WO2023155383A1 - 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 - Google Patents
一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 Download PDFInfo
- Publication number
- WO2023155383A1 WO2023155383A1 PCT/CN2022/109314 CN2022109314W WO2023155383A1 WO 2023155383 A1 WO2023155383 A1 WO 2023155383A1 CN 2022109314 W CN2022109314 W CN 2022109314W WO 2023155383 A1 WO2023155383 A1 WO 2023155383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pcl
- perfluoropolyether
- modified polycaprolactone
- microspheres
- fabric
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/507—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/53—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2387/00—Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/10—Repellency against liquids
- D06M2200/12—Hydrophobic properties
Definitions
- the invention belongs to polymer technology, and in particular relates to a perfluoropolyether block-modified polycaprolactone, microspheres and a preparation method thereof.
- Perfluoropolyether is a kind of fluorine-containing polymer that is liquid at room temperature. It was first synthesized and reported by Gumprecht of DuPont Company in 1965. The main chain of PFPE is similar to that of polyether, and the monomers are connected by COC bonds. Compared with perfluoroolefins, it is characterized by flexibility and low glass transition temperature. On the other hand, the presence of CF bonds endows polymers with many special properties, such as excellent hydrophobicity, chemical inertness, insulation, thermal stability, oxidation stability, lubricity, corrosion resistance, and low saturated vapor pressure, etc.
- perfluoropolyether carboxylic acid PFPE-COOH
- DCC N,N' -dicyclohexylcarbodiimide
- PCL-OH perfluoropolyether carboxylic acid
- the polyether block is introduced into the polycaprolactone macromolecular chain end to prepare the hydrophobic block copolymer PCL- b -PFPE.
- the structure of the modified product was characterized by FTIR, XPS and EDS. Modified polymer solutions with different concentrations were prepared, and microspheres were prepared by electrostatic spraying technology.
- a perfluoropolyether block-modified polycaprolactone using perfluoropolyether carboxylic acid as a raw material, undergoes esterification reaction with PCL-OH, and inserts perfluoropolyether carboxylic acid into polycaprolactone macromolecular chain ends , to obtain a hydrophobically modified block copolymer PCL- b -PFPE, that is, a perfluoropolyether block-modified polycaprolactone.
- the carboxyl group of the perfluoropolyether carboxylic acid is activated with N,N' -dicyclohexylcarbodiimide (DCC), and then undergoes esterification reaction with PCL-OH.
- DCC N,N' -dicyclohexylcarbodiimide
- a perfluoropolyether block-modified polycaprolactone microsphere coating after dissolving the above-mentioned perfluoropolyether block-modified polycaprolactone in a solvent, using electrostatic spraying to obtain a perfluoropolyether block-modified coating Polycaprolactone microsphere film.
- PCL polycaprolactone
- the solvent for dissolving perfluoropolyether block-modified polycaprolactone is CHCl3 and DMF, or only CHCl3 ; the concentration of perfluoropolyether block-modified polycaprolactone solution 2 to 5%.
- the air permeability of the polyester fabric after microsphere finishing was tested by the air permeability meter. Compared with the air permeability of the original polyester fabric of 481.5mm/s, the air permeability of the polyester fabric after finishing under the conditions of 20%, 40%, 60%, and 80% humidity The rates are 430.6, 429.2, 429.8, 432.5 mm/s, respectively, indicating that the large number of holes on the surface of the microspheres in the microsphere coating is conducive to the improvement of the air permeability of the fabric, and the coating treatment has little effect on the air permeability of the polyester fabric.
- Figure 1 is the infrared spectra of raw materials, final products and intermediate products: a. PCL; b. PCL-OH; c. PFPE-COOH; d. PCL- b -PFPE.
- Figure 2 is the XPS fitting spectrum of PCL- b -PFPE.
- Figure 3 is the TGA spectrum of PCL- b -PFPE.
- Figure 6 shows the microscopic morphology and particle size distribution of PCL- b -PFPE microspheres under different voltages (upper right inset): a. 10kV; b. 11kV; c. 12kV; d. 13kV.
- Figure 9 shows the static contact angles of water on different film surfaces: a. PCL; b. PCL- b -PFPE; c. Humidity 20% coating film; d. Humidity 40% coating film; e. Humidity 60% coating film ; f. Humidity 80% coating film.
- the whiteness of polyester fabrics before and after finishing was tested.
- the fabric is folded into 4 layers, and the average value is measured 5 times at different positions.
- the air permeability of the original polyester fabric and the polyester fabric finished with microsphere coating under different humidity were tested by automatic air permeability measuring instrument. Refer to the standard GB/T 5452-1997 "Textiles - Determination of Air Permeability of Fabrics", each sample is tested 10 times and the average value is taken.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物,以全氟聚醚羧酸(PFPE-COOH)为改性剂,以N,N'-二环己基碳二亚胺(DCC)活化后,与PCL?OH发生酯化反应,将全氟聚醚嵌段引入聚己内酯大分子链端,制得疏水型嵌段共聚物PCL-b-PFPE。改性产物结构通过FTIR、XPS、EDS进行表征。配制不同浓度的改性聚合物溶液,通过静电喷射技术制备微球。采用静电喷射法在涤纶织物上喷涂微球涂层,通过WCA测试经不同湿度下微球涂层整理后涤纶织物的接触角,达到156.3±2.6°,与原涤纶织物透气率481.5mm/s相比,微球涂层中微球表面存在的大量孔洞有利于织物透气性的提升,涂层处理对涤纶织物的透气性影响较小。
Description
本发明属于聚合物技术,具体涉及一种全氟聚醚嵌段改性聚己内酯及其微球与制备方法。
全氟聚醚(Perfluorinatedpolyether,PFPE)是一类常温下为液体的含氟聚合物,于1965年杜邦公司Gumprecht首先合成并报道,PFPE主链与聚醚结构相似,单体间以C-O-C键连接,与全氟烯烃相比,它具有可挠曲性和玻璃化温度低的特点。另一方面,C-F键的存在赋予聚合物许多特殊性能,如优异的疏水性、化学惰性、绝缘性、热稳定性、氧化安定性,润滑性、耐腐蚀性和低饱和蒸汽压等。PCL是一种半结晶型聚合物,其结晶度高达69%,分子量通常在3~80kg/mol范围内。随组成形态不同,PCL玻璃化转变温度和熔融温度(T
m=56~65℃)略有不同。T
g较低,因而分子链非常柔顺,具有极大的延展性。T
m在60℃左右,使得PCL易于低温成型。现有技术未见全氟聚醚嵌段改性聚己内酯及其产物的报道。
本发明以全氟聚醚羧酸(PFPE-COOH)为改性剂,以
N,N'-二环己基碳二亚胺(DCC)活化后,与PCL-OH发生酯化反应,将全氟聚醚嵌段引入聚己内酯大分子链端,制得疏水型嵌段共聚物PCL-
b-PFPE。改性产物结构通过FTIR、XPS、EDS进行表征。配制不同浓度的改性聚合物溶液,通过静电喷射技术制备微球。
一种全氟聚醚嵌段改性聚己内酯,以全氟聚醚羧酸为原料,与PCL-OH发生酯化反应,将全氟聚醚羧酸嵌入聚己内酯大分子链端,制得疏水改性嵌段共聚物PCL-
b-PFPE,即全氟聚醚嵌段改性聚己内酯。优选的,全氟聚醚羧酸用
N,N'-二环己基碳二亚胺(DCC)活化其端羧基后与PCL-OH发生酯化反应。
一种全氟聚醚嵌段改性聚己内酯微球涂层,将上述全氟聚醚嵌段改性聚己内酯溶于溶剂后,利用静电喷射,得到全氟聚醚嵌段改性聚己内酯微球薄膜。
一种疏水织物,将全氟聚醚嵌段改性聚己内酯静电喷射在乳液处理的织物表面,烘干,得到疏水织物。优选的,织物为涤纶,乳液为醋丙乳液。乳液处理织物时,浴比为1∶(150~250)。
本发明中,用6-氨基-1-己醇氨解活化将聚己内酯(PCL),使端链接上羟基,提高其反应活性,制得PCL-OH。
本发明中,酯化反应为35~45℃下反应4~6h。
本发明中,静电喷射时,溶解全氟聚醚嵌段改性聚己内酯的溶剂为CHCl
3与DMF,或者仅仅为CHCl
3;全氟聚醚嵌段改性聚己内酯溶液的浓度为2~5%。
本发明中,静电喷射时,流速为0.5~1.2mL/h,优选0.6~1.0mL/h;纺丝电压8~15kV,优选10~13kV;温度10~25℃;湿度20%~80%。
本发明以全氟聚醚羧酸(PFPE-COOH)为原料,以
N,N'-二环己基碳二亚胺(DCC)活化后,与PCL-OH发生酯化反应,将全氟聚醚嵌段引入聚己内酯大分子链端,制得疏水型嵌段共聚物PCL-
b-PFPE。改性产物结构通过FTIR、XPS进行表征。配制不同浓度的改性聚合物溶液,通过静电喷射工艺制备微球,采用不同流速、电压、温度、湿度工艺参数,对制得微球的表面形貌用SEM进行表征,并通过ImageJ软件对微球粒径大小及分布进行测量计算。结果显示,制得微球粒径随电喷液流速的增大而增大;随电压的增大分布变宽;温度较高有利于溶剂挥发,形成更均匀的微球。此外,电喷液采用的溶剂与环境湿度对微球的表面形貌影响很大,氯仿(CHCl
3)作为溶剂时能呈现较好的微球形貌,使用
N,N
’ -二甲基甲酰胺(DMF) /氯仿混合溶剂时呈“囊坑”形貌;而且,随着湿度的增加,微球表面粗糙度增大。通过WCA测试发现不同形貌微球堆积对水接触角不同,测得湿度为20%,40%,60%,80%时静电喷射微球涂层对水静态接触角分别为148.8±1.6°,153.4±2.5°,157.2±1.9°,164.6±3.2°,对应的滚动接触角分别为7.6±0.2°,5.9±0.1°,4.8±0.1°,4.2±0.4°,可见微球表面粗糙度越大,对水接触角越大,疏水效果越好。证实了疏水材料表面粗糙化有利于疏水效果的提升。
采用静电喷射法在涤纶织物上喷涂微球涂层,通过调节湿度控制微球形貌,发现喷涂到涤纶纤维上的微球仍呈现“湿度越大表面越粗糙”的规律。通过WCA测试经不同湿度下微球涂层整理后涤纶织物的接触角,20%、40%、60%、80%湿度下处理后织物的对水接触角分别为147.1±1.8°、150.9±1.5°、156.3±2.6°、155.9±3.3°,水粘附力分别为60.5μN、50.5μN、21.0μN、16.0μN,证实微球涂层整理后的涤纶织物具有超疏水性能。通过透气量仪对微球整理后涤纶织物的透气性进行测试,与原涤纶织物透气率481.5mm/s相比,20%、40%、60%、80%湿度条件下整理后涤纶织物的透气率分别为430.6,429.2,429.8,432.5mm/s,说明微球涂层中微球表面存在的大量孔洞有利于织物透气性的提升,涂层处理对涤纶织物的透气性影响较小。
图1为原料、终产物及中间产物红外光谱图: a.
PCL; b. PCL-OH; c. PFPE-COOH; d. PCL-
b-PFPE。
图2为 PCL-
b-PFPE的XPS拟合图谱。
图3为PCL-
b-PFPE的TGA图谱。
图4为不同溶剂体系下PCL-
b-PFPE微球的扫描电镜照片: a和a’. CHCl
3: DMF=4:1; b 和b’. CHCl
3。
图5为不同流速下PCL-
b-PFPE微球的扫描电镜图和粒径分布(右上插图): a. 0.6mL/h; b. 0.8mL/h; c. 1.0mL/h。
图6为不同电压下PCL-
b-PFPE微球的微观形貌和粒径分布(右上插图): a. 10kV; b. 11kV; c. 12kV; d. 13kV。
图7为不同温度下PCL-
b-PFPE微球的微观形貌和粒径分布(右上插图): a. 10℃; b.
15℃; c. 20℃; d.
25℃。
图8为不同环境湿度下PCL-
b-PFPE微球的微观形貌和粒径分布(右上插图): a. 20%; b. 40%; c. 60%; d. 80%。
图9为不同膜表面对水静态接触角: a. PCL; b.
PCL-
b-PFPE; c. 湿度20%涂层膜; d. 湿度40%涂层膜; e. 湿度60%涂层膜; f. 湿度80%涂层膜。
图10为不同环境湿度下PCL-
b-PFPE微球在涤纶织物表面的微观形貌和粒径分布(右上插图): a. 20%; b. 40%; c. 60%; d. 80%。
图11为原涤纶布及不同环境湿度下PCL-
b-PFPE微球在涤纶织物表面的接触角测试: a. 原始-PET;
b. 20%-PET; c. 40%-PET; d. 60%-PET; e. 80%-PET。
图12为不同环境湿度下PCL-
b-PFPE微球在涤纶织物表面的粘附力和对水接触角(插图): a. 20%-PET; b. 40%-PET; c. 60%-PET; d.
80%-PET。
全氟聚醚羧酸(Perfluorinated
polyether carboxylic acid,PFPE-COOH)化学结构式如下:
。
其是以FPE为原料,在氟化物的存在下先后与醇、碱性盐、浓硫酸反应蒸馏而得。链段羧基的引入,使得全氟聚醚具有反应活性,扩大了其应用范围。
实验材料:
。
实验试剂与原料:
。
以傅里叶变换红外光谱(FT-IR)对产物分子结构进行测试。谱图横坐标为波数(cm
-1),纵坐标为红外透过率。制样时使用HY-12型红外压片机及配套压模,用溶液制模法将样品溶解于适当的溶剂,再将溶液滴在压制好的溴化钾晶片上,待溶剂完全挥发后对样品薄膜进行测试。设置所测谱图的扫描范围(中红外区域)400-4000
cm
-1,扫描精度为0.4 cm
-1,扫描24次。
由XPS对聚合物薄膜表面元素进行分析。测试时取20~30mg样品粉末,采用Mono AlKa射线源进行测试,以C元素的结合能(284.6 eV)为基准。样品表面形貌以SEM进行测试。将样品粘贴到导电胶上,再贴到样品台上。喷金120s后进样拍摄。静态接触角测试(WCA)。样品表面润湿性能评估,在每块需要测试的样品表面上滴3µL的去离子水,记录液滴形状随时间变化的图像。
能量色散X-射线能谱(EDS)测试。采用英国牛津SwiftED3000型能谱仪对微球涂层膜表面的元素分布及含量进行测试。
粘附力测试。采用环法测量处理后织物表面的界面张力。用移液枪吸取4μL去离子水,移至金属测试圆环上并排出,成球状液滴。将织物平整粘贴到载玻片上,置于测试环正下方。打开测试开关,使装有液滴的测试环以0.1mm/s的速度向织物靠近,测试环从接触织物表面到离开时所生成的曲线最大值为样品表面的粘附力值。
对整理前后涤纶织物的白度进行测试。织物折叠为4层,在不同位置测量5次取平均值。采用全自动透气测量仪对原涤纶织物及不同湿度下微球涂层整理后的涤纶织物进行透气率测试。参照标准GB/T
5452-1997《纺织品 织物透气性的测定》,每个样品测试10次取平均值。
合成例:
。
首先,用6-氨基-1-己醇氨解活化将聚己内酯(PCL),使PCL链端接入羟基(PCL-OH),提高其反应活性,产物在3441cm
-1和1635 cm
-1处独有的特征峰分别归属于-OH、C-N伸缩振动峰,这说明PCL链上已成功引入-OH活性基团。
实施例一:
。
以全氟聚醚羧酸(PFPE-COOH)为原料,用
N,N'-二环己基碳二亚胺(DCC)活化其端羧基,与PCL-OH发生酯化反应,将全氟聚醚羧酸嵌入聚己内酯大分子链端,制得疏水改性嵌段共聚物PCL-
b-PFPE。
将3g PFPE-COOH(1mmol)溶解于90mL 1,3-双(三氟甲基)苯与四氢呋喃(THF)1:2混合溶剂(体积比)中,加入207mg DCC(1mmol),升温至40℃,氮气保护下,搅拌反应2h,然后加入PCL-OH溶液,40℃下,搅拌反应5h;反应结束后,在正己烷中析出白色粉絮状粗产物,滤除溶剂后将产物分散于混合溶剂中(1,3-双(三氟甲基)苯:乙醇=1:50,体积比)清洗除过量的PFPE-COOH,水洗除溶剂,吸干水分置于真空烘箱,30℃下干燥24h,得终产物PCL-
b-PFPE。将8g
PCL-OH(0.1mmol)30℃下溶解于240mL 1,3-双(三氟甲基)苯与THF 1:2混合溶剂(体积比)中,搅拌使充分溶解,得到上述PCL-OH溶液。
采用傅里叶变换红外鉴定了合成产物结构,图1中,与PCL、PCL-OH相比,共聚产物PCL-
b-PFPE于1239 cm
-1、1189
cm
-1、1145 cm
-1、1099 cm
-1处出现了归属于C-F的特征吸收峰,表明全氟链段被引入PCL分子链中。此外,3439
cm
-1处归属于仲酰胺-CONH-峰;2938 cm
-1,2865
cm
-1处为C-H(-CH
2)的对称伸缩振动峰;1723 cm
-1、1635
cm
-1处分别为为C=O、C-N的伸缩振动峰。
对疏水共聚物PCL-
b-PFPE表面进行C 1s窄谱扫描,分峰拟合结果如图2所示。其中在284.7 eV附近的C1s峰归属为C-H,286.2 eV处的特征峰归属于C-O,287.6 eV处出现O=C-N峰,288.7 eV处为PCL链上的O=C-O峰,在293.8 eV处出现C-F特征峰,结果表明,PFPE链段被成功引入共聚产物分子链中。
对改性前后聚合物的热稳定性进行分析,由图3可知,未改性PCL的初始分解温度为380℃,最终分解温度为460℃,残碳率为13%左右;嵌段改性后的PCL-
b-PFPE初始分解温度略微降低,为340℃,最终分解温度提高至480℃,残碳率为17%。说明热分解时,-CONH-基团的化学键首先发生断裂,使得初始分解温度降低,而PFPE的热稳定性较好,使产物的最终分解温度较PCL高。TGA测试表明PFPE链段的引入对PCL耐热性能影响不大。
称取PCL-
b-PFPE聚合物样品溶解于溶剂中,配制成不同浓度(g/mL)的溶液。室温搅拌4h后,置于超声波清洗器中超声震荡30min,使聚合物与溶剂充分混合,静置4h消泡备用。采用静电喷射法,制得PCL-
b-PFPE微球。
实施例二:由PCL-
b-PFPE制备微球时静电喷射工艺参数:纺丝液浓度2%、纺丝电压12kV、接收距离16cm、给液速率1mL/h、温度17.5±0.5℃、湿度40±5%,研究了不同溶剂体系对微球形貌的影响。图4分别是不同溶剂体系下微球的扫描电镜照片。其中a采用了CHCl
3与DMF(CHCl
3:DMF=4:1)的混合溶剂体系,观察到微纤和不规则结构共存的形貌,得不到微球;而采用纯CHCl
3溶剂体系的b图中呈现表面带有微孔的微球形貌。
实施例三:固定其他工艺参数(浓度3%/CHCl
3、纺丝电压12kV、接收距离16cm、温度15.0±1℃、湿度20±2%),研究了不同流速制备的微球形貌。图5分别是不同流速下微球的扫描电镜图及粒径分布情况。观察到流速为0.6mL/h时,微球大小不一,粒径分布较宽,峰值为5.8μm;流速为0.8mL/h时,微球粒径分布较均匀集中,峰值为8.2μm;流速为1.0mL/h时,粒径峰值为9.2μm,出现部分粘连现象。
实施例四:固定其他工艺参数(浓度3%/CHCl
3、流速1.0mL/h、接收距离16cm、温度15.0±1℃、湿度20±2%),研究不同电压制备微球的形貌。图6分别是不同电压下微球的扫描电镜照片及粒径分布情况。观察到电压从10kV升至13kV时,微球粒径分布变宽。产生这一结果的原因在于,流速一定时,电压越高,针头处的液滴所受电场力越强,更容易劈裂成次级液滴和次次级液滴,从而获得更宽的粒径分布。
实施例五:图7分别是不同温度下微球的扫描电镜照片及粒径分布情况,其中,静电喷射工艺参数为:聚合物溶液浓度3%/CHCl
3、电压10kV、流速0.8mL/h、接收距离16cm、湿度20±5%。观察到温度为10~15℃时,微球形貌较差,出现明显的粘连和团聚,此时温度较低,溶剂挥发慢,导致部分微球还未固化成型就降落到接收板上;随着温度增加至20℃~25℃时,溶剂挥发变快,微球容易固化成型,粒径分布明显变窄。
实施例六:研究了不同环境湿度静电喷射制微球的表面形貌,制备时固定其他工艺参数(浓度3%/CHCl
3、电压10kV、流速0.8mL/h、接收距离16cm、温度17±1℃),在不同环境湿度下制得微球的表面形貌及微球直径分布情况如图8。其中,a’~d’为微球表面的局部放大形貌图。可以发现,当环境湿度为20%时,制得的微球表面呈现褶皱形貌;湿度40%时,微球表面出现微孔;湿度升至60%时,微孔变深变大,呈现凹坑状形貌;湿度为80%时,凹坑进一步加深,呈现类似“话梅”形貌。
应用实施例:将聚合物配制浓度为10%(g/mL)稀溶液。室温搅拌4h后,倒入直径为60mm的圆底超平皿中静置5天成膜,挥发溶剂,制得平滑薄膜。
采用静态接触角测试研究不同粗糙结构下微球表面疏水性变化。如图9,a、b分别为PCL、PCL-
b-PFPE膜表面对水接触角,c、d、e、f分别为20%、40%、60%、80%湿度条件下PCL-
b-PFPE制备的微球(实施例六)表面对水静态接触角。可以看出,PCL膜对水接触角为88.6°,疏水改性后的PCL-
b-PFPE膜接触角增大至111.2°,说明已经成功对PCL进行疏水改性。将PCL-
b-PFPE制备成微球,测涂层膜接触角在148.8°以上,与平滑膜比较增加了37.6°,说明在疏水物质表面构筑具有粗糙度有利于增加其疏水性。随着静电喷射环境湿度增加,制得微球的表面粗糙度增加,其所形成涂层对水接触角呈增大趋势,分别为153.4±2.5℃,157.2±1.9℃和164.6±3.2℃。说明在微球形成的一级粗糙结构表面继续构筑微孔、凹坑类二级粗糙结构,有利于提升超疏水性能。
结合滚动角测试表征了不同湿度条件下静电喷射微球涂层的疏水效果。测得20%、40%、60%、80%湿度条件下制备微球涂层滚动角分别为7.6±0.2°、5.9±0.1°、4.9±0.1°、4.2±0.4°,其变化趋势与静态接触角测试结果一致,进一步证实二级粗糙结构有利于改善涂层疏水性能。
涂层(coating)是一种通过化学或物理过程在材料表面上产生一层具有完全不同性质的新物质固态连续膜,以防护、绝缘、阻燃、装饰等目的,涂布于金属,织物,塑料等基体上的薄层。超疏水涂层是一种具有特殊表面浸润性质的涂层,其与水的接触角大于 150°且滚度角小于10°,有独特的非润湿特性,并具有防污、防冰、抗菌、防腐蚀和自清洁等特性,可广泛应用于汽车、建筑、农业、军事、纺织等生产及生活的各个方面。除了涂层材料的化学成分,表面形貌也会极大地影响着亲疏水性。将实施例六制备微球的工艺用于喷涂涤纶织物,喷涂时先以醋丙乳液对涤纶织物进行浸轧预处理,微球喷涂后烘干交联,乳液中胶膜可赋予微球一定的牢度,从而实现涤纶织物超疏水静电喷涂。
实施例七:静电植绒胶(醋丙乳液)的制备:(1)预乳液:将78g去离子水,乳化剂(OP-10:2g,十二烷基硫酸钠:1g),混合单体(醋酸乙烯酯:83g,丙烯酸丁酯:8g,甲基丙烯酸甲酯:5g,N-羟甲基丙烯酰胺:1.2g,丙烯酸:2.8g),在高速乳化机下剪切搅拌15min进行预乳化,转速为13000r/min,得到稳定均匀的预乳液,共181g;(2)过硫酸钠引发剂溶液:将0.5g过硫钠加入17g去离子水中,配成溶液,备用,共17.5g;(3)碳酸氢钠缓冲液:将0.2g碳酸氢钠加入4g去离子水中,配成溶液,备用,共4.2g;(4)乳液聚合:在聚合反应釜内分别加入57g去离子水,28g预乳液,1g碳酸氢钠缓冲液,待75℃左右时滴加3g过硫酸钠引发剂溶液,于20min内滴加完毕,进行种子乳液聚合。待温度平稳,开始滴加剩余的预乳液、缓冲液和引发剂溶液。滴加时维持聚合反应温度在75-85°C,加完后继续保温反应1小时,冷却、出料,得产物醋丙乳液。
涤纶织物预处理:(1)配制浸轧液:将6g醋丙乳液溶解于1000mL去离子水中,稀释至0.6 wt. %做浸轧液备用;(2)工艺流程:涤纶织物浸轧醋丙乳液(织物重2.3±0.2g,浴比1:200,带液率25%)→烘干(烘箱,50℃,12h)。
涤纶织物疏水涂层整理:将醋丙乳液浸轧处理后的涤纶织物绕卷到接收转筒上,设置转筒接收转速为50mm/s,参照实施例六,配制浓度为3%(g/mL,CHCl
3)的静电喷溶液,选择静电喷射工艺,将微球涂覆于涤纶织物表面。
在涤纶织物表面进行静电喷射的工艺为:电压12kV,接收距离16cm,流速1mL/h,温度20±2℃,时间90min,接收装置的绕卷速度50mm/s,喷射针头的移动速度50mm/s,针头移动范围100mm。将静电喷射液在不同湿度条件下喷涂在乳液浸轧后的涤纶织物上。图10为相应的扫描电镜照片,可以发现控制工艺条件,可以使喷射到织物表面的微球附着于纤维表面,纤维-纤维之间的孔隙得以保留,这对于保持处理织物的透气性非常有利。分析微球表面形貌可知,纤维表面微球仍呈现“静电喷射湿度越大,微球表面越粗糙”的规律。此外,经醋丙乳液浸轧后的织物有一定的含水率,使得凝结在微球表面的水珠能够进一步向内渗透,形成孔洞。
对涤纶原布和20%、40%、60%、80%湿度条件下静电喷射处理后涤纶织物的静态接触角进行测试(如图11),测得接触角分别为59.4±3.7°、147.1±1.8°、150.9±1.5°、156.3±2.6°、155.9±3.3°;与原布相比,微球涂层整理后涤纶织物的疏水性显著提升。处理后的涤纶织物表面,微球与纤维之间形成了一级粗糙结构,微球表面的褶皱、凹坑提供了二级粗糙结构。20%湿度条件下,具有褶皱形貌的微球涂层涤纶织物对水接触角为147.1±1.8°,随着静电喷射湿度增加,微球表面产生的二级粗糙形貌加深,对水接触角相应增大,疏水性提高。值得注意的是,80%湿度条件下微球处理涤纶织物的疏水效果要略差于60%湿度下处理织物。
测得不同微球处理织物粘附力曲线如图12。粘附力测试曲线中,20%、40%、60%、80%湿度下处理后涤纶织物对水粘附力分别为60.5μN、50.5μN、21.0μN、16.0μN。
。
表1为涤纶原布、乳液整理涤纶布及不同湿度条件下疏水微球处理后的涤纶布的白度和透气率测试结果。结果显示,乳液浸轧后的涤纶布白度增加,微球涂层整理后的涤纶织物白度有所下降,但两者均比涤纶原布的白度要高。此外,未整理涤纶织物透气率为481.5mm/s;80%湿度整理条件下的透气率最好。
Claims (10)
- 一种全氟聚醚嵌段改性聚己内酯,其特征在于,以全氟聚醚羧酸为原料,与PCL-OH发生酯化反应,制得全氟聚醚嵌段改性聚己内酯。
- 根据权利要求1所述全氟聚醚嵌段改性聚己内酯,其特征在于,全氟聚醚羧酸用 N,N'-二环己基碳二亚胺活化其端羧基后与PCL-OH发生酯化反应;用6-氨基-1-己醇氨解活化将聚己内酯,制得PCL-OH。
- 权利要求1所述全氟聚醚嵌段改性聚己内酯的制备方法,其特征在于,以全氟聚醚羧酸为原料,与PCL-OH发生酯化反应,制得全氟聚醚嵌段改性聚己内酯。
- 根据权利要求3所述全氟聚醚嵌段改性聚己内酯的制备方法,其特征在于,酯化反应为35~45℃下反应4~6h。
- 一种全氟聚醚嵌段改性聚己内酯微球涂层,其特征在于,将权利要求1所述全氟聚醚嵌段改性聚己内酯溶于溶剂后,利用静电喷射,得到全氟聚醚嵌段改性聚己内酯微球薄膜。
- 根据权利要求5所述全氟聚醚嵌段改性聚己内酯微球涂层,其特征在于,静电喷射时,溶解全氟聚醚嵌段改性聚己内酯的溶剂为CHCl 3和/或DMF;全氟聚醚嵌段改性聚己内酯溶液的浓度为2~5%。
- 一种疏水织物,其特征在于,将权利要求1所述全氟聚醚嵌段改性聚己内酯静电喷射在乳液处理的织物表面,烘干,得到疏水织物。
- 根据权利要求7所述疏水织物,其特征在于,静电喷射时,流速为0.5~1.2mL/h;纺丝电压8~15kV;温度10~25℃;湿度20%~80%。
- 权利要求7所述疏水织物在制备疏水材料中的应用。
- 权利要求1所述全氟聚醚嵌段改性聚己内酯在制备疏水涂层中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210138820.1 | 2022-02-15 | ||
CN202210138820.1A CN114479089B (zh) | 2022-02-15 | 2022-02-15 | 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023155383A1 true WO2023155383A1 (zh) | 2023-08-24 |
Family
ID=81479880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109314 WO2023155383A1 (zh) | 2022-02-15 | 2022-07-31 | 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114479089B (zh) |
WO (1) | WO2023155383A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114479089B (zh) * | 2022-02-15 | 2023-06-06 | 苏州大学 | 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 |
CN116355531B (zh) * | 2023-02-27 | 2024-03-26 | 科兰建筑材料(马鞍山)有限公司 | 一种耐酸涂料及其制备方法和应用 |
CN116427172B (zh) * | 2023-05-18 | 2024-10-01 | 苏州大学 | 一种可控接枝苯乙烯二次修饰超疏水棉织物及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695795B1 (en) * | 2007-03-09 | 2010-04-13 | Clemson University Research Foundation | Fluorinated lactide-based copolymers |
CN105646177A (zh) * | 2015-12-31 | 2016-06-08 | 天津市长芦化工新材料有限公司 | 一种制备全氟聚醚羧酸的方法 |
CN108409993A (zh) * | 2018-04-19 | 2018-08-17 | 南通纺织丝绸产业技术研究院 | 一种含氟聚己内酯膜及其制备方法 |
CN108484922A (zh) * | 2018-04-19 | 2018-09-04 | 苏州大学 | 一种疏水型聚己内酯及其制备方法 |
CN108611861A (zh) * | 2018-05-17 | 2018-10-02 | 苏州大学 | 一种超疏水微球及其制备方法与由该微球制备的超疏水织物 |
US20200207921A1 (en) * | 2017-07-24 | 2020-07-02 | Freie Universität Berlin | Diblock copolymer, a manufacturing method and suited applications |
WO2021043717A1 (en) * | 2019-09-03 | 2021-03-11 | Akzo Nobel Coatings International B.V. | Coating composition with easy-clean performance |
CN112695533A (zh) * | 2020-12-21 | 2021-04-23 | 江南大学 | 一种表面多孔结构的疏水纺织品制备方法 |
CN114479089A (zh) * | 2022-02-15 | 2022-05-13 | 苏州大学 | 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112169376B (zh) * | 2020-09-25 | 2022-06-07 | 苏州大学 | 基于亲水疏油织物进行油水分离的方法 |
-
2022
- 2022-02-15 CN CN202210138820.1A patent/CN114479089B/zh active Active
- 2022-07-31 WO PCT/CN2022/109314 patent/WO2023155383A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695795B1 (en) * | 2007-03-09 | 2010-04-13 | Clemson University Research Foundation | Fluorinated lactide-based copolymers |
CN105646177A (zh) * | 2015-12-31 | 2016-06-08 | 天津市长芦化工新材料有限公司 | 一种制备全氟聚醚羧酸的方法 |
US20200207921A1 (en) * | 2017-07-24 | 2020-07-02 | Freie Universität Berlin | Diblock copolymer, a manufacturing method and suited applications |
CN108409993A (zh) * | 2018-04-19 | 2018-08-17 | 南通纺织丝绸产业技术研究院 | 一种含氟聚己内酯膜及其制备方法 |
CN108484922A (zh) * | 2018-04-19 | 2018-09-04 | 苏州大学 | 一种疏水型聚己内酯及其制备方法 |
CN108611861A (zh) * | 2018-05-17 | 2018-10-02 | 苏州大学 | 一种超疏水微球及其制备方法与由该微球制备的超疏水织物 |
WO2021043717A1 (en) * | 2019-09-03 | 2021-03-11 | Akzo Nobel Coatings International B.V. | Coating composition with easy-clean performance |
CN112695533A (zh) * | 2020-12-21 | 2021-04-23 | 江南大学 | 一种表面多孔结构的疏水纺织品制备方法 |
CN114479089A (zh) * | 2022-02-15 | 2022-05-13 | 苏州大学 | 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 |
Also Published As
Publication number | Publication date |
---|---|
CN114479089A (zh) | 2022-05-13 |
CN114479089B (zh) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023155383A1 (zh) | 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物 | |
Zou et al. | Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer | |
Cui et al. | Synthesis and characterization of emulsifier-free core–shell fluorine-containing polyacrylate latex | |
Cui et al. | Preparation and characterization of emulsifier-free core–shell interpenetrating polymer network-fluorinated polyacrylate latex particles | |
Wang et al. | Preparation of fluorinated PCL porous microspheres and a super-hydrophobic coating on fabrics via electrospraying | |
Wang et al. | Synthesis, morphology and rheology of core-shell silicone acrylic emulsion stabilized with polymerisable surfactant. | |
CN108329417B (zh) | 纳米SiO2/有机硅改性核壳丙烯酸酯乳液及制备方法 | |
Wang et al. | Preparation and characterization of soap-free fluorine-containing acrylate latex | |
Li et al. | Synthesis of fluorinated block copolymer and superhydrophobic cotton fabrics preparation | |
Yano et al. | Precise control of surface physicochemical properties for electrospun fiber mats by surface-initiated radical polymerization | |
Gao et al. | Permanently grafted icephobic nanocomposites with high abrasion resistance | |
WO2015078099A1 (zh) | 一种具有普适性的超双疏表面及其制备方法 | |
Chen et al. | Synthesis of a cationic fluorinated polyacrylate emulsifier-free emulsion via ab initio RAFT emulsion polymerization and its hydrophobic properties of coating films | |
Zhang et al. | Preparation of superhydrophobic films based on the diblock copolymer P (TFEMA-r-Sty)-b-PCEMA | |
Zhou et al. | Preparation of cellulose nanocrystal-dressed fluorinated polyacrylate latex particles via RAFT-mediated Pickering emulsion polymerization and application on fabric finishing | |
WO2023193378A1 (zh) | 一种高机械稳定性以及服用性疏水织物及其制备方法 | |
CN102199263B (zh) | 一种双疏性含氟可交联嵌段共聚物及其制备方法与应用 | |
Grewal et al. | Biomimetic catechol-based adhesive polymers for dispersion of polytetrafluoroethylene (PTFE) nanoparticles in an aqueous medium | |
Alexakis et al. | Modification of cellulose through physisorption of cationic bio-based nanolatexes–comparing emulsion polymerization and RAFT-mediated polymerization-induced self-assembly | |
Xu et al. | Nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated using a combination of etching method and mist polymerization technology | |
Kang et al. | Preparation of hydrophobic block copolymer PCL-b-PFPE: The microsphere-coated fabrics via direct electrostatic spraying and its super-hydrophobicity | |
NAGHASH et al. | Preparation and properties of triethoxyvinylsilane-modified styrene-butyl acrylate emulsion copolymers | |
Hosseinzadeh et al. | Shape of the particles produced by seeded dispersion polymerization of styrene | |
CN114481608B (zh) | 一种卡宾共接枝改性织物及其制备方法与应用 | |
CN113480827B (zh) | 仿金属效果塑料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926689 Country of ref document: EP Kind code of ref document: A1 |