WO2023193378A1 - 一种高机械稳定性以及服用性疏水织物及其制备方法 - Google Patents

一种高机械稳定性以及服用性疏水织物及其制备方法 Download PDF

Info

Publication number
WO2023193378A1
WO2023193378A1 PCT/CN2022/110355 CN2022110355W WO2023193378A1 WO 2023193378 A1 WO2023193378 A1 WO 2023193378A1 CN 2022110355 W CN2022110355 W CN 2022110355W WO 2023193378 A1 WO2023193378 A1 WO 2023193378A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
hydrophobic
mechanical stability
high mechanical
preparing
Prior art date
Application number
PCT/CN2022/110355
Other languages
English (en)
French (fr)
Inventor
李战雄
陈童宇
王发强
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023193378A1 publication Critical patent/WO2023193378A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/121Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds
    • D06N3/123Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyesters, polycarbonates, alkyds with polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/06Applying particulate materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • D06N3/0088Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
    • D06N3/009Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin by spraying components on the web
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to functional fabric technology, and specifically relates to a hydrophobic fabric with high mechanical stability and wearability and a preparation method thereof.
  • Electrostatic spraying is a method that uses high-voltage electrostatic fields to prepare micron or nanostructures.
  • the propelling pump causes the solution in the syringe to flow into the capillary nozzle.
  • the meniscus of the liquid deforms, extends into a cone or spindle shape, and is gradually sprayed from the nozzle into the electrostatic field.
  • the electrostatic field force overcomes the solution surface
  • the tension causes the jet to split. Because the droplets are charged, they will not agglomerate, but self-disperse to form secondary droplets and sub-secondary droplets. After drying and cooling in the air, they form microspheres or particles. structure.
  • the morphology and size of the formed structure can be controlled.
  • Special methods can be used to prepare products with properties such as hollow microspheres, nanocups, porous microcarriers, cell-shaped microparticles and core-shell/multilayer microspheres [Shuai Y, Lei F, Liu Z, et al. Coaxial electrospray of curcumin-loaded microparticles for sustained drug release[J]. Plos One, 2015, 10(7): e0132609].
  • Carbohydrate Polymers 2021, 259(6): 117640] used blending electrospinning technology to prepare polyethylene glycol/chitosan/curcumin composite electrospinning membrane, and used electrostatic spraying to organize curcsnp into PCL/CS /Cur nanofiber, it can be used as a wound dressing to effectively promote wound healing and has significant antibacterial, antioxidant and cell proliferation properties.
  • Geng et al [Geng X L, Wang J Q, Ding Y J, et al. Poly(vinyl alcohol)/polydopamine hybrid nanofiltration membrane fabricated through aqueous electrospraying with excellent antifouling and chlorine resistance[J].
  • the present invention prepares rough microspheres with superhydrophobic properties, optimizes the spraying process, and finally realizes a durable microsphere coating on the surface of cotton fabric/fiber.
  • the superhydrophobic cotton fabric is prepared by controlling the surface morphology of the microspheres.
  • the present invention adopts the following technical solution: a hydrophobic fabric with high mechanical stability and wearability.
  • a mixture coating of polycaprolactone and fluorine-containing polysiloxane is provided on the surface of the treated fabric to obtain a hydrophobic fabric with high mechanical stability and wearability.
  • the mixture coating is a microsphere coating.
  • an electrostatic spraying method is used to provide a mixture coating of polycaprolactone and fluorine-containing polysiloxane on the surface of the treated fabric to obtain a hydrophobic fabric with high mechanical stability and wearability.
  • the rotation speed of the treated fabric is 40-60 mm/s.
  • the fabric is cotton fabric; preferably, the raw cotton fabric is subjected to soap scouring treatment, then padded with vinegar-acrylic emulsion, and dried to obtain the treated fabric.
  • the raw cotton fabric, water, sodium sulfite, soap flakes, and sodium hydroxide are mixed, then boiled and washed; then the fabric is padded with vinegar-acrylic emulsion and dried to obtain the treated fabric.
  • the liquor ratio is 1: (15 ⁇ 25), the weight ratio of raw cotton fabric, sodium sulfite, and soap flakes is 100: (0.4 ⁇ 0.6): (1.8 ⁇ 1.2), and the amount of sodium hydroxide is the weight of water 3 ⁇ 4%; during padding, the liquor ratio is 1: (250 ⁇ 400), and the concentration of vinegar-acrylic emulsion is 0.2 ⁇ 0.4wt%.
  • an electrostatic spraying method is used to provide a coating of a mixture of polycaprolactone and fluorine-containing polysiloxane on the surface of the treated fabric, and then dried to obtain a hydrophobic fabric with high mechanical stability and wearability.
  • the drying temperature is 45-55°C and the drying time is 20-30 hours.
  • the weight ratio of polycaprolactone to fluorine-containing polysiloxane is 1: (0.1-0.6).
  • the weight ratio of polycaprolactone to fluorine-containing polysiloxane is 1: (0.2-0.6).
  • Fluorine-containing polysiloxane is fluorinated ladder phenyl polysilsesquioxane.
  • polycaprolactone and fluorine-containing polysiloxane are dissolved in chloroform to prepare a spinning liquid, the cotton fabric is fixed on the electrostatic spray receiving drum, and the microspheres are directly sprayed and finished on the cotton fabric through the electrostatic spray method. , giving the microsphere coating fastness.
  • WCA Water contact angle
  • TGA TGA and other performance tests, it was found that the water contact angle of the finished cotton fabric is ⁇ 160°, with excellent hydrophobic properties; the initial thermal degradation temperature is 355°C, the thermal properties are improved; and it has a self-cleaning function. After sandpaper abrasion and adhesion tests, the water contact angle on the surface of the microsphere coating remained above 155°, showing good mechanical stability.
  • the wearing performance test shows that there is no significant difference in the whiteness, air permeability, stiffness and flexibility of microsphere-coated cotton fabrics compared with raw cotton fabrics.
  • Figure 1 shows the scanning electron microscope images of PCL/F-ph-LPSQ microsphere coating under different blending ratios: a1-a3: 1.0:0.2; b1-b3: 1.0:0.4; c1-c3: 1.0:0.6; d1- d3: 1.0:0.8; e1-e3: 1.0:1.0.
  • Figure 2 shows the surface properties of microsphere coatings prepared under different blending ratios: (a) contact angle; (b) liquid repellency stability; (c) rolling angle; (d) adhesion.
  • Figure 3 shows the scanning electron microscope images and contact angle images of raw cotton (a1-a3) and coated cotton fabric (b1-b3) (upper right inset).
  • Figure 4 shows the TGA (a) curve and tensile curve (b) of raw cotton and coated cotton fabrics.
  • Figure 5 shows the mechanical stability test of coated cotton fabrics: the sandpaper abrasion test process (a1-a2) and the picture of the contact angle changing with the wear cycle (c); the tape peeling test process (b1-b3) and the contact angle changing with the glue The trend of viscous periodic changes (d).
  • the raw materials used in this invention are all commercially available products.
  • Polycaprolactone (PCL, M n ⁇ 80000 g/mol) was purchased from Shanghai Sigma Aldrich Trading Co., Ltd. Specific preparation operations and testing methods are routine methods in this field.
  • K 2 CO 3 Instron 5967 was added to a 250 mL three-necked flask to conduct a tensile breaking strength performance test on the cotton fabrics before and after coating treatment. Referring to the national standard, the fabric was cut to 5 cm ⁇ 25 cm, the clamping length was 20 cm, and the stretching speed was 100 mm/min.
  • test pressure 100 Pa
  • test area 20 cm (0.04 g)
  • deionized water 4.8 g
  • THF 16.0 g
  • the stability and fastness of the microsphere-coated finishing fabric are characterized by the sandpaper abrasion test and the tape peeling test.
  • the sandpaper abrasion test method is as follows: Cut the finishing fabric to a suitable size, and Place the sample face down on 600-grit sandpaper, load a 100 g weight, use tweezers to clamp one end of the sample and move it 100 mm in the horizontal direction, and then return 100 mm to complete a wear cycle.
  • the tape peeling test method is: Fix the cotton fabric on the glass slide, press the tape on the surface of the cotton fabric with a certain load, and then slowly peel off the tape until it is completely detached. This is a gluing cycle.
  • Example 1 Put raw cotton fabric and water (liquid ratio is 1:20) into a container, and add sodium sulfite (0.5%, for fabric), soap flakes (1%, for fabric) and hydroxide according to mass percentage. Sodium (3.5% to water). In the boiling state, boil for 2 hours, take it out, wash it three times with 100°C, 65°C and room temperature water respectively, and dry it naturally before use.
  • the pretreated cotton fabric is immersed in the padding liquid according to the bath ratio of 1:300, and is subjected to two immersions and two paddings to maintain the liquid entrainment rate of 65% to obtain the treated fabric.
  • the solution used for electrostatic spraying microsphere coating is as follows.
  • the blending ratio increases from 1.0:0.2 to 1.0: 1.0, the microsphere particle size increased from 7.96 ⁇ m to 12.03 ⁇ m, the particle size distribution broadened, and the standard deviation increased from 0.67 ⁇ m to 1.20 ⁇ m.
  • PCL still dominates.
  • F-ph-LPSQ increases the viscosity of the solution. While the microspheres are formed, some filament connections also appear between the microspheres.
  • the blending ratio continues to increase, it affects the electrostatic spraying process, making the droplets unable to maintain their microspherical shape after passing through the electric field. The surface will shrink, dent, and even transform into irregular particles.
  • Example 2 Use static water contact angle, liquid repellency stability, water rolling angle and adhesion force to characterize the properties of microspheres prepared under different blending ratios. As shown in Figure 2, due to the coexistence of wrinkles and holes on the surface of the microspheres, it has high roughness, which can trap a certain amount of air and resist the infiltration of water droplets. Together with the introduction of low surface energy fluorine-containing substances, different blends can be made.
  • the contact angles of the microspheres prepared below were all above 160°, showing good superhydrophobicity, and remained above 150° after fifteen minutes of standing.
  • the rolling angles on the surface of the microspheres are all below 1°, and the adhesion forces are all less than 51 ⁇ N. Water droplets can easily slide off the surface of the microspheres.
  • microsphere coating prepared by a blending ratio of 1:0.4 was used for subsequent research.
  • Example 3 The chemical composition of the surface of PCL/F-ph-LPSQ microspheres was characterized by EDS energy spectroscopy.
  • the surface of the microspheres contains four elements: C, O, Si, and F.
  • the pits and ridges of the microspheres were measured.
  • the fluorine contents of the parts are 5.4% and 5.0% respectively.
  • the self-cleaning performance of cotton fabrics finished with microsphere coating was tested. The results showed that methylene blue powder and chalk powder were distributed on the surface of the finished cotton fabrics.
  • the water droplets were squeezed out from the syringe and rolled down from the fabric surface, taking away the pollutants. Restores smooth and clean fabrics with better self-cleaning effect.
  • Figure 3 shows the scanning electron microscope and water static contact angle diagram of cotton fabric before and after microsphere spraying and finishing.
  • the raw cotton fibers are evenly distributed. Except for some ravines and textures, the fiber surface is relatively flat and smooth, and there are certain gaps between fibers. Since the surface of raw cotton has a large number of hydrophilic groups -OH, it will be quickly wetted when it comes into contact with liquid droplets, and the water contact angle is almost 0°.
  • the microspheres obtained by electrostatic spraying are bonded to cotton fibers through vinegar-acrylic emulsion and have a certain degree of fastness. The formation of a secondary rough structure gives the fabric good superhydrophobicity, and the contact angle reaches 163.4° ⁇ 0.3 °.
  • thermodynamic properties of cotton fabrics before and after microsphere coating finishing were studied by thermal analysis method.
  • the initial degradation temperature of raw cotton fabric is 345°C.
  • the quality of cotton fabric decreases rapidly. This is because the fiber crystalline area is destroyed and undergoes significant changes, resulting in the production of L-glucose intermediate products and gas.
  • the temperature reaches about 470°C the degradation process basically ends, leaving only some carbonized residues.
  • some unstable substances degrade under high temperature conditions, and the residual carbon rate is 12.26%.
  • the thermodynamic curve of the cotton fabric after microsphere coating is slightly shifted to the right, the initial degradation temperature increases to 355°C, the final degradation temperature is about 475°C, and the carbon residual rate is 14.78%.
  • the measured elongation at break of the raw cotton fabric was 10.69%, and the breaking stress was 15.16 MPa.
  • the cotton fabric treated with microsphere coating has higher elongation at break and stress at break, which are 17.23% and 23.31 MPa respectively.
  • Example 4 The mechanical stability of superhydrophobic surfaces has an important impact on the practical application of coated cotton fabrics. It is characterized using sandpaper abrasion and tape peeling tests. As shown in Figure 5, as the mechanical stability test cycle increases, the water contact angle on the surface of the finished fabric decreases. After 5 sandpaper wear cycles, the average contact angle decreased from 164.1° to 157.1°, a decrease of 7°. After ten adhesive tests, the contact angle decreased from 167.8° to 158.4°, a decrease of 9.4°.
  • Example 5 Using electrostatically sprayed microspheres to coat cotton fabrics, it is hoped that on the basis of not affecting the wearing properties of cotton fabrics, the fabrics will have excellent superhydrophobicity and certain mechanical fastness, so as to broaden the wearability of cotton fabrics. Practical applications of fabrics.
  • the whiteness, air permeability, stiffness and flexibility of the finishing fabrics were tested. As shown in Table 1, the whiteness of raw cotton is 88.3%, and the whiteness of cotton fabric after finishing is 88.1%. The whiteness before and after finishing is almost unchanged. It is worth mentioning that the air permeability of the cotton fabric before and after finishing was 304.744 mm/s and 304.534 mm/s respectively. Spray finishing hardly affects the air permeability of the fabric, which is a technical effect that cannot be achieved by existing hydrophobic coatings.
  • the bending stiffness and flexibility of cotton fabrics before and after coating finishing were also studied.
  • the bending stiffness of raw cotton is 260 mN/cm and the flexibility is 10.7 mm.
  • the corresponding results of cotton fabrics after finishing are 270 mN/cm and 10.9 mm, with a small decrease.
  • the coating treatment of cotton fabrics according to the present invention will not have a significant impact on its wearing properties.
  • microsphere coatings with different blending ratios were prepared under fixed process parameters, and their static contact angle, liquid repellency stability, rolling angle and adhesion were studied. It was found that the contact angles were all within 160 ° and still higher than 150° after standing for fifteen minutes, the rolling angle is below 1°, the adhesion force is below 51 ⁇ N, and it has excellent superhydrophobic properties and liquid-repellent stability. After finishing, the cotton fabric is super hydrophobic, and its thermal stability and tensile strength are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了一种高机械稳定性以及服用性疏水织物及其制备方法,将原棉织物、水、亚硫酸钠、皂片、氢氧化钠混合,然后煮炼、水洗;然后将织物浸轧醋丙乳液,干燥得到处理织物;采用双面胶将其固定在接收转筒上,对其进行静电喷微球涂层整理,后取下烘干交联,得到高机械稳定性以及服用性疏水织物。原棉的白度为88.3%,整理后棉织物的白度为88.1%,整理前后白度几乎不变。值得一提的是,整理前后棉织物的透气率分别为304.744 mm/s和304.534 mm/s,喷涂整理几乎不影响织物透气性,这是现有疏水涂层无法实现的技术效果。

Description

一种高机械稳定性以及服用性疏水织物及其制备方法 技术领域
本发明属于功能织物技术,具体涉及一种高机械稳定性以及服用性疏水织物及其制备方法。
背景技术
静电喷射法是一种利用高压静电场制备微米或纳米结构的方法。推进泵使得注射器中的溶液流动到毛细喷嘴中,在高压电位的作用下,液体的半月板发生变形,延伸为圆锥或纺锤形,并逐渐从喷嘴喷射到静电场中,静电场力克服溶液表面张力导致射流分裂,液滴由于带有电荷,所以不会出现凝聚现象,而是自我分散,形成次级液滴以及次次级液滴,在空气中干燥并冷却成型后,形成微球或者微粒结构。通过改变溶液性质、施加电压、给液速率等工艺参数,可以调控形成结构的形貌和大小。采用特殊方法,可以制备出具有如中空微球、纳米杯、多孔微载体、细胞形微颗粒和核壳/多层微球等[Shuai Y, Lei F, Liu Z, et al. Coaxial electrospray of curcumin-loaded microparticles for sustained drug release[J]. Plos One, 2015, 10(7): e0132609]。静电喷射法由于其成本低,操作简单和灵活的优点,已广泛应用于生物、医药、能源、军工和纳米技术等多个领域[Xu Y, Zhu Y, Han F, et al. 3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li‐Ion Batteries[J]. Advanced Energy Materials, 2015, 5(1): 1-7]。Fan等[Fan Y Z, Qian X, Wang X monitoring Y, et al. Enhancing long-term accuracy and wastewater durability membrane of el ectrosprayed usingultra-thin solid-state ion selective 643(1): sensors[J]. Journal of Membrane Science, 2022, 119997]利用静电喷射液滴尺寸和溅射直径具有可调、高分辨率和超薄的优点,将传感膜与电极表面相结合,提高了传感器的响应效率以及读取稳定性。Fahimirad等[Fahimirad S, Abtahi H, Satei P, et al. Wound healing performance of PCL/Chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles[J]. Carbohydrate Polymers, 2021, 259(6): 117640]采用共混静电纺丝技术制备了聚己二酚/壳聚糖/姜黄素复合静电纺丝膜,并利用静电喷涂法将curcsnp整理到PCL/CS/Cur纳米纤维上,使其作为创面敷料可有效促进创面愈合,并具有显著的抗菌、抗氧化和细胞增殖特性。Geng等[Geng X L, Wang J Q, Ding Y J, et al. Poly(vinyl alcohol)/polydopamine hybrid nanofiltration membrane fabricated through aqueous electrospraying with excellent antifouling and chlorine resistance[J]. Journal of Membrane Science, 2021, 632(15): 119385]采用电喷雾法制备聚乙烯醇/聚多巴胺杂化纳滤膜,其具有良好的防污性能,总通量下降率较低(FDR = 6.1%),通量恢复率较高(FRR = 98.9%),除此之外,还表现出优异的耐氯性能。涂层即采用化学、物理或两者相结合的方法在金属,玻璃,硅片,布料表面形成固态连续膜的,以赋予优良的抗紫外,阻燃,自修复,耐腐蚀性能的过程[Yanchik L V, Nagornaya V S, Kondrashov S V, et al. The influence of nanocomposite composition on conductive and hydrophobic characteristics of coatings[J]. Inorganic Materials: Applied Research, 2020, 11(1): 140-146]。利用涂层使织物具有超疏水性能,使其具有防污,抗菌,自清洁等特性,可拓宽其在服饰,家居,军工等领域的应用范围[Kunpeng W, Deyin H, Jun W, et al. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation[J] Applied Surface Science, 2018, 450(169): 57-65]。但是现有技术制备的超疏水涂层织物的机械稳定性以及服用性能不佳。
技术问题
本发明制备具有超疏水性能的粗糙微球,优化了喷涂工艺,并最终实现了棉织物/纤维表面耐久性微球涂层,通过控制微球表面形貌制备了超疏水棉织物。
技术解决方案
本发明采用如下技术方案:一种高机械稳定性以及服用性疏水织物,在处理织物表面设置聚己内酯与含氟聚硅氧烷的混合物涂层,得到高机械稳定性以及服用性疏水织物。优选的,所述混合物涂层为微球涂层。
本发明中,采用静电喷涂法,在处理织物表面设置聚己内酯与含氟聚硅氧烷的混合物涂层,得到高机械稳定性以及服用性疏水织物。优选的,静电喷涂法时,处理织物的旋转速率为40~60 mm/s。
本发明中,织物为棉织物;优选的,原棉织物经过皂碱煮炼处理后浸轧醋丙乳液,干燥得到处理织物。具体的,将原棉织物、水、亚硫酸钠、皂片、氢氧化钠混合,然后煮炼、水洗;然后将织物浸轧醋丙乳液,干燥得到处理织物。作为示例,煮炼时,浴比为1:(15~25),原棉织物、亚硫酸钠、皂片的重量比为100∶(0.4~0.6)∶(1.8~1.2),氢氧化钠用量为水重量的3~4%;浸轧时,浴比为1:(250~400),醋丙乳液的浓度为0.2~0.4wt%。
本发明中,采用静电喷涂法,在处理织物表面设置聚己内酯与含氟聚硅氧烷的混合物涂层,然后烘干,得到高机械稳定性以及服用性疏水织物。优选的,烘干的温度为45~55℃,时间为20~30小时。
本发明中,聚己内酯与含氟聚硅氧烷的重量比为1∶(0.1~0.6),优选的,聚己内酯与含氟聚硅氧烷的重量比为1∶(0.2~0.4);含氟聚硅氧烷为氟化梯形苯基聚倍半硅氧烷。
本发明将聚己内酯与含氟聚硅氧烷溶解于三氯甲烷中配制纺丝液,将棉织物固定在静电喷射接收滚筒上,通过静电喷射法将微球直接喷涂整理至棉织物上,赋予微球涂层牢度。通过WCA,TGA等性能测试,发现整理后棉织物水接触角≥160°,疏水性能优异;初始热降解温度355℃,热性能改善;且具有自清洁功能。经砂纸磨损和胶粘试验后,微球涂层表面对水接触角仍然维持在155°以上,表现出良好的机械稳定性。服用性能测试表明,微球涂层整理棉织物白度、透气率、硬挺度以及柔韧性与原棉织物相比无明显差异。
附图说明
图1为不同共混比下PCL/F-ph-LPSQ微球涂层的扫描电镜图:a1-a3:1.0:0.2; b1-b3:1.0:0.4;c1-c3:1.0:0.6;d1-d3:1.0:0.8;e1-e3:1.0:1.0。
图2为不同共混比下制得微球涂层的表面性能表征:(a)接触角;(b)拒液稳定性;(c)滚动角;(d)粘附力。
图3为原棉(a1-a3)与涂层整理后棉织物(b1-b3)的扫描电镜图及接触角图(右上插图)。
图4为原棉与涂层整理后棉织物的TGA (a)曲线和拉伸曲线(b)。
图5为涂层整理棉织物的机械稳定性测试:砂纸磨损测试过程(a1-a2)及接触角随磨损周期变化的图片(c);胶带剥落测试过程(b1-b3)及接触角随胶粘周期变化的趋势(d)。
本发明的实施方式
本发明所用原料都是市售产品,聚己内酯(PCL,M n≈80000 g/mol)购自上海西格玛奥德里奇贸易有限公司。具体制备操作以及测试方法都为本领域常规方法。室温条件下,向250 mL三口烧瓶中加入K 2CO 3Instron5967)对涂层整理前后的棉织物进行拉伸断裂强力性能测试。参照国标,将织物裁剪至5 cm×25 cm,夹持长度为20 cm,拉伸速度为100 mm/min。采用全自动透气量仪(YG461G)对原棉及静电喷微球涂层整理后的棉织物进行透气性能表征。参考GB/T 5453-1997《纺织品 织物透气性的测定》标准,设定测试参数为:测试压力:100 Pa,测试面积:20 cm (0.04 g),去离子水(4.8 g)和THF(16.0 g),搅拌15 min,使其混合均匀。随后,在氮气气氛下,通过恒压滴加漏斗将苯基三甲氧基硅烷(0.06 mol,11.9 g)和十三氟辛基三甲氧基硅烷(0.01 mol,4.7 g)单体的混合液,在30 min内滴加至反应体系,并反应5天。反应结束后,静置取乳状液层,在真空烘箱中,50℃条件下干燥6 h去除多余溶剂。紧接着加入二氯甲烷使得乳状液层溶解,并加入去离子水进行萃取。有机部分收集后,用无水硫酸镁干燥,再经抽滤和烘干,得到白色的氟化梯形苯基聚倍半硅氧烷。采用万能材料试验机( 2,口径:4Φ。每个样品测试5次取平均值。采用数显白度仪(WSB-2)对涂层整理前后的棉织物的白度进行分析。仪器参数设置好后,将样品对折多次至不透光后放置在测量孔上,待数值稳定后记录白度值。选取随机五个点进行测试,并取平均值。使用YG(B)022D自动织物硬挺度试验仪对涂层整理前后棉织物的硬挺度进行测试。参照国标GB/T 18318-2001《纺织品 织物弯曲长度的测定》,设置测试参数为:织物宽度:2.5 cm,光源与水平面夹角:41.5°。每种样品类别分别测试4次,取平均值。弯曲刚度的计算公式为:G=9.81×ρ×(C/2) 3,其中G代表单位宽度的弯曲刚度(mN· cm);ρ代表样品的单位面积质量(g/m 2);C代表样品的平均弯曲长度(cm)。将长度为20 cm的棉织物放置在水平面上,弯曲致两端对齐,测量弯曲处顶点与水平面的高度变化,用来表征织物柔韧性。通过砂纸磨损测试和胶带剥落测试来表征微球涂层整理织物的稳定性和牢度。砂纸磨损测试方法如下:将整理织物裁剪至合适大小,并将样品面朝下放置到600目砂纸上,负载100 g的砝码,用镊子夹住样品一端使其沿水平方向移动100毫米,然后再返回100毫米,完成一个磨损循环。胶带剥落测试方法为:将棉织物固定在载玻片上,以一定的载荷将胶带按压在棉织物表面,然后缓缓将胶带剥离,直至完全脱离,至此为一个胶粘循环。
实施例一:将原棉织物和水(浴比为1:20)投入容器中,并按质量百分比,向内添加亚硫酸钠(0.5 %,对织物),皂片(1%,对织物)和氢氧化钠(3.5%,对水)。在沸腾状态下,煮炼2 h后捞出,并采用100℃,65℃和常温水分别进行水洗三次,自然晾干后备用。
用去离子水稀释醋丙乳液至0.3 wt%,作为浸轧液备用。将预处理过的棉织物按浴比1:300浸入浸轧液,进行二浸二轧,保持带液率为65%,得到处理织物。采用双面胶将其固定在接收转筒上,设置旋转速率为50 mm/s,对其进行2 h的静电喷微球涂层整理后取下,在50℃干燥箱内进行24 h的烘干交联。静电喷微球涂层所用溶液如下。
将PCL溶于CHCl 3溶剂中,制备出透明均一的涂层溶液,采用静电纺丝装置(JDF05)对涂层溶液进行静电喷涂。固定工艺参数:电压(10 kV)、流速(0.6 mL/h)、接收距离(15 cm)、温度(23.5±0.5℃)和湿度(60±2%),不同溶液溶度(wt%,2%、3%、4%、5%、6%)对PCL微球形貌以及粒径分布具有影响,随着浓度的提升,微球粒径从7.34±0.67 μm(2wt%)提高到了19.04±2.19 μm,粒径分布变宽,并且逐渐形成微球-纤维连接的分层形态,当涂层溶液浓度为2%时,制得均匀性良好的微球。
将PCL、氟化梯形苯基聚倍半硅氧烷溶于CHCl 3溶剂中,制备出透明均一的涂层溶液,采用静电纺丝装置(JDF05)对涂层溶液进行静电喷涂。固定工艺参数:电压(10 kV)、流速(0.6 mL/h)、接收距离(15 cm)、温度(23.5±0.5℃)和湿度(60±2%),溶液溶度(2wt%,溶质),不同原料比例对PCL微球形貌以及粒径分布有影响,参见图1,微球粒径与F-ph-LPSQ的添加量成正比,随着共混比从1.0:0.2提升到了1.0:1.0,微球粒径从7.96 μm提升到了12.03 μm,且粒径分布变宽,标准差从0.67 μm提高到了1.20 μm。当共混比为1.0:0.6时,PCL仍然占据主导地位,F-ph-LPSQ的加入使得溶液粘度增加,微球形成的同时,微球间也出现了一些细丝连接。当共混比继续提高时,影响静电喷的过程,使得液滴经过电场后其无法维持微球状,表面会产生皱缩,发生凹陷,甚至转变成不规则的微粒。
实施例二:采用静态水接触角,拒液稳定性,水滚动角以及粘附力对在不同共混比下制备的微球性能进行表征。如图2所示,由于微球表面褶皱-孔洞共存,具有较高的粗糙度,可以截留一定量的空气从而抵抗水滴的浸润,与低表面能含氟物质的引入共同作用,使得不同共混比下所制备的微球的接触角均在160°以上,表现出良好的超疏水性,且在经过十五分钟静置后,仍然维持在150°以上。除此之外,微球表面的滚动角均在1°以下,且粘附力均小于51 μN。水滴在微球表面,可以轻易的滑落。
采用共混比1:0.4的工艺所制备的微球涂层进行后续研究。
实施例三:通过EDS能谱对PCL/F-ph-LPSQ微球表面的化学成分进行了表征,微球表面含有C,O,Si,F四种元素,测得微球凹坑和凸起部位的氟含量分别为5.4%和5.0%。测试了微球涂层整理棉织物自清洁性能,结果显示,亚甲基蓝粉末和粉笔末分布在整理后棉织物表面,水滴从注射器中挤出,从织物表面滚落的同时,将污染物带离,还原光滑洁净的织物,自清洁效果较好。
图3为微球喷涂整理前后棉织物的扫描电镜和对水静态接触角图。由图3中a1-a3所示,原棉纤维分布均匀,纤维表面除些许沟壑和纹理,相对而言较为平整且光滑,并且纤维与纤维之间存在一定空隙。由于原棉表面具有大量亲水基团-OH,所以当其与液滴接触时,会被迅速润湿,水接触角几乎为0°。微球喷涂整理后,静电喷涂所得微球通过醋丙乳液与棉纤维粘结并具有一定的牢度,二级粗糙结构的形成,赋予织物良好的超疏水性,接触角达到了163.4°±0.3°。
由热分析方法研究了棉织物微球涂层整理前后的热力学性能。如图4所示,原棉织物的初始降解温度为345℃,温度继续升高,棉织物质量快速下降,这是因为纤维结晶区被破坏,发生显著变化,从而产生左旋葡萄糖中间产物,以及气体。当温度达到470℃左右,降解过程基本结束,只剩一些碳化残渣,最终一些不稳定物质在高温条件下降解,残碳率为12.26%。微球涂层整理后的棉织物热力学曲线略微向右偏移,初始降解温度提高到了355℃,最终降解温度约为475℃,残碳率为14.78%。测得原棉织物的断裂伸长率为10.69%,断裂应力15.16 MPa。相比之下,微球涂层整理后棉织物具有更高的断裂伸长率和断裂应力,分别为17.23%和23.31 MPa。
实施例四:超疏水表面的机械稳定性对涂层整理棉织物的实际应用有着重要的影响。采用砂纸磨损和胶带剥落试验对其进行表征。如图5,随着机械稳定性测试循环周期的增加,整理织物表面的水接触角都有所降低。5个砂纸磨损周期后,接触角平均值由164.1°降低到了157.1°,下降了7°。十次胶粘试验后,接触角从167.8°降低到158.4°,下降了9.4°。由于微球整理织物的牢度仅由纤维与纤维,纤维与微球之间依靠粘合剂,通过物理方式即非共价键作用力提供,具有一定的限度,没有共价键作用力结合的紧密,所以在经过一定强度的外力磨损后,附着在纤维表面微球的粗糙结构容易被破坏,甚至从纤维表面脱落,以至于接触角下降。但可以看出,经过循环测试后,整理织物表面仍然维持一定的接触角,均在150°以上,表现为超疏水性,说明本发明静电喷微球与棉纤维粘附形成的涂层具有一定的机械稳定性。
实施例五:采用静电喷微球对棉织物进行涂层处理,希望在不影响棉织物服用性能的基础上,赋予织物优良的超疏水性,并具有一定的机械牢度,以用来拓宽棉织物的实际应用。测试了整理织物的白度,透气率,硬挺度和柔韧性。如表1,原棉的白度为88.3%,整理后棉织物的白度为88.1%,整理前后白度几乎不变。值得一提的是,整理前后棉织物的透气率分别为304.744 mm/s和304.534 mm/s,喷涂整理几乎不影响织物透气性,这是现有疏水涂层无法实现的技术效果。
除此之外,还分别对涂层整理前后棉织物的弯曲刚度和柔韧性进了研究,原棉的抗弯刚度为260 mN/cm,柔韧性为10.7 mm,整理后棉织物与之对应的结果为270 mN/cm和10.9 mm,下降幅度很小。综上所述,本发明对棉织物进行涂层整理并不会对其服用性能造成显著影响。
小结:以织物为接收面,在固定工艺参数条件下制备不同共混比的微球涂层,研究其静态接触角、拒液稳定性、滚动角以及粘附力,发现其接触角均在160°以上且静置十五分钟后仍然高于150°,滚动角在1°以下,粘附力低于51 μN,具有优异的超疏水性能和拒液稳定性。整理后棉织物超疏水,热稳定性能和抗拉强度提升。二级粗糙结构的构建以及低表面能物质的存在使得整理后的棉织物具有优异的拒水功能和低粘附力,具有自清洁功能,并且在经过5个砂纸磨损和10次胶粘实验后,涂层表面接触角仍然维持在155°以上,具有一定的机械稳定性。经过白度,透气率,硬挺度以及柔韧性测试以后,发现微球喷涂整理后棉织物综合性能优良。

Claims (10)

  1. 一种高机械稳定性以及服用性疏水织物的制备方法,其特征在于,在处理织物表面设置聚己内酯与含氟聚硅氧烷的混合物涂层,得到高机械稳定性以及服用性疏水织物。
  2. 根据权利要求1所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,所述混合物涂层为微球涂层。
  3. 根据权利要求1所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,采用静电喷涂法,在处理织物表面设置聚己内酯与含氟聚硅氧烷的混合物涂层,得到高机械稳定性以及服用性疏水织物。
  4. 根据权利要求3所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,静电喷涂法时,处理织物的旋转速率为40~60 mm/s。
  5. 根据权利要求3所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,采用静电喷涂法,在处理织物表面设置聚己内酯与含氟聚硅氧烷的混合物涂层,然后烘干,得到高机械稳定性以及服用性疏水织物。
  6. 根据权利要求1所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,原棉织物经过皂碱煮炼处理后浸轧醋丙乳液,干燥得到处理织物。
  7. 根据权利要求6所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,将原棉织物、水、亚硫酸钠、皂片、氢氧化钠混合,然后煮炼、水洗;然后将织物浸轧醋丙乳液,干燥得到处理织物。
  8. 根据权利要求7所述高机械稳定性以及服用性疏水织物的制备方法,其特征在于,煮炼时,浴比为1:(15~25),原棉织物、亚硫酸钠、皂片的重量比为100∶(0.4~0.6)∶(1.8~1.2),氢氧化钠用量为水重量的3~4%;浸轧时,浴比为1:(250~400),醋丙乳液的浓度为0.2~0.4wt%。
  9. 根据权利要求1所述高机械稳定性以及服用性疏水织物的制备方法制备的高机械稳定性以及服用性疏水织物。
  10. 权利要求9所述高机械稳定性以及服用性疏水织物在制备透气疏水织物中的应用。
PCT/CN2022/110355 2022-04-07 2022-08-04 一种高机械稳定性以及服用性疏水织物及其制备方法 WO2023193378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210365578.1 2022-04-07
CN202210365578.1A CN114960223B (zh) 2022-04-07 2022-04-07 一种高机械稳定性以及服用性疏水织物及其制备方法

Publications (1)

Publication Number Publication Date
WO2023193378A1 true WO2023193378A1 (zh) 2023-10-12

Family

ID=82978112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110355 WO2023193378A1 (zh) 2022-04-07 2022-08-04 一种高机械稳定性以及服用性疏水织物及其制备方法

Country Status (2)

Country Link
CN (1) CN114960223B (zh)
WO (1) WO2023193378A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115538169B (zh) * 2022-10-12 2023-10-17 山东中康国创先进印染技术研究院有限公司 一种耐久超疏水棉织物及其制备方法
CN116218229B (zh) * 2022-11-22 2024-05-14 国能龙源环保泰州有限公司 集水橡胶板及其制备方法和除湿装置及含尘高湿气体的净化处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221959A (ja) * 2015-09-10 2015-12-10 大日本印刷株式会社 撥水撥油性布帛の製造方法及びその布帛
US20180023246A1 (en) * 2015-02-13 2018-01-25 Zero Point Zero, Llc Textile process and product
US20190256722A1 (en) * 2016-09-06 2019-08-22 The Regents Of The University Of Michigan Durable superhydrophobic surfaces
CN112267299A (zh) * 2020-09-23 2021-01-26 浙江桐星纺织科技发展股份有限公司 一种三防易去污面料的生产工艺
CN113832732A (zh) * 2021-10-18 2021-12-24 山东大学 一种稳定的全氟己基功能化活性poss基超双疏涂层改性棉织物的制备方法
CN114805812A (zh) * 2022-04-07 2022-07-29 苏州大学 一种梯形苯基聚倍半硅氧烷、聚己内酯/梯形苯基聚倍半硅氧烷共混膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113756A (ja) * 1994-10-14 1996-05-07 Du Pont Mitsui Fluorochem Co Ltd 撥水性含フッ素樹脂表面を有する物品の製造方法
CN108611861B (zh) * 2018-05-17 2020-11-17 苏州大学 一种超疏水微球及其制备方法与由该微球制备的超疏水织物
WO2019227319A1 (zh) * 2018-05-29 2019-12-05 南通纺织丝绸产业技术研究院 一种含氟聚己内酯膜及其制备方法
CN111501354B (zh) * 2020-05-23 2022-11-04 苏州大学 一种防油防污自清洁功能性织物及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180023246A1 (en) * 2015-02-13 2018-01-25 Zero Point Zero, Llc Textile process and product
JP2015221959A (ja) * 2015-09-10 2015-12-10 大日本印刷株式会社 撥水撥油性布帛の製造方法及びその布帛
US20190256722A1 (en) * 2016-09-06 2019-08-22 The Regents Of The University Of Michigan Durable superhydrophobic surfaces
CN112267299A (zh) * 2020-09-23 2021-01-26 浙江桐星纺织科技发展股份有限公司 一种三防易去污面料的生产工艺
CN113832732A (zh) * 2021-10-18 2021-12-24 山东大学 一种稳定的全氟己基功能化活性poss基超双疏涂层改性棉织物的制备方法
CN114805812A (zh) * 2022-04-07 2022-07-29 苏州大学 一种梯形苯基聚倍半硅氧烷、聚己内酯/梯形苯基聚倍半硅氧烷共混膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG HAIPENG, LI WULONG, LI ZHANXIONG: "A Facile Strategy for Preparing PCL/PEG Block Copolymer Microspheres via Electrospraying as Coatings for Cotton Fabrics", MACROMOLECULAR MATERIALS AND ENGINEERING., WILEY VCH VERLAG, WEINHEIM., DE, vol. 303, no. 8, 1 August 2018 (2018-08-01), DE , pages 1800164, XP093096067, ISSN: 1438-7492, DOI: 10.1002/mame.201800164 *

Also Published As

Publication number Publication date
CN114960223A (zh) 2022-08-30
CN114960223B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2023193378A1 (zh) 一种高机械稳定性以及服用性疏水织物及其制备方法
Ganesh et al. Superhydrophobic fluorinated POSS–PVDF-HFP nanocomposite coating on glass by electrospinning
Ding et al. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning
Bergshoef et al. Transparent nanocomposites with ultrathin, electrospun nylon‐4, 6 fiber reinforcement
Medeiros et al. Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils
Sun et al. Mechanical and wettable behavior of polyacrylonitrile reinforced fibrous polystyrene mats
Ketpang et al. Electrospinning PVDF/PPy/MWCNTs conducting composites
Wang et al. Preparation of fluorinated PCL porous microspheres and a super-hydrophobic coating on fabrics via electrospraying
Wu et al. Designing breathable superhydrophobic cotton fabrics
Zhou et al. Fabrication of super-repellent cotton textiles with rapid reversible wettability switching of diverse liquids
Zhou et al. A facile approach for fabricating silica dioxide/reduced graphene oxide coated cotton fabrics with multifunctional properties
Wang et al. Fabrication of large‐scale superhydrophobic composite films with enhanced tensile properties by multinozzle conveyor belt electrospinning
He et al. Solvent-free electrospinning of UV curable polymer microfibers
CN103835133B (zh) 一种制备无氟超疏水织物表面的方法
Lv et al. Preparation of silicone-PCL composite particles with hierarchical structure and the super-hydrophobic fabrics via directly electrostatic spraying
WO2015078099A1 (zh) 一种具有普适性的超双疏表面及其制备方法
WO2023155383A1 (zh) 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物
CN103626957A (zh) 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面
KR100746643B1 (ko) 폴리스티렌 초발수성 멤브레인의 제조 방법 및 그에 의하여제조된 초발수성 멤브레인
Shen et al. Fabrication of flower clusters‐like superhydrophobic surface via a UV curable coating of ODA and V‐PDMS
Wei et al. Functional nanostructures generated by plasma-enhanced modification of polypropylene fibre surfaces
CN111188201B (zh) 一种高度可拉伸防水的形状记忆聚合物纤维膜及其制备方法和应用
Liu et al. Robust, flame-retardant and colorful superamphiphobic aramid fabrics for extreme conditions
CN112973478A (zh) 温敏性超亲水性膜及其制备方法
Kang et al. Preparation of hydrophobic block copolymer PCL-b-PFPE: The microsphere-coated fabrics via direct electrostatic spraying and its super-hydrophobicity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936308

Country of ref document: EP

Kind code of ref document: A1