絶縁膜のうち前記ダイオード領域を被覆する部分を露出させるレイアウトを有するマスクを前記絶縁膜の上に形成する工程と、前記マスクを利用して前記ウエハの内部にライフタイムキラー領域を形成する工程と、前記マスクを利用したエッチング法によって前記絶縁膜のうち前記ダイオード領域を被覆する部分を除去する工程と、を含む、半導体装置の製造方法を提供する。
 上述のまたはさらに他の目的、特徴および効果は、添付図面の参照によって説明される実施形態により明らかにされる。
図1は、一実施形態に係る半導体装置を示す平面図である。 図2は、図1に示す第1主面のレイアウト例を示す平面図である。 図3は、図2に示す領域IIIの拡大平面図である。 図4は、図3に示す領域IVの拡大平面図である。 図5は、図4に示す領域Vの拡大平面図である。 図6は、図4に示す領域VIの拡大平面図である。 図7は、図5に示すVII-VII線に沿う断面図である。 図8は、図6に示すVIII-VIII線に沿う断面図である。 図9は、図5に示すIX-IX線に沿う断面図である。 図10は、図6に示すX-X線に沿う断面図である。 図11は、図1に示す領域XIの拡大平面図である。 図12は、図11に示すXII-XII線に沿う断面図である。 図13Aは、図1に示す半導体装置の製造方法例を示す断面図である。 図13Bは、図13Aの後の工程を示す断面図である。 図13Cは、図13Bの後の工程を示す断面図である。 図13Dは、図13Cの後の工程を示す断面図である。 図13Eは、図13Dの後の工程を示す断面図である。 図13Fは、図13Eの後の工程を示す断面図である。 図13Gは、図13Fの後の工程を示す断面図である。 図13Hは、図13Gの後の工程を示す断面図である。 図13Iは、図13Hの後の工程を示す断面図である。 図13Jは、図13Iの後の工程を示す断面図である。 図13Kは、図13Jの後の工程を示す断面図である。 図13Lは、図13Kの後の工程を示す断面図である。 図13Mは、図13Lの後の工程を示す断面図である。 図13Nは、図13Mの後の工程を示す断面図である。 図13Oは、図13Nの後の工程を示す断面図である。 図13Pは、図13Oの後の工程を示す断面図である。 図13Qは、図13Pの後の工程を示す断面図である。 図13Rは、図13Qの後の工程を示す断面図である。 図13Sは、図13Rの後の工程を示す断面図である。 図13Tは、図13Sの後の工程を示す断面図である。 図13Uは、図13Tの後の工程を示す断面図である。 図14は、第1変形例に係る半導体装置を示す断面図である。 図15は、第2変形例に係る半導体装置を示す断面図である。
 以下、添付図面を参照して、実施形態が詳細に説明される。添付図面は、模式図であり、厳密に図示されたものではなく、縮尺等は必ずしも一致しない。また、添付図面の間で対応する構造には同一の参照符号が付され、重複する説明は省略または簡略化される。説明が省略または簡略化された構造については、省略または簡略化される前になされた説明が適用される。
 図1は、一実施形態に係る半導体装置1を示す平面図である。図2は、図1に示す第1主面3のレイアウト例を示す平面図である。図3は、図2に示す領域IIIの拡大平面図である。図4は、図3に示す領域IVの拡大平面図である。図5は、図4に示す領域Vの拡大平面図である。図6は、図4に示す領域VIの拡大平面図である。
 図7は、図5に示すVII-VII線に沿う断面図である。図8は、図6に示すVIII-VIII線に沿う断面図である。図9は、図5に示すIX-IX線に沿う断面図である。図10は、図6に示すX-X線に沿う断面図である。図11は、図1に示す領域XIの拡大平面図である。図12は、図11に示すXII-XII線に沿う断面図である。
 図1~図12を参照して、半導体装置1は、IGBT(Insulated Gate Bipolar Transistor)およびダイオードを一体的に備えたRC-IGBT(Reverse Conducting - IGBT)を有するRC-IGBT半導体装置(半導体スイッチング装置)である。ダイオードは、IGBTに対する還流ダイオードである。
 半導体装置1は、六面体形状(具体的には直方体形状)のチップ2を含む。チップ2は、この形態(this embodiment)では、シリコン単結晶基板(半導体基板)からなる単層構造を有している。チップ2は、50μm以上400μm以下の厚さを有していてもよい。チップ2は、一方側の第1主面3、他方側の第2主面4、ならびに、第1主面3および第2主面4を接続する第1~第4側面5A~5Dを有している。
 第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状に形成されている。法線方向Zは、チップ2の厚さ方向でもある。第1側面5Aおよび第2側面5Bは、第1主面3に沿う第1方向Xに延び、第1方向Xに交差(具体的には直交)する第2方向Yに対向している。第3側面5Cおよび第4側面5Dは、第2方向Yに延び、第1方向Xに対向している。
 半導体装置1は、第1主面3に形成されたアクティブ領域6を含む。アクティブ領域6は、少なくとも1つ(この形態では複数)のRC-IGBT領域7を含む。複数のRC-IGBT領域7は、平面視において第1主面3の周縁(第1~第4側面5A~5D)から間隔を空けて第1主面3の内方部に形成されている。
 複数のRC-IGBT領域7は、この形態では、第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて配列されている。つまり、複数のRC-IGBT領域7は、平面視において第1方向Xに延びるストライプ状に配列されている。複数のRC-IGBT領域7は、一方側(第3側面5C側)の第1端部および他方側(第4側面5D側)の第2端部をそれぞれ有している。
 複数のRC-IGBT領域7は、少なくとも1つ(この形態では複数)のIGBT領域8および少なくとも1つ(この形態では複数)のダイオード領域9をそれぞれ含む。複数のIGBT領域8は、平面視において四角形状にそれぞれ形成されている。複数のダイオード領域9は、平面視において四角形状にそれぞれ形成されている。複数のIGBT領域8は、各RC-IGBT領域7において第1方向Xに間隔を空けて配列されている。複数のダイオード領域9は、各RC-IGBT領域7において複数のIGBT領域8とは異なる領域にそれぞれ配列されている。
 具体的には、複数のダイオード領域9は、少なくとも1つのIGBT領域8に隣り合うようにそれぞれ配列されている。複数のダイオード領域9は、この形態では、第1方向Xに沿って複数のIGBT領域8と交互に配列されている。各RC-IGBT領域7の第1端部および第2端部は、IGBT領域8またはダイオード領域9によってそれぞれ形成される。
 一方のRC-IGBT領域7に係る複数のIGBT領域8は、他方のRC-IGBT領域7に係る複数のIGBT領域8に第2方向Yに対向していてもよい。同様に、一方のRC-IGBT領域7に係る複数のダイオード領域9は、他方のRC-IGBT領域7に係る複数のダイオード領域9に第2方向Yに対向していてもよい。つまり、複数のIGBT領域8は、平面視において第1方向Xおよび第2方向Yに間隔を空けて行列状に配列されていてもよい。また、複数のダイオード領域9は、平面視において第1方向Xおよび第2方向Yに間隔を空けて行列状に配列されていてもよい。
 一方のRC-IGBT領域7に係る複数のIGBT領域8は、他方のRC-IGBT領域7に係る複数のダイオード領域9に第2方向Yに対向していてもよい。同様に、一方のRC-IGBT領域7に係る複数のダイオード領域9は、他方のRC-IGBT領域7に係る複数のIGBT領域8に第2方向Yに対向していてもよい。つまり、複数のIGBT領域8は、平面視において第1方向Xおよび第2方向Yに間隔を空けて千鳥状に配列されていてもよい。また、複数のダイオード領域9は、平面視において第1方向Xおよび第2方向Yに間隔を空けて千鳥状に配列されていてもよい。
 各IGBT領域8は、第1平面積を有している。各ダイオード領域9は、第2平面積を有している。第2平面積は、第1平面積とほぼ等しくてもよいし、第1平面積と異なっていてもよい。第2平面積は、第1平面積を超えていてもよいし、第1平面積未満であってもよい。第2平面積は、第1平面積以下であることが好ましい。つまり、複数のダイオード領域9の総平面積は、複数のIGBT領域8の総平面積以下であることが好ましい。第2平面積は、第1平面積未満であることが特に好ましい。つまり、複数のダイオード領域9の総平面積は、複数のIGBT領域8の総平面積未満であることが特に好ましい。
 アクティブ領域6は、この形態では、第1主面3において複数のRC-IGBT領域7の間に区画された少なくとも1つ(この形態では複数)のストリート領域10を含む。複数のストリート領域10は、平面視において第1方向Xに延びる帯状にそれぞれ形成され、第2方向Yに間隔を空けて形成されている。つまり、複数のストリート領域10は、平面視において第2方向Yに延びるストライプ状に配列されている。
 半導体装置1は、第1主面3においてアクティブ領域6外に形成されたアウター領域11を含む。アウター領域11は、RC-IGBT領域7を含まない領域である。アウター領域11は、第1領域11aおよび第2領域11bを含む。第1領域11aは、この形態では、平面視においてアクティブ領域6に対して第3側面5C側に設けられ、第2方向Yに延びる帯状に形成されている。第2領域11bは、平面視において第1領域11aと共にアクティブ領域6を取り囲む環状に形成されている。第2領域11bは、第1領域11aよりも幅狭に形成されている。
 半導体装置1は、チップ2の内部に形成されたn型のドリフト領域12を含む。ドリフト領域12は、チップ2の内部の全域に形成されている。この形態では、チップ2がn型の半導体基板からなり、ドリフト領域12はチップ2の一部を利用して形成されている。ドリフト領域12のn型不純物濃度は、1×1013cm-3以上1×1015cm-3以下であってもよい。
 半導体装置1は、第2主面4の表層部に形成されたn型のバッファ領域13を含む。バッファ領域13は、第2主面4に沿って層状に延び、第1~第4側面5A~5Dの一部から露出している。バッファ領域13は、ドリフト領域12よりも高いn型不純物濃度を有している。バッファ領域13のn型不純物濃度は、1×1015cm-3以上1×1017cm-3以下であってもよい。
 半導体装置1は、各IGBT領域8において第2主面4の表層部に形成されたp型のコレクタ領域14を含む。コレクタ領域14は、この形態では、第2主面4の全域において、第2主面4に沿って延びる層状に形成されている。コレクタ領域14は、第2主面4および第1~第4側面5A~5Dの一部から露出している。コレクタ領域14のp型不純物濃度は、1×1015cm-3以上1×1018cm-3以下であってもよい。
 半導体装置1は、各IGBT領域8において第1主面3の表層部に形成されたp型のベース領域15を含む。ベース領域15は、「ボディ領域」または「チャネル領域」と称されてもよい。ベース領域15は、各IGBT領域8において第1主面3に沿って延びる層状に形成されている。ベース領域15のp型不純物濃度は、1×1015cm-3以上1×1018cm-3以下であってもよい。
 半導体装置1は、各IGBT領域8において第1主面3に形成された複数の第1トレンチ電極構造20を含む。第1トレンチ電極構造20は、「ゲートトレンチ構造」と称されてもよい。第1トレンチ電極構造20には、ゲート電位が付与される。
 複数の第1トレンチ電極構造20は、断面視においてドリフト領域12に至るようにベース領域15を貫通している。複数の第1トレンチ電極構造20は、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数の第1トレンチ電極構造20は、第2方向Yに延びるストライプ状に配列されている。複数の第1トレンチ電極構造20は、長手方向(第2方向Y)に関して、一方側(第1側面5A側)の第1端部および他方側(第2側面5B側)の第2端部をそれぞれ有している。
 複数の第1トレンチ電極構造20は、第1方向Xに1μm以上10μm以下の間隔を空けて配列されていてもよい。各第1トレンチ電極構造20は、0.5μm以上3μm以下の幅を有していてもよい。各第1トレンチ電極構造20は、1μm以上10μm以下の深さを有していてもよい。
 以下、1つの第1トレンチ電極構造20の構成が説明される。第1トレンチ電極構造20は、第1トレンチ21、第1絶縁膜22および第1埋設電極23を含む。第1トレンチ21は、第1主面3から第2主面4に向かって掘り下がり、第1トレンチ電極構造20の壁面を区画している。
 第1トレンチ21は、開口から底壁に向けて開口幅が狭まる先細り形状に形成されていてもよい。第1トレンチ21の底壁は、第2主面4に向かう湾曲状に形成されていることが好ましい。むろん、第1トレンチ21の底壁は、第1主面3に対して平行に形成されていてもよい。この場合、第1トレンチ21の底壁角部は、湾曲状に形成されていることが好ましい。
 第1トレンチ21は、開口端において第1主面3および側壁に対して斜め傾斜した傾斜部を含む。傾斜部は、第1トレンチ21の深さ範囲の中間部に対して第1主面3側に離間して形成されている。具体的には、傾斜部は、ベース領域15の底部に対して第1主面3側に離間して形成されている。傾斜部は、この形態では、開口端において第2主面4に向かって凹状に窪んだリセス部からなる。これにより、第1トレンチ21は、開口側において底壁側の開口幅を超える開口幅を有する幅広部を有している。
 第1絶縁膜22は、第1トレンチ21の壁面を膜状に被覆し、第1トレンチ21内においてリセス空間を区画している。第1絶縁膜22は、酸化シリコン膜、窒化シリコン膜、酸窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。第1絶縁膜22は、チップ2の酸化物からなる酸化シリコン膜を含むことが好ましい。第1絶縁膜22は、第1トレンチ21の傾斜部を被覆する部分において他の部分よりも厚い厚膜部を有している。
 第1埋設電極23は、第1絶縁膜22を挟んで第1トレンチ21に埋設されている。第1埋設電極23には、ゲート電位が付与される。第1埋設電極23は、導電性ポリシリコンを含んでいてもよい。第1埋設電極23は、第1絶縁膜22を挟んでドリフト領域12およびベース領域15に対向している。第1埋設電極23は、第1主面3に対して第1トレンチ21の底壁側に位置する上端部を有していてもよい。
 第1埋設電極23の上端部は、第1絶縁膜22の厚膜部に起因して第1トレンチ21の内方に向かって括れている。第1埋設電極23の上端部は、第1トレンチ21の底壁に向かって窪んだリセス部を有していてもよい。リセス部は、第1トレンチ21の底壁に向かう先細り形状に形成されていてもよい。
 半導体装置1は、各IGBT領域8において、複数の第1トレンチ電極構造20に電気的に接続されるように第1主面3に形成された少なくとも1つ(この形態では複数)の第1トレンチ接続構造24を含む。複数の第1トレンチ接続構造24は、第1トレンチ電極構造20と同様、第1トレンチ21、第1絶縁膜22および第1埋設電極23をそれぞれ含む。
 複数の第1トレンチ接続構造24は、一方の第1トレンチ接続構造24および他方の第1トレンチ接続構造24を含む。一方の第1トレンチ接続構造24は、複数の第1トレンチ電極構造20の第1端部を接続するように第1方向Xに延びる帯状に形成されている。他方の第1トレンチ接続構造24は、複数の第1トレンチ電極構造20の第2端部を接続するように第1方向Xに延びる帯状に形成されている。
 半導体装置1は、各IGBT領域8において第1主面3に形成された複数の第2トレンチ電極構造30を含む。第2トレンチ電極構造30は、「エミッタトレンチ構造」と称されてもよい。第2トレンチ電極構造30には、ゲート電位とは異なる電位(この形態ではエミッタ電位)が付与される。
 この形態では、少なくとも2つの第2トレンチ電極構造30が、隣り合う一対(pairs of)の第1トレンチ電極構造20の間の領域(regions)にそれぞれ配置されている。具体的には、複数の第2トレンチ電極構造30は、一対の第1トレンチ電極構造20および一対の第1トレンチ接続構造24によって区画されたメサ領域にそれぞれ形成されている。
 複数の第2トレンチ電極構造30は、断面視においてドリフト領域12に至るようにベース領域15を貫通している。複数の第2トレンチ電極構造30は、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数の第2トレンチ電極構造30は、第2方向Yに延びるストライプ状に配列されている。
 長手方向(第2方向Y)に関して、複数の第2トレンチ電極構造30は、複数の第1トレンチ電極構造20よりも短い。複数の第2トレンチ電極構造30は、長手方向(第2方向Y)に関して、一方側(第1側面5A側)の第1端部および他方側(第2側面5B側)の第2端部をそれぞれ有している。
 複数の第2トレンチ電極構造30は、第1方向Xに1.5μm以上15μm以下の間隔を空けて配列されていてもよい。複数の第2トレンチ電極構造30の間隔は、隣り合う第1トレンチ電極構造20および第2トレンチ電極構造30の間隔よりも大きいことが好ましい。
 各第2トレンチ電極構造30は、0.5μm以上3μm以下の幅を有していてもよい。各第2トレンチ電極構造30の幅は、各第1トレンチ電極構造20の幅とほぼ等しいことが好ましい。各第2トレンチ電極構造30は、1μm以上10μm以下の深さを有していてもよい。各第2トレンチ電極構造30の深さは、各第1トレンチ電極構造20の深さとほぼ等しいことが好ましい。
 以下、1つの第2トレンチ電極構造30の構成が説明される。第2トレンチ電極構造30は、第2トレンチ31、第2絶縁膜32および第2埋設電極33を含む。第2トレンチ31は、第1主面3から第2主面4に向かって掘り下がり、第2トレンチ電極構造30の壁面を区画している。
 第2トレンチ31は、開口から底壁に向けて開口幅が狭まる先細り形状に形成されていてもよい。第2トレンチ31の底壁は、第2主面4に向かう湾曲状に形成されていることが好ましい。むろん、第2トレンチ31の底壁は、第1主面3に対して平行に形成されていてもよい。この場合、第2トレンチ31の底壁角部は、湾曲状に形成されていることが好ましい。
 第2トレンチ31は、開口端において第1主面3および側壁に対して斜め傾斜した傾斜部を含む。傾斜部は、第2トレンチ31の深さ範囲の中間部に対して第1主面3側に離間して形成されている。具体的には、傾斜部は、ベース領域15の底部に対して第2主面4側に離間して形成されている。傾斜部は、この形態では、開口端において第2主面4に向かって凹状に窪んだリセス部からなる。これにより、第2トレンチ31は、開口側において底壁側の開口幅を超える開口幅を有する幅広部を有している。
 第2絶縁膜32は、第2トレンチ31の壁面を膜状に被覆し、第2トレンチ31内においてリセス空間を区画している。第2絶縁膜32は、酸化シリコン膜、窒化シリコン膜、酸窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。第2絶縁膜32は、チップ2の酸化物からなる酸化シリコン膜を含むことが好ましい。第2絶縁膜32は、第1絶縁膜22と同一の絶縁材料を含むことが特に好ましい。第2絶縁膜32は、第2トレンチ31の傾斜部を被覆する部分において他の部分よりも厚い厚膜部を有している。
 第2埋設電極33は、第2絶縁膜32を挟んで第2トレンチ31に埋設されている。第2埋設電極33には、エミッタ電位が付与される。第2埋設電極33は、導電性ポリシリコンを含んでいてもよい。第2埋設電極33は、第2絶縁膜32を挟んでドリフト領域12およびベース領域15に対向している。第2埋設電極33は、第1主面3に対して第2トレンチ31の底壁側に位置する上端部を有していてもよい。
 第2埋設電極33の上端部は、第2絶縁膜32の厚膜部に起因して第2トレンチ31の内方に向かって括れている。第2埋設電極33の上端部は、第2トレンチ31の底壁に向かって窪んだリセス部を有していてもよい。リセス部は、第2トレンチ31の底壁に向かう先細り形状に形成されていてもよい。
 半導体装置1は、各IGBT領域8において、複数の第2トレンチ電極構造30に電気的に接続されるように第1主面3に形成された少なくとも1つ(この形態では複数)の第2トレンチ接続構造34を含む。複数の第2トレンチ接続構造34は、第2トレンチ電極構造30と同様、第2トレンチ31、第2絶縁膜32および第2埋設電極33をそれぞれ含む。
 複数の第2トレンチ接続構造34は、一方の第2トレンチ接続構造34および他方の第2トレンチ接続構造34を含む。一方の第2トレンチ接続構造34は、複数の第2トレンチ電極構造30の第1端部を接続するように第1方向Xに延びる帯状に形成されている。他方の第2トレンチ接続構造34は、複数の第2トレンチ電極構造30の第2端部を接続するように第1方向Xに延びる帯状に形成されている。
 半導体装置1は、各IGBT領域8において、ベース領域15の表層部に形成されたn型の複数のエミッタ領域40を含む。複数のエミッタ領域40は、複数の第1トレンチ電極構造20の両サイドにそれぞれ配置され、平面視において複数の第1トレンチ電極構造20に沿って延びる帯状にそれぞれ形成されている。複数のエミッタ領域40は、ドリフト領域12よりも高いn型不純物濃度をそれぞれ有している。複数のエミッタ領域40のn型不純物濃度は、1×1019cm-3以上1×1020cm-3以下であってもよい。
 半導体装置1は、この形態では、各IGBT領域8において、ベース領域15の直下の領域に形成されたn型の複数のCS領域41(Carrier storage region)を含む。複数のCS領域41は、ベース領域15へのキャリア(正孔)の排出を抑制し、複数の第1トレンチ電極構造20の直下の領域におけるキャリア(正孔)の蓄積を促す。つまり、複数のCS領域41は、チップ2内部から低オン抵抗化および低オン電圧化を促す。
 複数のCS領域41は、複数の第1トレンチ電極構造20の両サイドにそれぞれ配置され、平面視において複数の第1トレンチ電極構造20に沿って延びる帯状にそれぞれ形成されている。複数のCS領域41は、チップ2の厚さ方向に関してベース領域15の底部および第1トレンチ電極構造20の底壁の間の領域にそれぞれ形成されている。複数のCS領域41は、第1トレンチ電極構造20の底壁からベース領域15側に離間していることが好ましい。
 複数のCS領域41の底部は、第1トレンチ電極構造20の中間部よりも第1トレンチ電極構造20の底壁側に位置していることが好ましい。複数のCS領域41は、ドリフト領域12よりも高いn型不純物濃度を有している。複数のCS領域41のn型不純物濃度は、エミッタ領域40よりも低いことが好ましい。複数のCS領域41のn型不純物濃度は、1×1015cm-3以上1×1017cm-3以下であってもよい。
 半導体装置1は、各IGBT領域8において、第1主面3に形成された複数のコンタクト孔42を含む。複数のコンタクト孔42は、複数の第1トレンチ電極構造20から第1方向Xに間隔を空けて複数の第1トレンチ電極構造20の両サイドにそれぞれ形成されている。複数のコンタクト孔42は、開口から底壁に向けて開口幅が狭まる先細り形状にそれぞれ形成されていてもよい。複数のコンタクト孔42は、少なくともエミッタ領域40を露出させるように第1主面3から第2主面4に掘り下がっている。
 複数のコンタクト孔42は、ベース領域15に至らないようにエミッタ領域40の底部から第1主面3側に離間していてもよい。むろん、複数のコンタクト孔42は、ベース領域15に至るようにエミッタ領域40を貫通していてもよい。複数のコンタクト孔42は、平面視において複数の第1トレンチ電極構造20に沿って延びる帯状にそれぞれ形成されている。長手方向(第2方向Y)に関して、複数のコンタクト孔42は、複数の第1トレンチ電極構造20よりも短い。
 半導体装置1は、各IGBT領域8において、ベース領域15の表層部において複数のエミッタ領域40とは異なる領域に形成されたp型の複数のコンタクト領域43を含む。具体的には、複数のコンタクト領域43は、対応するコンタクト孔42に沿う領域にそれぞれ形成されている。複数のコンタクト領域43は、平面視において対応するコンタクト孔42に沿って延びる帯状にそれぞれ形成されている。
 複数のコンタクト領域43の底部は、コンタクト孔42の底壁およびベース領域15の底部の間の領域に形成されている。複数のコンタクト領域43は、ベース領域15よりも高いp型不純物濃度を有している。複数のコンタクト領域43のp型不純物濃度は、1×1019cm-3以上1×1020cm-3以下であってもよい。
 半導体装置1は、各IGBT領域8において、第1主面3の表層部に形成されたp型の複数のウェル領域44を含む。複数のウェル領域44は、隣り合う一対(pairs of)の第2トレンチ電極構造30の間の領域(regions)にそれぞれ形成されている。複数のウェル領域44は、具体的には、複数の第2トレンチ電極構造30および複数の第2トレンチ接続構造34によって区画されたメサ領域にそれぞれ形成されている。
 複数のウェル領域44は、チップ2の厚さ方向に関してベース領域15よりも深く形成されている。具体的には、複数のウェル領域44は、チップ2の厚さ方向に関して複数の第2トレンチ電極構造30の中間部よりも深く形成されている。さらに具体的には、複数のウェル領域44は、チップ2の厚さ方向に関して複数の第2トレンチ電極構造30よりも深く形成されている。複数のウェル領域44は、複数の第2トレンチ電極構造30の底壁を被覆する部分(底部)を有していてもよい。
 複数のウェル領域44は、平面視において第2トレンチ電極構造30に沿って延びる帯状に形成されている。複数のウェル領域44は、ベース領域15のp型不純物濃度よりも高いp型不純物濃度を有していてもよい。複数のウェル領域44のp型不純物濃度は、1×1016cm-3以上1×1020cm-3以下であってもよい。ウェル領域44は、この形態では、電気的に浮遊状態に形成されている。
 複数のウェル領域44は、IGBT領域8においてIE構造(Injection Enhanced structure)を構成している。具体的には、複数のウェル領域44は、複数の第2トレンチ電極構造30と共にIE構造を形成し、複数の第1トレンチ電極構造20を離間させている。IE構造は、ベース領域15へ流れ込む正孔の移動経路を制限し、ベース領域15の直下の領域に正孔を蓄積させる。つまり、IE構造は、チップ2の内部から低オン抵抗化および低オン電圧化を促す。
 半導体装置1は、各ダイオード領域9において第2主面4の表層部に形成されたn型のカソード領域45を含む。カソード領域45は、「第1極性領域」と称されてもよい。カソード領域45は、この形態では、第2主面4の一部(ダイオード領域9に位置する部分)において、第2主面4に沿って延びる層状に形成されている。カソード領域45は、バッファ領域13に接続されるようにコレクタ領域14を貫通している。
 カソード領域45は、コレクタ領域14のp型不純物濃度を超えるn型不純物濃度を有し、コレクタ領域14の一部の導電型がp型からn型に置換された領域である。カソード領域45は、ドリフト領域12(バッファ領域13)よりも高いn型不純物濃度を有していることが好ましい。カソード領域45のn型不純物濃度は、1×1019cm-3以上1×1020cm-3以下であってもよい。
 半導体装置1は、各ダイオード領域9において第1主面3の表層部に形成されたp型のアノード領域46を含む。アノード領域46は、「第2極性領域」と称されてもよい。アノード領域46は、各ダイオード領域9において第1主面3に沿って延びる層状に形成され、チップ2の厚さ方向にカソード領域45に対向している。この形態では、アノード領域46の全域が、カソード領域45の少なくとも一部に対向している。
 むろん、アノード領域46は、チップ2の厚さ方向にコレクタ領域14の一部およびカソード領域45の一部に対向していてもよい。アノード領域46は、チップ2の厚さ方向に関して複数の第1トレンチ21よりも浅く形成されている。具体的には、アノード領域46は、チップ2の厚さ方向に関して複数の第1トレンチ21の中間部よりも浅く形成されている。アノード領域46は、ベース領域15とほぼ等しい深さを有していてもよい。
 むろん、アノード領域46は、チップ2の厚さ方向に関してベース領域15よりも深く形成されていてもよい。この場合、アノード領域46は、チップ2の厚さ方向に関して複数の第1トレンチ電極構造20(第2トレンチ電極構造30)の中間部よりも深く形成されていてもよい。
 アノード領域46は、ドリフト領域12とpn接合を形成する。これにより、アノード領域46をアノードとし、カソード領域45(ドリフト領域12)をカソードとするpn接合ダイオードが形成されている。アノード領域46は、ベース領域15とほぼ等しいp型不純物濃度を有していてもよい。むろん、アノード領域46のp型不純物濃度は、ベース領域15のp型不純物濃度よりも高くてもよいし、ベース領域15のp型不純物濃度よりも低くてもよい。アノード領域46のp型不純物濃度は、1×1015cm-3以上1×1018cm-3以下であってもよい。
 半導体装置1は、各ダイオード領域9において第1主面3に形成された複数の第3トレンチ電極構造50を含む。第3トレンチ電極構造50は、「アノードトレンチ構造」と称されてもよい。第3トレンチ電極構造50には、ゲート電位とは異なる電位(この形態ではアノード電位)が付与される。アノード電位は、この形態では、エミッタ電位である。
 複数の第3トレンチ電極構造50は、断面視においてドリフト領域12に至るようにアノード領域46を貫通している。複数の第3トレンチ電極構造50は、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数の第3トレンチ電極構造50は、第2方向Yに延びるストライプ状に配列されている。
 長手方向(第2方向Y)に関して、複数の第3トレンチ電極構造50は、複数の第1トレンチ電極構造20よりも短い。長手方向(第2方向Y)に関して、複数の第3トレンチ電極構造50は、複数の第2トレンチ電極構造30とほぼ等しい長さを有している。複数の第3トレンチ電極構造50は、長手方向(第2方向Y)に関して、一方側(第1側面5A側)の第1端部および他方側(第2側面5B側)の第2端部をそれぞれ有している。
 複数の第3トレンチ電極構造50は、第1方向Xに1μm以上10μm以下の間隔を空けて配列されていてもよい。複数の第3トレンチ電極構造50の間隔は、複数の第1トレンチ電極構造20の間隔よりも小さい。複数の第3トレンチ電極構造50の間隔は、複数の第2トレンチ電極構造30の間隔よりも小さい。複数の第3トレンチ電極構造50の間隔は、隣り合う第1トレンチ電極構造20および第2トレンチ電極構造30の間隔とほぼ等しいことが好ましい。
 各第3トレンチ電極構造50は、0.5μm以上3μm以下の幅を有していてもよい。各第3トレンチ電極構造50の幅は、各第1トレンチ電極構造20の幅とほぼ等しいことが好ましい。各第3トレンチ電極構造50は、1μm以上10μm以下の深さを有していてもよい。各第3トレンチ電極構造50の深さは、各第1トレンチ電極構造20の深さとほぼ等しいことが好ましい。
 以下、1つの第3トレンチ電極構造50の構成が説明される。第3トレンチ電極構造50は、第3トレンチ51、第3絶縁膜52および第3埋設電極53を含む。第3トレンチ51は、第1主面3から第2主面4に向かって掘り下がり、第3トレンチ電極構造50の壁面を区画している。
 第3トレンチ51は、開口から底壁に向けて開口幅が狭まる先細り形状に形成されていてもよい。第3トレンチ51の底壁は、第2主面4に向かう湾曲状に形成されていることが好ましい。むろん、第3トレンチ51の底壁は、第1主面3に対して平行に形成されていてもよい。この場合、第3トレンチ51の底壁角部は、湾曲状に形成されていることが好ましい。
 第3トレンチ51は、開口端において第1主面3および側壁に対して斜め傾斜した傾斜部を含む。傾斜部は、第3トレンチ51の深さ範囲の中間部に対して第1主面3側に離間して形成されている。具体的には、傾斜部は、アノード領域46の底部に対して第1主面3側に離間して形成されている。傾斜部は、この形態では、開口端において第2主面4に向かって凹状に窪んだリセス部からなる。これにより、第3トレンチ51は、開口側において底壁側の開口幅を超える開口幅を有する幅広部を有している。
 第3絶縁膜52は、第3トレンチ51の壁面を膜状に被覆し、第3トレンチ51内においてリセス空間を区画している。第3絶縁膜52は、酸化シリコン膜、窒化シリコン膜、酸窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。第3絶縁膜52は、チップ2の酸化物からなる酸化シリコン膜を含むことが好ましい。第3絶縁膜52は、第1絶縁膜22と同一の絶縁材料を含むことが好ましい。第3絶縁膜52は、この形態では、第3トレンチ51の傾斜部を露出させている。
 第3埋設電極53は、第3絶縁膜52を挟んで第3トレンチ51に埋設されている。第3埋設電極53には、アノード電位(この形態ではエミッタ電位)が付与される。第3埋設電極53は、導電性ポリシリコンを含んでいてもよい。第3埋設電極53は、第3絶縁膜52を挟んでアノード領域46およびドリフト領域12に対向している。
 第3埋設電極53は、第1主面3に対して第3トレンチ51の底壁側に位置する上端部を有していてもよい。第3埋設電極53の上端部は、第3絶縁膜52の厚膜部に起因して第2トレンチ31の内方に向かって括れている。第3埋設電極53の上端部は、第3トレンチ51の底壁に向かって窪んだリセス部を有していてもよい。リセス部は、第3トレンチ51の底壁に向かう先細り形状に形成されていてもよい。
 半導体装置1は、各ダイオード領域9において、複数の第3トレンチ電極構造50に電気的に接続されるように第1主面3に形成された少なくとも1つ(この形態では複数)の第3トレンチ接続構造54を含む。複数の第3トレンチ接続構造54は、第3トレンチ電極構造50と同様、第3トレンチ51、第3絶縁膜52および第3埋設電極53をそれぞれ含む。
 複数の第3トレンチ接続構造54は、一方の第3トレンチ接続構造54および他方の第3トレンチ接続構造54を含む。一方の第3トレンチ接続構造54は、複数の第3トレンチ電極構造50の第1端部を接続するように第1方向Xに延びる帯状に形成されている。他方の第3トレンチ接続構造54は、複数の第3トレンチ電極構造50の第2端部を接続するように第1方向Xに延びる帯状に形成されている。
 半導体装置1は、各IGBT領域8および各ダイオード領域9の間の境界領域55において第1主面3に形成された複数の第4トレンチ電極構造60を含む。この形態では、少なくとも2つの第4トレンチ電極構造60が、最外の第1トレンチ電極構造20および最外の第3トレンチ電極構造50の間の領域に配置されている。
 複数の第4トレンチ電極構造60は、断面視においてドリフト領域12に至るようにアノード領域46(ベース領域15)を貫通している。複数の第4トレンチ電極構造60は、平面視において第1方向Xに間隔を空けて配列され、第2方向Yに延びる帯状にそれぞれ形成されている。つまり、複数の第4トレンチ電極構造60は、第2方向Yに延びるストライプ状に配列されている。長手方向(第2方向Y)に関して、複数の第4トレンチ電極構造60は、複数の第1トレンチ電極構造20よりも短い。
 複数の第4トレンチ電極構造60は、長手方向(第2方向Y)に関して、一方側(第1側面5A側)の第1端部および他方側(第2側面5B側)の第2端部をそれぞれ有している。複数の第4トレンチ電極構造60の第1端部は、一方の第3トレンチ接続構造54に接続されている。複数の第4トレンチ電極構造60の第2端部は、他方の第3トレンチ接続構造54に接続されている。
 複数の第4トレンチ電極構造60は、第1方向Xに1.5μm以上15μm以下の間隔を空けて配列されていてもよい。複数の第4トレンチ電極構造60の間隔は、複数の第3トレンチ電極構造50の間隔よりも大きいことが好ましい。複数の第4トレンチ電極構造60の間隔は、複数の第1トレンチ電極構造20の間隔よりも小さいことが好ましい。複数の第4トレンチ電極構造60の間隔は、複数の第2トレンチ電極構造30の間隔とほぼ等しいことが好ましい。
 各第4トレンチ電極構造60は、0.5μm以上3μm以下の幅を有していてもよい。各第4トレンチ電極構造60の幅は、各第3トレンチ電極構造50の幅とほぼ等しいことが好ましい。各第4トレンチ電極構造60は、1μm以上10μm以下の深さを有していてもよい。各第4トレンチ電極構造60の深さは、各第3トレンチ電極構造50の深さとほぼ等しいことが好ましい。
 複数の第4トレンチ電極構造60は、第4トレンチ61、第4絶縁膜62および第4埋設電極63を含む。第4トレンチ61、第4絶縁膜62および第4埋設電極63は、第2トレンチ31、第2絶縁膜32および第2埋設電極33の形態とほぼ同様の形態をそれぞれ有している。第4トレンチ61、第4絶縁膜62および第4埋設電極63の説明は、第2トレンチ31、第2絶縁膜32および第2埋設電極33の説明がそれぞれ適用され、省略される。
 半導体装置1は、境界領域55において第1主面3の表層部に形成されたp型の境界ウェル領域64を含む。境界ウェル領域64は、複数の第4トレンチ電極構造60の間の領域に形成されている。境界ウェル領域64は、具体的には、一対の第4トレンチ電極構造60および一対の第3トレンチ接続構造54によって区画されたメサ領域に形成されている。
 境界ウェル領域64は、チップ2の厚さ方向に関してベース領域15およびアノード領域46よりも深く形成されている。具体的には、境界ウェル領域64は、チップ2の厚さ方向に関して複数の第4トレンチ電極構造60の中間部よりも深く形成されている。さらに具体的には、境界ウェル領域64は、チップ2の厚さ方向に関して複数の第4トレンチ電極構造60よりも深く形成されている。境界ウェル領域64は、複数の第4トレンチ電極構造60の底壁を被覆する部分(底部)を有していてもよい。
 境界ウェル領域64は、平面視において第4トレンチ電極構造60に沿って延びる帯状に形成されている。境界ウェル領域64は、アノード領域46のp型不純物濃度よりも高いp型不純物濃度を有していてもよい。境界ウェル領域64のp型不純物濃度は、1×1016cm-3以上1×1020cm-3以下であってもよい。境界ウェル領域64のp型不純物濃度は、ウェル領域44のp型不純物濃度とほぼ等しくてもよい。
 境界ウェル領域64は、チップ2の厚さ方向にコレクタ領域14に対向している。この形態では、境界ウェル領域64の全域が、チップ2の厚さ方向にコレクタ領域14に対向している。むろん、境界ウェル領域64は、チップ2の厚さ方向にコレクタ領域14の一部およびカソード領域45の一部に対向していてもよい。境界ウェル領域64は、この形態では、電気的に浮遊状態に形成されている。
 境界ウェル領域64は、境界領域55において境界IE構造を構成している。具体的には、境界ウェル領域64は、複数の第4トレンチ電極構造60と共に境界IE構造を形成し、最外の第1トレンチ電極構造20を最外の第3トレンチ電極構造50から離間させている。境界IE構造は、境界領域55においてベース領域15へ流れ込む正孔の移動経路を制限し、ベース領域15の直下の領域における正孔の蓄積を促す。
 半導体装置1は、第1主面3を選択的に被覆する主面絶縁膜70を含む。主面絶縁膜70は、酸化シリコン膜、窒化シリコン膜、酸窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。主面絶縁膜70は、チップ2の酸化物からなる酸化シリコン膜を含むことが好ましい。主面絶縁膜70は、単一の絶縁膜からなる単層構造を有していることが特に好ましい。
 主面絶縁膜70は、第1主面3に沿って膜状に延び、チップ2の周縁(第1~第4側面5A~5D)に連なっていてもよい。主面絶縁膜70は、各IGBT領域8において複数の第1トレンチ電極構造20、複数の第1トレンチ接続構造24、複数の第2トレンチ電極構造30および複数の第2トレンチ接続構造34を露出させるように第1主面3を被覆している。具体的には、主面絶縁膜70は、各IGBT領域8において複数のエミッタ領域40および複数のウェル領域44を被覆し、第1絶縁膜22および第2絶縁膜32に連なっている。
 主面絶縁膜70は、各ダイオード領域9においてアノード領域46、複数の第3トレンチ電極構造50および複数の第3トレンチ接続構造54を露出させるように第1主面3を被覆している。具体的には、主面絶縁膜70は、各ダイオード領域9においてアノード領域46の周縁部を被覆し、第3絶縁膜52に連なっている。主面絶縁膜70は、各境界領域55において複数の第4トレンチ電極構造60を露出させるように第1主面3を被覆している。具体的には、主面絶縁膜70は、各境界領域55において境界ウェル領域64を被覆し、第3絶縁膜52および第4絶縁膜62に連なっている。
 半導体装置1は、第2埋設電極33に電気的に接続されるように主面絶縁膜70の上に配置された複数の第1配線膜71を含む。第1配線膜71は、「第1エミッタ配線膜」と称されてもよい。複数の第1配線膜71は、対応する第2トレンチ接続構造34の第2埋設電極33から隣り合う第1トレンチ接続構造24に向けて帯状に引き出された引き出し部からそれぞれなる。つまり、複数の第1配線膜71は、導電性ポリシリコンからそれぞれなる。
 半導体装置1は、第3埋設電極53に電気的に接続されるように主面絶縁膜70の上に配置された複数の第2配線膜72を含む。第2配線膜72は、「第2エミッタ配線膜」と称されてもよい。複数の第2配線膜72は、対応する第3トレンチ接続構造54の第3埋設電極53から隣り合うストリート領域10に向けて帯状に引き出された引き出し部からそれぞれなる。つまり、複数の第2配線膜72は、導電性ポリシリコンからそれぞれなる。
 半導体装置1は、主面絶縁膜70を被覆する層間絶縁膜73を含む。層間絶縁膜73は、酸化シリコン膜、窒化シリコン膜、酸窒化シリコン膜および酸化アルミニウム膜のうちの少なくとも1つを含んでいてもよい。層間絶縁膜73は、酸化シリコン膜の一例としてのNSG(Non-doped Silicate Glass)膜、PSG(Phosphor Silicate Glass)膜およびBPSG(Boron Phosphor Silicate Glass)膜のうちの少なくとも1つを含んでいてもよい。層間絶縁膜73は、単一の絶縁膜からなる単層構造、または、複数の絶縁膜を含む積層構造を有していてもよい。層間絶縁膜73は、主面絶縁膜70の厚さを超える厚さを有している。層間絶縁膜73の厚さは、0.5μm以上5μm以下であってもよい。層間絶縁膜73の厚さは、1μm以上であることが好ましい。
 層間絶縁膜73は、第1主面3に沿って層状に延び、チップ2の周縁(第1~第4側面5A~5D)に連なっていてもよい。層間絶縁膜73は、複数のIGBT領域8、複数のダイオード領域9および複数の境界領域55を選択的に被覆している。層間絶縁膜73は、各IGBT領域8において主面絶縁膜70、複数の第1トレンチ電極構造20、複数の第1トレンチ接続構造24、複数の第2トレンチ電極構造30、複数の第2トレンチ接続構造34および複数の第1配線膜71を被覆している。
 層間絶縁膜73は、各ダイオード領域9において主面絶縁膜70、複数の第3トレンチ電極構造50、複数の第3トレンチ接続構造54および複数の第2配線膜72を被覆している。層間絶縁膜73は、各境界領域55において主面絶縁膜70、複数の第3トレンチ接続構造54および複数の第4トレンチ電極構造60を被覆している。
 層間絶縁膜73は、各IGBT領域8において複数のエミッタ領域40をそれぞれ露出させる複数の第1開口74を有している。複数の第1開口74は、この形態では、複数のコンタクト孔42に対して1対1の対応関係で形成され、対応するコンタクト孔42にそれぞれ連通している。複数の第1開口74は、平面視において対応するコンタクト孔42に沿って延びる帯状にそれぞれ形成されている。複数の第1開口74は、対応するコンタクト孔42に向けて開口幅が狭まる先細り形状にそれぞれ形成されていてもよい。
 層間絶縁膜73は、各IGBT領域8において複数の第1配線膜71をそれぞれ露出させる複数の第2開口75を有している。各第2開口75の平面形状、および、各第1配線膜71に対する第2開口75の個数は任意である。各第2開口75は、この形態では、平面視において四角形状に形成されている。各第2開口75は、平面視において四角形状以外の多角形状、円形状または楕円形状に形成されていてもよい。
 層間絶縁膜73は、各ダイオード領域9において複数の第2配線膜72をそれぞれ露出させる複数の第3開口76を有している。各第3開口76の平面形状、および、各第2配線膜72に対する第3開口76の個数は任意である。各第3開口76は、この形態では、平面視において四角形状に形成されている。各第3開口76は、平面視において四角形状以外の多角形状、円形状または楕円形状に形成されていてもよい。
 層間絶縁膜73は、各ダイオード領域9において主面絶縁膜70を貫通してアノード領域46および複数の第3トレンチ電極構造50を露出させるダイオード開口77を含む。この形態では、1つのダイオード領域9に対して1つのダイオード開口77が形成されている。つまり、この形態では、1つのダイオード領域9において複数のダイオード開口77は形成されていない。ダイオード開口77は、この形態では、アノード領域46の内方部および複数の第3トレンチ電極構造50の内方部を露出させている。ダイオード開口77は、各ダイオード領域9において全ての第3トレンチ電極構造50を露出させている。
 層間絶縁膜73は、第1主面3に沿って延びる絶縁主面78、および、ダイオード開口77を区画する開口壁面79を有している。開口壁面79は、第1主面3に対して鋭角を成す傾斜面を有している。傾斜面は、断面視において直線状、第1主面3に向かう凹湾曲状、または、第1主面3から離れる凸湾曲状に形成されていてもよい。開口壁面79の傾斜角度は、30°以上90°未満であってもよい。傾斜角度は、45°を超えていることが好ましい。傾斜角度は、60°以上であることが特に好ましい。
 傾斜角度は、層間絶縁膜73の内部における第1主面3および傾斜面の間の角度である。具体的には、傾斜角度は、傾斜面の始点および終点を結ぶ直線が第1主面3との間で成す角度である。むろん、各ダイオード開口77を区画する壁面は、第1主面3に対して垂直(つまり、傾斜角度=90°)に形成されていてもよい。
 半導体装置1は、層間絶縁膜73から部分的に露出するように複数の第1開口74に埋設された複数の第1プラグ電極80を含む。各第1プラグ電極80は、第1開口74からコンタクト孔42内に入り込み、エミッタ領域40およびコンタクト領域43に電気的に接続されている。つまり、第1プラグ電極80は、層間絶縁膜73(主面絶縁膜70)に接する部分およびチップ2に接する部分を含む。
 第1プラグ電極80は、この形態では、第1電極部81および第2電極部82を含む積層構造を有している。第1電極部81は、コンタクト孔42の壁面および第1開口74の壁面に沿って膜状に形成され、リセス空間を区画している。第1電極部81は、チタン系金属膜を含んでいてもよい。第1電極部81は、チタン膜または窒化チタン膜からなる単層構造を有していてもよい。第1電極部81は、任意の順序で積層されたチタン膜および窒化チタン膜を含む積層構造を有していてもよい。
 第2電極部82は、第1電極部81を挟んでコンタクト孔42および第1開口74に埋設されている。第2電極部82は、タングステン、モリブデン、ニッケル、純アルミニウム(純度が99%以上のアルミニウム)、純銅(純度が99%以上の銅)、アルミニウム合金および銅合金のうちの少なくとも1種を含んでいてもよい。
 第2電極部82は、アルミニウム合金(銅合金)の一例として、AlCu合金、AlSi合金およびAlSiCu合金のうちの少なくとも1つを含んでいてもよい。第2電極部82は、第1電極部81とは異なる導電材料を含むことが好ましい。第2電極部82は、タングステンを含むことが好ましい。第2電極部82は、この形態では、タングステンからなる。
 半導体装置1は、層間絶縁膜73から部分的に露出するように複数の第2開口75に埋設された複数の第2プラグ電極83を含む。各第2プラグ電極83は、対応する第2開口75内において第1配線膜71に電気的に接続されている。各第2プラグ電極83は、第1プラグ電極80と同様、第1電極部81および第2電極部82を含む積層構造を有している。
 半導体装置1は、層間絶縁膜73から部分的に露出するように複数の第3開口76に埋設された複数の第3プラグ電極84を含む。各第3プラグ電極84は、対応する第3開口76内において第2配線膜72に電気的に接続されている。各第3プラグ電極84は、第1プラグ電極80と同様、第1電極部81および第2電極部82を含む積層構造を有している。
 半導体装置1は、複数のダイオード領域9においてチップ2の内部にそれぞれ形成された複数のライフタイムキラー領域85を含む。この形態では、複数のライフタイムキラー領域85が、複数のダイオード領域9に対して1つずつ形成されている。つまり、この形態では、1つのダイオード領域9に対して単一のライフタイムキラー領域85のみが形成され、1つのダイオード領域9に対して複数のライフタイムキラー領域85は形成されていない。以下、単一のライフタイムキラー領域85の構成が説明される。
 ライフタイムキラー領域85は、チップ2の内部に導入された結晶欠陥を含む領域である。ライフタイムキラー領域85は、「結晶欠陥領域」と称されてもよい。ライフタイムキラー領域85のキャリア(電子または正孔)のライフタイムは、ライフタイムキラー領域85外のキャリアのライフタイムよりも短い。ライフタイムキラー領域85は、キャリアの再結合中心である。
 結晶欠陥は、空孔、未結合手、転位、希ガス元素、金属元素、または、これらとチップ2の構成元素との複合欠陥を含んでいてもよい。ライフタイムキラー領域85は、3価元素(p型不純物)および5価元素(n型不純物)以外の要素(元素)によって形成された結晶欠陥を有していることが好ましい。ライフタイムキラー領域85は、一例として、水素イオンおよびヘリウムイオンのいずれか一方または双方をチップ2の内部に照射することによって形成された結晶欠陥を有していてもよい。ライフタイムキラー領域85は、この形態では、ヘリウムイオンを含む結晶欠陥を有している。
 ライフタイムキラー領域85は、キャリアライフタイムの調整によって逆回復動作時におけるダイオード領域9の損失を低減する。ライフタイムキラー領域85は、この形態では、IGBT領域8におけるチップ2の内部には形成されていない。つまり、ライフタイムキラー領域85は、チップ2の厚さ方向に関して、第1トレンチ電極構造20、第1トレンチ接続構造24、第2トレンチ電極構造30および第2トレンチ接続構造34に対向していない。この構造では、ヘリウムイオンをIGBT領域8に照射せずに済む。したがって、ヘリウムイオンに起因する第1トレンチ電極構造20へのダメージが抑制される。これにより、ゲート閾値電圧等の変動が抑制される。
 ライフタイムキラー領域85は、チップ2の厚さ範囲の中間部に対して第1主面3側の領域に形成されることが好ましい。この構造によれば、第1主面3を基準としたときのライフタイムキラー領域85の深さ位置が、第2主面4を基準としたときのライフタイムキラー領域85の深さ位置よりも浅くなる。したがって、第1主面3側からヘリウムイオン等を照射する場合、チップ2に対するヘリウムイオン等の照射位置が浅くなる。
 これにより、ライフタイムキラー領域85が精度よく形成される。また、第2主面4側からヘリウムイオン等を照射する場合と比較してヘリウムイオン等の加速エネルギが低減される。これにより、レジストマスクの厚さが削減されるから、レジストマスクに起因するコストが削減される。
 ライフタイムキラー領域85は、チップ2の厚さ方向に関してカソード領域45およびアノード領域46の間の領域に配置され、第1主面3に沿って延びる層状に形成されている。この形態では、ライフタイムキラー領域85の全域が、チップ2の厚さ方向にカソード領域45の少なくとも一部に対向している。むろん、ライフタイムキラー領域85は、チップ2の厚さ方向にコレクタ領域14の一部およびカソード領域45の一部に対向していてもよい。
 ライフタイムキラー領域85は、チップ2の厚さ方向に関して、カソード領域45および複数の第3トレンチ電極構造50の間の厚さ範囲内に形成されている。第3トレンチ電極構造50の底壁に対するライフタイムキラー領域85の深さ位置は、カソード領域45に対するライフタイムキラー領域85の深さ位置よりも小さい。
 ライフタイムキラー領域85は、複数の第3トレンチ電極構造50にチップ2の厚さ方向に対向している。ライフタイムキラー領域85は、この形態では、1つのダイオード領域9内に配置された全ての第3トレンチ電極構造50に対向している。ライフタイムキラー領域85は、この形態では、チップ2の厚さ方向に第3トレンチ接続構造54に対向していない。むろん、ライフタイムキラー領域85は、チップ2の厚さ方向に第3トレンチ接続構造54に対向していてもよい。
 ライフタイムキラー領域85は、この形態では、チップ2の厚さ方向に境界ウェル領域64に対向しないように境界ウェル領域64からダイオード領域9側に離間している。ライフタイムキラー領域85は、チップ2の厚さ方向に第4トレンチ電極構造60に対向しないように第4トレンチ電極構造60からダイオード領域9側に離間していてもよい。
 むろん、ライフタイムキラー領域85は、チップ2の厚さ方向に第4トレンチ電極構造60に対向する部分を有していてもよい。また、ライフタイムキラー領域85は、チップ2の厚さ方向に境界ウェル領域64に対向する部分を有していてもよい。つまり、ライフタイムキラー領域85は、ダイオード領域9から境界領域55に引き出された部分を有していてもよい。この場合、IGBT領域8からダイオード領域9に流入する正孔のライフタイムを調整できる。
 ライフタイムキラー領域85は、チップ2の厚さ方向に関して層間絶縁膜73に対向する部分を有している。ライフタイムキラー領域85は、この形態では、平面視においてダイオード開口77外に位置する周縁部を有している。ライフタイムキラー領域85の周縁部は、この形態では、平面視においてダイオード開口77(開口壁面79)に沿って延びている。
 具体的には、ライフタイムキラー領域85の周縁部は、平面視においてダイオード開口77(開口壁面79)に対して平行に延びている。ライフタイムキラー領域85の周縁部は、この形態では、平面視においてダイオード開口77(開口壁面79)を取り囲んでいる。つまり、ライフタイムキラー領域85は、開口壁面79に対して自己整合的に形成されている。
 ライフタイムキラー領域85の周縁部は、チップ2の厚さ方向に層間絶縁膜73(開口壁面79)に対向している。1つのダイオード開口77を第1方向Xに横切る1つの断面において、ライフタイムキラー領域85は、この形態では、チップ2の厚さ方向に関して層間絶縁膜73(開口壁面79)の2箇所に対向しており、層間絶縁膜73の3箇所以上の部分に対向していない。1つのダイオード開口77を第2方向Yに横切る1つの断面において、ライフタイムキラー領域85は、この形態では、チップ2の厚さ方向に関して層間絶縁膜73(開口壁面79)の2箇所に対向しており、層間絶縁膜73の3箇所以上の部分に対向していない。
 ライフタイムキラー領域85は、チップ2の厚さ方向に関して、層間絶縁膜73に対向する対向領域86、および、層間絶縁膜73に対向しない非対向領域87を有している。ライフタイムキラー領域85は、周縁部に対向領域86を有し、内方部に非対向領域87を有している。ライフタイムキラー領域85は、この形態では、内方部に対向領域86を有していない。
 ライフタイムキラー領域85に占める非対向領域87の割合は、ライフタイムキラー領域85に占める対向領域86の割合を超えていることが好ましい。むろん、非対向領域87の割合は、対向領域86の割合未満であってもよい。対向領域86の割合は25%以下であってもよく、非対向領域87の割合は75%以上であってもよい。対向領域86の割合は10%以下であることが好ましく、非対向領域87の割合は90%以上であることが好ましい。対向領域86の割合は5%以下であることが特に好ましく、非対向領域87の割合は95%以上であることが特に好ましい。
 ライフタイムキラー領域85の厚さは、ウェル領域44(境界ウェル領域64)の厚さ未満であることが好ましい。ライフタイムキラー領域85の厚さは、ベース領域15の厚さ(アノード領域46の厚さ)未満であってもよいし、ベース領域15の厚さ(アノード領域46の厚さ)を超えていてもよい。ライフタイムキラー領域85の厚さは、層間絶縁膜73の厚さ未満であってもよい。ライフタイムキラー領域85の厚さは、主面絶縁膜70の厚さを超えていてもよいし、主面絶縁膜70の厚さ未満であってもよい。ライフタイムキラー領域85の厚さは、0.1μm以上5μm以下であってもよい。
 この形態では、ライフタイムキラー領域85が層間絶縁膜73(開口壁面79)に対向する部分を有している例が示された。しかし、層間絶縁膜73(開口壁面79)に対向しないライフタイムキラー領域85が形成されてもよい。つまり、ライフタイムキラー領域85は、平面視においてダイオード開口77(開口壁面79)によって取り囲まれた領域内のみに形成されていてもよい。
 この形態では、各ダイオード領域9に単一のライフタイムキラー領域85が形成された例が示された。しかし、各ダイオード領域9において、複数のライフタイムキラー領域85がチップ2の厚さ方向に間隔を空けて形成されていてもよい。この場合、各ライフタイムキラー領域85は、チップ2の内部における形成箇所(イオン等の照射位置)が異なる点を除き、ほぼ同様の形態を有している。各ライフタイムキラー領域85の説明は、前述の説明が適用される。
 半導体装置1は、アクティブ領域6において層間絶縁膜73の上に配置されたエミッタ主面電極90(第1主面電極)を含む。エミッタ主面電極90は、層間絶縁膜73側からこの順に積層された第1エミッタ電極膜91および第2エミッタ電極膜92を含む積層構造を有している。第1エミッタ電極膜91は、金属膜(第1エミッタ金属膜)からなることが好ましい。
 第1エミッタ電極膜91は、タングステン膜、モリブデン膜、ニッケル膜、純アルミニウム膜(純度が99%以上のアルミニウム膜)、純銅膜(純度が99%以上の銅膜)、アルミニウム合金膜および銅合金膜のうちの少なくとも1種を含んでいてもよい。第1エミッタ電極膜91は、アルミニウム合金膜(銅合金膜)の一例として、AlCu合金膜、AlSi合金膜およびAlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。第1エミッタ電極膜91は、単一の電極膜からなる単層構造を有していてもよいし、複数の電極膜を含む積層構造を有していてもよい。第1エミッタ電極膜91は、単層構造を有していることが好ましい。
 第1エミッタ電極膜91は、第1プラグ電極80の第1電極部81と同一の導電材料を含んでいてもよいし、第1プラグ電極80の第1電極部81とは異なる導電材料を含んでいてもよい。第1エミッタ電極膜91は、第1プラグ電極80の第2電極部82と同一の導電材料を含んでいてもよいし、第1プラグ電極80の第2電極部82とは異なる導電材料を含んでいてもよい。第1エミッタ電極膜91は、第1配線膜71(第2配線膜72)の抵抗値未満の抵抗値を有していることが好ましい。
 第1エミッタ電極膜91は、層間絶縁膜73よりも薄いことが好ましい。第1エミッタ電極膜91は、主面絶縁膜70よりも厚くてもよいし、主面絶縁膜70よりも薄くてもよい。第1エミッタ電極膜91の厚さは、0.1μm以上1μm以下であってもよい。第1エミッタ電極膜91の厚さは、0.3μm以上0.6μm以下であることが好ましい。
 第1エミッタ電極膜91は、複数の第1プラグ電極80を直接被覆する部分を有している。つまり、第1エミッタ電極膜91は、複数の第1プラグ電極80の第1電極部81および第2電極部82を直接被覆する部分を有している。第1エミッタ電極膜91は、複数の第1プラグ電極80を介して複数のエミッタ領域40に電気的に接続されている。第1エミッタ電極膜91は、複数の第1プラグ電極80の全域を被覆している。
 第1エミッタ電極膜91は、複数の第2プラグ電極83を直接被覆する部分を有している。第1エミッタ電極膜91は、複数の第2プラグ電極83を介して複数の第1配線膜71に電気的に接続されている。第1エミッタ電極膜91は、複数の第2プラグ電極83の全域を被覆している。
 第1エミッタ電極膜91は、複数の第3プラグ電極84を直接被覆する部分を有している。第1エミッタ電極膜91は、複数の第3プラグ電極84を介して複数の第2配線膜72に電気的に接続されている。第1エミッタ電極膜91は、複数の第3プラグ電極84の全域を被覆している。
 第1エミッタ電極膜91は、この形態では、平面視において複数のRC-IGBT領域7を被覆するように層間絶縁膜73の上に配置されている。第1エミッタ電極膜91は、この形態では、平面視において複数のRC-IGBT領域7を一括して取り囲む周縁を有している。第1エミッタ電極膜91は、この形態では、平面視において第1~第4側面5A~5Dに平行な四辺を有する多角形状(具体的には四角形状)に形成されている。
 むろん、第1エミッタ電極膜91は、平面視において四角形状以外の多角形状、円形状または楕円形状に形成されていてもよい。第1エミッタ電極膜91は、平面視において第1主面3の30%以上の領域を被覆していてもよい。第1エミッタ電極膜91は、平面視において第1主面3の50%以上の領域を被覆していることが好ましい。第1エミッタ電極膜91は、平面視において第1主面3の75%以上の領域を被覆していることが特に好ましい。第1エミッタ電極膜91は、平面視において第1主面3の90%以下の領域を被覆していることが好ましい。
 第1エミッタ電極膜91は、複数のダイオード領域9を被覆しないように層間絶縁膜73の上のみに配置されている。第1エミッタ電極膜91は、複数のダイオード領域9を露出させる複数の電極開口93を有している。各電極開口93は、各開口壁面79の少なくとも一部を露出させていることが好ましい。各電極開口93は、各開口壁面79の全域を露出させていることが特に好ましい。
 つまり、第1エミッタ電極膜91は、絶縁主面78の上のみに配置され、開口壁面79の上には配置されていない。また、平面視において、第1エミッタ電極膜91から露出した開口壁面79がライフタイムキラー領域85に重なっている。電極開口93は、この形態では、平面視においてダイオード開口77を取り囲んでいる。電極開口93は、平面視においてライフタイムキラー領域85の周縁部から外方に間隔を空けて形成されていてもよい。この場合、電極開口93は、平面視においてライフタイムキラー領域85を取り囲んでいてもよい。
 むろん、電極開口93は、平面視においてライフタイムキラー領域85の周縁部よりも内側に位置していてもよい。つまり、第1エミッタ電極膜91は、平面視においてライフタイムキラー領域85の周縁部に重なる部分を有していてもよい。この場合、電極開口93は、平面視においてライフタイムキラー領域85の周縁部によって取り囲まれていてもよい。
 電極開口93は、開口壁面79から間隔を空けて絶縁主面78の上に形成されていてもよい。つまり、電極開口93は、開口壁面79との間から絶縁主面78の一部を露出させていてもよい。ダイオード開口77および電極開口93の間の距離は、0.1μm以上5μm以下であることが好ましい。ダイオード開口77および電極開口93の間の距離は、1μm以下であることが特に好ましい。
 第1エミッタ電極膜91は、層間絶縁膜73を挟んで、複数の第1トレンチ電極構造20、複数の第1トレンチ接続構造24、複数の第2トレンチ電極構造30、複数の第2トレンチ接続構造34、複数の第3トレンチ接続構造54および複数の第4トレンチ電極構造60に対向している。第1エミッタ電極膜91は、層間絶縁膜73を挟んで複数のエミッタ領域40、複数のウェル領域44および複数の境界ウェル領域64に対向している。第1エミッタ電極膜91は、層間絶縁膜73を挟んで複数の第3トレンチ電極構造50の一部に対向する部分を有していてもよい。
 この形態では、1つの第1エミッタ電極膜91が複数の第1プラグ電極80、複数の第2プラグ電極83および複数の第3プラグ電極84を一括して被覆している形態が示された。しかし、複数の第1プラグ電極80、複数の第2プラグ電極83および複数の第3プラグ電極84を個別的に被覆するように複数の第1エミッタ電極膜91が層間絶縁膜73の上に配置されていてもよい。
 第2エミッタ電極膜92は、エミッタ主面電極90の本体を形成している。第2エミッタ電極膜92は、金属膜(第2エミッタ金属膜)からなることが好ましい。第2エミッタ電極膜92は、純アルミニウム膜(純度が99%以上のアルミニウム膜)、純銅膜(純度が99%以上の銅膜)、アルミニウム合金膜および銅合金膜のうちの少なくとも1種を含んでいてもよい。第2エミッタ電極膜92は、アルミニウム合金膜(銅合金膜)の一例として、AlCu合金膜、AlSi合金膜およびAlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。
 第2エミッタ電極膜92は、単一の金属膜からなる単層構造を有していてもよいし、複数の金属膜を含む積層構造を有していてもよい。第2エミッタ電極膜92は、単層構造を有していることが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91とは異なる導電材料を含むことが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91とは異なる導電材料からなることが特に好ましい。第2エミッタ電極膜92は、第1配線膜71(第2配線膜72)の抵抗値未満の抵抗値を有していることが好ましい。
 第2エミッタ電極膜92は、第1エミッタ電極膜91よりも厚いことが好ましい。第2エミッタ電極膜92は、主面絶縁膜70よりも厚いことが好ましい。第2エミッタ電極膜92は、層間絶縁膜73よりも厚いことが特に好ましい。第2エミッタ電極膜92の厚さは、3μm以上6μm以下であってもよい。第2エミッタ電極膜92の厚さは、4μm以上5μm以下であることが好ましい。
 第2エミッタ電極膜92は、平面視において複数のRC-IGBT領域7を被覆するように層間絶縁膜73の上に配置されている。第2エミッタ電極膜92は、この形態では、平面視において複数のRC-IGBT領域7を一括して取り囲む周縁を有している。第2エミッタ電極膜92は、この形態では、平面視において第1~第4側面5A~5Dに平行な四辺を有する多角形状(具体的には四角形状)に形成されている。むろん、第2エミッタ電極膜92は、平面視において四角形状以外の多角形状、円形状または楕円形状に形成されていてもよい。
 第2エミッタ電極膜92は、平面視において第1主面3の30%以上の領域を被覆していてもよい。第2エミッタ電極膜92は、平面視において第1主面3の50%以上の領域を被覆していることが好ましい。第2エミッタ電極膜92は、平面視において第1主面3の75%以上の領域を被覆していることが特に好ましい。第2エミッタ電極膜92は、平面視において第1主面3の90%以下の領域を被覆していることが好ましい。
 第2エミッタ電極膜92は、複数のダイオード領域9および第1エミッタ電極膜91を被覆している。具体的には、第2エミッタ電極膜92は、第1エミッタ電極膜91を直接被覆している。これにより、第2エミッタ電極膜92は、第1エミッタ電極膜91を介して複数(全て)の第1プラグ電極80、複数(全て)の第2プラグ電極83および複数(全て)の第3プラグ電極84に電気的に接続されている。
 第2エミッタ電極膜92は、第1エミッタ電極膜91を挟んで複数(全て)の第1プラグ電極80に対向している。第2エミッタ電極膜92は、第1エミッタ電極膜91を挟んで複数(全て)の第2プラグ電極83に対向している。第2エミッタ電極膜92は、第1エミッタ電極膜91を挟んで複数(全て)の第3プラグ電極84に対向している。第2エミッタ電極膜92は、第1プラグ電極80を直接被覆する部分、第2プラグ電極83を直接被覆する部分および第3プラグ電極84を直接被覆する部分を有していない。
 第2エミッタ電極膜92は、層間絶縁膜73を直接被覆する部分を有している。具体的には、第2エミッタ電極膜92は、第1エミッタ電極膜91の上から複数の開口壁面79を通過して複数のダイオード開口77の内部に引き出されている。つまり、第2エミッタ電極膜92は、複数の開口壁面79を直接被覆する部分を有している。第2エミッタ電極膜92は、複数の開口壁面79において主面絶縁膜70を直接被覆する部分を有していてもよい。
 第2エミッタ電極膜92は、開口壁面79の全域を被覆していることが好ましい。電極開口93がダイオード開口77から離間されている場合、第2エミッタ電極膜92はダイオード開口77および電極開口93の間の領域において絶縁主面78(層間絶縁膜73)を被覆する部分を有していてもよい。
 第2エミッタ電極膜92は、各ダイオード開口77内においてアノード領域46を直接被覆し、アノード領域46に電気的に接続されている。第2エミッタ電極膜92は、各ダイオード開口77内において複数の第3トレンチ電極構造50に直接接続されていることが好ましい。
 第2エミッタ電極膜92は、各ダイオード開口77内において全ての第3トレンチ電極構造50に直接接続されていることが好ましい。第2エミッタ電極膜92は、第3埋設電極53に接する部分、および、第3絶縁膜52に接する部分を有していることが好ましい。第2エミッタ電極膜92は、第3トレンチ51の開口部(幅広部)においてアノード領域46に電気的に接続されていることが好ましい。
 第2エミッタ電極膜92は、層間絶縁膜73を挟んで、複数の第1トレンチ電極構造20、複数の第1トレンチ接続構造24、複数の第2トレンチ電極構造30、複数の第2トレンチ接続構造34、複数の第3トレンチ接続構造54および複数の第4トレンチ電極構造60に対向している。第2エミッタ電極膜92は、層間絶縁膜73を挟んで複数のエミッタ領域40、複数のウェル領域44および複数の境界ウェル領域64に対向している。第2エミッタ電極膜92は、複数の第3トレンチ接続構造54を直接被覆する部分を有していてもよい。
 半導体装置1は、少なくとも1つ(この形態では複数)のストリート領域10において主面絶縁膜70の上に配置された少なくとも1つ(この形態では複数)の第3配線膜94を含む。第3配線膜94は、「ゲート配線膜」と称されてもよい。複数の第3配線膜94は、導電性ポリシリコンからそれぞれなる。複数の第3配線膜94は、複数のストリート領域10に沿って延びる帯状にそれぞれ形成されている。
 複数の第3配線膜94は、対応するストリート領域10から隣り合う第1トレンチ接続構造24の上に引き出された部分を有し、第1埋設電極23に接続されている。複数の第3配線膜94は、第1埋設電極23から隣り合うストリート領域10に引き出された部分でもある。複数の第3配線膜94は、複数のストリート領域10からアウター領域11に引き出された部分を有している。
 前述の層間絶縁膜73は、アクティブ領域6およびアウター領域11において複数の第3配線膜94を被覆している。層間絶縁膜73は、アウター領域11において複数の第3配線膜94をそれぞれ露出させる複数の第4開口95を有している。複数の第4開口95は、複数の第3配線膜94の任意の箇所をそれぞれ露出させている。各第3配線膜94に対する第4開口95の平面形状や個数は任意である。
 半導体装置1は、層間絶縁膜73から部分的に露出するように複数の第4開口95に埋設された複数の第4プラグ電極96を含む。複数の第4プラグ電極96は、対応する第4開口95内において対応する第3配線膜94にそれぞれ電気的に接続されている。各第4プラグ電極96は、第1プラグ電極80と同様、第1電極部81および第2電極部82を含む積層構造を有している。
 半導体装置1は、アウター領域11においてエミッタ主面電極90から間隔を空けて層間絶縁膜73の上に配置されたゲート主面電極100(第2主面電極)を含む。ゲート主面電極100は、層間絶縁膜73側からこの順に積層された第1ゲート電極膜101および第2ゲート電極膜102を含む積層構造を有している。第1ゲート電極膜101は、金属膜(第1ゲート金属膜)からなることが好ましい。
 第1ゲート電極膜101は、タングステン膜、モリブデン膜、ニッケル膜、純アルミニウム膜(純度が99%以上のアルミニウム膜)、純銅膜(純度が99%以上の銅膜)、アルミニウム合金膜および銅合金膜のうちの少なくとも1種を含んでいてもよい。第1ゲート電極膜101は、アルミニウム合金膜(銅合金膜)の一例として、AlCu合金膜、AlSi合金膜およびAlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。
 第1ゲート電極膜101は、層間絶縁膜73よりも薄いことが好ましい。第1ゲート電極膜101は、主面絶縁膜70よりも厚くてもよいし、主面絶縁膜70よりも薄くてもよい。第1ゲート電極膜101は、第1エミッタ電極膜91と同一の導電材料を含み、第1エミッタ電極膜91とほぼ等しい厚さを有していることが特に好ましい。第1ゲート電極膜101は、第3配線膜94の抵抗値未満の抵抗値を有していることが好ましい。
 第1ゲート電極膜101は、IGBT領域8およびダイオード領域9のいずれ一方または双方を被覆しないように層間絶縁膜73の上に配置されていることが好ましい。第1ゲート電極膜101は、層間絶縁膜73を挟んでRC-IGBT領域7に対向していないことが特に好ましい。第1ゲート電極膜101は、複数の第4プラグ電極96を直接被覆する部分を有し、複数の第4プラグ電極96を介して複数の第3配線膜94に電気的に接続されている。第1ゲート電極膜101は、複数の第4プラグ電極96の全域を被覆していることが好ましい。
 第1ゲート電極膜101は、具体的には、第1パッド部103および少なくとも1つ(この形態では複数)の第1フィンガー部104を有している。第1パッド部103の配置は任意である。第1パッド部103は、この形態では、平面視においてRC-IGBT領域7に重ならない領域に配置されている。第1パッド部103は、エミッタ主面電極90の平面積未満の平面積を有している。
 第1パッド部103の平面積は、第1主面3の20%以下であってもよい。第1パッド部103の平面積は、第1主面3の10%以下であることが好ましい。第1パッド部103は、平面視において第1~第4側面5A~5Dに平行な4辺を有する多角形状(この形態では四角形状)に形成されている。第2ゲート電極膜102は、平面視においては四角形状以外の多角形状、円形状または楕円形状に形成されていてもよい。
 複数の第1フィンガー部104は、第1パッド部103から複数の第4プラグ電極96に向けて帯状に引き出された部分である。複数の第1フィンガー部104は、複数の第4プラグ電極96を被覆し、第1パッド部103を複数の第4プラグ電極96に電気的に接続している。複数の第1フィンガー部104のうちの少なくとも1つが第1パッド部103から引き出されたメインライン部を形成し、他の第1フィンガー部104がメインライン部から引き出されたブランチライン部を形成していてもよい。むろん、全ての第1フィンガー部104が第1パッド部103から引き出されていてもよい。
 エミッタ主面電極90にストリート領域10の一部または全部を露出させる開放部が形成されている場合、少なくとも1つの第1フィンガー部104は、アウター領域11からエミッタ主面電極90の開放部内に引き出されていてもよい。この場合、開放部内の第1フィンガー部104は、第3配線膜94に沿って延びていてもよい。
 この形態では、1つの第1ゲート電極膜101が第1パッド部103および複数の第1フィンガー部104を含み、複数の第4プラグ電極96を一括して被覆している形態が示された。しかし、複数の第4プラグ電極96を個別的に被覆するように複数の第1ゲート電極膜101が間隔を空けて層間絶縁膜73の上に配置されていてもよい。第1ゲート電極膜101は、複数の第4プラグ電極96を個別的にまたは一括して被覆していればよく、第1ゲート電極膜101のレイアウトは任意である。たとえば、第1パッド部103の有無および第1フィンガー部104の有無は任意である。
 第2ゲート電極膜102は、ゲート主面電極100の本体を形成している。第2ゲート電極膜102は、金属膜(第2ゲート金属膜)からなることが好ましい。第2ゲート電極膜102は、純アルミニウム膜(純度が99%以上のアルミニウム膜)、純銅膜(純度が99%以上の銅膜)、アルミニウム合金膜および銅合金膜のうちの少なくとも1種を含んでいてもよい。第2ゲート電極膜102は、アルミニウム合金膜(銅合金膜)の一例として、AlCu合金膜、AlSi合金膜およびAlSiCu合金膜のうちの少なくとも1つを含んでいてもよい。
 第2ゲート電極膜102は、単一の金属膜からなる単層構造を有していてもよいし、複数の金属膜を含む積層構造を有していてもよい。第2ゲート電極膜102は、単層構造を有していることが好ましい。第2ゲート電極膜102は、第1ゲート電極膜101とは異なる導電材料を含むことが好ましい。第2ゲート電極膜102は、第1ゲート電極膜101とは異なる導電材料からなることが特に好ましい。
 第2ゲート電極膜102は、第1ゲート電極膜101よりも厚いことが好ましい。第2ゲート電極膜102は、主面絶縁膜70よりも厚いことが好ましい。第2ゲート電極膜102は、層間絶縁膜73よりも厚いことが特に好ましい。第2ゲート電極膜102は、第2エミッタ電極膜92と同一の導電材料を含み、第2エミッタ電極膜92とほぼ等しい厚さを有していることが特に好ましい。第2ゲート電極膜102は、第3配線膜94の抵抗値未満の抵抗値を有していることが好ましい。
 第2ゲート電極膜102は、第1ゲート電極膜101を直接被覆し、第1ゲート電極膜101を介して複数の第4プラグ電極96に電気的に接続されている。第2ゲート電極膜102は、具体的には、第2パッド部105および少なくとも1つ(この形態では複数)の第2フィンガー部106を有している。第2パッド部105は、第1パッド部103を直接被覆するように第1パッド部103の上に配置されている。
 第2パッド部105の平面積は、第1主面3の20%以下であってもよい。第2パッド部105の平面積は、第2主面4の10%以下であることが好ましい。第2パッド部105は、平面視において第1~第4側面5A~5Dに平行な4辺を有する多角形状(この形態では四角形状)に形成されている。第2ゲート電極膜102は、平面視においては四角形状以外の多角形状、円形状または楕円形状に形成されていてもよい。
 複数の第2フィンガー部106は、複数の第1フィンガー部104を直接被覆するように第2パッド部105から複数の第1フィンガー部104の上に帯状に引き出されている。複数の第2フィンガー部106は、複数の第1フィンガー部104を挟んで複数(全て)の第4プラグ電極96に対向している。これにより、複数の第2フィンガー部106は、複数の第1フィンガー部104を介して複数の第4プラグ電極96に電気的に接続されている。
 エミッタ主面電極90にストリート領域10の一部または全部を露出させる開放部が形成されている場合、少なくとも1つの第2フィンガー部106は、アウター領域11からエミッタ主面電極90の開放部内に引き出されていてもよい。この場合、開放部内の第2フィンガー部106は、第3配線膜94に沿って延びていてもよい。
 半導体装置1は、第2主面4を被覆するコレクタ主面電極110(第3主面電極)を含む。コレクタ主面電極110は、第2主面4から露出したコレクタ領域14に電気的に接続され、第2主面4から露出したカソード領域45に電気的に接続されている。コレクタ主面電極110は、コレクタ領域14とオーミック接触を形成し、カソード領域45とオーミック接触を形成している。コレクタ主面電極110は、チップ2の周縁(第1~第4側面5A~5D)に連なるように第2主面4の全域を被覆していてもよい。
 コレクタ主面電極110は、Ti膜、Ni膜、Pd膜、Au膜、Ag膜およびAl膜のうちの少なくとも1つを含んでいてもよい。コレクタ主面電極110は、Ti膜、Ni膜、Au膜、Ag膜またはAl膜を含む単膜構造を有していてもよい。コレクタ主面電極110は、Ti膜、Ni膜、Pd膜、Au膜、Ag膜およびAl膜のうちの少なくとも2つを任意の態様で積層させた積層構造を有していてもよい。この場合、コレクタ主面電極110は、少なくとも第2主面4を直接被覆するTi膜を含むことが好ましい。
 以上、半導体装置1は、チップ2、IGBT領域8、ダイオード領域9、層間絶縁膜73、第1プラグ電極80およびエミッタ主面電極90を含む。チップ2は、第1主面3を有している。IGBT領域8は、第1主面3に形成されている。ダイオード領域9は、第1主面3に形成されている。層間絶縁膜73は、ダイオード領域9を露出させ、IGBT領域8を被覆するように第1主面3の上に形成されている。
 第1プラグ電極80は、層間絶縁膜73のうちIGBT領域8を被覆する部分に埋設され、層間絶縁膜73から部分的に露出している。エミッタ主面電極90は、第1エミッタ電極膜91および第2エミッタ電極膜92を含む。第1エミッタ電極膜91は、ダイオード領域9を露出させるように第1プラグ電極80を被覆している。第2エミッタ電極膜92は、第1エミッタ電極膜91およびダイオード領域9を被覆している。
 第1プラグ電極80に酸化物が形成された場合、当該酸化物に起因する抵抗成分が第1プラグ電極80の抵抗成分に加算される。特に、第1プラグ電極80は比較的小さい平面積で形成されるため、酸化物に起因する抵抗成分が大きくなる。この点、第1プラグ電極80を隠蔽する第1エミッタ電極膜91によれば、第1プラグ電極80が外気に接触することを抑制できる。これにより、第1プラグ電極80の酸化を第1エミッタ電極膜91によって抑制できる。
 また、ダイオード領域9を露出させる第1エミッタ電極膜91によれば、ダイオード領域9および第2エミッタ電極膜92の間において、第1エミッタ電極膜91に起因した予期しないオーミック性の低下を抑制できる。これにより、ダイオード領域9の順方向電圧VFの特性を向上できる。よって、電気的特性を向上できる半導体装置1を提供できる。
 第1エミッタ電極膜91は、ダイオード領域9を被覆しないことが好ましい。ダイオード領域9は、第1主面3の表層部に形成されたアノード領域46を含むことが好ましい。この場合、第1エミッタ電極膜91は、アノード領域46を露出させていることが好ましい。また、第2エミッタ電極膜92は、アノード領域46を被覆していることが好ましい。
 ダイオード領域9は、第1主面3に形成された第3トレンチ電極構造50を含むことが好ましい。この場合、第1エミッタ電極膜91は、第3トレンチ電極構造50を露出させていることが好まし。また、第2エミッタ電極膜92は、第3トレンチ電極構造50を被覆していることが好ましい。第3トレンチ電極構造50には、エミッタ電位が付与されることが好ましい。
 第1エミッタ電極膜91は、第1プラグ電極80を直接被覆していることが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91およびダイオード領域9を直接被覆していることが好ましい。つまり、第2エミッタ電極膜92は、バリアメタル膜(たとえばTi膜)を介さずにダイオード領域9を直接被覆していることが好ましい。
 この構造によれば、ダイオード領域9および第2エミッタ電極膜92の間において、バリアメタル膜に起因した予期しないオーミック性の低下を抑制できる。これにより、ダイオード領域9の順方向電圧VFの特性を向上できる。第2エミッタ電極膜92は、第1エミッタ電極膜91を挟んで第1プラグ電極80に対向する部分を有していることが好ましい。
 層間絶縁膜73は、ダイオード領域9を露出させるダイオード開口77を区画する開口壁面79を有しることが好ましい。この場合、第1エミッタ電極膜91は、開口壁面79を露出させていることが好ましい。また、第2エミッタ電極膜92は、開口壁面79を被覆する部分を有していることが好ましい。開口壁面79は、第1主面3との間で鋭角を形成するように傾斜していることが好ましい。
 開口壁面79の傾斜角度は、45°を超えて90°未満であることが好ましい。この構造によれば、比較的厚い層間絶縁膜73の傾斜部(開口壁面79)を介して第2エミッタ電極膜92を第1主面3に対向させることができる。これにより、層間絶縁膜73の傾斜部の近傍における電界集中を抑制できる。
 第1プラグ電極80は、タングステンを含むことが好ましい。第1エミッタ電極膜91は、アルミニウム、アルミニウム合金、銅、銅合金、タングステン、モリブデン、チタン、窒化チタンおよびニッケルのうちの少なくとも1つを含むことが好ましい。第2エミッタ電極膜92は、アルミニウム、アルミニウム合金、銅および銅合金のうちの少なくとも1つを含むことが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91とは異なる導電材料を含むことが好ましい。
 第1エミッタ電極膜91は、層間絶縁膜73よりも薄いことが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91よりも厚いことが好ましい。第2エミッタ電極膜92は、層間絶縁膜73よりも厚いことが特に好ましい。第1エミッタ電極膜91は、単層構造を有していることが好ましい。第2エミッタ電極膜92は、単層構造を有していることが好ましい。
 IGBT領域8は、第1主面3の表層部に形成されたp型のベース領域15、ベース領域15を貫通するように第1主面3に形成された第1トレンチ電極構造20(ゲートトレンチ構造)、および、ベース領域15の表層部において第1トレンチ電極構造20に沿う領域に形成されたn型のエミッタ領域40を含んでいてもよい。この場合、第1プラグ電極80は、エミッタ領域40に電気的に接続されていてもよい。
 IGBT領域8は、エミッタ領域40を露出させるように第1主面3に形成されたコンタクト孔42、および、ベース領域15内においてコンタクト孔42に沿う領域に形成されたp型のコンタクト領域43を含んでいてもよい。この場合、第1プラグ電極80は、コンタクト孔42内においてエミッタ領域40およびコンタクト領域43に電気的に接続されていてもよい。IGBT領域8は、チップ2内においてベース領域15の直下の領域に形成されたn型のCS領域41を含んでいてもよい。
 複数のIGBT領域8が、第1主面3に形成されていてもよい。複数のダイオード領域9が、第1主面3に形成されていてもよい。複数の第1プラグ電極80が、複数のIGBT領域8に電気的に接続されていてもよい。第1エミッタ電極膜91が、複数のダイオード領域9を露出させるように複数の第1プラグ電極80を被覆していてもよい。第2エミッタ電極膜92が、複数のダイオード領域9および第1エミッタ電極膜91を被覆していてもよい。
 別視点において、半導体装置1は、チップ2、IGBT領域8、ダイオード領域9、層間絶縁膜73、ライフタイムキラー領域85およびエミッタ主面電極90を含む。チップ2は、第1主面3を有している。IGBT領域8は、第1主面3に形成されている。ダイオード領域9は、第1主面3に形成されている。層間絶縁膜73は、IGBT領域8を被覆するように第1主面3の上に形成されている。
 層間絶縁膜73は、ダイオード領域9を露出させるダイオード開口77を有している。ライフタイムキラー領域85は、平面視においてダイオード開口77に重なるようにダイオード領域9においてチップ2の内部に形成されている。エミッタ主面電極90は、IGBT領域8およびダイオード領域9に電気的に接続されるように第1主面3の上に配置されている。この構造によれば、キャリアライフタイムの調整効果によって逆回復動作時におけるダイオード領域9の損失を低減できる。よって、電気的特性を向上できる半導体装置1を提供できる。
 半導体装置1は、ダイオード領域9において第1主面3に形成された第3トレンチ電極構造50(トレンチ構造)を含むことが好ましい。この場合、ダイオード開口77は、第3トレンチ電極構造50を露出させていることが好ましい。さらにこの場合、複数の第3トレンチ電極構造50が、第1主面3に形成されていることが好ましい。ダイオード開口77は、複数の第3トレンチ電極構造50を露出させていることが好ましい。
 ダイオード開口77は、ダイオード領域9に含まれる全ての第3トレンチ電極構造50を一括して露出させていることが好ましい。ライフタイムキラー領域85は、チップ2の厚さ方向に第3トレンチ電極構造50に対向していることが好ましい。1つのダイオード領域9に対して複数のダイオード開口77が形成されていないことが好ましい。ライフタイムキラー領域85は、IGBT領域8に形成されていないことが好ましい。
 ライフタイムキラー領域85は、チップ2の厚さ方向に関して、層間絶縁膜73に対向する対向領域86、および、層間絶縁膜73に対向しない非対向領域87を有していることが好ましい。ライフタイムキラー領域85は、周縁部において非対向領域87を有していることが好ましい。ライフタイムキラー領域85は、内方部において非対向領域87を有していないことが好ましい。ライフタイムキラー領域85に占める非対向領域87の割合は、ライフタイムキラー領域85に占める対向領域86の割合を超えていることが好ましい。
 層間絶縁膜73は、ダイオード開口77を区画する開口壁面79を有していることが好ましい。この場合、ライフタイムキラー領域85は、チップ2の厚さ方向に開口壁面79に対向する部分を有していることが好ましい。開口壁面79は、第1主面3との間で鋭角を成していることが好ましい。開口壁面79の傾斜角度は、45°を超えて90°未満であることが好ましい。この構造によれば、比較的厚い層間絶縁膜73の傾斜部(開口壁面79)を介してエミッタ主面電極90を第1主面3に対向させることができる。これにより、層間絶縁膜73の傾斜部の近傍における電界集中を抑制できる。
 複数のIGBT領域8が、第1主面3に形成されていることが好ましい。複数のダイオード領域9が、第1主面3に形成されていることが好ましい。複数のダイオード開口77が、複数のダイオード領域9に対して1つずつ形成されていることが好ましい。複数のライフタイムキラー領域85が、複数のダイオード領域9に対して1つずつ形成されていることが好ましい。
 半導体装置1は、第1プラグ電極80を含むことが好ましい。第1プラグ電極80は、層間絶縁膜73のうちIGBT領域8を被覆する部分に埋設され、層間絶縁膜73から部分的に露出している。この場合、エミッタ主面電極90は、第1エミッタ電極膜91および第2エミッタ電極膜92を含むことが好ましい。第1エミッタ電極膜91は、ダイオード領域9を露出させるように第1プラグ電極80を被覆している。第2エミッタ電極膜92は、第1エミッタ電極膜91およびダイオード領域9を被覆している。
 第1プラグ電極80に酸化物が形成された場合、当該酸化物に起因する抵抗成分が第1プラグ電極80の抵抗成分に加算される。特に、第1プラグ電極80は比較的小さい平面積で形成されるため、酸化物に起因する抵抗成分が大きくなる。この点、第1プラグ電極80を隠蔽する第1エミッタ電極膜91によれば、第1プラグ電極80が外気に接触することを抑制できる。これにより、第1プラグ電極80の酸化を第1エミッタ電極膜91によって抑制できる。
 また、ダイオード領域9を露出させる第1エミッタ電極膜91によれば、ダイオード領域9および第2エミッタ電極膜92の間において、第1エミッタ電極膜91に起因した予期しないオーミック性の低下を抑制できる。これにより、ダイオード領域9の順方向電圧VFの特性を向上できる。よって、電気的特性を向上できる半導体装置1を提供できる。
 第1エミッタ電極膜91は、ダイオード領域9を被覆しないことが好ましい。ダイオード領域9は、第1主面3の表層部に形成されたアノード領域46を含むことが好ましい。この場合、第1エミッタ電極膜91は、アノード領域46を露出させていることが好ましい。また、第2エミッタ電極膜92は、アノード領域46を被覆していることが好ましい。
 ダイオード領域9は、第1主面3に形成された第3トレンチ電極構造50を含むことが好ましい。この場合、第1エミッタ電極膜91は、第3トレンチ電極構造50を露出させていることが好まし。また、第2エミッタ電極膜92は、第3トレンチ電極構造50を被覆していることが好ましい。第3トレンチ電極構造50には、エミッタ電位が付与されることが好ましい。
 第1エミッタ電極膜91は、第1プラグ電極80を直接被覆していることが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91およびダイオード領域9を直接被覆していることが好ましい。つまり、第2エミッタ電極膜92は、バリアメタル膜(たとえばTi膜)を介さずにダイオード領域9を直接被覆していることが好ましい。
 この構造によれば、ダイオード領域9および第2エミッタ電極膜92の間において、バリアメタル膜に起因した予期しないオーミック性の低下を抑制できる。これにより、ダイオード領域9の順方向電圧VFの特性を向上できる。第2エミッタ電極膜92は、第1エミッタ電極膜91を挟んで第1プラグ電極80に対向する部分を有していることが好ましい。
 層間絶縁膜73は、ダイオード領域9を露出させるダイオード開口77を区画する開口壁面79を有しることが好ましい。この場合、第1エミッタ電極膜91は、開口壁面79を露出させていることが好ましい。また、第2エミッタ電極膜92は、開口壁面79を被覆する部分を有していることが好ましい。開口壁面79は、第1主面3との間で鋭角を形成するように傾斜していることが好ましい。
 開口壁面79の傾斜角度は、45°を超えて90°未満であることが好ましい。この構造によれば、比較的厚い層間絶縁膜73の傾斜部(開口壁面79)を介して第2エミッタ電極膜92を第1主面3に対向させることができる。これにより、層間絶縁膜73の傾斜部の近傍における電界集中を抑制できる。
 第1プラグ電極80は、タングステンを含むことが好ましい。第1エミッタ電極膜91は、アルミニウム、アルミニウム合金、銅、銅合金、タングステン、モリブデン、チタン、窒化チタンおよびニッケルのうちの少なくとも1つを含むことが好ましい。第2エミッタ電極膜92は、アルミニウム、アルミニウム合金、銅および銅合金のうちの少なくとも1つを含むことが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91とは異なる導電材料を含むことが好ましい。
 第1エミッタ電極膜91は、層間絶縁膜73よりも薄いことが好ましい。第2エミッタ電極膜92は、第1エミッタ電極膜91よりも厚いことが好ましい。第2エミッタ電極膜92は、層間絶縁膜73よりも厚いことが特に好ましい。第1エミッタ電極膜91は、単層構造を有していることが好ましい。第2エミッタ電極膜92は、単層構造を有していることが好ましい。
 IGBT領域8は、第1主面3の表層部に形成されたp型のベース領域15、ベース領域15を貫通するように第1主面3に形成された第1トレンチ電極構造20(ゲートトレンチ構造)、および、ベース領域15の表層部において第1トレンチ電極構造20に沿う領域に形成されたn型のエミッタ領域40を含んでいてもよい。この場合、第1プラグ電極80は、エミッタ領域40に電気的に接続されていてもよい。
 IGBT領域8は、エミッタ領域40を露出させるように第1主面3に形成されたコンタクト孔42、および、ベース領域15内においてコンタクト孔42に沿う領域に形成されたp型のコンタクト領域43を含んでいてもよい。この場合、第1プラグ電極80は、コンタクト孔42内においてエミッタ領域40およびコンタクト領域43に電気的に接続されていてもよい。IGBT領域8は、チップ2内においてベース領域15の直下の領域に形成されたn型のCS領域41を含んでいてもよい。
 複数のIGBT領域8が、第1主面3に形成されていてもよい。複数のダイオード領域9が、第1主面3に形成されていてもよい。複数の第1プラグ電極80が、複数のIGBT領域8に電気的に接続されていてもよい。第1エミッタ電極膜91が、複数のダイオード領域9を露出させるように複数の第1プラグ電極80を被覆していてもよい。第2エミッタ電極膜92が、複数のダイオード領域9および第1エミッタ電極膜91を被覆していてもよい。
 図13A~図13Uは、図1に示す半導体装置1の製造方法例を示す断面図である。図13A~図13Uは、図8に対応した領域(つまり、IGBT領域8およびダイオード領域9)をそれぞれ示している。
 図13Aを参照して、チップ2のベースであるn型のウエハ120が用意される。ウエハ120は、FZ(Floating Zone)法を経て形成されたFZ基板であってもよい。ウエハ120は、第1ウエハ主面121および第2ウエハ主面122を有している。第1ウエハ主面121および第2ウエハ主面122は、チップ2の第1主面3および第2主面4にそれぞれ対応している。次に、ウエハ120に、RC-IGBT領域7(複数のIGBT領域8および複数のダイオード領域9)が設定される。
 次に、図13Bを参照して、p型の複数のウェル領域44およびp型の複数の境界ウェル領域64がRC-IGBT領域7に形成される。この工程では、まず、所定パターンを有するレジストマスク123が、第1ウエハ主面121の上に形成される。レジストマスク123は、複数のウェル領域44および複数の境界ウェル領域64を形成すべき領域を露出させ、それら以外の領域を被覆している。次に、p型不純物が、レジストマスク123を介するイオン注入法によって第1ウエハ主面121の表層部に導入される。これにより、複数のウェル領域44および複数の境界ウェル領域64が、RC-IGBT領域7に形成される。レジストマスク123は、その後除去される。
 次に、図13Cを参照して、複数のトレンチ124がRC-IGBT領域7に形成される。複数のトレンチ124は、複数の第1トレンチ21、複数の第2トレンチ31、複数の第3トレンチ51および複数の第4トレンチ61を含む。この工程では、所定パターンを有するハードマスク125が第1ウエハ主面121の上に形成される。ハードマスク125は、複数のトレンチ124を形成すべき領域を露出させ、それら以外の領域を被覆している。ハードマスク125は、無機絶縁膜からなっていてもよい。
 次に、ウエハ120の不要な部分がハードマスク125を介するエッチング法によって除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。これにより、複数のトレンチ124がRC-IGBT領域7に形成される。ハードマスク125は、その後除去される。
 次に、図13Dを参照して、複数のウェル領域44のp型不純物および複数の境界ウェル領域64のp型不純物がウエハ120内に拡散される。複数のウェル領域44のp型不純物は、p型不純物が第2トレンチ31の底壁を被覆する深まで拡散される。また、複数の境界ウェル領域64のp型不純物は、p型不純物が第4トレンチ61の底壁を被覆する深まで拡散される。
 次に、図13Eを参照して、ベース絶縁膜126が第1ウエハ主面121に形成される。ベース絶縁膜126は、第1絶縁膜22、第2絶縁膜32、第3絶縁膜52、第4絶縁膜62および主面絶縁膜70を含む。ベース絶縁膜126は、CVD(Chemical Vapor Deposition)法および/または酸化処理法(たとえば熱酸化処理法)によって形成されてもよい。
 次に、図13Fを参照して、ベース電極膜127がベース絶縁膜126の上に形成される。ベース電極膜127は、第1埋設電極23、第2埋設電極33、第3埋設電極53、第4埋設電極63、第1配線膜71、第2配線膜72および第3配線膜94のベースとなる。ベース電極膜127は、ベース絶縁膜126を挟んで複数のトレンチ124に埋設され、ベース絶縁膜126を挟んで第1ウエハ主面121を被覆する。ベース電極膜127は、導電性ポリシリコンを含む。ベース電極膜127は、CVD法によって形成されてもよい。
 次に、図13Gを参照して、ベース電極膜127の不要な部分が除去される。この工程では、所定パターンを有するレジストマスク(図示せず)がベース電極膜127の上に形成される。レジストマスク(図示せず)は、第1配線膜71、第2配線膜72および第3配線膜94を形成すべき領域を被覆し、それら以外の領域を露出させている。
 次に、ベース電極膜127の不要な部分が、レジストマスク(図示せず)を介するエッチング法によって除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。ベース電極膜127の不要な部分は、主面絶縁膜70が露出するまで除去される。これにより、第1埋設電極23、第2埋設電極33、第3埋設電極53、第4埋設電極63、第1配線膜71、第2配線膜72および第3配線膜94が形成される。レジストマスク(図示せず)は、その後除去される。
 次に、図13Hを参照して、p型のベース領域15、n型のエミッタ領域40、n型のCS領域41およびp型のアノード領域46がRC-IGBT領域7において第1ウエハ主面121の表層部に形成される。ベース領域15、エミッタ領域40およびCS領域41は、IGBT領域8の第1ウエハ主面121の表層部に形成される。アノード領域46は、ダイオード領域9の第1ウエハ主面121の表層部に形成される。これらの不純物領域の形成工程順序は任意である。これらの不純物領域は、所定パターンを有するレジストマスク(図示せず)を介するn型不純物またはp型不純物の注入によってそれぞれ形成される。
 次に、図13Iを参照して、主面絶縁膜70、第1配線膜71、第2配線膜72および第3配線膜94を被覆する層間絶縁膜73が形成される。層間絶縁膜73は、CVD法によって形成されてもよい。
 次に、図13Jを参照して、所定パターンを有するレジストマスク128が層間絶縁膜73の上に形成される。レジストマスク128は、第1開口74、第2開口75、第3開口76および第4開口95を形成すべき領域を露出させ、それら以外の領域を被覆している。
 次に、層間絶縁膜73の不要な部分が、レジストマスク128を介するエッチング法によって除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。層間絶縁膜73の不要な部分は、主面絶縁膜70が露出するまで除去される。これにより、第1開口74、第2開口75、第3開口76および第4開口95が形成される。レジストマスク128は、その後除去される。
 次に、所定パターンを有するレジストマスク(図示せず)が層間絶縁膜73の上に形成される。レジストマスク(図示せず)は、複数のコンタクト孔42を形成すべき領域(つまり、複数の第1開口74)を露出させ、それら以外の領域を被覆している。次に、第1ウエハ主面121のうち第1開口74から露出する部分が、レジストマスク(図示せず)を介するエッチング法によってさらに除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。これにより、第1開口74に連通するコンタクト孔42が形成される。
 次に、レジストマスク(図示せず)を介するイオン注入法によって、p型不純物が第1ウエハ主面121のうち複数のコンタクト孔42から露出する部分に注入される。これにより、p型のコンタクト領域43が形成される。レジストマスク(図示せず)は、その後除去される。
 次に、図13Kを参照して、第1プラグ電極膜129が、層間絶縁膜73の上に形成される。第1プラグ電極膜129は、第1プラグ電極80、第2プラグ電極83、第3プラグ電極84および第4プラグ電極96に係る第1電極部81のベースとなる。第1プラグ電極膜129は、層間絶縁膜73(絶縁主面78)、コンタクト孔42の壁面、第1開口74の壁面、第2開口75の壁面、第3開口76の壁面および第4開口95の壁面に沿って膜状に形成される。第1プラグ電極膜129は、スパッタ法および/または蒸着法によって形成されてもよい。
 次に、第2プラグ電極膜130が第1プラグ電極膜129の上に形成される。第2プラグ電極膜130は、第1プラグ電極80、第2プラグ電極83、第3プラグ電極84および第4プラグ電極96に係る第2電極部82のベースとなる。第2プラグ電極膜130は、コンタクト孔42、第1開口74、第2開口75、第3開口76および第4開口95を埋めて第1プラグ電極膜129を被覆する。第2プラグ電極膜130は、スパッタ法および/または蒸着法によって形成されてもよい。
 次に、図13Lを参照して、第2プラグ電極膜130の不要な部分が除去される。第2プラグ電極膜130の不要な部分は、エッチング法によって除去されてもよい。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。この工程では、第2プラグ電極膜130のうちコンタクト孔42、第1開口74、第2開口75、第3開口76および第4開口95外に位置する部分が除去される。
 次に、第1プラグ電極膜129の不要な部分が除去される。第1プラグ電極膜129の不要な部分は、エッチング法によって除去されてもよい。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。この工程では、第1プラグ電極膜129のうちコンタクト孔42、第1開口74、第2開口75、第3開口76および第4開口95外に位置する部分が除去される。これにより、第1プラグ電極80、第2プラグ電極83、第3プラグ電極84および第4プラグ電極96が形成される。
 次に、図13Mを参照して、第1ベース電極膜131(第1マスク)が層間絶縁膜73の上に形成される。第1ベース電極膜131は、第1エミッタ電極膜91および第1ゲート電極膜101のベースとなる。第1ベース電極膜131は、この形態では、金属膜(第1ベース金属膜)からなる。
 第1ベース電極膜131は、層間絶縁膜73に沿って延びる膜状に形成され、第1プラグ電極80、第2プラグ電極83、第3プラグ電極84および第4プラグ電極96を被覆する。第1ベース電極膜131は、第1プラグ電極80、第2プラグ電極83、第3プラグ電極84および第4プラグ電極96が外気と接触することを抑制するバリア膜である。第1ベース電極膜131は、スパッタ法および/または蒸着法によって形成されてもよい。
 次に、図13Nを参照して、所定パターンを有するレジストマスク132(第2マスク)が第1ベース電極膜131の上に形成される。レジストマスク132は、第1ベース電極膜131において複数の電極開口93を形成すべき領域を露出させ、それら以外の領域を被覆している。次に、レジストマスク132を介するエッチング法によってベース金属膜の不要な部分が除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。これにより、複数の電極開口93が第1ベース電極膜131に形成される。
 次に、図13Oを参照して、ウエハ120の内部において複数のダイオード領域9にライフタイムキラー領域85がそれぞれ形成される。この工程では、1つのダイオード領域に対して単一のライフタイムキラー領域85のみが形成され、1つのダイオード領域に対して複数のライフタイムキラー領域85は形成されない。ライフタイムキラー領域85は、ライフタイムキラー領域85を形成すべき領域に任意の不純物(元素)を照射することによって形成される。
 ライフタイムキラー領域85は、3価元素(p型不純物)および5価元素(n型不純物)以外の要素(元素/不純物)をウエハ120の内部に打ち込むことによって形成されることが好ましい。ライフタイムキラー領域85は、水素イオンおよびヘリウムイオンのいずれか一方または双方をウエハ120の内部に照射することによって形成されてもよい。ライフタイムキラー領域85は、この工程では、ウエハ120の内部にヘリウムイオンを照射することによって形成される。
 この工程では、前述のレジストマスク132が遮蔽膜として利用され、ヘリウムイオン等がレジストマスク132を介してウエハ120の内部に照射される。つまり、ヘリウムイオン等は、複数の電極開口93からウエハ120の内部に導入される。これにより、ライフタイムキラー領域85が、レジストマスク132(電極開口93)に対して自己整合的に形成される。
 この工程によれば、電極開口93の形成工程に使用されるレジストマスク132を利用してライフタイムキラー領域85が形成されるため、電極開口93に対するライフタイムキラー領域85のアライメント精度が向上する。つまり、ダイオード領域9に対するライフタイムキラー領域85のアライメント精度が向上し、ダイオード領域9のみにライフタイムキラー領域85を適切に形成できる。
 次に、図13Pを参照して、ウエハ120が酸素雰囲気に曝され、レジストマスク132が除去される。この工程では、酸素(オゾンガスや酸素ガス等の酸素雰囲気)を利用した酸素灰化法によってレジストマスク132が除去される。酸素灰化法は、光励起灰化法および/またはプラズマ灰化法であってもよい。
 光励起灰化法では、酸素が灰化室内で紫外線等によって励起され、レジストマスク132と反応される。プラズマ灰化法では、酸素が灰化室内で非電離放射線(たとえば可視光、高周波、マイクロ波等)によってプラズマ化され、レジストマスク132と反応される。これにより、レジストマスク132が第1ベース電極膜131の上から取り除かれ、第1ベース電極膜131が酸素雰囲気に曝される。酸素灰化工程に起因する第1プラグ電極80、第2プラグ電極83、第3プラグ電極84および第4プラグ電極96の酸化は、第1ベース電極膜131によって抑制される。
 次に、図13Qを参照して、第1ベース電極膜131をマスクとするエッチング法によって、層間絶縁膜73の不要な部分および主面絶縁膜70の不要な部分が除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。エッチング法は、異方性エッチング法であることが好ましい。異方性エッチング法は、ドライエッチング法(具体的には、RIE(Reactive Ion Etching)法)であることが特に好ましい。
 この工程では、層間絶縁膜73の不要な部分および主面絶縁膜70の不要な部分が順に除去される。これにより、複数の電極開口93および複数のライフタイムキラー領域85に位置整合した複数のダイオード開口77が層間絶縁膜73に形成される。この工程では、ダイオード開口77の開口壁面79が第1ウエハ主面121との間で鋭角を形成する傾斜面に形成される。開口壁面79の傾斜角度は、45°を超えて90°未満であることが好ましい。むろん、層間絶縁膜73の不要な部分および主面絶縁膜70の不要な部分は、等方性エッチング法(たとえばウエットエッチング法)によって除去されてもよい。この場合、開口壁面79の傾斜角度は、45°未満であってもよい。
 この工程では、レジストマスク132の除去工程が層間絶縁膜73の除去工程の前に実施された例が示された。しかし、レジストマスク132の除去工程は層間絶縁膜73の除去工程の後に実施されてもよい。つまり、層間絶縁膜73の除去工程は、第1ベース電極膜131およびレジストマスク132を含む積層構造をマスクとするエッチング法によって層間絶縁膜73の不要な部分および主面絶縁膜70の不要な部分が除去されてもよい。「第1ベース電極膜131をマスクとするエッチング法」には、「第1ベース電極膜131からなる単層構造をマスクとするエッチング法」が含まれる他、「第1ベース電極膜131およびレジストマスク132を含む積層構造をマスクとするエッチング法」も含まれる。
 層間絶縁膜73の除去工程では、ライフタイムキラー領域85の形成時に使用したマスクと同一のマスクを利用して層間絶縁膜73の不要な部分が除去される。つまり、層間絶縁膜73の除去部のアライメント精度は、ライフタイムキラー領域85のアライメント精度とほぼ等しい。これにより、ダイオード領域9を露出させるダイオード開口77を層間絶縁膜73に適切に形成できる。
 次に、図13Rを参照して、第2ベース電極膜133が第1ベース電極膜131を被覆するように層間絶縁膜73および第1ウエハ主面121の上に形成される。第2ベース電極膜133は、第2エミッタ電極膜92および第2ゲート電極膜102のベースとなる。第2ベース電極膜133は、スパッタ法および/または蒸着法によって形成されてもよい。
 次に、第2ベース電極膜133の上に所定パターンを有するレジストマスク(図示せず)が形成される。レジストマスク(図示せず)は、第2エミッタ電極膜92および第2ゲート電極膜102を形成すべき領域を被覆し、それら以外の領域を露出させている。次に、第2ベース電極膜133の不要な部分が、レジストマスク(図示せず)を介するエッチング法によって除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。これにより、第2エミッタ電極膜92および第2ゲート電極膜102が形成される。レジストマスク(図示せず)は、その後除去される。
 次に、第1ベース電極膜131のうち第2エミッタ電極膜92および第2ゲート電極膜102から露出する部分がエッチング法によって除去される。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。これにより、第1エミッタ電極膜91および第1ゲート電極膜101が形成される。つまり、エミッタ主面電極90およびゲート主面電極100が形成される。
 次に、図13Sを参照して、ウエハ120が所定の厚さになるまでウエハ120が薄化される。この工程は、第2ウエハ主面122に対する研削法および/またはエッチング法を含む。研削法は、機械研磨法および/または化学機械研磨法であってもよい。エッチング法は、ドライエッチング法および/またはウエットエッチング法であってもよい。ウエハ120の薄化工程は、必ずしも実施される必要はなく、省略されてもよい。
 次に、図13Tを参照して、n型のバッファ領域13、p型のコレクタ領域14およびn型のカソード領域45が第2ウエハ主面122の表層部に形成される。これらの不純物領域の形成工程順序は任意である。バッファ領域13は第2ウエハ主面122の表層部の全域にn型不純物を注入することによって形成されてもよい。コレクタ領域14は第2ウエハ主面122の表層部の全域にp型不純物を注入することによって形成されてもよい。カソード領域45は、所定パターンを有するレジストマスク(図示せず)を介して第2ウエハ主面122の表層部にn型不純物を注入することによって形成されてもよい。
 次に、図13Uを参照して、コレクタ主面電極110が第2ウエハ主面122の上に形成される。コレクタ主面電極110は、スパッタ法および/または蒸着法によって形成されてもよい。その後、ウエハ120が厚さ方向に切断され、複数の半導体装置1が切り出される。以上を含む工程を経て、半導体装置1が製造される。
 以上、半導体装置1の製造方法は、ウエハ120の用意工程、層間絶縁膜73の形成工程、第1プラグ電極80の埋設工程、第1ベース電極膜131の形成工程、および、第1ベース電極膜131の暴露工程を含む。ウエハ120の用意工程では、第1ウエハ主面121を有するウエハ120が用意される。層間絶縁膜73の形成工程では、第1ウエハ主面121を被覆する層間絶縁膜73が形成される。
 第1プラグ電極80の埋設工程では、層間絶縁膜73から部分的に露出するように層間絶縁膜73に第1プラグ電極80が埋設される。第1ベース電極膜131の形成工程では、少なくとも第1プラグ電極80を被覆する第1ベース電極膜131が形成される。第1ベース電極膜131の暴露工程は、第1ベース電極膜131の形成工程後に実施される。この工程では、第1ベース電極膜131が酸素雰囲気に曝される。
 第1プラグ電極80に酸化物が形成された場合、当該酸化物に起因する抵抗成分が第1プラグ電極80の抵抗成分に加算される。特に、第1プラグ電極80は比較的小さい平面積で形成されるため、酸化物に起因する抵抗成分が大きくなる。この点、第1プラグ電極80を隠蔽する第1ベース電極膜131によれば、第1プラグ電極80が外気に接触することを抑制できる。これにより、第1ベース電極膜131の暴露工程における第1プラグ電極80の酸化を抑制できる。よって、電気的特性を向上できる半導体装置1を製造できる。
 半導体装置1の製造方法は、具体的には、ウエハ120の用意工程、IGBT領域8の形成工程、ダイオード領域9の形成工程、層間絶縁膜73の形成工程、第1プラグ電極80の埋設工程、第1ベース電極膜131の形成工程、レジストマスク132の形成工程、第1ベース電極膜131の除去工程、層間絶縁膜73の除去工程、レジストマスク132の除去工程および第2ベース電極膜133の形成工程を含む。
 ウエハ120の用意工程では、第1ウエハ主面121を有するウエハ120が用意される。IGBT領域8の形成工程では、第1ウエハ主面121にIGBT領域8が形成される。ダイオード領域9の形成工程では、第1ウエハ主面121にダイオード領域9が形成される。層間絶縁膜73の形成工程では、IGBT領域8およびダイオード領域9を被覆する層間絶縁膜73が形成される。第1プラグ電極80の埋設工程では、層間絶縁膜73から部分的に露出するように層間絶縁膜73のうちIGBT領域8を被覆する部分に第1プラグ電極80が埋設される。
 第1ベース電極膜131の形成工程では、第1プラグ電極80を隠蔽するように層間絶縁膜73を被覆する第1ベース電極膜131が形成される。レジストマスク132の形成工程では、第1ベース電極膜131のうちダイオード領域9に重なる部分を露出させるレイアウトを有するレジストマスク132が第1ベース電極膜131の上に形成される。第1ベース電極膜131の除去工程では、レジストマスク132を介するエッチング法によって第1ベース電極膜131のうちダイオード領域9に重なる部分の不要な部分が除去される。
 層間絶縁膜73の除去工程では、第1ベース電極膜131の除去工程の後に、エッチング法によって層間絶縁膜73のうち第1ベース電極膜131から露出した部分が除去される。レジストマスク132の除去工程では、第1ベース電極膜131の除去工程または層間絶縁膜73の除去工程の後、酸素灰化法によってレジストマスク132が除去される。第2ベース電極膜133の形成工程では、第1ベース電極膜131およびダイオード領域9を被覆する第2ベース電極膜133が形成される。
 第1プラグ電極80に酸化物が形成された場合、当該酸化物に起因する抵抗成分が第1プラグ電極80の抵抗成分に加算される。特に、第1プラグ電極80は比較的小さい平面積で形成されるため、酸化物に起因する抵抗成分が大きくなる。この点、第1プラグ電極80を隠蔽する第1エミッタ電極膜91によれば、第1プラグ電極80が外気に接触することを抑制できる。これにより、レジストマスク132の除去工程に係る酸素灰化法に起因した第1プラグ電極80の酸化を抑制できる。
 また、ダイオード領域9を露出させる第1エミッタ電極膜91によれば、ダイオード領域9および第2エミッタ電極膜92の間において、第1エミッタ電極膜91に起因した予期しないオーミック性の低下を抑制できる。これにより、ダイオード領域9の順方向電圧VFの特性を向上できる。よって、電気的特性を向上できる半導体装置1を製造できる。
 第1ベース電極膜131の除去工程は、ダイオード領域9を被覆しない第1ベース電極膜131を形成する工程を含むことが好ましい。ダイオード領域9の形成工程は、第1ウエハ主面121の表層部にアノード領域46を形成する工程を含むことが好ましい。レジストマスク132の形成工程は、第1ベース電極膜131のうちアノード領域46に重なる部分を露出させるレイアウトを有するレジストマスク132を形成する工程を含むことが好ましい。
 第1ベース電極膜131の除去工程は、第1ベース電極膜131のうちアノード領域46に重なる部分を除去する工程を含むことが好ましい。層間絶縁膜73の除去工程は、アノード領域46が露出するまで層間絶縁膜73の不要な部分を除去する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、アノード領域46を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 ダイオード領域9の形成工程は、第1ウエハ主面121に第3トレンチ電極構造50を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、第1ベース電極膜131のうち第3トレンチ電極構造50に重なる部分を除去する工程を含むことが好ましい。層間絶縁膜73の除去工程は、第3トレンチ電極構造50が露出するまで層間絶縁膜73の不要な部分を除去する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、第3トレンチ電極構造50を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 ダイオード領域9の形成工程は、複数の第3トレンチ電極構造50を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、第1ベース電極膜131のうち複数の第3トレンチ電極構造50に重なる部分を除去する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、複数の第3トレンチ電極構造50を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 第1ベース電極膜131の形成工程は、第1プラグ電極80を直接被覆する第1ベース電極膜131を形成する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、第1ベース電極膜131およびダイオード領域9を直接被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。つまり、第2エミッタ電極膜92は、バリアメタル膜(たとえばTi膜)を介さずにダイオード領域9に直接接続されることが好ましい。
 この製造方法によれば、ダイオード領域9および第2エミッタ電極膜92の間において、バリアメタル膜に起因した予期しないオーミック性の低下を抑制できる。これにより、ダイオード領域9の順方向電圧VFの特性を向上できる。第2ベース電極膜133の形成工程は、第1ベース電極膜131を介して第1プラグ電極80を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 層間絶縁膜73の除去工程は、ダイオード領域9を露出させる開口を区画する開口壁面79を有する層間絶縁膜73を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、開口壁面79を露出させる第1ベース電極膜131を形成する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、開口壁面79を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 開口壁面79は、第1ウエハ主面121との間で鋭角を形成していることが好ましい。開口壁面79の傾斜角度は、45°を超えて90°未満であることが好ましい。この製造方法によれば、比較的厚い層間絶縁膜73の傾斜部(開口壁面79)を挟んで第2ベース電極膜133を第1ウエハ主面121に対向させることができる。これにより、層間絶縁膜73の傾斜部の近傍における電界集中を抑制できる。
 第1ベース電極膜131の形成工程は、層間絶縁膜73よりも薄い第1ベース電極膜131を形成する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、第1ベース電極膜131よりも厚い第2ベース電極膜133を形成する工程を含むことが好ましい。第1ベース電極膜131は、単層構造を有することが好ましい。第2ベース電極膜133は、単層構造を有することが好ましい。
 第1プラグ電極80は、タングステンを含むことが好ましい。第1ベース電極膜131は、アルミニウム、アルミニウム合金、銅、銅合金、タングステン、モリブデン、チタン、窒化チタンおよびニッケルのうちの少なくとも1つを含むことが好ましい。第2ベース電極膜133は、アルミニウム、アルミニウム合金、銅および銅合金のうちの少なくとも1つを含むことが好ましい。第2ベース電極膜133は、第1ベース電極膜131とは異なる導電材料を含むことが好ましい。
 IGBT領域8の形成工程は、第1ウエハ主面121に第1トレンチ電極構造20(ゲートトレンチ構造)を形成する工程と、第1ウエハ主面121の表層部において第1トレンチ電極構造20に沿う領域にp型のベース領域15を形成する工程と、ベース領域15の表層部において第1トレンチ電極構造20に沿う領域にn型のエミッタ領域40を形成する工程と、を含むことが好ましい。この場合、第1プラグ電極80の形成工程は、エミッタ領域40に電気的に接続される第1プラグ電極80を形成する工程を含むことが好ましい。
 IGBT領域8の形成工程は、第1ウエハ主面121にエミッタ領域40を露出させるコンタクト孔42を形成する工程と、ベース領域15内においてコンタクト孔42に沿う領域にp型のコンタクト領域43を形成する工程と、を含むことが好ましい。この場合、第1プラグ電極80の形成工程は、コンタクト孔42内においてエミッタ領域40およびコンタクト領域43に電気的に接続される第1プラグ電極80を形成する工程を含むことが好ましい。IGBT領域8の形成工程は、ベース領域15の直下の領域にn型のCS領域41を形成する工程を含むことが好ましい。
 複数のIGBT領域8が形成されることが好ましい。複数のダイオード領域9が形成されることが好ましい。第1プラグ電極80の形成工程は、複数のIGBT領域8に電気的に接続される複数の第1プラグ電極80を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、複数のダイオード領域9を露出させるように複数の第1プラグ電極80を被覆する第1ベース電極膜131を形成する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、複数のダイオード領域9および第1ベース電極膜131を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 別視点において、半導体装置1の製造方法は、ウエハ120の用意工程、IGBT領域8の形成工程、ダイオード領域9の形成工程、層間絶縁膜73の形成工程、マスクの形成工程、ライフタイムキラー領域85の形成工程および層間絶縁膜73の除去工程を含む。ウエハ120の用意工程では、第1ウエハ主面121を有するウエハ120が用意される。IGBT領域8の形成工程では、第1ウエハ主面121にIGBT領域8が形成される。ダイオード領域9の形成工程では、第1ウエハ主面121にダイオード領域9が形成される。
 層間絶縁膜73の形成工程では、IGBT領域8およびダイオード領域9を被覆する層間絶縁膜73が形成される。マスクの形成工程では、層間絶縁膜73のうちダイオード領域9を被覆する部分を露出させるレイアウトを有するマスクが層間絶縁膜73の上に形成される。ライフタイムキラー領域85の形成工程では、前記マスクを利用してウエハ120の内部にライフタイムキラー領域85が形成される。層間絶縁膜73の除去工程では、前記マスクを利用したエッチング法によって層間絶縁膜73のうちダイオード領域9を被覆する部分が除去される。
 この製造方法によれば、ライフタイムキラー領域85がマスクに対して自己整合的に形成されるため、ダイオード領域9に対するライフタイムキラー領域85のアライメント精度が向上する。これにより、ダイオード領域9にライフタイムキラー領域85を適切に形成できるから、キャリアライフタイムの調整効果によって逆回復動作時におけるダイオード領域9の損失を低減できる。
 また、この製造方法によれば、層間絶縁膜73の除去部がマスクに対して自己整合的に形成されるため、ダイオード領域9(ライフタイムキラー領域85)に対する層間絶縁膜73の除去部のアライメント精度も向上する。したがって、除去部の位置ずれに起因する電気的特性の変動を抑制できる。よって、電気的特性を向上できる半導体装置1を製造できる。
 ライフタイムキラー領域85の形成工程は、3価元素および5価元素以外の要素をウエハ120の内部に照射する工程を含むことが好ましい。ライフタイムキラー領域85の形成工程は、水素イオンおよびヘリウムイオンのいずれか一方または双方をウエハ120の内部に照射する工程を含むことが好ましい。
 マスクの形成工程は、第1マスクとしての第1ベース電極膜131の形成工程、第2マスクとしてのレジストマスク132の形成工程、および、第1ベース電極膜131の除去工程を含むことが好ましい。第1ベース電極膜131の形成工程では、第1ベース電極膜131が層間絶縁膜73の上に形成される。レジストマスク132の形成工程では、第1ベース電極膜131のうちダイオード領域9に重なる部分を露出させるレイアウトを有するレジストマスク132が、第1ベース電極膜131の上に形成される。
 第1ベース電極膜131の除去工程では、レジストマスク132を利用したエッチング法によって第1ベース電極膜131のうちダイオード領域9に重なる部分が除去される。この場合、ライフタイムキラー領域85の形成工程は、レジストマスク132を利用してウエハ120の内部にライフタイムキラー領域85を形成する工程を含むことが好ましい。
 この製造方法によれば、ライフタイムキラー領域85がレジストマスク132(第1ベース電極膜131の除去部)に対して自己整合的に形成される。したがって、レジストマスク132(第1ベース電極膜131の除去部)によってダイオード領域9に対するライフタイムキラー領域85のアライメント精度を向上させることができる。また、第1ベース電極膜131が存在するため、レジストマスク132の膜厚を低減させ、レジストマスク132のコストを削減することもできる。
 半導体装置1の製造方法は、ライフタイムキラー領域85の形成工程の後、第1ベース電極膜131を残存させるようにレジストマスク132を除去する工程を含むことが好ましい。この場合、層間絶縁膜73の除去工程は、レジストマスク132の除去工程の後、第1ベース電極膜131を利用したエッチング法によって層間絶縁膜73のうちダイオード領域9を被覆する部分を除去する工程を含むことが好ましい。レジストマスク132の除去工程は、酸素灰化法によってレジストマスク132を除去する工程を含むことが好ましい。
 半導体装置1の製造方法は、層間絶縁膜73の除去工程の後、第1ベース電極膜131を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。この製造方法によれば、ライフタイムキラー領域85の形成工程時に導入される元素(不純物)等が第2ベース電極膜133によってトラップされない。つまり、ライフタイムキラー領域85に含まれる元素(不純物)を含まない第2ベース電極膜133(エミッタ主面電極90およびゲート主面電極100)を形成できる。
 これにより、ライフタイムキラー領域85を適切に形成できると同時に、第2ベース電極膜133を適切に形成できる。また、アライメント精度の高い層間絶縁膜73の除去部内に第2ベース電極膜133の一部を配置できる。これにより、第2ベース電極膜133をダイオード領域9に適切に電気的に接続させることができる。
 層間絶縁膜73の除去工程は、ダイオード領域9を露出させるダイオード開口77を区画する開口壁面79を有する層間絶縁膜73を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、開口壁面79を露出させる第1ベース電極膜131を形成する工程を含むことが好ましい。第2ベース電極膜133の形成工程は、開口壁面79を被覆する第2ベース電極膜133を形成する工程を含むことが好ましい。
 開口壁面79は、第1ウエハ主面121との間で鋭角を形成することが好ましい。開口壁面79の傾斜角度は、45°を超えて90°未満であることが好ましい。この製造方法によれば、比較的厚い層間絶縁膜73の傾斜部(開口壁面79)を挟んで第2ベース電極膜133を第1ウエハ主面121に対向させることができる。これにより、層間絶縁膜73の傾斜部の近傍における電界集中を抑制できる。
 第1ベース電極膜131の形成工程は、層間絶縁膜73よりも薄い第1ベース電極膜131を形成する工程を含み、第2ベース電極膜133の形成工程は、第1ベース電極膜131よりも厚い第2ベース電極膜133を形成する工程を含むことが好ましい。第2ベース電極膜133は、第1ベース電極膜131とは異なる導電材料を含むことが好ましい。第1ベース電極膜131は、単層構造を有することが好ましい。第2ベース電極膜133は、単層構造を有することが好ましい。
 第1ベース電極膜131の除去工程は、ダイオード領域9を被覆しない第1ベース電極膜131を形成する工程を含むことが好ましい。ダイオード領域9の形成工程は、第1ウエハ主面121の表層部にアノード領域46を形成する工程を含むことが好ましい。レジストマスク132の形成工程は、第1ベース電極膜131のうちアノード領域46に重なる部分を露出させるレイアウトを有するレジストマスク132を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、第1ベース電極膜131のうちアノード領域46に重なる部分を除去する工程を含むことが好ましい。
 ダイオード領域9の形成工程は、第1ウエハ主面121に第3トレンチ電極構造50を形成する工程を含むことが好ましい。第1ベース電極膜131の除去工程は、第1ベース電極膜131のうち第3トレンチ電極構造50に重なる部分を除去する工程を含むことが好ましい。複数の第3トレンチ電極構造50が形成され、第1ベース電極膜131のうち複数の第3トレンチ電極構造50に重なる部分が除去されることが好ましい。
 半導体装置1の製造方法は、第1ベース電極膜131の形成工程の前に、層間絶縁膜73から部分的に露出するように層間絶縁膜73のうちIGBT領域8を被覆する部分に第1プラグ電極80を埋設する工程を含むことが好ましい。この場合、第1ベース電極膜131の形成工程は、第1プラグ電極80を被覆する第1ベース電極膜131を形成する工程を含むことが好ましい。
 第1プラグ電極80に酸化物が形成された場合、当該酸化物に起因する抵抗成分が第1プラグ電極80の抵抗成分に加算される。特に、第1プラグ電極80は比較的小さい平面積で形成されるため、酸化物に起因する抵抗成分が大きくなる。この点、第1プラグ電極80を隠蔽する第1ベース電極膜131によれば、第1ベース電極膜131の形成工程後に第1プラグ電極80が外気に接触することを抑制できる。これにより、第1プラグ電極80の酸化を抑制できる。よって、電気的特性を向上できる半導体装置1を製造できる。第1プラグ電極80は、タングステンを含むことが好ましい。
 IGBT領域8の形成工程は、第1ウエハ主面121に第1トレンチ電極構造20(ゲートトレンチ構造)を形成する工程と、第1ウエハ主面121の表層部において第1トレンチ電極構造20に沿う領域にp型のベース領域15を形成する工程と、ベース領域15の表層部において第1トレンチ電極構造20に沿う領域にn型のエミッタ領域40を形成する工程と、を含むことが好ましい。この場合、第1プラグ電極80の形成工程は、エミッタ領域40に電気的に接続される第1プラグ電極80を形成する工程を含むことが好ましい。
 以下、半導体装置1の変形例が示される。図14は、第1変形例に係る半導体装置1を示す断面図である。前述の半導体装置1は、第1エミッタ電極膜91および第2エミッタ電極膜92を有するエミッタ主面電極90を含む。これに対して、第1変形例に係る半導体装置1のエミッタ主面電極90は、第1エミッタ電極膜91を有さず、第2エミッタ電極膜92からなる単層構造を有している。
 同様に、第1変形例に係る半導体装置1のゲート主面電極100は、第1ゲート電極膜101を有さず、第2ゲート電極膜102からなる単層構造を有している。第1変形例に係る半導体装置1の製造方法では、第1ベース電極膜131(第1エミッタ電極膜91および第1ゲート電極膜101)の形成工程(図13M参照)が省略され、ライフタイムキラー領域85およびダイオード開口77がレジストマスク132を利用して形成される。
 以上、第1変形例に係る半導体装置1によれば、第1ベース電極膜131(第1エミッタ電極膜91および第1ゲート電極膜101)に係る効果を除いて、実施形態に係る半導体装置1に対して述べた効果と同様の効果が奏される。
 図15は、第2変形例に係る半導体装置1を示す断面図である。前述の半導体装置1は、ライフタイムキラー領域85を有していた。これに対して、第2変形例に係る半導体装置1は、ライフタイムキラー領域85を有さない。第2変形例に係る半導体装置1の製造方法では、ライフタイムキラー領域85の形成工程(図13O参照)が省略され、レジストマスク132の形成工程(図13N参照)の後にレジストマスク132の除去工程(図13P参照)が実施される。
 以上、第2変形例に係る半導体装置1によれば、ライフタイムキラー領域85に係る効果を除いて、実施形態に係る半導体装置1に対して述べた効果と同様の効果が奏される。
 前述の実施形態はさらに他の形態で実施できる。たとえば、前述の実施形態では、複数のCS領域41が形成された例が示された。しかし、CS領域41の有無は任意であり、CS領域41を有さない形態が採用されてもよい。
 前述の実施形態では、一対の第1トレンチ電極構造20の間の領域に、IE構造(つまり、第2トレンチ電極構造30、第2トレンチ接続構造34およびウェル領域44)が形成された例が示された。しかし、IE構造の有無は任意であり、IE構造を有さない形態が採用されてもよい。この場合、複数の第1トレンチ電極構造20は互いに隣り合うように第1方向Xに間隔を空けて配列される。
 前述の実施形態では、IGBT領域8およびダイオード領域9の間の境界領域55に、境界IE構造(つまり、第3トレンチ接続構造54、第4トレンチ電極構造60および境界ウェル領域64)が形成された例が示された。しかし、境界IE構造の有無は任意であり、境界IE構造を有さない形態が採用されてもよい。この場合、第3トレンチ電極構造50は、第1方向Xに第1トレンチ電極構造20に隣り合っていてもよい。むろん、第3トレンチ電極構造50は、第1方向Xに第2トレンチ電極構造30に隣り合っていてもよい。
 前述の実施形態では、1つのダイオード領域9に対して1つのダイオード開口77が形成された例が示された。しかし、1つのダイオード領域9に対して複数のダイオード開口77が形成されてもよい。この場合、複数のダイオード開口77は、各ダイオード領域9において複数の第3トレンチ電極構造50の一部をそれぞれ露出させていてもよい。複数のダイオード開口77は、各ダイオード領域9において、全体として全ての第3トレンチ電極構造50を露出させていることが好ましい。
 前述の実施形態では、複数の第3トレンチ電極構造50よりも浅いアノード領域46が形成された例が示された。しかし、複数の第3トレンチ電極構造50よりも深いアノード領域46が形成されてもよい。この場合、アノード領域46は、複数の第3トレンチ電極構造50の底壁を被覆する部分(底部)を有していてもよい。
 前述の実施形態では、チップ2がシリコン単結晶基板からなる例が示された。しかし、チップ2は、SiC(炭化シリコン)単結晶基板からなっていてもよい。前述の実施形態において、n型の半導体領域がp型の半導体領域に置き換えられ、p型の半導体領域がn型の半導体領域に置き換えられてもよい。この場合の具体的な構成は、前述の説明および添付図面において、「n型」を「p型」に置き換えると同時に、「p型」を「n型」に置き換えることによって得られる。
 前述の実施形態では、第1方向Xおよび第2方向Yが第1~第4側面5A~5Dの延在方向によって規定された。しかし、第1方向Xおよび第2方向Yは、互いに交差(具体的には直交)する関係を維持する限り、任意の方向であってもよい。たとえば、第1方向Xは第1~第4側面5A~5Dに交差する方向であり、第2方向Yは第1~第4側面5A~5Dに交差する方向であってもよい。
 以下、この明細書および図面から抽出される特徴例が示される。以下、括弧内の英数字等は前述の実施形態における対応構成要素等を表すが、各項目の範囲を実施形態に限定する趣旨ではない。以下の項目に係る「半導体装置」は、「半導体スイッチング装置」または「RC-IGBT半導体装置」に置き換えられてもよい。
 [A1]主面(3)を有するチップ(2)と、前記主面(3)に形成されたIGBT領域(8)と、前記主面(3)に形成されたダイオード領域(9)と、前記ダイオード領域(9)を露出させ、前記IGBT領域(8)を被覆するように前記主面(3)の上に形成された絶縁膜(73)と、前記絶縁膜(73)から部分的に露出するように前記絶縁膜(73)のうち前記IGBT領域(8)を被覆する部分に埋設されたプラグ電極(80、83、84)と、前記ダイオード領域(9)を露出させるように前記プラグ電極(80、83、84)を被覆する第1電極膜(91)、ならびに、前記第1電極膜(91)および前記ダイオード領域(9)を被覆する第2電極膜(92)を含む主面電極(90)と、を含む、半導体装置(1)。
 [A2]前記第1電極膜(91)は、前記ダイオード領域(9)を被覆しない、A1に記載の半導体装置(1)。
 [A3]前記ダイオード領域(9)は、前記主面(3)の表層部に形成されたアノード領域(46)を含み、前記第1電極膜(91)は、前記アノード領域(46)を露出させ、前記第2電極膜(92)は、前記アノード領域(46)を被覆している、A1またはA2に記載の半導体装置(1)。
 [A4]前記ダイオード領域(9)は、前記主面(3)に形成されたトレンチ電極構造(50)を含み、前記第1電極膜(91)は、前記トレンチ電極構造(50)を露出させ、前記第2電極膜(92)は、前記トレンチ電極構造(50)を被覆している、A1~A3のいずれか一つに記載の半導体装置(1)。
 [A5]複数の前記トレンチ電極構造(50)が、前記主面(3)に形成され、前記第1電極膜(91)は、複数の前記トレンチ電極構造(50)を露出させ、前記第2電極膜(92)は、複数の前記トレンチ電極構造(50)を被覆している、A4に記載の半導体装置(1)。
 [A6]前記第1電極膜(91)は、前記プラグ電極(80、83、84)を直接被覆し、前記第2電極膜(92)は、前記第1電極膜(91)および前記ダイオード領域(9)を直接被覆している、A1~A5のいずれか一つに記載の半導体装置(1)。
 [A7]前記第2電極膜(92)は、前記第1電極膜(91)を挟んで前記プラグ電極(80、83、84)に対向する部分を有している、A1~A6のいずれか一つに記載の半導体装置(1)。
 [A8]前記絶縁膜(73)は、前記ダイオード領域(9)を露出させる開口(77)を区画する開口壁面(79)を有し、前記第1電極膜(91)は、前記開口壁面(79)を露出させ、前記第2電極膜(92)は、前記開口壁面(79)を被覆している、A1~A7のいずれか一つに記載の半導体装置(1)。
 [A9]前記開口壁面(79)は、前記主面(3)との間で鋭角を形成するように傾斜している、A8に記載の半導体装置(1)。
 [A10]前記第1電極膜(91)は、前記絶縁膜(73)よりも薄く、前記第2電極膜(92)は、前記第1電極膜(91)よりも厚い、A1~A9のいずれか一つに記載の半導体装置(1)。
 [A11]前記プラグ電極(80、83、84)は、タングステンを含む、A1~A10のいずれか一つに記載の半導体装置(1)。
 [A12]前記第1電極膜(91)は、アルミニウム、アルミニウム合金、銅、銅合金、タングステン、モリブデン、チタン、窒化チタンおよびニッケルのうちの少なくとも1つを含む、A1~A11のいずれか一つに記載の半導体装置(1)。
 [A13]前記第2電極膜(92)は、アルミニウム、アルミニウム合金、銅および銅合金のうちの少なくとも1つを含む、A1~A12のいずれか一つに記載の半導体装置(1)。
 [A14]前記第2電極膜(92)は、前記第1電極膜(91)とは異なる導電材料を含む、A1~A13のいずれか一つに記載の半導体装置(1)。
 [A15]前記第1電極膜(91)は、単層構造を有している、A1~A14のいずれか一つに記載の半導体装置(1)。
 [A16]前記第2電極膜(92)は、単層構造を有している、A1~A15のいずれか一つに記載の半導体装置(1)。
 [A17]前記IGBT領域(8)は、前記主面(3)の表層部に形成された第1導電型(p型)のベース領域(15)、前記ベース領域(15)を貫通するように前記主面(3)に形成されたゲートトレンチ構造(20)、および、前記ベース領域(15)の表層部において前記ゲートトレンチ構造(20)に沿う領域に形成された第2導電型(n型)のエミッタ領域(40)を含み、前記プラグ電極(80)は、前記エミッタ領域(40)に電気的に接続されている、A1~A16のいずれか一つに記載の半導体装置(1)。
 [A18]前記IGBT領域(8)は、前記エミッタ領域(40)を露出させるように前記主面(3)に形成されたコンタクト孔(42)、および、前記ベース領域(15)内において前記コンタクト孔(42)に沿う領域に形成された第1導電型(p型)のコンタクト領域(43)を含み、前記プラグ電極(80)は、前記コンタクト孔(42)内において前記エミッタ領域(40)および前記コンタクト領域(43)に電気的に接続されている、A17に記載の半導体装置(1)。
 [A19]前記IGBT領域(8)は、前記チップ(2)内において前記ベース領域(15)の直下の領域に形成された第2導電型(n型)のキャリアストレージ領域(41)をさらに含む、A17またはA18に記載の半導体装置(1)。
 [A20]複数の前記IGBT領域(8)が、前記主面(3)に形成され、複数の前記ダイオード領域(9)が、前記主面(3)に形成され、複数の前記プラグ電極(80、83、84)が、複数の前記IGBT領域(8)に電気的に接続され、前記第1電極膜(91)は、複数の前記ダイオード領域(9)を露出させるように複数の前記プラグ電極(80、83、84)を被覆し、前記第2電極膜(92)は、前記第1電極膜(91)および複数の前記ダイオード領域(9)を被覆している、A1~A19のいずれか一つに記載の半導体装置(1)。
 [B1]主面(121)を有するウエハ(120)を用意する工程と、前記主面(121)にIGBT領域(8)およびダイオード領域(9)を形成する工程と、前記IGBT領域(8)および前記ダイオード領域(9)を被覆する絶縁膜(73)を形成する工程と、前記絶縁膜(73)から部分的に露出するように前記絶縁膜(73)のうち前記IGBT領域(8)を被覆する部分にプラグ電極(80、83、84)を埋設する工程と、前記プラグ電極(80、83、84)を隠蔽するように前記絶縁膜(73)を被覆する第1電極膜(91、131)を形成する工程と、前記第1電極膜(91、131)のうち前記ダイオード領域(9)に重なる部分を露出させるレイアウトを有するレジストマスク(132)を前記第1電極膜(91、131)の上に形成する工程と、前記レジストマスク(132)を介するエッチング法によって前記第1電極膜(91、131)のうち前記ダイオード領域(9)に重なる部分を除去する工程と、前記第1電極膜(91、131)の除去工程の後、エッチング法によって前記絶縁膜(73)のうち前記第1電極膜(91、131)から露出した部分を除去する工程と、前記第1電極膜(91、131)の除去工程または前記絶縁膜(73)の除去工程の後、酸素灰化法によって前記レジストマスク(132)を除去する工程と、前記第1電極膜(91、131)および前記ダイオード領域(9)を被覆する第2電極膜(92、133)を形成する工程と、を含む、半導体装置(1)の製造方法。
 [B2]前記第1電極膜(91、131)の除去工程は、前記ダイオード領域(9)を被覆しない前記第1電極膜(91、131)を形成する工程を含む、B1に記載の半導体装置(1)の製造方法。
 [B3]前記ダイオード領域(9)の形成工程は、前記主面(121)の表層部にアノード領域(46)を形成する工程を含み、前記レジストマスク(132)の形成工程は、前記第1電極膜(91、131)のうち前記アノード領域(46)に重なる部分を露出させるレイアウトを有する前記レジストマスク(132)を形成する工程を含み、前記第1電極膜(91、131)の除去工程は、前記第1電極膜(91、131)のうち前記アノード領域(46)に重なる部分を除去する工程を含み、前記絶縁膜(73)の除去工程は、前記絶縁膜(73)のうち前記アノード領域(46)を被覆する部分を除去する工程を含み、前記第2電極膜(92、133)の形成工程は、前記アノード領域(46)を被覆する前記第2電極膜(92、133)を形成する工程を含む、B1またはB2に記載の半導体装置(1)の製造方法。
 [B4]前記ダイオード領域(9)の形成工程は、前記主面(121)にトレンチ電極構造(50)を形成する工程を含み、前記第1電極膜(91、131)の除去工程は、前記第1電極膜(91、131)のうち前記トレンチ電極構造(50)に重なる部分を除去する工程を含み、前記絶縁膜(73)の除去工程は、前記絶縁膜(73)のうち前記トレンチ電極構造(50)を被覆する部分を除去する工程を含み、前記第2電極膜(92、133)の形成工程は、前記トレンチ電極構造(50)を被覆する前記第2電極膜(92、133)を形成する工程を含む、B1~B3のいずれか一つに記載の半導体装置(1)の製造方法。
 [B5]前記ダイオード領域(9)の形成工程は、複数の前記トレンチ電極構造(50)を形成する工程を含み、前記第1電極膜(91、131)の除去工程は、前記第1電極膜(91、131)のうち複数の前記トレンチ電極構造(50)に重なる部分を除去する工程を含み、前記絶縁膜(73)の除去工程は、前記絶縁膜(73)のうち複数の前記トレンチ電極構造(50)を被覆する部分を除去する工程を含み、前記第2電極膜(92、133)の形成工程は、複数の前記トレンチ電極構造(50)を被覆する前記第2電極膜(92、133)を形成する工程を含む、B4に記載の半導体装置(1)の製造方法。
 [B6]前記第1電極膜(91、131)の形成工程は、前記プラグ電極(80、83、84)を直接被覆する前記第1電極膜(91、131)を形成する工程を含み、前記第2電極膜(92、133)の形成工程は、前記第1電極膜(91、131)および前記ダイオード領域(9)を直接被覆する前記第2電極膜(92、133)を形成する工程を含む、B1~B5のいずれか一つに記載の半導体装置(1)の製造方法。
 [B7]前記第2電極膜(92、133)の形成工程は、前記第1電極膜(91、131)を挟んで前記プラグ電極(80、83、84)に対向する部分を有する前記第2電極膜(92、133)を形成する工程を含む、B1~B6のいずれか一つに記載の半導体装置(1)の製造方法。
 [B8]前記絶縁膜(73)の除去工程は、前記ダイオード領域(9)を露出させる開口(77)を区画する開口壁面(79)を有する前記絶縁膜(73)を形成する工程を含み、前記第1電極膜(91、131)の除去工程は、前記開口壁面(79)を露出させる前記第1電極膜(91、131)を形成する工程を含み、前記第2電極膜(92、133)の形成工程は、前記開口壁面(79)を被覆する前記第2電極膜(92、133)を形成する工程を含む、B1~B7のいずれか一つに記載の半導体装置(1)の製造方法。
 [B9]前記開口壁面(79)は、前記主面(121)との間で鋭角を形成する、B8に記載の半導体装置(1)の製造方法。
 [B10]前記第1電極膜(91、131)の形成工程は、前記絶縁膜(73)よりも薄い前記第1電極膜(91、131)を形成する工程を含み、前記第2電極膜(92、133)の形成工程は、前記第1電極膜(91、131)よりも厚い前記第2電極膜(92、133)を形成する工程を含む、B1~B9のいずれか一つに記載の半導体装置(1)の製造方法。
 [B11]前記プラグ電極(80、83、84)は、タングステンを含む、B1~B10のいずれか一つに記載の半導体装置(1)の製造方法。
 [B12]前記第1電極膜(91、131)は、アルミニウム、アルミニウム合金、銅、銅合金、タングステン、モリブデン、チタン、窒化チタンおよびニッケルのうちの少なくとも1つを含む、B1~B11のいずれか一つに記載の半導体装置(1)の製造方法。
 [B13]前記第2電極膜(92、133)は、アルミニウム、アルミニウム合金、銅および銅合金のうちの少なくとも1つを含む、B1~B12のいずれか一つに記載の半導体装置(1)の製造方法。
 [B14]前記第2電極膜(92、133)は、前記第1電極膜(91、131)とは異なる導電材料を含む、B1~B13のいずれか一つに記載の半導体装置(1)の製造方法。
 [B15]前記第1電極膜(91、131)は、単層構造を有する、B1~B14のいずれか一つに記載の半導体装置(1)の製造方法。
 [B16]前記第2電極膜(92、133)は、単層構造を有する、B1~B15のいずれか一つに記載の半導体装置(1)の製造方法。
 [B17]前記IGBT領域(8)の形成工程は、前記主面(121)にゲートトレンチ構造(20)を形成する工程と、前記主面(121)の表層部において前記ゲートトレンチ構造(20)に沿う領域に第1導電型(p型)のベース領域(15)を形成する工程と、前記主面(121)の表層部において前記ゲートトレンチ構造(20)に沿う領域に第2導電型(n型)のエミッタ領域(40)を形成する工程と、を含み、前記プラグ電極(80、83、84)の形成工程は、前記エミッタ領域(40)に電気的に接続される前記プラグ電極(80)を形成する工程を含む、B1~B16のいずれか一つに記載の半導体装置(1)の製造方法。
 [B18]前記IGBT領域(8)の形成工程は、前記主面(121)に前記エミッタ領域(40)を露出させるコンタクト孔(42)を形成する工程と、前記ベース領域(15)内において前記コンタクト孔(42)に沿う領域に第1導電型(p型)のコンタクト領域(43)を形成する工程と、を含み、前記プラグ電極(80、83、84)の形成工程は、前記コンタクト孔(42)内において前記エミッタ領域(40)および前記コンタクト領域(43)に電気的に接続される前記プラグ電極(80)を形成する工程を含む、B17に記載の半導体装置(1)の製造方法。
 [B19]前記IGBT領域(8)の形成工程は、前記ベース領域(15)の直下の領域に第2導電型(n型)のキャリアストレージ領域(41)を形成する工程を含む、B17またはB18に記載の半導体装置(1)の製造方法。
 [B20]複数の前記IGBT領域(8)が形成され、複数の前記ダイオード領域(9)が形成され、前記プラグ電極(80、83、84)の形成工程は、複数の前記IGBT領域(8)に電気的に接続される複数の前記プラグ電極(80、83、84)を形成する工程を含み、前記第1電極膜(91、131)の除去工程は、複数の前記ダイオード領域(9)を露出させるように複数の前記プラグ電極(80、83、84)を被覆する前記第1電極膜(91、131)を形成する工程を含み、前記第2電極膜(92、133)の形成工程は、前記第1電極膜(91、131)および複数の前記ダイオード領域(9)を被覆する前記第2電極膜(92、133)を形成する工程を含む、B1~B19のいずれか一つに記載の半導体装置(1)の製造方法。
 [C1]主面(121)を有するウエハ(120)を用意する工程と、前記主面(121)を被覆する絶縁膜(73)を形成する工程と、前記絶縁膜(73)から部分的に露出するように前記絶縁膜(73)にプラグ電極(80、83、84、96)を埋設する工程と、少なくとも前記プラグ電極(80、83、84、96)を被覆する第1電極膜(91、101、131)を形成する工程と、前記第1電極膜(91、101、131)の形成工程の後、前記第1電極膜(91、101、131)を酸素雰囲気に曝す暴露工程と、を含む、半導体装置(1)の製造方法。
 [C2]前記暴露工程の後、前記第1電極膜(91、101、131)を被覆する第2電極膜(92、102、133)を形成する工程をさらに含む、C1に記載の半導体装置(1)の製造方法。
 [C3]前記暴露工程の前に前記第1電極膜(91、101、131)を部分的に露出させるレイアウトを有するレジストマスク(132)を前記第1電極膜(91、101、131)の上に形成する工程と、前記暴露工程の前に前記レジストマスク(132)を介するエッチング法によって前記第1電極膜(91、101、131)の不要な部分を除去する工程と、をさらに含み、前記暴露工程は、前記第1電極膜(91、101、131)の除去工程の後、酸素灰化法によって前記レジストマスク(132)を除去する工程を含む、C1またはC2に記載の半導体装置(1)の製造方法。
 [D1]主面(3)を有するチップ(2)と、前記主面(3)に形成されたIGBT領域(8)と、前記主面(3)に形成されたダイオード領域(9)と、前記IGBT領域(8)を被覆するように前記主面(3)の上に形成され、前記ダイオード領域(9)を露出させる開口(77)を有する絶縁膜(73)と、平面視において前記開口(77)に重なるように前記ダイオード領域(9)において前記チップ(2)の内部に形成されたライフタイムキラー領域(85)と、を含む、半導体装置(1)。
 [D2]前記ダイオード領域(9)において前記主面(3)に形成されたトレンチ構造(50)をさらに含み、前記開口(77)は、前記トレンチ構造(50)を露出させている、D1に記載の半導体装置(1)。
 [D3]複数の前記トレンチ構造(50)が、前記主面(3)に形成され、前記開口(77)は、複数の前記トレンチ構造(50)を露出させている、D2に記載の半導体装置(1)。
 [D4]前記開口(77)は、前記ダイオード領域(9)に含まれる全ての前記トレンチ構造(50)を一括して露出させている、D2またはD3に記載の半導体装置(1)。
 [D5]前記ライフタイムキラー領域(85)は、前記チップ(2)の厚さ方向に前記トレンチ構造(50)に対向している、D2~D4のいずれか一つに記載の半導体装置(1)。
 [D6]1つの前記ダイオード領域(9)に対して複数の前記開口(77)が形成されていない、D1~D5のいずれか一つに記載の半導体装置(1)。
 [D7]前記ライフタイムキラー領域(85)は、前記チップ(2)の厚さ方向に関して、前記絶縁膜(73)に対向する対向領域(86)、および、前記絶縁膜(73)に対向しない非対向領域(87)を有している、D1~D6のいずれか一つに記載の半導体装置(1)。
 [D8]前記ライフタイムキラー領域(85)は、周縁部において前記非対向領域(87)を有している、D7に記載の半導体装置(1)。
 [D9]前記ライフタイムキラー領域(85)は、内方部において前記非対向領域(87)を有していない、D7またはD8に記載の半導体装置(1)。
 [D10]前記ライフタイムキラー領域(85)に占める前記非対向領域(87)の割合は、前記ライフタイムキラー領域(85)に占める前記対向領域(86)の割合を超えている、D7~D9のいずれか一つに記載の半導体装置(1)。
 [D11]前記絶縁膜(73)は、前記開口(77)を区画する開口壁面(79)を有し、前記ライフタイムキラー領域(85)は、前記チップ(2)の厚さ方向に前記開口壁面(79)に対向する部分を有している、D1~D10のいずれか一つに記載の半導体装置(1)。
 [D12]前記開口壁面(79)は、前記主面(3)との間で鋭角を成している、D11に記載の半導体装置(1)。
 [D13]前記ライフタイムキラー領域(85)は、3価元素および5価元素以外の要素によって形成された結晶欠陥を有している、D1~D12のいずれか一つに記載の半導体装置(1)。
 [D14]前記ライフタイムキラー領域(85)は、ヘリウムイオンによって形成された結晶欠陥を有している、D1~D13のいずれか一つに記載の半導体装置(1)。
 [D15]複数の前記ダイオード領域(9)が、前記主面(3)に形成され、複数の前記開口(77)が、複数の前記ダイオード領域(9)に対して1つずつ形成され、複数の前記ライフタイムキラー領域(85)が、複数の前記ダイオード領域(9)に対して1つずつ形成されている、D1~D14のいずれか一つに記載の半導体装置(1)。
 [D16]前記絶縁膜(73)から部分的に露出するように前記絶縁膜(73)のうち前記IGBT領域(8)を被覆する部分に埋設されたプラグ電極(80、83、84)と、前記ダイオード領域(9)を露出させるように前記プラグ電極(80、83、84)を被覆する第1電極膜(91)、ならびに、前記第1電極膜(91)および前記ダイオード領域(9)を被覆する第2電極膜(92)を含む主面電極(90)と、をさらに含む、D1~D15のいずれか一つに記載の半導体装置(1)。
 [D17]前記第1電極膜(91)は、前記ダイオード領域(9)を被覆しない、D16に記載の半導体装置(1)。
 [D18]前記第1電極膜(91)は、前記絶縁膜(73)よりも薄く、前記第2電極膜(92)は、前記第1電極膜(91)よりも厚い、D16またはD17に記載の半導体装置(1)。
 [D19]前記第2電極膜(92)は、前記第1電極膜(91)とは異なる導電材料を含む、D16~D18のいずれか一つに記載の半導体装置(1)。
 [D20]前記第1電極膜(91)は、単層構造を有し、前記第2電極膜(92)は、単層構造を有している、D16~D19のいずれか一つに記載の半導体装置(1)。
 [E1]主面(121)を有するウエハ(120)を用意する工程と、前記主面(121)にIGBT領域(8)およびダイオード領域(9)を形成する工程と、前記IGBT領域(8)および前記ダイオード領域(9)を被覆する絶縁膜(73)を形成する工程と、前記絶縁膜(73)のうち前記ダイオード領域(9)を被覆する部分を露出させるレイアウトを有するマスク(131、132)を前記絶縁膜(73)の上に形成する工程と、前記マスク(131、132)を利用して前記ウエハ(120)の内部にライフタイムキラー領域(85)を形成する工程と、前記マスク(131、132)を利用したエッチング法によって前記絶縁膜(73)のうち前記ダイオード領域(9)を被覆する部分を除去する工程と、を含む、半導体装置(1)の製造方法。
 [E2]前記ライフタイムキラー領域(85)の形成工程は、3価元素および5価元素以外の要素を前記ウエハ(120)の内部に照射する工程を含む、E1に記載の半導体装置(1)の製造方法。
 [E3]前記ライフタイムキラー領域(85)の形成工程は、水素イオンおよびヘリウムイオンのいずれか一方または双方を前記ウエハ(120)の内部に照射する工程を含む、E1またはE2に記載の半導体装置(1)の製造方法。
 [E4]前記マスク(131、132)の形成工程は、前記絶縁膜(73)を被覆する金属製の第1マスク(131)を形成する工程と、前記第1マスク(131)のうち前記ダイオード領域(9)に重なる部分を露出させるレイアウトを有する樹脂製の第2マスク(132)を前記第1マスク(131)の上に形成する工程と、前記第2マスク(132)を利用したエッチング法によって前記第1マスク(131)のうち前記ダイオード領域(9)に重なる部分を除去する工程と、を含み、前記ライフタイムキラー領域(85)の形成工程は、前記第2マスク(132)を利用して前記ウエハ(120)の内部に前記ライフタイムキラー領域(85)を形成する工程を含む、E1~E3のいずれか一つに記載の半導体装置(1)の製造方法。
 [E5]前記ライフタイムキラー領域(85)の形成工程の後、前記第1マスク(131)を残存させるように前記第2マスク(132)を除去する工程をさらに含み、前記絶縁膜(73)の除去工程は、前記第2マスク(132)の除去工程の後、前記第1マスク(131)を利用したエッチング法によって前記絶縁膜(73)のうち前記ダイオード領域(9)を被覆する部分を除去する工程を含む、E4に記載の半導体装置(1)の製造方法。
 [E6]前記第2マスク(132)の除去工程は、酸素灰化法によって前記第2マスク(132)を除去する工程を含む、E5に記載の半導体装置(1)の製造方法。
 [E7]前記絶縁膜(73)の除去工程の後、前記第1マスクを被覆する電極膜(92、102、133)を形成する工程をさらに含む、E5またはE6に記載の半導体装置(1)の製造方法。
 [E8]前記絶縁膜(73)の除去工程は、前記ダイオード領域(9)を露出させる開口(77)を区画する開口壁面(79)を有する前記絶縁膜(73)を形成する工程を含み、前記第1マスク(131)の除去工程は、前記開口壁面(79)を露出させる前記第1マスク(131)を形成する工程を含み、前記電極膜(92、102、133)の形成工程は、前記開口壁面(79)を被覆する前記電極膜(92、102、133)を形成する工程を含む、E7に記載の半導体装置(1)の製造方法。
 [E9]前記開口壁面(79)は、前記主面(121)との間で鋭角を形成する、E8に記載の半導体装置(1)の製造方法。
 [E10]前記第1マスク(131)の形成工程は、前記絶縁膜(73)よりも薄い前記第1マスク(131)を形成する工程を含み、前記電極膜(92、102、133)の形成工程は、前記第1マスク(131)よりも厚い前記電極膜(92、102、133)を形成する工程を含む、E7~E9のいずれか一つに記載の半導体装置(1)の製造方法。
 [E11]前記電極膜(92、102、133)は、前記第1マスク(131)とは異なる導電材料を含む、E7~E10のいずれか一つに記載の半導体装置(1)の製造方法。
 [E12]前記第1マスク(131)は、単層構造を有する、E7~E11のいずれか一つに記載の半導体装置(1)の製造方法。
 [E13]前記電極膜(92、102、133)は、単層構造を有する、E7~E12のいずれか一つに記載の半導体装置(1)の製造方法。
 [E14]前記第1マスク(131)の除去工程は、前記ダイオード領域(9)を被覆しない前記第1マスク(131)を形成する工程を含む、E4~E13のいずれか一つに記載の半導体装置(1)の製造方法。
 [E15]前記ダイオード領域(9)の形成工程は、前記主面(121)の表層部にアノード領域(46)を形成する工程を含み、前記第2マスク(132)の形成工程は、前記第1マスク(131)のうち前記アノード領域(46)に重なる部分を露出させるレイアウトを有する前記第2マスク(132)を形成する工程を含み、前記第1マスク(131)の除去工程は、前記第1マスク(131)のうち前記アノード領域(46)に重なる部分を除去する工程を含む、E4~E14のいずれか一つに記載の半導体装置(1)の製造方法。
 [E16]前記ダイオード領域(9)の形成工程は、前記主面(121)にトレンチ電極構造(50)を形成する工程を含み、前記第1マスク(131)の除去工程は、前記第1マスク(131)のうち前記トレンチ電極構造(50)に重なる部分を除去する工程を含む、E4~E15のいずれか一つに記載の半導体装置(1)の製造方法。
 [E17]複数の前記トレンチ電極構造(50)が形成され、前記第1マスク(131)のうち複数の前記トレンチ電極構造(50)に重なる部分が除去される、E16に記載の半導体装置(1)の製造方法。
 [E18]前記第1マスク(131)の形成工程の前に、前記絶縁膜(73)から部分的に露出するように前記絶縁膜(73)のうち前記IGBT領域(8)を被覆する部分にプラグ電極(80、83、84)を埋設する工程をさらに含み、前記第1マスク(131)の形成工程は、前記プラグ電極(80、83、84)を被覆する前記第1マスク(131)を形成する工程を含む、E4~E17のいずれか一つに記載の半導体装置(1)の製造方法。
 [E19]前記プラグ電極(80、83、84)は、タングステンを含む、E18に記載の半導体装置(1)の製造方法。
 [E20]前記IGBT領域(8)の形成工程は、前記主面(121)にゲートトレンチ構造(20)を形成する工程と、前記主面(121)の表層部において前記ゲートトレンチ構造(20)に沿う領域に第1導電型(p型)のベース領域(15)を形成する工程と、前記主面(121)の表層部において前記ゲートトレンチ構造(20)に沿う領域に第2導電型(n型)のエミッタ領域(40)を形成する工程と、を含み、前記プラグ電極(80、83、84)の形成工程は、前記エミッタ領域(40)に電気的に接続される前記プラグ電極(80)を形成する工程を含む、E18またはE19に記載の半導体装置(1)の製造方法。
 以上、実施形態が詳細に説明されたが、これらは技術的内容を明示する具体例に過ぎない。この明細書から抽出される種々の技術的思想は、明細書内の説明順序等に制限されずにそれらの間で適宜組み合わせ可能である。
1   半導体装置
2   チップ
3   第1主面
8   IGBT領域
9   ダイオード領域
15  ベース領域
20  第1トレンチ電極構造(ゲートトレンチ構造)
40  エミッタ領域
41  CS領域(キャリアストレージ領域)
42  コンタクト孔
43  コンタクト領域
46  アノード領域
50  第3トレンチ電極構造
73  層間絶縁膜
77  ダイオード開口
79  開口壁面
80  第1プラグ電極
83  第2プラグ電極
84  第3プラグ電極
85  ライフタイムキラー領域
86  対向領域
87  非対向領域
90  エミッタ主面電極
91  第1エミッタ電極膜
92  第2エミッタ電極膜
120 ウエハ
121 第1ウエハ主面
131 第1ベース電極膜
132 レジストマスク
133 第2ベース電極膜

Claims (20)

  1.  主面を有するチップと、
     前記主面に形成されたIGBT領域と、
     前記主面に形成されたダイオード領域と、
     前記ダイオード領域を露出させ、前記IGBT領域を被覆するように前記主面の上に形成された絶縁膜と、
     前記絶縁膜から部分的に露出するように前記絶縁膜のうち前記IGBT領域を被覆する部分に埋設されたプラグ電極と、
     前記ダイオード領域を露出させるように前記プラグ電極を被覆する第1電極膜、ならびに、前記第1電極膜および前記ダイオード領域を被覆する第2電極膜を含む主面電極と、を含む、半導体装置。
  2.  前記第1電極膜は、前記ダイオード領域を被覆しない、請求項1に記載の半導体装置。
  3.  前記ダイオード領域は、前記主面の表層部に形成されたアノード領域を含み、
     前記第1電極膜は、前記アノード領域を露出させ、
     前記第2電極膜は、前記アノード領域を被覆している、請求項1または2に記載の半導体装置。
  4.  前記ダイオード領域は、前記主面に形成されたトレンチ電極構造を含み、
     前記第1電極膜は、前記トレンチ電極構造を露出させ、
     前記第2電極膜は、前記トレンチ電極構造を被覆している、請求項1~3のいずれか一項に記載の半導体装置。
  5.  複数の前記トレンチ電極構造が、前記主面に形成され、
     前記第1電極膜は、複数の前記トレンチ電極構造を露出させ、
     前記第2電極膜は、複数の前記トレンチ電極構造を被覆している、請求項4に記載の半導体装置。
  6.  前記第1電極膜は、前記プラグ電極を直接被覆し、
     前記第2電極膜は、前記第1電極膜および前記ダイオード領域を直接被覆している、請求項1~5のいずれか一項に記載の半導体装置。
  7.  前記第2電極膜は、前記第1電極膜を挟んで前記プラグ電極に対向する部分を有している、請求項1~6のいずれか一項に記載の半導体装置。
  8.  前記絶縁膜は、前記ダイオード領域を露出させる開口を区画する開口壁面を有し、
     前記第1電極膜は、前記開口壁面を露出させ、
     前記第2電極膜は、前記開口壁面を被覆している、請求項1~7のいずれか一項に記載の半導体装置。
  9.  前記開口壁面は、前記主面との間で鋭角を成している、請求項8に記載の半導体装置。
  10.  前記第1電極膜は、前記絶縁膜よりも薄く、
     前記第2電極膜は、前記第1電極膜よりも厚い、請求項1~9のいずれか一項に記載の半導体装置。
  11.  前記プラグ電極は、タングステンを含む、請求項1~10のいずれか一項に記載の半導体装置。
  12.  前記第1電極膜は、アルミニウム、アルミニウム合金、銅、銅合金、タングステン、モリブデン、チタン、窒化チタンおよびニッケルのうちの少なくとも1つを含み、
     前記第2電極膜は、アルミニウム、アルミニウム合金、銅および銅合金のうちの少なくとも1つを含む、請求項1~11のいずれか一項に記載の半導体装置。
  13.  前記第2電極膜は、前記第1電極膜とは異なる導電材料を含む、請求項1~12のいずれか一項に記載の半導体装置。
  14.  前記第1電極膜は、単層構造を有し、
     前記第2電極膜は、単層構造を有している、請求項1~13のいずれか一項に記載の半導体装置。
  15.  前記IGBT領域は、前記主面の表層部に形成された第1導電型のベース領域、前記ベース領域を貫通するように前記主面に形成されたゲートトレンチ構造、および、前記ベース領域の表層部において前記ゲートトレンチ構造に沿う領域に形成された第2導電型のエミッタ領域を含み、
     前記プラグ電極は、前記エミッタ領域に電気的に接続されている、請求項1~14のいずれか一項に記載の半導体装置。
  16.  前記IGBT領域は、前記エミッタ領域を露出させるように前記主面に形成されたコンタクト孔、および、前記ベース領域内において前記コンタクト孔に沿う領域に形成された第1導電型のコンタクト領域を含み、
     前記プラグ電極は、前記コンタクト孔内において前記エミッタ領域および前記コンタクト領域に電気的に接続されている、請求項15に記載の半導体装置。
  17.  複数の前記IGBT領域が、前記主面に形成され、
     複数の前記ダイオード領域が、前記主面に形成され、
     複数の前記プラグ電極が、複数の前記IGBT領域に電気的に接続され、
     前記第1電極膜は、複数の前記ダイオード領域を露出させるように複数の前記プラグ電極を被覆し、
     前記第2電極膜は、前記第1電極膜および複数の前記ダイオード領域を被覆している、請求項1~16のいずれか一項に記載の半導体装置。
  18.  主面を有するウエハを用意する工程と、
     前記主面を被覆する絶縁膜を形成する工程と、
     前記絶縁膜から部分的に露出するように前記絶縁膜にプラグ電極を埋設する工程と、
     少なくとも前記プラグ電極を被覆する第1電極膜を形成する工程と、
     前記第1電極膜の形成工程の後、前記第1電極膜を酸素雰囲気に曝す暴露工程と、を含む、半導体装置の製造方法。
  19.  前記暴露工程の後、前記第1電極膜を被覆する第2電極膜を形成する工程をさらに含む、請求項18に記載の半導体装置の製造方法。
  20.  前記暴露工程の前に前記第1電極膜を部分的に露出させるレイアウトを有するレジストマスクを前記第1電極膜の上に形成する工程と、
     前記暴露工程の前に前記レジストマスクを介するエッチング法によって前記第1電極膜の不要な部分を除去する工程と、をさらに含み、
     前記暴露工程は、前記第1電極膜の除去工程の後、酸素灰化法によって前記レジストマスクを除去する工程を含む、請求項18または19に記載の半導体装置の製造方法。
PCT/JP2022/041528 2022-02-18 2022-11-08 半導体装置およびその製造方法 WO2023157395A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024500953A JPWO2023157395A1 (ja) 2022-02-18 2022-11-08
CN202280085854.7A CN118556294A (zh) 2022-02-18 2022-11-08 半导体装置及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-023926 2022-02-18
JP2022023925 2022-02-18
JP2022-023925 2022-02-18
JP2022023926 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157395A1 true WO2023157395A1 (ja) 2023-08-24

Family

ID=87577925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041528 WO2023157395A1 (ja) 2022-02-18 2022-11-08 半導体装置およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2023157395A1 (ja)
WO (1) WO2023157395A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160123A (ja) * 1991-08-29 1993-06-25 Sony Corp 配線形成方法
JPH09260376A (ja) * 1996-03-18 1997-10-03 Toshiba Corp 半導体装置およびその製造方法
WO2016125490A1 (ja) * 2015-02-03 2016-08-11 富士電機株式会社 半導体装置及びその製造方法
WO2018056233A1 (ja) * 2016-09-20 2018-03-29 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2019192743A (ja) * 2018-04-24 2019-10-31 三菱電機株式会社 半導体装置および半導体装置の製造方法
WO2019230851A1 (ja) * 2018-05-30 2019-12-05 ローム株式会社 半導体装置
JP2020065000A (ja) * 2018-10-18 2020-04-23 三菱電機株式会社 半導体装置
WO2020080476A1 (ja) * 2018-10-18 2020-04-23 ローム株式会社 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160123A (ja) * 1991-08-29 1993-06-25 Sony Corp 配線形成方法
JPH09260376A (ja) * 1996-03-18 1997-10-03 Toshiba Corp 半導体装置およびその製造方法
WO2016125490A1 (ja) * 2015-02-03 2016-08-11 富士電機株式会社 半導体装置及びその製造方法
WO2018056233A1 (ja) * 2016-09-20 2018-03-29 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2019192743A (ja) * 2018-04-24 2019-10-31 三菱電機株式会社 半導体装置および半導体装置の製造方法
WO2019230851A1 (ja) * 2018-05-30 2019-12-05 ローム株式会社 半導体装置
JP2020065000A (ja) * 2018-10-18 2020-04-23 三菱電機株式会社 半導体装置
WO2020080476A1 (ja) * 2018-10-18 2020-04-23 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2023157395A1 (ja) 2023-08-24

Similar Documents

Publication Publication Date Title
US9576841B2 (en) Semiconductor device and manufacturing method
CN110914996B (zh) 半导体器件
CN111081779B (zh) 一种屏蔽栅沟槽式mosfet及其制造方法
US11069529B2 (en) Semiconductor device with at least one lower-surface side lifetime control region
JP6666671B2 (ja) 半導体装置
JP7407252B2 (ja) 半導体装置
WO2017006711A1 (ja) 半導体装置
CN113314603B (zh) 半导体装置
JP7547440B2 (ja) 半導体装置
US20220130998A1 (en) Power semiconductor devices including angled gate trenches
JP7327672B2 (ja) 半導体装置
WO2023127255A1 (ja) 半導体装置
US20170207330A1 (en) Semiconductor device and method for manufacturing the same
US11677019B2 (en) IGBT device with narrow mesa and manufacture thereof
WO2023157395A1 (ja) 半導体装置およびその製造方法
US20220013645A1 (en) Semiconductor device
CN118556294A (zh) 半导体装置及其制造方法
JP7564425B2 (ja) 半導体装置及びその製造方法
JP5023423B2 (ja) 縦型絶縁ゲート型電界効果トランジスタおよびその製造方法
JP7099013B2 (ja) 絶縁ゲート型半導体装置
WO2023157422A1 (ja) 半導体装置
JP7486407B2 (ja) 半導体装置および半導体装置の製造方法
WO2024180973A1 (ja) Rc-igbtおよびrc-igbtの製造方法
WO2023084939A1 (ja) 半導体装置の製造方法および半導体装置
US20240088221A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024500953

Country of ref document: JP

Kind code of ref document: A