CN112169376B - 基于亲水疏油织物进行油水分离的方法 - Google Patents

基于亲水疏油织物进行油水分离的方法 Download PDF

Info

Publication number
CN112169376B
CN112169376B CN202011025989.3A CN202011025989A CN112169376B CN 112169376 B CN112169376 B CN 112169376B CN 202011025989 A CN202011025989 A CN 202011025989A CN 112169376 B CN112169376 B CN 112169376B
Authority
CN
China
Prior art keywords
fabric
oil
water
hydrophilic
water separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011025989.3A
Other languages
English (en)
Other versions
CN112169376A (zh
Inventor
李战雄
李宇楠
候学妮
刘群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202011025989.3A priority Critical patent/CN112169376B/zh
Publication of CN112169376A publication Critical patent/CN112169376A/zh
Application granted granted Critical
Publication of CN112169376B publication Critical patent/CN112169376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了基于亲水疏油织物进行油水分离的方法,将油水混合液流经亲水疏油织物,完成油水分离;本发明先在纤维表面涂层季铵盐、再将全氟聚醚羧酸阴离子与氮正离子结合,两步处理均在水溶液中实现,全氟聚醚羧酸铵在纤维表面原位生成,克服了全氟聚醚羧酸铵几乎不溶于所有溶剂而难以喷涂或浸渍处理织物的技术难题。本发明得到的纤维表面涂层了含氟羧酸铵聚合物的亲水‑疏油织物,在接触水时可发生水合作用,织物对水静态接触角随着接触时间延长会逐渐下降并最终转为亲水,在接触油时则提供疏油功能;且获得特殊浸润性织物和油水分离织物的方法工艺简单,不使用有机溶剂,操作条件温和,适合工艺放大和生产。

Description

基于亲水疏油织物进行油水分离的方法
技术领域
本发明涉及基于亲水疏油织物进行油水分离的方法。
背景技术
现有技术提供一种油水分离织物制备方法及其超疏水织物,所述方法包括如下步骤:S1、将钛酸四丁酯进行水解,获得二氧化钛溶胶;S2、将硅氧烷加入到二氧化钛溶胶中进行反应,获得改性二氧化钛溶胶;S3、采用改性二氧化钛溶胶对异形纤维织物进行整理,获得油水分离织物,其制备工艺简单,制备的织物具有优异抗磨耐久性、可再生循环性,同时具有油水高分离效率。现有技术公开了一种油水分离膜的制备方法,属于油水分离技术领域,所述油水分离膜制备方法为:使用溶液-凝胶法在棉织物上构建SiO2微球状结构,得到负载有二氧化硅微球的棉织物,通过固相偶联法将噻吩形成聚噻吩涂覆在负载有二氧化硅微球的棉织物的表面上;所制得的油水分离膜降低了棉织物的表面能,使得负载有二氧化硅微球的棉织物有良好的疏水效果,水滴不能润湿油水分离膜的表面,但油滴能顺利通过,使得棉织物基材具有疏水亲油的性质;整个制备过程简单快捷,不含氟元素,棉织物基材的价格低廉,制备成本低,机械稳定性好,分离效果佳。在含氟材料的研究和使用过程中,利用长碳链全氟烷基(即氢原子全部被取代且碳链≥8)的极低表面能特性和表面构象稳定达到防水防油、防污、耐化学腐蚀等表面处理目的已经获得广泛应用。然而,长碳链全氟烷基在自然环境中氧化降解生成对应的全氟羧酸或羧酸盐, 如全氟辛烷磺酸(PerfluorooctaneSulphonate,PFOS)和全氟辛酸(Perfluorooctanoic Acid, PFOA) 等环境污染物后再难降解,这些分解产物是目前最难降解的有机污染物,且对人体健康存在严重危害。针对长碳链全氟烷基的生物毒性、累积性和PFOS禁用问题,研究具有高表面活性但环境友好的PFOS替代品已经成为当前含氟材料的研究热点。
发明内容
本发明在织物纤维表面涂层全氟聚醚羧酸铵聚合物,利用本质水合作用提供亲水性,且具有疏油功能,由此获得亲水-疏油织物,用于油水分离。
实现本发明目的的技术方案是:
基于亲水疏油织物进行油水分离的方法,包括如下步骤:将织物浸轧聚二烯丙基二甲基氯化铵水溶液,然后烘干,再加入全氟聚醚羧酸钠水溶液中,反应得到亲水疏油织物;将油水混合液流经所述亲水疏油织物,完成油水分离;具体的,将油水混合液流经以所述亲水疏油织物为滤布的过滤装置,无需外力,仅依靠重力作用,水透过,油被截留,完成油水分离
本发明所述亲水疏油织物包括基础织物和全氟聚醚羧酸铵涂层,所述全氟聚醚羧酸铵涂层的化学结构式如下:
Figure 100002_DEST_PATH_IMAGE001
本发明亲水疏油织物可如下表示:
Figure 234432DEST_PATH_IMAGE002
其中,n=10~1600;Rf如下:
Figure DEST_PATH_IMAGE003
本发明将油水混合液倒在所述亲水疏油织物上,完成油水分离;油水混合液与织物的重量比为1000~10∶1。
本发明以水溶液的形式在纤维表面原位生成全氟聚醚羧酸铵聚合物涂层,先由氯化铵型聚合物浸轧整理织物,在纤维表面包裹季铵盐聚合物层;再以全氟聚醚羧酸根置换季铵盐聚合物中的氯阴离子,通过两步法在织物纤维表面涂层全氟聚醚羧酸铵;创造性的解决了全氟聚醚型聚合物所普遍存在的溶解性极差的问题。
本发明中,将氢氧化钠水溶液滴加入全氟聚醚羧酸中,反应得到全氟聚醚羧酸钠水溶液。
本发明中,全氟聚醚羧酸如下:
Figure 696113DEST_PATH_IMAGE004
本发明在敞口容器中,配制一定浓度的聚二烯丙基二甲基氯化铵水溶液作为浸渍液,按照一定浴比(指浸渍时织物与浸渍液的质量比)加入织物,浸渍后轧液,控制轧液率,然后烘干;
在敞口容器配备搅拌器,加入一定量全氟聚醚羧酸,搅拌下滴加氢氧化钠水溶液,加完后继续搅拌反应1小时以上,得到全氟聚醚羧酸钠水溶液,搅拌没有限制,为常规方法;
在上述全氟聚醚羧酸钠水溶液中,投入上述烘干后的织物,常规反应一定时间,优选的,反应时间为10分钟~12小时,最好为20分钟~2小时;得到本发明亲水疏油织物。
进一步地,反应结束后将织物取出,水洗除去未反应的原料和生成的氯化钠副产物,再烘干,制得亲水疏油织物;织物烘干的温度为40~100℃,最好为50~70℃;烘干时间为10分钟~5小时,最好为30分钟~2小时。
本发明中,织物为涤纶、腈纶、锦纶、丙纶、芳纶单纺或者混纺织物,织物中纤维为涤纶、腈纶、锦纶、丙纶或芳纶中的一种或几种;所述亲水疏油织物的纤维表面含有氟聚醚羧酸铵涂层;所述油水混合液中,油为有机溶剂。
本发明中,聚二烯丙基二甲基氯化铵水溶液质量浓度为1%~50%,最好为5%~20%;浸轧时,浴比为1:10~1:200,最好为1∶20~1:50;浸渍时间为10分钟~6小时,最好为30分钟~1小时;控制轧液率为10%~110%,最好为20%~80%;织物烘干的温度为40~100℃,最好为50~70℃;烘干的时间为10分钟~5小时,最好为30分钟~2小时。
本发明中,氢氧化钠水溶液的质量浓度为1%~20%,最好为3%~10%;全氟聚醚羧酸钠水溶液的质量浓度为3%~30%,最好为8%~12%。
本发明中,阴离子交换反应如下:
Figure DEST_PATH_IMAGE005
与现有技术相比,本发明提供的技术方案其有益效果在于:
1、本发明首次织物的纤维表面涂覆全氟聚醚羧酸铵,在接触水时可发生水合作用,使织物对水静态接触角随接触时间延长逐渐下降并最终转为亲水;在接触油时则=提供疏油功能。由此赋予织物亲水-疏油功能。这一方法对于开发轻油和水混合组份的油水分离,具有非常重要的意义,轻油浮于水上层,下层水先接触滤布,由于滤布亲水,水可滤过;滤布疏油,轻油被截留。
2、本发明先在纤维表面涂层季铵盐,再结合全氟聚醚羧酸阴离子,全氟聚醚羧酸铵在纤维表面原位生成,克服了全氟羧酸铵聚合物几乎不溶于所有溶剂所导致难以喷涂或浸渍处理织物的技术难题。
3、本发明在纤维表面形成涂层,系由两步法实现,两步处理均在水溶液中实现,生产工艺安全,环保;且制备亲水-疏油织物的工艺简单、操作条件温和,适合工艺放大和生产。
附图说明
图1是本发明聚二烯丙基二甲基全氟聚醚羧酸铵在纤维表面的化学结构示意图;
图2是实施例一至实施例四所制备亲水疏油织物分别测试对水接触角随时间延长降低趋势图;其中,实施例一对应聚二烯丙基二甲基氯化铵处理浓度为5wt%,实施例二对应聚二烯丙基二甲基氯化铵处理浓度为10wt%,实施例三对应聚二烯丙基二甲基氯化铵处理浓度为15wt%,实施例四对应聚二烯丙基二甲基氯化铵处理浓度为20wt%;
图3是实施例一至实施例四所制备亲水疏油织物分别测试对油接触角随时间延长降低趋势图;其中,实施例一对应聚二烯丙基二甲基氯化铵处理浓度为5wt%,实施例二对应聚二烯丙基二甲基氯化铵处理浓度为10wt%,实施例三对应聚二烯丙基二甲基氯化铵处理浓度为15wt%,实施例四对应聚二烯丙基二甲基氯化铵处理浓度为20wt%;
图4是实施例二处理织物表面衰减全反射红外图;其中,PDA为聚二烯丙基二甲基氯化铵处理涤纶织物,PDAF-2为经全氟聚醚羧酸根阴离子交换后的亲水疏油织物表面红外光谱图;PDAF-6为实施例四中,经全氟聚醚羧酸根阴离子交换后的亲水疏油织物表面红外光谱图;
图5是实施例二聚二烯丙基二甲基氯化铵处理涤纶织物表面SEM图和EDS元素分布图,其中,C元素64.031%,N元素3.148%,O元素含量为32.821%,由于涤纶织物不含N元素,测试结果说明聚二烯丙基二甲基氯化铵已经涂层至纤维表面;
图6是实施例二聚二烯丙基二甲基全氟聚醚羧酸铵处理涤纶织物表面SEM图和EDS元素分布图,其中,C元素346.840%,N元素2.652%,O元素含量为15.550%,F元素为34.985%,测试结果说明聚二烯丙基二甲基全氟聚醚羧酸铵已经涂层至纤维表面;
图7是对比实施例一制备得到的聚二烯丙基二甲基全氟辛酸铵亲水疏油织物对水接触角随时间延长降低趋势图;
图8是对比实施例一制备得到的聚二烯丙基二甲基全氟辛酸铵亲水疏油织物对油接触角随时间延长降低趋势图;
图9 为对比实施例二所制备聚二烯丙基二甲基全氟聚醚羧酸铵产物外观图;
图10为以实施例三制备得到的亲水-疏油织物为滤布,在过滤装置中对石油醚/水进行油水分离。
具体实施方式
本发明公开的上述亲水疏油织物的制备方法如下:
(1)纤维表面季铵盐预处理:先配制聚二烯丙基二甲基氯化铵水溶液,投入织物,浸渍、轧液,烘干;
(2)配制全氟聚醚羧酸钠水溶液:在全氟聚醚羧酸中,滴加氢氧化钠水溶液,中和反应,得到全氟聚醚羧酸钠水溶液;
(3)在全氟聚醚羧酸钠水溶液中投入烘干的季铵化织物,进行交换反应;然后取出氟化织物,水洗,干燥,得到亲水疏油织物,织物中纤维表面涂层化学结构示意图参见图1。
下面结合附图和实施例对本发明技术方案作进一步描述;本发明涉及的织物、原料都为市售常规物质,织物未经表面处理,且无法进行油水分离;接触角等测试方法为织物常规测试方法,具体制备方法也为常规技术。与现有技术相比,本发明织物处理方法工艺简单和操作容易,可以在纤维表面获得亲水-疏油涂层。
以2g涤纶织物为例,经过本发明表面处理后对200g石油醚/水(1:1体积)进行分离,测试分离效率。其中,在水中加了5滴红墨水。具体为,将石油醚/水倒在亲水疏油织物表面,静置,不依靠外力,仅在重力作用下,水被织物吸收并透过流下,石油醚被织物阻隔,最后收集被分离的石油醚,完成油水分离。将进行油水分离后的织物烘干,再次进行油水分离测试,研究循环使用性能。
实施例一
将25g聚二烯丙基二甲基氯化铵(聚二烯丙基二甲基氯化铵购自昆山晟安生物科技限公司,型号为D1UL(分子量23万-25万),以下实施例一样)溶于475g水中,配制成浓度为5.0wt%的聚二烯丙基二甲基氯化铵水溶液;然后投入20g涤纶织物,浸30min后,轧液,控制轧液率为50%,再于50℃下烘干1h,称重织物,测得织物一次增重率为4.4%;该织物无法进行油水分离;
将0.4g氢氧化钠溶解于108g水,配制成质量浓度为0.37%的氢氧化钠水溶液;
常规搅拌下,向500mL烧杯中加入数均分子量为3000的K型全氟聚醚羧酸12 g,冷却至5℃,滴加上述氢氧化钠水溶液,滴加完后室温反应至pH=7~8,得到溶液浓度为10.2wt%的全氟聚醚羧酸钠水溶液;再投入上述经季铵处理的烘干织物,震荡反应30min;取出织物,水洗后于50℃下烘干1h,为亲水疏油织物。
接触角测试
采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的超疏水织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得处理织物表面对水初始接触角为135.9±0.8°,接触水30分钟后,接触角下降为0°,随着时间延长处理织物对水接触角变化见图2。对油接触角为90.9±3.4°,接触油30分钟后,接触角下降为61.8±1.5°,随着时间延长处理织物对油接触角变化具体见图3。
油水分离试验
将本实施例制备的亲水疏油织物作为滤布,装入图10中过滤装置。油水混合物的分离效率(η)是通过收集分离后的油体积(V1)与初始油水混合物中的油体积(V0)通过公式(1)进行计算得到:
Figure 288900DEST_PATH_IMAGE006
采用本实施例制备的亲水-疏油织物通过公式(1)对石油醚与水混合物(1:1体积)进行分离,1次分离效率可以达到87.2%。油水分离结束后,取出本发明亲水疏油织物,于60℃下烘燥1小时,再次装入过滤装置中,测试循环使用性能;循环使用5次时,对200g石油醚与水混合物(1:1体积)的分离效率下降为76.9%。
实施例二
将50g聚二烯丙基二甲基氯化铵溶于450g水中,配制成浓度为10.0%的聚二烯丙基二甲基氯化铵水溶液,然后投入20g涤纶织物,浸30min后,轧液,控制轧液率为50%,于50℃下烘干1h,称重织物,测得织物一次增重率为6.2%。处理织物测试红外,结果见图4曲线PDA,可见纤维表面在3500~3350 cm-1范围内出现了很强、很宽的季铵盐特征吸收峰。图5测得处理涤纶织物表面SEM图和EDS元素分布图,其中,C元素64.031%,N元素3.148%,O元素含量为32.821%,由于涤纶织物不含N元素,测试结果说明聚二烯丙基二甲基氯化铵已经涂层至纤维表面;
将0.4g氢氧化钠溶解于108g水,配制成质量浓度为0.37%的水溶液;
常规搅拌下,向500mL烧杯中加入数均分子量为3000的K型全氟聚醚羧酸12 g,冷却至5℃,滴加上述氢氧化钠水溶液,滴加完后室温反应至pH=7~8,得到溶液浓度为10.2wt%的全氟聚醚羧酸钠水溶液;再投入上述经季铵处理的烘干织物,震荡反应30min;取出织物,水洗后于50℃下烘干1h,为亲水疏油织物。处理织物测试红外,结果见图4曲线PDAF-2,可见纤维表面除了有很强、很宽的季铵盐特征吸收峰,还新出现1690cm-1为含氟羧酸阴离子中C=O伸缩振动吸收峰,1243 cm-1和1157 cm-1处新出现的吸收峰为全氟聚醚链中C-F伸缩振动吸收峰。由此说明经全氟聚醚羧酸阴离子交换后纤维表面通过离子键吸附了含氟聚醚羧酸根。图6进一步测得处理涤纶织物表面SEM图和EDS元素分布图,其中,C元素346.840%,N元素2.652%,O元素含量为15.550%,F元素为34.985%,测试结果说明聚二烯丙基二甲基全氟聚醚羧酸铵已经涂层至纤维表面。
(3)接触角测试
采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的超疏水织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得处理织物表面对水初始接触角为148.2±0.2°,接触水30分钟后,接触角下降为0°,随着时间延长处理织物对水接触角变化见图2。对油接触角为91.8±2.9°,接触油30分钟后,接触角下降为81.2±3.1°,随着时间延长处理织物对油接触角变化见图3。
(4)油水分离试验
油水混合物的分离效率(η)是通过收集分离后的油体积(V1)与初始油水混合物中的油体积(V0)通过公式(1)进行计算得到:
Figure DEST_PATH_IMAGE007
采用本实施例制备的亲水-疏油织物通过公式(1)对石油醚与水混合物(1:1体积)进行分离,1次分离效率可以达到91.1%,而且循环使用5次时,对石油醚与水混合物(1:1体积)的分离效率为86.9%。
实施例三
将75g聚二烯丙基二甲基氯化铵溶于425g水中,配制成浓度为15.0%的聚二烯丙基二甲基氯化铵水溶液,再投入20g涤纶织物,浸30min后,轧液,控制轧液率为50%,于50℃下烘干1h,称重织物,测得织物一次增重率为6.9%;
将0.4g氢氧化钠溶解于108g水,配制成质量浓度为0.37%的水溶液;
常规搅拌下,向500mL烧杯中加入数均分子量为3000的K型全氟聚醚羧酸12 g,冷却至5℃,滴加上述氢氧化钠水溶液,滴加完后室温反应至pH=7~8,得到溶液浓度为10.2wt%的全氟聚醚羧酸钠水溶液;再投入上述经季铵处理的烘干织物,震荡反应30min;取出织物,水洗后于50℃下烘干1h,为亲水疏油织物。
(3)接触角测试
采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的超疏水织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得处理织物表面对水初始接触角为149.3±1.7°,接触水30分钟后,接触角下降为18.2±0.2°,随着时间延长处理织物对水接触角变化见图2。对油接触角为94.8±2.4°,接触油30分钟后,接触角下降为92.0±2.2°,随着时间延长处理织物对油接触角变化见图3。
(4)油水分离试验
油水混合物的分离效率(η)是通过收集分离后的油体积(V1)与初始油水混合物中的油体积(V0)通过公式(1)进行计算得到:
Figure 403485DEST_PATH_IMAGE008
采用本实施例制备的亲水-疏油织物通过公式(1)对石油醚与水混合物(1:1体积)进行分离,1次分离效率可以达到96.8%,而且循环使用5次时,对石油醚与水混合物(1:1体积)的分离效率为93.7%,循环使用10次时,对石油醚与水混合物(1:1体积)的分离效率为90.9%。图10为上述亲水疏油织物为滤布,在过滤装置中对石油醚/水进行油水分离实验图。
实施例四
将100g聚二烯丙基二甲基氯化铵溶于400g水中,配制成浓度为20.0%的聚二烯丙基二甲基氯化铵水溶液,再投入20g涤纶织物,浸30min后,轧液,控制轧液率为50%,于50℃下烘干1h,称重织物,测得织物一次增重率为10.1%;
将0.4g氢氧化钠溶解于108g水,配制成质量浓度为0.37%的水溶液;
常规搅拌下,向500mL烧杯中加入数均分子量为3000的K型全氟聚醚羧酸12 g,冷却至5℃,滴加上述氢氧化钠水溶液,滴加完后室温反应至pH=7~8,得到溶液浓度为10.2wt%的全氟聚醚羧酸钠水溶液;再投入上述经季铵处理的烘干织物,震荡反应30min;取出织物,水洗后于50℃下烘干1h,为亲水疏油织物。处理织物测试红外,结果见图4曲线PDAF-6,可见纤维表面除了有很强、很宽的季铵盐特征吸收峰, 还新出现1690cm-1为含氟羧酸阴离子中C=O伸缩振动吸收峰,1243 cm-1和1157 cm-1处新出现的吸收峰为全氟聚醚链中C-F伸缩振动吸收峰。由此说明经全氟聚醚羧酸阴离子交换后纤维表面通过离子键吸附了含氟聚醚羧酸根。
(3)接触角测试
采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的超疏水织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得处理织物表面对水初始接触角为148.0±0.6°,接触水30分钟后,接触角下降为43.2±1.1°,随着时间延长处理织物对水接触角变化见图2。对油接触角为94.4±3.6°,接触油30分钟后,接触角下降为92.2±2.4°,随着时间延长处理织物对油接触角变化见图3。
(4)油水分离试验
油水混合物的分离效率(η)是通过收集分离后的油体积(V1)与初始油水混合物中的油体积(V0)通过公式(1)进行计算得到:
Figure DEST_PATH_IMAGE009
采用本实施例制备的亲水-疏油织物通过公式(1)对石油醚与水混合物(1:1体积)进行分离,1次分离效率可以达到97.6%,而且循环使用5次时,对石油醚与水混合物(1:1体积)的分离效率为94.3%,循环使用10次时,对石油醚与水混合物(1:1体积)的分离效率为91.8%。
对比例一
将75g聚二烯丙基二甲基氯化铵溶于425g水中,配制成浓度为15.0%的聚二烯丙基二甲基氯化铵水溶液,再投入20g涤纶织物,浸30min后,轧液,控制轧液率为50%,于50℃下烘干1h,称重织物,测得织物一次增重率为6.9%;
将0.4g氢氧化钠溶解于108g水,配制成质量浓度为0.37%的水溶液;
常规搅拌下,向500mL烧杯中加入全氟辛酸12 g,冷却至5℃,滴加上述氢氧化钠水溶液,滴加完后室温反应至pH=7~8,得到溶液浓度为10.0wt%的全氟辛酸钠水溶液;再投入上述经季铵处理的烘干织物,震荡反应30min;取出织物,水洗后于50℃下烘干1h,为亲水疏油织物。
(3)接触角测试
采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对皂洗前后的超疏水织物润湿性能测试,选取水作为测试液滴,液滴体积为5μL,分别测试五次取其平均值。测得处理织物表面对水初始接触角为132.4±3.0°,接触水30分钟后,接触角下降为0°,随着时间延长处理织物对水接触角变化见图7。对油接触角为92.9±1.6°,接触油30分钟后,接触角下降为92.2±2.1°,随着时间延长处理织物对油接触角变化见图8。
(4)油水分离试验
油水混合物的分离效率(η)是通过收集分离后的油体积(V1)与初始油水混合物中的油体积(V0)通过公式(1)进行计算得到:
Figure 296485DEST_PATH_IMAGE010
采用本实施例制备的亲水-疏油织物通过公式(1)对石油醚与水混合物(1:1体积)进行分离,1次分离效率为89.8%。
对比例二:
250mL三口烧瓶,配备搅拌,温度计和滴加漏斗。加入聚二烯丙基二甲基氯化铵7.2g,去离子水72g,搅拌全溶。室温下滴加40.7 g全氟聚醚羧酸钠水溶液(浓度为10wt%),很快析出凝胶状固体。室温搅拌反应3h。停止反应后,固体产物充分水洗,得聚二烯丙基二甲基全氟聚醚羧酸铵27.5g,收率为87.0%。产物外观如图9。由于全氟聚醚羧酸铵产物极性非常低,产物不水溶,尝试将产物溶解于有机溶剂(如乙醇、丙酮、异丙醇等几乎所有有机溶剂),完全不溶解。因此无法将聚二烯丙基二甲基全氟聚醚羧酸铵配制成可对织物进行表面处理的工作液。
对比例三
将0.4g氢氧化钠溶解于108g水,配制成质量浓度为0.37%的氢氧化钠水溶液;
常规搅拌下,向500mL烧杯中加入数均分子量为3000的K型全氟聚醚羧酸12 g,冷却至5℃,滴加上述氢氧化钠水溶液,滴加完后室温反应至pH=7~8,得到溶液浓度为10.2wt%的全氟聚醚羧酸钠水溶液;再投入未经表面处理的织物,震荡反应30min;取出织物,水洗后于50℃下烘干1h,红外测试发现所得织物表面没有C-F伸缩振动吸收峰。
本发明具体涉及一种全氟聚醚羧酸铵聚合物处理织物的方法,及对纤维表面处理制备的亲水-疏油织物,以及亲水-疏油织物在油水分离中的应用,属于特种功能性纺织品及其制备技术领域。全氟聚醚是一类比较特殊的全氟聚合物,分子中仅有F、C、O三种元素,其平均分子量为500~15000,在室温下其粘度随着平均分子量的增大而不断增加。全氟聚醚的分子结构与烃类聚醚的分子结构非常类似,但是以C-F 键代替了C-H键,即分子中用氟原子代替了氢原子。全氟聚醚分子中的 C-F键对主链有很强的屏蔽作用,现有技术由其制备的氟醚油,能够应用于苛刻的环境下,是一种良好的特殊润滑油,但是没有用于织物亲水疏油处理的报道,本发明公开了一种全氟聚醚羧酸铵处理织物,并将其作为亲水-疏油织物应用于油水分离领域不仅具有初始优异的疏水性,且随着时间的延长具有亲水性,同时疏油性能好,循环利用次数多。

Claims (8)

1.基于亲水疏油织物进行油水分离的方法,其特征在于,包括如下步骤:将织物浸轧聚二烯丙基二甲基氯化铵水溶液,然后烘干,再加入全氟聚醚羧酸钠水溶液中,反应得到亲水疏油织物;将油水混合液流经所述亲水疏油织物,完成油水分离;聚二烯丙基二甲基氯化铵水溶液质量浓度为15%或者20%;将氢氧化钠水溶液滴加入全氟聚醚羧酸中,反应得到全氟聚醚羧酸钠水溶液;所述全氟聚醚羧酸如下:
Figure DEST_PATH_IMAGE001
m为5~50。
2.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,所述织物为涤纶、腈纶、锦纶、丙纶、芳纶单纺或者混纺织物。
3.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,所述油水混合液中,油为有机溶剂。
4.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,反应结束后将织物取出,水洗再烘干,制得亲水疏油织物。
5.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,油水分离在非外力下进行。
6.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,烘干的温度为40~100℃,时间为10分钟~5小时。
7.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,将油水混合液倒入以所述亲水疏油织物为滤布的过滤装置中,完成油水分离。
8.根据权利要求1所述基于亲水疏油织物进行油水分离的方法,其特征在于,油水混合液与织物的重量比为1000~10∶1。
CN202011025989.3A 2020-09-25 2020-09-25 基于亲水疏油织物进行油水分离的方法 Active CN112169376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011025989.3A CN112169376B (zh) 2020-09-25 2020-09-25 基于亲水疏油织物进行油水分离的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011025989.3A CN112169376B (zh) 2020-09-25 2020-09-25 基于亲水疏油织物进行油水分离的方法

Publications (2)

Publication Number Publication Date
CN112169376A CN112169376A (zh) 2021-01-05
CN112169376B true CN112169376B (zh) 2022-06-07

Family

ID=73944051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011025989.3A Active CN112169376B (zh) 2020-09-25 2020-09-25 基于亲水疏油织物进行油水分离的方法

Country Status (1)

Country Link
CN (1) CN112169376B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479089B (zh) * 2022-02-15 2023-06-06 苏州大学 一种全氟聚醚嵌段改性聚己内酯及其微球薄膜与制备的疏水织物
CN116286030B (zh) * 2023-01-09 2023-10-27 四川晨光博达新材料有限公司 一种低泡、低表面张力环保型全氟聚醚表面活性剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103585788A (zh) * 2013-11-18 2014-02-19 天津理工大学 一种超亲水疏油网膜的制备方法及其在油水分离中的应用
CN105603752A (zh) * 2015-12-25 2016-05-25 常熟市格林染整有限公司 棉麻面料的染整工艺
CN110924169A (zh) * 2019-12-09 2020-03-27 苏州经贸职业技术学院 一种非织造织物亲水整理剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103585788A (zh) * 2013-11-18 2014-02-19 天津理工大学 一种超亲水疏油网膜的制备方法及其在油水分离中的应用
CN105603752A (zh) * 2015-12-25 2016-05-25 常熟市格林染整有限公司 棉麻面料的染整工艺
CN110924169A (zh) * 2019-12-09 2020-03-27 苏州经贸职业技术学院 一种非织造织物亲水整理剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Superhydrophilic–superoleophobic coatings;Jin Yang;《Journal of Materials Chemistry》;20121230;第2834-2837页 *

Also Published As

Publication number Publication date
CN112169376A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
CN112169376B (zh) 基于亲水疏油织物进行油水分离的方法
CN103709882B (zh) 一种具有普适性的超双疏表面及其制备方法
AU2012243394A1 (en) Amphiphobic block copolymers and applications thereof
Li et al. Durable superhydrophobic cotton fabrics prepared by surface-initiated electrochemically mediated ATRP of polyhedral vinylsilsesquioxane and subsequent fluorination via thiol-Michael addition reaction
CN103626957B (zh) 两亲性含氟环氧树脂及其制备方法与其制备的超双疏表面
CN103665280A (zh) 一种多功能性含氟微球及其制备方法与应用
CN113089325B (zh) 一种持久型短链含氟拒水拒油剂及其制备方法
CN103709815A (zh) 一种水分散性超双疏微球及其制备方法与应用
CN102964544A (zh) 水分散性可交联型含氟聚合物及在制备超双疏表面的应用
CN107383374B (zh) 一种棉织物亲水柔软剂的制备方法
CN107441961A (zh) 一种超亲水pvdf油水乳液分离膜的制备方法及应用
CN102977292A (zh) 两亲性可交联含氟聚合物及其在制备超双疏表面中的应用
Xie et al. Facile fabrication of superhydrophobic polyester fabric based on rapid oxidation polymerization of dopamine for oil–water separation
CN112095345B (zh) 一种亲水疏油织物及其制备方法
Dong et al. Polymer-grafted modification of cotton fabrics by SI-ARGET ATRP
CN102199263A (zh) 一种双疏性含氟可交联嵌段共聚物及其制备方法与应用
CN112079957B (zh) 三防整理剂及其制备方法
Jiang et al. Water repellent treatment of cotton fabrics by electron beam irradiation
TW201321417A (zh) 含氟組成物及表面處理劑
CN103570860B (zh) 无皂乳液聚合制备含氟防水防油剂的方法
CN117646289A (zh) 一种防污抗菌纺织面料及其制备方法
JP5397519B2 (ja) 含フッ素組成物およびその用途
CN113249971A (zh) 一种核-壳型短链含氟丙烯酸酯织物拒水拒油整理剂及其制备方法和应用
Liu et al. Highly hydrophobic cotton fabric by in-situ co-deposition of lignin/metal particles for oil/water separation
TW201321418A (zh) 含氟組成物及含氟聚合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant